svcsock.c 54 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070
  1. /*
  2. * linux/net/sunrpc/svcsock.c
  3. *
  4. * These are the RPC server socket internals.
  5. *
  6. * The server scheduling algorithm does not always distribute the load
  7. * evenly when servicing a single client. May need to modify the
  8. * svc_xprt_enqueue procedure...
  9. *
  10. * TCP support is largely untested and may be a little slow. The problem
  11. * is that we currently do two separate recvfrom's, one for the 4-byte
  12. * record length, and the second for the actual record. This could possibly
  13. * be improved by always reading a minimum size of around 100 bytes and
  14. * tucking any superfluous bytes away in a temporary store. Still, that
  15. * leaves write requests out in the rain. An alternative may be to peek at
  16. * the first skb in the queue, and if it matches the next TCP sequence
  17. * number, to extract the record marker. Yuck.
  18. *
  19. * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de>
  20. */
  21. #include <linux/kernel.h>
  22. #include <linux/sched.h>
  23. #include <linux/errno.h>
  24. #include <linux/fcntl.h>
  25. #include <linux/net.h>
  26. #include <linux/in.h>
  27. #include <linux/inet.h>
  28. #include <linux/udp.h>
  29. #include <linux/tcp.h>
  30. #include <linux/unistd.h>
  31. #include <linux/slab.h>
  32. #include <linux/netdevice.h>
  33. #include <linux/skbuff.h>
  34. #include <linux/file.h>
  35. #include <linux/freezer.h>
  36. #include <net/sock.h>
  37. #include <net/checksum.h>
  38. #include <net/ip.h>
  39. #include <net/ipv6.h>
  40. #include <net/tcp_states.h>
  41. #include <asm/uaccess.h>
  42. #include <asm/ioctls.h>
  43. #include <linux/sunrpc/types.h>
  44. #include <linux/sunrpc/clnt.h>
  45. #include <linux/sunrpc/xdr.h>
  46. #include <linux/sunrpc/svcsock.h>
  47. #include <linux/sunrpc/stats.h>
  48. /* SMP locking strategy:
  49. *
  50. * svc_pool->sp_lock protects most of the fields of that pool.
  51. * svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt.
  52. * when both need to be taken (rare), svc_serv->sv_lock is first.
  53. * BKL protects svc_serv->sv_nrthread.
  54. * svc_sock->sk_lock protects the svc_sock->sk_deferred list
  55. * and the ->sk_info_authunix cache.
  56. * svc_sock->sk_xprt.xpt_flags.XPT_BUSY prevents a svc_sock being
  57. * enqueued multiply.
  58. *
  59. * Some flags can be set to certain values at any time
  60. * providing that certain rules are followed:
  61. *
  62. * XPT_CONN, XPT_DATA, can be set or cleared at any time.
  63. * after a set, svc_xprt_enqueue must be called.
  64. * after a clear, the socket must be read/accepted
  65. * if this succeeds, it must be set again.
  66. * XPT_CLOSE can set at any time. It is never cleared.
  67. * xpt_ref contains a bias of '1' until XPT_DEAD is set.
  68. * so when xprt_ref hits zero, we know the transport is dead
  69. * and no-one is using it.
  70. * XPT_DEAD can only be set while XPT_BUSY is held which ensures
  71. * no other thread will be using the socket or will try to
  72. * set XPT_DEAD.
  73. *
  74. */
  75. #define RPCDBG_FACILITY RPCDBG_SVCXPRT
  76. static struct svc_sock *svc_setup_socket(struct svc_serv *, struct socket *,
  77. int *errp, int flags);
  78. static void svc_delete_xprt(struct svc_xprt *xprt);
  79. static void svc_udp_data_ready(struct sock *, int);
  80. static int svc_udp_recvfrom(struct svc_rqst *);
  81. static int svc_udp_sendto(struct svc_rqst *);
  82. static void svc_close_xprt(struct svc_xprt *xprt);
  83. static void svc_sock_detach(struct svc_xprt *);
  84. static void svc_sock_free(struct svc_xprt *);
  85. static struct svc_deferred_req *svc_deferred_dequeue(struct svc_sock *svsk);
  86. static int svc_deferred_recv(struct svc_rqst *rqstp);
  87. static struct cache_deferred_req *svc_defer(struct cache_req *req);
  88. static struct svc_xprt *svc_create_socket(struct svc_serv *, int,
  89. struct sockaddr *, int, int);
  90. /* apparently the "standard" is that clients close
  91. * idle connections after 5 minutes, servers after
  92. * 6 minutes
  93. * http://www.connectathon.org/talks96/nfstcp.pdf
  94. */
  95. static int svc_conn_age_period = 6*60;
  96. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  97. static struct lock_class_key svc_key[2];
  98. static struct lock_class_key svc_slock_key[2];
  99. static inline void svc_reclassify_socket(struct socket *sock)
  100. {
  101. struct sock *sk = sock->sk;
  102. BUG_ON(sock_owned_by_user(sk));
  103. switch (sk->sk_family) {
  104. case AF_INET:
  105. sock_lock_init_class_and_name(sk, "slock-AF_INET-NFSD",
  106. &svc_slock_key[0], "sk_lock-AF_INET-NFSD", &svc_key[0]);
  107. break;
  108. case AF_INET6:
  109. sock_lock_init_class_and_name(sk, "slock-AF_INET6-NFSD",
  110. &svc_slock_key[1], "sk_lock-AF_INET6-NFSD", &svc_key[1]);
  111. break;
  112. default:
  113. BUG();
  114. }
  115. }
  116. #else
  117. static inline void svc_reclassify_socket(struct socket *sock)
  118. {
  119. }
  120. #endif
  121. static char *__svc_print_addr(struct sockaddr *addr, char *buf, size_t len)
  122. {
  123. switch (addr->sa_family) {
  124. case AF_INET:
  125. snprintf(buf, len, "%u.%u.%u.%u, port=%u",
  126. NIPQUAD(((struct sockaddr_in *) addr)->sin_addr),
  127. ntohs(((struct sockaddr_in *) addr)->sin_port));
  128. break;
  129. case AF_INET6:
  130. snprintf(buf, len, "%x:%x:%x:%x:%x:%x:%x:%x, port=%u",
  131. NIP6(((struct sockaddr_in6 *) addr)->sin6_addr),
  132. ntohs(((struct sockaddr_in6 *) addr)->sin6_port));
  133. break;
  134. default:
  135. snprintf(buf, len, "unknown address type: %d", addr->sa_family);
  136. break;
  137. }
  138. return buf;
  139. }
  140. /**
  141. * svc_print_addr - Format rq_addr field for printing
  142. * @rqstp: svc_rqst struct containing address to print
  143. * @buf: target buffer for formatted address
  144. * @len: length of target buffer
  145. *
  146. */
  147. char *svc_print_addr(struct svc_rqst *rqstp, char *buf, size_t len)
  148. {
  149. return __svc_print_addr(svc_addr(rqstp), buf, len);
  150. }
  151. EXPORT_SYMBOL_GPL(svc_print_addr);
  152. /*
  153. * Queue up an idle server thread. Must have pool->sp_lock held.
  154. * Note: this is really a stack rather than a queue, so that we only
  155. * use as many different threads as we need, and the rest don't pollute
  156. * the cache.
  157. */
  158. static inline void
  159. svc_thread_enqueue(struct svc_pool *pool, struct svc_rqst *rqstp)
  160. {
  161. list_add(&rqstp->rq_list, &pool->sp_threads);
  162. }
  163. /*
  164. * Dequeue an nfsd thread. Must have pool->sp_lock held.
  165. */
  166. static inline void
  167. svc_thread_dequeue(struct svc_pool *pool, struct svc_rqst *rqstp)
  168. {
  169. list_del(&rqstp->rq_list);
  170. }
  171. /*
  172. * Release an skbuff after use
  173. */
  174. static void svc_release_skb(struct svc_rqst *rqstp)
  175. {
  176. struct sk_buff *skb = rqstp->rq_xprt_ctxt;
  177. struct svc_deferred_req *dr = rqstp->rq_deferred;
  178. if (skb) {
  179. rqstp->rq_xprt_ctxt = NULL;
  180. dprintk("svc: service %p, releasing skb %p\n", rqstp, skb);
  181. skb_free_datagram(rqstp->rq_sock->sk_sk, skb);
  182. }
  183. if (dr) {
  184. rqstp->rq_deferred = NULL;
  185. kfree(dr);
  186. }
  187. }
  188. /*
  189. * Queue up a socket with data pending. If there are idle nfsd
  190. * processes, wake 'em up.
  191. *
  192. */
  193. void svc_xprt_enqueue(struct svc_xprt *xprt)
  194. {
  195. struct svc_serv *serv = xprt->xpt_server;
  196. struct svc_pool *pool;
  197. struct svc_rqst *rqstp;
  198. int cpu;
  199. if (!(xprt->xpt_flags &
  200. ((1<<XPT_CONN)|(1<<XPT_DATA)|(1<<XPT_CLOSE)|(1<<XPT_DEFERRED))))
  201. return;
  202. if (test_bit(XPT_DEAD, &xprt->xpt_flags))
  203. return;
  204. cpu = get_cpu();
  205. pool = svc_pool_for_cpu(xprt->xpt_server, cpu);
  206. put_cpu();
  207. spin_lock_bh(&pool->sp_lock);
  208. if (!list_empty(&pool->sp_threads) &&
  209. !list_empty(&pool->sp_sockets))
  210. printk(KERN_ERR
  211. "svc_xprt_enqueue: "
  212. "threads and transports both waiting??\n");
  213. if (test_bit(XPT_DEAD, &xprt->xpt_flags)) {
  214. /* Don't enqueue dead sockets */
  215. dprintk("svc: transport %p is dead, not enqueued\n", xprt);
  216. goto out_unlock;
  217. }
  218. /* Mark socket as busy. It will remain in this state until the
  219. * server has processed all pending data and put the socket back
  220. * on the idle list. We update XPT_BUSY atomically because
  221. * it also guards against trying to enqueue the svc_sock twice.
