mmzone.h 35 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130
  1. #ifndef _LINUX_MMZONE_H
  2. #define _LINUX_MMZONE_H
  3. #ifndef __ASSEMBLY__
  4. #ifndef __GENERATING_BOUNDS_H
  5. #include <linux/spinlock.h>
  6. #include <linux/list.h>
  7. #include <linux/wait.h>
  8. #include <linux/bitops.h>
  9. #include <linux/cache.h>
  10. #include <linux/threads.h>
  11. #include <linux/numa.h>
  12. #include <linux/init.h>
  13. #include <linux/seqlock.h>
  14. #include <linux/nodemask.h>
  15. #include <linux/pageblock-flags.h>
  16. #include <generated/bounds.h>
  17. #include <asm/atomic.h>
  18. #include <asm/page.h>
  19. /* Free memory management - zoned buddy allocator. */
  20. #ifndef CONFIG_FORCE_MAX_ZONEORDER
  21. #define MAX_ORDER 11
  22. #else
  23. #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
  24. #endif
  25. #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
  26. /*
  27. * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
  28. * costly to service. That is between allocation orders which should
  29. * coelesce naturally under reasonable reclaim pressure and those which
  30. * will not.
  31. */
  32. #define PAGE_ALLOC_COSTLY_ORDER 3
  33. #define MIGRATE_UNMOVABLE 0
  34. #define MIGRATE_RECLAIMABLE 1
  35. #define MIGRATE_MOVABLE 2
  36. #define MIGRATE_PCPTYPES 3 /* the number of types on the pcp lists */
  37. #define MIGRATE_RESERVE 3
  38. #define MIGRATE_ISOLATE 4 /* can't allocate from here */
  39. #define MIGRATE_TYPES 5
  40. #define for_each_migratetype_order(order, type) \
  41. for (order = 0; order < MAX_ORDER; order++) \
  42. for (type = 0; type < MIGRATE_TYPES; type++)
  43. extern int page_group_by_mobility_disabled;
  44. static inline int get_pageblock_migratetype(struct page *page)
  45. {
  46. return get_pageblock_flags_group(page, PB_migrate, PB_migrate_end);
  47. }
  48. struct free_area {
  49. struct list_head free_list[MIGRATE_TYPES];
  50. unsigned long nr_free;
  51. };
  52. struct pglist_data;
  53. /*
  54. * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
  55. * So add a wild amount of padding here to ensure that they fall into separate
  56. * cachelines. There are very few zone structures in the machine, so space
  57. * consumption is not a concern here.
  58. */
  59. #if defined(CONFIG_SMP)
  60. struct zone_padding {
  61. char x[0];
  62. } ____cacheline_internodealigned_in_smp;
  63. #define ZONE_PADDING(name) struct zone_padding name;
  64. #else
  65. #define ZONE_PADDING(name)
  66. #endif
  67. enum zone_stat_item {
  68. /* First 128 byte cacheline (assuming 64 bit words) */
  69. NR_FREE_PAGES,
  70. NR_LRU_BASE,
  71. NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
  72. NR_ACTIVE_ANON, /* " " " " " */
  73. NR_INACTIVE_FILE, /* " " " " " */
  74. NR_ACTIVE_FILE, /* " " " " " */
  75. NR_UNEVICTABLE, /* " " " " " */
  76. NR_MLOCK, /* mlock()ed pages found and moved off LRU */
  77. NR_ANON_PAGES, /* Mapped anonymous pages */
  78. NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
  79. only modified from process context */
  80. NR_FILE_PAGES,
  81. NR_FILE_DIRTY,
  82. NR_WRITEBACK,
  83. NR_SLAB_RECLAIMABLE,
  84. NR_SLAB_UNRECLAIMABLE,
  85. NR_PAGETABLE, /* used for pagetables */
  86. NR_KERNEL_STACK,
  87. /* Second 128 byte cacheline */
  88. NR_UNSTABLE_NFS, /* NFS unstable pages */
  89. NR_BOUNCE,
  90. NR_VMSCAN_WRITE,
  91. NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */
  92. NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */
  93. NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */
  94. NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */
  95. #ifdef CONFIG_NUMA
  96. NUMA_HIT, /* allocated in intended node */
  97. NUMA_MISS, /* allocated in non intended node */
  98. NUMA_FOREIGN, /* was intended here, hit elsewhere */
  99. NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
  100. NUMA_LOCAL, /* allocation from local node */
  101. NUMA_OTHER, /* allocation from other node */
  102. #endif
  103. NR_VM_ZONE_STAT_ITEMS };
  104. /*
  105. * We do arithmetic on the LRU lists in various places in the code,
  106. * so it is important to keep the active lists LRU_ACTIVE higher in
  107. * the array than the corresponding inactive lists, and to keep
  108. * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
  109. *
  110. * This has to be kept in sync with the statistics in zone_stat_item
  111. * above and the descriptions in vmstat_text in mm/vmstat.c
