wmi.c 58 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113
  1. /*
  2. * Copyright (c) 2005-2011 Atheros Communications Inc.
  3. * Copyright (c) 2011-2013 Qualcomm Atheros, Inc.
  4. *
  5. * Permission to use, copy, modify, and/or distribute this software for any
  6. * purpose with or without fee is hereby granted, provided that the above
  7. * copyright notice and this permission notice appear in all copies.
  8. *
  9. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  10. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  11. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  12. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  13. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  14. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  15. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  16. */
  17. #include <linux/skbuff.h>
  18. #include "core.h"
  19. #include "htc.h"
  20. #include "debug.h"
  21. #include "wmi.h"
  22. #include "mac.h"
  23. void ath10k_wmi_flush_tx(struct ath10k *ar)
  24. {
  25. int ret;
  26. lockdep_assert_held(&ar->conf_mutex);
  27. if (ar->state == ATH10K_STATE_WEDGED) {
  28. ath10k_warn("wmi flush skipped - device is wedged anyway\n");
  29. return;
  30. }
  31. ret = wait_event_timeout(ar->wmi.wq,
  32. atomic_read(&ar->wmi.pending_tx_count) == 0,
  33. 5*HZ);
  34. if (atomic_read(&ar->wmi.pending_tx_count) == 0)
  35. return;
  36. if (ret == 0)
  37. ret = -ETIMEDOUT;
  38. if (ret < 0)
  39. ath10k_warn("wmi flush failed (%d)\n", ret);
  40. }
  41. int ath10k_wmi_wait_for_service_ready(struct ath10k *ar)
  42. {
  43. int ret;
  44. ret = wait_for_completion_timeout(&ar->wmi.service_ready,
  45. WMI_SERVICE_READY_TIMEOUT_HZ);
  46. return ret;
  47. }
  48. int ath10k_wmi_wait_for_unified_ready(struct ath10k *ar)
  49. {
  50. int ret;
  51. ret = wait_for_completion_timeout(&ar->wmi.unified_ready,
  52. WMI_UNIFIED_READY_TIMEOUT_HZ);
  53. return ret;
  54. }
  55. static struct sk_buff *ath10k_wmi_alloc_skb(u32 len)
  56. {
  57. struct sk_buff *skb;
  58. u32 round_len = roundup(len, 4);
  59. skb = ath10k_htc_alloc_skb(WMI_SKB_HEADROOM + round_len);
  60. if (!skb)
  61. return NULL;
  62. skb_reserve(skb, WMI_SKB_HEADROOM);
  63. if (!IS_ALIGNED((unsigned long)skb->data, 4))
  64. ath10k_warn("Unaligned WMI skb\n");
  65. skb_put(skb, round_len);
  66. memset(skb->data, 0, round_len);
  67. return skb;
  68. }
  69. static void ath10k_wmi_htc_tx_complete(struct ath10k *ar, struct sk_buff *skb)
  70. {
  71. dev_kfree_skb(skb);
  72. if (atomic_sub_return(1, &ar->wmi.pending_tx_count) == 0)
  73. wake_up(&ar->wmi.wq);
  74. }
  75. /* WMI command API */
  76. static int ath10k_wmi_cmd_send(struct ath10k *ar, struct sk_buff *skb,
  77. enum wmi_cmd_id cmd_id)
  78. {
  79. struct ath10k_skb_cb *skb_cb = ATH10K_SKB_CB(skb);
  80. struct wmi_cmd_hdr *cmd_hdr;
  81. int status;
  82. u32 cmd = 0;
  83. if (skb_push(skb, sizeof(struct wmi_cmd_hdr)) == NULL)
  84. return -ENOMEM;
  85. cmd |= SM(cmd_id, WMI_CMD_HDR_CMD_ID);
  86. cmd_hdr = (struct wmi_cmd_hdr *)skb->data;
  87. cmd_hdr->cmd_id = __cpu_to_le32(cmd);
  88. if (atomic_add_return(1, &ar->wmi.pending_tx_count) >
  89. WMI_MAX_PENDING_TX_COUNT) {
  90. /* avoid using up memory when FW hangs */
  91. atomic_dec(&ar->wmi.pending_tx_count);
  92. return -EBUSY;
  93. }
  94. memset(skb_cb, 0, sizeof(*skb_cb));
  95. trace_ath10k_wmi_cmd(cmd_id, skb->data, skb->len);
  96. status = ath10k_htc_send(&ar->htc, ar->wmi.eid, skb);
  97. if (status) {
  98. dev_kfree_skb_any(skb);
  99. atomic_dec(&ar->wmi.pending_tx_count);
  100. return status;
  101. }
  102. return 0;
  103. }
  104. static int ath10k_wmi_event_scan(struct ath10k *ar, struct sk_buff *skb)
  105. {
  106. struct wmi_scan_event *event = (struct wmi_scan_event *)skb->data;
  107. enum wmi_scan_event_type event_type;
  108. enum wmi_scan_completion_reason reason;
  109. u32 freq;
  110. u32 req_id;
  111. u32 scan_id;
  112. u32 vdev_id;
  113. event_type = __le32_to_cpu(event->event_type);
  114. reason = __le32_to_cpu(event->reason);
  115. freq = __le32_to_cpu(event->channel_freq);
  116. req_id = __le32_to_cpu(event->scan_req_id);
  117. scan_id = __le32_to_cpu(event->scan_id);
  118. vdev_id = __le32_to_cpu(event->vdev_id);
  119. ath10k_dbg(ATH10K_DBG_WMI, "WMI_SCAN_EVENTID\n");
  120. ath10k_dbg(ATH10K_DBG_WMI,
  121. "scan event type %d reason %d freq %d req_id %d "
  122. "scan_id %d vdev_id %d\n",
  123. event_type, reason, freq, req_id, scan_id, vdev_id);
  124. spin_lock_bh(&ar->data_lock);
  125. switch (event_type) {
  126. case WMI_SCAN_EVENT_STARTED:
  127. ath10k_dbg(ATH10K_DBG_WMI, "SCAN_EVENT_STARTED\n");
  128. if (ar->scan.in_progress && ar->scan.is_roc)
  129. ieee80211_ready_on_channel(ar->hw);
  130. complete(&ar->scan.started);
  131. break;
  132. case WMI_SCAN_EVENT_COMPLETED:
  133. ath10k_dbg(ATH10K_DBG_WMI, "SCAN_EVENT_COMPLETED\n");
  134. switch (reason) {
  135. case WMI_SCAN_REASON_COMPLETED:
  136. ath10k_dbg(ATH10K_DBG_WMI, "SCAN_REASON_COMPLETED\n");
  137. break;
  138. case WMI_SCAN_REASON_CANCELLED:
  139. ath10k_dbg(ATH10K_DBG_WMI, "SCAN_REASON_CANCELED\n");
  140. break;
  141. case WMI_SCAN_REASON_PREEMPTED:
  142. ath10k_dbg(ATH10K_DBG_WMI, "SCAN_REASON_PREEMPTED\n");
  143. break;
  144. case WMI_SCAN_REASON_TIMEDOUT:
  145. ath10k_dbg(ATH10K_DBG_WMI, "SCAN_REASON_TIMEDOUT\n");
  146. break;
  147. default:
  148. break;
  149. }
  150. ar->scan_channel = NULL;
  151. if (!ar->scan.in_progress) {
  152. ath10k_warn("no scan requested, ignoring\n");
  153. break;
  154. }
  155. if (ar->scan.is_roc) {
  156. ath10k_offchan_tx_purge(ar);
  157. if (!ar->scan.aborting)
  158. ieee80211_remain_on_channel_expired(ar->hw);
  159. } else {
  160. ieee80211_scan_completed(ar->hw, ar->scan.aborting);
  161. }
  162. del_timer(&ar->scan.timeout);
  163. complete_all(&ar->scan.completed);
  164. ar->scan.in_progress = false;
  165. break;
  166. case WMI_SCAN_EVENT_BSS_CHANNEL:
  167. ath10k_dbg(ATH10K_DBG_WMI, "SCAN_EVENT_BSS_CHANNEL\n");
  168. ar->scan_channel = NULL;
  169. break;
  170. case WMI_SCAN_EVENT_FOREIGN_CHANNEL:
  171. ath10k_dbg(ATH10K_DBG_WMI, "SCAN_EVENT_FOREIGN_CHANNEL\n");
  172. ar->scan_channel = ieee80211_get_channel(ar->hw->wiphy, freq);
  173. if (ar->scan.in_progress && ar->scan.is_roc &&
  174. ar->scan.roc_freq == freq) {
  175. complete(&ar->scan.on_channel);
  176. }
  177. break;
  178. case WMI_SCAN_EVENT_DEQUEUED:
  179. ath10k_dbg(ATH10K_DBG_WMI, "SCAN_EVENT_DEQUEUED\n");
  180. break;
  181. case WMI_SCAN_EVENT_PREEMPTED:
  182. ath10k_dbg(ATH10K_DBG_WMI, "WMI_SCAN_EVENT_PREEMPTED\n");
  183. break;
  184. case WMI_SCAN_EVENT_START_FAILED:
  185. ath10k_dbg(ATH10K_DBG_WMI, "WMI_SCAN_EVENT_START_FAILED\n");
  186. break;
  187. default:
  188. break;
  189. }
  190. spin_unlock_bh(&ar->data_lock);
  191. return 0;
  192. }
  193. static inline enum ieee80211_band phy_mode_to_band(u32 phy_mode)
  194. {
  195. enum ieee80211_band band;
  196. switch (phy_mode) {
  197. case MODE_11A:
  198. case MODE_11NA_HT20:
  199. case MODE_11NA_HT40:
  200. case MODE_11AC_VHT20:
  201. case MODE_11AC_VHT40:
  202. case MODE_11AC_VHT80:
  203. band = IEEE80211_BAND_5GHZ;
  204. break;
  205. case MODE_11G:
  206. case MODE_11B:
  207. case MODE_11GONLY:
  208. case MODE_11NG_HT20:
  209. case MODE_11NG_HT40:
  210. case MODE_11AC_VHT20_2G:
  211. case MODE_11AC_VHT40_2G:
  212. case MODE_11AC_VHT80_2G:
  213. default:
  214. band = IEEE80211_BAND_2GHZ;
  215. }
  216. return band;
  217. }
  218. static inline u8 get_rate_idx(u32 rate, enum ieee80211_band band)
  219. {
  220. u8 rate_idx = 0;
  221. /* rate in Kbps */
  222. switch (rate) {
  223. case 1000:
  224. rate_idx = 0;
  225. break;
  226. case 2000:
  227. rate_idx = 1;
  228. break;
  229. case 5500:
  230. rate_idx = 2;
  231. break;
  232. case 11000:
  233. rate_idx = 3;
  234. break;
  235. case 6000:
  236. rate_idx = 4;
  237. break;
  238. case 9000:
  239. rate_idx = 5;
  240. break;
  241. case 12000:
  242. rate_idx = 6;
  243. break;
  244. case 18000:
  245. rate_idx = 7;
  246. break;
  247. case 24000:
  248. rate_idx = 8;
  249. break;
  250. case 36000:
  251. rate_idx = 9;
  252. break;
  253. case 48000:
  254. rate_idx = 10;
  255. break;
  256. case 54000:
  257. rate_idx = 11;
  258. break;
  259. default:
  260. break;
  261. }
  262. if (band == IEEE80211_BAND_5GHZ) {
  263. if (rate_idx > 3)
  264. /* Omit CCK rates */
  265. rate_idx -= 4;
  266. else
