x86.c 80 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * derived from drivers/kvm/kvm_main.c
  5. *
  6. * Copyright (C) 2006 Qumranet, Inc.
  7. *
  8. * Authors:
  9. * Avi Kivity <avi@qumranet.com>
  10. * Yaniv Kamay <yaniv@qumranet.com>
  11. *
  12. * This work is licensed under the terms of the GNU GPL, version 2. See
  13. * the COPYING file in the top-level directory.
  14. *
  15. */
  16. #include <linux/kvm_host.h>
  17. #include "irq.h"
  18. #include "mmu.h"
  19. #include <linux/clocksource.h>
  20. #include <linux/kvm.h>
  21. #include <linux/fs.h>
  22. #include <linux/vmalloc.h>
  23. #include <linux/module.h>
  24. #include <linux/mman.h>
  25. #include <linux/highmem.h>
  26. #include <asm/uaccess.h>
  27. #include <asm/msr.h>
  28. #include <asm/desc.h>
  29. #define MAX_IO_MSRS 256
  30. #define CR0_RESERVED_BITS \
  31. (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
  32. | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
  33. | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
  34. #define CR4_RESERVED_BITS \
  35. (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
  36. | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
  37. | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
  38. | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
  39. #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
  40. /* EFER defaults:
  41. * - enable syscall per default because its emulated by KVM
  42. * - enable LME and LMA per default on 64 bit KVM
  43. */
  44. #ifdef CONFIG_X86_64
  45. static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
  46. #else
  47. static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
  48. #endif
  49. #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
  50. #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
  51. static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
  52. struct kvm_cpuid_entry2 __user *entries);
  53. struct kvm_x86_ops *kvm_x86_ops;
  54. struct kvm_stats_debugfs_item debugfs_entries[] = {
  55. { "pf_fixed", VCPU_STAT(pf_fixed) },
  56. { "pf_guest", VCPU_STAT(pf_guest) },
  57. { "tlb_flush", VCPU_STAT(tlb_flush) },
  58. { "invlpg", VCPU_STAT(invlpg) },
  59. { "exits", VCPU_STAT(exits) },
  60. { "io_exits", VCPU_STAT(io_exits) },
  61. { "mmio_exits", VCPU_STAT(mmio_exits) },
  62. { "signal_exits", VCPU_STAT(signal_exits) },
  63. { "irq_window", VCPU_STAT(irq_window_exits) },
  64. { "halt_exits", VCPU_STAT(halt_exits) },
  65. { "halt_wakeup", VCPU_STAT(halt_wakeup) },
  66. { "request_irq", VCPU_STAT(request_irq_exits) },
  67. { "irq_exits", VCPU_STAT(irq_exits) },
  68. { "host_state_reload", VCPU_STAT(host_state_reload) },
  69. { "efer_reload", VCPU_STAT(efer_reload) },
  70. { "fpu_reload", VCPU_STAT(fpu_reload) },
  71. { "insn_emulation", VCPU_STAT(insn_emulation) },
  72. { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
  73. { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
  74. { "mmu_pte_write", VM_STAT(mmu_pte_write) },
  75. { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
  76. { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
  77. { "mmu_flooded", VM_STAT(mmu_flooded) },
  78. { "mmu_recycled", VM_STAT(mmu_recycled) },
  79. { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
  80. { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
  81. { NULL }
  82. };
  83. unsigned long segment_base(u16 selector)
  84. {
  85. struct descriptor_table gdt;
  86. struct desc_struct *d;
  87. unsigned long table_base;
  88. unsigned long v;
  89. if (selector == 0)
  90. return 0;
  91. asm("sgdt %0" : "=m"(gdt));
  92. table_base = gdt.base;
  93. if (selector & 4) { /* from ldt */
  94. u16 ldt_selector;
  95. asm("sldt %0" : "=g"(ldt_selector));
  96. table_base = segment_base(ldt_selector);
  97. }
  98. d = (struct desc_struct *)(table_base + (selector & ~7));
  99. v = d->base0 | ((unsigned long)d->base1 << 16) |
  100. ((unsigned long)d->base2 << 24);
  101. #ifdef CONFIG_X86_64
  102. if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
  103. v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
  104. #endif
  105. return v;
  106. }
  107. EXPORT_SYMBOL_GPL(segment_base);
  108. u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
  109. {
  110. if (irqchip_in_kernel(vcpu->kvm))
  111. return vcpu->arch.apic_base;
  112. else
  113. return vcpu->arch.apic_base;
  114. }
  115. EXPORT_SYMBOL_GPL(kvm_get_apic_base);
  116. void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
  117. {
  118. /* TODO: reserve bits check */
  119. if (irqchip_in_kernel(vcpu->kvm))
  120. kvm_lapic_set_base(vcpu, data);
  121. else
  122. vcpu->arch.apic_base = data;
  123. }
  124. EXPORT_SYMBOL_GPL(kvm_set_apic_base);
  125. void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
  126. {
  127. WARN_ON(vcpu->arch.exception.pending);
  128. vcpu->arch.exception.pending = true;
  129. vcpu->arch.exception.has_error_code = false;
  130. vcpu->arch.exception.nr = nr;
  131. }
  132. EXPORT_SYMBOL_GPL(kvm_queue_exception);
  133. void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
  134. u32 error_code)
  135. {
  136. ++vcpu->stat.pf_guest;
  137. if (vcpu->arch.exception.pending && vcpu->arch.exception.nr == PF_VECTOR) {
  138. printk(KERN_DEBUG "kvm: inject_page_fault:"
  139. " double fault 0x%lx\n", addr);
  140. vcpu->arch.exception.nr = DF_VECTOR;
  141. vcpu->arch.exception.error_code = 0;
  142. return;
  143. }
  144. vcpu->arch.cr2 = addr;
  145. kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
  146. }
  147. void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
  148. {
  149. WARN_ON(vcpu->arch.exception.pending);
  150. vcpu->arch.exception.pending = true;
  151. vcpu->arch.exception.has_error_code = true;
  152. vcpu->arch.exception.nr = nr;
  153. vcpu->arch.exception.error_code = error_code;
  154. }
  155. EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
  156. static void __queue_exception(struct kvm_vcpu *vcpu)
  157. {
  158. kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
  159. vcpu->arch.exception.has_error_code,
  160. vcpu->arch.exception.error_code);
  161. }
  162. /*
  163. * Load the pae pdptrs. Return true is they are all valid.
  164. */
  165. int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
  166. {
  167. gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
  168. unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
  169. int i;
  170. int ret;
  171. u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
  172. down_read(&vcpu->kvm->slots_lock);
  173. ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
  174. offset * sizeof(u64), sizeof(pdpte));
  175. if (ret < 0) {
  176. ret = 0;
  177. goto out;
  178. }
  179. for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
  180. if ((pdpte[i] & 1) && (pdpte[i] & 0xfffffff0000001e6ull)) {
  181. ret = 0;
  182. goto out;
  183. }
  184. }
  185. ret = 1;
  186. memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
  187. out:
  188. up_read(&vcpu->kvm->slots_lock);
  189. return ret;
  190. }
  191. EXPORT_SYMBOL_GPL(load_pdptrs);
  192. static bool pdptrs_changed(struct kvm_vcpu *vcpu)
  193. {
  194. u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
  195. bool changed = true;
  196. int r;
  197. if (is_long_mode(vcpu) || !is_pae(vcpu))
  198. return false;
  199. down_read(&vcpu->kvm->slots_lock);
  200. r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
  201. if (r < 0)
  202. goto out;
  203. changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
  204. out:
  205. up_read(&vcpu->kvm->slots_lock);
  206. return changed;
  207. }
  208. void set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  209. {
  210. if (cr0 & CR0_RESERVED_BITS) {
  211. printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
  212. cr0, vcpu->arch.cr0);
  213. kvm_inject_gp(vcpu, 0);
  214. return;
  215. }
  216. if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
  217. printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
  218. kvm_inject_gp(vcpu, 0);
  219. return;
  220. }
  221. if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
  222. printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
  223. "and a clear PE flag\n");
  224. kvm_inject_gp(vcpu, 0);
  225. return;
  226. }
  227. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
  228. #ifdef CONFIG_X86_64
  229. if ((vcpu->arch.shadow_efer & EFER_LME)) {
  230. int cs_db, cs_l;
  231. if (!is_pae(vcpu)) {
  232. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  233. "in long mode while PAE is disabled\n");
  234. kvm_inject_gp(vcpu, 0);
  235. return;
  236. }
  237. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  238. if (cs_l) {
  239. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  240. "in long mode while CS.L == 1\n");
  241. kvm_inject_gp(vcpu, 0);
  242. return;
  243. }
  244. } else
  245. #endif
  246. if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
  247. printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
  248. "reserved bits\n");
  249. kvm_inject_gp(vcpu, 0);
  250. return;
  251. }
  252. }
  253. kvm_x86_ops->set_cr0(vcpu, cr0);
  254. vcpu->arch.cr0 = cr0;
  255. kvm_mmu_reset_context(vcpu);
  256. return;
  257. }
  258. EXPORT_SYMBOL_GPL(set_cr0);
  259. void lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
  260. {
  261. set_cr0(vcpu, (vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f));
  262. }
  263. EXPORT_SYMBOL_GPL(lmsw);
  264. void set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  265. {
  266. if (cr4 & CR4_RESERVED_BITS) {
  267. printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
  268. kvm_inject_gp(vcpu, 0);
  269. return;
  270. }
  271. if (is_long_mode(vcpu)) {
  272. if (!(cr4 & X86_CR4_PAE)) {
  273. printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
  274. "in long mode\n");
  275. kvm_inject_gp(vcpu, 0);
  276. return;
  277. }
  278. } else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & X86_CR4_PAE)
  279. && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
  280. printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
  281. kvm_inject_gp(vcpu, 0);
  282. return;
  283. }
  284. if (cr4 & X86_CR4_VMXE) {
  285. printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
  286. kvm_inject_gp(vcpu, 0);
  287. return;
  288. }
  289. kvm_x86_ops->set_cr4(vcpu, cr4);
  290. vcpu->arch.cr4 = cr4;
  291. kvm_mmu_reset_context(vcpu);
  292. }
  293. EXPORT_SYMBOL_GPL(set_cr4);
  294. void set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  295. {
  296. if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
  297. kvm_mmu_flush_tlb(vcpu);
  298. return;
  299. }
  300. if (is_long_mode(vcpu)) {
  301. if (cr3 & CR3_L_MODE_RESERVED_BITS) {
  302. printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
  303. kvm_inject_gp(vcpu, 0);
  304. return;
  305. }
  306. } else {
  307. if (is_pae(vcpu)) {
  308. if (cr3 & CR3_PAE_RESERVED_BITS) {
  309. printk(KERN_DEBUG
  310. "set_cr3: #GP, reserved bits\n");
  311. kvm_inject_gp(vcpu, 0);
  312. return;
  313. }
  314. if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
  315. printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
  316. "reserved bits\n");
  317. kvm_inject_gp(vcpu, 0);
  318. return;
  319. }
  320. }
  321. /*
  322. * We don't check reserved bits in nonpae mode, because
  323. * this isn't enforced, and VMware depends on this.
  324. */
  325. }
  326. down_read(&vcpu->kvm->slots_lock);
  327. /*
  328. * Does the new cr3 value map to physical memory? (Note, we
  329. * catch an invalid cr3 even in real-mode, because it would
  330. * cause trouble later on when we turn on paging anyway.)
  331. *
  332. * A real CPU would silently accept an invalid cr3 and would
  333. * attempt to use it - with largely undefined (and often hard
  334. * to debug) behavior on the guest side.
  335. */
  336. if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
  337. kvm_inject_gp(vcpu, 0);
  338. else {
  339. vcpu->arch.cr3 = cr3;
  340. vcpu->arch.mmu.new_cr3(vcpu);
  341. }
  342. up_read(&vcpu->kvm->slots_lock);
  343. }
  344. EXPORT_SYMBOL_GPL(set_cr3);
  345. void set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
  346. {
  347. if (cr8 & CR8_RESERVED_BITS) {
  348. printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
  349. kvm_inject_gp(vcpu, 0);
  350. return;
  351. }
  352. if (irqchip_in_kernel(vcpu->kvm))
  353. kvm_lapic_set_tpr(vcpu, cr8);
  354. else
  355. vcpu->arch.cr8 = cr8;
  356. }
  357. EXPORT_SYMBOL_GPL(set_cr8);
  358. unsigned long get_cr8(struct kvm_vcpu *vcpu)
  359. {
  360. if (irqchip_in_kernel(vcpu->kvm))
  361. return kvm_lapic_get_cr8(vcpu);
  362. else
  363. return vcpu->arch.cr8;
  364. }
  365. EXPORT_SYMBOL_GPL(get_cr8);
  366. /*
  367. * List of msr numbers which we expose to userspace through KVM_GET_MSRS
  368. * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
  369. *
  370. * This list is modified at module load time to reflect the
  371. * capabilities of the host cpu.
  372. */
  373. static u32 msrs_to_save[] = {
  374. MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
  375. MSR_K6_STAR,
  376. #ifdef CONFIG_X86_64
  377. MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
  378. #endif
  379. MSR_IA32_TIME_STAMP_COUNTER, MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
  380. };
  381. static unsigned num_msrs_to_save;
  382. static u32 emulated_msrs[] = {
  383. MSR_IA32_MISC_ENABLE,
  384. };
  385. static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
  386. {
  387. if (efer & efer_reserved_bits) {
  388. printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
  389. efer);
  390. kvm_inject_gp(vcpu, 0);
  391. return;
  392. }
  393. if (is_paging(vcpu)
  394. && (vcpu->arch.shadow_efer & EFER_LME) != (efer & EFER_LME)) {
  395. printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
  396. kvm_inject_gp(vcpu, 0);
  397. return;
  398. }
  399. kvm_x86_ops->set_efer(vcpu, efer);
  400. efer &= ~EFER_LMA;
  401. efer |= vcpu->arch.shadow_efer & EFER_LMA;
  402. vcpu->arch.shadow_efer = efer;
  403. }
  404. void kvm_enable_efer_bits(u64 mask)
  405. {
  406. efer_reserved_bits &= ~mask;
  407. }
  408. EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
  409. /*
  410. * Writes msr value into into the appropriate "register".