  112. */
  113. #define LRU_BASE 0
  114. #define LRU_ACTIVE 1
  115. #define LRU_FILE 2
  116. enum lru_list {
  117. LRU_INACTIVE_ANON = LRU_BASE,
  118. LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
  119. LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
  120. LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
  121. LRU_UNEVICTABLE,
  122. NR_LRU_LISTS
  123. };
  124. #define for_each_lru(l) for (l = 0; l < NR_LRU_LISTS; l++)
  125. #define for_each_evictable_lru(l) for (l = 0; l <= LRU_ACTIVE_FILE; l++)
  126. static inline int is_file_lru(enum lru_list l)
  127. {
  128. return (l == LRU_INACTIVE_FILE || l == LRU_ACTIVE_FILE);
  129. }
  130. static inline int is_active_lru(enum lru_list l)
  131. {
  132. return (l == LRU_ACTIVE_ANON || l == LRU_ACTIVE_FILE);
  133. }
  134. static inline int is_unevictable_lru(enum lru_list l)
  135. {
  136. return (l == LRU_UNEVICTABLE);
  137. }
  138. enum zone_watermarks {
  139. WMARK_MIN,
  140. WMARK_LOW,
  141. WMARK_HIGH,
  142. NR_WMARK
  143. };
  144. #define min_wmark_pages(z) (z->watermark[WMARK_MIN])
  145. #define low_wmark_pages(z) (z->watermark[WMARK_LOW])
  146. #define high_wmark_pages(z) (z->watermark[WMARK_HIGH])
  147. struct per_cpu_pages {
  148. int count; /* number of pages in the list */
  149. int high; /* high watermark, emptying needed */
  150. int batch; /* chunk size for buddy add/remove */
  151. /* Lists of pages, one per migrate type stored on the pcp-lists */
  152. struct list_head lists[MIGRATE_PCPTYPES];
  153. };
  154. struct per_cpu_pageset {
  155. struct per_cpu_pages pcp;
  156. #ifdef CONFIG_NUMA
  157. s8 expire;
  158. #endif
  159. #ifdef CONFIG_SMP
  160. s8 stat_threshold;
  161. s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
  162. #endif
  163. };
  164. #endif /* !__GENERATING_BOUNDS.H */
  165. enum zone_type {
  166. #ifdef CONFIG_ZONE_DMA
  167. /*
  168. * ZONE_DMA is used when there are devices that are not able
  169. * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
  170. * carve out the portion of memory that is needed for these devices.
  171. * The range is arch specific.
  172. *
  173. * Some examples
  174. *
  175. * Architecture Limit
  176. * ---------------------------
  177. * parisc, ia64, sparc <4G
  178. * s390 <2G
  179. * arm Various
  180. * alpha Unlimited or 0-16MB.
  181. *
  182. * i386, x86_64 and multiple other arches
  183. * <16M.
  184. */
  185. ZONE_DMA,
  186. #endif
  187. #ifdef CONFIG_ZONE_DMA32
  188. /*
  189. * x86_64 needs two ZONE_DMAs because it supports devices that are
  190. * only able to do DMA to the lower 16M but also 32 bit devices that
  191. * can only do DMA areas below 4G.
  192. */
  193. ZONE_DMA32,
  194. #endif
  195. /*
  196. * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
  197. * performed on pages in ZONE_NORMAL if the DMA devices support
  198. * transfers to all addressable memory.
  199. */
  200. ZONE_NORMAL,
  201. #ifdef CONFIG_HIGHMEM
  202. /*
  203. * A memory area that is only addressable by the kernel through
  204. * mapping portions into its own address space. This is for example
  205. * used by i386 to allow the kernel to address the memory beyond
  206. * 900MB. The kernel will set up special mappings (page
  207. * table entries on i386) for each page that the kernel needs to
  208. * access.
  209. */
  210. ZONE_HIGHMEM,
  211. #endif
  212. ZONE_MOVABLE,
  213. __MAX_NR_ZONES
  214. };
  215. #ifndef __GENERATING_BOUNDS_H
  216. /*
  217. * When a memory allocation must conform to specific limitations (such
  218. * as being suitable for DMA) the caller will pass in hints to the
  219. * allocator in the gfp_mask, in the zone modifier bits. These bits
  220. * are used to select a priority ordered list of memory zones which
  221. * match the requested limits. See gfp_zone() in include/linux/gfp.h
  222. */
  223. #if MAX_NR_ZONES < 2
  224. #define ZONES_SHIFT 0
  225. #elif MAX_NR_ZONES <= 2
  226. #define ZONES_SHIFT 1
  227. #elif MAX_NR_ZONES <= 4
  228. #define ZONES_SHIFT 2
  229. #else
  230. #error ZONES_SHIFT -- too many zones configured adjust calculation
  231. #endif
  232. struct zone_reclaim_stat {
  233. /*
  234. * The pageout code in vmscan.c keeps track of how many of the
  235. * mem/swap backed and file backed pages are refeferenced.
  236. * The higher the rotated/scanned ratio, the more valuable
  237. * that cache is.