  267. rate_idx = 0;
  268. }
  269. return rate_idx;
  270. }
  271. static int ath10k_wmi_event_mgmt_rx(struct ath10k *ar, struct sk_buff *skb)
  272. {
  273. struct wmi_mgmt_rx_event *event = (struct wmi_mgmt_rx_event *)skb->data;
  274. struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
  275. struct ieee80211_hdr *hdr;
  276. u32 rx_status;
  277. u32 channel;
  278. u32 phy_mode;
  279. u32 snr;
  280. u32 rate;
  281. u32 buf_len;
  282. u16 fc;
  283. channel = __le32_to_cpu(event->hdr.channel);
  284. buf_len = __le32_to_cpu(event->hdr.buf_len);
  285. rx_status = __le32_to_cpu(event->hdr.status);
  286. snr = __le32_to_cpu(event->hdr.snr);
  287. phy_mode = __le32_to_cpu(event->hdr.phy_mode);
  288. rate = __le32_to_cpu(event->hdr.rate);
  289. memset(status, 0, sizeof(*status));
  290. ath10k_dbg(ATH10K_DBG_MGMT,
  291. "event mgmt rx status %08x\n", rx_status);
  292. if (rx_status & WMI_RX_STATUS_ERR_DECRYPT) {
  293. dev_kfree_skb(skb);
  294. return 0;
  295. }
  296. if (rx_status & WMI_RX_STATUS_ERR_KEY_CACHE_MISS) {
  297. dev_kfree_skb(skb);
  298. return 0;
  299. }
  300. if (rx_status & WMI_RX_STATUS_ERR_CRC)
  301. status->flag |= RX_FLAG_FAILED_FCS_CRC;
  302. if (rx_status & WMI_RX_STATUS_ERR_MIC)
  303. status->flag |= RX_FLAG_MMIC_ERROR;
  304. status->band = phy_mode_to_band(phy_mode);
  305. status->freq = ieee80211_channel_to_frequency(channel, status->band);
  306. status->signal = snr + ATH10K_DEFAULT_NOISE_FLOOR;
  307. status->rate_idx = get_rate_idx(rate, status->band);
  308. skb_pull(skb, sizeof(event->hdr));
  309. hdr = (struct ieee80211_hdr *)skb->data;
  310. fc = le16_to_cpu(hdr->frame_control);
  311. if (fc & IEEE80211_FCTL_PROTECTED) {
  312. status->flag |= RX_FLAG_DECRYPTED | RX_FLAG_IV_STRIPPED |
  313. RX_FLAG_MMIC_STRIPPED;
  314. hdr->frame_control = __cpu_to_le16(fc &
  315. ~IEEE80211_FCTL_PROTECTED);
  316. }
  317. ath10k_dbg(ATH10K_DBG_MGMT,
  318. "event mgmt rx skb %p len %d ftype %02x stype %02x\n",
  319. skb, skb->len,
  320. fc & IEEE80211_FCTL_FTYPE, fc & IEEE80211_FCTL_STYPE);
  321. ath10k_dbg(ATH10K_DBG_MGMT,
  322. "event mgmt rx freq %d band %d snr %d, rate_idx %d\n",
  323. status->freq, status->band, status->signal,
  324. status->rate_idx);
  325. /*
  326. * packets from HTC come aligned to 4byte boundaries
  327. * because they can originally come in along with a trailer
  328. */
  329. skb_trim(skb, buf_len);
  330. ieee80211_rx(ar->hw, skb);
  331. return 0;
  332. }
  333. static void ath10k_wmi_event_chan_info(struct ath10k *ar, struct sk_buff *skb)
  334. {
  335. ath10k_dbg(ATH10K_DBG_WMI, "WMI_CHAN_INFO_EVENTID\n");
  336. }
  337. static void ath10k_wmi_event_echo(struct ath10k *ar, struct sk_buff *skb)
  338. {
  339. ath10k_dbg(ATH10K_DBG_WMI, "WMI_ECHO_EVENTID\n");
  340. }
  341. static void ath10k_wmi_event_debug_mesg(struct ath10k *ar, struct sk_buff *skb)
  342. {
  343. ath10k_dbg(ATH10K_DBG_WMI, "WMI_DEBUG_MESG_EVENTID\n");
  344. }
  345. static void ath10k_wmi_event_update_stats(struct ath10k *ar,
  346. struct sk_buff *skb)
  347. {
  348. struct wmi_stats_event *ev = (struct wmi_stats_event *)skb->data;
  349. ath10k_dbg(ATH10K_DBG_WMI, "WMI_UPDATE_STATS_EVENTID\n");
  350. ath10k_debug_read_target_stats(ar, ev);
  351. }
  352. static void ath10k_wmi_event_vdev_start_resp(struct ath10k *ar,
  353. struct sk_buff *skb)
  354. {
  355. struct wmi_vdev_start_response_event *ev;
  356. ath10k_dbg(ATH10K_DBG_WMI, "WMI_VDEV_START_RESP_EVENTID\n");
  357. ev = (struct wmi_vdev_start_response_event *)skb->data;
  358. if (WARN_ON(__le32_to_cpu(ev->status)))
  359. return;
  360. complete(&ar->vdev_setup_done);
  361. }
  362. static void ath10k_wmi_event_vdev_stopped(struct ath10k *ar,
  363. struct sk_buff *skb)
  364. {
  365. ath10k_dbg(ATH10K_DBG_WMI, "WMI_VDEV_STOPPED_EVENTID\n");
  366. complete(&ar->vdev_setup_done);
  367. }
  368. static void ath10k_wmi_event_peer_sta_kickout(struct ath10k *ar,
  369. struct sk_buff *skb)
  370. {
  371. ath10k_dbg(ATH10K_DBG_WMI, "WMI_PEER_STA_KICKOUT_EVENTID\n");
  372. }
  373. /*
  374. * FIXME
  375. *
  376. * We don't report to mac80211 sleep state of connected
  377. * stations. Due to this mac80211 can't fill in TIM IE
  378. * correctly.
  379. *
  380. * I know of no way of getting nullfunc frames that contain
  381. * sleep transition from connected stations - these do not
  382. * seem to be sent from the target to the host. There also
  383. * doesn't seem to be a dedicated event for that. So the
  384. * only way left to do this would be to read tim_bitmap
  385. * during SWBA.
  386. *
  387. * We could probably try using tim_bitmap from SWBA to tell
  388. * mac80211 which stations are asleep and which are not. The
  389. * problem here is calling mac80211 functions so many times
  390. * could take too long and make us miss the time to submit
  391. * the beacon to the target.
  392. *
  393. * So as a workaround we try to extend the TIM IE if there
  394. * is unicast buffered for stations with aid > 7 and fill it
  395. * in ourselves.
  396. */
  397. static void ath10k_wmi_update_tim(struct ath10k *ar,
  398. struct ath10k_vif *arvif,
  399. struct sk_buff *bcn,
  400. struct wmi_bcn_info *bcn_info)
  401. {
  402. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)bcn->data;
  403. struct ieee80211_tim_ie *tim;
  404. u8 *ies, *ie;
  405. u8 ie_len, pvm_len;
  406. /* if next SWBA has no tim_changed the tim_bitmap is garbage.
  407. * we must copy the bitmap upon change and reuse it later */
  408. if (__le32_to_cpu(bcn_info->tim_info.tim_changed)) {
  409. int i;
  410. BUILD_BUG_ON(sizeof(arvif->u.ap.tim_bitmap) !=
  411. sizeof(bcn_info->tim_info.tim_bitmap));
  412. for (i = 0; i < sizeof(arvif->u.ap.tim_bitmap); i++) {
  413. __le32 t = bcn_info->tim_info.tim_bitmap[i / 4];
  414. u32 v = __le32_to_cpu(t);
  415. arvif->u.ap.tim_bitmap[i] = (v >> ((i % 4) * 8)) & 0xFF;
  416. }
  417. /* FW reports either length 0 or 16
  418. * so we calculate this on our own */
  419. arvif->u.ap.tim_len = 0;
  420. for (i = 0; i < sizeof(arvif->u.ap.tim_bitmap); i++)
  421. if (arvif->u.ap.tim_bitmap[i])
  422. arvif->u.ap.tim_len = i;
  423. arvif->u.ap.tim_len++;
  424. }
  425. ies = bcn->data;
  426. ies += ieee80211_hdrlen(hdr->frame_control);
  427. ies += 12; /* fixed parameters */
  428. ie = (u8 *)cfg80211_find_ie(WLAN_EID_TIM, ies,
  429. (u8 *)skb_tail_pointer(bcn) - ies);
  430. if (!ie) {
  431. if (arvif->vdev_type != WMI_VDEV_TYPE_IBSS)
  432. ath10k_warn("no tim ie found;\n");
  433. return;
  434. }
  435. tim = (void *)ie + 2;
  436. ie_len = ie[1];
  437. pvm_len = ie_len - 3; /* exclude dtim count, dtim period, bmap ctl */
  438. if (pvm_len < arvif->u.ap.tim_len) {
  439. int expand_size = sizeof(arvif->u.ap.tim_bitmap) - pvm_len;
  440. int move_size = skb_tail_pointer(bcn) - (ie + 2 + ie_len);
  441. void *next_ie = ie + 2 + ie_len;
  442. if (skb_put(bcn, expand_size)) {
  443. memmove(next_ie + expand_size, next_ie, move_size);
  444. ie[1] += expand_size;
  445. ie_len += expand_size;
  446. pvm_len += expand_size;
  447. } else {
  448. ath10k_warn("tim expansion failed\n");
  449. }
  450. }
  451. if (pvm_len > sizeof(arvif->u.ap.tim_bitmap)) {
  452. ath10k_warn("tim pvm length is too great (%d)\n", pvm_len);
  453. return;
  454. }
  455. tim->bitmap_ctrl = !!__le32_to_cpu(bcn_info->tim_info.tim_mcast);
  456. memcpy(tim->virtual_map, arvif->u.ap.tim_bitmap, pvm_len);
  457. ath10k_dbg(ATH10K_DBG_MGMT, "dtim %d/%d mcast %d pvmlen %d\n",
  458. tim->dtim_count, tim->dtim_period,
  459. tim->bitmap_ctrl, pvm_len);
  460. }
  461. static void ath10k_p2p_fill_noa_ie(u8 *data, u32 len,
  462. struct wmi_p2p_noa_info *noa)
  463. {
  464. struct ieee80211_p2p_noa_attr *noa_attr;
  465. u8 ctwindow_oppps = noa->ctwindow_oppps;
  466. u8 ctwindow = ctwindow_oppps >> WMI_P2P_OPPPS_CTWINDOW_OFFSET;
  467. bool oppps = !!(ctwindow_oppps & WMI_P2P_OPPPS_ENABLE_BIT);
  468. __le16 *noa_attr_len;
  469. u16 attr_len;
  470. u8 noa_descriptors = noa->num_descriptors;
  471. int i;
  472. /* P2P IE */
  473. data[0] = WLAN_EID_VENDOR_SPECIFIC;
  474. data[1] = len - 2;
  475. data[2] = (WLAN_OUI_WFA >> 16) & 0xff;
  476. data[3] = (WLAN_OUI_WFA >> 8) & 0xff;
  477. data[4] = (WLAN_OUI_WFA >> 0) & 0xff;
  478. data[5] = WLAN_OUI_TYPE_WFA_P2P;
  479. /* NOA ATTR */
  480. data[6] = IEEE80211_P2P_ATTR_ABSENCE_NOTICE;
  481. noa_attr_len = (__le16 *)&data[7]; /* 2 bytes */
  482. noa_attr = (struct ieee80211_p2p_noa_attr *)&data[9];