  222. */
  223. if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags)) {
  224. /* Don't enqueue socket while already enqueued */
  225. dprintk("svc: transport %p busy, not enqueued\n", xprt);
  226. goto out_unlock;
  227. }
  228. BUG_ON(xprt->xpt_pool != NULL);
  229. xprt->xpt_pool = pool;
  230. /* Handle pending connection */
  231. if (test_bit(XPT_CONN, &xprt->xpt_flags))
  232. goto process;
  233. /* Handle close in-progress */
  234. if (test_bit(XPT_CLOSE, &xprt->xpt_flags))
  235. goto process;
  236. /* Check if we have space to reply to a request */
  237. if (!xprt->xpt_ops->xpo_has_wspace(xprt)) {
  238. /* Don't enqueue while not enough space for reply */
  239. dprintk("svc: no write space, transport %p not enqueued\n",
  240. xprt);
  241. xprt->xpt_pool = NULL;
  242. clear_bit(XPT_BUSY, &xprt->xpt_flags);
  243. goto out_unlock;
  244. }
  245. process:
  246. if (!list_empty(&pool->sp_threads)) {
  247. rqstp = list_entry(pool->sp_threads.next,
  248. struct svc_rqst,
  249. rq_list);
  250. dprintk("svc: transport %p served by daemon %p\n",
  251. xprt, rqstp);
  252. svc_thread_dequeue(pool, rqstp);
  253. if (rqstp->rq_xprt)
  254. printk(KERN_ERR
  255. "svc_xprt_enqueue: server %p, rq_xprt=%p!\n",
  256. rqstp, rqstp->rq_xprt);
  257. rqstp->rq_xprt = xprt;
  258. svc_xprt_get(xprt);
  259. rqstp->rq_reserved = serv->sv_max_mesg;
  260. atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved);
  261. BUG_ON(xprt->xpt_pool != pool);
  262. wake_up(&rqstp->rq_wait);
  263. } else {
  264. dprintk("svc: transport %p put into queue\n", xprt);
  265. list_add_tail(&xprt->xpt_ready, &pool->sp_sockets);
  266. BUG_ON(xprt->xpt_pool != pool);
  267. }
  268. out_unlock:
  269. spin_unlock_bh(&pool->sp_lock);
  270. }
  271. EXPORT_SYMBOL_GPL(svc_xprt_enqueue);
  272. /*
  273. * Dequeue the first socket. Must be called with the pool->sp_lock held.
  274. */
  275. static inline struct svc_sock *
  276. svc_sock_dequeue(struct svc_pool *pool)
  277. {
  278. struct svc_sock *svsk;
  279. if (list_empty(&pool->sp_sockets))
  280. return NULL;
  281. svsk = list_entry(pool->sp_sockets.next,
  282. struct svc_sock, sk_xprt.xpt_ready);
  283. list_del_init(&svsk->sk_xprt.xpt_ready);
  284. dprintk("svc: socket %p dequeued, inuse=%d\n",
  285. svsk->sk_sk, atomic_read(&svsk->sk_xprt.xpt_ref.refcount));
  286. return svsk;
  287. }
  288. /*
  289. * svc_xprt_received conditionally queues the transport for processing
  290. * by another thread. The caller must hold the XPT_BUSY bit and must
  291. * not thereafter touch transport data.
  292. *
  293. * Note: XPT_DATA only gets cleared when a read-attempt finds no (or
  294. * insufficient) data.
  295. */
  296. void svc_xprt_received(struct svc_xprt *xprt)
  297. {
  298. BUG_ON(!test_bit(XPT_BUSY, &xprt->xpt_flags));
  299. xprt->xpt_pool = NULL;
  300. clear_bit(XPT_BUSY, &xprt->xpt_flags);
  301. svc_xprt_enqueue(xprt);
  302. }
  303. EXPORT_SYMBOL_GPL(svc_xprt_received);
  304. /**
  305. * svc_reserve - change the space reserved for the reply to a request.
  306. * @rqstp: The request in question
  307. * @space: new max space to reserve
  308. *
  309. * Each request reserves some space on the output queue of the socket
  310. * to make sure the reply fits. This function reduces that reserved
  311. * space to be the amount of space used already, plus @space.
  312. *
  313. */
  314. void svc_reserve(struct svc_rqst *rqstp, int space)
  315. {
  316. space += rqstp->rq_res.head[0].iov_len;
  317. if (space < rqstp->rq_reserved) {
  318. struct svc_xprt *xprt = rqstp->rq_xprt;
  319. atomic_sub((rqstp->rq_reserved - space), &xprt->xpt_reserved);
  320. rqstp->rq_reserved = space;
  321. svc_xprt_enqueue(xprt);
  322. }
  323. }
  324. static void
  325. svc_sock_release(struct svc_rqst *rqstp)
  326. {
  327. struct svc_sock *svsk = rqstp->rq_sock;
  328. rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp);
  329. svc_free_res_pages(rqstp);
  330. rqstp->rq_res.page_len = 0;
  331. rqstp->rq_res.page_base = 0;
  332. /* Reset response buffer and release
  333. * the reservation.
  334. * But first, check that enough space was reserved
  335. * for the reply, otherwise we have a bug!
  336. */
  337. if ((rqstp->rq_res.len) > rqstp->rq_reserved)
  338. printk(KERN_ERR "RPC request reserved %d but used %d\n",
  339. rqstp->rq_reserved,
  340. rqstp->rq_res.len);
  341. rqstp->rq_res.head[0].iov_len = 0;
  342. svc_reserve(rqstp, 0);
  343. rqstp->rq_sock = NULL;
  344. svc_xprt_put(&svsk->sk_xprt);
  345. }
  346. /*
  347. * External function to wake up a server waiting for data
  348. * This really only makes sense for services like lockd
  349. * which have exactly one thread anyway.
  350. */
  351. void
  352. svc_wake_up(struct svc_serv *serv)
  353. {
  354. struct svc_rqst *rqstp;
  355. unsigned int i;
  356. struct svc_pool *pool;
  357. for (i = 0; i < serv->sv_nrpools; i++) {
  358. pool = &serv->sv_pools[i];
  359. spin_lock_bh(&pool->sp_lock);
  360. if (!list_empty(&pool->sp_threads)) {
  361. rqstp = list_entry(pool->sp_threads.next,
  362. struct svc_rqst,
  363. rq_list);
  364. dprintk("svc: daemon %p woken up.\n", rqstp);
  365. /*
  366. svc_thread_dequeue(pool, rqstp);
  367. rqstp->rq_sock = NULL;
  368. */
  369. wake_up(&rqstp->rq_wait);
  370. }
  371. spin_unlock_bh(&pool->sp_lock);
  372. }
  373. }
  374. union svc_pktinfo_u {
  375. struct in_pktinfo pkti;
  376. struct in6_pktinfo pkti6;
  377. };
  378. #define SVC_PKTINFO_SPACE \
  379. CMSG_SPACE(sizeof(union svc_pktinfo_u))
  380. static void svc_set_cmsg_data(struct svc_rqst *rqstp, struct cmsghdr *cmh)
  381. {
  382. switch (rqstp->rq_sock->sk_sk->sk_family) {
  383. case AF_INET: {
  384. struct in_pktinfo *pki = CMSG_DATA(cmh);
  385. cmh->cmsg_level = SOL_IP;
  386. cmh->cmsg_type = IP_PKTINFO;
  387. pki->ipi_ifindex = 0;
  388. pki->ipi_spec_dst.s_addr = rqstp->rq_daddr.addr.s_addr;
  389. cmh->cmsg_len = CMSG_LEN(sizeof(*pki));
  390. }
  391. break;
  392. case AF_INET6: {
  393. struct in6_pktinfo *pki = CMSG_DATA(cmh);
  394. cmh->cmsg_level = SOL_IPV6;
  395. cmh->cmsg_type = IPV6_PKTINFO;
  396. pki->ipi6_ifindex = 0;
  397. ipv6_addr_copy(&pki->ipi6_addr,
  398. &rqstp->rq_daddr.addr6);
  399. cmh->cmsg_len = CMSG_LEN(sizeof(*pki));
  400. }
  401. break;
  402. }
  403. return;
  404. }
  405. /*
  406. * Generic sendto routine
  407. */
  408. static int
  409. svc_sendto(struct svc_rqst *rqstp, struct xdr_buf *xdr)
  410. {
  411. struct svc_sock *svsk = rqstp->rq_sock;
  412. struct socket *sock = svsk->sk_sock;
  413. int slen;
  414. union {
  415. struct cmsghdr hdr;
  416. long all[SVC_PKTINFO_SPACE / sizeof(long)];
  417. } buffer;
  418. struct cmsghdr *cmh = &buffer.hdr;
  419. int len = 0;
  420. int result;
  421. int size;
  422. struct page **ppage = xdr->pages;
  423. size_t base = xdr->page_base;
  424. unsigned int pglen = xdr->page_len;
  425. unsigned int flags = MSG_MORE;
  426. char buf[RPC_MAX_ADDRBUFLEN];
  427. slen = xdr->len;
  428. if (rqstp->rq_prot == IPPROTO_UDP) {
  429. struct msghdr msg = {
  430. .msg_name = &rqstp->rq_addr,
  431. .msg_namelen = rqstp->rq_addrlen,
  432. .msg_control = cmh,
  433. .msg_controllen = sizeof(buffer),
  434. .msg_flags = MSG_MORE,
  435. };
  436. svc_set_cmsg_data(rqstp, cmh);
  437. if (sock_sendmsg(sock, &msg, 0) < 0)
  438. goto out;
  439. }
  440. /* send head */
  441. if (slen == xdr->head[0].iov_len)
  442. flags = 0;
  443. len = kernel_sendpage(sock, rqstp->rq_respages[0], 0,
  444. xdr->head[0].iov_len, flags);
  445. if (len != xdr->head[0].iov_len)
  446. goto out;
  447. slen -= xdr->head[0].iov_len;
  448. if (slen == 0)
  449. goto out;
  450. /* send page data */
  451. size = PAGE_SIZE - base < pglen ? PAGE_SIZE - base : pglen;
  452. while (pglen > 0) {
  453. if (slen == size)
  454. flags = 0;
  455. result = kernel_sendpage(sock, *ppage, base, size, flags);
  456. if (result > 0)
  457. len += result;
  458. if (result != size)
  459. goto out;
  460. slen -= size;
  461. pglen -= size;
  462. size = PAGE_SIZE < pglen ? PAGE_SIZE : pglen;
  463. base = 0;
  464. ppage++;
  465. }
  466. /* send tail */
  467. if (xdr->tail[0].iov_len) {
  468. result = kernel_sendpage(sock, rqstp->rq_respages[0],
  469. ((unsigned long)xdr->tail[0].iov_base)
  470. & (PAGE_SIZE-1),
  471. xdr->tail[0].iov_len, 0);
  472. if (result > 0)
  473. len += result;
  474. }
  475. out:
  476. dprintk("svc: socket %p sendto([%p %Zu... ], %d) = %d (addr %s)\n",
  477. rqstp->rq_sock, xdr->head[0].iov_base, xdr->head[0].iov_len,
  478. xdr->len, len, svc_print_addr(rqstp, buf, sizeof(buf)));
  479. return len;
  480. }
  481. /*
  482. * Report socket names for nfsdfs
  483. */
  484. static int one_sock_name(char *buf, struct svc_sock *svsk)
  485. {
  486. int len;
  487. switch(svsk->sk_sk->sk_family) {
  488. case AF_INET:
  489. len = sprintf(buf, "ipv4 %s %u.%u.%u.%u %d\n",
  490. svsk->sk_sk->sk_protocol==IPPROTO_UDP?