  238. *
  239. * The anon LRU stats live in [0], file LRU stats in [1]
  240. */
  241. unsigned long recent_rotated[2];
  242. unsigned long recent_scanned[2];
  243. /*
  244. * accumulated for batching
  245. */
  246. unsigned long nr_saved_scan[NR_LRU_LISTS];
  247. };
  248. struct zone {
  249. /* Fields commonly accessed by the page allocator */
  250. /* zone watermarks, access with *_wmark_pages(zone) macros */
  251. unsigned long watermark[NR_WMARK];
  252. /*
  253. * We don't know if the memory that we're going to allocate will be freeable
  254. * or/and it will be released eventually, so to avoid totally wasting several
  255. * GB of ram we must reserve some of the lower zone memory (otherwise we risk
  256. * to run OOM on the lower zones despite there's tons of freeable ram
  257. * on the higher zones). This array is recalculated at runtime if the
  258. * sysctl_lowmem_reserve_ratio sysctl changes.
  259. */
  260. unsigned long lowmem_reserve[MAX_NR_ZONES];
  261. #ifdef CONFIG_NUMA
  262. int node;
  263. /*
  264. * zone reclaim becomes active if more unmapped pages exist.
  265. */
  266. unsigned long min_unmapped_pages;
  267. unsigned long min_slab_pages;
  268. #endif
  269. struct per_cpu_pageset __percpu *pageset;
  270. /*
  271. * free areas of different sizes
  272. */
  273. spinlock_t lock;
  274. #ifdef CONFIG_MEMORY_HOTPLUG
  275. /* see spanned/present_pages for more description */
  276. seqlock_t span_seqlock;
  277. #endif
  278. struct free_area free_area[MAX_ORDER];
  279. #ifndef CONFIG_SPARSEMEM
  280. /*
  281. * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
  282. * In SPARSEMEM, this map is stored in struct mem_section
  283. */
  284. unsigned long *pageblock_flags;
  285. #endif /* CONFIG_SPARSEMEM */
  286. ZONE_PADDING(_pad1_)
  287. /* Fields commonly accessed by the page reclaim scanner */
  288. spinlock_t lru_lock;
  289. struct zone_lru {
  290. struct list_head list;
  291. } lru[NR_LRU_LISTS];
  292. struct zone_reclaim_stat reclaim_stat;
  293. unsigned long pages_scanned; /* since last reclaim */
  294. unsigned long flags; /* zone flags, see below */
  295. /* Zone statistics */
  296. atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
  297. /*
  298. * prev_priority holds the scanning priority for this zone. It is
  299. * defined as the scanning priority at which we achieved our reclaim
  300. * target at the previous try_to_free_pages() or balance_pgdat()
  301. * invokation.
  302. *
  303. * We use prev_priority as a measure of how much stress page reclaim is
  304. * under - it drives the swappiness decision: whether to unmap mapped
  305. * pages.
  306. *
  307. * Access to both this field is quite racy even on uniprocessor. But
  308. * it is expected to average out OK.
  309. */
  310. int prev_priority;
  311. /*
  312. * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on
  313. * this zone's LRU. Maintained by the pageout code.
  314. */
  315. unsigned int inactive_ratio;
  316. ZONE_PADDING(_pad2_)
  317. /* Rarely used or read-mostly fields */
  318. /*
  319. * wait_table -- the array holding the hash table
  320. * wait_table_hash_nr_entries -- the size of the hash table array
  321. * wait_table_bits -- wait_table_size == (1 << wait_table_bits)
  322. *
  323. * The purpose of all these is to keep track of the people
  324. * waiting for a page to become available and make them
  325. * runnable again when possible. The trouble is that this
  326. * consumes a lot of space, especially when so few things
  327. * wait on pages at a given time. So instead of using
  328. * per-page waitqueues, we use a waitqueue hash table.
  329. *
  330. * The bucket discipline is to sleep on the same queue when
  331. * colliding and wake all in that wait queue when removing.
  332. * When something wakes, it must check to be sure its page is
  333. * truly available, a la thundering herd. The cost of a
  334. * collision is great, but given the expected load of the
  335. * table, they should be so rare as to be outweighed by the
  336. * benefits from the saved space.
  337. *
  338. * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
  339. * primary users of these fields, and in mm/page_alloc.c
  340. * free_area_init_core() performs the initialization of them.
  341. */
  342. wait_queue_head_t * wait_table;
  343. unsigned long wait_table_hash_nr_entries;
  344. unsigned long wait_table_bits;
  345. /*
  346. * Discontig memory support fields.
  347. */
  348. struct pglist_data *zone_pgdat;
  349. /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
  350. unsigned long zone_start_pfn;
  351. /*
  352. * zone_start_pfn, spanned_pages and present_pages are all
  353. * protected by span_seqlock. It is a seqlock because it has
  354. * to be read outside of zone->lock, and it is done in the main
  355. * allocator path. But, it is written quite infrequently.
  356. *
  357. * The lock is declared along with zone->lock because it is
  358. * frequently read in proximity to zone->lock. It's good to
  359. * give them a chance of being in the same cacheline.