  483. noa_attr->index = noa->index;
  484. noa_attr->oppps_ctwindow = ctwindow;
  485. if (oppps)
  486. noa_attr->oppps_ctwindow |= IEEE80211_P2P_OPPPS_ENABLE_BIT;
  487. for (i = 0; i < noa_descriptors; i++) {
  488. noa_attr->desc[i].count =
  489. __le32_to_cpu(noa->descriptors[i].type_count);
  490. noa_attr->desc[i].duration = noa->descriptors[i].duration;
  491. noa_attr->desc[i].interval = noa->descriptors[i].interval;
  492. noa_attr->desc[i].start_time = noa->descriptors[i].start_time;
  493. }
  494. attr_len = 2; /* index + oppps_ctwindow */
  495. attr_len += noa_descriptors * sizeof(struct ieee80211_p2p_noa_desc);
  496. *noa_attr_len = __cpu_to_le16(attr_len);
  497. }
  498. static u32 ath10k_p2p_calc_noa_ie_len(struct wmi_p2p_noa_info *noa)
  499. {
  500. u32 len = 0;
  501. u8 noa_descriptors = noa->num_descriptors;
  502. u8 opp_ps_info = noa->ctwindow_oppps;
  503. bool opps_enabled = !!(opp_ps_info & WMI_P2P_OPPPS_ENABLE_BIT);
  504. if (!noa_descriptors && !opps_enabled)
  505. return len;
  506. len += 1 + 1 + 4; /* EID + len + OUI */
  507. len += 1 + 2; /* noa attr + attr len */
  508. len += 1 + 1; /* index + oppps_ctwindow */
  509. len += noa_descriptors * sizeof(struct ieee80211_p2p_noa_desc);
  510. return len;
  511. }
  512. static void ath10k_wmi_update_noa(struct ath10k *ar, struct ath10k_vif *arvif,
  513. struct sk_buff *bcn,
  514. struct wmi_bcn_info *bcn_info)
  515. {
  516. struct wmi_p2p_noa_info *noa = &bcn_info->p2p_noa_info;
  517. u8 *new_data, *old_data = arvif->u.ap.noa_data;
  518. u32 new_len;
  519. if (arvif->vdev_subtype != WMI_VDEV_SUBTYPE_P2P_GO)
  520. return;
  521. ath10k_dbg(ATH10K_DBG_MGMT, "noa changed: %d\n", noa->changed);
  522. if (noa->changed & WMI_P2P_NOA_CHANGED_BIT) {
  523. new_len = ath10k_p2p_calc_noa_ie_len(noa);
  524. if (!new_len)
  525. goto cleanup;
  526. new_data = kmalloc(new_len, GFP_ATOMIC);
  527. if (!new_data)
  528. goto cleanup;
  529. ath10k_p2p_fill_noa_ie(new_data, new_len, noa);
  530. spin_lock_bh(&ar->data_lock);
  531. arvif->u.ap.noa_data = new_data;
  532. arvif->u.ap.noa_len = new_len;
  533. spin_unlock_bh(&ar->data_lock);
  534. kfree(old_data);
  535. }
  536. if (arvif->u.ap.noa_data)
  537. if (!pskb_expand_head(bcn, 0, arvif->u.ap.noa_len, GFP_ATOMIC))
  538. memcpy(skb_put(bcn, arvif->u.ap.noa_len),
  539. arvif->u.ap.noa_data,
  540. arvif->u.ap.noa_len);
  541. return;
  542. cleanup:
  543. spin_lock_bh(&ar->data_lock);
  544. arvif->u.ap.noa_data = NULL;
  545. arvif->u.ap.noa_len = 0;
  546. spin_unlock_bh(&ar->data_lock);
  547. kfree(old_data);
  548. }
  549. static void ath10k_wmi_event_host_swba(struct ath10k *ar, struct sk_buff *skb)
  550. {
  551. struct wmi_host_swba_event *ev;
  552. u32 map;
  553. int i = -1;
  554. struct wmi_bcn_info *bcn_info;
  555. struct ath10k_vif *arvif;
  556. struct wmi_bcn_tx_arg arg;
  557. struct sk_buff *bcn;
  558. int vdev_id = 0;
  559. int ret;
  560. ath10k_dbg(ATH10K_DBG_MGMT, "WMI_HOST_SWBA_EVENTID\n");
  561. ev = (struct wmi_host_swba_event *)skb->data;
  562. map = __le32_to_cpu(ev->vdev_map);
  563. ath10k_dbg(ATH10K_DBG_MGMT, "host swba:\n"
  564. "-vdev map 0x%x\n",
  565. ev->vdev_map);
  566. for (; map; map >>= 1, vdev_id++) {
  567. if (!(map & 0x1))
  568. continue;
  569. i++;
  570. if (i >= WMI_MAX_AP_VDEV) {
  571. ath10k_warn("swba has corrupted vdev map\n");
  572. break;
  573. }
  574. bcn_info = &ev->bcn_info[i];
  575. ath10k_dbg(ATH10K_DBG_MGMT,
  576. "-bcn_info[%d]:\n"
  577. "--tim_len %d\n"
  578. "--tim_mcast %d\n"
  579. "--tim_changed %d\n"
  580. "--tim_num_ps_pending %d\n"
  581. "--tim_bitmap 0x%08x%08x%08x%08x\n",
  582. i,
  583. __le32_to_cpu(bcn_info->tim_info.tim_len),
  584. __le32_to_cpu(bcn_info->tim_info.tim_mcast),
  585. __le32_to_cpu(bcn_info->tim_info.tim_changed),
  586. __le32_to_cpu(bcn_info->tim_info.tim_num_ps_pending),
  587. __le32_to_cpu(bcn_info->tim_info.tim_bitmap[3]),
  588. __le32_to_cpu(bcn_info->tim_info.tim_bitmap[2]),
  589. __le32_to_cpu(bcn_info->tim_info.tim_bitmap[1]),
  590. __le32_to_cpu(bcn_info->tim_info.tim_bitmap[0]));
  591. arvif = ath10k_get_arvif(ar, vdev_id);
  592. if (arvif == NULL) {
  593. ath10k_warn("no vif for vdev_id %d found\n", vdev_id);
  594. continue;
  595. }
  596. bcn = ieee80211_beacon_get(ar->hw, arvif->vif);
  597. if (!bcn) {
  598. ath10k_warn("could not get mac80211 beacon\n");
  599. continue;
  600. }
  601. ath10k_tx_h_seq_no(bcn);
  602. ath10k_wmi_update_tim(ar, arvif, bcn, bcn_info);
  603. ath10k_wmi_update_noa(ar, arvif, bcn, bcn_info);
  604. arg.vdev_id = arvif->vdev_id;
  605. arg.tx_rate = 0;
  606. arg.tx_power = 0;
  607. arg.bcn = bcn->data;
  608. arg.bcn_len = bcn->len;
  609. ret = ath10k_wmi_beacon_send(ar, &arg);
  610. if (ret)
  611. ath10k_warn("could not send beacon (%d)\n", ret);
  612. dev_kfree_skb_any(bcn);
  613. }
  614. }
  615. static void ath10k_wmi_event_tbttoffset_update(struct ath10k *ar,
  616. struct sk_buff *skb)
  617. {
  618. ath10k_dbg(ATH10K_DBG_WMI, "WMI_TBTTOFFSET_UPDATE_EVENTID\n");
  619. }
  620. static void ath10k_wmi_event_phyerr(struct ath10k *ar, struct sk_buff *skb)
  621. {
  622. ath10k_dbg(ATH10K_DBG_WMI, "WMI_PHYERR_EVENTID\n");
  623. }
  624. static void ath10k_wmi_event_roam(struct ath10k *ar, struct sk_buff *skb)
  625. {
  626. ath10k_dbg(ATH10K_DBG_WMI, "WMI_ROAM_EVENTID\n");
  627. }
  628. static void ath10k_wmi_event_profile_match(struct ath10k *ar,
  629. struct sk_buff *skb)
  630. {
  631. ath10k_dbg(ATH10K_DBG_WMI, "WMI_PROFILE_MATCH\n");
  632. }
  633. static void ath10k_wmi_event_debug_print(struct ath10k *ar,
  634. struct sk_buff *skb)
  635. {
  636. ath10k_dbg(ATH10K_DBG_WMI, "WMI_DEBUG_PRINT_EVENTID\n");
  637. }
  638. static void ath10k_wmi_event_pdev_qvit(struct ath10k *ar, struct sk_buff *skb)
  639. {
  640. ath10k_dbg(ATH10K_DBG_WMI, "WMI_PDEV_QVIT_EVENTID\n");
  641. }
  642. static void ath10k_wmi_event_wlan_profile_data(struct ath10k *ar,
  643. struct sk_buff *skb)
  644. {
  645. ath10k_dbg(ATH10K_DBG_WMI, "WMI_WLAN_PROFILE_DATA_EVENTID\n");
  646. }
  647. static void ath10k_wmi_event_rtt_measurement_report(struct ath10k *ar,
  648. struct sk_buff *skb)
  649. {
  650. ath10k_dbg(ATH10K_DBG_WMI, "WMI_RTT_MEASUREMENT_REPORT_EVENTID\n");
  651. }
  652. static void ath10k_wmi_event_tsf_measurement_report(struct ath10k *ar,
  653. struct sk_buff *skb)
  654. {
  655. ath10k_dbg(ATH10K_DBG_WMI, "WMI_TSF_MEASUREMENT_REPORT_EVENTID\n");
  656. }
  657. static void ath10k_wmi_event_rtt_error_report(struct ath10k *ar,
  658. struct sk_buff *skb)
  659. {
  660. ath10k_dbg(ATH10K_DBG_WMI, "WMI_RTT_ERROR_REPORT_EVENTID\n");
  661. }
  662. static void ath10k_wmi_event_wow_wakeup_host(struct ath10k *ar,
  663. struct sk_buff *skb)
  664. {
  665. ath10k_dbg(ATH10K_DBG_WMI, "WMI_WOW_WAKEUP_HOST_EVENTID\n");
  666. }
  667. static void ath10k_wmi_event_dcs_interference(struct ath10k *ar,
  668. struct sk_buff *skb)
  669. {
  670. ath10k_dbg(ATH10K_DBG_WMI, "WMI_DCS_INTERFERENCE_EVENTID\n");
  671. }
  672. static void ath10k_wmi_event_pdev_tpc_config(struct ath10k *ar,
  673. struct sk_buff *skb)
  674. {
  675. ath10k_dbg(ATH10K_DBG_WMI, "WMI_PDEV_TPC_CONFIG_EVENTID\n");
  676. }
  677. static void ath10k_wmi_event_pdev_ftm_intg(struct ath10k *ar,
  678. struct sk_buff *skb)
  679. {
  680. ath10k_dbg(ATH10K_DBG_WMI, "WMI_PDEV_FTM_INTG_EVENTID\n");
  681. }
  682. static void ath10k_wmi_event_gtk_offload_status(struct ath10k *ar,
  683. struct sk_buff *skb)
  684. {
  685. ath10k_dbg(ATH10K_DBG_WMI, "WMI_GTK_OFFLOAD_STATUS_EVENTID\n");
  686. }
  687. static void ath10k_wmi_event_gtk_rekey_fail(struct ath10k *ar,
  688. struct sk_buff *skb)
  689. {
  690. ath10k_dbg(ATH10K_DBG_WMI, "WMI_GTK_REKEY_FAIL_EVENTID\n");
  691. }
  692. static void ath10k_wmi_event_delba_complete(struct ath10k *ar,
  693. struct sk_buff *skb)
  694. {
  695. ath10k_dbg(ATH10K_DBG_WMI, "WMI_TX_DELBA_COMPLETE_EVENTID\n");
  696. }
  697. static void ath10k_wmi_event_addba_complete(struct ath10k *ar,
  698. struct sk_buff *skb)
  699. {
  700. ath10k_dbg(ATH10K_DBG_WMI, "WMI_TX_ADDBA_COMPLETE_EVENTID\n");
  701. }
  702. static void ath10k_wmi_event_vdev_install_key_complete(struct ath10k *ar,
  703. struct sk_buff *skb)
  704. {
  705. ath10k_dbg(ATH10K_DBG_WMI, "WMI_VDEV_INSTALL_KEY_COMPLETE_EVENTID\n");
  706. }
  707. static void ath10k_wmi_service_ready_event_rx(struct ath10k *ar,
  708. struct sk_buff *skb)
  709. {
  710. struct wmi_service_ready_event *ev = (void *)skb->data;