  491. "udp" : "tcp",
  492. NIPQUAD(inet_sk(svsk->sk_sk)->rcv_saddr),
  493. inet_sk(svsk->sk_sk)->num);
  494. break;
  495. default:
  496. len = sprintf(buf, "*unknown-%d*\n",
  497. svsk->sk_sk->sk_family);
  498. }
  499. return len;
  500. }
  501. int
  502. svc_sock_names(char *buf, struct svc_serv *serv, char *toclose)
  503. {
  504. struct svc_sock *svsk, *closesk = NULL;
  505. int len = 0;
  506. if (!serv)
  507. return 0;
  508. spin_lock_bh(&serv->sv_lock);
  509. list_for_each_entry(svsk, &serv->sv_permsocks, sk_xprt.xpt_list) {
  510. int onelen = one_sock_name(buf+len, svsk);
  511. if (toclose && strcmp(toclose, buf+len) == 0)
  512. closesk = svsk;
  513. else
  514. len += onelen;
  515. }
  516. spin_unlock_bh(&serv->sv_lock);
  517. if (closesk)
  518. /* Should unregister with portmap, but you cannot
  519. * unregister just one protocol...
  520. */
  521. svc_close_xprt(&closesk->sk_xprt);
  522. else if (toclose)
  523. return -ENOENT;
  524. return len;
  525. }
  526. EXPORT_SYMBOL(svc_sock_names);
  527. /*
  528. * Check input queue length
  529. */
  530. static int
  531. svc_recv_available(struct svc_sock *svsk)
  532. {
  533. struct socket *sock = svsk->sk_sock;
  534. int avail, err;
  535. err = kernel_sock_ioctl(sock, TIOCINQ, (unsigned long) &avail);
  536. return (err >= 0)? avail : err;
  537. }
  538. /*
  539. * Generic recvfrom routine.
  540. */
  541. static int
  542. svc_recvfrom(struct svc_rqst *rqstp, struct kvec *iov, int nr, int buflen)
  543. {
  544. struct svc_sock *svsk = rqstp->rq_sock;
  545. struct msghdr msg = {
  546. .msg_flags = MSG_DONTWAIT,
  547. };
  548. struct sockaddr *sin;
  549. int len;
  550. len = kernel_recvmsg(svsk->sk_sock, &msg, iov, nr, buflen,
  551. msg.msg_flags);
  552. /* sock_recvmsg doesn't fill in the name/namelen, so we must..
  553. */
  554. memcpy(&rqstp->rq_addr, &svsk->sk_remote, svsk->sk_remotelen);
  555. rqstp->rq_addrlen = svsk->sk_remotelen;
  556. /* Destination address in request is needed for binding the
  557. * source address in RPC callbacks later.
  558. */
  559. sin = (struct sockaddr *)&svsk->sk_local;
  560. switch (sin->sa_family) {
  561. case AF_INET:
  562. rqstp->rq_daddr.addr = ((struct sockaddr_in *)sin)->sin_addr;
  563. break;
  564. case AF_INET6:
  565. rqstp->rq_daddr.addr6 = ((struct sockaddr_in6 *)sin)->sin6_addr;
  566. break;
  567. }
  568. dprintk("svc: socket %p recvfrom(%p, %Zu) = %d\n",
  569. svsk, iov[0].iov_base, iov[0].iov_len, len);
  570. return len;
  571. }
  572. /*
  573. * Set socket snd and rcv buffer lengths
  574. */
  575. static inline void
  576. svc_sock_setbufsize(struct socket *sock, unsigned int snd, unsigned int rcv)
  577. {
  578. #if 0
  579. mm_segment_t oldfs;
  580. oldfs = get_fs(); set_fs(KERNEL_DS);
  581. sock_setsockopt(sock, SOL_SOCKET, SO_SNDBUF,
  582. (char*)&snd, sizeof(snd));
  583. sock_setsockopt(sock, SOL_SOCKET, SO_RCVBUF,
  584. (char*)&rcv, sizeof(rcv));
  585. #else
  586. /* sock_setsockopt limits use to sysctl_?mem_max,
  587. * which isn't acceptable. Until that is made conditional
  588. * on not having CAP_SYS_RESOURCE or similar, we go direct...
  589. * DaveM said I could!
  590. */
  591. lock_sock(sock->sk);
  592. sock->sk->sk_sndbuf = snd * 2;
  593. sock->sk->sk_rcvbuf = rcv * 2;
  594. sock->sk->sk_userlocks |= SOCK_SNDBUF_LOCK|SOCK_RCVBUF_LOCK;
  595. release_sock(sock->sk);
  596. #endif
  597. }
  598. /*
  599. * INET callback when data has been received on the socket.
  600. */
  601. static void
  602. svc_udp_data_ready(struct sock *sk, int count)
  603. {
  604. struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data;
  605. if (svsk) {
  606. dprintk("svc: socket %p(inet %p), count=%d, busy=%d\n",
  607. svsk, sk, count,
  608. test_bit(XPT_BUSY, &svsk->sk_xprt.xpt_flags));
  609. set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
  610. svc_xprt_enqueue(&svsk->sk_xprt);
  611. }
  612. if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
  613. wake_up_interruptible(sk->sk_sleep);
  614. }
  615. /*
  616. * INET callback when space is newly available on the socket.
  617. */
  618. static void
  619. svc_write_space(struct sock *sk)
  620. {
  621. struct svc_sock *svsk = (struct svc_sock *)(sk->sk_user_data);
  622. if (svsk) {
  623. dprintk("svc: socket %p(inet %p), write_space busy=%d\n",
  624. svsk, sk, test_bit(XPT_BUSY, &svsk->sk_xprt.xpt_flags));
  625. svc_xprt_enqueue(&svsk->sk_xprt);
  626. }
  627. if (sk->sk_sleep && waitqueue_active(sk->sk_sleep)) {
  628. dprintk("RPC svc_write_space: someone sleeping on %p\n",
  629. svsk);
  630. wake_up_interruptible(sk->sk_sleep);
  631. }
  632. }
  633. static inline void svc_udp_get_dest_address(struct svc_rqst *rqstp,
  634. struct cmsghdr *cmh)
  635. {
  636. switch (rqstp->rq_sock->sk_sk->sk_family) {
  637. case AF_INET: {
  638. struct in_pktinfo *pki = CMSG_DATA(cmh);
  639. rqstp->rq_daddr.addr.s_addr = pki->ipi_spec_dst.s_addr;
  640. break;
  641. }
  642. case AF_INET6: {
  643. struct in6_pktinfo *pki = CMSG_DATA(cmh);
  644. ipv6_addr_copy(&rqstp->rq_daddr.addr6, &pki->ipi6_addr);
  645. break;
  646. }
  647. }
  648. }
  649. /*
  650. * Receive a datagram from a UDP socket.
  651. */
  652. static int
  653. svc_udp_recvfrom(struct svc_rqst *rqstp)
  654. {
  655. struct svc_sock *svsk = rqstp->rq_sock;
  656. struct svc_serv *serv = svsk->sk_xprt.xpt_server;
  657. struct sk_buff *skb;
  658. union {
  659. struct cmsghdr hdr;
  660. long all[SVC_PKTINFO_SPACE / sizeof(long)];
  661. } buffer;
  662. struct cmsghdr *cmh = &buffer.hdr;
  663. int err, len;
  664. struct msghdr msg = {
  665. .msg_name = svc_addr(rqstp),
  666. .msg_control = cmh,
  667. .msg_controllen = sizeof(buffer),
  668. .msg_flags = MSG_DONTWAIT,
  669. };
  670. if (test_and_clear_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags))
  671. /* udp sockets need large rcvbuf as all pending
  672. * requests are still in that buffer. sndbuf must
  673. * also be large enough that there is enough space
  674. * for one reply per thread. We count all threads
  675. * rather than threads in a particular pool, which
  676. * provides an upper bound on the number of threads
  677. * which will access the socket.
  678. */
  679. svc_sock_setbufsize(svsk->sk_sock,
  680. (serv->sv_nrthreads+3) * serv->sv_max_mesg,
  681. (serv->sv_nrthreads+3) * serv->sv_max_mesg);
  682. if ((rqstp->rq_deferred = svc_deferred_dequeue(svsk))) {
  683. svc_xprt_received(&svsk->sk_xprt);
  684. return svc_deferred_recv(rqstp);
  685. }
  686. clear_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
  687. skb = NULL;
  688. err = kernel_recvmsg(svsk->sk_sock, &msg, NULL,
  689. 0, 0, MSG_PEEK | MSG_DONTWAIT);
  690. if (err >= 0)
  691. skb = skb_recv_datagram(svsk->sk_sk, 0, 1, &err);
  692. if (skb == NULL) {
  693. if (err != -EAGAIN) {
  694. /* possibly an icmp error */
  695. dprintk("svc: recvfrom returned error %d\n", -err);
  696. set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
  697. }
  698. svc_xprt_received(&svsk->sk_xprt);
  699. return -EAGAIN;
  700. }
  701. rqstp->rq_addrlen = sizeof(rqstp->rq_addr);
  702. if (skb->tstamp.tv64 == 0) {
  703. skb->tstamp = ktime_get_real();
  704. /* Don't enable netstamp, sunrpc doesn't
  705. need that much accuracy */
  706. }
  707. svsk->sk_sk->sk_stamp = skb->tstamp;
  708. set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags); /* there may be more data... */
  709. /*
  710. * Maybe more packets - kick another thread ASAP.