  411. * Returns 0 on success, non-0 otherwise.
  412. * Assumes vcpu_load() was already called.
  413. */
  414. int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  415. {
  416. return kvm_x86_ops->set_msr(vcpu, msr_index, data);
  417. }
  418. /*
  419. * Adapt set_msr() to msr_io()'s calling convention
  420. */
  421. static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
  422. {
  423. return kvm_set_msr(vcpu, index, *data);
  424. }
  425. static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
  426. {
  427. static int version;
  428. struct kvm_wall_clock wc;
  429. struct timespec wc_ts;
  430. if (!wall_clock)
  431. return;
  432. version++;
  433. down_read(&kvm->slots_lock);
  434. kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
  435. wc_ts = current_kernel_time();
  436. wc.wc_sec = wc_ts.tv_sec;
  437. wc.wc_nsec = wc_ts.tv_nsec;
  438. wc.wc_version = version;
  439. kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
  440. version++;
  441. kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
  442. up_read(&kvm->slots_lock);
  443. }
  444. static void kvm_write_guest_time(struct kvm_vcpu *v)
  445. {
  446. struct timespec ts;
  447. unsigned long flags;
  448. struct kvm_vcpu_arch *vcpu = &v->arch;
  449. void *shared_kaddr;
  450. if ((!vcpu->time_page))
  451. return;
  452. /* Keep irq disabled to prevent changes to the clock */
  453. local_irq_save(flags);
  454. kvm_get_msr(v, MSR_IA32_TIME_STAMP_COUNTER,
  455. &vcpu->hv_clock.tsc_timestamp);
  456. ktime_get_ts(&ts);
  457. local_irq_restore(flags);
  458. /* With all the info we got, fill in the values */
  459. vcpu->hv_clock.system_time = ts.tv_nsec +
  460. (NSEC_PER_SEC * (u64)ts.tv_sec);
  461. /*
  462. * The interface expects us to write an even number signaling that the
  463. * update is finished. Since the guest won't see the intermediate
  464. * state, we just write "2" at the end
  465. */
  466. vcpu->hv_clock.version = 2;
  467. shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
  468. memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
  469. sizeof(vcpu->hv_clock));
  470. kunmap_atomic(shared_kaddr, KM_USER0);
  471. mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
  472. }
  473. int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  474. {
  475. switch (msr) {
  476. case MSR_EFER:
  477. set_efer(vcpu, data);
  478. break;
  479. case MSR_IA32_MC0_STATUS:
  480. pr_unimpl(vcpu, "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
  481. __FUNCTION__, data);
  482. break;
  483. case MSR_IA32_MCG_STATUS:
  484. pr_unimpl(vcpu, "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
  485. __FUNCTION__, data);
  486. break;
  487. case MSR_IA32_MCG_CTL:
  488. pr_unimpl(vcpu, "%s: MSR_IA32_MCG_CTL 0x%llx, nop\n",
  489. __FUNCTION__, data);
  490. break;
  491. case MSR_IA32_UCODE_REV:
  492. case MSR_IA32_UCODE_WRITE:
  493. case 0x200 ... 0x2ff: /* MTRRs */
  494. break;
  495. case MSR_IA32_APICBASE:
  496. kvm_set_apic_base(vcpu, data);
  497. break;
  498. case MSR_IA32_MISC_ENABLE:
  499. vcpu->arch.ia32_misc_enable_msr = data;
  500. break;
  501. case MSR_KVM_WALL_CLOCK:
  502. vcpu->kvm->arch.wall_clock = data;
  503. kvm_write_wall_clock(vcpu->kvm, data);
  504. break;
  505. case MSR_KVM_SYSTEM_TIME: {
  506. if (vcpu->arch.time_page) {
  507. kvm_release_page_dirty(vcpu->arch.time_page);
  508. vcpu->arch.time_page = NULL;
  509. }
  510. vcpu->arch.time = data;
  511. /* we verify if the enable bit is set... */
  512. if (!(data & 1))
  513. break;
  514. /* ...but clean it before doing the actual write */
  515. vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
  516. vcpu->arch.hv_clock.tsc_to_system_mul =
  517. clocksource_khz2mult(tsc_khz, 22);
  518. vcpu->arch.hv_clock.tsc_shift = 22;
  519. down_read(&current->mm->mmap_sem);
  520. down_read(&vcpu->kvm->slots_lock);
  521. vcpu->arch.time_page =
  522. gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
  523. up_read(&vcpu->kvm->slots_lock);
  524. up_read(&current->mm->mmap_sem);
  525. if (is_error_page(vcpu->arch.time_page)) {
  526. kvm_release_page_clean(vcpu->arch.time_page);
  527. vcpu->arch.time_page = NULL;
  528. }
  529. kvm_write_guest_time(vcpu);
  530. break;
  531. }
  532. default:
  533. pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n", msr, data);
  534. return 1;
  535. }
  536. return 0;
  537. }
  538. EXPORT_SYMBOL_GPL(kvm_set_msr_common);
  539. /*
  540. * Reads an msr value (of 'msr_index') into 'pdata'.
  541. * Returns 0 on success, non-0 otherwise.
  542. * Assumes vcpu_load() was already called.
  543. */
  544. int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  545. {
  546. return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
  547. }
  548. int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  549. {
  550. u64 data;
  551. switch (msr) {
  552. case 0xc0010010: /* SYSCFG */
  553. case 0xc0010015: /* HWCR */
  554. case MSR_IA32_PLATFORM_ID:
  555. case MSR_IA32_P5_MC_ADDR:
  556. case MSR_IA32_P5_MC_TYPE:
  557. case MSR_IA32_MC0_CTL:
  558. case MSR_IA32_MCG_STATUS:
  559. case MSR_IA32_MCG_CAP:
  560. case MSR_IA32_MCG_CTL:
  561. case MSR_IA32_MC0_MISC:
  562. case MSR_IA32_MC0_MISC+4:
  563. case MSR_IA32_MC0_MISC+8:
  564. case MSR_IA32_MC0_MISC+12:
  565. case MSR_IA32_MC0_MISC+16:
  566. case MSR_IA32_UCODE_REV:
  567. case MSR_IA32_PERF_STATUS:
  568. case MSR_IA32_EBL_CR_POWERON:
  569. /* MTRR registers */
  570. case 0xfe:
  571. case 0x200 ... 0x2ff:
  572. data = 0;
  573. break;
  574. case 0xcd: /* fsb frequency */
  575. data = 3;
  576. break;
  577. case MSR_IA32_APICBASE:
  578. data = kvm_get_apic_base(vcpu);
  579. break;
  580. case MSR_IA32_MISC_ENABLE:
  581. data = vcpu->arch.ia32_misc_enable_msr;
  582. break;
  583. case MSR_EFER:
  584. data = vcpu->arch.shadow_efer;
  585. break;
  586. case MSR_KVM_WALL_CLOCK:
  587. data = vcpu->kvm->arch.wall_clock;
  588. break;
  589. case MSR_KVM_SYSTEM_TIME:
  590. data = vcpu->arch.time;
  591. break;
  592. default:
  593. pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
  594. return 1;
  595. }
  596. *pdata = data;
  597. return 0;
  598. }
  599. EXPORT_SYMBOL_GPL(kvm_get_msr_common);
  600. /*
  601. * Read or write a bunch of msrs. All parameters are kernel addresses.
  602. *
  603. * @return number of msrs set successfully.
  604. */
  605. static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
  606. struct kvm_msr_entry *entries,
  607. int (*do_msr)(struct kvm_vcpu *vcpu,
  608. unsigned index, u64 *data))
  609. {
  610. int i;
  611. vcpu_load(vcpu);
  612. for (i = 0; i < msrs->nmsrs; ++i)
  613. if (do_msr(vcpu, entries[i].index, &entries[i].data))
  614. break;
  615. vcpu_put(vcpu);
  616. return i;
  617. }
  618. /*
  619. * Read or write a bunch of msrs. Parameters are user addresses.
  620. *
  621. * @return number of msrs set successfully.
  622. */
  623. static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
  624. int (*do_msr)(struct kvm_vcpu *vcpu,
  625. unsigned index, u64 *data),
  626. int writeback)
  627. {
  628. struct kvm_msrs msrs;
  629. struct kvm_msr_entry *entries;
  630. int r, n;
  631. unsigned size;
  632. r = -EFAULT;
  633. if (copy_from_user(&msrs, user_msrs, sizeof msrs))
  634. goto out;
  635. r = -E2BIG;
  636. if (msrs.nmsrs >= MAX_IO_MSRS)
  637. goto out;
  638. r = -ENOMEM;
  639. size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
  640. entries = vmalloc(size);
  641. if (!entries)
  642. goto out;
  643. r = -EFAULT;
  644. if (copy_from_user(entries, user_msrs->entries, size))
  645. goto out_free;
  646. r = n = __msr_io(vcpu, &msrs, entries, do_msr);
  647. if (r < 0)
  648. goto out_free;
  649. r = -EFAULT;
  650. if (writeback && copy_to_user(user_msrs->entries, entries, size))
  651. goto out_free;
  652. r = n;
  653. out_free:
  654. vfree(entries);
  655. out:
  656. return r;
  657. }
  658. /*
  659. * Make sure that a cpu that is being hot-unplugged does not have any vcpus
  660. * cached on it.
  661. */
  662. void decache_vcpus_on_cpu(int cpu)
  663. {
  664. struct kvm *vm;
  665. struct kvm_vcpu *vcpu;
  666. int i;
  667. spin_lock(&kvm_lock);
  668. list_for_each_entry(vm, &vm_list, vm_list)
  669. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  670. vcpu = vm->vcpus[i];
  671. if (!vcpu)
  672. continue;
  673. /*
  674. * If the vcpu is locked, then it is running on some
  675. * other cpu and therefore it is not cached on the
  676. * cpu in question.
  677. *
  678. * If it's not locked, check the last cpu it executed
  679. * on.
  680. */
  681. if (mutex_trylock(&vcpu->mutex)) {
  682. if (vcpu->cpu == cpu) {
  683. kvm_x86_ops->vcpu_decache(vcpu);
  684. vcpu->cpu = -1;
  685. }
  686. mutex_unlock(&vcpu->mutex);
  687. }
  688. }
  689. spin_unlock(&kvm_lock);
  690. }
  691. int kvm_dev_ioctl_check_extension(long ext)
  692. {
  693. int r;
  694. switch (ext) {
  695. case KVM_CAP_IRQCHIP:
  696. case KVM_CAP_HLT:
  697. case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
  698. case KVM_CAP_USER_MEMORY:
  699. case KVM_CAP_SET_TSS_ADDR:
  700. case KVM_CAP_EXT_CPUID:
  701. case KVM_CAP_CLOCKSOURCE:
  702. r = 1;
  703. break;
  704. case KVM_CAP_VAPIC:
  705. r = !kvm_x86_ops->cpu_has_accelerated_tpr();
  706. break;
  707. case KVM_CAP_NR_VCPUS:
  708. r = KVM_MAX_VCPUS;
  709. break;
  710. case KVM_CAP_NR_MEMSLOTS:
  711. r = KVM_MEMORY_SLOTS;
  712. break;
  713. default:
  714. r = 0;
  715. break;
  716. }
  717. return r;
  718. }
  719. long kvm_arch_dev_ioctl(struct file *filp,
  720. unsigned int ioctl, unsigned long arg)
  721. {
  722. void __user *argp = (void __user *)arg;
  723. long r;
  724. switch (ioctl) {
  725. case KVM_GET_MSR_INDEX_LIST: {
  726. struct kvm_msr_list __user *user_msr_list = argp;
  727. struct kvm_msr_list msr_list;
  728. unsigned n;
  729. r = -EFAULT;
  730. if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
  731. goto out;
  732. n = msr_list.nmsrs;
  733. msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
  734. if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
  735. goto out;
  736. r = -E2BIG;
  737. if (n < num_msrs_to_save)
  738. goto out;
  739. r = -EFAULT;
  740. if (copy_to_user(user_msr_list->indices, &msrs_to_save,
  741. num_msrs_to_save * sizeof(u32)))
  742. goto out;
  743. if (copy_to_user(user_msr_list->indices
  744. + num_msrs_to_save * sizeof(u32),
  745. &emulated_msrs,
  746. ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
  747. goto out;
  748. r = 0;
  749. break;
  750. }
  751. case KVM_GET_SUPPORTED_CPUID: {
  752. struct kvm_cpuid2 __user *cpuid_arg = argp;
  753. struct kvm_cpuid2 cpuid;
  754. r = -EFAULT;
  755. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  756. goto out;
  757. r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
  758. cpuid_arg->entries);
  759. if (r)
  760. goto out;
  761. r = -EFAULT;
  762. if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
  763. goto out;
  764. r = 0;
  765. break;
  766. }
  767. default:
  768. r = -EINVAL;
  769. }
  770. out:
  771. return r;
  772. }
  773. void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  774. {
  775. kvm_x86_ops->vcpu_load(vcpu, cpu);
  776. kvm_write_guest_time(vcpu);
  777. }
  778. void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
  779. {
  780. kvm_x86_ops->vcpu_put(vcpu);
  781. kvm_put_guest_fpu(vcpu);
  782. }
  783. static int is_efer_nx(void)
  784. {
  785. u64 efer;
  786. rdmsrl(MSR_EFER, efer);
  787. return efer & EFER_NX;
  788. }
  789. static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
  790. {
  791. int i;
  792. struct kvm_cpuid_entry2 *e, *entry;
  793. entry = NULL;
  794. for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
  795. e = &vcpu->arch.cpuid_entries[i];
  796. if (e->function == 0x80000001) {
  797. entry = e;
  798. break;
  799. }
  800. }
  801. if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
  802. entry->edx &= ~(1 << 20);
  803. printk(KERN_INFO "kvm: guest NX capability removed\n");
  804. }
  805. }
  806. /* when an old userspace process fills a new kernel module */
  807. static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
  808. struct kvm_cpuid *cpuid,
  809. struct kvm_cpuid_entry __user *entries)
  810. {
  811. int r, i;
  812. struct kvm_cpuid_entry *cpuid_entries;
  813. r = -E2BIG;
  814. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  815. goto out;
  816. r = -ENOMEM;
  817. cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
  818. if (!cpuid_entries)
  819. goto out;
  820. r = -EFAULT;
  821. if (copy_from_user(cpuid_entries, entries,
  822. cpuid->nent * sizeof(struct kvm_cpuid_entry)))
  823. goto out_free;
  824. for (i = 0; i < cpuid->nent; i++) {
  825. vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
  826. vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
  827. vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
  828. vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