  711. if (skb->len < sizeof(*ev)) {
  712. ath10k_warn("Service ready event was %d B but expected %zu B. Wrong firmware version?\n",
  713. skb->len, sizeof(*ev));
  714. return;
  715. }
  716. ar->hw_min_tx_power = __le32_to_cpu(ev->hw_min_tx_power);
  717. ar->hw_max_tx_power = __le32_to_cpu(ev->hw_max_tx_power);
  718. ar->ht_cap_info = __le32_to_cpu(ev->ht_cap_info);
  719. ar->vht_cap_info = __le32_to_cpu(ev->vht_cap_info);
  720. ar->fw_version_major =
  721. (__le32_to_cpu(ev->sw_version) & 0xff000000) >> 24;
  722. ar->fw_version_minor = (__le32_to_cpu(ev->sw_version) & 0x00ffffff);
  723. ar->fw_version_release =
  724. (__le32_to_cpu(ev->sw_version_1) & 0xffff0000) >> 16;
  725. ar->fw_version_build = (__le32_to_cpu(ev->sw_version_1) & 0x0000ffff);
  726. ar->phy_capability = __le32_to_cpu(ev->phy_capability);
  727. ar->ath_common.regulatory.current_rd =
  728. __le32_to_cpu(ev->hal_reg_capabilities.eeprom_rd);
  729. ath10k_debug_read_service_map(ar, ev->wmi_service_bitmap,
  730. sizeof(ev->wmi_service_bitmap));
  731. if (strlen(ar->hw->wiphy->fw_version) == 0) {
  732. snprintf(ar->hw->wiphy->fw_version,
  733. sizeof(ar->hw->wiphy->fw_version),
  734. "%u.%u.%u.%u",
  735. ar->fw_version_major,
  736. ar->fw_version_minor,
  737. ar->fw_version_release,
  738. ar->fw_version_build);
  739. }
  740. /* FIXME: it probably should be better to support this */
  741. if (__le32_to_cpu(ev->num_mem_reqs) > 0) {
  742. ath10k_warn("target requested %d memory chunks; ignoring\n",
  743. __le32_to_cpu(ev->num_mem_reqs));
  744. }
  745. ath10k_dbg(ATH10K_DBG_WMI,
  746. "wmi event service ready sw_ver 0x%08x sw_ver1 0x%08x abi_ver %u phy_cap 0x%08x ht_cap 0x%08x vht_cap 0x%08x vht_supp_msc 0x%08x sys_cap_info 0x%08x mem_reqs %u\n",
  747. __le32_to_cpu(ev->sw_version),
  748. __le32_to_cpu(ev->sw_version_1),
  749. __le32_to_cpu(ev->abi_version),
  750. __le32_to_cpu(ev->phy_capability),
  751. __le32_to_cpu(ev->ht_cap_info),
  752. __le32_to_cpu(ev->vht_cap_info),
  753. __le32_to_cpu(ev->vht_supp_mcs),
  754. __le32_to_cpu(ev->sys_cap_info),
  755. __le32_to_cpu(ev->num_mem_reqs));
  756. complete(&ar->wmi.service_ready);
  757. }
  758. static int ath10k_wmi_ready_event_rx(struct ath10k *ar, struct sk_buff *skb)
  759. {
  760. struct wmi_ready_event *ev = (struct wmi_ready_event *)skb->data;
  761. if (WARN_ON(skb->len < sizeof(*ev)))
  762. return -EINVAL;
  763. memcpy(ar->mac_addr, ev->mac_addr.addr, ETH_ALEN);
  764. ath10k_dbg(ATH10K_DBG_WMI,
  765. "wmi event ready sw_version %u abi_version %u mac_addr %pM status %d\n",
  766. __le32_to_cpu(ev->sw_version),
  767. __le32_to_cpu(ev->abi_version),
  768. ev->mac_addr.addr,
  769. __le32_to_cpu(ev->status));
  770. complete(&ar->wmi.unified_ready);
  771. return 0;
  772. }
  773. static void ath10k_wmi_event_process(struct ath10k *ar, struct sk_buff *skb)
  774. {
  775. struct wmi_cmd_hdr *cmd_hdr;
  776. enum wmi_event_id id;
  777. u16 len;
  778. cmd_hdr = (struct wmi_cmd_hdr *)skb->data;
  779. id = MS(__le32_to_cpu(cmd_hdr->cmd_id), WMI_CMD_HDR_CMD_ID);
  780. if (skb_pull(skb, sizeof(struct wmi_cmd_hdr)) == NULL)
  781. return;
  782. len = skb->len;
  783. trace_ath10k_wmi_event(id, skb->data, skb->len);
  784. switch (id) {
  785. case WMI_MGMT_RX_EVENTID:
  786. ath10k_wmi_event_mgmt_rx(ar, skb);
  787. /* mgmt_rx() owns the skb now! */
  788. return;
  789. case WMI_SCAN_EVENTID:
  790. ath10k_wmi_event_scan(ar, skb);
  791. break;
  792. case WMI_CHAN_INFO_EVENTID:
  793. ath10k_wmi_event_chan_info(ar, skb);
  794. break;
  795. case WMI_ECHO_EVENTID:
  796. ath10k_wmi_event_echo(ar, skb);
  797. break;
  798. case WMI_DEBUG_MESG_EVENTID:
  799. ath10k_wmi_event_debug_mesg(ar, skb);
  800. break;
  801. case WMI_UPDATE_STATS_EVENTID:
  802. ath10k_wmi_event_update_stats(ar, skb);
  803. break;
  804. case WMI_VDEV_START_RESP_EVENTID:
  805. ath10k_wmi_event_vdev_start_resp(ar, skb);
  806. break;
  807. case WMI_VDEV_STOPPED_EVENTID:
  808. ath10k_wmi_event_vdev_stopped(ar, skb);
  809. break;
  810. case WMI_PEER_STA_KICKOUT_EVENTID:
  811. ath10k_wmi_event_peer_sta_kickout(ar, skb);
  812. break;
  813. case WMI_HOST_SWBA_EVENTID:
  814. ath10k_wmi_event_host_swba(ar, skb);
  815. break;
  816. case WMI_TBTTOFFSET_UPDATE_EVENTID:
  817. ath10k_wmi_event_tbttoffset_update(ar, skb);
  818. break;
  819. case WMI_PHYERR_EVENTID:
  820. ath10k_wmi_event_phyerr(ar, skb);
  821. break;
  822. case WMI_ROAM_EVENTID:
  823. ath10k_wmi_event_roam(ar, skb);
  824. break;
  825. case WMI_PROFILE_MATCH:
  826. ath10k_wmi_event_profile_match(ar, skb);
  827. break;
  828. case WMI_DEBUG_PRINT_EVENTID:
  829. ath10k_wmi_event_debug_print(ar, skb);
  830. break;
  831. case WMI_PDEV_QVIT_EVENTID:
  832. ath10k_wmi_event_pdev_qvit(ar, skb);
  833. break;
  834. case WMI_WLAN_PROFILE_DATA_EVENTID:
  835. ath10k_wmi_event_wlan_profile_data(ar, skb);
  836. break;
  837. case WMI_RTT_MEASUREMENT_REPORT_EVENTID:
  838. ath10k_wmi_event_rtt_measurement_report(ar, skb);
  839. break;
  840. case WMI_TSF_MEASUREMENT_REPORT_EVENTID:
  841. ath10k_wmi_event_tsf_measurement_report(ar, skb);
  842. break;
  843. case WMI_RTT_ERROR_REPORT_EVENTID:
  844. ath10k_wmi_event_rtt_error_report(ar, skb);
  845. break;
  846. case WMI_WOW_WAKEUP_HOST_EVENTID:
  847. ath10k_wmi_event_wow_wakeup_host(ar, skb);
  848. break;
  849. case WMI_DCS_INTERFERENCE_EVENTID:
  850. ath10k_wmi_event_dcs_interference(ar, skb);
  851. break;
  852. case WMI_PDEV_TPC_CONFIG_EVENTID:
  853. ath10k_wmi_event_pdev_tpc_config(ar, skb);
  854. break;
  855. case WMI_PDEV_FTM_INTG_EVENTID:
  856. ath10k_wmi_event_pdev_ftm_intg(ar, skb);
  857. break;
  858. case WMI_GTK_OFFLOAD_STATUS_EVENTID:
  859. ath10k_wmi_event_gtk_offload_status(ar, skb);
  860. break;
  861. case WMI_GTK_REKEY_FAIL_EVENTID:
  862. ath10k_wmi_event_gtk_rekey_fail(ar, skb);
  863. break;
  864. case WMI_TX_DELBA_COMPLETE_EVENTID:
  865. ath10k_wmi_event_delba_complete(ar, skb);
  866. break;
  867. case WMI_TX_ADDBA_COMPLETE_EVENTID:
  868. ath10k_wmi_event_addba_complete(ar, skb);
  869. break;
  870. case WMI_VDEV_INSTALL_KEY_COMPLETE_EVENTID:
  871. ath10k_wmi_event_vdev_install_key_complete(ar, skb);
  872. break;
  873. case WMI_SERVICE_READY_EVENTID:
  874. ath10k_wmi_service_ready_event_rx(ar, skb);
  875. break;
  876. case WMI_READY_EVENTID:
  877. ath10k_wmi_ready_event_rx(ar, skb);
  878. break;
  879. default:
  880. ath10k_warn("Unknown eventid: %d\n", id);
  881. break;
  882. }
  883. dev_kfree_skb(skb);
  884. }
  885. static void ath10k_wmi_event_work(struct work_struct *work)
  886. {
  887. struct ath10k *ar = container_of(work, struct ath10k,
  888. wmi.wmi_event_work);
  889. struct sk_buff *skb;
  890. for (;;) {
  891. skb = skb_dequeue(&ar->wmi.wmi_event_list);
  892. if (!skb)
  893. break;
  894. ath10k_wmi_event_process(ar, skb);
  895. }
  896. }
  897. static void ath10k_wmi_process_rx(struct ath10k *ar, struct sk_buff *skb)
  898. {
  899. struct wmi_cmd_hdr *cmd_hdr = (struct wmi_cmd_hdr *)skb->data;
  900. enum wmi_event_id event_id;
  901. event_id = MS(__le32_to_cpu(cmd_hdr->cmd_id), WMI_CMD_HDR_CMD_ID);
  902. /* some events require to be handled ASAP
  903. * thus can't be defered to a worker thread */
  904. switch (event_id) {
  905. case WMI_HOST_SWBA_EVENTID:
  906. case WMI_MGMT_RX_EVENTID:
  907. ath10k_wmi_event_process(ar, skb);
  908. return;
  909. default:
  910. break;
  911. }
  912. skb_queue_tail(&ar->wmi.wmi_event_list, skb);
  913. queue_work(ar->workqueue, &ar->wmi.wmi_event_work);
  914. }
  915. /* WMI Initialization functions */
  916. int ath10k_wmi_attach(struct ath10k *ar)
  917. {
  918. init_completion(&ar->wmi.service_ready);
  919. init_completion(&ar->wmi.unified_ready);
  920. init_waitqueue_head(&ar->wmi.wq);
  921. skb_queue_head_init(&ar->wmi.wmi_event_list);
  922. INIT_WORK(&ar->wmi.wmi_event_work, ath10k_wmi_event_work);
  923. return 0;
  924. }
  925. void ath10k_wmi_detach(struct ath10k *ar)
  926. {
  927. /* HTC should've drained the packets already */
  928. if (WARN_ON(atomic_read(&ar->wmi.pending_tx_count) > 0))
  929. ath10k_warn("there are still pending packets\n");
  930. cancel_work_sync(&ar->wmi.wmi_event_work);
  931. skb_queue_purge(&ar->wmi.wmi_event_list);
  932. }
  933. int ath10k_wmi_connect_htc_service(struct ath10k *ar)
  934. {
  935. int status;
  936. struct ath10k_htc_svc_conn_req conn_req;
  937. struct ath10k_htc_svc_conn_resp conn_resp;