  711. */
  712. svc_xprt_received(&svsk->sk_xprt);
  713. len = skb->len - sizeof(struct udphdr);
  714. rqstp->rq_arg.len = len;
  715. rqstp->rq_prot = IPPROTO_UDP;
  716. if (cmh->cmsg_level != IPPROTO_IP ||
  717. cmh->cmsg_type != IP_PKTINFO) {
  718. if (net_ratelimit())
  719. printk("rpcsvc: received unknown control message:"
  720. "%d/%d\n",
  721. cmh->cmsg_level, cmh->cmsg_type);
  722. skb_free_datagram(svsk->sk_sk, skb);
  723. return 0;
  724. }
  725. svc_udp_get_dest_address(rqstp, cmh);
  726. if (skb_is_nonlinear(skb)) {
  727. /* we have to copy */
  728. local_bh_disable();
  729. if (csum_partial_copy_to_xdr(&rqstp->rq_arg, skb)) {
  730. local_bh_enable();
  731. /* checksum error */
  732. skb_free_datagram(svsk->sk_sk, skb);
  733. return 0;
  734. }
  735. local_bh_enable();
  736. skb_free_datagram(svsk->sk_sk, skb);
  737. } else {
  738. /* we can use it in-place */
  739. rqstp->rq_arg.head[0].iov_base = skb->data + sizeof(struct udphdr);
  740. rqstp->rq_arg.head[0].iov_len = len;
  741. if (skb_checksum_complete(skb)) {
  742. skb_free_datagram(svsk->sk_sk, skb);
  743. return 0;
  744. }
  745. rqstp->rq_xprt_ctxt = skb;
  746. }
  747. rqstp->rq_arg.page_base = 0;
  748. if (len <= rqstp->rq_arg.head[0].iov_len) {
  749. rqstp->rq_arg.head[0].iov_len = len;
  750. rqstp->rq_arg.page_len = 0;
  751. rqstp->rq_respages = rqstp->rq_pages+1;
  752. } else {
  753. rqstp->rq_arg.page_len = len - rqstp->rq_arg.head[0].iov_len;
  754. rqstp->rq_respages = rqstp->rq_pages + 1 +
  755. DIV_ROUND_UP(rqstp->rq_arg.page_len, PAGE_SIZE);
  756. }
  757. if (serv->sv_stats)
  758. serv->sv_stats->netudpcnt++;
  759. return len;
  760. }
  761. static int
  762. svc_udp_sendto(struct svc_rqst *rqstp)
  763. {
  764. int error;
  765. error = svc_sendto(rqstp, &rqstp->rq_res);
  766. if (error == -ECONNREFUSED)
  767. /* ICMP error on earlier request. */
  768. error = svc_sendto(rqstp, &rqstp->rq_res);
  769. return error;
  770. }
  771. static void svc_udp_prep_reply_hdr(struct svc_rqst *rqstp)
  772. {
  773. }
  774. static int svc_udp_has_wspace(struct svc_xprt *xprt)
  775. {
  776. struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
  777. struct svc_serv *serv = xprt->xpt_server;
  778. unsigned long required;
  779. /*
  780. * Set the SOCK_NOSPACE flag before checking the available
  781. * sock space.
  782. */
  783. set_bit(SOCK_NOSPACE, &svsk->sk_sock->flags);
  784. required = atomic_read(&svsk->sk_xprt.xpt_reserved) + serv->sv_max_mesg;
  785. if (required*2 > sock_wspace(svsk->sk_sk))
  786. return 0;
  787. clear_bit(SOCK_NOSPACE, &svsk->sk_sock->flags);
  788. return 1;
  789. }
  790. static struct svc_xprt *svc_udp_accept(struct svc_xprt *xprt)
  791. {
  792. BUG();
  793. return NULL;
  794. }
  795. static struct svc_xprt *svc_udp_create(struct svc_serv *serv,
  796. struct sockaddr *sa, int salen,
  797. int flags)
  798. {
  799. return svc_create_socket(serv, IPPROTO_UDP, sa, salen, flags);
  800. }
  801. static struct svc_xprt_ops svc_udp_ops = {
  802. .xpo_create = svc_udp_create,
  803. .xpo_recvfrom = svc_udp_recvfrom,
  804. .xpo_sendto = svc_udp_sendto,
  805. .xpo_release_rqst = svc_release_skb,
  806. .xpo_detach = svc_sock_detach,
  807. .xpo_free = svc_sock_free,
  808. .xpo_prep_reply_hdr = svc_udp_prep_reply_hdr,
  809. .xpo_has_wspace = svc_udp_has_wspace,
  810. .xpo_accept = svc_udp_accept,
  811. };
  812. static struct svc_xprt_class svc_udp_class = {
  813. .xcl_name = "udp",
  814. .xcl_owner = THIS_MODULE,
  815. .xcl_ops = &svc_udp_ops,
  816. .xcl_max_payload = RPCSVC_MAXPAYLOAD_UDP,
  817. };
  818. static void svc_udp_init(struct svc_sock *svsk, struct svc_serv *serv)
  819. {
  820. int one = 1;
  821. mm_segment_t oldfs;
  822. svc_xprt_init(&svc_udp_class, &svsk->sk_xprt, serv);
  823. svsk->sk_sk->sk_data_ready = svc_udp_data_ready;
  824. svsk->sk_sk->sk_write_space = svc_write_space;
  825. /* initialise setting must have enough space to
  826. * receive and respond to one request.
  827. * svc_udp_recvfrom will re-adjust if necessary
  828. */
  829. svc_sock_setbufsize(svsk->sk_sock,
  830. 3 * svsk->sk_xprt.xpt_server->sv_max_mesg,
  831. 3 * svsk->sk_xprt.xpt_server->sv_max_mesg);
  832. set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags); /* might have come in before data_ready set up */
  833. set_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags);
  834. oldfs = get_fs();
  835. set_fs(KERNEL_DS);
  836. /* make sure we get destination address info */
  837. svsk->sk_sock->ops->setsockopt(svsk->sk_sock, IPPROTO_IP, IP_PKTINFO,
  838. (char __user *)&one, sizeof(one));
  839. set_fs(oldfs);
  840. }
  841. /*
  842. * A data_ready event on a listening socket means there's a connection
  843. * pending. Do not use state_change as a substitute for it.
  844. */
  845. static void
  846. svc_tcp_listen_data_ready(struct sock *sk, int count_unused)
  847. {
  848. struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data;
  849. dprintk("svc: socket %p TCP (listen) state change %d\n",
  850. sk, sk->sk_state);
  851. /*
  852. * This callback may called twice when a new connection
  853. * is established as a child socket inherits everything
  854. * from a parent LISTEN socket.
  855. * 1) data_ready method of the parent socket will be called
  856. * when one of child sockets become ESTABLISHED.
  857. * 2) data_ready method of the child socket may be called
  858. * when it receives data before the socket is accepted.
  859. * In case of 2, we should ignore it silently.
  860. */
  861. if (sk->sk_state == TCP_LISTEN) {
  862. if (svsk) {
  863. set_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags);
  864. svc_xprt_enqueue(&svsk->sk_xprt);
  865. } else
  866. printk("svc: socket %p: no user data\n", sk);
  867. }
  868. if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
  869. wake_up_interruptible_all(sk->sk_sleep);
  870. }
  871. /*
  872. * A state change on a connected socket means it's dying or dead.
  873. */
  874. static void
  875. svc_tcp_state_change(struct sock *sk)
  876. {
  877. struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data;
  878. dprintk("svc: socket %p TCP (connected) state change %d (svsk %p)\n",
  879. sk, sk->sk_state, sk->sk_user_data);
  880. if (!svsk)
  881. printk("svc: socket %p: no user data\n", sk);
  882. else {
  883. set_bit(XPT_CLOSE, &svsk->sk_xprt.xpt_flags);
  884. svc_xprt_enqueue(&svsk->sk_xprt);
  885. }
  886. if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
  887. wake_up_interruptible_all(sk->sk_sleep);
  888. }
  889. static void
  890. svc_tcp_data_ready(struct sock *sk, int count)
  891. {
  892. struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data;
  893. dprintk("svc: socket %p TCP data ready (svsk %p)\n",
  894. sk, sk->sk_user_data);
  895. if (svsk) {
  896. set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
  897. svc_xprt_enqueue(&svsk->sk_xprt);
  898. }
  899. if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
  900. wake_up_interruptible(sk->sk_sleep);
  901. }
  902. static inline int svc_port_is_privileged(struct sockaddr *sin)
  903. {
  904. switch (sin->sa_family) {
  905. case AF_INET:
  906. return ntohs(((struct sockaddr_in *)sin)->sin_port)
  907. < PROT_SOCK;
  908. case AF_INET6:
  909. return ntohs(((struct sockaddr_in6 *)sin)->sin6_port)
  910. < PROT_SOCK;
  911. default:
  912. return 0;
  913. }
  914. }
  915. /*
  916. * Accept a TCP connection
  917. */
  918. static struct svc_xprt *svc_tcp_accept(struct svc_xprt *xprt)
  919. {
  920. struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
  921. struct sockaddr_storage addr;
  922. struct sockaddr *sin = (struct sockaddr *) &addr;
  923. struct svc_serv *serv = svsk->sk_xprt.xpt_server;
  924. struct socket *sock = svsk->sk_sock;
  925. struct socket *newsock;
  926. struct svc_sock *newsvsk;
  927. int err, slen;
  928. char buf[RPC_MAX_ADDRBUFLEN];
  929. dprintk("svc: tcp_accept %p sock %p\n", svsk, sock);
  930. if (!sock)
  931. return NULL;
  932. clear_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags);
  933. err = kernel_accept(sock, &newsock, O_NONBLOCK);
  934. if (err < 0) {
  935. if (err == -ENOMEM)
  936. printk(KERN_WARNING "%s: no more sockets!\n",
  937. serv->sv_name);
  938. else if (err != -EAGAIN && net_ratelimit())
  939. printk(KERN_WARNING "%s: accept failed (err %d)!\n",
  940. serv->sv_name, -err);
  941. return NULL;
  942. }
  943. set_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags);
  944. err = kernel_getpeername(newsock, sin, &slen);
  945. if (err < 0) {
  946. if (net_ratelimit())
  947. printk(KERN_WARNING "%s: peername failed (err %d)!\n",
  948. serv->sv_name, -err);
  949. goto failed; /* aborted connection or whatever */
  950. }
  951. /* Ideally, we would want to reject connections from unauthorized
  952. * hosts here, but when we get encryption, the IP of the host won't
  953. * tell us anything. For now just warn about unpriv connections.
