core.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967
  1. /*
  2. * linux/arch/arm/mach-versatile/core.c
  3. *
  4. * Copyright (C) 1999 - 2003 ARM Limited
  5. * Copyright (C) 2000 Deep Blue Solutions Ltd
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License as published by
  9. * the Free Software Foundation; either version 2 of the License, or
  10. * (at your option) any later version.
  11. *
  12. * This program is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  15. * GNU General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU General Public License
  18. * along with this program; if not, write to the Free Software
  19. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  20. */
  21. #include <linux/config.h>
  22. #include <linux/init.h>
  23. #include <linux/device.h>
  24. #include <linux/dma-mapping.h>
  25. #include <linux/platform_device.h>
  26. #include <linux/sysdev.h>
  27. #include <linux/interrupt.h>
  28. #include <linux/amba/bus.h>
  29. #include <linux/amba/clcd.h>
  30. #include <asm/system.h>
  31. #include <asm/hardware.h>
  32. #include <asm/io.h>
  33. #include <asm/irq.h>
  34. #include <asm/leds.h>
  35. #include <asm/hardware/arm_timer.h>
  36. #include <asm/hardware/icst307.h>
  37. #include <asm/mach/arch.h>
  38. #include <asm/mach/flash.h>
  39. #include <asm/mach/irq.h>
  40. #include <asm/mach/time.h>
  41. #include <asm/mach/map.h>
  42. #include <asm/mach/mmc.h>
  43. #include "core.h"
  44. #include "clock.h"
  45. /*
  46. * All IO addresses are mapped onto VA 0xFFFx.xxxx, where x.xxxx
  47. * is the (PA >> 12).
  48. *
  49. * Setup a VA for the Versatile Vectored Interrupt Controller.
  50. */
  51. #define __io_address(n) __io(IO_ADDRESS(n))
  52. #define VA_VIC_BASE __io_address(VERSATILE_VIC_BASE)
  53. #define VA_SIC_BASE __io_address(VERSATILE_SIC_BASE)
  54. static void vic_mask_irq(unsigned int irq)
  55. {
  56. irq -= IRQ_VIC_START;
  57. writel(1 << irq, VA_VIC_BASE + VIC_IRQ_ENABLE_CLEAR);
  58. }
  59. static void vic_unmask_irq(unsigned int irq)
  60. {
  61. irq -= IRQ_VIC_START;
  62. writel(1 << irq, VA_VIC_BASE + VIC_IRQ_ENABLE);
  63. }
  64. static struct irqchip vic_chip = {
  65. .ack = vic_mask_irq,
  66. .mask = vic_mask_irq,
  67. .unmask = vic_unmask_irq,
  68. };
  69. static void sic_mask_irq(unsigned int irq)
  70. {
  71. irq -= IRQ_SIC_START;
  72. writel(1 << irq, VA_SIC_BASE + SIC_IRQ_ENABLE_CLEAR);
  73. }
  74. static void sic_unmask_irq(unsigned int irq)
  75. {
  76. irq -= IRQ_SIC_START;
  77. writel(1 << irq, VA_SIC_BASE + SIC_IRQ_ENABLE_SET);
  78. }
  79. static struct irqchip sic_chip = {
  80. .ack = sic_mask_irq,
  81. .mask = sic_mask_irq,
  82. .unmask = sic_unmask_irq,
  83. };
  84. static void
  85. sic_handle_irq(unsigned int irq, struct irqdesc *desc, struct pt_regs *regs)
  86. {
  87. unsigned long status = readl(VA_SIC_BASE + SIC_IRQ_STATUS);
  88. if (status == 0) {
  89. do_bad_IRQ(irq, desc, regs);
  90. return;
  91. }
  92. do {
  93. irq = ffs(status) - 1;
  94. status &= ~(1 << irq);
  95. irq += IRQ_SIC_START;
  96. desc = irq_desc + irq;
  97. desc_handle_irq(irq, desc, regs);
  98. } while (status);
  99. }
  100. #if 1
  101. #define IRQ_MMCI0A IRQ_VICSOURCE22
  102. #define IRQ_AACI IRQ_VICSOURCE24
  103. #define IRQ_ETH IRQ_VICSOURCE25
  104. #define PIC_MASK 0xFFD00000
  105. #else
  106. #define IRQ_MMCI0A IRQ_SIC_MMCI0A
