vmx.c 69 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "irq.h"
  18. #include "vmx.h"
  19. #include "mmu.h"
  20. #include <linux/kvm_host.h>
  21. #include <linux/module.h>
  22. #include <linux/kernel.h>
  23. #include <linux/mm.h>
  24. #include <linux/highmem.h>
  25. #include <linux/sched.h>
  26. #include <linux/moduleparam.h>
  27. #include <asm/io.h>
  28. #include <asm/desc.h>
  29. MODULE_AUTHOR("Qumranet");
  30. MODULE_LICENSE("GPL");
  31. static int bypass_guest_pf = 1;
  32. module_param(bypass_guest_pf, bool, 0);
  33. static int enable_vpid = 1;
  34. module_param(enable_vpid, bool, 0);
  35. struct vmcs {
  36. u32 revision_id;
  37. u32 abort;
  38. char data[0];
  39. };
  40. struct vcpu_vmx {
  41. struct kvm_vcpu vcpu;
  42. int launched;
  43. u8 fail;
  44. u32 idt_vectoring_info;
  45. struct kvm_msr_entry *guest_msrs;
  46. struct kvm_msr_entry *host_msrs;
  47. int nmsrs;
  48. int save_nmsrs;
  49. int msr_offset_efer;
  50. #ifdef CONFIG_X86_64
  51. int msr_offset_kernel_gs_base;
  52. #endif
  53. struct vmcs *vmcs;
  54. struct {
  55. int loaded;
  56. u16 fs_sel, gs_sel, ldt_sel;
  57. int gs_ldt_reload_needed;
  58. int fs_reload_needed;
  59. int guest_efer_loaded;
  60. } host_state;
  61. struct {
  62. struct {
  63. bool pending;
  64. u8 vector;
  65. unsigned rip;
  66. } irq;
  67. } rmode;
  68. int vpid;
  69. };
  70. static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
  71. {
  72. return container_of(vcpu, struct vcpu_vmx, vcpu);
  73. }
  74. static int init_rmode_tss(struct kvm *kvm);
  75. static DEFINE_PER_CPU(struct vmcs *, vmxarea);
  76. static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
  77. static struct page *vmx_io_bitmap_a;
  78. static struct page *vmx_io_bitmap_b;
  79. static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
  80. static DEFINE_SPINLOCK(vmx_vpid_lock);
  81. static struct vmcs_config {
  82. int size;
  83. int order;
  84. u32 revision_id;
  85. u32 pin_based_exec_ctrl;
  86. u32 cpu_based_exec_ctrl;
  87. u32 cpu_based_2nd_exec_ctrl;
  88. u32 vmexit_ctrl;
  89. u32 vmentry_ctrl;
  90. } vmcs_config;
  91. #define VMX_SEGMENT_FIELD(seg) \
  92. [VCPU_SREG_##seg] = { \
  93. .selector = GUEST_##seg##_SELECTOR, \
  94. .base = GUEST_##seg##_BASE, \
  95. .limit = GUEST_##seg##_LIMIT, \
  96. .ar_bytes = GUEST_##seg##_AR_BYTES, \
  97. }
  98. static struct kvm_vmx_segment_field {
  99. unsigned selector;
  100. unsigned base;
  101. unsigned limit;
  102. unsigned ar_bytes;
  103. } kvm_vmx_segment_fields[] = {
  104. VMX_SEGMENT_FIELD(CS),
  105. VMX_SEGMENT_FIELD(DS),
  106. VMX_SEGMENT_FIELD(ES),
  107. VMX_SEGMENT_FIELD(FS),
  108. VMX_SEGMENT_FIELD(GS),
  109. VMX_SEGMENT_FIELD(SS),
  110. VMX_SEGMENT_FIELD(TR),
  111. VMX_SEGMENT_FIELD(LDTR),
  112. };
  113. /*
  114. * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
  115. * away by decrementing the array size.
  116. */
  117. static const u32 vmx_msr_index[] = {
  118. #ifdef CONFIG_X86_64
  119. MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, MSR_KERNEL_GS_BASE,
  120. #endif
  121. MSR_EFER, MSR_K6_STAR,
  122. };
  123. #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
  124. static void load_msrs(struct kvm_msr_entry *e, int n)
  125. {
  126. int i;
  127. for (i = 0; i < n; ++i)
  128. wrmsrl(e[i].index, e[i].data);
  129. }
  130. static void save_msrs(struct kvm_msr_entry *e, int n)
  131. {
  132. int i;
  133. for (i = 0; i < n; ++i)
  134. rdmsrl(e[i].index, e[i].data);
  135. }
  136. static inline int is_page_fault(u32 intr_info)
  137. {
  138. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  139. INTR_INFO_VALID_MASK)) ==
  140. (INTR_TYPE_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
  141. }
  142. static inline int is_no_device(u32 intr_info)
  143. {
  144. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  145. INTR_INFO_VALID_MASK)) ==
  146. (INTR_TYPE_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
  147. }
  148. static inline int is_invalid_opcode(u32 intr_info)
  149. {
  150. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  151. INTR_INFO_VALID_MASK)) ==
  152. (INTR_TYPE_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
  153. }
  154. static inline int is_external_interrupt(u32 intr_info)
  155. {
  156. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
  157. == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  158. }
  159. static inline int cpu_has_vmx_tpr_shadow(void)
  160. {
  161. return (vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW);
  162. }
  163. static inline int vm_need_tpr_shadow(struct kvm *kvm)
  164. {
  165. return ((cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm)));
  166. }
  167. static inline int cpu_has_secondary_exec_ctrls(void)
  168. {
  169. return (vmcs_config.cpu_based_exec_ctrl &
  170. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS);
  171. }
  172. static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
  173. {
  174. return (vmcs_config.cpu_based_2nd_exec_ctrl &
  175. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
  176. }
  177. static inline int vm_need_virtualize_apic_accesses(struct kvm *kvm)
  178. {
  179. return ((cpu_has_vmx_virtualize_apic_accesses()) &&
  180. (irqchip_in_kernel(kvm)));
  181. }
  182. static inline int cpu_has_vmx_vpid(void)
  183. {
  184. return (vmcs_config.cpu_based_2nd_exec_ctrl &
  185. SECONDARY_EXEC_ENABLE_VPID);
  186. }
  187. static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
  188. {
  189. int i;
  190. for (i = 0; i < vmx->nmsrs; ++i)
  191. if (vmx->guest_msrs[i].index == msr)
  192. return i;
  193. return -1;
  194. }
  195. static inline void __invvpid(int ext, u16 vpid, gva_t gva)
  196. {
  197. struct {