  360. */
  361. unsigned long spanned_pages; /* total size, including holes */
  362. unsigned long present_pages; /* amount of memory (excluding holes) */
  363. /*
  364. * rarely used fields:
  365. */
  366. const char *name;
  367. } ____cacheline_internodealigned_in_smp;
  368. typedef enum {
  369. ZONE_ALL_UNRECLAIMABLE, /* all pages pinned */
  370. ZONE_RECLAIM_LOCKED, /* prevents concurrent reclaim */
  371. ZONE_OOM_LOCKED, /* zone is in OOM killer zonelist */
  372. } zone_flags_t;
  373. static inline void zone_set_flag(struct zone *zone, zone_flags_t flag)
  374. {
  375. set_bit(flag, &zone->flags);
  376. }
  377. static inline int zone_test_and_set_flag(struct zone *zone, zone_flags_t flag)
  378. {
  379. return test_and_set_bit(flag, &zone->flags);
  380. }
  381. static inline void zone_clear_flag(struct zone *zone, zone_flags_t flag)
  382. {
  383. clear_bit(flag, &zone->flags);
  384. }
  385. static inline int zone_is_all_unreclaimable(const struct zone *zone)
  386. {
  387. return test_bit(ZONE_ALL_UNRECLAIMABLE, &zone->flags);
  388. }
  389. static inline int zone_is_reclaim_locked(const struct zone *zone)
  390. {
  391. return test_bit(ZONE_RECLAIM_LOCKED, &zone->flags);
  392. }
  393. static inline int zone_is_oom_locked(const struct zone *zone)
  394. {
  395. return test_bit(ZONE_OOM_LOCKED, &zone->flags);
  396. }
  397. /*
  398. * The "priority" of VM scanning is how much of the queues we will scan in one
  399. * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
  400. * queues ("queue_length >> 12") during an aging round.
  401. */
  402. #define DEF_PRIORITY 12
  403. /* Maximum number of zones on a zonelist */
  404. #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
  405. #ifdef CONFIG_NUMA
  406. /*
  407. * The NUMA zonelists are doubled becausse we need zonelists that restrict the
  408. * allocations to a single node for GFP_THISNODE.
  409. *
  410. * [0] : Zonelist with fallback
  411. * [1] : No fallback (GFP_THISNODE)
  412. */
  413. #define MAX_ZONELISTS 2
  414. /*
  415. * We cache key information from each zonelist for smaller cache
  416. * footprint when scanning for free pages in get_page_from_freelist().
  417. *
  418. * 1) The BITMAP fullzones tracks which zones in a zonelist have come
  419. * up short of free memory since the last time (last_fullzone_zap)
  420. * we zero'd fullzones.
  421. * 2) The array z_to_n[] maps each zone in the zonelist to its node
  422. * id, so that we can efficiently evaluate whether that node is
  423. * set in the current tasks mems_allowed.
  424. *
  425. * Both fullzones and z_to_n[] are one-to-one with the zonelist,
  426. * indexed by a zones offset in the zonelist zones[] array.
  427. *
  428. * The get_page_from_freelist() routine does two scans. During the
  429. * first scan, we skip zones whose corresponding bit in 'fullzones'
  430. * is set or whose corresponding node in current->mems_allowed (which
  431. * comes from cpusets) is not set. During the second scan, we bypass
  432. * this zonelist_cache, to ensure we look methodically at each zone.
  433. *
  434. * Once per second, we zero out (zap) fullzones, forcing us to
  435. * reconsider nodes that might have regained more free memory.
  436. * The field last_full_zap is the time we last zapped fullzones.
  437. *
  438. * This mechanism reduces the amount of time we waste repeatedly
  439. * reexaming zones for free memory when they just came up low on
  440. * memory momentarilly ago.
  441. *
  442. * The zonelist_cache struct members logically belong in struct
  443. * zonelist. However, the mempolicy zonelists constructed for
  444. * MPOL_BIND are intentionally variable length (and usually much
  445. * shorter). A general purpose mechanism for handling structs with
  446. * multiple variable length members is more mechanism than we want
  447. * here. We resort to some special case hackery instead.
  448. *
  449. * The MPOL_BIND zonelists don't need this zonelist_cache (in good
  450. * part because they are shorter), so we put the fixed length stuff
  451. * at the front of the zonelist struct, ending in a variable length
  452. * zones[], as is needed by MPOL_BIND.
  453. *
  454. * Then we put the optional zonelist cache on the end of the zonelist
  455. * struct. This optional stuff is found by a 'zlcache_ptr' pointer in
  456. * the fixed length portion at the front of the struct. This pointer
  457. * both enables us to find the zonelist cache, and in the case of
  458. * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL)
  459. * to know that the zonelist cache is not there.
  460. *
  461. * The end result is that struct zonelists come in two flavors:
  462. * 1) The full, fixed length version, shown below, and
  463. * 2) The custom zonelists for MPOL_BIND.
  464. * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache.
  465. *
  466. * Even though there may be multiple CPU cores on a node modifying
  467. * fullzones or last_full_zap in the same zonelist_cache at the same
  468. * time, we don't lock it. This is just hint data - if it is wrong now
  469. * and then, the allocator will still function, perhaps a bit slower.