  107. #define IRQ_AACI IRQ_SIC_AACI
  108. #define IRQ_ETH IRQ_SIC_ETH
  109. #define PIC_MASK 0
  110. #endif
  111. void __init versatile_init_irq(void)
  112. {
  113. unsigned int i, value;
  114. /* Disable all interrupts initially. */
  115. writel(0, VA_VIC_BASE + VIC_INT_SELECT);
  116. writel(0, VA_VIC_BASE + VIC_IRQ_ENABLE);
  117. writel(~0, VA_VIC_BASE + VIC_IRQ_ENABLE_CLEAR);
  118. writel(0, VA_VIC_BASE + VIC_IRQ_STATUS);
  119. writel(0, VA_VIC_BASE + VIC_ITCR);
  120. writel(~0, VA_VIC_BASE + VIC_IRQ_SOFT_CLEAR);
  121. /*
  122. * Make sure we clear all existing interrupts
  123. */
  124. writel(0, VA_VIC_BASE + VIC_VECT_ADDR);
  125. for (i = 0; i < 19; i++) {
  126. value = readl(VA_VIC_BASE + VIC_VECT_ADDR);
  127. writel(value, VA_VIC_BASE + VIC_VECT_ADDR);
  128. }
  129. for (i = 0; i < 16; i++) {
  130. value = readl(VA_VIC_BASE + VIC_VECT_CNTL0 + (i * 4));
  131. writel(value | VICVectCntl_Enable | i, VA_VIC_BASE + VIC_VECT_CNTL0 + (i * 4));
  132. }
  133. writel(32, VA_VIC_BASE + VIC_DEF_VECT_ADDR);
  134. for (i = IRQ_VIC_START; i <= IRQ_VIC_END; i++) {
  135. if (i != IRQ_VICSOURCE31) {
  136. set_irq_chip(i, &vic_chip);
  137. set_irq_handler(i, do_level_IRQ);
  138. set_irq_flags(i, IRQF_VALID | IRQF_PROBE);
  139. }
  140. }
  141. set_irq_handler(IRQ_VICSOURCE31, sic_handle_irq);
  142. vic_unmask_irq(IRQ_VICSOURCE31);
  143. /* Do second interrupt controller */
  144. writel(~0, VA_SIC_BASE + SIC_IRQ_ENABLE_CLEAR);
  145. for (i = IRQ_SIC_START; i <= IRQ_SIC_END; i++) {
  146. if ((PIC_MASK & (1 << (i - IRQ_SIC_START))) == 0) {
  147. set_irq_chip(i, &sic_chip);
  148. set_irq_handler(i, do_level_IRQ);
  149. set_irq_flags(i, IRQF_VALID | IRQF_PROBE);
  150. }
  151. }
  152. /*
  153. * Interrupts on secondary controller from 0 to 8 are routed to
  154. * source 31 on PIC.
  155. * Interrupts from 21 to 31 are routed directly to the VIC on
  156. * the corresponding number on primary controller. This is controlled
  157. * by setting PIC_ENABLEx.
  158. */
  159. writel(PIC_MASK, VA_SIC_BASE + SIC_INT_PIC_ENABLE);
  160. }
  161. static struct map_desc versatile_io_desc[] __initdata = {
  162. {
  163. .virtual = IO_ADDRESS(VERSATILE_SYS_BASE),
  164. .pfn = __phys_to_pfn(VERSATILE_SYS_BASE),
  165. .length = SZ_4K,
  166. .type = MT_DEVICE
  167. }, {
  168. .virtual = IO_ADDRESS(VERSATILE_SIC_BASE),
  169. .pfn = __phys_to_pfn(VERSATILE_SIC_BASE),
  170. .length = SZ_4K,
  171. .type = MT_DEVICE
  172. }, {
  173. .virtual = IO_ADDRESS(VERSATILE_VIC_BASE),
  174. .pfn = __phys_to_pfn(VERSATILE_VIC_BASE),
  175. .length = SZ_4K,
  176. .type = MT_DEVICE
  177. }, {
  178. .virtual = IO_ADDRESS(VERSATILE_SCTL_BASE),
  179. .pfn = __phys_to_pfn(VERSATILE_SCTL_BASE),
  180. .length = SZ_4K * 9,
  181. .type = MT_DEVICE
  182. },
  183. #ifdef CONFIG_MACH_VERSATILE_AB
  184. {
  185. .virtual = IO_ADDRESS(VERSATILE_GPIO0_BASE),
  186. .pfn = __phys_to_pfn(VERSATILE_GPIO0_BASE),
  187. .length = SZ_4K,
  188. .type = MT_DEVICE
  189. }, {
  190. .virtual = IO_ADDRESS(VERSATILE_IB2_BASE),
  191. .pfn = __phys_to_pfn(VERSATILE_IB2_BASE),
  192. .length = SZ_64M,
  193. .type = MT_DEVICE
  194. },
  195. #endif
  196. #ifdef CONFIG_DEBUG_LL
  197. {
  198. .virtual = IO_ADDRESS(VERSATILE_UART0_BASE),
  199. .pfn = __phys_to_pfn(VERSATILE_UART0_BASE),
  200. .length = SZ_4K,
  201. .type = MT_DEVICE
  202. },
  203. #endif