  829. vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
  830. vcpu->arch.cpuid_entries[i].index = 0;
  831. vcpu->arch.cpuid_entries[i].flags = 0;
  832. vcpu->arch.cpuid_entries[i].padding[0] = 0;
  833. vcpu->arch.cpuid_entries[i].padding[1] = 0;
  834. vcpu->arch.cpuid_entries[i].padding[2] = 0;
  835. }
  836. vcpu->arch.cpuid_nent = cpuid->nent;
  837. cpuid_fix_nx_cap(vcpu);
  838. r = 0;
  839. out_free:
  840. vfree(cpuid_entries);
  841. out:
  842. return r;
  843. }
  844. static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
  845. struct kvm_cpuid2 *cpuid,
  846. struct kvm_cpuid_entry2 __user *entries)
  847. {
  848. int r;
  849. r = -E2BIG;
  850. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  851. goto out;
  852. r = -EFAULT;
  853. if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
  854. cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
  855. goto out;
  856. vcpu->arch.cpuid_nent = cpuid->nent;
  857. return 0;
  858. out:
  859. return r;
  860. }
  861. static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
  862. struct kvm_cpuid2 *cpuid,
  863. struct kvm_cpuid_entry2 __user *entries)
  864. {
  865. int r;
  866. r = -E2BIG;
  867. if (cpuid->nent < vcpu->arch.cpuid_nent)
  868. goto out;
  869. r = -EFAULT;
  870. if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
  871. vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
  872. goto out;
  873. return 0;
  874. out:
  875. cpuid->nent = vcpu->arch.cpuid_nent;
  876. return r;
  877. }
  878. static inline u32 bit(int bitno)
  879. {
  880. return 1 << (bitno & 31);
  881. }
  882. static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
  883. u32 index)
  884. {
  885. entry->function = function;
  886. entry->index = index;
  887. cpuid_count(entry->function, entry->index,
  888. &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
  889. entry->flags = 0;
  890. }
  891. static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
  892. u32 index, int *nent, int maxnent)
  893. {
  894. const u32 kvm_supported_word0_x86_features = bit(X86_FEATURE_FPU) |
  895. bit(X86_FEATURE_VME) | bit(X86_FEATURE_DE) |
  896. bit(X86_FEATURE_PSE) | bit(X86_FEATURE_TSC) |
  897. bit(X86_FEATURE_MSR) | bit(X86_FEATURE_PAE) |
  898. bit(X86_FEATURE_CX8) | bit(X86_FEATURE_APIC) |
  899. bit(X86_FEATURE_SEP) | bit(X86_FEATURE_PGE) |
  900. bit(X86_FEATURE_CMOV) | bit(X86_FEATURE_PSE36) |
  901. bit(X86_FEATURE_CLFLSH) | bit(X86_FEATURE_MMX) |
  902. bit(X86_FEATURE_FXSR) | bit(X86_FEATURE_XMM) |
  903. bit(X86_FEATURE_XMM2) | bit(X86_FEATURE_SELFSNOOP);
  904. const u32 kvm_supported_word1_x86_features = bit(X86_FEATURE_FPU) |
  905. bit(X86_FEATURE_VME) | bit(X86_FEATURE_DE) |
  906. bit(X86_FEATURE_PSE) | bit(X86_FEATURE_TSC) |
  907. bit(X86_FEATURE_MSR) | bit(X86_FEATURE_PAE) |
  908. bit(X86_FEATURE_CX8) | bit(X86_FEATURE_APIC) |
  909. bit(X86_FEATURE_PGE) |
  910. bit(X86_FEATURE_CMOV) | bit(X86_FEATURE_PSE36) |
  911. bit(X86_FEATURE_MMX) | bit(X86_FEATURE_FXSR) |
  912. bit(X86_FEATURE_SYSCALL) |
  913. (bit(X86_FEATURE_NX) && is_efer_nx()) |
  914. #ifdef CONFIG_X86_64
  915. bit(X86_FEATURE_LM) |
  916. #endif
  917. bit(X86_FEATURE_MMXEXT) |
  918. bit(X86_FEATURE_3DNOWEXT) |
  919. bit(X86_FEATURE_3DNOW);
  920. const u32 kvm_supported_word3_x86_features =
  921. bit(X86_FEATURE_XMM3) | bit(X86_FEATURE_CX16);
  922. const u32 kvm_supported_word6_x86_features =
  923. bit(X86_FEATURE_LAHF_LM) | bit(X86_FEATURE_CMP_LEGACY);
  924. /* all func 2 cpuid_count() should be called on the same cpu */
  925. get_cpu();
  926. do_cpuid_1_ent(entry, function, index);
  927. ++*nent;
  928. switch (function) {
  929. case 0:
  930. entry->eax = min(entry->eax, (u32)0xb);
  931. break;
  932. case 1:
  933. entry->edx &= kvm_supported_word0_x86_features;
  934. entry->ecx &= kvm_supported_word3_x86_features;
  935. break;
  936. /* function 2 entries are STATEFUL. That is, repeated cpuid commands
  937. * may return different values. This forces us to get_cpu() before
  938. * issuing the first command, and also to emulate this annoying behavior
  939. * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
  940. case 2: {
  941. int t, times = entry->eax & 0xff;
  942. entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
  943. for (t = 1; t < times && *nent < maxnent; ++t) {
  944. do_cpuid_1_ent(&entry[t], function, 0);
  945. entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
  946. ++*nent;
  947. }
  948. break;
  949. }
  950. /* function 4 and 0xb have additional index. */
  951. case 4: {
  952. int index, cache_type;
  953. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  954. /* read more entries until cache_type is zero */
  955. for (index = 1; *nent < maxnent; ++index) {
  956. cache_type = entry[index - 1].eax & 0x1f;
  957. if (!cache_type)
  958. break;
  959. do_cpuid_1_ent(&entry[index], function, index);
  960. entry[index].flags |=
  961. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  962. ++*nent;
  963. }
  964. break;
  965. }
  966. case 0xb: {
  967. int index, level_type;
  968. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  969. /* read more entries until level_type is zero */
  970. for (index = 1; *nent < maxnent; ++index) {
  971. level_type = entry[index - 1].ecx & 0xff;
  972. if (!level_type)
  973. break;
  974. do_cpuid_1_ent(&entry[index], function, index);
  975. entry[index].flags |=
  976. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  977. ++*nent;
  978. }
  979. break;
  980. }
  981. case 0x80000000:
  982. entry->eax = min(entry->eax, 0x8000001a);
  983. break;
  984. case 0x80000001:
  985. entry->edx &= kvm_supported_word1_x86_features;
  986. entry->ecx &= kvm_supported_word6_x86_features;
  987. break;
  988. }
  989. put_cpu();
  990. }
  991. static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
  992. struct kvm_cpuid_entry2 __user *entries)
  993. {
  994. struct kvm_cpuid_entry2 *cpuid_entries;
  995. int limit, nent = 0, r = -E2BIG;
  996. u32 func;
  997. if (cpuid->nent < 1)
  998. goto out;
  999. r = -ENOMEM;
  1000. cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
  1001. if (!cpuid_entries)
  1002. goto out;
  1003. do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
  1004. limit = cpuid_entries[0].eax;
  1005. for (func = 1; func <= limit && nent < cpuid->nent; ++func)
  1006. do_cpuid_ent(&cpuid_entries[nent], func, 0,
  1007. &nent, cpuid->nent);
  1008. r = -E2BIG;
  1009. if (nent >= cpuid->nent)
  1010. goto out_free;
  1011. do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
  1012. limit = cpuid_entries[nent - 1].eax;
  1013. for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
  1014. do_cpuid_ent(&cpuid_entries[nent], func, 0,
  1015. &nent, cpuid->nent);
  1016. r = -EFAULT;
  1017. if (copy_to_user(entries, cpuid_entries,
  1018. nent * sizeof(struct kvm_cpuid_entry2)))
  1019. goto out_free;
  1020. cpuid->nent = nent;
  1021. r = 0;
  1022. out_free:
  1023. vfree(cpuid_entries);
  1024. out:
  1025. return r;
  1026. }
  1027. static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
  1028. struct kvm_lapic_state *s)
  1029. {
  1030. vcpu_load(vcpu);
  1031. memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
  1032. vcpu_put(vcpu);
  1033. return 0;
  1034. }
  1035. static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
  1036. struct kvm_lapic_state *s)
  1037. {
  1038. vcpu_load(vcpu);
  1039. memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
  1040. kvm_apic_post_state_restore(vcpu);
  1041. vcpu_put(vcpu);
  1042. return 0;
  1043. }
  1044. static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
  1045. struct kvm_interrupt *irq)
  1046. {
  1047. if (irq->irq < 0 || irq->irq >= 256)
  1048. return -EINVAL;
  1049. if (irqchip_in_kernel(vcpu->kvm))
  1050. return -ENXIO;
  1051. vcpu_load(vcpu);
  1052. set_bit(irq->irq, vcpu->arch.irq_pending);
  1053. set_bit(irq->irq / BITS_PER_LONG, &vcpu->arch.irq_summary);
  1054. vcpu_put(vcpu);
  1055. return 0;
  1056. }
  1057. static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
  1058. struct kvm_tpr_access_ctl *tac)
  1059. {
  1060. if (tac->flags)
  1061. return -EINVAL;
  1062. vcpu->arch.tpr_access_reporting = !!tac->enabled;
  1063. return 0;
  1064. }
  1065. long kvm_arch_vcpu_ioctl(struct file *filp,
  1066. unsigned int ioctl, unsigned long arg)
  1067. {
  1068. struct kvm_vcpu *vcpu = filp->private_data;
  1069. void __user *argp = (void __user *)arg;
  1070. int r;
  1071. switch (ioctl) {
  1072. case KVM_GET_LAPIC: {
  1073. struct kvm_lapic_state lapic;
  1074. memset(&lapic, 0, sizeof lapic);
  1075. r = kvm_vcpu_ioctl_get_lapic(vcpu, &lapic);
  1076. if (r)
  1077. goto out;
  1078. r = -EFAULT;
  1079. if (copy_to_user(argp, &lapic, sizeof lapic))
  1080. goto out;
  1081. r = 0;
  1082. break;
  1083. }
  1084. case KVM_SET_LAPIC: {
  1085. struct kvm_lapic_state lapic;
  1086. r = -EFAULT;
  1087. if (copy_from_user(&lapic, argp, sizeof lapic))
  1088. goto out;
  1089. r = kvm_vcpu_ioctl_set_lapic(vcpu, &lapic);;
  1090. if (r)
  1091. goto out;
  1092. r = 0;
  1093. break;
  1094. }
  1095. case KVM_INTERRUPT: {
  1096. struct kvm_interrupt irq;
  1097. r = -EFAULT;
  1098. if (copy_from_user(&irq, argp, sizeof irq))
  1099. goto out;
  1100. r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
  1101. if (r)
  1102. goto out;
  1103. r = 0;
  1104. break;
  1105. }
  1106. case KVM_SET_CPUID: {
  1107. struct kvm_cpuid __user *cpuid_arg = argp;
  1108. struct kvm_cpuid cpuid;
  1109. r = -EFAULT;
  1110. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1111. goto out;
  1112. r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
  1113. if (r)
  1114. goto out;
  1115. break;
  1116. }
  1117. case KVM_SET_CPUID2: {
  1118. struct kvm_cpuid2 __user *cpuid_arg = argp;
  1119. struct kvm_cpuid2 cpuid;
  1120. r = -EFAULT;
  1121. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1122. goto out;
  1123. r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
  1124. cpuid_arg->entries);
  1125. if (r)
  1126. goto out;
  1127. break;
  1128. }
  1129. case KVM_GET_CPUID2: {
  1130. struct kvm_cpuid2 __user *cpuid_arg = argp;
  1131. struct kvm_cpuid2 cpuid;
  1132. r = -EFAULT;
  1133. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1134. goto out;
  1135. r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
  1136. cpuid_arg->entries);
  1137. if (r)
  1138. goto out;
  1139. r = -EFAULT;
  1140. if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
  1141. goto out;
  1142. r = 0;
  1143. break;
  1144. }
  1145. case KVM_GET_MSRS:
  1146. r = msr_io(vcpu, argp, kvm_get_msr, 1);
  1147. break;
  1148. case KVM_SET_MSRS:
  1149. r = msr_io(vcpu, argp, do_set_msr, 0);
  1150. break;
  1151. case KVM_TPR_ACCESS_REPORTING: {
  1152. struct kvm_tpr_access_ctl tac;
  1153. r = -EFAULT;
  1154. if (copy_from_user(&tac, argp, sizeof tac))
  1155. goto out;
  1156. r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
  1157. if (r)
  1158. goto out;
  1159. r = -EFAULT;
  1160. if (copy_to_user(argp, &tac, sizeof tac))
  1161. goto out;
  1162. r = 0;
  1163. break;
  1164. };
  1165. case KVM_SET_VAPIC_ADDR: {
  1166. struct kvm_vapic_addr va;
  1167. r = -EINVAL;
  1168. if (!irqchip_in_kernel(vcpu->kvm))
  1169. goto out;
  1170. r = -EFAULT;
  1171. if (copy_from_user(&va, argp, sizeof va))
  1172. goto out;
  1173. r = 0;
  1174. kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
  1175. break;
  1176. }
  1177. default:
  1178. r = -EINVAL;
  1179. }
  1180. out:
  1181. return r;
  1182. }
  1183. static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
  1184. {
  1185. int ret;
  1186. if (addr > (unsigned int)(-3 * PAGE_SIZE))
  1187. return -1;
  1188. ret = kvm_x86_ops->set_tss_addr(kvm, addr);
  1189. return ret;
  1190. }
  1191. static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
  1192. u32 kvm_nr_mmu_pages)
  1193. {
  1194. if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
  1195. return -EINVAL;
  1196. down_write(&kvm->slots_lock);
  1197. kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
  1198. kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
  1199. up_write(&kvm->slots_lock);
  1200. return 0;
  1201. }
  1202. static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
  1203. {
  1204. return kvm->arch.n_alloc_mmu_pages;
  1205. }
  1206. gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
  1207. {
  1208. int i;
  1209. struct kvm_mem_alias *alias;
  1210. for (i = 0; i < kvm->arch.naliases; ++i) {
  1211. alias = &kvm->arch.aliases[i];
  1212. if (gfn >= alias->base_gfn
  1213. && gfn < alias->base_gfn + alias->npages)
  1214. return alias->target_gfn + gfn - alias->base_gfn;
  1215. }
  1216. return gfn;
  1217. }
  1218. /*
  1219. * Set a new alias region. Aliases map a portion of physical memory into
  1220. * another portion. This is useful for memory windows, for example the PC
  1221. * VGA region.