  954. */
  955. if (!svc_port_is_privileged(sin)) {
  956. dprintk(KERN_WARNING
  957. "%s: connect from unprivileged port: %s\n",
  958. serv->sv_name,
  959. __svc_print_addr(sin, buf, sizeof(buf)));
  960. }
  961. dprintk("%s: connect from %s\n", serv->sv_name,
  962. __svc_print_addr(sin, buf, sizeof(buf)));
  963. /* make sure that a write doesn't block forever when
  964. * low on memory
  965. */
  966. newsock->sk->sk_sndtimeo = HZ*30;
  967. if (!(newsvsk = svc_setup_socket(serv, newsock, &err,
  968. (SVC_SOCK_ANONYMOUS | SVC_SOCK_TEMPORARY))))
  969. goto failed;
  970. memcpy(&newsvsk->sk_remote, sin, slen);
  971. newsvsk->sk_remotelen = slen;
  972. err = kernel_getsockname(newsock, sin, &slen);
  973. if (unlikely(err < 0)) {
  974. dprintk("svc_tcp_accept: kernel_getsockname error %d\n", -err);
  975. slen = offsetof(struct sockaddr, sa_data);
  976. }
  977. memcpy(&newsvsk->sk_local, sin, slen);
  978. svc_xprt_received(&newsvsk->sk_xprt);
  979. if (serv->sv_stats)
  980. serv->sv_stats->nettcpconn++;
  981. return &newsvsk->sk_xprt;
  982. failed:
  983. sock_release(newsock);
  984. return NULL;
  985. }
  986. /*
  987. * Receive data from a TCP socket.
  988. */
  989. static int
  990. svc_tcp_recvfrom(struct svc_rqst *rqstp)
  991. {
  992. struct svc_sock *svsk = rqstp->rq_sock;
  993. struct svc_serv *serv = svsk->sk_xprt.xpt_server;
  994. int len;
  995. struct kvec *vec;
  996. int pnum, vlen;
  997. dprintk("svc: tcp_recv %p data %d conn %d close %d\n",
  998. svsk, test_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags),
  999. test_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags),
  1000. test_bit(XPT_CLOSE, &svsk->sk_xprt.xpt_flags));
  1001. if ((rqstp->rq_deferred = svc_deferred_dequeue(svsk))) {
  1002. svc_xprt_received(&svsk->sk_xprt);
  1003. return svc_deferred_recv(rqstp);
  1004. }
  1005. if (test_and_clear_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags))
  1006. /* sndbuf needs to have room for one request
  1007. * per thread, otherwise we can stall even when the
  1008. * network isn't a bottleneck.
  1009. *
  1010. * We count all threads rather than threads in a
  1011. * particular pool, which provides an upper bound
  1012. * on the number of threads which will access the socket.
  1013. *
  1014. * rcvbuf just needs to be able to hold a few requests.
  1015. * Normally they will be removed from the queue
  1016. * as soon a a complete request arrives.
  1017. */
  1018. svc_sock_setbufsize(svsk->sk_sock,
  1019. (serv->sv_nrthreads+3) * serv->sv_max_mesg,
  1020. 3 * serv->sv_max_mesg);
  1021. clear_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
  1022. /* Receive data. If we haven't got the record length yet, get
  1023. * the next four bytes. Otherwise try to gobble up as much as
  1024. * possible up to the complete record length.
  1025. */
  1026. if (svsk->sk_tcplen < 4) {
  1027. unsigned long want = 4 - svsk->sk_tcplen;
  1028. struct kvec iov;
  1029. iov.iov_base = ((char *) &svsk->sk_reclen) + svsk->sk_tcplen;
  1030. iov.iov_len = want;
  1031. if ((len = svc_recvfrom(rqstp, &iov, 1, want)) < 0)
  1032. goto error;
  1033. svsk->sk_tcplen += len;
  1034. if (len < want) {
  1035. dprintk("svc: short recvfrom while reading record length (%d of %lu)\n",
  1036. len, want);
  1037. svc_xprt_received(&svsk->sk_xprt);
  1038. return -EAGAIN; /* record header not complete */
  1039. }
  1040. svsk->sk_reclen = ntohl(svsk->sk_reclen);
  1041. if (!(svsk->sk_reclen & 0x80000000)) {
  1042. /* FIXME: technically, a record can be fragmented,
  1043. * and non-terminal fragments will not have the top
  1044. * bit set in the fragment length header.
  1045. * But apparently no known nfs clients send fragmented
  1046. * records. */
  1047. if (net_ratelimit())
  1048. printk(KERN_NOTICE "RPC: bad TCP reclen 0x%08lx"
  1049. " (non-terminal)\n",
  1050. (unsigned long) svsk->sk_reclen);
  1051. goto err_delete;
  1052. }
  1053. svsk->sk_reclen &= 0x7fffffff;
  1054. dprintk("svc: TCP record, %d bytes\n", svsk->sk_reclen);
  1055. if (svsk->sk_reclen > serv->sv_max_mesg) {
  1056. if (net_ratelimit())
  1057. printk(KERN_NOTICE "RPC: bad TCP reclen 0x%08lx"
  1058. " (large)\n",
  1059. (unsigned long) svsk->sk_reclen);
  1060. goto err_delete;
  1061. }
  1062. }
  1063. /* Check whether enough data is available */
  1064. len = svc_recv_available(svsk);
  1065. if (len < 0)
  1066. goto error;
  1067. if (len < svsk->sk_reclen) {
  1068. dprintk("svc: incomplete TCP record (%d of %d)\n",
  1069. len, svsk->sk_reclen);
  1070. svc_xprt_received(&svsk->sk_xprt);
  1071. return -EAGAIN; /* record not complete */
  1072. }
  1073. len = svsk->sk_reclen;
  1074. set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
  1075. vec = rqstp->rq_vec;
  1076. vec[0] = rqstp->rq_arg.head[0];
  1077. vlen = PAGE_SIZE;
  1078. pnum = 1;
  1079. while (vlen < len) {
  1080. vec[pnum].iov_base = page_address(rqstp->rq_pages[pnum]);
  1081. vec[pnum].iov_len = PAGE_SIZE;
  1082. pnum++;
  1083. vlen += PAGE_SIZE;
  1084. }
  1085. rqstp->rq_respages = &rqstp->rq_pages[pnum];
  1086. /* Now receive data */
  1087. len = svc_recvfrom(rqstp, vec, pnum, len);
  1088. if (len < 0)
  1089. goto error;
  1090. dprintk("svc: TCP complete record (%d bytes)\n", len);
  1091. rqstp->rq_arg.len = len;
  1092. rqstp->rq_arg.page_base = 0;
  1093. if (len <= rqstp->rq_arg.head[0].iov_len) {
  1094. rqstp->rq_arg.head[0].iov_len = len;
  1095. rqstp->rq_arg.page_len = 0;
  1096. } else {
  1097. rqstp->rq_arg.page_len = len - rqstp->rq_arg.head[0].iov_len;
  1098. }
  1099. rqstp->rq_xprt_ctxt = NULL;
  1100. rqstp->rq_prot = IPPROTO_TCP;
  1101. /* Reset TCP read info */
  1102. svsk->sk_reclen = 0;
  1103. svsk->sk_tcplen = 0;
  1104. svc_xprt_received(&svsk->sk_xprt);
  1105. if (serv->sv_stats)
  1106. serv->sv_stats->nettcpcnt++;
  1107. return len;
  1108. err_delete:
  1109. set_bit(XPT_CLOSE, &svsk->sk_xprt.xpt_flags);
  1110. return -EAGAIN;
  1111. error:
  1112. if (len == -EAGAIN) {
  1113. dprintk("RPC: TCP recvfrom got EAGAIN\n");
  1114. svc_xprt_received(&svsk->sk_xprt);
  1115. } else {
  1116. printk(KERN_NOTICE "%s: recvfrom returned errno %d\n",
  1117. svsk->sk_xprt.xpt_server->sv_name, -len);
  1118. goto err_delete;
  1119. }
  1120. return len;
  1121. }
  1122. /*
  1123. * Send out data on TCP socket.
  1124. */
  1125. static int
  1126. svc_tcp_sendto(struct svc_rqst *rqstp)
  1127. {
  1128. struct xdr_buf *xbufp = &rqstp->rq_res;
  1129. int sent;
  1130. __be32 reclen;
  1131. /* Set up the first element of the reply kvec.
  1132. * Any other kvecs that may be in use have been taken
  1133. * care of by the server implementation itself.
  1134. */
  1135. reclen = htonl(0x80000000|((xbufp->len ) - 4));
  1136. memcpy(xbufp->head[0].iov_base, &reclen, 4);
  1137. if (test_bit(XPT_DEAD, &rqstp->rq_sock->sk_xprt.xpt_flags))
  1138. return -ENOTCONN;
  1139. sent = svc_sendto(rqstp, &rqstp->rq_res);
  1140. if (sent != xbufp->len) {
  1141. printk(KERN_NOTICE "rpc-srv/tcp: %s: %s %d when sending %d bytes - shutting down socket\n",
  1142. rqstp->rq_sock->sk_xprt.xpt_server->sv_name,
  1143. (sent<0)?"got error":"sent only",
  1144. sent, xbufp->len);
  1145. set_bit(XPT_CLOSE, &rqstp->rq_sock->sk_xprt.xpt_flags);
  1146. svc_xprt_enqueue(rqstp->rq_xprt);
  1147. sent = -EAGAIN;
  1148. }
  1149. return sent;
  1150. }
  1151. /*
  1152. * Setup response header. TCP has a 4B record length field.
  1153. */
  1154. static void svc_tcp_prep_reply_hdr(struct svc_rqst *rqstp)
  1155. {
  1156. struct kvec *resv = &rqstp->rq_res.head[0];
  1157. /* tcp needs a space for the record length... */
  1158. svc_putnl(resv, 0);
  1159. }
  1160. static int svc_tcp_has_wspace(struct svc_xprt *xprt)
  1161. {
  1162. struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
  1163. struct svc_serv *serv = svsk->sk_xprt.xpt_server;
  1164. int required;
  1165. int wspace;
  1166. /*
  1167. * Set the SOCK_NOSPACE flag before checking the available
  1168. * sock space.