  204. #ifdef CONFIG_PCI
  205. {
  206. .virtual = IO_ADDRESS(VERSATILE_PCI_CORE_BASE),
  207. .pfn = __phys_to_pfn(VERSATILE_PCI_CORE_BASE),
  208. .length = SZ_4K,
  209. .type = MT_DEVICE
  210. }, {
  211. .virtual = VERSATILE_PCI_VIRT_BASE,
  212. .pfn = __phys_to_pfn(VERSATILE_PCI_BASE),
  213. .length = VERSATILE_PCI_BASE_SIZE,
  214. .type = MT_DEVICE
  215. }, {
  216. .virtual = VERSATILE_PCI_CFG_VIRT_BASE,
  217. .pfn = __phys_to_pfn(VERSATILE_PCI_CFG_BASE),
  218. .length = VERSATILE_PCI_CFG_BASE_SIZE,
  219. .type = MT_DEVICE
  220. },
  221. #if 0
  222. {
  223. .virtual = VERSATILE_PCI_VIRT_MEM_BASE0,
  224. .pfn = __phys_to_pfn(VERSATILE_PCI_MEM_BASE0),
  225. .length = SZ_16M,
  226. .type = MT_DEVICE
  227. }, {
  228. .virtual = VERSATILE_PCI_VIRT_MEM_BASE1,
  229. .pfn = __phys_to_pfn(VERSATILE_PCI_MEM_BASE1),
  230. .length = SZ_16M,
  231. .type = MT_DEVICE
  232. }, {
  233. .virtual = VERSATILE_PCI_VIRT_MEM_BASE2,
  234. .pfn = __phys_to_pfn(VERSATILE_PCI_MEM_BASE2),
  235. .length = SZ_16M,
  236. .type = MT_DEVICE
  237. },
  238. #endif
  239. #endif
  240. };
  241. void __init versatile_map_io(void)
  242. {
  243. iotable_init(versatile_io_desc, ARRAY_SIZE(versatile_io_desc));
  244. }
  245. #define VERSATILE_REFCOUNTER (__io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_24MHz_OFFSET)
  246. /*
  247. * This is the Versatile sched_clock implementation. This has
  248. * a resolution of 41.7ns, and a maximum value of about 179s.
  249. */
  250. unsigned long long sched_clock(void)
  251. {
  252. unsigned long long v;
  253. v = (unsigned long long)readl(VERSATILE_REFCOUNTER) * 125;
  254. do_div(v, 3);
  255. return v;
  256. }
  257. #define VERSATILE_FLASHCTRL (__io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_FLASH_OFFSET)
  258. static int versatile_flash_init(void)
  259. {
  260. u32 val;
  261. val = __raw_readl(VERSATILE_FLASHCTRL);
  262. val &= ~VERSATILE_FLASHPROG_FLVPPEN;
  263. __raw_writel(val, VERSATILE_FLASHCTRL);
  264. return 0;
  265. }
  266. static void versatile_flash_exit(void)
  267. {
  268. u32 val;
  269. val = __raw_readl(VERSATILE_FLASHCTRL);
  270. val &= ~VERSATILE_FLASHPROG_FLVPPEN;
  271. __raw_writel(val, VERSATILE_FLASHCTRL);
  272. }
  273. static void versatile_flash_set_vpp(int on)
  274. {
  275. u32 val;
  276. val = __raw_readl(VERSATILE_FLASHCTRL);
  277. if (on)
  278. val |= VERSATILE_FLASHPROG_FLVPPEN;
  279. else
  280. val &= ~VERSATILE_FLASHPROG_FLVPPEN;
  281. __raw_writel(val, VERSATILE_FLASHCTRL);
  282. }
  283. static struct flash_platform_data versatile_flash_data = {
  284. .map_name = "cfi_probe",
  285. .width = 4,
  286. .init = versatile_flash_init,
  287. .exit = versatile_flash_exit,
  288. .set_vpp = versatile_flash_set_vpp,
  289. };
  290. static struct resource versatile_flash_resource = {
  291. .start = VERSATILE_FLASH_BASE,
  292. .end = VERSATILE_FLASH_BASE + VERSATILE_FLASH_SIZE,
  293. .flags = IORESOURCE_MEM,
  294. };
  295. static struct platform_device versatile_flash_device = {
  296. .name = "armflash",
  297. .id = 0,
  298. .dev = {
  299. .platform_data = &versatile_flash_data,
  300. },
  301. .num_resources = 1,
  302. .resource = &versatile_flash_resource,
  303. };
  304. static struct resource smc91x_resources[] = {
  305. [0] = {
  306. .start = VERSATILE_ETH_BASE,
  307. .end = VERSATILE_ETH_BASE + SZ_64K - 1,
  308. .flags = IORESOURCE_MEM,