  1222. */
  1223. static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
  1224. struct kvm_memory_alias *alias)
  1225. {
  1226. int r, n;
  1227. struct kvm_mem_alias *p;
  1228. r = -EINVAL;
  1229. /* General sanity checks */
  1230. if (alias->memory_size & (PAGE_SIZE - 1))
  1231. goto out;
  1232. if (alias->guest_phys_addr & (PAGE_SIZE - 1))
  1233. goto out;
  1234. if (alias->slot >= KVM_ALIAS_SLOTS)
  1235. goto out;
  1236. if (alias->guest_phys_addr + alias->memory_size
  1237. < alias->guest_phys_addr)
  1238. goto out;
  1239. if (alias->target_phys_addr + alias->memory_size
  1240. < alias->target_phys_addr)
  1241. goto out;
  1242. down_write(&kvm->slots_lock);
  1243. p = &kvm->arch.aliases[alias->slot];
  1244. p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
  1245. p->npages = alias->memory_size >> PAGE_SHIFT;
  1246. p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
  1247. for (n = KVM_ALIAS_SLOTS; n > 0; --n)
  1248. if (kvm->arch.aliases[n - 1].npages)
  1249. break;
  1250. kvm->arch.naliases = n;
  1251. kvm_mmu_zap_all(kvm);
  1252. up_write(&kvm->slots_lock);
  1253. return 0;
  1254. out:
  1255. return r;
  1256. }
  1257. static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  1258. {
  1259. int r;
  1260. r = 0;
  1261. switch (chip->chip_id) {
  1262. case KVM_IRQCHIP_PIC_MASTER:
  1263. memcpy(&chip->chip.pic,
  1264. &pic_irqchip(kvm)->pics[0],
  1265. sizeof(struct kvm_pic_state));
  1266. break;
  1267. case KVM_IRQCHIP_PIC_SLAVE:
  1268. memcpy(&chip->chip.pic,
  1269. &pic_irqchip(kvm)->pics[1],
  1270. sizeof(struct kvm_pic_state));
  1271. break;
  1272. case KVM_IRQCHIP_IOAPIC:
  1273. memcpy(&chip->chip.ioapic,
  1274. ioapic_irqchip(kvm),
  1275. sizeof(struct kvm_ioapic_state));
  1276. break;
  1277. default:
  1278. r = -EINVAL;
  1279. break;
  1280. }
  1281. return r;
  1282. }
  1283. static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  1284. {
  1285. int r;
  1286. r = 0;
  1287. switch (chip->chip_id) {
  1288. case KVM_IRQCHIP_PIC_MASTER:
  1289. memcpy(&pic_irqchip(kvm)->pics[0],
  1290. &chip->chip.pic,
  1291. sizeof(struct kvm_pic_state));
  1292. break;
  1293. case KVM_IRQCHIP_PIC_SLAVE:
  1294. memcpy(&pic_irqchip(kvm)->pics[1],
  1295. &chip->chip.pic,
  1296. sizeof(struct kvm_pic_state));
  1297. break;
  1298. case KVM_IRQCHIP_IOAPIC:
  1299. memcpy(ioapic_irqchip(kvm),
  1300. &chip->chip.ioapic,
  1301. sizeof(struct kvm_ioapic_state));
  1302. break;
  1303. default:
  1304. r = -EINVAL;
  1305. break;
  1306. }
  1307. kvm_pic_update_irq(pic_irqchip(kvm));
  1308. return r;
  1309. }
  1310. /*
  1311. * Get (and clear) the dirty memory log for a memory slot.
  1312. */
  1313. int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
  1314. struct kvm_dirty_log *log)
  1315. {
  1316. int r;
  1317. int n;
  1318. struct kvm_memory_slot *memslot;
  1319. int is_dirty = 0;
  1320. down_write(&kvm->slots_lock);
  1321. r = kvm_get_dirty_log(kvm, log, &is_dirty);
  1322. if (r)
  1323. goto out;
  1324. /* If nothing is dirty, don't bother messing with page tables. */
  1325. if (is_dirty) {
  1326. kvm_mmu_slot_remove_write_access(kvm, log->slot);
  1327. kvm_flush_remote_tlbs(kvm);
  1328. memslot = &kvm->memslots[log->slot];
  1329. n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
  1330. memset(memslot->dirty_bitmap, 0, n);
  1331. }
  1332. r = 0;
  1333. out:
  1334. up_write(&kvm->slots_lock);
  1335. return r;
  1336. }
  1337. long kvm_arch_vm_ioctl(struct file *filp,
  1338. unsigned int ioctl, unsigned long arg)
  1339. {
  1340. struct kvm *kvm = filp->private_data;
  1341. void __user *argp = (void __user *)arg;
  1342. int r = -EINVAL;
  1343. switch (ioctl) {
  1344. case KVM_SET_TSS_ADDR:
  1345. r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
  1346. if (r < 0)
  1347. goto out;
  1348. break;
  1349. case KVM_SET_MEMORY_REGION: {
  1350. struct kvm_memory_region kvm_mem;
  1351. struct kvm_userspace_memory_region kvm_userspace_mem;
  1352. r = -EFAULT;
  1353. if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
  1354. goto out;
  1355. kvm_userspace_mem.slot = kvm_mem.slot;
  1356. kvm_userspace_mem.flags = kvm_mem.flags;
  1357. kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
  1358. kvm_userspace_mem.memory_size = kvm_mem.memory_size;
  1359. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
  1360. if (r)
  1361. goto out;
  1362. break;
  1363. }
  1364. case KVM_SET_NR_MMU_PAGES:
  1365. r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
  1366. if (r)
  1367. goto out;
  1368. break;
  1369. case KVM_GET_NR_MMU_PAGES:
  1370. r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
  1371. break;
  1372. case KVM_SET_MEMORY_ALIAS: {
  1373. struct kvm_memory_alias alias;
  1374. r = -EFAULT;
  1375. if (copy_from_user(&alias, argp, sizeof alias))
  1376. goto out;
  1377. r = kvm_vm_ioctl_set_memory_alias(kvm, &alias);
  1378. if (r)
  1379. goto out;
  1380. break;
  1381. }
  1382. case KVM_CREATE_IRQCHIP:
  1383. r = -ENOMEM;
  1384. kvm->arch.vpic = kvm_create_pic(kvm);
  1385. if (kvm->arch.vpic) {
  1386. r = kvm_ioapic_init(kvm);
  1387. if (r) {
  1388. kfree(kvm->arch.vpic);
  1389. kvm->arch.vpic = NULL;
  1390. goto out;
  1391. }
  1392. } else
  1393. goto out;
  1394. break;
  1395. case KVM_IRQ_LINE: {
  1396. struct kvm_irq_level irq_event;
  1397. r = -EFAULT;
  1398. if (copy_from_user(&irq_event, argp, sizeof irq_event))
  1399. goto out;
  1400. if (irqchip_in_kernel(kvm)) {
  1401. mutex_lock(&kvm->lock);
  1402. if (irq_event.irq < 16)
  1403. kvm_pic_set_irq(pic_irqchip(kvm),
  1404. irq_event.irq,
  1405. irq_event.level);
  1406. kvm_ioapic_set_irq(kvm->arch.vioapic,
  1407. irq_event.irq,
  1408. irq_event.level);
  1409. mutex_unlock(&kvm->lock);
  1410. r = 0;
  1411. }
  1412. break;
  1413. }
  1414. case KVM_GET_IRQCHIP: {
  1415. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  1416. struct kvm_irqchip chip;
  1417. r = -EFAULT;
  1418. if (copy_from_user(&chip, argp, sizeof chip))
  1419. goto out;
  1420. r = -ENXIO;
  1421. if (!irqchip_in_kernel(kvm))
  1422. goto out;
  1423. r = kvm_vm_ioctl_get_irqchip(kvm, &chip);
  1424. if (r)
  1425. goto out;
  1426. r = -EFAULT;
  1427. if (copy_to_user(argp, &chip, sizeof chip))
  1428. goto out;
  1429. r = 0;
  1430. break;
  1431. }
  1432. case KVM_SET_IRQCHIP: {
  1433. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  1434. struct kvm_irqchip chip;
  1435. r = -EFAULT;
  1436. if (copy_from_user(&chip, argp, sizeof chip))
  1437. goto out;
  1438. r = -ENXIO;
  1439. if (!irqchip_in_kernel(kvm))
  1440. goto out;
  1441. r = kvm_vm_ioctl_set_irqchip(kvm, &chip);
  1442. if (r)
  1443. goto out;
  1444. r = 0;
  1445. break;
  1446. }
  1447. default:
  1448. ;
  1449. }
  1450. out:
  1451. return r;
  1452. }
  1453. static void kvm_init_msr_list(void)
  1454. {
  1455. u32 dummy[2];
  1456. unsigned i, j;
  1457. for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
  1458. if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
  1459. continue;
  1460. if (j < i)
  1461. msrs_to_save[j] = msrs_to_save[i];
  1462. j++;
  1463. }
  1464. num_msrs_to_save = j;
  1465. }
  1466. /*
  1467. * Only apic need an MMIO device hook, so shortcut now..
  1468. */
  1469. static struct kvm_io_device *vcpu_find_pervcpu_dev(struct kvm_vcpu *vcpu,
  1470. gpa_t addr)
  1471. {
  1472. struct kvm_io_device *dev;
  1473. if (vcpu->arch.apic) {
  1474. dev = &vcpu->arch.apic->dev;
  1475. if (dev->in_range(dev, addr))
  1476. return dev;
  1477. }
  1478. return NULL;
  1479. }
  1480. static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
  1481. gpa_t addr)
  1482. {
  1483. struct kvm_io_device *dev;
  1484. dev = vcpu_find_pervcpu_dev(vcpu, addr);
  1485. if (dev == NULL)
  1486. dev = kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr);
  1487. return dev;
  1488. }
  1489. int emulator_read_std(unsigned long addr,
  1490. void *val,
  1491. unsigned int bytes,
  1492. struct kvm_vcpu *vcpu)
  1493. {
  1494. void *data = val;
  1495. int r = X86EMUL_CONTINUE;
  1496. down_read(&vcpu->kvm->slots_lock);
  1497. while (bytes) {
  1498. gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  1499. unsigned offset = addr & (PAGE_SIZE-1);
  1500. unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
  1501. int ret;
  1502. if (gpa == UNMAPPED_GVA) {
  1503. r = X86EMUL_PROPAGATE_FAULT;
  1504. goto out;
  1505. }
  1506. ret = kvm_read_guest(vcpu->kvm, gpa, data, tocopy);
  1507. if (ret < 0) {
  1508. r = X86EMUL_UNHANDLEABLE;
  1509. goto out;
  1510. }
  1511. bytes -= tocopy;
  1512. data += tocopy;
  1513. addr += tocopy;
  1514. }
  1515. out:
  1516. up_read(&vcpu->kvm->slots_lock);
  1517. return r;
  1518. }
  1519. EXPORT_SYMBOL_GPL(emulator_read_std);
  1520. static int emulator_read_emulated(unsigned long addr,
  1521. void *val,
  1522. unsigned int bytes,
  1523. struct kvm_vcpu *vcpu)
  1524. {
  1525. struct kvm_io_device *mmio_dev;
  1526. gpa_t gpa;
  1527. if (vcpu->mmio_read_completed) {
  1528. memcpy(val, vcpu->mmio_data, bytes);
  1529. vcpu->mmio_read_completed = 0;
  1530. return X86EMUL_CONTINUE;
  1531. }
  1532. down_read(&vcpu->kvm->slots_lock);
  1533. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  1534. up_read(&vcpu->kvm->slots_lock);
  1535. /* For APIC access vmexit */
  1536. if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  1537. goto mmio;
  1538. if (emulator_read_std(addr, val, bytes, vcpu)
  1539. == X86EMUL_CONTINUE)
  1540. return X86EMUL_CONTINUE;
  1541. if (gpa == UNMAPPED_GVA)
  1542. return X86EMUL_PROPAGATE_FAULT;
  1543. mmio:
  1544. /*
  1545. * Is this MMIO handled locally?
  1546. */
  1547. mutex_lock(&vcpu->kvm->lock);
  1548. mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
  1549. if (mmio_dev) {
  1550. kvm_iodevice_read(mmio_dev, gpa, bytes, val);
  1551. mutex_unlock(&vcpu->kvm->lock);
  1552. return X86EMUL_CONTINUE;
  1553. }
  1554. mutex_unlock(&vcpu->kvm->lock);
  1555. vcpu->mmio_needed = 1;
  1556. vcpu->mmio_phys_addr = gpa;
  1557. vcpu->mmio_size = bytes;
  1558. vcpu->mmio_is_write = 0;
  1559. return X86EMUL_UNHANDLEABLE;
  1560. }
  1561. static int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
  1562. const void *val, int bytes)
  1563. {
  1564. int ret;
  1565. down_read(&vcpu->kvm->slots_lock);
  1566. ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
  1567. if (ret < 0) {
  1568. up_read(&vcpu->kvm->slots_lock);
  1569. return 0;
  1570. }
  1571. kvm_mmu_pte_write(vcpu, gpa, val, bytes);
  1572. up_read(&vcpu->kvm->slots_lock);
  1573. return 1;
  1574. }
  1575. static int emulator_write_emulated_onepage(unsigned long addr,
  1576. const void *val,
  1577. unsigned int bytes,
  1578. struct kvm_vcpu *vcpu)
  1579. {
  1580. struct kvm_io_device *mmio_dev;
  1581. gpa_t gpa;
  1582. down_read(&vcpu->kvm->slots_lock);
  1583. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  1584. up_read(&vcpu->kvm->slots_lock);
  1585. if (gpa == UNMAPPED_GVA) {
  1586. kvm_inject_page_fault(vcpu, addr, 2);
  1587. return X86EMUL_PROPAGATE_FAULT;
  1588. }
  1589. /* For APIC access vmexit */
  1590. if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  1591. goto mmio;
  1592. if (emulator_write_phys(vcpu, gpa, val, bytes))
  1593. return X86EMUL_CONTINUE;
  1594. mmio:
  1595. /*
  1596. * Is this MMIO handled locally?