  198. u64 vpid : 16;
  199. u64 rsvd : 48;
  200. u64 gva;
  201. } operand = { vpid, 0, gva };
  202. asm volatile (ASM_VMX_INVVPID
  203. /* CF==1 or ZF==1 --> rc = -1 */
  204. "; ja 1f ; ud2 ; 1:"
  205. : : "a"(&operand), "c"(ext) : "cc", "memory");
  206. }
  207. static struct kvm_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
  208. {
  209. int i;
  210. i = __find_msr_index(vmx, msr);
  211. if (i >= 0)
  212. return &vmx->guest_msrs[i];
  213. return NULL;
  214. }
  215. static void vmcs_clear(struct vmcs *vmcs)
  216. {
  217. u64 phys_addr = __pa(vmcs);
  218. u8 error;
  219. asm volatile (ASM_VMX_VMCLEAR_RAX "; setna %0"
  220. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  221. : "cc", "memory");
  222. if (error)
  223. printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
  224. vmcs, phys_addr);
  225. }
  226. static void __vcpu_clear(void *arg)
  227. {
  228. struct vcpu_vmx *vmx = arg;
  229. int cpu = raw_smp_processor_id();
  230. if (vmx->vcpu.cpu == cpu)
  231. vmcs_clear(vmx->vmcs);
  232. if (per_cpu(current_vmcs, cpu) == vmx->vmcs)
  233. per_cpu(current_vmcs, cpu) = NULL;
  234. rdtscll(vmx->vcpu.arch.host_tsc);
  235. }
  236. static void vcpu_clear(struct vcpu_vmx *vmx)
  237. {
  238. if (vmx->vcpu.cpu == -1)
  239. return;
  240. smp_call_function_single(vmx->vcpu.cpu, __vcpu_clear, vmx, 0, 1);
  241. vmx->launched = 0;
  242. }
  243. static inline void vpid_sync_vcpu_all(struct vcpu_vmx *vmx)
  244. {
  245. if (vmx->vpid == 0)
  246. return;
  247. __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
  248. }
  249. static unsigned long vmcs_readl(unsigned long field)
  250. {
  251. unsigned long value;
  252. asm volatile (ASM_VMX_VMREAD_RDX_RAX
  253. : "=a"(value) : "d"(field) : "cc");
  254. return value;
  255. }
  256. static u16 vmcs_read16(unsigned long field)
  257. {
  258. return vmcs_readl(field);
  259. }
  260. static u32 vmcs_read32(unsigned long field)
  261. {
  262. return vmcs_readl(field);
  263. }
  264. static u64 vmcs_read64(unsigned long field)
  265. {
  266. #ifdef CONFIG_X86_64
  267. return vmcs_readl(field);
  268. #else
  269. return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
  270. #endif
  271. }
  272. static noinline void vmwrite_error(unsigned long field, unsigned long value)
  273. {
  274. printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
  275. field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
  276. dump_stack();
  277. }
  278. static void vmcs_writel(unsigned long field, unsigned long value)
  279. {
  280. u8 error;
  281. asm volatile (ASM_VMX_VMWRITE_RAX_RDX "; setna %0"
  282. : "=q"(error) : "a"(value), "d"(field) : "cc");
  283. if (unlikely(error))
  284. vmwrite_error(field, value);
  285. }
  286. static void vmcs_write16(unsigned long field, u16 value)
  287. {
  288. vmcs_writel(field, value);
  289. }
  290. static void vmcs_write32(unsigned long field, u32 value)
  291. {
  292. vmcs_writel(field, value);
  293. }
  294. static void vmcs_write64(unsigned long field, u64 value)
  295. {
  296. #ifdef CONFIG_X86_64
  297. vmcs_writel(field, value);
  298. #else
  299. vmcs_writel(field, value);
  300. asm volatile ("");
  301. vmcs_writel(field+1, value >> 32);
  302. #endif
  303. }
  304. static void vmcs_clear_bits(unsigned long field, u32 mask)
  305. {
  306. vmcs_writel(field, vmcs_readl(field) & ~mask);
  307. }
  308. static void vmcs_set_bits(unsigned long field, u32 mask)
  309. {
  310. vmcs_writel(field, vmcs_readl(field) | mask);
  311. }
  312. static void update_exception_bitmap(struct kvm_vcpu *vcpu)
  313. {
  314. u32 eb;
  315. eb = (1u << PF_VECTOR) | (1u << UD_VECTOR);
  316. if (!vcpu->fpu_active)
  317. eb |= 1u << NM_VECTOR;
  318. if (vcpu->guest_debug.enabled)
  319. eb |= 1u << 1;
  320. if (vcpu->arch.rmode.active)
  321. eb = ~0;
  322. vmcs_write32(EXCEPTION_BITMAP, eb);
  323. }
  324. static void reload_tss(void)
  325. {
  326. /*
  327. * VT restores TR but not its size. Useless.
  328. */
  329. struct descriptor_table gdt;
  330. struct desc_struct *descs;
  331. get_gdt(&gdt);
  332. descs = (void *)gdt.base;
  333. descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
  334. load_TR_desc();
  335. }
  336. static void load_transition_efer(struct vcpu_vmx *vmx)
  337. {
  338. int efer_offset = vmx->msr_offset_efer;
  339. u64 host_efer = vmx->host_msrs[efer_offset].data;
  340. u64 guest_efer = vmx->guest_msrs[efer_offset].data;
  341. u64 ignore_bits;
  342. if (efer_offset < 0)
  343. return;
  344. /*
  345. * NX is emulated; LMA and LME handled by hardware; SCE meaninless
  346. * outside long mode
  347. */
  348. ignore_bits = EFER_NX | EFER_SCE;
  349. #ifdef CONFIG_X86_64
  350. ignore_bits |= EFER_LMA | EFER_LME;
  351. /* SCE is meaningful only in long mode on Intel */
  352. if (guest_efer & EFER_LMA)
  353. ignore_bits &= ~(u64)EFER_SCE;
  354. #endif
  355. if ((guest_efer & ~ignore_bits) == (host_efer & ~ignore_bits))
  356. return;
  357. vmx->host_state.guest_efer_loaded = 1;
  358. guest_efer &= ~ignore_bits;
  359. guest_efer |= host_efer & ignore_bits;
  360. wrmsrl(MSR_EFER, guest_efer);
  361. vmx->vcpu.stat.efer_reload++;
  362. }
  363. static void reload_host_efer(struct vcpu_vmx *vmx)
  364. {
  365. if (vmx->host_state.guest_efer_loaded) {
  366. vmx->host_state.guest_efer_loaded = 0;
  367. load_msrs(vmx->host_msrs + vmx->msr_offset_efer, 1);
  368. }
  369. }
  370. static void vmx_save_host_state(struct kvm_vcpu *vcpu)
  371. {
  372. struct vcpu_vmx *vmx = to_vmx(vcpu);
  373. if (vmx->host_state.loaded)
  374. return;
  375. vmx->host_state.loaded = 1;
  376. /*
  377. * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
  378. * allow segment selectors with cpl > 0 or ti == 1.