  309. },
  310. [1] = {
  311. .start = IRQ_ETH,
  312. .end = IRQ_ETH,
  313. .flags = IORESOURCE_IRQ,
  314. },
  315. };
  316. static struct platform_device smc91x_device = {
  317. .name = "smc91x",
  318. .id = 0,
  319. .num_resources = ARRAY_SIZE(smc91x_resources),
  320. .resource = smc91x_resources,
  321. };
  322. #define VERSATILE_SYSMCI (__io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_MCI_OFFSET)
  323. unsigned int mmc_status(struct device *dev)
  324. {
  325. struct amba_device *adev = container_of(dev, struct amba_device, dev);
  326. u32 mask;
  327. if (adev->res.start == VERSATILE_MMCI0_BASE)
  328. mask = 1;
  329. else
  330. mask = 2;
  331. return readl(VERSATILE_SYSMCI) & mask;
  332. }
  333. static struct mmc_platform_data mmc0_plat_data = {
  334. .ocr_mask = MMC_VDD_32_33|MMC_VDD_33_34,
  335. .status = mmc_status,
  336. };
  337. /*
  338. * Clock handling
  339. */
  340. static const struct icst307_params versatile_oscvco_params = {
  341. .ref = 24000,
  342. .vco_max = 200000,
  343. .vd_min = 4 + 8,
  344. .vd_max = 511 + 8,
  345. .rd_min = 1 + 2,
  346. .rd_max = 127 + 2,
  347. };
  348. static void versatile_oscvco_set(struct clk *clk, struct icst307_vco vco)
  349. {
  350. void __iomem *sys_lock = __io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_LOCK_OFFSET;
  351. #if defined(CONFIG_ARCH_VERSATILE_PB)
  352. void __iomem *sys_osc = __io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_OSC4_OFFSET;
  353. #elif defined(CONFIG_MACH_VERSATILE_AB)
  354. void __iomem *sys_osc = __io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_OSC1_OFFSET;
  355. #endif
  356. u32 val;
  357. val = readl(sys_osc) & ~0x7ffff;
  358. val |= vco.v | (vco.r << 9) | (vco.s << 16);
  359. writel(0xa05f, sys_lock);
  360. writel(val, sys_osc);
  361. writel(0, sys_lock);
  362. }
  363. static struct clk versatile_clcd_clk = {
  364. .name = "CLCDCLK",
  365. .params = &versatile_oscvco_params,
  366. .setvco = versatile_oscvco_set,
  367. };
  368. /*
  369. * CLCD support.
  370. */
  371. #define SYS_CLCD_MODE_MASK (3 << 0)
  372. #define SYS_CLCD_MODE_888 (0 << 0)
  373. #define SYS_CLCD_MODE_5551 (1 << 0)
  374. #define SYS_CLCD_MODE_565_RLSB (2 << 0)
  375. #define SYS_CLCD_MODE_565_BLSB (3 << 0)
  376. #define SYS_CLCD_NLCDIOON (1 << 2)
  377. #define SYS_CLCD_VDDPOSSWITCH (1 << 3)
  378. #define SYS_CLCD_PWR3V5SWITCH (1 << 4)
  379. #define SYS_CLCD_ID_MASK (0x1f << 8)
  380. #define SYS_CLCD_ID_SANYO_3_8 (0x00 << 8)
  381. #define SYS_CLCD_ID_UNKNOWN_8_4 (0x01 << 8)
  382. #define SYS_CLCD_ID_EPSON_2_2 (0x02 << 8)
  383. #define SYS_CLCD_ID_SANYO_2_5 (0x07 << 8)
  384. #define SYS_CLCD_ID_VGA (0x1f << 8)
  385. static struct clcd_panel vga = {
  386. .mode = {
  387. .name = "VGA",
  388. .refresh = 60,
  389. .xres = 640,
  390. .yres = 480,
  391. .pixclock = 39721,
  392. .left_margin = 40,
  393. .right_margin = 24,
  394. .upper_margin = 32,
  395. .lower_margin = 11,
  396. .hsync_len = 96,
  397. .vsync_len = 2,
  398. .sync = 0,
  399. .vmode = FB_VMODE_NONINTERLACED,
  400. },
  401. .width = -1,
  402. .height = -1,
  403. .tim2 = TIM2_BCD | TIM2_IPC,
  404. .cntl = CNTL_LCDTFT | CNTL_LCDVCOMP(1),
  405. .bpp = 16,
  406. };
  407. static struct clcd_panel sanyo_3_8_in = {
  408. .mode = {
  409. .name = "Sanyo QVGA",
  410. .refresh = 116,
  411. .xres = 320,
  412. .yres = 240,