  470. */
  471. struct zonelist_cache {
  472. unsigned short z_to_n[MAX_ZONES_PER_ZONELIST]; /* zone->nid */
  473. DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST); /* zone full? */
  474. unsigned long last_full_zap; /* when last zap'd (jiffies) */
  475. };
  476. #else
  477. #define MAX_ZONELISTS 1
  478. struct zonelist_cache;
  479. #endif
  480. /*
  481. * This struct contains information about a zone in a zonelist. It is stored
  482. * here to avoid dereferences into large structures and lookups of tables
  483. */
  484. struct zoneref {
  485. struct zone *zone; /* Pointer to actual zone */
  486. int zone_idx; /* zone_idx(zoneref->zone) */
  487. };
  488. /*
  489. * One allocation request operates on a zonelist. A zonelist
  490. * is a list of zones, the first one is the 'goal' of the
  491. * allocation, the other zones are fallback zones, in decreasing
  492. * priority.
  493. *
  494. * If zlcache_ptr is not NULL, then it is just the address of zlcache,
  495. * as explained above. If zlcache_ptr is NULL, there is no zlcache.
  496. * *
  497. * To speed the reading of the zonelist, the zonerefs contain the zone index
  498. * of the entry being read. Helper functions to access information given
  499. * a struct zoneref are
  500. *
  501. * zonelist_zone() - Return the struct zone * for an entry in _zonerefs
  502. * zonelist_zone_idx() - Return the index of the zone for an entry
  503. * zonelist_node_idx() - Return the index of the node for an entry
  504. */
  505. struct zonelist {
  506. struct zonelist_cache *zlcache_ptr; // NULL or &zlcache
  507. struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
  508. #ifdef CONFIG_NUMA
  509. struct zonelist_cache zlcache; // optional ...
  510. #endif
  511. };
  512. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  513. struct node_active_region {
  514. unsigned long start_pfn;
  515. unsigned long end_pfn;
  516. int nid;
  517. };
  518. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  519. #ifndef CONFIG_DISCONTIGMEM
  520. /* The array of struct pages - for discontigmem use pgdat->lmem_map */
  521. extern struct page *mem_map;
  522. #endif
  523. /*
  524. * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
  525. * (mostly NUMA machines?) to denote a higher-level memory zone than the
  526. * zone denotes.
  527. *
  528. * On NUMA machines, each NUMA node would have a pg_data_t to describe
  529. * it's memory layout.
  530. *
  531. * Memory statistics and page replacement data structures are maintained on a
  532. * per-zone basis.
  533. */
  534. struct bootmem_data;
  535. typedef struct pglist_data {
  536. struct zone node_zones[MAX_NR_ZONES];
  537. struct zonelist node_zonelists[MAX_ZONELISTS];
  538. int nr_zones;
  539. #ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */
  540. struct page *node_mem_map;
  541. #ifdef CONFIG_CGROUP_MEM_RES_CTLR
  542. struct page_cgroup *node_page_cgroup;
  543. #endif
  544. #endif
  545. #ifndef CONFIG_NO_BOOTMEM
  546. struct bootmem_data *bdata;
  547. #endif
  548. #ifdef CONFIG_MEMORY_HOTPLUG
  549. /*
  550. * Must be held any time you expect node_start_pfn, node_present_pages
  551. * or node_spanned_pages stay constant. Holding this will also
  552. * guarantee that any pfn_valid() stays that way.
  553. *
  554. * Nests above zone->lock and zone->size_seqlock.
  555. */
  556. spinlock_t node_size_lock;
  557. #endif
  558. unsigned long node_start_pfn;
  559. unsigned long node_present_pages; /* total number of physical pages */
  560. unsigned long node_spanned_pages; /* total size of physical page
  561. range, including holes */
  562. int node_id;
  563. wait_queue_head_t kswapd_wait;
  564. struct task_struct *kswapd;
  565. int kswapd_max_order;
  566. } pg_data_t;
  567. #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
  568. #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
  569. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  570. #define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
  571. #else
  572. #define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
  573. #endif
  574. #define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
  575. #include <linux/memory_hotplug.h>
  576. void get_zone_counts(unsigned long *active, unsigned long *inactive,
  577. unsigned long *free);
  578. void build_all_zonelists(void);
  579. void wakeup_kswapd(struct zone *zone, int order);
  580. int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
  581. int classzone_idx, int alloc_flags);
  582. enum memmap_context {
  583. MEMMAP_EARLY,
  584. MEMMAP_HOTPLUG,
  585. };
  586. extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
  587. unsigned long size,
  588. enum memmap_context context);
  589. #ifdef CONFIG_HAVE_MEMORY_PRESENT
  590. void memory_present(int nid, unsigned long start, unsigned long end);
  591. #else
  592. static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
  593. #endif
  594. #ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
  595. unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
  596. #endif
  597. /*
  598. * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
  599. */
  600. #define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
  601. static inline int populated_zone(struct zone *zone)
  602. {
  603. return (!!zone->present_pages);