  1597. */
  1598. mutex_lock(&vcpu->kvm->lock);
  1599. mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
  1600. if (mmio_dev) {
  1601. kvm_iodevice_write(mmio_dev, gpa, bytes, val);
  1602. mutex_unlock(&vcpu->kvm->lock);
  1603. return X86EMUL_CONTINUE;
  1604. }
  1605. mutex_unlock(&vcpu->kvm->lock);
  1606. vcpu->mmio_needed = 1;
  1607. vcpu->mmio_phys_addr = gpa;
  1608. vcpu->mmio_size = bytes;
  1609. vcpu->mmio_is_write = 1;
  1610. memcpy(vcpu->mmio_data, val, bytes);
  1611. return X86EMUL_CONTINUE;
  1612. }
  1613. int emulator_write_emulated(unsigned long addr,
  1614. const void *val,
  1615. unsigned int bytes,
  1616. struct kvm_vcpu *vcpu)
  1617. {
  1618. /* Crossing a page boundary? */
  1619. if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
  1620. int rc, now;
  1621. now = -addr & ~PAGE_MASK;
  1622. rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
  1623. if (rc != X86EMUL_CONTINUE)
  1624. return rc;
  1625. addr += now;
  1626. val += now;
  1627. bytes -= now;
  1628. }
  1629. return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
  1630. }
  1631. EXPORT_SYMBOL_GPL(emulator_write_emulated);
  1632. static int emulator_cmpxchg_emulated(unsigned long addr,
  1633. const void *old,
  1634. const void *new,
  1635. unsigned int bytes,
  1636. struct kvm_vcpu *vcpu)
  1637. {
  1638. static int reported;
  1639. if (!reported) {
  1640. reported = 1;
  1641. printk(KERN_WARNING "kvm: emulating exchange as write\n");
  1642. }
  1643. #ifndef CONFIG_X86_64
  1644. /* guests cmpxchg8b have to be emulated atomically */
  1645. if (bytes == 8) {
  1646. gpa_t gpa;
  1647. struct page *page;
  1648. char *kaddr;
  1649. u64 val;
  1650. down_read(&vcpu->kvm->slots_lock);
  1651. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  1652. if (gpa == UNMAPPED_GVA ||
  1653. (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  1654. goto emul_write;
  1655. if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
  1656. goto emul_write;
  1657. val = *(u64 *)new;
  1658. down_read(&current->mm->mmap_sem);
  1659. page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  1660. up_read(&current->mm->mmap_sem);
  1661. kaddr = kmap_atomic(page, KM_USER0);
  1662. set_64bit((u64 *)(kaddr + offset_in_page(gpa)), val);
  1663. kunmap_atomic(kaddr, KM_USER0);
  1664. kvm_release_page_dirty(page);
  1665. emul_write:
  1666. up_read(&vcpu->kvm->slots_lock);
  1667. }
  1668. #endif
  1669. return emulator_write_emulated(addr, new, bytes, vcpu);
  1670. }
  1671. static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
  1672. {
  1673. return kvm_x86_ops->get_segment_base(vcpu, seg);
  1674. }
  1675. int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
  1676. {
  1677. return X86EMUL_CONTINUE;
  1678. }
  1679. int emulate_clts(struct kvm_vcpu *vcpu)
  1680. {
  1681. kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 & ~X86_CR0_TS);
  1682. return X86EMUL_CONTINUE;
  1683. }
  1684. int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
  1685. {
  1686. struct kvm_vcpu *vcpu = ctxt->vcpu;
  1687. switch (dr) {
  1688. case 0 ... 3:
  1689. *dest = kvm_x86_ops->get_dr(vcpu, dr);
  1690. return X86EMUL_CONTINUE;
  1691. default:
  1692. pr_unimpl(vcpu, "%s: unexpected dr %u\n", __FUNCTION__, dr);
  1693. return X86EMUL_UNHANDLEABLE;
  1694. }
  1695. }
  1696. int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
  1697. {
  1698. unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
  1699. int exception;
  1700. kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
  1701. if (exception) {
  1702. /* FIXME: better handling */
  1703. return X86EMUL_UNHANDLEABLE;
  1704. }
  1705. return X86EMUL_CONTINUE;
  1706. }
  1707. void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
  1708. {
  1709. static int reported;
  1710. u8 opcodes[4];
  1711. unsigned long rip = vcpu->arch.rip;
  1712. unsigned long rip_linear;
  1713. rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
  1714. if (reported)
  1715. return;
  1716. emulator_read_std(rip_linear, (void *)opcodes, 4, vcpu);
  1717. printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
  1718. context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
  1719. reported = 1;
  1720. }
  1721. EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
  1722. struct x86_emulate_ops emulate_ops = {
  1723. .read_std = emulator_read_std,
  1724. .read_emulated = emulator_read_emulated,
  1725. .write_emulated = emulator_write_emulated,
  1726. .cmpxchg_emulated = emulator_cmpxchg_emulated,
  1727. };
  1728. int emulate_instruction(struct kvm_vcpu *vcpu,
  1729. struct kvm_run *run,
  1730. unsigned long cr2,
  1731. u16 error_code,
  1732. int emulation_type)
  1733. {
  1734. int r;
  1735. struct decode_cache *c;
  1736. vcpu->arch.mmio_fault_cr2 = cr2;
  1737. kvm_x86_ops->cache_regs(vcpu);
  1738. vcpu->mmio_is_write = 0;
  1739. vcpu->arch.pio.string = 0;
  1740. if (!(emulation_type & EMULTYPE_NO_DECODE)) {
  1741. int cs_db, cs_l;
  1742. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  1743. vcpu->arch.emulate_ctxt.vcpu = vcpu;
  1744. vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
  1745. vcpu->arch.emulate_ctxt.mode =
  1746. (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
  1747. ? X86EMUL_MODE_REAL : cs_l
  1748. ? X86EMUL_MODE_PROT64 : cs_db
  1749. ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
  1750. if (vcpu->arch.emulate_ctxt.mode == X86EMUL_MODE_PROT64) {
  1751. vcpu->arch.emulate_ctxt.cs_base = 0;
  1752. vcpu->arch.emulate_ctxt.ds_base = 0;
  1753. vcpu->arch.emulate_ctxt.es_base = 0;
  1754. vcpu->arch.emulate_ctxt.ss_base = 0;
  1755. } else {
  1756. vcpu->arch.emulate_ctxt.cs_base =
  1757. get_segment_base(vcpu, VCPU_SREG_CS);
  1758. vcpu->arch.emulate_ctxt.ds_base =
  1759. get_segment_base(vcpu, VCPU_SREG_DS);
  1760. vcpu->arch.emulate_ctxt.es_base =
  1761. get_segment_base(vcpu, VCPU_SREG_ES);
  1762. vcpu->arch.emulate_ctxt.ss_base =
  1763. get_segment_base(vcpu, VCPU_SREG_SS);
  1764. }
  1765. vcpu->arch.emulate_ctxt.gs_base =
  1766. get_segment_base(vcpu, VCPU_SREG_GS);
  1767. vcpu->arch.emulate_ctxt.fs_base =
  1768. get_segment_base(vcpu, VCPU_SREG_FS);
  1769. r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
  1770. /* Reject the instructions other than VMCALL/VMMCALL when
  1771. * try to emulate invalid opcode */
  1772. c = &vcpu->arch.emulate_ctxt.decode;
  1773. if ((emulation_type & EMULTYPE_TRAP_UD) &&
  1774. (!(c->twobyte && c->b == 0x01 &&
  1775. (c->modrm_reg == 0 || c->modrm_reg == 3) &&
  1776. c->modrm_mod == 3 && c->modrm_rm == 1)))
  1777. return EMULATE_FAIL;
  1778. ++vcpu->stat.insn_emulation;
  1779. if (r) {
  1780. ++vcpu->stat.insn_emulation_fail;
  1781. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  1782. return EMULATE_DONE;
  1783. return EMULATE_FAIL;
  1784. }
  1785. }
  1786. r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
  1787. if (vcpu->arch.pio.string)
  1788. return EMULATE_DO_MMIO;
  1789. if ((r || vcpu->mmio_is_write) && run) {
  1790. run->exit_reason = KVM_EXIT_MMIO;
  1791. run->mmio.phys_addr = vcpu->mmio_phys_addr;
  1792. memcpy(run->mmio.data, vcpu->mmio_data, 8);
  1793. run->mmio.len = vcpu->mmio_size;
  1794. run->mmio.is_write = vcpu->mmio_is_write;
  1795. }
  1796. if (r) {
  1797. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  1798. return EMULATE_DONE;
  1799. if (!vcpu->mmio_needed) {
  1800. kvm_report_emulation_failure(vcpu, "mmio");
  1801. return EMULATE_FAIL;
  1802. }
  1803. return EMULATE_DO_MMIO;
  1804. }
  1805. kvm_x86_ops->decache_regs(vcpu);
  1806. kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
  1807. if (vcpu->mmio_is_write) {
  1808. vcpu->mmio_needed = 0;
  1809. return EMULATE_DO_MMIO;
  1810. }
  1811. return EMULATE_DONE;
  1812. }
  1813. EXPORT_SYMBOL_GPL(emulate_instruction);
  1814. static void free_pio_guest_pages(struct kvm_vcpu *vcpu)
  1815. {
  1816. int i;
  1817. for (i = 0; i < ARRAY_SIZE(vcpu->arch.pio.guest_pages); ++i)
  1818. if (vcpu->arch.pio.guest_pages[i]) {
  1819. kvm_release_page_dirty(vcpu->arch.pio.guest_pages[i]);
  1820. vcpu->arch.pio.guest_pages[i] = NULL;
  1821. }
  1822. }
  1823. static int pio_copy_data(struct kvm_vcpu *vcpu)
  1824. {
  1825. void *p = vcpu->arch.pio_data;
  1826. void *q;
  1827. unsigned bytes;
  1828. int nr_pages = vcpu->arch.pio.guest_pages[1] ? 2 : 1;
  1829. q = vmap(vcpu->arch.pio.guest_pages, nr_pages, VM_READ|VM_WRITE,
  1830. PAGE_KERNEL);
  1831. if (!q) {
  1832. free_pio_guest_pages(vcpu);
  1833. return -ENOMEM;
  1834. }
  1835. q += vcpu->arch.pio.guest_page_offset;
  1836. bytes = vcpu->arch.pio.size * vcpu->arch.pio.cur_count;
  1837. if (vcpu->arch.pio.in)
  1838. memcpy(q, p, bytes);
  1839. else
  1840. memcpy(p, q, bytes);
  1841. q -= vcpu->arch.pio.guest_page_offset;
  1842. vunmap(q);
  1843. free_pio_guest_pages(vcpu);
  1844. return 0;
  1845. }
  1846. int complete_pio(struct kvm_vcpu *vcpu)
  1847. {
  1848. struct kvm_pio_request *io = &vcpu->arch.pio;
  1849. long delta;
  1850. int r;
  1851. kvm_x86_ops->cache_regs(vcpu);
  1852. if (!io->string) {
  1853. if (io->in)
  1854. memcpy(&vcpu->arch.regs[VCPU_REGS_RAX], vcpu->arch.pio_data,
  1855. io->size);
  1856. } else {
  1857. if (io->in) {
  1858. r = pio_copy_data(vcpu);
  1859. if (r) {
  1860. kvm_x86_ops->cache_regs(vcpu);
  1861. return r;
  1862. }
  1863. }
  1864. delta = 1;
  1865. if (io->rep) {
  1866. delta *= io->cur_count;
  1867. /*
  1868. * The size of the register should really depend on
  1869. * current address size.