  938. memset(&conn_req, 0, sizeof(conn_req));
  939. memset(&conn_resp, 0, sizeof(conn_resp));
  940. /* these fields are the same for all service endpoints */
  941. conn_req.ep_ops.ep_tx_complete = ath10k_wmi_htc_tx_complete;
  942. conn_req.ep_ops.ep_rx_complete = ath10k_wmi_process_rx;
  943. /* connect to control service */
  944. conn_req.service_id = ATH10K_HTC_SVC_ID_WMI_CONTROL;
  945. status = ath10k_htc_connect_service(&ar->htc, &conn_req, &conn_resp);
  946. if (status) {
  947. ath10k_warn("failed to connect to WMI CONTROL service status: %d\n",
  948. status);
  949. return status;
  950. }
  951. ar->wmi.eid = conn_resp.eid;
  952. return 0;
  953. }
  954. int ath10k_wmi_pdev_set_regdomain(struct ath10k *ar, u16 rd, u16 rd2g,
  955. u16 rd5g, u16 ctl2g, u16 ctl5g)
  956. {
  957. struct wmi_pdev_set_regdomain_cmd *cmd;
  958. struct sk_buff *skb;
  959. skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
  960. if (!skb)
  961. return -ENOMEM;
  962. cmd = (struct wmi_pdev_set_regdomain_cmd *)skb->data;
  963. cmd->reg_domain = __cpu_to_le32(rd);
  964. cmd->reg_domain_2G = __cpu_to_le32(rd2g);
  965. cmd->reg_domain_5G = __cpu_to_le32(rd5g);
  966. cmd->conformance_test_limit_2G = __cpu_to_le32(ctl2g);
  967. cmd->conformance_test_limit_5G = __cpu_to_le32(ctl5g);
  968. ath10k_dbg(ATH10K_DBG_WMI,
  969. "wmi pdev regdomain rd %x rd2g %x rd5g %x ctl2g %x ctl5g %x\n",
  970. rd, rd2g, rd5g, ctl2g, ctl5g);
  971. return ath10k_wmi_cmd_send(ar, skb, WMI_PDEV_SET_REGDOMAIN_CMDID);
  972. }
  973. int ath10k_wmi_pdev_set_channel(struct ath10k *ar,
  974. const struct wmi_channel_arg *arg)
  975. {
  976. struct wmi_set_channel_cmd *cmd;
  977. struct sk_buff *skb;
  978. if (arg->passive)
  979. return -EINVAL;
  980. skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
  981. if (!skb)
  982. return -ENOMEM;
  983. cmd = (struct wmi_set_channel_cmd *)skb->data;
  984. cmd->chan.mhz = __cpu_to_le32(arg->freq);
  985. cmd->chan.band_center_freq1 = __cpu_to_le32(arg->freq);
  986. cmd->chan.mode = arg->mode;
  987. cmd->chan.min_power = arg->min_power;
  988. cmd->chan.max_power = arg->max_power;
  989. cmd->chan.reg_power = arg->max_reg_power;
  990. cmd->chan.reg_classid = arg->reg_class_id;
  991. cmd->chan.antenna_max = arg->max_antenna_gain;
  992. ath10k_dbg(ATH10K_DBG_WMI,
  993. "wmi set channel mode %d freq %d\n",
  994. arg->mode, arg->freq);
  995. return ath10k_wmi_cmd_send(ar, skb, WMI_PDEV_SET_CHANNEL_CMDID);
  996. }
  997. int ath10k_wmi_pdev_suspend_target(struct ath10k *ar)
  998. {
  999. struct wmi_pdev_suspend_cmd *cmd;
  1000. struct sk_buff *skb;
  1001. skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
  1002. if (!skb)
  1003. return -ENOMEM;
  1004. cmd = (struct wmi_pdev_suspend_cmd *)skb->data;
  1005. cmd->suspend_opt = WMI_PDEV_SUSPEND;
  1006. return ath10k_wmi_cmd_send(ar, skb, WMI_PDEV_SUSPEND_CMDID);
  1007. }
  1008. int ath10k_wmi_pdev_resume_target(struct ath10k *ar)
  1009. {
  1010. struct sk_buff *skb;
  1011. skb = ath10k_wmi_alloc_skb(0);
  1012. if (skb == NULL)
  1013. return -ENOMEM;
  1014. return ath10k_wmi_cmd_send(ar, skb, WMI_PDEV_RESUME_CMDID);
  1015. }
  1016. int ath10k_wmi_pdev_set_param(struct ath10k *ar, enum wmi_pdev_param id,
  1017. u32 value)
  1018. {
  1019. struct wmi_pdev_set_param_cmd *cmd;
  1020. struct sk_buff *skb;
  1021. skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
  1022. if (!skb)
  1023. return -ENOMEM;
  1024. cmd = (struct wmi_pdev_set_param_cmd *)skb->data;
  1025. cmd->param_id = __cpu_to_le32(id);
  1026. cmd->param_value = __cpu_to_le32(value);
  1027. ath10k_dbg(ATH10K_DBG_WMI, "wmi pdev set param %d value %d\n",
  1028. id, value);
  1029. return ath10k_wmi_cmd_send(ar, skb, WMI_PDEV_SET_PARAM_CMDID);
  1030. }
  1031. int ath10k_wmi_cmd_init(struct ath10k *ar)
  1032. {
  1033. struct wmi_init_cmd *cmd;
  1034. struct sk_buff *buf;
  1035. struct wmi_resource_config config = {};
  1036. u32 val;
  1037. config.num_vdevs = __cpu_to_le32(TARGET_NUM_VDEVS);
  1038. config.num_peers = __cpu_to_le32(TARGET_NUM_PEERS + TARGET_NUM_VDEVS);
  1039. config.num_offload_peers = __cpu_to_le32(TARGET_NUM_OFFLOAD_PEERS);
  1040. config.num_offload_reorder_bufs =
  1041. __cpu_to_le32(TARGET_NUM_OFFLOAD_REORDER_BUFS);
  1042. config.num_peer_keys = __cpu_to_le32(TARGET_NUM_PEER_KEYS);
  1043. config.num_tids = __cpu_to_le32(TARGET_NUM_TIDS);
  1044. config.ast_skid_limit = __cpu_to_le32(TARGET_AST_SKID_LIMIT);
  1045. config.tx_chain_mask = __cpu_to_le32(TARGET_TX_CHAIN_MASK);
  1046. config.rx_chain_mask = __cpu_to_le32(TARGET_RX_CHAIN_MASK);
  1047. config.rx_timeout_pri_vo = __cpu_to_le32(TARGET_RX_TIMEOUT_LO_PRI);
  1048. config.rx_timeout_pri_vi = __cpu_to_le32(TARGET_RX_TIMEOUT_LO_PRI);
  1049. config.rx_timeout_pri_be = __cpu_to_le32(TARGET_RX_TIMEOUT_LO_PRI);
  1050. config.rx_timeout_pri_bk = __cpu_to_le32(TARGET_RX_TIMEOUT_HI_PRI);
  1051. config.rx_decap_mode = __cpu_to_le32(TARGET_RX_DECAP_MODE);
  1052. config.scan_max_pending_reqs =
  1053. __cpu_to_le32(TARGET_SCAN_MAX_PENDING_REQS);
  1054. config.bmiss_offload_max_vdev =
  1055. __cpu_to_le32(TARGET_BMISS_OFFLOAD_MAX_VDEV);
  1056. config.roam_offload_max_vdev =
  1057. __cpu_to_le32(TARGET_ROAM_OFFLOAD_MAX_VDEV);
  1058. config.roam_offload_max_ap_profiles =
  1059. __cpu_to_le32(TARGET_ROAM_OFFLOAD_MAX_AP_PROFILES);
  1060. config.num_mcast_groups = __cpu_to_le32(TARGET_NUM_MCAST_GROUPS);
  1061. config.num_mcast_table_elems =
  1062. __cpu_to_le32(TARGET_NUM_MCAST_TABLE_ELEMS);
  1063. config.mcast2ucast_mode = __cpu_to_le32(TARGET_MCAST2UCAST_MODE);
  1064. config.tx_dbg_log_size = __cpu_to_le32(TARGET_TX_DBG_LOG_SIZE);
  1065. config.num_wds_entries = __cpu_to_le32(TARGET_NUM_WDS_ENTRIES);
  1066. config.dma_burst_size = __cpu_to_le32(TARGET_DMA_BURST_SIZE);
  1067. config.mac_aggr_delim = __cpu_to_le32(TARGET_MAC_AGGR_DELIM);
  1068. val = TARGET_RX_SKIP_DEFRAG_TIMEOUT_DUP_DETECTION_CHECK;
  1069. config.rx_skip_defrag_timeout_dup_detection_check = __cpu_to_le32(val);
  1070. config.vow_config = __cpu_to_le32(TARGET_VOW_CONFIG);
  1071. config.gtk_offload_max_vdev =
  1072. __cpu_to_le32(TARGET_GTK_OFFLOAD_MAX_VDEV);
  1073. config.num_msdu_desc = __cpu_to_le32(TARGET_NUM_MSDU_DESC);
  1074. config.max_frag_entries = __cpu_to_le32(TARGET_MAX_FRAG_ENTRIES);
  1075. buf = ath10k_wmi_alloc_skb(sizeof(*cmd));
  1076. if (!buf)
  1077. return -ENOMEM;
  1078. cmd = (struct wmi_init_cmd *)buf->data;
  1079. cmd->num_host_mem_chunks = 0;
  1080. memcpy(&cmd->resource_config, &config, sizeof(config));
  1081. ath10k_dbg(ATH10K_DBG_WMI, "wmi init\n");
  1082. return ath10k_wmi_cmd_send(ar, buf, WMI_INIT_CMDID);
  1083. }
  1084. static int ath10k_wmi_start_scan_calc_len(const struct wmi_start_scan_arg *arg)
  1085. {
  1086. int len;
  1087. len = sizeof(struct wmi_start_scan_cmd);
  1088. if (arg->ie_len) {
  1089. if (!arg->ie)
  1090. return -EINVAL;
  1091. if (arg->ie_len > WLAN_SCAN_PARAMS_MAX_IE_LEN)
  1092. return -EINVAL;
  1093. len += sizeof(struct wmi_ie_data);
  1094. len += roundup(arg->ie_len, 4);
  1095. }
  1096. if (arg->n_channels) {
  1097. if (!arg->channels)
  1098. return -EINVAL;
  1099. if (arg->n_channels > ARRAY_SIZE(arg->channels))
  1100. return -EINVAL;
  1101. len += sizeof(struct wmi_chan_list);
  1102. len += sizeof(__le32) * arg->n_channels;
  1103. }
  1104. if (arg->n_ssids) {
  1105. if (!arg->ssids)
  1106. return -EINVAL;
  1107. if (arg->n_ssids > WLAN_SCAN_PARAMS_MAX_SSID)
  1108. return -EINVAL;
  1109. len += sizeof(struct wmi_ssid_list);
  1110. len += sizeof(struct wmi_ssid) * arg->n_ssids;
  1111. }
  1112. if (arg->n_bssids) {
  1113. if (!arg->bssids)
  1114. return -EINVAL;
  1115. if (arg->n_bssids > WLAN_SCAN_PARAMS_MAX_BSSID)
  1116. return -EINVAL;
  1117. len += sizeof(struct wmi_bssid_list);
  1118. len += sizeof(struct wmi_mac_addr) * arg->n_bssids;
  1119. }
  1120. return len;
  1121. }
  1122. int ath10k_wmi_start_scan(struct ath10k *ar,
  1123. const struct wmi_start_scan_arg *arg)
  1124. {
  1125. struct wmi_start_scan_cmd *cmd;
  1126. struct sk_buff *skb;
  1127. struct wmi_ie_data *ie;
  1128. struct wmi_chan_list *channels;
  1129. struct wmi_ssid_list *ssids;
  1130. struct wmi_bssid_list *bssids;
  1131. u32 scan_id;
  1132. u32 scan_req_id;
  1133. int off;
  1134. int len = 0;
  1135. int i;
  1136. len = ath10k_wmi_start_scan_calc_len(arg);
  1137. if (len < 0)
  1138. return len; /* len contains error code here */
  1139. skb = ath10k_wmi_alloc_skb(len);
  1140. if (!skb)