  604. }
  605. extern int movable_zone;
  606. static inline int zone_movable_is_highmem(void)
  607. {
  608. #if defined(CONFIG_HIGHMEM) && defined(CONFIG_ARCH_POPULATES_NODE_MAP)
  609. return movable_zone == ZONE_HIGHMEM;
  610. #else
  611. return 0;
  612. #endif
  613. }
  614. static inline int is_highmem_idx(enum zone_type idx)
  615. {
  616. #ifdef CONFIG_HIGHMEM
  617. return (idx == ZONE_HIGHMEM ||
  618. (idx == ZONE_MOVABLE && zone_movable_is_highmem()));
  619. #else
  620. return 0;
  621. #endif
  622. }
  623. static inline int is_normal_idx(enum zone_type idx)
  624. {
  625. return (idx == ZONE_NORMAL);
  626. }
  627. /**
  628. * is_highmem - helper function to quickly check if a struct zone is a
  629. * highmem zone or not. This is an attempt to keep references
  630. * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
  631. * @zone - pointer to struct zone variable
  632. */
  633. static inline int is_highmem(struct zone *zone)
  634. {
  635. #ifdef CONFIG_HIGHMEM
  636. int zone_off = (char *)zone - (char *)zone->zone_pgdat->node_zones;
  637. return zone_off == ZONE_HIGHMEM * sizeof(*zone) ||
  638. (zone_off == ZONE_MOVABLE * sizeof(*zone) &&
  639. zone_movable_is_highmem());
  640. #else
  641. return 0;
  642. #endif
  643. }
  644. static inline int is_normal(struct zone *zone)
  645. {
  646. return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL;
  647. }
  648. static inline int is_dma32(struct zone *zone)
  649. {
  650. #ifdef CONFIG_ZONE_DMA32
  651. return zone == zone->zone_pgdat->node_zones + ZONE_DMA32;
  652. #else
  653. return 0;
  654. #endif
  655. }
  656. static inline int is_dma(struct zone *zone)
  657. {
  658. #ifdef CONFIG_ZONE_DMA
  659. return zone == zone->zone_pgdat->node_zones + ZONE_DMA;
  660. #else
  661. return 0;
  662. #endif
  663. }
  664. /* These two functions are used to setup the per zone pages min values */
  665. struct ctl_table;
  666. int min_free_kbytes_sysctl_handler(struct ctl_table *, int,
  667. void __user *, size_t *, loff_t *);
  668. extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
  669. int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int,
  670. void __user *, size_t *, loff_t *);
  671. int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
  672. void __user *, size_t *, loff_t *);
  673. int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
  674. void __user *, size_t *, loff_t *);
  675. int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
  676. void __user *, size_t *, loff_t *);
  677. extern int numa_zonelist_order_handler(struct ctl_table *, int,
  678. void __user *, size_t *, loff_t *);
  679. extern char numa_zonelist_order[];
  680. #define NUMA_ZONELIST_ORDER_LEN 16 /* string buffer size */
  681. #ifndef CONFIG_NEED_MULTIPLE_NODES
  682. extern struct pglist_data contig_page_data;
  683. #define NODE_DATA(nid) (&contig_page_data)
  684. #define NODE_MEM_MAP(nid) mem_map
  685. #else /* CONFIG_NEED_MULTIPLE_NODES */
  686. #include <asm/mmzone.h>
  687. #endif /* !CONFIG_NEED_MULTIPLE_NODES */
  688. extern struct pglist_data *first_online_pgdat(void);
  689. extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
  690. extern struct zone *next_zone(struct zone *zone);
  691. /**
  692. * for_each_online_pgdat - helper macro to iterate over all online nodes
  693. * @pgdat - pointer to a pg_data_t variable
  694. */
  695. #define for_each_online_pgdat(pgdat) \
  696. for (pgdat = first_online_pgdat(); \
  697. pgdat; \
  698. pgdat = next_online_pgdat(pgdat))
  699. /**
  700. * for_each_zone - helper macro to iterate over all memory zones
  701. * @zone - pointer to struct zone variable
  702. *
  703. * The user only needs to declare the zone variable, for_each_zone
  704. * fills it in.
  705. */
  706. #define for_each_zone(zone) \
  707. for (zone = (first_online_pgdat())->node_zones; \
  708. zone; \
  709. zone = next_zone(zone))
  710. #define for_each_populated_zone(zone) \
  711. for (zone = (first_online_pgdat())->node_zones; \
  712. zone; \
  713. zone = next_zone(zone)) \
  714. if (!populated_zone(zone)) \
  715. ; /* do nothing */ \
  716. else
  717. static inline struct zone *zonelist_zone(struct zoneref *zoneref)
  718. {
  719. return zoneref->zone;
  720. }
  721. static inline int zonelist_zone_idx(struct zoneref *zoneref)
  722. {
  723. return zoneref->zone_idx;
  724. }
  725. static inline int zonelist_node_idx(struct zoneref *zoneref)
  726. {
  727. #ifdef CONFIG_NUMA
  728. /* zone_to_nid not available in this context */
  729. return zoneref->zone->node;
  730. #else
  731. return 0;
  732. #endif /* CONFIG_NUMA */
  733. }
  734. /**
  735. * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
  736. * @z - The cursor used as a starting point for the search
  737. * @highest_zoneidx - The zone index of the highest zone to return
  738. * @nodes - An optional nodemask to filter the zonelist with
  739. * @zone - The first suitable zone found is returned via this parameter
  740. *
  741. * This function returns the next zone at or below a given zone index that is
  742. * within the allowed nodemask using a cursor as the starting point for the
  743. * search. The zoneref returned is a cursor that represents the current zone
  744. * being examined. It should be advanced by one before calling
  745. * next_zones_zonelist again.