  379. */
  380. vmx->host_state.ldt_sel = read_ldt();
  381. vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
  382. vmx->host_state.fs_sel = read_fs();
  383. if (!(vmx->host_state.fs_sel & 7)) {
  384. vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
  385. vmx->host_state.fs_reload_needed = 0;
  386. } else {
  387. vmcs_write16(HOST_FS_SELECTOR, 0);
  388. vmx->host_state.fs_reload_needed = 1;
  389. }
  390. vmx->host_state.gs_sel = read_gs();
  391. if (!(vmx->host_state.gs_sel & 7))
  392. vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
  393. else {
  394. vmcs_write16(HOST_GS_SELECTOR, 0);
  395. vmx->host_state.gs_ldt_reload_needed = 1;
  396. }
  397. #ifdef CONFIG_X86_64
  398. vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
  399. vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
  400. #else
  401. vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
  402. vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
  403. #endif
  404. #ifdef CONFIG_X86_64
  405. if (is_long_mode(&vmx->vcpu))
  406. save_msrs(vmx->host_msrs +
  407. vmx->msr_offset_kernel_gs_base, 1);
  408. #endif
  409. load_msrs(vmx->guest_msrs, vmx->save_nmsrs);
  410. load_transition_efer(vmx);
  411. }
  412. static void vmx_load_host_state(struct vcpu_vmx *vmx)
  413. {
  414. unsigned long flags;
  415. if (!vmx->host_state.loaded)
  416. return;
  417. ++vmx->vcpu.stat.host_state_reload;
  418. vmx->host_state.loaded = 0;
  419. if (vmx->host_state.fs_reload_needed)
  420. load_fs(vmx->host_state.fs_sel);
  421. if (vmx->host_state.gs_ldt_reload_needed) {
  422. load_ldt(vmx->host_state.ldt_sel);
  423. /*
  424. * If we have to reload gs, we must take care to
  425. * preserve our gs base.
  426. */
  427. local_irq_save(flags);
  428. load_gs(vmx->host_state.gs_sel);
  429. #ifdef CONFIG_X86_64
  430. wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
  431. #endif
  432. local_irq_restore(flags);
  433. }
  434. reload_tss();
  435. save_msrs(vmx->guest_msrs, vmx->save_nmsrs);
  436. load_msrs(vmx->host_msrs, vmx->save_nmsrs);
  437. reload_host_efer(vmx);
  438. }
  439. /*
  440. * Switches to specified vcpu, until a matching vcpu_put(), but assumes
  441. * vcpu mutex is already taken.
  442. */
  443. static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  444. {
  445. struct vcpu_vmx *vmx = to_vmx(vcpu);
  446. u64 phys_addr = __pa(vmx->vmcs);
  447. u64 tsc_this, delta;
  448. if (vcpu->cpu != cpu) {
  449. vcpu_clear(vmx);
  450. kvm_migrate_apic_timer(vcpu);
  451. vpid_sync_vcpu_all(vmx);
  452. }
  453. if (per_cpu(current_vmcs, cpu) != vmx->vmcs) {
  454. u8 error;
  455. per_cpu(current_vmcs, cpu) = vmx->vmcs;
  456. asm volatile (ASM_VMX_VMPTRLD_RAX "; setna %0"
  457. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  458. : "cc");
  459. if (error)
  460. printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
  461. vmx->vmcs, phys_addr);
  462. }
  463. if (vcpu->cpu != cpu) {
  464. struct descriptor_table dt;
  465. unsigned long sysenter_esp;
  466. vcpu->cpu = cpu;
  467. /*
  468. * Linux uses per-cpu TSS and GDT, so set these when switching
  469. * processors.
  470. */
  471. vmcs_writel(HOST_TR_BASE, read_tr_base()); /* 22.2.4 */
  472. get_gdt(&dt);
  473. vmcs_writel(HOST_GDTR_BASE, dt.base); /* 22.2.4 */
  474. rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
  475. vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
  476. /*
  477. * Make sure the time stamp counter is monotonous.
  478. */
  479. rdtscll(tsc_this);
  480. delta = vcpu->arch.host_tsc - tsc_this;
  481. vmcs_write64(TSC_OFFSET, vmcs_read64(TSC_OFFSET) + delta);
  482. }
  483. }
  484. static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
  485. {
  486. vmx_load_host_state(to_vmx(vcpu));
  487. }
  488. static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
  489. {
  490. if (vcpu->fpu_active)
  491. return;
  492. vcpu->fpu_active = 1;
  493. vmcs_clear_bits(GUEST_CR0, X86_CR0_TS);
  494. if (vcpu->arch.cr0 & X86_CR0_TS)
  495. vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
  496. update_exception_bitmap(vcpu);
  497. }
  498. static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
  499. {
  500. if (!vcpu->fpu_active)
  501. return;
  502. vcpu->fpu_active = 0;
  503. vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
  504. update_exception_bitmap(vcpu);
  505. }
  506. static void vmx_vcpu_decache(struct kvm_vcpu *vcpu)
  507. {
  508. vcpu_clear(to_vmx(vcpu));
  509. }
  510. static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
  511. {
  512. return vmcs_readl(GUEST_RFLAGS);
  513. }
  514. static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  515. {
  516. if (vcpu->arch.rmode.active)
  517. rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  518. vmcs_writel(GUEST_RFLAGS, rflags);
  519. }
  520. static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
  521. {
  522. unsigned long rip;
  523. u32 interruptibility;
  524. rip = vmcs_readl(GUEST_RIP);
  525. rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  526. vmcs_writel(GUEST_RIP, rip);
  527. /*
  528. * We emulated an instruction, so temporary interrupt blocking
  529. * should be removed, if set.