  413. .pixclock = 100000,
  414. .left_margin = 6,
  415. .right_margin = 6,
  416. .upper_margin = 5,
  417. .lower_margin = 5,
  418. .hsync_len = 6,
  419. .vsync_len = 6,
  420. .sync = 0,
  421. .vmode = FB_VMODE_NONINTERLACED,
  422. },
  423. .width = -1,
  424. .height = -1,
  425. .tim2 = TIM2_BCD,
  426. .cntl = CNTL_LCDTFT | CNTL_LCDVCOMP(1),
  427. .bpp = 16,
  428. };
  429. static struct clcd_panel sanyo_2_5_in = {
  430. .mode = {
  431. .name = "Sanyo QVGA Portrait",
  432. .refresh = 116,
  433. .xres = 240,
  434. .yres = 320,
  435. .pixclock = 100000,
  436. .left_margin = 20,
  437. .right_margin = 10,
  438. .upper_margin = 2,
  439. .lower_margin = 2,
  440. .hsync_len = 10,
  441. .vsync_len = 2,
  442. .sync = FB_SYNC_HOR_HIGH_ACT | FB_SYNC_VERT_HIGH_ACT,
  443. .vmode = FB_VMODE_NONINTERLACED,
  444. },
  445. .width = -1,
  446. .height = -1,
  447. .tim2 = TIM2_IVS | TIM2_IHS | TIM2_IPC,
  448. .cntl = CNTL_LCDTFT | CNTL_LCDVCOMP(1),
  449. .bpp = 16,
  450. };
  451. static struct clcd_panel epson_2_2_in = {
  452. .mode = {
  453. .name = "Epson QCIF",
  454. .refresh = 390,
  455. .xres = 176,
  456. .yres = 220,
  457. .pixclock = 62500,
  458. .left_margin = 3,
  459. .right_margin = 2,
  460. .upper_margin = 1,
  461. .lower_margin = 0,
  462. .hsync_len = 3,
  463. .vsync_len = 2,
  464. .sync = 0,
  465. .vmode = FB_VMODE_NONINTERLACED,
  466. },
  467. .width = -1,
  468. .height = -1,
  469. .tim2 = TIM2_BCD | TIM2_IPC,
  470. .cntl = CNTL_LCDTFT | CNTL_LCDVCOMP(1),
  471. .bpp = 16,
  472. };
  473. /*
  474. * Detect which LCD panel is connected, and return the appropriate
  475. * clcd_panel structure. Note: we do not have any information on
  476. * the required timings for the 8.4in panel, so we presently assume
  477. * VGA timings.
  478. */
  479. static struct clcd_panel *versatile_clcd_panel(void)
  480. {
  481. void __iomem *sys_clcd = __io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_CLCD_OFFSET;
  482. struct clcd_panel *panel = &vga;
  483. u32 val;
  484. val = readl(sys_clcd) & SYS_CLCD_ID_MASK;
  485. if (val == SYS_CLCD_ID_SANYO_3_8)
  486. panel = &sanyo_3_8_in;
  487. else if (val == SYS_CLCD_ID_SANYO_2_5)
  488. panel = &sanyo_2_5_in;
  489. else if (val == SYS_CLCD_ID_EPSON_2_2)
  490. panel = &epson_2_2_in;
  491. else if (val == SYS_CLCD_ID_VGA)
  492. panel = &vga;
  493. else {
  494. printk(KERN_ERR "CLCD: unknown LCD panel ID 0x%08x, using VGA\n",
  495. val);
  496. panel = &vga;
  497. }
  498. return panel;
  499. }
  500. /*
  501. * Disable all display connectors on the interface module.
  502. */
  503. static void versatile_clcd_disable(struct clcd_fb *fb)
  504. {
  505. void __iomem *sys_clcd = __io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_CLCD_OFFSET;
  506. u32 val;
  507. val = readl(sys_clcd);
  508. val &= ~SYS_CLCD_NLCDIOON | SYS_CLCD_PWR3V5SWITCH;
  509. writel(val, sys_clcd);
  510. #ifdef CONFIG_MACH_VERSATILE_AB
  511. /*
  512. * If the LCD is Sanyo 2x5 in on the IB2 board, turn the back-light off
  513. */
  514. if (fb->panel == &sanyo_2_5_in) {
  515. void __iomem *versatile_ib2_ctrl = __io_address(VERSATILE_IB2_CTRL);
  516. unsigned long ctrl;
  517. ctrl = readl(versatile_ib2_ctrl);
  518. ctrl &= ~0x01;
  519. writel(ctrl, versatile_ib2_ctrl);
  520. }
  521. #endif
  522. }
  523. /*
  524. * Enable the relevant connector on the interface module.