  1870. */
  1871. vcpu->arch.regs[VCPU_REGS_RCX] -= delta;
  1872. }
  1873. if (io->down)
  1874. delta = -delta;
  1875. delta *= io->size;
  1876. if (io->in)
  1877. vcpu->arch.regs[VCPU_REGS_RDI] += delta;
  1878. else
  1879. vcpu->arch.regs[VCPU_REGS_RSI] += delta;
  1880. }
  1881. kvm_x86_ops->decache_regs(vcpu);
  1882. io->count -= io->cur_count;
  1883. io->cur_count = 0;
  1884. return 0;
  1885. }
  1886. static void kernel_pio(struct kvm_io_device *pio_dev,
  1887. struct kvm_vcpu *vcpu,
  1888. void *pd)
  1889. {
  1890. /* TODO: String I/O for in kernel device */
  1891. mutex_lock(&vcpu->kvm->lock);
  1892. if (vcpu->arch.pio.in)
  1893. kvm_iodevice_read(pio_dev, vcpu->arch.pio.port,
  1894. vcpu->arch.pio.size,
  1895. pd);
  1896. else
  1897. kvm_iodevice_write(pio_dev, vcpu->arch.pio.port,
  1898. vcpu->arch.pio.size,
  1899. pd);
  1900. mutex_unlock(&vcpu->kvm->lock);
  1901. }
  1902. static void pio_string_write(struct kvm_io_device *pio_dev,
  1903. struct kvm_vcpu *vcpu)
  1904. {
  1905. struct kvm_pio_request *io = &vcpu->arch.pio;
  1906. void *pd = vcpu->arch.pio_data;
  1907. int i;
  1908. mutex_lock(&vcpu->kvm->lock);
  1909. for (i = 0; i < io->cur_count; i++) {
  1910. kvm_iodevice_write(pio_dev, io->port,
  1911. io->size,
  1912. pd);
  1913. pd += io->size;
  1914. }
  1915. mutex_unlock(&vcpu->kvm->lock);
  1916. }
  1917. static struct kvm_io_device *vcpu_find_pio_dev(struct kvm_vcpu *vcpu,
  1918. gpa_t addr)
  1919. {
  1920. return kvm_io_bus_find_dev(&vcpu->kvm->pio_bus, addr);
  1921. }
  1922. int kvm_emulate_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
  1923. int size, unsigned port)
  1924. {
  1925. struct kvm_io_device *pio_dev;
  1926. vcpu->run->exit_reason = KVM_EXIT_IO;
  1927. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  1928. vcpu->run->io.size = vcpu->arch.pio.size = size;
  1929. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  1930. vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = 1;
  1931. vcpu->run->io.port = vcpu->arch.pio.port = port;
  1932. vcpu->arch.pio.in = in;
  1933. vcpu->arch.pio.string = 0;
  1934. vcpu->arch.pio.down = 0;
  1935. vcpu->arch.pio.guest_page_offset = 0;
  1936. vcpu->arch.pio.rep = 0;
  1937. kvm_x86_ops->cache_regs(vcpu);
  1938. memcpy(vcpu->arch.pio_data, &vcpu->arch.regs[VCPU_REGS_RAX], 4);
  1939. kvm_x86_ops->decache_regs(vcpu);
  1940. kvm_x86_ops->skip_emulated_instruction(vcpu);
  1941. pio_dev = vcpu_find_pio_dev(vcpu, port);
  1942. if (pio_dev) {
  1943. kernel_pio(pio_dev, vcpu, vcpu->arch.pio_data);
  1944. complete_pio(vcpu);
  1945. return 1;
  1946. }
  1947. return 0;
  1948. }
  1949. EXPORT_SYMBOL_GPL(kvm_emulate_pio);
  1950. int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
  1951. int size, unsigned long count, int down,
  1952. gva_t address, int rep, unsigned port)
  1953. {
  1954. unsigned now, in_page;
  1955. int i, ret = 0;
  1956. int nr_pages = 1;
  1957. struct page *page;
  1958. struct kvm_io_device *pio_dev;
  1959. vcpu->run->exit_reason = KVM_EXIT_IO;
  1960. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  1961. vcpu->run->io.size = vcpu->arch.pio.size = size;
  1962. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  1963. vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = count;
  1964. vcpu->run->io.port = vcpu->arch.pio.port = port;
  1965. vcpu->arch.pio.in = in;
  1966. vcpu->arch.pio.string = 1;
  1967. vcpu->arch.pio.down = down;
  1968. vcpu->arch.pio.guest_page_offset = offset_in_page(address);
  1969. vcpu->arch.pio.rep = rep;
  1970. if (!count) {
  1971. kvm_x86_ops->skip_emulated_instruction(vcpu);
  1972. return 1;
  1973. }
  1974. if (!down)
  1975. in_page = PAGE_SIZE - offset_in_page(address);
  1976. else
  1977. in_page = offset_in_page(address) + size;
  1978. now = min(count, (unsigned long)in_page / size);
  1979. if (!now) {
  1980. /*
  1981. * String I/O straddles page boundary. Pin two guest pages
  1982. * so that we satisfy atomicity constraints. Do just one
  1983. * transaction to avoid complexity.
  1984. */
  1985. nr_pages = 2;
  1986. now = 1;
  1987. }
  1988. if (down) {
  1989. /*
  1990. * String I/O in reverse. Yuck. Kill the guest, fix later.
  1991. */
  1992. pr_unimpl(vcpu, "guest string pio down\n");
  1993. kvm_inject_gp(vcpu, 0);
  1994. return 1;
  1995. }
  1996. vcpu->run->io.count = now;
  1997. vcpu->arch.pio.cur_count = now;
  1998. if (vcpu->arch.pio.cur_count == vcpu->arch.pio.count)
  1999. kvm_x86_ops->skip_emulated_instruction(vcpu);
  2000. for (i = 0; i < nr_pages; ++i) {
  2001. down_read(&vcpu->kvm->slots_lock);
  2002. page = gva_to_page(vcpu, address + i * PAGE_SIZE);
  2003. vcpu->arch.pio.guest_pages[i] = page;
  2004. up_read(&vcpu->kvm->slots_lock);
  2005. if (!page) {
  2006. kvm_inject_gp(vcpu, 0);
  2007. free_pio_guest_pages(vcpu);
  2008. return 1;
  2009. }
  2010. }
  2011. pio_dev = vcpu_find_pio_dev(vcpu, port);
  2012. if (!vcpu->arch.pio.in) {
  2013. /* string PIO write */
  2014. ret = pio_copy_data(vcpu);
  2015. if (ret >= 0 && pio_dev) {
  2016. pio_string_write(pio_dev, vcpu);
  2017. complete_pio(vcpu);
  2018. if (vcpu->arch.pio.count == 0)
  2019. ret = 1;
  2020. }
  2021. } else if (pio_dev)
  2022. pr_unimpl(vcpu, "no string pio read support yet, "
  2023. "port %x size %d count %ld\n",
  2024. port, size, count);
  2025. return ret;
  2026. }
  2027. EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
  2028. int kvm_arch_init(void *opaque)
  2029. {
  2030. int r;
  2031. struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
  2032. if (kvm_x86_ops) {
  2033. printk(KERN_ERR "kvm: already loaded the other module\n");
  2034. r = -EEXIST;
  2035. goto out;
  2036. }
  2037. if (!ops->cpu_has_kvm_support()) {
  2038. printk(KERN_ERR "kvm: no hardware support\n");
  2039. r = -EOPNOTSUPP;
  2040. goto out;
  2041. }
  2042. if (ops->disabled_by_bios()) {
  2043. printk(KERN_ERR "kvm: disabled by bios\n");
  2044. r = -EOPNOTSUPP;
  2045. goto out;
  2046. }
  2047. r = kvm_mmu_module_init();
  2048. if (r)
  2049. goto out;
  2050. kvm_init_msr_list();
  2051. kvm_x86_ops = ops;
  2052. kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
  2053. return 0;
  2054. out:
  2055. return r;
  2056. }
  2057. void kvm_arch_exit(void)
  2058. {
  2059. kvm_x86_ops = NULL;
  2060. kvm_mmu_module_exit();
  2061. }
  2062. int kvm_emulate_halt(struct kvm_vcpu *vcpu)
  2063. {
  2064. ++vcpu->stat.halt_exits;
  2065. if (irqchip_in_kernel(vcpu->kvm)) {
  2066. vcpu->arch.mp_state = VCPU_MP_STATE_HALTED;
  2067. kvm_vcpu_block(vcpu);
  2068. if (vcpu->arch.mp_state != VCPU_MP_STATE_RUNNABLE)
  2069. return -EINTR;
  2070. return 1;
  2071. } else {
  2072. vcpu->run->exit_reason = KVM_EXIT_HLT;
  2073. return 0;
  2074. }
  2075. }
  2076. EXPORT_SYMBOL_GPL(kvm_emulate_halt);
  2077. int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
  2078. {
  2079. unsigned long nr, a0, a1, a2, a3, ret;
  2080. kvm_x86_ops->cache_regs(vcpu);
  2081. nr = vcpu->arch.regs[VCPU_REGS_RAX];
  2082. a0 = vcpu->arch.regs[VCPU_REGS_RBX];
  2083. a1 = vcpu->arch.regs[VCPU_REGS_RCX];
  2084. a2 = vcpu->arch.regs[VCPU_REGS_RDX];
  2085. a3 = vcpu->arch.regs[VCPU_REGS_RSI];
  2086. if (!is_long_mode(vcpu)) {
  2087. nr &= 0xFFFFFFFF;
  2088. a0 &= 0xFFFFFFFF;
  2089. a1 &= 0xFFFFFFFF;
  2090. a2 &= 0xFFFFFFFF;
  2091. a3 &= 0xFFFFFFFF;
  2092. }
  2093. switch (nr) {
  2094. case KVM_HC_VAPIC_POLL_IRQ:
  2095. ret = 0;
  2096. break;
  2097. default:
  2098. ret = -KVM_ENOSYS;
  2099. break;
  2100. }
  2101. vcpu->arch.regs[VCPU_REGS_RAX] = ret;
  2102. kvm_x86_ops->decache_regs(vcpu);
  2103. return 0;
  2104. }
  2105. EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
  2106. int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
  2107. {
  2108. char instruction[3];
  2109. int ret = 0;
  2110. /*
  2111. * Blow out the MMU to ensure that no other VCPU has an active mapping
  2112. * to ensure that the updated hypercall appears atomically across all
  2113. * VCPUs.
  2114. */
  2115. kvm_mmu_zap_all(vcpu->kvm);
  2116. kvm_x86_ops->cache_regs(vcpu);
  2117. kvm_x86_ops->patch_hypercall(vcpu, instruction);
  2118. if (emulator_write_emulated(vcpu->arch.rip, instruction, 3, vcpu)
  2119. != X86EMUL_CONTINUE)
  2120. ret = -EFAULT;
  2121. return ret;
  2122. }
  2123. static u64 mk_cr_64(u64 curr_cr, u32 new_val)
  2124. {
  2125. return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
  2126. }
  2127. void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  2128. {
  2129. struct descriptor_table dt = { limit, base };
  2130. kvm_x86_ops->set_gdt(vcpu, &dt);
  2131. }
  2132. void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  2133. {
  2134. struct descriptor_table dt = { limit, base };
  2135. kvm_x86_ops->set_idt(vcpu, &dt);
  2136. }
  2137. void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
  2138. unsigned long *rflags)
  2139. {
  2140. lmsw(vcpu, msw);
  2141. *rflags = kvm_x86_ops->get_rflags(vcpu);
  2142. }
  2143. unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
  2144. {
  2145. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  2146. switch (cr) {
  2147. case 0:
  2148. return vcpu->arch.cr0;
  2149. case 2:
  2150. return vcpu->arch.cr2;
  2151. case 3:
  2152. return vcpu->arch.cr3;
  2153. case 4:
  2154. return vcpu->arch.cr4;
  2155. case 8:
  2156. return get_cr8(vcpu);
  2157. default:
  2158. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
  2159. return 0;
  2160. }
  2161. }
  2162. void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
  2163. unsigned long *rflags)
  2164. {
  2165. switch (cr) {
  2166. case 0:
  2167. set_cr0(vcpu, mk_cr_64(vcpu->arch.cr0, val));
  2168. *rflags = kvm_x86_ops->get_rflags(vcpu);
  2169. break;
  2170. case 2:
  2171. vcpu->arch.cr2 = val;
  2172. break;
  2173. case 3:
  2174. set_cr3(vcpu, val);
  2175. break;
  2176. case 4:
  2177. set_cr4(vcpu, mk_cr_64(vcpu->arch.cr4, val));
  2178. break;
  2179. case 8:
  2180. set_cr8(vcpu, val & 0xfUL);
  2181. break;
  2182. default:
  2183. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
  2184. }
  2185. }
  2186. static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
  2187. {
  2188. struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
  2189. int j, nent = vcpu->arch.cpuid_nent;
  2190. e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
  2191. /* when no next entry is found, the current entry[i] is reselected */
  2192. for (j = i + 1; j == i; j = (j + 1) % nent) {
  2193. struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
  2194. if (ej->function == e->function) {
  2195. ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
  2196. return j;
  2197. }
  2198. }
  2199. return 0; /* silence gcc, even though control never reaches here */
  2200. }
  2201. /* find an entry with matching function, matching index (if needed), and that
  2202. * should be read next (if it's stateful) */
  2203. static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
  2204. u32 function, u32 index)
  2205. {
  2206. if (e->function != function)
  2207. return 0;
  2208. if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
  2209. return 0;
  2210. if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
  2211. !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
  2212. return 0;
  2213. return 1;
  2214. }
  2215. void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
  2216. {
  2217. int i;
  2218. u32 function, index;
  2219. struct kvm_cpuid_entry2 *e, *best;
  2220. kvm_x86_ops->cache_regs(vcpu);
  2221. function = vcpu->arch.regs[VCPU_REGS_RAX];
  2222. index = vcpu->arch.regs[VCPU_REGS_RCX];
  2223. vcpu->arch.regs[VCPU_REGS_RAX] = 0;
  2224. vcpu->arch.regs[VCPU_REGS_RBX] = 0;
  2225. vcpu->arch.regs[VCPU_REGS_RCX] = 0;
  2226. vcpu->arch.regs[VCPU_REGS_RDX] = 0;
  2227. best = NULL;
  2228. for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
  2229. e = &vcpu->arch.cpuid_entries[i];
  2230. if (is_matching_cpuid_entry(e, function, index)) {
  2231. if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
  2232. move_to_next_stateful_cpuid_entry(vcpu, i);
  2233. best = e;
  2234. break;
  2235. }
  2236. /*
  2237. * Both basic or both extended?
  2238. */
  2239. if (((e->function ^ function) & 0x80000000) == 0)
  2240. if (!best || e->function > best->function)
  2241. best = e;
  2242. }
  2243. if (best) {
  2244. vcpu->arch.regs[VCPU_REGS_RAX] = best->eax;
  2245. vcpu->arch.regs[VCPU_REGS_RBX] = best->ebx;
  2246. vcpu->arch.regs[VCPU_REGS_RCX] = best->ecx;
  2247. vcpu->arch.regs[VCPU_REGS_RDX] = best->edx;
  2248. }
  2249. kvm_x86_ops->decache_regs(vcpu);
  2250. kvm_x86_ops->skip_emulated_instruction(vcpu);
  2251. }
  2252. EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
  2253. /*
  2254. * Check if userspace requested an interrupt window, and that the
  2255. * interrupt window is open.
  2256. *
  2257. * No need to exit to userspace if we already have an interrupt queued.