  530. */
  531. interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  532. if (interruptibility & 3)
  533. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
  534. interruptibility & ~3);
  535. vcpu->arch.interrupt_window_open = 1;
  536. }
  537. static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
  538. bool has_error_code, u32 error_code)
  539. {
  540. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  541. nr | INTR_TYPE_EXCEPTION
  542. | (has_error_code ? INTR_INFO_DELIVER_CODE_MASK : 0)
  543. | INTR_INFO_VALID_MASK);
  544. if (has_error_code)
  545. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
  546. }
  547. static bool vmx_exception_injected(struct kvm_vcpu *vcpu)
  548. {
  549. struct vcpu_vmx *vmx = to_vmx(vcpu);
  550. return !(vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
  551. }
  552. /*
  553. * Swap MSR entry in host/guest MSR entry array.
  554. */
  555. #ifdef CONFIG_X86_64
  556. static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
  557. {
  558. struct kvm_msr_entry tmp;
  559. tmp = vmx->guest_msrs[to];
  560. vmx->guest_msrs[to] = vmx->guest_msrs[from];
  561. vmx->guest_msrs[from] = tmp;
  562. tmp = vmx->host_msrs[to];
  563. vmx->host_msrs[to] = vmx->host_msrs[from];
  564. vmx->host_msrs[from] = tmp;
  565. }
  566. #endif
  567. /*
  568. * Set up the vmcs to automatically save and restore system
  569. * msrs. Don't touch the 64-bit msrs if the guest is in legacy
  570. * mode, as fiddling with msrs is very expensive.
  571. */
  572. static void setup_msrs(struct vcpu_vmx *vmx)
  573. {
  574. int save_nmsrs;
  575. vmx_load_host_state(vmx);
  576. save_nmsrs = 0;
  577. #ifdef CONFIG_X86_64
  578. if (is_long_mode(&vmx->vcpu)) {
  579. int index;
  580. index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
  581. if (index >= 0)
  582. move_msr_up(vmx, index, save_nmsrs++);
  583. index = __find_msr_index(vmx, MSR_LSTAR);
  584. if (index >= 0)
  585. move_msr_up(vmx, index, save_nmsrs++);
  586. index = __find_msr_index(vmx, MSR_CSTAR);
  587. if (index >= 0)
  588. move_msr_up(vmx, index, save_nmsrs++);
  589. index = __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
  590. if (index >= 0)
  591. move_msr_up(vmx, index, save_nmsrs++);
  592. /*
  593. * MSR_K6_STAR is only needed on long mode guests, and only
  594. * if efer.sce is enabled.
  595. */
  596. index = __find_msr_index(vmx, MSR_K6_STAR);
  597. if ((index >= 0) && (vmx->vcpu.arch.shadow_efer & EFER_SCE))
  598. move_msr_up(vmx, index, save_nmsrs++);
  599. }
  600. #endif
  601. vmx->save_nmsrs = save_nmsrs;
  602. #ifdef CONFIG_X86_64
  603. vmx->msr_offset_kernel_gs_base =
  604. __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
  605. #endif
  606. vmx->msr_offset_efer = __find_msr_index(vmx, MSR_EFER);
  607. }
  608. /*
  609. * reads and returns guest's timestamp counter "register"
  610. * guest_tsc = host_tsc + tsc_offset -- 21.3
  611. */
  612. static u64 guest_read_tsc(void)
  613. {
  614. u64 host_tsc, tsc_offset;
  615. rdtscll(host_tsc);
  616. tsc_offset = vmcs_read64(TSC_OFFSET);
  617. return host_tsc + tsc_offset;
  618. }
  619. /*
  620. * writes 'guest_tsc' into guest's timestamp counter "register"
  621. * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
  622. */
  623. static void guest_write_tsc(u64 guest_tsc)
  624. {
  625. u64 host_tsc;
  626. rdtscll(host_tsc);
  627. vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
  628. }
  629. /*
  630. * Reads an msr value (of 'msr_index') into 'pdata'.
  631. * Returns 0 on success, non-0 otherwise.
  632. * Assumes vcpu_load() was already called.
  633. */
  634. static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  635. {
  636. u64 data;
  637. struct kvm_msr_entry *msr;
  638. if (!pdata) {
  639. printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
  640. return -EINVAL;
  641. }
  642. switch (msr_index) {
  643. #ifdef CONFIG_X86_64
  644. case MSR_FS_BASE:
  645. data = vmcs_readl(GUEST_FS_BASE);
  646. break;
  647. case MSR_GS_BASE:
  648. data = vmcs_readl(GUEST_GS_BASE);
  649. break;
  650. case MSR_EFER:
  651. return kvm_get_msr_common(vcpu, msr_index, pdata);
  652. #endif
  653. case MSR_IA32_TIME_STAMP_COUNTER:
  654. data = guest_read_tsc();
  655. break;
  656. case MSR_IA32_SYSENTER_CS:
  657. data = vmcs_read32(GUEST_SYSENTER_CS);
  658. break;
  659. case MSR_IA32_SYSENTER_EIP:
  660. data = vmcs_readl(GUEST_SYSENTER_EIP);
  661. break;
  662. case MSR_IA32_SYSENTER_ESP:
  663. data = vmcs_readl(GUEST_SYSENTER_ESP);
  664. break;
  665. default:
  666. msr = find_msr_entry(to_vmx(vcpu), msr_index);
  667. if (msr) {
  668. data = msr->data;
  669. break;
  670. }
  671. return kvm_get_msr_common(vcpu, msr_index, pdata);
  672. }
  673. *pdata = data;
  674. return 0;
  675. }
  676. /*
  677. * Writes msr value into into the appropriate "register".
  678. * Returns 0 on success, non-0 otherwise.
  679. * Assumes vcpu_load() was already called.