  525. */
  526. static void versatile_clcd_enable(struct clcd_fb *fb)
  527. {
  528. void __iomem *sys_clcd = __io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_CLCD_OFFSET;
  529. u32 val;
  530. val = readl(sys_clcd);
  531. val &= ~SYS_CLCD_MODE_MASK;
  532. switch (fb->fb.var.green.length) {
  533. case 5:
  534. val |= SYS_CLCD_MODE_5551;
  535. break;
  536. case 6:
  537. val |= SYS_CLCD_MODE_565_RLSB;
  538. break;
  539. case 8:
  540. val |= SYS_CLCD_MODE_888;
  541. break;
  542. }
  543. /*
  544. * Set the MUX
  545. */
  546. writel(val, sys_clcd);
  547. /*
  548. * And now enable the PSUs
  549. */
  550. val |= SYS_CLCD_NLCDIOON | SYS_CLCD_PWR3V5SWITCH;
  551. writel(val, sys_clcd);
  552. #ifdef CONFIG_MACH_VERSATILE_AB
  553. /*
  554. * If the LCD is Sanyo 2x5 in on the IB2 board, turn the back-light on
  555. */
  556. if (fb->panel == &sanyo_2_5_in) {
  557. void __iomem *versatile_ib2_ctrl = __io_address(VERSATILE_IB2_CTRL);
  558. unsigned long ctrl;
  559. ctrl = readl(versatile_ib2_ctrl);
  560. ctrl |= 0x01;
  561. writel(ctrl, versatile_ib2_ctrl);
  562. }
  563. #endif
  564. }
  565. static unsigned long framesize = SZ_1M;
  566. static int versatile_clcd_setup(struct clcd_fb *fb)
  567. {
  568. dma_addr_t dma;
  569. fb->panel = versatile_clcd_panel();
  570. fb->fb.screen_base = dma_alloc_writecombine(&fb->dev->dev, framesize,
  571. &dma, GFP_KERNEL);
  572. if (!fb->fb.screen_base) {
  573. printk(KERN_ERR "CLCD: unable to map framebuffer\n");
  574. return -ENOMEM;
  575. }
  576. fb->fb.fix.smem_start = dma;
  577. fb->fb.fix.smem_len = framesize;
  578. return 0;
  579. }
  580. static int versatile_clcd_mmap(struct clcd_fb *fb, struct vm_area_struct *vma)
  581. {
  582. return dma_mmap_writecombine(&fb->dev->dev, vma,
  583. fb->fb.screen_base,
  584. fb->fb.fix.smem_start,
  585. fb->fb.fix.smem_len);
  586. }
  587. static void versatile_clcd_remove(struct clcd_fb *fb)
  588. {
  589. dma_free_writecombine(&fb->dev->dev, fb->fb.fix.smem_len,
  590. fb->fb.screen_base, fb->fb.fix.smem_start);
  591. }
  592. static struct clcd_board clcd_plat_data = {
  593. .name = "Versatile",
  594. .check = clcdfb_check,
  595. .decode = clcdfb_decode,
  596. .disable = versatile_clcd_disable,
  597. .enable = versatile_clcd_enable,
  598. .setup = versatile_clcd_setup,
  599. .mmap = versatile_clcd_mmap,
  600. .remove = versatile_clcd_remove,
  601. };
  602. #define AACI_IRQ { IRQ_AACI, NO_IRQ }
  603. #define AACI_DMA { 0x80, 0x81 }
  604. #define MMCI0_IRQ { IRQ_MMCI0A,IRQ_SIC_MMCI0B }
  605. #define MMCI0_DMA { 0x84, 0 }
  606. #define KMI0_IRQ { IRQ_SIC_KMI0, NO_IRQ }
  607. #define KMI0_DMA { 0, 0 }
  608. #define KMI1_IRQ { IRQ_SIC_KMI1, NO_IRQ }
  609. #define KMI1_DMA { 0, 0 }
  610. /*
  611. * These devices are connected directly to the multi-layer AHB switch
  612. */
  613. #define SMC_IRQ { NO_IRQ, NO_IRQ }
  614. #define SMC_DMA { 0, 0 }
  615. #define MPMC_IRQ { NO_IRQ, NO_IRQ }
  616. #define MPMC_DMA { 0, 0 }
  617. #define CLCD_IRQ { IRQ_CLCDINT, NO_IRQ }
  618. #define CLCD_DMA { 0, 0 }
  619. #define DMAC_IRQ { IRQ_DMAINT, NO_IRQ }
  620. #define DMAC_DMA { 0, 0 }
  621. /*
  622. * These devices are connected via the core APB bridge
  623. */
  624. #define SCTL_IRQ { NO_IRQ, NO_IRQ }
  625. #define SCTL_DMA { 0, 0 }
  626. #define WATCHDOG_IRQ { IRQ_WDOGINT, NO_IRQ }
  627. #define WATCHDOG_DMA { 0, 0 }
  628. #define GPIO0_IRQ { IRQ_GPIOINT0, NO_IRQ }
  629. #define GPIO0_DMA { 0, 0 }
  630. #define GPIO1_IRQ { IRQ_GPIOINT1, NO_IRQ }
  631. #define GPIO1_DMA { 0, 0 }
  632. #define RTC_IRQ { IRQ_RTCINT, NO_IRQ }