  1169. */
  1170. set_bit(SOCK_NOSPACE, &svsk->sk_sock->flags);
  1171. required = atomic_read(&svsk->sk_xprt.xpt_reserved) + serv->sv_max_mesg;
  1172. wspace = sk_stream_wspace(svsk->sk_sk);
  1173. if (wspace < sk_stream_min_wspace(svsk->sk_sk))
  1174. return 0;
  1175. if (required * 2 > wspace)
  1176. return 0;
  1177. clear_bit(SOCK_NOSPACE, &svsk->sk_sock->flags);
  1178. return 1;
  1179. }
  1180. static struct svc_xprt *svc_tcp_create(struct svc_serv *serv,
  1181. struct sockaddr *sa, int salen,
  1182. int flags)
  1183. {
  1184. return svc_create_socket(serv, IPPROTO_TCP, sa, salen, flags);
  1185. }
  1186. static struct svc_xprt_ops svc_tcp_ops = {
  1187. .xpo_create = svc_tcp_create,
  1188. .xpo_recvfrom = svc_tcp_recvfrom,
  1189. .xpo_sendto = svc_tcp_sendto,
  1190. .xpo_release_rqst = svc_release_skb,
  1191. .xpo_detach = svc_sock_detach,
  1192. .xpo_free = svc_sock_free,
  1193. .xpo_prep_reply_hdr = svc_tcp_prep_reply_hdr,
  1194. .xpo_has_wspace = svc_tcp_has_wspace,
  1195. .xpo_accept = svc_tcp_accept,
  1196. };
  1197. static struct svc_xprt_class svc_tcp_class = {
  1198. .xcl_name = "tcp",
  1199. .xcl_owner = THIS_MODULE,
  1200. .xcl_ops = &svc_tcp_ops,
  1201. .xcl_max_payload = RPCSVC_MAXPAYLOAD_TCP,
  1202. };
  1203. void svc_init_xprt_sock(void)
  1204. {
  1205. svc_reg_xprt_class(&svc_tcp_class);
  1206. svc_reg_xprt_class(&svc_udp_class);
  1207. }
  1208. void svc_cleanup_xprt_sock(void)
  1209. {
  1210. svc_unreg_xprt_class(&svc_tcp_class);
  1211. svc_unreg_xprt_class(&svc_udp_class);
  1212. }
  1213. static void svc_tcp_init(struct svc_sock *svsk, struct svc_serv *serv)
  1214. {
  1215. struct sock *sk = svsk->sk_sk;
  1216. struct tcp_sock *tp = tcp_sk(sk);
  1217. svc_xprt_init(&svc_tcp_class, &svsk->sk_xprt, serv);
  1218. if (sk->sk_state == TCP_LISTEN) {
  1219. dprintk("setting up TCP socket for listening\n");
  1220. set_bit(XPT_LISTENER, &svsk->sk_xprt.xpt_flags);
  1221. sk->sk_data_ready = svc_tcp_listen_data_ready;
  1222. set_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags);
  1223. } else {
  1224. dprintk("setting up TCP socket for reading\n");
  1225. sk->sk_state_change = svc_tcp_state_change;
  1226. sk->sk_data_ready = svc_tcp_data_ready;
  1227. sk->sk_write_space = svc_write_space;
  1228. svsk->sk_reclen = 0;
  1229. svsk->sk_tcplen = 0;
  1230. tp->nonagle = 1; /* disable Nagle's algorithm */
  1231. /* initialise setting must have enough space to
  1232. * receive and respond to one request.
  1233. * svc_tcp_recvfrom will re-adjust if necessary
  1234. */
  1235. svc_sock_setbufsize(svsk->sk_sock,
  1236. 3 * svsk->sk_xprt.xpt_server->sv_max_mesg,
  1237. 3 * svsk->sk_xprt.xpt_server->sv_max_mesg);
  1238. set_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags);
  1239. set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
  1240. if (sk->sk_state != TCP_ESTABLISHED)
  1241. set_bit(XPT_CLOSE, &svsk->sk_xprt.xpt_flags);
  1242. }
  1243. }
  1244. void
  1245. svc_sock_update_bufs(struct svc_serv *serv)
  1246. {
  1247. /*
  1248. * The number of server threads has changed. Update
  1249. * rcvbuf and sndbuf accordingly on all sockets
  1250. */
  1251. struct list_head *le;
  1252. spin_lock_bh(&serv->sv_lock);
  1253. list_for_each(le, &serv->sv_permsocks) {
  1254. struct svc_sock *svsk =
  1255. list_entry(le, struct svc_sock, sk_xprt.xpt_list);
  1256. set_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags);
  1257. }
  1258. list_for_each(le, &serv->sv_tempsocks) {
  1259. struct svc_sock *svsk =
  1260. list_entry(le, struct svc_sock, sk_xprt.xpt_list);
  1261. set_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags);
  1262. }
  1263. spin_unlock_bh(&serv->sv_lock);
  1264. }
  1265. /*
  1266. * Make sure that we don't have too many active connections. If we
  1267. * have, something must be dropped.
  1268. *
  1269. * There's no point in trying to do random drop here for DoS
  1270. * prevention. The NFS clients does 1 reconnect in 15 seconds. An
  1271. * attacker can easily beat that.
  1272. *
  1273. * The only somewhat efficient mechanism would be if drop old
  1274. * connections from the same IP first. But right now we don't even
  1275. * record the client IP in svc_sock.
  1276. */
  1277. static void svc_check_conn_limits(struct svc_serv *serv)
  1278. {
  1279. if (serv->sv_tmpcnt > (serv->sv_nrthreads+3)*20) {
  1280. struct svc_sock *svsk = NULL;
  1281. spin_lock_bh(&serv->sv_lock);
  1282. if (!list_empty(&serv->sv_tempsocks)) {
  1283. if (net_ratelimit()) {
  1284. /* Try to help the admin */
  1285. printk(KERN_NOTICE "%s: too many open TCP "
  1286. "sockets, consider increasing the "
  1287. "number of nfsd threads\n",
  1288. serv->sv_name);
  1289. }
  1290. /*
  1291. * Always select the oldest socket. It's not fair,
  1292. * but so is life
  1293. */
  1294. svsk = list_entry(serv->sv_tempsocks.prev,
  1295. struct svc_sock,
  1296. sk_xprt.xpt_list);
  1297. set_bit(XPT_CLOSE, &svsk->sk_xprt.xpt_flags);
  1298. svc_xprt_get(&svsk->sk_xprt);
  1299. }
  1300. spin_unlock_bh(&serv->sv_lock);
  1301. if (svsk) {
  1302. svc_xprt_enqueue(&svsk->sk_xprt);
  1303. svc_xprt_put(&svsk->sk_xprt);
  1304. }
  1305. }
  1306. }
  1307. /*
  1308. * Receive the next request on any socket. This code is carefully
  1309. * organised not to touch any cachelines in the shared svc_serv
  1310. * structure, only cachelines in the local svc_pool.
  1311. */
  1312. int
  1313. svc_recv(struct svc_rqst *rqstp, long timeout)
  1314. {
  1315. struct svc_sock *svsk = NULL;
  1316. struct svc_serv *serv = rqstp->rq_server;
  1317. struct svc_pool *pool = rqstp->rq_pool;
  1318. int len, i;
  1319. int pages;
  1320. struct xdr_buf *arg;
  1321. DECLARE_WAITQUEUE(wait, current);
  1322. dprintk("svc: server %p waiting for data (to = %ld)\n",
  1323. rqstp, timeout);
  1324. if (rqstp->rq_sock)
  1325. printk(KERN_ERR
  1326. "svc_recv: service %p, socket not NULL!\n",
  1327. rqstp);
  1328. if (waitqueue_active(&rqstp->rq_wait))
  1329. printk(KERN_ERR
  1330. "svc_recv: service %p, wait queue active!\n",
  1331. rqstp);
  1332. /* now allocate needed pages. If we get a failure, sleep briefly */
  1333. pages = (serv->sv_max_mesg + PAGE_SIZE) / PAGE_SIZE;
  1334. for (i=0; i < pages ; i++)
  1335. while (rqstp->rq_pages[i] == NULL) {
  1336. struct page *p = alloc_page(GFP_KERNEL);
  1337. if (!p)
  1338. schedule_timeout_uninterruptible(msecs_to_jiffies(500));
  1339. rqstp->rq_pages[i] = p;
  1340. }
  1341. rqstp->rq_pages[i++] = NULL; /* this might be seen in nfs_read_actor */
  1342. BUG_ON(pages >= RPCSVC_MAXPAGES);
  1343. /* Make arg->head point to first page and arg->pages point to rest */
  1344. arg = &rqstp->rq_arg;
  1345. arg->head[0].iov_base = page_address(rqstp->rq_pages[0]);
  1346. arg->head[0].iov_len = PAGE_SIZE;
  1347. arg->pages = rqstp->rq_pages + 1;
  1348. arg->page_base = 0;
  1349. /* save at least one page for response */
  1350. arg->page_len = (pages-2)*PAGE_SIZE;
  1351. arg->len = (pages-1)*PAGE_SIZE;
  1352. arg->tail[0].iov_len = 0;
  1353. try_to_freeze();
  1354. cond_resched();
  1355. if (signalled())
  1356. return -EINTR;
  1357. spin_lock_bh(&pool->sp_lock);
  1358. if ((svsk = svc_sock_dequeue(pool)) != NULL) {
  1359. rqstp->rq_sock = svsk;
  1360. svc_xprt_get(&svsk->sk_xprt);
  1361. rqstp->rq_reserved = serv->sv_max_mesg;
  1362. atomic_add(rqstp->rq_reserved, &svsk->sk_xprt.xpt_reserved);
  1363. } else {
  1364. /* No data pending. Go to sleep */
  1365. svc_thread_enqueue(pool, rqstp);
  1366. /*
  1367. * We have to be able to interrupt this wait
  1368. * to bring down the daemons ...