  1141. return -ENOMEM;
  1142. scan_id = WMI_HOST_SCAN_REQ_ID_PREFIX;
  1143. scan_id |= arg->scan_id;
  1144. scan_req_id = WMI_HOST_SCAN_REQUESTOR_ID_PREFIX;
  1145. scan_req_id |= arg->scan_req_id;
  1146. cmd = (struct wmi_start_scan_cmd *)skb->data;
  1147. cmd->scan_id = __cpu_to_le32(scan_id);
  1148. cmd->scan_req_id = __cpu_to_le32(scan_req_id);
  1149. cmd->vdev_id = __cpu_to_le32(arg->vdev_id);
  1150. cmd->scan_priority = __cpu_to_le32(arg->scan_priority);
  1151. cmd->notify_scan_events = __cpu_to_le32(arg->notify_scan_events);
  1152. cmd->dwell_time_active = __cpu_to_le32(arg->dwell_time_active);
  1153. cmd->dwell_time_passive = __cpu_to_le32(arg->dwell_time_passive);
  1154. cmd->min_rest_time = __cpu_to_le32(arg->min_rest_time);
  1155. cmd->max_rest_time = __cpu_to_le32(arg->max_rest_time);
  1156. cmd->repeat_probe_time = __cpu_to_le32(arg->repeat_probe_time);
  1157. cmd->probe_spacing_time = __cpu_to_le32(arg->probe_spacing_time);
  1158. cmd->idle_time = __cpu_to_le32(arg->idle_time);
  1159. cmd->max_scan_time = __cpu_to_le32(arg->max_scan_time);
  1160. cmd->probe_delay = __cpu_to_le32(arg->probe_delay);
  1161. cmd->scan_ctrl_flags = __cpu_to_le32(arg->scan_ctrl_flags);
  1162. /* TLV list starts after fields included in the struct */
  1163. off = sizeof(*cmd);
  1164. if (arg->n_channels) {
  1165. channels = (void *)skb->data + off;
  1166. channels->tag = __cpu_to_le32(WMI_CHAN_LIST_TAG);
  1167. channels->num_chan = __cpu_to_le32(arg->n_channels);
  1168. for (i = 0; i < arg->n_channels; i++)
  1169. channels->channel_list[i] =
  1170. __cpu_to_le32(arg->channels[i]);
  1171. off += sizeof(*channels);
  1172. off += sizeof(__le32) * arg->n_channels;
  1173. }
  1174. if (arg->n_ssids) {
  1175. ssids = (void *)skb->data + off;
  1176. ssids->tag = __cpu_to_le32(WMI_SSID_LIST_TAG);
  1177. ssids->num_ssids = __cpu_to_le32(arg->n_ssids);
  1178. for (i = 0; i < arg->n_ssids; i++) {
  1179. ssids->ssids[i].ssid_len =
  1180. __cpu_to_le32(arg->ssids[i].len);
  1181. memcpy(&ssids->ssids[i].ssid,
  1182. arg->ssids[i].ssid,
  1183. arg->ssids[i].len);
  1184. }
  1185. off += sizeof(*ssids);
  1186. off += sizeof(struct wmi_ssid) * arg->n_ssids;
  1187. }
  1188. if (arg->n_bssids) {
  1189. bssids = (void *)skb->data + off;
  1190. bssids->tag = __cpu_to_le32(WMI_BSSID_LIST_TAG);
  1191. bssids->num_bssid = __cpu_to_le32(arg->n_bssids);
  1192. for (i = 0; i < arg->n_bssids; i++)
  1193. memcpy(&bssids->bssid_list[i],
  1194. arg->bssids[i].bssid,
  1195. ETH_ALEN);
  1196. off += sizeof(*bssids);
  1197. off += sizeof(struct wmi_mac_addr) * arg->n_bssids;
  1198. }
  1199. if (arg->ie_len) {
  1200. ie = (void *)skb->data + off;
  1201. ie->tag = __cpu_to_le32(WMI_IE_TAG);
  1202. ie->ie_len = __cpu_to_le32(arg->ie_len);
  1203. memcpy(ie->ie_data, arg->ie, arg->ie_len);
  1204. off += sizeof(*ie);
  1205. off += roundup(arg->ie_len, 4);
  1206. }
  1207. if (off != skb->len) {
  1208. dev_kfree_skb(skb);
  1209. return -EINVAL;
  1210. }
  1211. ath10k_dbg(ATH10K_DBG_WMI, "wmi start scan\n");
  1212. return ath10k_wmi_cmd_send(ar, skb, WMI_START_SCAN_CMDID);
  1213. }
  1214. void ath10k_wmi_start_scan_init(struct ath10k *ar,
  1215. struct wmi_start_scan_arg *arg)
  1216. {
  1217. /* setup commonly used values */
  1218. arg->scan_req_id = 1;
  1219. arg->scan_priority = WMI_SCAN_PRIORITY_LOW;
  1220. arg->dwell_time_active = 50;
  1221. arg->dwell_time_passive = 150;
  1222. arg->min_rest_time = 50;
  1223. arg->max_rest_time = 500;
  1224. arg->repeat_probe_time = 0;
  1225. arg->probe_spacing_time = 0;
  1226. arg->idle_time = 0;
  1227. arg->max_scan_time = 5000;
  1228. arg->probe_delay = 5;
  1229. arg->notify_scan_events = WMI_SCAN_EVENT_STARTED
  1230. | WMI_SCAN_EVENT_COMPLETED
  1231. | WMI_SCAN_EVENT_BSS_CHANNEL
  1232. | WMI_SCAN_EVENT_FOREIGN_CHANNEL
  1233. | WMI_SCAN_EVENT_DEQUEUED;
  1234. arg->scan_ctrl_flags |= WMI_SCAN_ADD_OFDM_RATES;
  1235. arg->scan_ctrl_flags |= WMI_SCAN_CHAN_STAT_EVENT;
  1236. arg->n_bssids = 1;
  1237. arg->bssids[0].bssid = "\xFF\xFF\xFF\xFF\xFF\xFF";
  1238. }
  1239. int ath10k_wmi_stop_scan(struct ath10k *ar, const struct wmi_stop_scan_arg *arg)
  1240. {
  1241. struct wmi_stop_scan_cmd *cmd;
  1242. struct sk_buff *skb;
  1243. u32 scan_id;
  1244. u32 req_id;
  1245. if (arg->req_id > 0xFFF)
  1246. return -EINVAL;
  1247. if (arg->req_type == WMI_SCAN_STOP_ONE && arg->u.scan_id > 0xFFF)
  1248. return -EINVAL;
  1249. skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
  1250. if (!skb)
  1251. return -ENOMEM;
  1252. scan_id = arg->u.scan_id;
  1253. scan_id |= WMI_HOST_SCAN_REQ_ID_PREFIX;
  1254. req_id = arg->req_id;
  1255. req_id |= WMI_HOST_SCAN_REQUESTOR_ID_PREFIX;
  1256. cmd = (struct wmi_stop_scan_cmd *)skb->data;
  1257. cmd->req_type = __cpu_to_le32(arg->req_type);
  1258. cmd->vdev_id = __cpu_to_le32(arg->u.vdev_id);
  1259. cmd->scan_id = __cpu_to_le32(scan_id);
  1260. cmd->scan_req_id = __cpu_to_le32(req_id);
  1261. ath10k_dbg(ATH10K_DBG_WMI,
  1262. "wmi stop scan reqid %d req_type %d vdev/scan_id %d\n",
  1263. arg->req_id, arg->req_type, arg->u.scan_id);
  1264. return ath10k_wmi_cmd_send(ar, skb, WMI_STOP_SCAN_CMDID);
  1265. }
  1266. int ath10k_wmi_vdev_create(struct ath10k *ar, u32 vdev_id,
  1267. enum wmi_vdev_type type,
  1268. enum wmi_vdev_subtype subtype,
  1269. const u8 macaddr[ETH_ALEN])
  1270. {
  1271. struct wmi_vdev_create_cmd *cmd;
  1272. struct sk_buff *skb;
  1273. skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
  1274. if (!skb)
  1275. return -ENOMEM;
  1276. cmd = (struct wmi_vdev_create_cmd *)skb->data;
  1277. cmd->vdev_id = __cpu_to_le32(vdev_id);
  1278. cmd->vdev_type = __cpu_to_le32(type);
  1279. cmd->vdev_subtype = __cpu_to_le32(subtype);
  1280. memcpy(cmd->vdev_macaddr.addr, macaddr, ETH_ALEN);
  1281. ath10k_dbg(ATH10K_DBG_WMI,
  1282. "WMI vdev create: id %d type %d subtype %d macaddr %pM\n",
  1283. vdev_id, type, subtype, macaddr);
  1284. return ath10k_wmi_cmd_send(ar, skb, WMI_VDEV_CREATE_CMDID);
  1285. }
  1286. int ath10k_wmi_vdev_delete(struct ath10k *ar, u32 vdev_id)
  1287. {
  1288. struct wmi_vdev_delete_cmd *cmd;
  1289. struct sk_buff *skb;
  1290. skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
  1291. if (!skb)
  1292. return -ENOMEM;
  1293. cmd = (struct wmi_vdev_delete_cmd *)skb->data;
  1294. cmd->vdev_id = __cpu_to_le32(vdev_id);
  1295. ath10k_dbg(ATH10K_DBG_WMI,
  1296. "WMI vdev delete id %d\n", vdev_id);
  1297. return ath10k_wmi_cmd_send(ar, skb, WMI_VDEV_DELETE_CMDID);
  1298. }
  1299. static int ath10k_wmi_vdev_start_restart(struct ath10k *ar,
  1300. const struct wmi_vdev_start_request_arg *arg,
  1301. enum wmi_cmd_id cmd_id)
  1302. {
  1303. struct wmi_vdev_start_request_cmd *cmd;
  1304. struct sk_buff *skb;
  1305. const char *cmdname;
  1306. u32 flags = 0;
  1307. if (cmd_id != WMI_VDEV_START_REQUEST_CMDID &&
  1308. cmd_id != WMI_VDEV_RESTART_REQUEST_CMDID)
  1309. return -EINVAL;
  1310. if (WARN_ON(arg->ssid && arg->ssid_len == 0))
  1311. return -EINVAL;
  1312. if (WARN_ON(arg->hidden_ssid && !arg->ssid))
  1313. return -EINVAL;
  1314. if (WARN_ON(arg->ssid_len > sizeof(cmd->ssid.ssid)))
  1315. return -EINVAL;
  1316. if (cmd_id == WMI_VDEV_START_REQUEST_CMDID)
  1317. cmdname = "start";
  1318. else if (cmd_id == WMI_VDEV_RESTART_REQUEST_CMDID)
  1319. cmdname = "restart";
  1320. else
  1321. return -EINVAL; /* should not happen, we already check cmd_id */
  1322. skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
  1323. if (!skb)
  1324. return -ENOMEM;
  1325. if (arg->hidden_ssid)
  1326. flags |= WMI_VDEV_START_HIDDEN_SSID;
  1327. if (arg->pmf_enabled)
  1328. flags |= WMI_VDEV_START_PMF_ENABLED;
  1329. cmd = (struct wmi_vdev_start_request_cmd *)skb->data;
  1330. cmd->vdev_id = __cpu_to_le32(arg->vdev_id);
  1331. cmd->disable_hw_ack = __cpu_to_le32(arg->disable_hw_ack);
  1332. cmd->beacon_interval = __cpu_to_le32(arg->bcn_intval);
  1333. cmd->dtim_period = __cpu_to_le32(arg->dtim_period);
  1334. cmd->flags = __cpu_to_le32(flags);
  1335. cmd->bcn_tx_rate = __cpu_to_le32(arg->bcn_tx_rate);
  1336. cmd->bcn_tx_power = __cpu_to_le32(arg->bcn_tx_power);
  1337. if (arg->ssid) {
  1338. cmd->ssid.ssid_len = __cpu_to_le32(arg->ssid_len);
  1339. memcpy(cmd->ssid.ssid, arg->ssid, arg->ssid_len);
  1340. }
  1341. cmd->chan.mhz = __cpu_to_le32(arg->channel.freq);
  1342. cmd->chan.band_center_freq1 =
  1343. __cpu_to_le32(arg->channel.band_center_freq1);