  746. */
  747. struct zoneref *next_zones_zonelist(struct zoneref *z,
  748. enum zone_type highest_zoneidx,
  749. nodemask_t *nodes,
  750. struct zone **zone);
  751. /**
  752. * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
  753. * @zonelist - The zonelist to search for a suitable zone
  754. * @highest_zoneidx - The zone index of the highest zone to return
  755. * @nodes - An optional nodemask to filter the zonelist with
  756. * @zone - The first suitable zone found is returned via this parameter
  757. *
  758. * This function returns the first zone at or below a given zone index that is
  759. * within the allowed nodemask. The zoneref returned is a cursor that can be
  760. * used to iterate the zonelist with next_zones_zonelist by advancing it by
  761. * one before calling.
  762. */
  763. static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
  764. enum zone_type highest_zoneidx,
  765. nodemask_t *nodes,
  766. struct zone **zone)
  767. {
  768. return next_zones_zonelist(zonelist->_zonerefs, highest_zoneidx, nodes,
  769. zone);
  770. }
  771. /**
  772. * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
  773. * @zone - The current zone in the iterator
  774. * @z - The current pointer within zonelist->zones being iterated
  775. * @zlist - The zonelist being iterated
  776. * @highidx - The zone index of the highest zone to return
  777. * @nodemask - Nodemask allowed by the allocator
  778. *
  779. * This iterator iterates though all zones at or below a given zone index and
  780. * within a given nodemask
  781. */
  782. #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
  783. for (z = first_zones_zonelist(zlist, highidx, nodemask, &zone); \
  784. zone; \
  785. z = next_zones_zonelist(++z, highidx, nodemask, &zone)) \
  786. /**
  787. * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
  788. * @zone - The current zone in the iterator
  789. * @z - The current pointer within zonelist->zones being iterated
  790. * @zlist - The zonelist being iterated
  791. * @highidx - The zone index of the highest zone to return
  792. *
  793. * This iterator iterates though all zones at or below a given zone index.
  794. */
  795. #define for_each_zone_zonelist(zone, z, zlist, highidx) \
  796. for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
  797. #ifdef CONFIG_SPARSEMEM
  798. #include <asm/sparsemem.h>
  799. #endif
  800. #if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
  801. !defined(CONFIG_ARCH_POPULATES_NODE_MAP)
  802. static inline unsigned long early_pfn_to_nid(unsigned long pfn)
  803. {
  804. return 0;
  805. }
  806. #endif
  807. #ifdef CONFIG_FLATMEM
  808. #define pfn_to_nid(pfn) (0)
  809. #endif
  810. #define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
  811. #define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
  812. #ifdef CONFIG_SPARSEMEM
  813. /*
  814. * SECTION_SHIFT #bits space required to store a section #
  815. *
  816. * PA_SECTION_SHIFT physical address to/from section number
  817. * PFN_SECTION_SHIFT pfn to/from section number
  818. */
  819. #define SECTIONS_SHIFT (MAX_PHYSMEM_BITS - SECTION_SIZE_BITS)
  820. #define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
  821. #define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
  822. #define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
  823. #define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
  824. #define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
  825. #define SECTION_BLOCKFLAGS_BITS \
  826. ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
  827. #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
  828. #error Allocator MAX_ORDER exceeds SECTION_SIZE
  829. #endif
  830. struct page;
  831. struct page_cgroup;
  832. struct mem_section {
  833. /*
  834. * This is, logically, a pointer to an array of struct
  835. * pages. However, it is stored with some other magic.
  836. * (see sparse.c::sparse_init_one_section())
  837. *
  838. * Additionally during early boot we encode node id of
  839. * the location of the section here to guide allocation.
  840. * (see sparse.c::memory_present())
  841. *
  842. * Making it a UL at least makes someone do a cast
  843. * before using it wrong.
  844. */
  845. unsigned long section_mem_map;
  846. /* See declaration of similar field in struct zone */
  847. unsigned long *pageblock_flags;
  848. #ifdef CONFIG_CGROUP_MEM_RES_CTLR
  849. /*
  850. * If !SPARSEMEM, pgdat doesn't have page_cgroup pointer. We use
  851. * section. (see memcontrol.h/page_cgroup.h about this.)