  680. */
  681. static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  682. {
  683. struct vcpu_vmx *vmx = to_vmx(vcpu);
  684. struct kvm_msr_entry *msr;
  685. int ret = 0;
  686. switch (msr_index) {
  687. #ifdef CONFIG_X86_64
  688. case MSR_EFER:
  689. ret = kvm_set_msr_common(vcpu, msr_index, data);
  690. if (vmx->host_state.loaded) {
  691. reload_host_efer(vmx);
  692. load_transition_efer(vmx);
  693. }
  694. break;
  695. case MSR_FS_BASE:
  696. vmcs_writel(GUEST_FS_BASE, data);
  697. break;
  698. case MSR_GS_BASE:
  699. vmcs_writel(GUEST_GS_BASE, data);
  700. break;
  701. #endif
  702. case MSR_IA32_SYSENTER_CS:
  703. vmcs_write32(GUEST_SYSENTER_CS, data);
  704. break;
  705. case MSR_IA32_SYSENTER_EIP:
  706. vmcs_writel(GUEST_SYSENTER_EIP, data);
  707. break;
  708. case MSR_IA32_SYSENTER_ESP:
  709. vmcs_writel(GUEST_SYSENTER_ESP, data);
  710. break;
  711. case MSR_IA32_TIME_STAMP_COUNTER:
  712. guest_write_tsc(data);
  713. break;
  714. default:
  715. msr = find_msr_entry(vmx, msr_index);
  716. if (msr) {
  717. msr->data = data;
  718. if (vmx->host_state.loaded)
  719. load_msrs(vmx->guest_msrs, vmx->save_nmsrs);
  720. break;
  721. }
  722. ret = kvm_set_msr_common(vcpu, msr_index, data);
  723. }
  724. return ret;
  725. }
  726. /*
  727. * Sync the rsp and rip registers into the vcpu structure. This allows
  728. * registers to be accessed by indexing vcpu->arch.regs.
  729. */
  730. static void vcpu_load_rsp_rip(struct kvm_vcpu *vcpu)
  731. {
  732. vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
  733. vcpu->arch.rip = vmcs_readl(GUEST_RIP);
  734. }
  735. /*
  736. * Syncs rsp and rip back into the vmcs. Should be called after possible
  737. * modification.
  738. */
  739. static void vcpu_put_rsp_rip(struct kvm_vcpu *vcpu)
  740. {
  741. vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
  742. vmcs_writel(GUEST_RIP, vcpu->arch.rip);
  743. }
  744. static int set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
  745. {
  746. unsigned long dr7 = 0x400;
  747. int old_singlestep;
  748. old_singlestep = vcpu->guest_debug.singlestep;
  749. vcpu->guest_debug.enabled = dbg->enabled;
  750. if (vcpu->guest_debug.enabled) {
  751. int i;
  752. dr7 |= 0x200; /* exact */
  753. for (i = 0; i < 4; ++i) {
  754. if (!dbg->breakpoints[i].enabled)
  755. continue;
  756. vcpu->guest_debug.bp[i] = dbg->breakpoints[i].address;
  757. dr7 |= 2 << (i*2); /* global enable */
  758. dr7 |= 0 << (i*4+16); /* execution breakpoint */
  759. }
  760. vcpu->guest_debug.singlestep = dbg->singlestep;
  761. } else
  762. vcpu->guest_debug.singlestep = 0;
  763. if (old_singlestep && !vcpu->guest_debug.singlestep) {
  764. unsigned long flags;
  765. flags = vmcs_readl(GUEST_RFLAGS);
  766. flags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  767. vmcs_writel(GUEST_RFLAGS, flags);
  768. }
  769. update_exception_bitmap(vcpu);
  770. vmcs_writel(GUEST_DR7, dr7);
  771. return 0;
  772. }
  773. static int vmx_get_irq(struct kvm_vcpu *vcpu)
  774. {
  775. struct vcpu_vmx *vmx = to_vmx(vcpu);
  776. u32 idtv_info_field;
  777. idtv_info_field = vmx->idt_vectoring_info;
  778. if (idtv_info_field & INTR_INFO_VALID_MASK) {
  779. if (is_external_interrupt(idtv_info_field))
  780. return idtv_info_field & VECTORING_INFO_VECTOR_MASK;
  781. else
  782. printk(KERN_DEBUG "pending exception: not handled yet\n");
  783. }
  784. return -1;
  785. }
  786. static __init int cpu_has_kvm_support(void)
  787. {
  788. unsigned long ecx = cpuid_ecx(1);
  789. return test_bit(5, &ecx); /* CPUID.1:ECX.VMX[bit 5] -> VT */
  790. }
  791. static __init int vmx_disabled_by_bios(void)
  792. {
  793. u64 msr;
  794. rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
  795. return (msr & (MSR_IA32_FEATURE_CONTROL_LOCKED |
  796. MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED))
  797. == MSR_IA32_FEATURE_CONTROL_LOCKED;
  798. /* locked but not enabled */
  799. }
  800. static void hardware_enable(void *garbage)
  801. {
  802. int cpu = raw_smp_processor_id();
  803. u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
  804. u64 old;
  805. rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
  806. if ((old & (MSR_IA32_FEATURE_CONTROL_LOCKED |
  807. MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED))
  808. != (MSR_IA32_FEATURE_CONTROL_LOCKED |
  809. MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED))
  810. /* enable and lock */
  811. wrmsrl(MSR_IA32_FEATURE_CONTROL, old |
  812. MSR_IA32_FEATURE_CONTROL_LOCKED |
  813. MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED);
  814. write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
  815. asm volatile (ASM_VMX_VMXON_RAX : : "a"(&phys_addr), "m"(phys_addr)
  816. : "memory", "cc");
  817. }
  818. static void hardware_disable(void *garbage)
  819. {
  820. asm volatile (ASM_VMX_VMXOFF : : : "cc");
  821. }
  822. static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
  823. u32 msr, u32 *result)
  824. {
  825. u32 vmx_msr_low, vmx_msr_high;
  826. u32 ctl = ctl_min | ctl_opt;
  827. rdmsr(msr, vmx_msr_low, vmx_msr_high);
  828. ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
  829. ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
  830. /* Ensure minimum (required) set of control bits are supported. */
  831. if (ctl_min & ~ctl)
  832. return -EIO;
  833. *result = ctl;
  834. return 0;
  835. }
  836. static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
  837. {
  838. u32 vmx_msr_low, vmx_msr_high;
  839. u32 min, opt;