  633. #define RTC_DMA { 0, 0 }
  634. /*
  635. * These devices are connected via the DMA APB bridge
  636. */
  637. #define SCI_IRQ { IRQ_SCIINT, NO_IRQ }
  638. #define SCI_DMA { 7, 6 }
  639. #define UART0_IRQ { IRQ_UARTINT0, NO_IRQ }
  640. #define UART0_DMA { 15, 14 }
  641. #define UART1_IRQ { IRQ_UARTINT1, NO_IRQ }
  642. #define UART1_DMA { 13, 12 }
  643. #define UART2_IRQ { IRQ_UARTINT2, NO_IRQ }
  644. #define UART2_DMA { 11, 10 }
  645. #define SSP_IRQ { IRQ_SSPINT, NO_IRQ }
  646. #define SSP_DMA { 9, 8 }
  647. /* FPGA Primecells */
  648. AMBA_DEVICE(aaci, "fpga:04", AACI, NULL);
  649. AMBA_DEVICE(mmc0, "fpga:05", MMCI0, &mmc0_plat_data);
  650. AMBA_DEVICE(kmi0, "fpga:06", KMI0, NULL);
  651. AMBA_DEVICE(kmi1, "fpga:07", KMI1, NULL);
  652. /* DevChip Primecells */
  653. AMBA_DEVICE(smc, "dev:00", SMC, NULL);
  654. AMBA_DEVICE(mpmc, "dev:10", MPMC, NULL);
  655. AMBA_DEVICE(clcd, "dev:20", CLCD, &clcd_plat_data);
  656. AMBA_DEVICE(dmac, "dev:30", DMAC, NULL);
  657. AMBA_DEVICE(sctl, "dev:e0", SCTL, NULL);
  658. AMBA_DEVICE(wdog, "dev:e1", WATCHDOG, NULL);
  659. AMBA_DEVICE(gpio0, "dev:e4", GPIO0, NULL);
  660. AMBA_DEVICE(gpio1, "dev:e5", GPIO1, NULL);
  661. AMBA_DEVICE(rtc, "dev:e8", RTC, NULL);
  662. AMBA_DEVICE(sci0, "dev:f0", SCI, NULL);
  663. AMBA_DEVICE(uart0, "dev:f1", UART0, NULL);
  664. AMBA_DEVICE(uart1, "dev:f2", UART1, NULL);
  665. AMBA_DEVICE(uart2, "dev:f3", UART2, NULL);
  666. AMBA_DEVICE(ssp0, "dev:f4", SSP, NULL);
  667. static struct amba_device *amba_devs[] __initdata = {
  668. &dmac_device,
  669. &uart0_device,
  670. &uart1_device,
  671. &uart2_device,
  672. &smc_device,
  673. &mpmc_device,
  674. &clcd_device,
  675. &sctl_device,
  676. &wdog_device,
  677. &gpio0_device,
  678. &gpio1_device,
  679. &rtc_device,
  680. &sci0_device,
  681. &ssp0_device,
  682. &aaci_device,
  683. &mmc0_device,
  684. &kmi0_device,
  685. &kmi1_device,
  686. };
  687. #ifdef CONFIG_LEDS
  688. #define VA_LEDS_BASE (__io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_LED_OFFSET)
  689. static void versatile_leds_event(led_event_t ledevt)
  690. {
  691. unsigned long flags;
  692. u32 val;
  693. local_irq_save(flags);
  694. val = readl(VA_LEDS_BASE);
  695. switch (ledevt) {
  696. case led_idle_start:
  697. val = val & ~VERSATILE_SYS_LED0;
  698. break;
  699. case led_idle_end:
  700. val = val | VERSATILE_SYS_LED0;
  701. break;
  702. case led_timer:
  703. val = val ^ VERSATILE_SYS_LED1;
  704. break;
  705. case led_halted:
  706. val = 0;
  707. break;
  708. default:
  709. break;
  710. }
  711. writel(val, VA_LEDS_BASE);
  712. local_irq_restore(flags);
  713. }
  714. #endif /* CONFIG_LEDS */
  715. void __init versatile_init(void)
  716. {
  717. int i;
  718. clk_register(&versatile_clcd_clk);
  719. platform_device_register(&versatile_flash_device);
  720. platform_device_register(&smc91x_device);
  721. for (i = 0; i < ARRAY_SIZE(amba_devs); i++) {
  722. struct amba_device *d = amba_devs[i];
  723. amba_device_register(d, &iomem_resource);
  724. }
  725. #ifdef CONFIG_LEDS
  726. leds_event = versatile_leds_event;
  727. #endif
  728. }
  729. /*
  730. * Where is the timer (VA)?
  731. */
  732. #define TIMER0_VA_BASE __io_address(VERSATILE_TIMER0_1_BASE)
  733. #define TIMER1_VA_BASE (__io_address(VERSATILE_TIMER0_1_BASE) + 0x20)
  734. #define TIMER2_VA_BASE __io_address(VERSATILE_TIMER2_3_BASE)
  735. #define TIMER3_VA_BASE (__io_address(VERSATILE_TIMER2_3_BASE) + 0x20)
  736. #define VA_IC_BASE __io_address(VERSATILE_VIC_BASE)
  737. /*
  738. * How long is the timer interval?