  2258. */
  2259. static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
  2260. struct kvm_run *kvm_run)
  2261. {
  2262. return (!vcpu->arch.irq_summary &&
  2263. kvm_run->request_interrupt_window &&
  2264. vcpu->arch.interrupt_window_open &&
  2265. (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF));
  2266. }
  2267. static void post_kvm_run_save(struct kvm_vcpu *vcpu,
  2268. struct kvm_run *kvm_run)
  2269. {
  2270. kvm_run->if_flag = (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
  2271. kvm_run->cr8 = get_cr8(vcpu);
  2272. kvm_run->apic_base = kvm_get_apic_base(vcpu);
  2273. if (irqchip_in_kernel(vcpu->kvm))
  2274. kvm_run->ready_for_interrupt_injection = 1;
  2275. else
  2276. kvm_run->ready_for_interrupt_injection =
  2277. (vcpu->arch.interrupt_window_open &&
  2278. vcpu->arch.irq_summary == 0);
  2279. }
  2280. static void vapic_enter(struct kvm_vcpu *vcpu)
  2281. {
  2282. struct kvm_lapic *apic = vcpu->arch.apic;
  2283. struct page *page;
  2284. if (!apic || !apic->vapic_addr)
  2285. return;
  2286. down_read(&current->mm->mmap_sem);
  2287. page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
  2288. up_read(&current->mm->mmap_sem);
  2289. vcpu->arch.apic->vapic_page = page;
  2290. }
  2291. static void vapic_exit(struct kvm_vcpu *vcpu)
  2292. {
  2293. struct kvm_lapic *apic = vcpu->arch.apic;
  2294. if (!apic || !apic->vapic_addr)
  2295. return;
  2296. kvm_release_page_dirty(apic->vapic_page);
  2297. mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
  2298. }
  2299. static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2300. {
  2301. int r;
  2302. if (unlikely(vcpu->arch.mp_state == VCPU_MP_STATE_SIPI_RECEIVED)) {
  2303. pr_debug("vcpu %d received sipi with vector # %x\n",
  2304. vcpu->vcpu_id, vcpu->arch.sipi_vector);
  2305. kvm_lapic_reset(vcpu);
  2306. r = kvm_x86_ops->vcpu_reset(vcpu);
  2307. if (r)
  2308. return r;
  2309. vcpu->arch.mp_state = VCPU_MP_STATE_RUNNABLE;
  2310. }
  2311. vapic_enter(vcpu);
  2312. preempted:
  2313. if (vcpu->guest_debug.enabled)
  2314. kvm_x86_ops->guest_debug_pre(vcpu);
  2315. again:
  2316. r = kvm_mmu_reload(vcpu);
  2317. if (unlikely(r))
  2318. goto out;
  2319. if (vcpu->requests) {
  2320. if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests))
  2321. __kvm_migrate_apic_timer(vcpu);
  2322. if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS,
  2323. &vcpu->requests)) {
  2324. kvm_run->exit_reason = KVM_EXIT_TPR_ACCESS;
  2325. r = 0;
  2326. goto out;
  2327. }
  2328. }
  2329. kvm_inject_pending_timer_irqs(vcpu);
  2330. preempt_disable();
  2331. kvm_x86_ops->prepare_guest_switch(vcpu);
  2332. kvm_load_guest_fpu(vcpu);
  2333. local_irq_disable();
  2334. if (need_resched()) {
  2335. local_irq_enable();
  2336. preempt_enable();
  2337. r = 1;
  2338. goto out;
  2339. }
  2340. if (signal_pending(current)) {
  2341. local_irq_enable();
  2342. preempt_enable();
  2343. r = -EINTR;
  2344. kvm_run->exit_reason = KVM_EXIT_INTR;
  2345. ++vcpu->stat.signal_exits;
  2346. goto out;
  2347. }
  2348. if (vcpu->arch.exception.pending)
  2349. __queue_exception(vcpu);
  2350. else if (irqchip_in_kernel(vcpu->kvm))
  2351. kvm_x86_ops->inject_pending_irq(vcpu);
  2352. else
  2353. kvm_x86_ops->inject_pending_vectors(vcpu, kvm_run);
  2354. kvm_lapic_sync_to_vapic(vcpu);
  2355. vcpu->guest_mode = 1;
  2356. kvm_guest_enter();
  2357. if (vcpu->requests)
  2358. if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
  2359. kvm_x86_ops->tlb_flush(vcpu);
  2360. kvm_x86_ops->run(vcpu, kvm_run);
  2361. vcpu->guest_mode = 0;
  2362. local_irq_enable();
  2363. ++vcpu->stat.exits;
  2364. /*
  2365. * We must have an instruction between local_irq_enable() and
  2366. * kvm_guest_exit(), so the timer interrupt isn't delayed by
  2367. * the interrupt shadow. The stat.exits increment will do nicely.
  2368. * But we need to prevent reordering, hence this barrier():
  2369. */
  2370. barrier();
  2371. kvm_guest_exit();
  2372. preempt_enable();
  2373. /*
  2374. * Profile KVM exit RIPs:
  2375. */
  2376. if (unlikely(prof_on == KVM_PROFILING)) {
  2377. kvm_x86_ops->cache_regs(vcpu);
  2378. profile_hit(KVM_PROFILING, (void *)vcpu->arch.rip);
  2379. }
  2380. if (vcpu->arch.exception.pending && kvm_x86_ops->exception_injected(vcpu))
  2381. vcpu->arch.exception.pending = false;
  2382. kvm_lapic_sync_from_vapic(vcpu);
  2383. r = kvm_x86_ops->handle_exit(kvm_run, vcpu);
  2384. if (r > 0) {
  2385. if (dm_request_for_irq_injection(vcpu, kvm_run)) {
  2386. r = -EINTR;
  2387. kvm_run->exit_reason = KVM_EXIT_INTR;
  2388. ++vcpu->stat.request_irq_exits;
  2389. goto out;
  2390. }
  2391. if (!need_resched())
  2392. goto again;
  2393. }
  2394. out:
  2395. if (r > 0) {
  2396. kvm_resched(vcpu);
  2397. goto preempted;
  2398. }
  2399. post_kvm_run_save(vcpu, kvm_run);
  2400. vapic_exit(vcpu);
  2401. return r;
  2402. }
  2403. int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2404. {
  2405. int r;
  2406. sigset_t sigsaved;
  2407. vcpu_load(vcpu);
  2408. if (unlikely(vcpu->arch.mp_state == VCPU_MP_STATE_UNINITIALIZED)) {
  2409. kvm_vcpu_block(vcpu);
  2410. vcpu_put(vcpu);
  2411. return -EAGAIN;
  2412. }
  2413. if (vcpu->sigset_active)
  2414. sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
  2415. /* re-sync apic's tpr */
  2416. if (!irqchip_in_kernel(vcpu->kvm))
  2417. set_cr8(vcpu, kvm_run->cr8);
  2418. if (vcpu->arch.pio.cur_count) {
  2419. r = complete_pio(vcpu);
  2420. if (r)
  2421. goto out;
  2422. }
  2423. #if CONFIG_HAS_IOMEM
  2424. if (vcpu->mmio_needed) {
  2425. memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
  2426. vcpu->mmio_read_completed = 1;
  2427. vcpu->mmio_needed = 0;
  2428. r = emulate_instruction(vcpu, kvm_run,
  2429. vcpu->arch.mmio_fault_cr2, 0,
  2430. EMULTYPE_NO_DECODE);
  2431. if (r == EMULATE_DO_MMIO) {
  2432. /*
  2433. * Read-modify-write. Back to userspace.
  2434. */
  2435. r = 0;
  2436. goto out;
  2437. }
  2438. }
  2439. #endif
  2440. if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL) {
  2441. kvm_x86_ops->cache_regs(vcpu);
  2442. vcpu->arch.regs[VCPU_REGS_RAX] = kvm_run->hypercall.ret;
  2443. kvm_x86_ops->decache_regs(vcpu);
  2444. }
  2445. r = __vcpu_run(vcpu, kvm_run);
  2446. out:
  2447. if (vcpu->sigset_active)
  2448. sigprocmask(SIG_SETMASK, &sigsaved, NULL);
  2449. vcpu_put(vcpu);
  2450. return r;
  2451. }
  2452. int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  2453. {
  2454. vcpu_load(vcpu);
  2455. kvm_x86_ops->cache_regs(vcpu);
  2456. regs->rax = vcpu->arch.regs[VCPU_REGS_RAX];
  2457. regs->rbx = vcpu->arch.regs[VCPU_REGS_RBX];
  2458. regs->rcx = vcpu->arch.regs[VCPU_REGS_RCX];
  2459. regs->rdx = vcpu->arch.regs[VCPU_REGS_RDX];
  2460. regs->rsi = vcpu->arch.regs[VCPU_REGS_RSI];
  2461. regs->rdi = vcpu->arch.regs[VCPU_REGS_RDI];
  2462. regs->rsp = vcpu->arch.regs[VCPU_REGS_RSP];
  2463. regs->rbp = vcpu->arch.regs[VCPU_REGS_RBP];
  2464. #ifdef CONFIG_X86_64
  2465. regs->r8 = vcpu->arch.regs[VCPU_REGS_R8];
  2466. regs->r9 = vcpu->arch.regs[VCPU_REGS_R9];
  2467. regs->r10 = vcpu->arch.regs[VCPU_REGS_R10];
  2468. regs->r11 = vcpu->arch.regs[VCPU_REGS_R11];
  2469. regs->r12 = vcpu->arch.regs[VCPU_REGS_R12];
  2470. regs->r13 = vcpu->arch.regs[VCPU_REGS_R13];
  2471. regs->r14 = vcpu->arch.regs[VCPU_REGS_R14];
  2472. regs->r15 = vcpu->arch.regs[VCPU_REGS_R15];
  2473. #endif
  2474. regs->rip = vcpu->arch.rip;
  2475. regs->rflags = kvm_x86_ops->get_rflags(vcpu);
  2476. /*
  2477. * Don't leak debug flags in case they were set for guest debugging
  2478. */
  2479. if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
  2480. regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  2481. vcpu_put(vcpu);
  2482. return 0;
  2483. }
  2484. int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  2485. {
  2486. vcpu_load(vcpu);
  2487. vcpu->arch.regs[VCPU_REGS_RAX] = regs->rax;
  2488. vcpu->arch.regs[VCPU_REGS_RBX] = regs->rbx;
  2489. vcpu->arch.regs[VCPU_REGS_RCX] = regs->rcx;
  2490. vcpu->arch.regs[VCPU_REGS_RDX] = regs->rdx;
  2491. vcpu->arch.regs[VCPU_REGS_RSI] = regs->rsi;
  2492. vcpu->arch.regs[VCPU_REGS_RDI] = regs->rdi;
  2493. vcpu->arch.regs[VCPU_REGS_RSP] = regs->rsp;
  2494. vcpu->arch.regs[VCPU_REGS_RBP] = regs->rbp;
  2495. #ifdef CONFIG_X86_64
  2496. vcpu->arch.regs[VCPU_REGS_R8] = regs->r8;
  2497. vcpu->arch.regs[VCPU_REGS_R9] = regs->r9;
  2498. vcpu->arch.regs[VCPU_REGS_R10] = regs->r10;
  2499. vcpu->arch.regs[VCPU_REGS_R11] = regs->r11;
  2500. vcpu->arch.regs[VCPU_REGS_R12] = regs->r12;
  2501. vcpu->arch.regs[VCPU_REGS_R13] = regs->r13;
  2502. vcpu->arch.regs[VCPU_REGS_R14] = regs->r14;
  2503. vcpu->arch.regs[VCPU_REGS_R15] = regs->r15;
  2504. #endif
  2505. vcpu->arch.rip = regs->rip;
  2506. kvm_x86_ops->set_rflags(vcpu, regs->rflags);
  2507. kvm_x86_ops->decache_regs(vcpu);
  2508. vcpu_put(vcpu);
  2509. return 0;
  2510. }
  2511. static void get_segment(struct kvm_vcpu *vcpu,
  2512. struct kvm_segment *var, int seg)
  2513. {
  2514. return kvm_x86_ops->get_segment(vcpu, var, seg);
  2515. }
  2516. void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  2517. {
  2518. struct kvm_segment cs;
  2519. get_segment(vcpu, &cs, VCPU_SREG_CS);
  2520. *db = cs.db;
  2521. *l = cs.l;
  2522. }
  2523. EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
  2524. int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
  2525. struct kvm_sregs *sregs)
  2526. {
  2527. struct descriptor_table dt;
  2528. int pending_vec;
  2529. vcpu_load(vcpu);
  2530. get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  2531. get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  2532. get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  2533. get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  2534. get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  2535. get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  2536. get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  2537. get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  2538. kvm_x86_ops->get_idt(vcpu, &dt);
  2539. sregs->idt.limit = dt.limit;
  2540. sregs->idt.base = dt.base;
  2541. kvm_x86_ops->get_gdt(vcpu, &dt);
  2542. sregs->gdt.limit = dt.limit;
  2543. sregs->gdt.base = dt.base;
  2544. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  2545. sregs->cr0 = vcpu->arch.cr0;
  2546. sregs->cr2 = vcpu->arch.cr2;
  2547. sregs->cr3 = vcpu->arch.cr3;
  2548. sregs->cr4 = vcpu->arch.cr4;
  2549. sregs->cr8 = get_cr8(vcpu);
  2550. sregs->efer = vcpu->arch.shadow_efer;
  2551. sregs->apic_base = kvm_get_apic_base(vcpu);
  2552. if (irqchip_in_kernel(vcpu->kvm)) {
  2553. memset(sregs->interrupt_bitmap, 0,
  2554. sizeof sregs->interrupt_bitmap);
  2555. pending_vec = kvm_x86_ops->get_irq(vcpu);
  2556. if (pending_vec >= 0)
  2557. set_bit(pending_vec,
  2558. (unsigned long *)sregs->interrupt_bitmap);
  2559. } else
  2560. memcpy(sregs->interrupt_bitmap, vcpu->arch.irq_pending,
  2561. sizeof sregs->interrupt_bitmap);
  2562. vcpu_put(vcpu);
  2563. return 0;
  2564. }
  2565. static void set_segment(struct kvm_vcpu *vcpu,
  2566. struct kvm_segment *var, int seg)
  2567. {
  2568. return kvm_x86_ops->set_segment(vcpu, var, seg);
  2569. }
  2570. int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
  2571. struct kvm_sregs *sregs)
  2572. {
  2573. int mmu_reset_needed = 0;
  2574. int i, pending_vec, max_bits;
  2575. struct descriptor_table dt;
  2576. vcpu_load(vcpu);
  2577. dt.limit = sregs->idt.limit;
  2578. dt.base = sregs->idt.base;
  2579. kvm_x86_ops->set_idt(vcpu, &dt);
  2580. dt.limit = sregs->gdt.limit;
  2581. dt.base = sregs->gdt.base;
  2582. kvm_x86_ops->set_gdt(vcpu, &dt);
  2583. vcpu->arch.cr2 = sregs->cr2;
  2584. mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
  2585. vcpu->arch.cr3 = sregs->cr3;
  2586. set_cr8(vcpu, sregs->cr8);
  2587. mmu_reset_needed |= vcpu->arch.shadow_efer != sregs->efer;
  2588. kvm_x86_ops->set_efer(vcpu, sregs->efer);
  2589. kvm_set_apic_base(vcpu, sregs->apic_base);
  2590. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  2591. mmu_reset_needed |= vcpu->arch.cr0 != sregs->cr0;
  2592. kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
  2593. vcpu->arch.cr0 = sregs->cr0;
  2594. mmu_reset_needed |= vcpu->arch.cr4 != sregs->cr4;
  2595. kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
  2596. if (!is_long_mode(vcpu) && is_pae(vcpu))
  2597. load_pdptrs(vcpu, vcpu->arch.cr3);
  2598. if (mmu_reset_needed)
  2599. kvm_mmu_reset_context(vcpu);
  2600. if (!irqchip_in_kernel(vcpu->kvm)) {
  2601. memcpy(vcpu->arch.irq_pending, sregs->interrupt_bitmap,
  2602. sizeof vcpu->arch.irq_pending);
  2603. vcpu->arch.irq_summary = 0;
  2604. for (i = 0; i < ARRAY_SIZE(vcpu->arch.irq_pending); ++i)
  2605. if (vcpu->arch.irq_pending[i])
  2606. __set_bit(i, &vcpu->arch.irq_summary);
  2607. } else {
  2608. max_bits = (sizeof sregs->interrupt_bitmap) << 3;
  2609. pending_vec = find_first_bit(
  2610. (const unsigned long *)sregs->interrupt_bitmap,
  2611. max_bits);
  2612. /* Only pending external irq is handled here */
  2613. if (pending_vec < max_bits) {
  2614. kvm_x86_ops->set_irq(vcpu, pending_vec);
  2615. pr_debug("Set back pending irq %d\n",
  2616. pending_vec);
  2617. }
  2618. }
  2619. set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  2620. set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  2621. set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  2622. set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  2623. set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  2624. set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  2625. set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  2626. set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  2627. vcpu_put(vcpu);
  2628. return 0;
  2629. }
  2630. int kvm_arch_vcpu_ioctl_debug_guest(struct kvm_vcpu *vcpu,
  2631. struct kvm_debug_guest *dbg)
  2632. {
  2633. int r;
  2634. vcpu_load(vcpu);
  2635. r = kvm_x86_ops->set_guest_debug(vcpu, dbg);
  2636. vcpu_put(vcpu);
  2637. return r;
  2638. }
  2639. /*
  2640. * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
  2641. * we have asm/x86/processor.h
  2642. */
  2643. struct fxsave {
  2644. u16 cwd;
  2645. u16 swd;
  2646. u16 twd;
  2647. u16 fop;
  2648. u64 rip;
  2649. u64 rdp;
  2650. u32 mxcsr;
  2651. u32 mxcsr_mask;
  2652. u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
  2653. #ifdef CONFIG_X86_64
  2654. u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
  2655. #else
  2656. u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
  2657. #endif
  2658. };
  2659. /*
  2660. * Translate a guest virtual address to a guest physical address.