  1369. */
  1370. set_current_state(TASK_INTERRUPTIBLE);
  1371. add_wait_queue(&rqstp->rq_wait, &wait);
  1372. spin_unlock_bh(&pool->sp_lock);
  1373. schedule_timeout(timeout);
  1374. try_to_freeze();
  1375. spin_lock_bh(&pool->sp_lock);
  1376. remove_wait_queue(&rqstp->rq_wait, &wait);
  1377. if (!(svsk = rqstp->rq_sock)) {
  1378. svc_thread_dequeue(pool, rqstp);
  1379. spin_unlock_bh(&pool->sp_lock);
  1380. dprintk("svc: server %p, no data yet\n", rqstp);
  1381. return signalled()? -EINTR : -EAGAIN;
  1382. }
  1383. }
  1384. spin_unlock_bh(&pool->sp_lock);
  1385. len = 0;
  1386. if (test_bit(XPT_CLOSE, &svsk->sk_xprt.xpt_flags)) {
  1387. dprintk("svc_recv: found XPT_CLOSE\n");
  1388. svc_delete_xprt(&svsk->sk_xprt);
  1389. } else if (test_bit(XPT_LISTENER, &svsk->sk_xprt.xpt_flags)) {
  1390. struct svc_xprt *newxpt;
  1391. newxpt = svsk->sk_xprt.xpt_ops->xpo_accept(&svsk->sk_xprt);
  1392. if (newxpt) {
  1393. /*
  1394. * We know this module_get will succeed because the
  1395. * listener holds a reference too
  1396. */
  1397. __module_get(newxpt->xpt_class->xcl_owner);
  1398. svc_check_conn_limits(svsk->sk_xprt.xpt_server);
  1399. }
  1400. svc_xprt_received(&svsk->sk_xprt);
  1401. } else {
  1402. dprintk("svc: server %p, pool %u, socket %p, inuse=%d\n",
  1403. rqstp, pool->sp_id, svsk,
  1404. atomic_read(&svsk->sk_xprt.xpt_ref.refcount));
  1405. len = svsk->sk_xprt.xpt_ops->xpo_recvfrom(rqstp);
  1406. dprintk("svc: got len=%d\n", len);
  1407. }
  1408. /* No data, incomplete (TCP) read, or accept() */
  1409. if (len == 0 || len == -EAGAIN) {
  1410. rqstp->rq_res.len = 0;
  1411. svc_sock_release(rqstp);
  1412. return -EAGAIN;
  1413. }
  1414. svsk->sk_lastrecv = get_seconds();
  1415. clear_bit(XPT_OLD, &svsk->sk_xprt.xpt_flags);
  1416. rqstp->rq_secure = svc_port_is_privileged(svc_addr(rqstp));
  1417. rqstp->rq_chandle.defer = svc_defer;
  1418. if (serv->sv_stats)
  1419. serv->sv_stats->netcnt++;
  1420. return len;
  1421. }
  1422. /*
  1423. * Drop request
  1424. */
  1425. void
  1426. svc_drop(struct svc_rqst *rqstp)
  1427. {
  1428. dprintk("svc: socket %p dropped request\n", rqstp->rq_sock);
  1429. svc_sock_release(rqstp);
  1430. }
  1431. /*
  1432. * Return reply to client.
  1433. */
  1434. int
  1435. svc_send(struct svc_rqst *rqstp)
  1436. {
  1437. struct svc_xprt *xprt;
  1438. int len;
  1439. struct xdr_buf *xb;
  1440. xprt = rqstp->rq_xprt;
  1441. if (!xprt)
  1442. return -EFAULT;
  1443. /* release the receive skb before sending the reply */
  1444. rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp);
  1445. /* calculate over-all length */
  1446. xb = & rqstp->rq_res;
  1447. xb->len = xb->head[0].iov_len +
  1448. xb->page_len +
  1449. xb->tail[0].iov_len;
  1450. /* Grab mutex to serialize outgoing data. */
  1451. mutex_lock(&xprt->xpt_mutex);
  1452. if (test_bit(XPT_DEAD, &xprt->xpt_flags))
  1453. len = -ENOTCONN;
  1454. else
  1455. len = xprt->xpt_ops->xpo_sendto(rqstp);
  1456. mutex_unlock(&xprt->xpt_mutex);
  1457. svc_sock_release(rqstp);
  1458. if (len == -ECONNREFUSED || len == -ENOTCONN || len == -EAGAIN)
  1459. return 0;
  1460. return len;
  1461. }
  1462. /*
  1463. * Timer function to close old temporary sockets, using
  1464. * a mark-and-sweep algorithm.
  1465. */
  1466. static void
  1467. svc_age_temp_sockets(unsigned long closure)
  1468. {
  1469. struct svc_serv *serv = (struct svc_serv *)closure;
  1470. struct svc_sock *svsk;
  1471. struct list_head *le, *next;
  1472. LIST_HEAD(to_be_aged);
  1473. dprintk("svc_age_temp_sockets\n");
  1474. if (!spin_trylock_bh(&serv->sv_lock)) {
  1475. /* busy, try again 1 sec later */
  1476. dprintk("svc_age_temp_sockets: busy\n");
  1477. mod_timer(&serv->sv_temptimer, jiffies + HZ);
  1478. return;
  1479. }
  1480. list_for_each_safe(le, next, &serv->sv_tempsocks) {
  1481. svsk = list_entry(le, struct svc_sock, sk_xprt.xpt_list);
  1482. if (!test_and_set_bit(XPT_OLD, &svsk->sk_xprt.xpt_flags))
  1483. continue;
  1484. if (atomic_read(&svsk->sk_xprt.xpt_ref.refcount) > 1
  1485. || test_bit(XPT_BUSY, &svsk->sk_xprt.xpt_flags))
  1486. continue;
  1487. svc_xprt_get(&svsk->sk_xprt);
  1488. list_move(le, &to_be_aged);
  1489. set_bit(XPT_CLOSE, &svsk->sk_xprt.xpt_flags);
  1490. set_bit(XPT_DETACHED, &svsk->sk_xprt.xpt_flags);
  1491. }
  1492. spin_unlock_bh(&serv->sv_lock);
  1493. while (!list_empty(&to_be_aged)) {
  1494. le = to_be_aged.next;
  1495. /* fiddling the sk_xprt.xpt_list node is safe 'cos we're XPT_DETACHED */
  1496. list_del_init(le);
  1497. svsk = list_entry(le, struct svc_sock, sk_xprt.xpt_list);
  1498. dprintk("queuing svsk %p for closing, %lu seconds old\n",
  1499. svsk, get_seconds() - svsk->sk_lastrecv);
  1500. /* a thread will dequeue and close it soon */
  1501. svc_xprt_enqueue(&svsk->sk_xprt);
  1502. svc_xprt_put(&svsk->sk_xprt);
  1503. }
  1504. mod_timer(&serv->sv_temptimer, jiffies + svc_conn_age_period * HZ);
  1505. }
  1506. /*
  1507. * Initialize socket for RPC use and create svc_sock struct
  1508. * XXX: May want to setsockopt SO_SNDBUF and SO_RCVBUF.
  1509. */
  1510. static struct svc_sock *svc_setup_socket(struct svc_serv *serv,
  1511. struct socket *sock,
  1512. int *errp, int flags)
  1513. {
  1514. struct svc_sock *svsk;
  1515. struct sock *inet;
  1516. int pmap_register = !(flags & SVC_SOCK_ANONYMOUS);
  1517. int is_temporary = flags & SVC_SOCK_TEMPORARY;
  1518. dprintk("svc: svc_setup_socket %p\n", sock);
  1519. if (!(svsk = kzalloc(sizeof(*svsk), GFP_KERNEL))) {
  1520. *errp = -ENOMEM;
  1521. return NULL;
  1522. }
  1523. inet = sock->sk;
  1524. /* Register socket with portmapper */
  1525. if (*errp >= 0 && pmap_register)
  1526. *errp = svc_register(serv, inet->sk_protocol,
  1527. ntohs(inet_sk(inet)->sport));
  1528. if (*errp < 0) {
  1529. kfree(svsk);
  1530. return NULL;
  1531. }
  1532. set_bit(XPT_BUSY, &svsk->sk_xprt.xpt_flags);
  1533. inet->sk_user_data = svsk;
  1534. svsk->sk_sock = sock;
  1535. svsk->sk_sk = inet;
  1536. svsk->sk_ostate = inet->sk_state_change;
  1537. svsk->sk_odata = inet->sk_data_ready;
  1538. svsk->sk_owspace = inet->sk_write_space;
  1539. svsk->sk_lastrecv = get_seconds();
  1540. spin_lock_init(&svsk->sk_lock);
  1541. INIT_LIST_HEAD(&svsk->sk_deferred);
  1542. /* Initialize the socket */
  1543. if (sock->type == SOCK_DGRAM)
  1544. svc_udp_init(svsk, serv);
  1545. else
  1546. svc_tcp_init(svsk, serv);
  1547. spin_lock_bh(&serv->sv_lock);
  1548. if (is_temporary) {
  1549. set_bit(XPT_TEMP, &svsk->sk_xprt.xpt_flags);
  1550. list_add(&svsk->sk_xprt.xpt_list, &serv->sv_tempsocks);
  1551. serv->sv_tmpcnt++;
  1552. if (serv->sv_temptimer.function == NULL) {
  1553. /* setup timer to age temp sockets */
  1554. setup_timer(&serv->sv_temptimer, svc_age_temp_sockets,
  1555. (unsigned long)serv);
  1556. mod_timer(&serv->sv_temptimer,
  1557. jiffies + svc_conn_age_period * HZ);
  1558. }
  1559. } else {
  1560. clear_bit(XPT_TEMP, &svsk->sk_xprt.xpt_flags);
  1561. list_add(&svsk->sk_xprt.xpt_list, &serv->sv_permsocks);
  1562. }
  1563. spin_unlock_bh(&serv->sv_lock);
  1564. dprintk("svc: svc_setup_socket created %p (inet %p)\n",
  1565. svsk, svsk->sk_sk);
  1566. return svsk;
  1567. }
  1568. int svc_addsock(struct svc_serv *serv,
  1569. int fd,
  1570. char *name_return,
  1571. int *proto)
  1572. {
  1573. int err = 0;
  1574. struct socket *so = sockfd_lookup(fd, &err);
  1575. struct svc_sock *svsk = NULL;
  1576. if (!so)
  1577. return err;
  1578. if (so->sk->sk_family != AF_INET)
  1579. err = -EAFNOSUPPORT;
  1580. else if (so->sk->sk_protocol != IPPROTO_TCP &&
  1581. so->sk->sk_protocol != IPPROTO_UDP)
  1582. err = -EPROTONOSUPPORT;
  1583. else if (so->state > SS_UNCONNECTED)
  1584. err = -EISCONN;
  1585. else {
  1586. svsk = svc_setup_socket(serv, so, &err, SVC_SOCK_DEFAULTS);
  1587. if (svsk) {
  1588. svc_xprt_received(&svsk->sk_xprt);
  1589. err = 0;
  1590. }
  1591. }
  1592. if (err) {
  1593. sockfd_put(so);
  1594. return err;
  1595. }
  1596. if (proto) *proto = so->sk->sk_protocol;
  1597. return one_sock_name(name_return, svsk);
  1598. }
  1599. EXPORT_SYMBOL_GPL(svc_addsock);
  1600. /*
  1601. * Create socket for RPC service.