  852. */
  853. struct page_cgroup *page_cgroup;
  854. unsigned long pad;
  855. #endif
  856. };
  857. #ifdef CONFIG_SPARSEMEM_EXTREME
  858. #define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
  859. #else
  860. #define SECTIONS_PER_ROOT 1
  861. #endif
  862. #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
  863. #define NR_SECTION_ROOTS (NR_MEM_SECTIONS / SECTIONS_PER_ROOT)
  864. #define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
  865. #ifdef CONFIG_SPARSEMEM_EXTREME
  866. extern struct mem_section *mem_section[NR_SECTION_ROOTS];
  867. #else
  868. extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
  869. #endif
  870. static inline struct mem_section *__nr_to_section(unsigned long nr)
  871. {
  872. if (!mem_section[SECTION_NR_TO_ROOT(nr)])
  873. return NULL;
  874. return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
  875. }
  876. extern int __section_nr(struct mem_section* ms);
  877. extern unsigned long usemap_size(void);
  878. /*
  879. * We use the lower bits of the mem_map pointer to store
  880. * a little bit of information. There should be at least
  881. * 3 bits here due to 32-bit alignment.
  882. */
  883. #define SECTION_MARKED_PRESENT (1UL<<0)
  884. #define SECTION_HAS_MEM_MAP (1UL<<1)
  885. #define SECTION_MAP_LAST_BIT (1UL<<2)
  886. #define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
  887. #define SECTION_NID_SHIFT 2
  888. static inline struct page *__section_mem_map_addr(struct mem_section *section)
  889. {
  890. unsigned long map = section->section_mem_map;
  891. map &= SECTION_MAP_MASK;
  892. return (struct page *)map;
  893. }
  894. static inline int present_section(struct mem_section *section)
  895. {
  896. return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
  897. }
  898. static inline int present_section_nr(unsigned long nr)
  899. {
  900. return present_section(__nr_to_section(nr));
  901. }
  902. static inline int valid_section(struct mem_section *section)
  903. {
  904. return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
  905. }
  906. static inline int valid_section_nr(unsigned long nr)
  907. {
  908. return valid_section(__nr_to_section(nr));
  909. }
  910. static inline struct mem_section *__pfn_to_section(unsigned long pfn)
  911. {
  912. return __nr_to_section(pfn_to_section_nr(pfn));
  913. }
  914. static inline int pfn_valid(unsigned long pfn)
  915. {
  916. if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
  917. return 0;
  918. return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
  919. }
  920. static inline int pfn_present(unsigned long pfn)
  921. {
  922. if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
  923. return 0;
  924. return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
  925. }
  926. /*
  927. * These are _only_ used during initialisation, therefore they
  928. * can use __initdata ... They could have names to indicate
  929. * this restriction.
  930. */
  931. #ifdef CONFIG_NUMA
  932. #define pfn_to_nid(pfn) \
  933. ({ \
  934. unsigned long __pfn_to_nid_pfn = (pfn); \
  935. page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
  936. })
  937. #else
  938. #define pfn_to_nid(pfn) (0)
  939. #endif
  940. #define early_pfn_valid(pfn) pfn_valid(pfn)
  941. void sparse_init(void);
  942. #else
  943. #define sparse_init() do {} while (0)
  944. #define sparse_index_init(_sec, _nid) do {} while (0)
  945. #endif /* CONFIG_SPARSEMEM */
  946. #ifdef CONFIG_NODES_SPAN_OTHER_NODES
  947. bool early_pfn_in_nid(unsigned long pfn, int nid);
  948. #else
  949. #define early_pfn_in_nid(pfn, nid) (1)
  950. #endif
  951. #ifndef early_pfn_valid
  952. #define early_pfn_valid(pfn) (1)
  953. #endif
  954. void memory_present(int nid, unsigned long start, unsigned long end);
  955. unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
  956. /*
  957. * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
  958. * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
  959. * pfn_valid_within() should be used in this case; we optimise this away
  960. * when we have no holes within a MAX_ORDER_NR_PAGES block.
  961. */
  962. #ifdef CONFIG_HOLES_IN_ZONE
  963. #define pfn_valid_within(pfn) pfn_valid(pfn)
  964. #else
  965. #define pfn_valid_within(pfn) (1)
  966. #endif
  967. #ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
  968. /*
  969. * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
  970. * associated with it or not. In FLATMEM, it is expected that holes always
  971. * have valid memmap as long as there is valid PFNs either side of the hole.
  972. * In SPARSEMEM, it is assumed that a valid section has a memmap for the
  973. * entire section.
  974. *
  975. * However, an ARM, and maybe other embedded architectures in the future
  976. * free memmap backing holes to save memory on the assumption the memmap is
  977. * never used. The page_zone linkages are then broken even though pfn_valid()
  978. * returns true. A walker of the full memmap must then do this additional
  979. * check to ensure the memmap they are looking at is sane by making sure
  980. * the zone and PFN linkages are still valid. This is expensive, but walkers
  981. * of the full memmap are extremely rare.
  982. */
  983. int memmap_valid_within(unsigned long pfn,
  984. struct page *page, struct zone *zone);
  985. #else
  986. static inline int memmap_valid_within(unsigned long pfn,
  987. struct page *page, struct zone *zone)
  988. {
  989. return 1;
  990. }
  991. #endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
  992. #endif /* !__GENERATING_BOUNDS.H */
  993. #endif /* !__ASSEMBLY__ */
  994. #endif /* _LINUX_MMZONE_H */