  1344. cmd->chan.mode = arg->channel.mode;
  1345. cmd->chan.min_power = arg->channel.min_power;
  1346. cmd->chan.max_power = arg->channel.max_power;
  1347. cmd->chan.reg_power = arg->channel.max_reg_power;
  1348. cmd->chan.reg_classid = arg->channel.reg_class_id;
  1349. cmd->chan.antenna_max = arg->channel.max_antenna_gain;
  1350. ath10k_dbg(ATH10K_DBG_WMI,
  1351. "wmi vdev %s id 0x%x freq %d, mode %d, ch_flags: 0x%0X,"
  1352. "max_power: %d\n", cmdname, arg->vdev_id, arg->channel.freq,
  1353. arg->channel.mode, flags, arg->channel.max_power);
  1354. return ath10k_wmi_cmd_send(ar, skb, cmd_id);
  1355. }
  1356. int ath10k_wmi_vdev_start(struct ath10k *ar,
  1357. const struct wmi_vdev_start_request_arg *arg)
  1358. {
  1359. return ath10k_wmi_vdev_start_restart(ar, arg,
  1360. WMI_VDEV_START_REQUEST_CMDID);
  1361. }
  1362. int ath10k_wmi_vdev_restart(struct ath10k *ar,
  1363. const struct wmi_vdev_start_request_arg *arg)
  1364. {
  1365. return ath10k_wmi_vdev_start_restart(ar, arg,
  1366. WMI_VDEV_RESTART_REQUEST_CMDID);
  1367. }
  1368. int ath10k_wmi_vdev_stop(struct ath10k *ar, u32 vdev_id)
  1369. {
  1370. struct wmi_vdev_stop_cmd *cmd;
  1371. struct sk_buff *skb;
  1372. skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
  1373. if (!skb)
  1374. return -ENOMEM;
  1375. cmd = (struct wmi_vdev_stop_cmd *)skb->data;
  1376. cmd->vdev_id = __cpu_to_le32(vdev_id);
  1377. ath10k_dbg(ATH10K_DBG_WMI, "wmi vdev stop id 0x%x\n", vdev_id);
  1378. return ath10k_wmi_cmd_send(ar, skb, WMI_VDEV_STOP_CMDID);
  1379. }
  1380. int ath10k_wmi_vdev_up(struct ath10k *ar, u32 vdev_id, u32 aid, const u8 *bssid)
  1381. {
  1382. struct wmi_vdev_up_cmd *cmd;
  1383. struct sk_buff *skb;
  1384. skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
  1385. if (!skb)
  1386. return -ENOMEM;
  1387. cmd = (struct wmi_vdev_up_cmd *)skb->data;
  1388. cmd->vdev_id = __cpu_to_le32(vdev_id);
  1389. cmd->vdev_assoc_id = __cpu_to_le32(aid);
  1390. memcpy(&cmd->vdev_bssid.addr, bssid, 6);
  1391. ath10k_dbg(ATH10K_DBG_WMI,
  1392. "wmi mgmt vdev up id 0x%x assoc id %d bssid %pM\n",
  1393. vdev_id, aid, bssid);
  1394. return ath10k_wmi_cmd_send(ar, skb, WMI_VDEV_UP_CMDID);
  1395. }
  1396. int ath10k_wmi_vdev_down(struct ath10k *ar, u32 vdev_id)
  1397. {
  1398. struct wmi_vdev_down_cmd *cmd;
  1399. struct sk_buff *skb;
  1400. skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
  1401. if (!skb)
  1402. return -ENOMEM;
  1403. cmd = (struct wmi_vdev_down_cmd *)skb->data;
  1404. cmd->vdev_id = __cpu_to_le32(vdev_id);
  1405. ath10k_dbg(ATH10K_DBG_WMI,
  1406. "wmi mgmt vdev down id 0x%x\n", vdev_id);
  1407. return ath10k_wmi_cmd_send(ar, skb, WMI_VDEV_DOWN_CMDID);
  1408. }
  1409. int ath10k_wmi_vdev_set_param(struct ath10k *ar, u32 vdev_id,
  1410. enum wmi_vdev_param param_id, u32 param_value)
  1411. {
  1412. struct wmi_vdev_set_param_cmd *cmd;
  1413. struct sk_buff *skb;
  1414. skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
  1415. if (!skb)
  1416. return -ENOMEM;
  1417. cmd = (struct wmi_vdev_set_param_cmd *)skb->data;
  1418. cmd->vdev_id = __cpu_to_le32(vdev_id);
  1419. cmd->param_id = __cpu_to_le32(param_id);
  1420. cmd->param_value = __cpu_to_le32(param_value);
  1421. ath10k_dbg(ATH10K_DBG_WMI,
  1422. "wmi vdev id 0x%x set param %d value %d\n",
  1423. vdev_id, param_id, param_value);
  1424. return ath10k_wmi_cmd_send(ar, skb, WMI_VDEV_SET_PARAM_CMDID);
  1425. }
  1426. int ath10k_wmi_vdev_install_key(struct ath10k *ar,
  1427. const struct wmi_vdev_install_key_arg *arg)
  1428. {
  1429. struct wmi_vdev_install_key_cmd *cmd;
  1430. struct sk_buff *skb;
  1431. if (arg->key_cipher == WMI_CIPHER_NONE && arg->key_data != NULL)
  1432. return -EINVAL;
  1433. if (arg->key_cipher != WMI_CIPHER_NONE && arg->key_data == NULL)
  1434. return -EINVAL;
  1435. skb = ath10k_wmi_alloc_skb(sizeof(*cmd) + arg->key_len);
  1436. if (!skb)
  1437. return -ENOMEM;
  1438. cmd = (struct wmi_vdev_install_key_cmd *)skb->data;
  1439. cmd->vdev_id = __cpu_to_le32(arg->vdev_id);
  1440. cmd->key_idx = __cpu_to_le32(arg->key_idx);
  1441. cmd->key_flags = __cpu_to_le32(arg->key_flags);
  1442. cmd->key_cipher = __cpu_to_le32(arg->key_cipher);
  1443. cmd->key_len = __cpu_to_le32(arg->key_len);
  1444. cmd->key_txmic_len = __cpu_to_le32(arg->key_txmic_len);
  1445. cmd->key_rxmic_len = __cpu_to_le32(arg->key_rxmic_len);
  1446. if (arg->macaddr)
  1447. memcpy(cmd->peer_macaddr.addr, arg->macaddr, ETH_ALEN);
  1448. if (arg->key_data)
  1449. memcpy(cmd->key_data, arg->key_data, arg->key_len);
  1450. ath10k_dbg(ATH10K_DBG_WMI,
  1451. "wmi vdev install key idx %d cipher %d len %d\n",
  1452. arg->key_idx, arg->key_cipher, arg->key_len);
  1453. return ath10k_wmi_cmd_send(ar, skb, WMI_VDEV_INSTALL_KEY_CMDID);
  1454. }
  1455. int ath10k_wmi_peer_create(struct ath10k *ar, u32 vdev_id,
  1456. const u8 peer_addr[ETH_ALEN])
  1457. {
  1458. struct wmi_peer_create_cmd *cmd;
  1459. struct sk_buff *skb;
  1460. skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
  1461. if (!skb)
  1462. return -ENOMEM;
  1463. cmd = (struct wmi_peer_create_cmd *)skb->data;
  1464. cmd->vdev_id = __cpu_to_le32(vdev_id);
  1465. memcpy(cmd->peer_macaddr.addr, peer_addr, ETH_ALEN);
  1466. ath10k_dbg(ATH10K_DBG_WMI,
  1467. "wmi peer create vdev_id %d peer_addr %pM\n",
  1468. vdev_id, peer_addr);
  1469. return ath10k_wmi_cmd_send(ar, skb, WMI_PEER_CREATE_CMDID);
  1470. }
  1471. int ath10k_wmi_peer_delete(struct ath10k *ar, u32 vdev_id,
  1472. const u8 peer_addr[ETH_ALEN])
  1473. {
  1474. struct wmi_peer_delete_cmd *cmd;
  1475. struct sk_buff *skb;
  1476. skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
  1477. if (!skb)
  1478. return -ENOMEM;
  1479. cmd = (struct wmi_peer_delete_cmd *)skb->data;
  1480. cmd->vdev_id = __cpu_to_le32(vdev_id);
  1481. memcpy(cmd->peer_macaddr.addr, peer_addr, ETH_ALEN);
  1482. ath10k_dbg(ATH10K_DBG_WMI,
  1483. "wmi peer delete vdev_id %d peer_addr %pM\n",
  1484. vdev_id, peer_addr);
  1485. return ath10k_wmi_cmd_send(ar, skb, WMI_PEER_DELETE_CMDID);
  1486. }
  1487. int ath10k_wmi_peer_flush(struct ath10k *ar, u32 vdev_id,
  1488. const u8 peer_addr[ETH_ALEN], u32 tid_bitmap)
  1489. {
  1490. struct wmi_peer_flush_tids_cmd *cmd;
  1491. struct sk_buff *skb;
  1492. skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
  1493. if (!skb)
  1494. return -ENOMEM;
  1495. cmd = (struct wmi_peer_flush_tids_cmd *)skb->data;
  1496. cmd->vdev_id = __cpu_to_le32(vdev_id);
  1497. cmd->peer_tid_bitmap = __cpu_to_le32(tid_bitmap);
  1498. memcpy(cmd->peer_macaddr.addr, peer_addr, ETH_ALEN);
  1499. ath10k_dbg(ATH10K_DBG_WMI,
  1500. "wmi peer flush vdev_id %d peer_addr %pM tids %08x\n",
  1501. vdev_id, peer_addr, tid_bitmap);
  1502. return ath10k_wmi_cmd_send(ar, skb, WMI_PEER_FLUSH_TIDS_CMDID);
  1503. }
  1504. int ath10k_wmi_peer_set_param(struct ath10k *ar, u32 vdev_id,
  1505. const u8 *peer_addr, enum wmi_peer_param param_id,
  1506. u32 param_value)
  1507. {
  1508. struct wmi_peer_set_param_cmd *cmd;
  1509. struct sk_buff *skb;
  1510. skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
  1511. if (!skb)
  1512. return -ENOMEM;
  1513. cmd = (struct wmi_peer_set_param_cmd *)skb->data;
  1514. cmd->vdev_id = __cpu_to_le32(vdev_id);
  1515. cmd->param_id = __cpu_to_le32(param_id);
  1516. cmd->param_value = __cpu_to_le32(param_value);
  1517. memcpy(&cmd->peer_macaddr.addr, peer_addr, 6);
  1518. ath10k_dbg(ATH10K_DBG_WMI,
  1519. "wmi vdev %d peer 0x%pM set param %d value %d\n",
  1520. vdev_id, peer_addr, param_id, param_value);
  1521. return ath10k_wmi_cmd_send(ar, skb, WMI_PEER_SET_PARAM_CMDID);
  1522. }
  1523. int ath10k_wmi_set_psmode(struct ath10k *ar, u32 vdev_id,
  1524. enum wmi_sta_ps_mode psmode)
  1525. {
  1526. struct wmi_sta_powersave_mode_cmd *cmd;
  1527. struct sk_buff *skb;
  1528. skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
  1529. if (!skb)
  1530. return -ENOMEM;
  1531. cmd = (struct wmi_sta_powersave_mode_cmd *)skb->data;
  1532. cmd->vdev_id = __cpu_to_le32(vdev_id);
  1533. cmd->sta_ps_mode = __cpu_to_le32(psmode);
  1534. ath10k_dbg(ATH10K_DBG_WMI,
  1535. "wmi set powersave id 0x%x mode %d\n",
  1536. vdev_id, psmode);
  1537. return ath10k_wmi_cmd_send(ar, skb, WMI_STA_POWERSAVE_MODE_CMDID);
  1538. }
  1539. int ath10k_wmi_set_sta_ps_param(struct ath10k *ar, u32 vdev_id,
  1540. enum wmi_sta_powersave_param param_id,
  1541. u32 value)
  1542. {
  1543. struct wmi_sta_powersave_param_cmd *cmd;