  739. */
  740. #define TIMER_INTERVAL (TICKS_PER_uSEC * mSEC_10)
  741. #if TIMER_INTERVAL >= 0x100000
  742. #define TIMER_RELOAD (TIMER_INTERVAL >> 8)
  743. #define TIMER_DIVISOR (TIMER_CTRL_DIV256)
  744. #define TICKS2USECS(x) (256 * (x) / TICKS_PER_uSEC)
  745. #elif TIMER_INTERVAL >= 0x10000
  746. #define TIMER_RELOAD (TIMER_INTERVAL >> 4) /* Divide by 16 */
  747. #define TIMER_DIVISOR (TIMER_CTRL_DIV16)
  748. #define TICKS2USECS(x) (16 * (x) / TICKS_PER_uSEC)
  749. #else
  750. #define TIMER_RELOAD (TIMER_INTERVAL)
  751. #define TIMER_DIVISOR (TIMER_CTRL_DIV1)
  752. #define TICKS2USECS(x) ((x) / TICKS_PER_uSEC)
  753. #endif
  754. /*
  755. * Returns number of ms since last clock interrupt. Note that interrupts
  756. * will have been disabled by do_gettimeoffset()
  757. */
  758. static unsigned long versatile_gettimeoffset(void)
  759. {
  760. unsigned long ticks1, ticks2, status;
  761. /*
  762. * Get the current number of ticks. Note that there is a race
  763. * condition between us reading the timer and checking for
  764. * an interrupt. We get around this by ensuring that the
  765. * counter has not reloaded between our two reads.
  766. */
  767. ticks2 = readl(TIMER0_VA_BASE + TIMER_VALUE) & 0xffff;
  768. do {
  769. ticks1 = ticks2;
  770. status = __raw_readl(VA_IC_BASE + VIC_IRQ_RAW_STATUS);
  771. ticks2 = readl(TIMER0_VA_BASE + TIMER_VALUE) & 0xffff;
  772. } while (ticks2 > ticks1);
  773. /*
  774. * Number of ticks since last interrupt.
  775. */
  776. ticks1 = TIMER_RELOAD - ticks2;
  777. /*
  778. * Interrupt pending? If so, we've reloaded once already.
  779. *
  780. * FIXME: Need to check this is effectively timer 0 that expires
  781. */
  782. if (status & IRQMASK_TIMERINT0_1)
  783. ticks1 += TIMER_RELOAD;
  784. /*
  785. * Convert the ticks to usecs
  786. */
  787. return TICKS2USECS(ticks1);
  788. }
  789. /*
  790. * IRQ handler for the timer
  791. */
  792. static irqreturn_t versatile_timer_interrupt(int irq, void *dev_id, struct pt_regs *regs)
  793. {
  794. write_seqlock(&xtime_lock);
  795. // ...clear the interrupt
  796. writel(1, TIMER0_VA_BASE + TIMER_INTCLR);
  797. timer_tick(regs);
  798. write_sequnlock(&xtime_lock);
  799. return IRQ_HANDLED;
  800. }
  801. static struct irqaction versatile_timer_irq = {
  802. .name = "Versatile Timer Tick",
  803. .flags = SA_INTERRUPT | SA_TIMER,
  804. .handler = versatile_timer_interrupt,
  805. };
  806. /*
  807. * Set up timer interrupt, and return the current time in seconds.
  808. */
  809. static void __init versatile_timer_init(void)
  810. {
  811. u32 val;
  812. /*
  813. * set clock frequency:
  814. * VERSATILE_REFCLK is 32KHz
  815. * VERSATILE_TIMCLK is 1MHz
  816. */
  817. val = readl(__io_address(VERSATILE_SCTL_BASE));
  818. writel((VERSATILE_TIMCLK << VERSATILE_TIMER1_EnSel) |
  819. (VERSATILE_TIMCLK << VERSATILE_TIMER2_EnSel) |
  820. (VERSATILE_TIMCLK << VERSATILE_TIMER3_EnSel) |
  821. (VERSATILE_TIMCLK << VERSATILE_TIMER4_EnSel) | val,
  822. __io_address(VERSATILE_SCTL_BASE));
  823. /*
  824. * Initialise to a known state (all timers off)
  825. */
  826. writel(0, TIMER0_VA_BASE + TIMER_CTRL);
  827. writel(0, TIMER1_VA_BASE + TIMER_CTRL);
  828. writel(0, TIMER2_VA_BASE + TIMER_CTRL);
  829. writel(0, TIMER3_VA_BASE + TIMER_CTRL);
  830. writel(TIMER_RELOAD, TIMER0_VA_BASE + TIMER_LOAD);
  831. writel(TIMER_RELOAD, TIMER0_VA_BASE + TIMER_VALUE);
  832. writel(TIMER_DIVISOR | TIMER_CTRL_ENABLE | TIMER_CTRL_PERIODIC |
  833. TIMER_CTRL_IE, TIMER0_VA_BASE + TIMER_CTRL);
  834. /*
  835. * Make irqs happen for the system timer
  836. */
  837. setup_irq(IRQ_TIMERINT0_1, &versatile_timer_irq);
  838. }
  839. struct sys_timer versatile_timer = {
  840. .init = versatile_timer_init,
  841. .offset = versatile_gettimeoffset,
  842. };