  1602. */
  1603. static struct svc_xprt *svc_create_socket(struct svc_serv *serv,
  1604. int protocol,
  1605. struct sockaddr *sin, int len,
  1606. int flags)
  1607. {
  1608. struct svc_sock *svsk;
  1609. struct socket *sock;
  1610. int error;
  1611. int type;
  1612. char buf[RPC_MAX_ADDRBUFLEN];
  1613. dprintk("svc: svc_create_socket(%s, %d, %s)\n",
  1614. serv->sv_program->pg_name, protocol,
  1615. __svc_print_addr(sin, buf, sizeof(buf)));
  1616. if (protocol != IPPROTO_UDP && protocol != IPPROTO_TCP) {
  1617. printk(KERN_WARNING "svc: only UDP and TCP "
  1618. "sockets supported\n");
  1619. return ERR_PTR(-EINVAL);
  1620. }
  1621. type = (protocol == IPPROTO_UDP)? SOCK_DGRAM : SOCK_STREAM;
  1622. error = sock_create_kern(sin->sa_family, type, protocol, &sock);
  1623. if (error < 0)
  1624. return ERR_PTR(error);
  1625. svc_reclassify_socket(sock);
  1626. if (type == SOCK_STREAM)
  1627. sock->sk->sk_reuse = 1; /* allow address reuse */
  1628. error = kernel_bind(sock, sin, len);
  1629. if (error < 0)
  1630. goto bummer;
  1631. if (protocol == IPPROTO_TCP) {
  1632. if ((error = kernel_listen(sock, 64)) < 0)
  1633. goto bummer;
  1634. }
  1635. if ((svsk = svc_setup_socket(serv, sock, &error, flags)) != NULL) {
  1636. svc_xprt_received(&svsk->sk_xprt);
  1637. return (struct svc_xprt *)svsk;
  1638. }
  1639. bummer:
  1640. dprintk("svc: svc_create_socket error = %d\n", -error);
  1641. sock_release(sock);
  1642. return ERR_PTR(error);
  1643. }
  1644. /*
  1645. * Detach the svc_sock from the socket so that no
  1646. * more callbacks occur.
  1647. */
  1648. static void svc_sock_detach(struct svc_xprt *xprt)
  1649. {
  1650. struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
  1651. struct sock *sk = svsk->sk_sk;
  1652. dprintk("svc: svc_sock_detach(%p)\n", svsk);
  1653. /* put back the old socket callbacks */
  1654. sk->sk_state_change = svsk->sk_ostate;
  1655. sk->sk_data_ready = svsk->sk_odata;
  1656. sk->sk_write_space = svsk->sk_owspace;
  1657. }
  1658. /*
  1659. * Free the svc_sock's socket resources and the svc_sock itself.
  1660. */
  1661. static void svc_sock_free(struct svc_xprt *xprt)
  1662. {
  1663. struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
  1664. dprintk("svc: svc_sock_free(%p)\n", svsk);
  1665. if (svsk->sk_info_authunix != NULL)
  1666. svcauth_unix_info_release(svsk->sk_info_authunix);
  1667. if (svsk->sk_sock->file)
  1668. sockfd_put(svsk->sk_sock);
  1669. else
  1670. sock_release(svsk->sk_sock);
  1671. kfree(svsk);
  1672. }
  1673. /*
  1674. * Remove a dead transport
  1675. */
  1676. static void svc_delete_xprt(struct svc_xprt *xprt)
  1677. {
  1678. struct svc_serv *serv = xprt->xpt_server;
  1679. dprintk("svc: svc_delete_xprt(%p)\n", xprt);
  1680. xprt->xpt_ops->xpo_detach(xprt);
  1681. spin_lock_bh(&serv->sv_lock);
  1682. if (!test_and_set_bit(XPT_DETACHED, &xprt->xpt_flags))
  1683. list_del_init(&xprt->xpt_list);
  1684. /*
  1685. * We used to delete the transport from whichever list
  1686. * it's sk_xprt.xpt_ready node was on, but we don't actually
  1687. * need to. This is because the only time we're called
  1688. * while still attached to a queue, the queue itself
  1689. * is about to be destroyed (in svc_destroy).
  1690. */
  1691. if (!test_and_set_bit(XPT_DEAD, &xprt->xpt_flags)) {
  1692. BUG_ON(atomic_read(&xprt->xpt_ref.refcount) < 2);
  1693. if (test_bit(XPT_TEMP, &xprt->xpt_flags))
  1694. serv->sv_tmpcnt--;
  1695. svc_xprt_put(xprt);
  1696. }
  1697. spin_unlock_bh(&serv->sv_lock);
  1698. }
  1699. static void svc_close_xprt(struct svc_xprt *xprt)
  1700. {
  1701. set_bit(XPT_CLOSE, &xprt->xpt_flags);
  1702. if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags))
  1703. /* someone else will have to effect the close */
  1704. return;
  1705. svc_xprt_get(xprt);
  1706. svc_delete_xprt(xprt);
  1707. clear_bit(XPT_BUSY, &xprt->xpt_flags);
  1708. svc_xprt_put(xprt);
  1709. }
  1710. void svc_close_all(struct list_head *xprt_list)
  1711. {
  1712. struct svc_xprt *xprt;
  1713. struct svc_xprt *tmp;
  1714. list_for_each_entry_safe(xprt, tmp, xprt_list, xpt_list) {
  1715. set_bit(XPT_CLOSE, &xprt->xpt_flags);
  1716. if (test_bit(XPT_BUSY, &xprt->xpt_flags)) {
  1717. /* Waiting to be processed, but no threads left,
  1718. * So just remove it from the waiting list
  1719. */
  1720. list_del_init(&xprt->xpt_ready);
  1721. clear_bit(XPT_BUSY, &xprt->xpt_flags);
  1722. }
  1723. svc_close_xprt(xprt);
  1724. }
  1725. }
  1726. /*
  1727. * Handle defer and revisit of requests
  1728. */
  1729. static void svc_revisit(struct cache_deferred_req *dreq, int too_many)
  1730. {
  1731. struct svc_deferred_req *dr = container_of(dreq, struct svc_deferred_req, handle);
  1732. struct svc_sock *svsk;
  1733. if (too_many) {
  1734. svc_xprt_put(&dr->svsk->sk_xprt);
  1735. kfree(dr);
  1736. return;
  1737. }
  1738. dprintk("revisit queued\n");
  1739. svsk = dr->svsk;
  1740. dr->svsk = NULL;
  1741. spin_lock(&svsk->sk_lock);
  1742. list_add(&dr->handle.recent, &svsk->sk_deferred);
  1743. spin_unlock(&svsk->sk_lock);
  1744. set_bit(XPT_DEFERRED, &svsk->sk_xprt.xpt_flags);
  1745. svc_xprt_enqueue(&svsk->sk_xprt);
  1746. svc_xprt_put(&svsk->sk_xprt);
  1747. }
  1748. static struct cache_deferred_req *
  1749. svc_defer(struct cache_req *req)
  1750. {
  1751. struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle);
  1752. int size = sizeof(struct svc_deferred_req) + (rqstp->rq_arg.len);
  1753. struct svc_deferred_req *dr;
  1754. if (rqstp->rq_arg.page_len)
  1755. return NULL; /* if more than a page, give up FIXME */
  1756. if (rqstp->rq_deferred) {
  1757. dr = rqstp->rq_deferred;
  1758. rqstp->rq_deferred = NULL;
  1759. } else {
  1760. int skip = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len;
  1761. /* FIXME maybe discard if size too large */
  1762. dr = kmalloc(size, GFP_KERNEL);
  1763. if (dr == NULL)
  1764. return NULL;
  1765. dr->handle.owner = rqstp->rq_server;
  1766. dr->prot = rqstp->rq_prot;
  1767. memcpy(&dr->addr, &rqstp->rq_addr, rqstp->rq_addrlen);
  1768. dr->addrlen = rqstp->rq_addrlen;
  1769. dr->daddr = rqstp->rq_daddr;
  1770. dr->argslen = rqstp->rq_arg.len >> 2;
  1771. memcpy(dr->args, rqstp->rq_arg.head[0].iov_base-skip, dr->argslen<<2);
  1772. }
  1773. svc_xprt_get(rqstp->rq_xprt);
  1774. dr->svsk = rqstp->rq_sock;
  1775. dr->handle.revisit = svc_revisit;
  1776. return &dr->handle;
  1777. }
  1778. /*
  1779. * recv data from a deferred request into an active one
  1780. */
  1781. static int svc_deferred_recv(struct svc_rqst *rqstp)
  1782. {
  1783. struct svc_deferred_req *dr = rqstp->rq_deferred;
  1784. rqstp->rq_arg.head[0].iov_base = dr->args;
  1785. rqstp->rq_arg.head[0].iov_len = dr->argslen<<2;
  1786. rqstp->rq_arg.page_len = 0;
  1787. rqstp->rq_arg.len = dr->argslen<<2;
  1788. rqstp->rq_prot = dr->prot;
  1789. memcpy(&rqstp->rq_addr, &dr->addr, dr->addrlen);
  1790. rqstp->rq_addrlen = dr->addrlen;
  1791. rqstp->rq_daddr = dr->daddr;
  1792. rqstp->rq_respages = rqstp->rq_pages;
  1793. return dr->argslen<<2;
  1794. }
  1795. static struct svc_deferred_req *svc_deferred_dequeue(struct svc_sock *svsk)
  1796. {
  1797. struct svc_deferred_req *dr = NULL;
  1798. if (!test_bit(XPT_DEFERRED, &svsk->sk_xprt.xpt_flags))
  1799. return NULL;
  1800. spin_lock(&svsk->sk_lock);
  1801. clear_bit(XPT_DEFERRED, &svsk->sk_xprt.xpt_flags);
  1802. if (!list_empty(&svsk->sk_deferred)) {
  1803. dr = list_entry(svsk->sk_deferred.next,
  1804. struct svc_deferred_req,
  1805. handle.recent);
  1806. list_del_init(&dr->handle.recent);
  1807. set_bit(XPT_DEFERRED, &svsk->sk_xprt.xpt_flags);
  1808. }
  1809. spin_unlock(&svsk->sk_lock);
  1810. return dr;
  1811. }