  840. u32 _pin_based_exec_control = 0;
  841. u32 _cpu_based_exec_control = 0;
  842. u32 _cpu_based_2nd_exec_control = 0;
  843. u32 _vmexit_control = 0;
  844. u32 _vmentry_control = 0;
  845. min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
  846. opt = 0;
  847. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
  848. &_pin_based_exec_control) < 0)
  849. return -EIO;
  850. min = CPU_BASED_HLT_EXITING |
  851. #ifdef CONFIG_X86_64
  852. CPU_BASED_CR8_LOAD_EXITING |
  853. CPU_BASED_CR8_STORE_EXITING |
  854. #endif
  855. CPU_BASED_USE_IO_BITMAPS |
  856. CPU_BASED_MOV_DR_EXITING |
  857. CPU_BASED_USE_TSC_OFFSETING;
  858. opt = CPU_BASED_TPR_SHADOW |
  859. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
  860. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
  861. &_cpu_based_exec_control) < 0)
  862. return -EIO;
  863. #ifdef CONFIG_X86_64
  864. if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
  865. _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
  866. ~CPU_BASED_CR8_STORE_EXITING;
  867. #endif
  868. if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
  869. min = 0;
  870. opt = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
  871. SECONDARY_EXEC_WBINVD_EXITING |
  872. SECONDARY_EXEC_ENABLE_VPID;
  873. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS2,
  874. &_cpu_based_2nd_exec_control) < 0)
  875. return -EIO;
  876. }
  877. #ifndef CONFIG_X86_64
  878. if (!(_cpu_based_2nd_exec_control &
  879. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
  880. _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
  881. #endif
  882. min = 0;
  883. #ifdef CONFIG_X86_64
  884. min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
  885. #endif
  886. opt = 0;
  887. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
  888. &_vmexit_control) < 0)
  889. return -EIO;
  890. min = opt = 0;
  891. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
  892. &_vmentry_control) < 0)
  893. return -EIO;
  894. rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
  895. /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
  896. if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
  897. return -EIO;
  898. #ifdef CONFIG_X86_64
  899. /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
  900. if (vmx_msr_high & (1u<<16))
  901. return -EIO;
  902. #endif
  903. /* Require Write-Back (WB) memory type for VMCS accesses. */
  904. if (((vmx_msr_high >> 18) & 15) != 6)
  905. return -EIO;
  906. vmcs_conf->size = vmx_msr_high & 0x1fff;
  907. vmcs_conf->order = get_order(vmcs_config.size);
  908. vmcs_conf->revision_id = vmx_msr_low;
  909. vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
  910. vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
  911. vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
  912. vmcs_conf->vmexit_ctrl = _vmexit_control;
  913. vmcs_conf->vmentry_ctrl = _vmentry_control;
  914. return 0;
  915. }
  916. static struct vmcs *alloc_vmcs_cpu(int cpu)
  917. {
  918. int node = cpu_to_node(cpu);
  919. struct page *pages;
  920. struct vmcs *vmcs;
  921. pages = alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
  922. if (!pages)
  923. return NULL;
  924. vmcs = page_address(pages);
  925. memset(vmcs, 0, vmcs_config.size);
  926. vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
  927. return vmcs;
  928. }
  929. static struct vmcs *alloc_vmcs(void)
  930. {
  931. return alloc_vmcs_cpu(raw_smp_processor_id());
  932. }
  933. static void free_vmcs(struct vmcs *vmcs)
  934. {
  935. free_pages((unsigned long)vmcs, vmcs_config.order);
  936. }
  937. static void free_kvm_area(void)
  938. {
  939. int cpu;
  940. for_each_online_cpu(cpu)
  941. free_vmcs(per_cpu(vmxarea, cpu));
  942. }
  943. static __init int alloc_kvm_area(void)
  944. {
  945. int cpu;
  946. for_each_online_cpu(cpu) {
  947. struct vmcs *vmcs;
  948. vmcs = alloc_vmcs_cpu(cpu);
  949. if (!vmcs) {
  950. free_kvm_area();
  951. return -ENOMEM;
  952. }
  953. per_cpu(vmxarea, cpu) = vmcs;
  954. }
  955. return 0;
  956. }
  957. static __init int hardware_setup(void)
  958. {
  959. if (setup_vmcs_config(&vmcs_config) < 0)
  960. return -EIO;
  961. if (boot_cpu_has(X86_FEATURE_NX))
  962. kvm_enable_efer_bits(EFER_NX);
  963. return alloc_kvm_area();
  964. }
  965. static __exit void hardware_unsetup(void)
  966. {
  967. free_kvm_area();
  968. }
  969. static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
  970. {
  971. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  972. if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
  973. vmcs_write16(sf->selector, save->selector);
  974. vmcs_writel(sf->base, save->base);
  975. vmcs_write32(sf->limit, save->limit);
  976. vmcs_write32(sf->ar_bytes, save->ar);
  977. } else {
  978. u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
  979. << AR_DPL_SHIFT;
  980. vmcs_write32(sf->ar_bytes, 0x93 | dpl);
  981. }
  982. }
  983. static void enter_pmode(struct kvm_vcpu *vcpu)
  984. {
  985. unsigned long flags;
  986. vcpu->arch.rmode.active = 0;
  987. vmcs_writel(GUEST_TR_BASE, vcpu->arch.rmode.tr.base);
  988. vmcs_write32(GUEST_TR_LIMIT, vcpu->arch.rmode.tr.limit);
  989. vmcs_write32(GUEST_TR_AR_BYTES, vcpu->arch.rmode.tr.ar);
  990. flags = vmcs_readl(GUEST_RFLAGS);
  991. flags &= ~(X86_EFLAGS_IOPL | X86_EFLAGS_VM);
  992. flags |= (vcpu->arch.rmode.save_iopl << IOPL_SHIFT);
  993. vmcs_writel(GUEST_RFLAGS, flags);
  994. vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
  995. (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