  2661. */
  2662. int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
  2663. struct kvm_translation *tr)
  2664. {
  2665. unsigned long vaddr = tr->linear_address;
  2666. gpa_t gpa;
  2667. vcpu_load(vcpu);
  2668. down_read(&vcpu->kvm->slots_lock);
  2669. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, vaddr);
  2670. up_read(&vcpu->kvm->slots_lock);
  2671. tr->physical_address = gpa;
  2672. tr->valid = gpa != UNMAPPED_GVA;
  2673. tr->writeable = 1;
  2674. tr->usermode = 0;
  2675. vcpu_put(vcpu);
  2676. return 0;
  2677. }
  2678. int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  2679. {
  2680. struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
  2681. vcpu_load(vcpu);
  2682. memcpy(fpu->fpr, fxsave->st_space, 128);
  2683. fpu->fcw = fxsave->cwd;
  2684. fpu->fsw = fxsave->swd;
  2685. fpu->ftwx = fxsave->twd;
  2686. fpu->last_opcode = fxsave->fop;
  2687. fpu->last_ip = fxsave->rip;
  2688. fpu->last_dp = fxsave->rdp;
  2689. memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
  2690. vcpu_put(vcpu);
  2691. return 0;
  2692. }
  2693. int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  2694. {
  2695. struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
  2696. vcpu_load(vcpu);
  2697. memcpy(fxsave->st_space, fpu->fpr, 128);
  2698. fxsave->cwd = fpu->fcw;
  2699. fxsave->swd = fpu->fsw;
  2700. fxsave->twd = fpu->ftwx;
  2701. fxsave->fop = fpu->last_opcode;
  2702. fxsave->rip = fpu->last_ip;
  2703. fxsave->rdp = fpu->last_dp;
  2704. memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
  2705. vcpu_put(vcpu);
  2706. return 0;
  2707. }
  2708. void fx_init(struct kvm_vcpu *vcpu)
  2709. {
  2710. unsigned after_mxcsr_mask;
  2711. /* Initialize guest FPU by resetting ours and saving into guest's */
  2712. preempt_disable();
  2713. fx_save(&vcpu->arch.host_fx_image);
  2714. fpu_init();
  2715. fx_save(&vcpu->arch.guest_fx_image);
  2716. fx_restore(&vcpu->arch.host_fx_image);
  2717. preempt_enable();
  2718. vcpu->arch.cr0 |= X86_CR0_ET;
  2719. after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
  2720. vcpu->arch.guest_fx_image.mxcsr = 0x1f80;
  2721. memset((void *)&vcpu->arch.guest_fx_image + after_mxcsr_mask,
  2722. 0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
  2723. }
  2724. EXPORT_SYMBOL_GPL(fx_init);
  2725. void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
  2726. {
  2727. if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
  2728. return;
  2729. vcpu->guest_fpu_loaded = 1;
  2730. fx_save(&vcpu->arch.host_fx_image);
  2731. fx_restore(&vcpu->arch.guest_fx_image);
  2732. }
  2733. EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
  2734. void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
  2735. {
  2736. if (!vcpu->guest_fpu_loaded)
  2737. return;
  2738. vcpu->guest_fpu_loaded = 0;
  2739. fx_save(&vcpu->arch.guest_fx_image);
  2740. fx_restore(&vcpu->arch.host_fx_image);
  2741. ++vcpu->stat.fpu_reload;
  2742. }
  2743. EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
  2744. void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
  2745. {
  2746. kvm_x86_ops->vcpu_free(vcpu);
  2747. }
  2748. struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
  2749. unsigned int id)
  2750. {
  2751. return kvm_x86_ops->vcpu_create(kvm, id);
  2752. }
  2753. int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
  2754. {
  2755. int r;
  2756. /* We do fxsave: this must be aligned. */
  2757. BUG_ON((unsigned long)&vcpu->arch.host_fx_image & 0xF);
  2758. vcpu_load(vcpu);
  2759. r = kvm_arch_vcpu_reset(vcpu);
  2760. if (r == 0)
  2761. r = kvm_mmu_setup(vcpu);
  2762. vcpu_put(vcpu);
  2763. if (r < 0)
  2764. goto free_vcpu;
  2765. return 0;
  2766. free_vcpu:
  2767. kvm_x86_ops->vcpu_free(vcpu);
  2768. return r;
  2769. }
  2770. void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
  2771. {
  2772. vcpu_load(vcpu);
  2773. kvm_mmu_unload(vcpu);
  2774. vcpu_put(vcpu);
  2775. kvm_x86_ops->vcpu_free(vcpu);
  2776. }
  2777. int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
  2778. {
  2779. return kvm_x86_ops->vcpu_reset(vcpu);
  2780. }
  2781. void kvm_arch_hardware_enable(void *garbage)
  2782. {
  2783. kvm_x86_ops->hardware_enable(garbage);
  2784. }
  2785. void kvm_arch_hardware_disable(void *garbage)
  2786. {
  2787. kvm_x86_ops->hardware_disable(garbage);
  2788. }
  2789. int kvm_arch_hardware_setup(void)
  2790. {
  2791. return kvm_x86_ops->hardware_setup();
  2792. }
  2793. void kvm_arch_hardware_unsetup(void)
  2794. {
  2795. kvm_x86_ops->hardware_unsetup();
  2796. }
  2797. void kvm_arch_check_processor_compat(void *rtn)
  2798. {
  2799. kvm_x86_ops->check_processor_compatibility(rtn);
  2800. }
  2801. int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
  2802. {
  2803. struct page *page;
  2804. struct kvm *kvm;
  2805. int r;
  2806. BUG_ON(vcpu->kvm == NULL);
  2807. kvm = vcpu->kvm;
  2808. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  2809. if (!irqchip_in_kernel(kvm) || vcpu->vcpu_id == 0)
  2810. vcpu->arch.mp_state = VCPU_MP_STATE_RUNNABLE;
  2811. else
  2812. vcpu->arch.mp_state = VCPU_MP_STATE_UNINITIALIZED;
  2813. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  2814. if (!page) {
  2815. r = -ENOMEM;
  2816. goto fail;
  2817. }
  2818. vcpu->arch.pio_data = page_address(page);
  2819. r = kvm_mmu_create(vcpu);
  2820. if (r < 0)
  2821. goto fail_free_pio_data;
  2822. if (irqchip_in_kernel(kvm)) {
  2823. r = kvm_create_lapic(vcpu);
  2824. if (r < 0)
  2825. goto fail_mmu_destroy;
  2826. }
  2827. return 0;
  2828. fail_mmu_destroy:
  2829. kvm_mmu_destroy(vcpu);
  2830. fail_free_pio_data:
  2831. free_page((unsigned long)vcpu->arch.pio_data);
  2832. fail:
  2833. return r;
  2834. }
  2835. void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
  2836. {
  2837. kvm_free_lapic(vcpu);
  2838. kvm_mmu_destroy(vcpu);
  2839. free_page((unsigned long)vcpu->arch.pio_data);
  2840. }
  2841. struct kvm *kvm_arch_create_vm(void)
  2842. {
  2843. struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
  2844. if (!kvm)
  2845. return ERR_PTR(-ENOMEM);
  2846. INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
  2847. return kvm;
  2848. }
  2849. static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
  2850. {
  2851. vcpu_load(vcpu);
  2852. kvm_mmu_unload(vcpu);
  2853. vcpu_put(vcpu);
  2854. }
  2855. static void kvm_free_vcpus(struct kvm *kvm)
  2856. {
  2857. unsigned int i;
  2858. /*
  2859. * Unpin any mmu pages first.
  2860. */
  2861. for (i = 0; i < KVM_MAX_VCPUS; ++i)
  2862. if (kvm->vcpus[i])
  2863. kvm_unload_vcpu_mmu(kvm->vcpus[i]);
  2864. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  2865. if (kvm->vcpus[i]) {
  2866. kvm_arch_vcpu_free(kvm->vcpus[i]);
  2867. kvm->vcpus[i] = NULL;
  2868. }
  2869. }
  2870. }
  2871. void kvm_arch_destroy_vm(struct kvm *kvm)
  2872. {
  2873. kfree(kvm->arch.vpic);
  2874. kfree(kvm->arch.vioapic);
  2875. kvm_free_vcpus(kvm);
  2876. kvm_free_physmem(kvm);
  2877. kfree(kvm);
  2878. }
  2879. int kvm_arch_set_memory_region(struct kvm *kvm,
  2880. struct kvm_userspace_memory_region *mem,
  2881. struct kvm_memory_slot old,
  2882. int user_alloc)
  2883. {
  2884. int npages = mem->memory_size >> PAGE_SHIFT;
  2885. struct kvm_memory_slot *memslot = &kvm->memslots[mem->slot];
  2886. /*To keep backward compatibility with older userspace,
  2887. *x86 needs to hanlde !user_alloc case.
  2888. */
  2889. if (!user_alloc) {
  2890. if (npages && !old.rmap) {
  2891. down_write(&current->mm->mmap_sem);
  2892. memslot->userspace_addr = do_mmap(NULL, 0,
  2893. npages * PAGE_SIZE,
  2894. PROT_READ | PROT_WRITE,
  2895. MAP_SHARED | MAP_ANONYMOUS,
  2896. 0);
  2897. up_write(&current->mm->mmap_sem);
  2898. if (IS_ERR((void *)memslot->userspace_addr))
  2899. return PTR_ERR((void *)memslot->userspace_addr);
  2900. } else {
  2901. if (!old.user_alloc && old.rmap) {
  2902. int ret;
  2903. down_write(&current->mm->mmap_sem);
  2904. ret = do_munmap(current->mm, old.userspace_addr,
  2905. old.npages * PAGE_SIZE);
  2906. up_write(&current->mm->mmap_sem);
  2907. if (ret < 0)
  2908. printk(KERN_WARNING
  2909. "kvm_vm_ioctl_set_memory_region: "
  2910. "failed to munmap memory\n");
  2911. }
  2912. }
  2913. }
  2914. if (!kvm->arch.n_requested_mmu_pages) {
  2915. unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
  2916. kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
  2917. }
  2918. kvm_mmu_slot_remove_write_access(kvm, mem->slot);
  2919. kvm_flush_remote_tlbs(kvm);
  2920. return 0;
  2921. }
  2922. int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
  2923. {
  2924. return vcpu->arch.mp_state == VCPU_MP_STATE_RUNNABLE
  2925. || vcpu->arch.mp_state == VCPU_MP_STATE_SIPI_RECEIVED;
  2926. }
  2927. static void vcpu_kick_intr(void *info)
  2928. {
  2929. #ifdef DEBUG
  2930. struct kvm_vcpu *vcpu = (struct kvm_vcpu *)info;
  2931. printk(KERN_DEBUG "vcpu_kick_intr %p \n", vcpu);
  2932. #endif
  2933. }
  2934. void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
  2935. {
  2936. int ipi_pcpu = vcpu->cpu;
  2937. if (waitqueue_active(&vcpu->wq)) {
  2938. wake_up_interruptible(&vcpu->wq);
  2939. ++vcpu->stat.halt_wakeup;
  2940. }
  2941. if (vcpu->guest_mode)
  2942. smp_call_function_single(ipi_pcpu, vcpu_kick_intr, vcpu, 0, 0);
  2943. }