  1544. struct sk_buff *skb;
  1545. skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
  1546. if (!skb)
  1547. return -ENOMEM;
  1548. cmd = (struct wmi_sta_powersave_param_cmd *)skb->data;
  1549. cmd->vdev_id = __cpu_to_le32(vdev_id);
  1550. cmd->param_id = __cpu_to_le32(param_id);
  1551. cmd->param_value = __cpu_to_le32(value);
  1552. ath10k_dbg(ATH10K_DBG_WMI,
  1553. "wmi sta ps param vdev_id 0x%x param %d value %d\n",
  1554. vdev_id, param_id, value);
  1555. return ath10k_wmi_cmd_send(ar, skb, WMI_STA_POWERSAVE_PARAM_CMDID);
  1556. }
  1557. int ath10k_wmi_set_ap_ps_param(struct ath10k *ar, u32 vdev_id, const u8 *mac,
  1558. enum wmi_ap_ps_peer_param param_id, u32 value)
  1559. {
  1560. struct wmi_ap_ps_peer_cmd *cmd;
  1561. struct sk_buff *skb;
  1562. if (!mac)
  1563. return -EINVAL;
  1564. skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
  1565. if (!skb)
  1566. return -ENOMEM;
  1567. cmd = (struct wmi_ap_ps_peer_cmd *)skb->data;
  1568. cmd->vdev_id = __cpu_to_le32(vdev_id);
  1569. cmd->param_id = __cpu_to_le32(param_id);
  1570. cmd->param_value = __cpu_to_le32(value);
  1571. memcpy(&cmd->peer_macaddr, mac, ETH_ALEN);
  1572. ath10k_dbg(ATH10K_DBG_WMI,
  1573. "wmi ap ps param vdev_id 0x%X param %d value %d mac_addr %pM\n",
  1574. vdev_id, param_id, value, mac);
  1575. return ath10k_wmi_cmd_send(ar, skb, WMI_AP_PS_PEER_PARAM_CMDID);
  1576. }
  1577. int ath10k_wmi_scan_chan_list(struct ath10k *ar,
  1578. const struct wmi_scan_chan_list_arg *arg)
  1579. {
  1580. struct wmi_scan_chan_list_cmd *cmd;
  1581. struct sk_buff *skb;
  1582. struct wmi_channel_arg *ch;
  1583. struct wmi_channel *ci;
  1584. int len;
  1585. int i;
  1586. len = sizeof(*cmd) + arg->n_channels * sizeof(struct wmi_channel);
  1587. skb = ath10k_wmi_alloc_skb(len);
  1588. if (!skb)
  1589. return -EINVAL;
  1590. cmd = (struct wmi_scan_chan_list_cmd *)skb->data;
  1591. cmd->num_scan_chans = __cpu_to_le32(arg->n_channels);
  1592. for (i = 0; i < arg->n_channels; i++) {
  1593. u32 flags = 0;
  1594. ch = &arg->channels[i];
  1595. ci = &cmd->chan_info[i];
  1596. if (ch->passive)
  1597. flags |= WMI_CHAN_FLAG_PASSIVE;
  1598. if (ch->allow_ibss)
  1599. flags |= WMI_CHAN_FLAG_ADHOC_ALLOWED;
  1600. if (ch->allow_ht)
  1601. flags |= WMI_CHAN_FLAG_ALLOW_HT;
  1602. if (ch->allow_vht)
  1603. flags |= WMI_CHAN_FLAG_ALLOW_VHT;
  1604. if (ch->ht40plus)
  1605. flags |= WMI_CHAN_FLAG_HT40_PLUS;
  1606. ci->mhz = __cpu_to_le32(ch->freq);
  1607. ci->band_center_freq1 = __cpu_to_le32(ch->freq);
  1608. ci->band_center_freq2 = 0;
  1609. ci->min_power = ch->min_power;
  1610. ci->max_power = ch->max_power;
  1611. ci->reg_power = ch->max_reg_power;
  1612. ci->antenna_max = ch->max_antenna_gain;
  1613. ci->antenna_max = 0;
  1614. /* mode & flags share storage */
  1615. ci->mode = ch->mode;
  1616. ci->flags |= __cpu_to_le32(flags);
  1617. }
  1618. return ath10k_wmi_cmd_send(ar, skb, WMI_SCAN_CHAN_LIST_CMDID);
  1619. }
  1620. int ath10k_wmi_peer_assoc(struct ath10k *ar,
  1621. const struct wmi_peer_assoc_complete_arg *arg)
  1622. {
  1623. struct wmi_peer_assoc_complete_cmd *cmd;
  1624. struct sk_buff *skb;
  1625. if (arg->peer_mpdu_density > 16)
  1626. return -EINVAL;
  1627. if (arg->peer_legacy_rates.num_rates > MAX_SUPPORTED_RATES)
  1628. return -EINVAL;
  1629. if (arg->peer_ht_rates.num_rates > MAX_SUPPORTED_RATES)
  1630. return -EINVAL;
  1631. skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
  1632. if (!skb)
  1633. return -ENOMEM;
  1634. cmd = (struct wmi_peer_assoc_complete_cmd *)skb->data;
  1635. cmd->vdev_id = __cpu_to_le32(arg->vdev_id);
  1636. cmd->peer_new_assoc = __cpu_to_le32(arg->peer_reassoc ? 0 : 1);
  1637. cmd->peer_associd = __cpu_to_le32(arg->peer_aid);
  1638. cmd->peer_flags = __cpu_to_le32(arg->peer_flags);
  1639. cmd->peer_caps = __cpu_to_le32(arg->peer_caps);
  1640. cmd->peer_listen_intval = __cpu_to_le32(arg->peer_listen_intval);
  1641. cmd->peer_ht_caps = __cpu_to_le32(arg->peer_ht_caps);
  1642. cmd->peer_max_mpdu = __cpu_to_le32(arg->peer_max_mpdu);
  1643. cmd->peer_mpdu_density = __cpu_to_le32(arg->peer_mpdu_density);
  1644. cmd->peer_rate_caps = __cpu_to_le32(arg->peer_rate_caps);
  1645. cmd->peer_nss = __cpu_to_le32(arg->peer_num_spatial_streams);
  1646. cmd->peer_vht_caps = __cpu_to_le32(arg->peer_vht_caps);
  1647. cmd->peer_phymode = __cpu_to_le32(arg->peer_phymode);
  1648. memcpy(cmd->peer_macaddr.addr, arg->addr, ETH_ALEN);
  1649. cmd->peer_legacy_rates.num_rates =
  1650. __cpu_to_le32(arg->peer_legacy_rates.num_rates);
  1651. memcpy(cmd->peer_legacy_rates.rates, arg->peer_legacy_rates.rates,
  1652. arg->peer_legacy_rates.num_rates);
  1653. cmd->peer_ht_rates.num_rates =
  1654. __cpu_to_le32(arg->peer_ht_rates.num_rates);
  1655. memcpy(cmd->peer_ht_rates.rates, arg->peer_ht_rates.rates,
  1656. arg->peer_ht_rates.num_rates);
  1657. cmd->peer_vht_rates.rx_max_rate =
  1658. __cpu_to_le32(arg->peer_vht_rates.rx_max_rate);
  1659. cmd->peer_vht_rates.rx_mcs_set =
  1660. __cpu_to_le32(arg->peer_vht_rates.rx_mcs_set);
  1661. cmd->peer_vht_rates.tx_max_rate =
  1662. __cpu_to_le32(arg->peer_vht_rates.tx_max_rate);
  1663. cmd->peer_vht_rates.tx_mcs_set =
  1664. __cpu_to_le32(arg->peer_vht_rates.tx_mcs_set);
  1665. ath10k_dbg(ATH10K_DBG_WMI,
  1666. "wmi peer assoc vdev %d addr %pM\n",
  1667. arg->vdev_id, arg->addr);
  1668. return ath10k_wmi_cmd_send(ar, skb, WMI_PEER_ASSOC_CMDID);
  1669. }
  1670. int ath10k_wmi_beacon_send(struct ath10k *ar, const struct wmi_bcn_tx_arg *arg)
  1671. {
  1672. struct wmi_bcn_tx_cmd *cmd;
  1673. struct sk_buff *skb;
  1674. skb = ath10k_wmi_alloc_skb(sizeof(*cmd) + arg->bcn_len);
  1675. if (!skb)
  1676. return -ENOMEM;
  1677. cmd = (struct wmi_bcn_tx_cmd *)skb->data;
  1678. cmd->hdr.vdev_id = __cpu_to_le32(arg->vdev_id);
  1679. cmd->hdr.tx_rate = __cpu_to_le32(arg->tx_rate);
  1680. cmd->hdr.tx_power = __cpu_to_le32(arg->tx_power);
  1681. cmd->hdr.bcn_len = __cpu_to_le32(arg->bcn_len);
  1682. memcpy(cmd->bcn, arg->bcn, arg->bcn_len);
  1683. return ath10k_wmi_cmd_send(ar, skb, WMI_BCN_TX_CMDID);
  1684. }
  1685. static void ath10k_wmi_pdev_set_wmm_param(struct wmi_wmm_params *params,
  1686. const struct wmi_wmm_params_arg *arg)
  1687. {
  1688. params->cwmin = __cpu_to_le32(arg->cwmin);
  1689. params->cwmax = __cpu_to_le32(arg->cwmax);
  1690. params->aifs = __cpu_to_le32(arg->aifs);
  1691. params->txop = __cpu_to_le32(arg->txop);
  1692. params->acm = __cpu_to_le32(arg->acm);
  1693. params->no_ack = __cpu_to_le32(arg->no_ack);
  1694. }
  1695. int ath10k_wmi_pdev_set_wmm_params(struct ath10k *ar,
  1696. const struct wmi_pdev_set_wmm_params_arg *arg)
  1697. {
  1698. struct wmi_pdev_set_wmm_params *cmd;
  1699. struct sk_buff *skb;
  1700. skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
  1701. if (!skb)
  1702. return -ENOMEM;
  1703. cmd = (struct wmi_pdev_set_wmm_params *)skb->data;
  1704. ath10k_wmi_pdev_set_wmm_param(&cmd->ac_be, &arg->ac_be);
  1705. ath10k_wmi_pdev_set_wmm_param(&cmd->ac_bk, &arg->ac_bk);
  1706. ath10k_wmi_pdev_set_wmm_param(&cmd->ac_vi, &arg->ac_vi);
  1707. ath10k_wmi_pdev_set_wmm_param(&cmd->ac_vo, &arg->ac_vo);
  1708. ath10k_dbg(ATH10K_DBG_WMI, "wmi pdev set wmm params\n");
  1709. return ath10k_wmi_cmd_send(ar, skb, WMI_PDEV_SET_WMM_PARAMS_CMDID);
  1710. }
  1711. int ath10k_wmi_request_stats(struct ath10k *ar, enum wmi_stats_id stats_id)
  1712. {
  1713. struct wmi_request_stats_cmd *cmd;
  1714. struct sk_buff *skb;
  1715. skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
  1716. if (!skb)
  1717. return -ENOMEM;
  1718. cmd = (struct wmi_request_stats_cmd *)skb->data;
  1719. cmd->stats_id = __cpu_to_le32(stats_id);
  1720. ath10k_dbg(ATH10K_DBG_WMI, "wmi request stats %d\n", (int)stats_id);
  1721. return ath10k_wmi_cmd_send(ar, skb, WMI_REQUEST_STATS_CMDID);
  1722. }
  1723. int ath10k_wmi_force_fw_hang(struct ath10k *ar,
  1724. enum wmi_force_fw_hang_type type, u32 delay_ms)
  1725. {
  1726. struct wmi_force_fw_hang_cmd *cmd;
  1727. struct sk_buff *skb;
  1728. skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
  1729. if (!skb)
  1730. return -ENOMEM;
  1731. cmd = (struct wmi_force_fw_hang_cmd *)skb->data;
  1732. cmd->type = __cpu_to_le32(type);
  1733. cmd->delay_ms = __cpu_to_le32(delay_ms);
  1734. ath10k_dbg(ATH10K_DBG_WMI, "wmi force fw hang %d delay %d\n",
  1735. type, delay_ms);
  1736. return ath10k_wmi_cmd_send(ar, skb, WMI_FORCE_FW_HANG_CMDID);
  1737. }