  996. update_exception_bitmap(vcpu);
  997. fix_pmode_dataseg(VCPU_SREG_ES, &vcpu->arch.rmode.es);
  998. fix_pmode_dataseg(VCPU_SREG_DS, &vcpu->arch.rmode.ds);
  999. fix_pmode_dataseg(VCPU_SREG_GS, &vcpu->arch.rmode.gs);
  1000. fix_pmode_dataseg(VCPU_SREG_FS, &vcpu->arch.rmode.fs);
  1001. vmcs_write16(GUEST_SS_SELECTOR, 0);
  1002. vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
  1003. vmcs_write16(GUEST_CS_SELECTOR,
  1004. vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
  1005. vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
  1006. }
  1007. static gva_t rmode_tss_base(struct kvm *kvm)
  1008. {
  1009. if (!kvm->arch.tss_addr) {
  1010. gfn_t base_gfn = kvm->memslots[0].base_gfn +
  1011. kvm->memslots[0].npages - 3;
  1012. return base_gfn << PAGE_SHIFT;
  1013. }
  1014. return kvm->arch.tss_addr;
  1015. }
  1016. static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
  1017. {
  1018. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1019. save->selector = vmcs_read16(sf->selector);
  1020. save->base = vmcs_readl(sf->base);
  1021. save->limit = vmcs_read32(sf->limit);
  1022. save->ar = vmcs_read32(sf->ar_bytes);
  1023. vmcs_write16(sf->selector, save->base >> 4);
  1024. vmcs_write32(sf->base, save->base & 0xfffff);
  1025. vmcs_write32(sf->limit, 0xffff);
  1026. vmcs_write32(sf->ar_bytes, 0xf3);
  1027. }
  1028. static void enter_rmode(struct kvm_vcpu *vcpu)
  1029. {
  1030. unsigned long flags;
  1031. vcpu->arch.rmode.active = 1;
  1032. vcpu->arch.rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
  1033. vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
  1034. vcpu->arch.rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
  1035. vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
  1036. vcpu->arch.rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
  1037. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  1038. flags = vmcs_readl(GUEST_RFLAGS);
  1039. vcpu->arch.rmode.save_iopl
  1040. = (flags & X86_EFLAGS_IOPL) >> IOPL_SHIFT;
  1041. flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  1042. vmcs_writel(GUEST_RFLAGS, flags);
  1043. vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
  1044. update_exception_bitmap(vcpu);
  1045. vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
  1046. vmcs_write32(GUEST_SS_LIMIT, 0xffff);
  1047. vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
  1048. vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
  1049. vmcs_write32(GUEST_CS_LIMIT, 0xffff);
  1050. if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
  1051. vmcs_writel(GUEST_CS_BASE, 0xf0000);
  1052. vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
  1053. fix_rmode_seg(VCPU_SREG_ES, &vcpu->arch.rmode.es);
  1054. fix_rmode_seg(VCPU_SREG_DS, &vcpu->arch.rmode.ds);
  1055. fix_rmode_seg(VCPU_SREG_GS, &vcpu->arch.rmode.gs);
  1056. fix_rmode_seg(VCPU_SREG_FS, &vcpu->arch.rmode.fs);
  1057. kvm_mmu_reset_context(vcpu);
  1058. init_rmode_tss(vcpu->kvm);
  1059. }
  1060. #ifdef CONFIG_X86_64
  1061. static void enter_lmode(struct kvm_vcpu *vcpu)
  1062. {
  1063. u32 guest_tr_ar;
  1064. guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
  1065. if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
  1066. printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
  1067. __FUNCTION__);
  1068. vmcs_write32(GUEST_TR_AR_BYTES,
  1069. (guest_tr_ar & ~AR_TYPE_MASK)
  1070. | AR_TYPE_BUSY_64_TSS);
  1071. }
  1072. vcpu->arch.shadow_efer |= EFER_LMA;
  1073. find_msr_entry(to_vmx(vcpu), MSR_EFER)->data |= EFER_LMA | EFER_LME;
  1074. vmcs_write32(VM_ENTRY_CONTROLS,
  1075. vmcs_read32(VM_ENTRY_CONTROLS)
  1076. | VM_ENTRY_IA32E_MODE);
  1077. }
  1078. static void exit_lmode(struct kvm_vcpu *vcpu)
  1079. {
  1080. vcpu->arch.shadow_efer &= ~EFER_LMA;
  1081. vmcs_write32(VM_ENTRY_CONTROLS,
  1082. vmcs_read32(VM_ENTRY_CONTROLS)
  1083. & ~VM_ENTRY_IA32E_MODE);
  1084. }
  1085. #endif
  1086. static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
  1087. {
  1088. vpid_sync_vcpu_all(to_vmx(vcpu));
  1089. }
  1090. static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
  1091. {
  1092. vcpu->arch.cr4 &= KVM_GUEST_CR4_MASK;
  1093. vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & ~KVM_GUEST_CR4_MASK;
  1094. }
  1095. static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  1096. {
  1097. vmx_fpu_deactivate(vcpu);
  1098. if (vcpu->arch.rmode.active && (cr0 & X86_CR0_PE))
  1099. enter_pmode(vcpu);
  1100. if (!vcpu->arch.rmode.active && !(cr0 & X86_CR0_PE))
  1101. enter_rmode(vcpu);
  1102. #ifdef CONFIG_X86_64
  1103. if (vcpu->arch.shadow_efer & EFER_LME) {
  1104. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
  1105. enter_lmode(vcpu);
  1106. if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
  1107. exit_lmode(vcpu);
  1108. }
  1109. #endif
  1110. vmcs_writel(CR0_READ_SHADOW, cr0);
  1111. vmcs_writel(GUEST_CR0,
  1112. (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON);
  1113. vcpu->arch.cr0 = cr0;
  1114. if (!(cr0 & X86_CR0_TS) || !(cr0 & X86_CR0_PE))
  1115. vmx_fpu_activate(vcpu);
  1116. }
  1117. static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  1118. {
  1119. vmx_flush_tlb(vcpu);
  1120. vmcs_writel(GUEST_CR3, cr3);
  1121. if (vcpu->arch.cr0 & X86_CR0_PE)
  1122. vmx_fpu_deactivate(vcpu);
  1123. }
  1124. static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  1125. {
  1126. vmcs_writel(CR4_READ_SHADOW, cr4);
  1127. vmcs_writel(GUEST_CR4, cr4 | (vcpu->arch.rmode.active ?
  1128. KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON));
  1129. vcpu->arch.cr4 = cr4;
  1130. }
  1131. static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
  1132. {
  1133. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1134. struct kvm_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
  1135. vcpu->arch.shadow_efer = efer;
  1136. if (!msr)
  1137. return;
  1138. if (efer & EFER_LMA) {
  1139. vmcs_write32(VM_ENTRY_CONTROLS,
  1140. vmcs_read32(VM_ENTRY_CONTROLS) |
  1141. VM_ENTRY_IA32E_MODE);
  1142. msr->data = efer;
  1143. } else {
  1144. vmcs_write32(VM_ENTRY_CONTROLS,
  1145. vmcs_read32(VM_ENTRY_CONTROLS) &
  1146. ~VM_ENTRY_IA32E_MODE);
  1147. msr->data = efer & ~EFER_LME;
  1148. }
  1149. setup_msrs(vmx);
  1150. }
  1151. static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
  1152. {
  1153. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1154. return vmcs_readl(sf->base);
  1155. }
  1156. static void vmx_get_segment(struct kvm_vcpu *vcpu,
  1157. struct kvm_segment *var, int seg)
  1158. {
  1159. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1160. u32 ar;
  1161. var->base = vmcs_readl(sf->base);
  1162. var->limit = vmcs_read32(sf->limit);
  1163. var->selector = vmcs_read16(sf->selector);
  1164. ar = vmcs_read32(sf->ar_bytes);
  1165. if (ar & AR_UNUSABLE_MASK)
  1166. ar = 0;
  1167. var->type = ar & 15;
  1168. var->s = (ar >> 4) & 1;
  1169. var->dpl = (ar >> 5) & 3;
  1170. var->present = (ar >> 7) & 1;
  1171. var->avl = (ar >> 12) & 1;
  1172. var->l = (ar >> 13) & 1;
  1173. var->db = (ar >> 14) & 1;
  1174. var->g = (ar >> 15) & 1;
  1175. var->unusable = (ar >> 16) & 1;
  1176. }
  1177. static u32 vmx_segment_access_rights(struct kvm_segment *var)
  1178. {
  1179. u32 ar;
  1180. if (var->unusable)
  1181. ar = 1 << 16;
  1182. else {
  1183. ar = var->type & 15;
  1184. ar |= (var->s & 1) << 4;
  1185. ar |= (var->dpl & 3) << 5;
  1186. ar |= (var->present & 1) << 7;
  1187. ar |= (var->avl & 1) << 12;
  1188. ar |= (var->l & 1) << 13;
  1189. ar |= (var->db & 1) << 14;
  1190. ar |= (var->g & 1) << 15;
  1191. }
  1192. if (ar == 0) /* a 0 value means unusable */
  1193. ar = AR_UNUSABLE_MASK;
  1194. return ar;
  1195. }
  1196. static void vmx_set_segment(struct kvm_vcpu *vcpu,
  1197. struct kvm_segment *var, int seg)
  1198. {
  1199. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1200. u32 ar;
  1201. if (vcpu->arch.rmode.active && seg == VCPU_SREG_TR) {
  1202. vcpu->arch.rmode.tr.selector = var->selector;
  1203. vcpu->arch.rmode.tr.base = var->base;
  1204. vcpu->arch.rmode.tr.limit = var->limit;
  1205. vcpu->arch.rmode.tr.ar = vmx_segment_access_rights(var);
  1206. return;
  1207. }
  1208. vmcs_writel(sf->base, var->base);
  1209. vmcs_write32(sf->limit, var->limit);
  1210. vmcs_write16(sf->selector, var->selector);
  1211. if (vcpu->arch.rmode.active && var->s) {
  1212. /*
  1213. * Hack real-mode segments into vm86 compatibility.
  1214. */
  1215. if (var->base == 0xffff0000 && var->selector == 0xf000)
  1216. vmcs_writel(sf->base, 0xf0000);
  1217. ar = 0xf3;
  1218. } else
  1219. ar = vmx_segment_access_rights(var);
  1220. vmcs_write32(sf->ar_bytes, ar);
  1221. }
  1222. static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  1223. {
  1224. u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
  1225. *db = (ar >> 14) & 1;
  1226. *l = (ar >> 13) & 1;
  1227. }
  1228. static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1229. {
  1230. dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
  1231. dt->base = vmcs_readl(GUEST_IDTR_BASE);
  1232. }
  1233. static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1234. {
  1235. vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
  1236. vmcs_writel(GUEST_IDTR_BASE, dt->base);
  1237. }
  1238. static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1239. {
  1240. dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
  1241. dt->base = vmcs_readl(GUEST_GDTR_BASE);
  1242. }
  1243. static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1244. {
  1245. vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
  1246. vmcs_writel(GUEST_GDTR_BASE, dt->base);
  1247. }
  1248. static int init_rmode_tss(struct kvm *kvm)
  1249. {
  1250. gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
  1251. u16 data = 0;
  1252. int ret = 0;
  1253. int r;
  1254. down_read(&kvm->slots_lock);
  1255. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  1256. if (r < 0)
  1257. goto out;
  1258. data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
  1259. r = kvm_write_guest_page(kvm, fn++, &data, 0x66, sizeof(u16));
  1260. if (r < 0)
  1261. goto out;
  1262. r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
  1263. if (r < 0)
  1264. goto out;
  1265. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  1266. if (r < 0)
  1267. goto out;
  1268. data = ~0;
  1269. r = kvm_write_guest_page(kvm, fn, &data,
  1270. RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
  1271. sizeof(u8));
  1272. if (r < 0)
  1273. goto out;
  1274. ret = 1;
  1275. out:
  1276. up_read(&kvm->slots_lock);
  1277. return ret;
  1278. }
  1279. static void seg_setup(int seg)
  1280. {
  1281. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1282. vmcs_write16(sf->selector, 0);
  1283. vmcs_writel(sf->base, 0);
  1284. vmcs_write32(sf->limit, 0xffff);
  1285. vmcs_write32(sf->ar_bytes, 0x93);
  1286. }
  1287. static int alloc_apic_access_page(struct kvm *kvm)
  1288. {
  1289. struct kvm_userspace_memory_region kvm_userspace_mem;
  1290. int r = 0;
  1291. down_write(&kvm->slots_lock);
  1292. if (kvm->arch.apic_access_page)
  1293. goto out;
  1294. kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
  1295. kvm_userspace_mem.flags = 0;
  1296. kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
  1297. kvm_userspace_mem.memory_size = PAGE_SIZE;
  1298. r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
  1299. if (r)
  1300. goto out;
  1301. down_read(&current->mm->mmap_sem);
  1302. kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00);
  1303. up_read(&current->mm->mmap_sem);
  1304. out:
  1305. up_write(&kvm->slots_lock);
  1306. return r;
  1307. }
  1308. static void allocate_vpid(struct vcpu_vmx *vmx)
  1309. {
  1310. int vpid;
  1311. vmx->vpid = 0;
  1312. if (!enable_vpid || !cpu_has_vmx_vpid())
  1313. return;
  1314. spin_lock(&vmx_vpid_lock);
  1315. vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
  1316. if (vpid < VMX_NR_VPIDS) {
  1317. vmx->vpid = vpid;
  1318. __set_bit(vpid, vmx_vpid_bitmap);
  1319. }
  1320. spin_unlock(&vmx_vpid_lock);
  1321. }
  1322. /*
  1323. * Sets up the vmcs for emulated real mode.
  1324. */
  1325. static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
  1326. {
  1327. u32 host_sysenter_cs;
  1328. u32 junk;
  1329. unsigned long a;
  1330. struct descriptor_table dt;
  1331. int i;
  1332. unsigned long kvm_vmx_return;
  1333. u32 exec_control;
  1334. /* I/O */
  1335. vmcs_write64(IO_BITMAP_A, page_to_phys(vmx_io_bitmap_a));
  1336. vmcs_write64(IO_BITMAP_B, page_to_phys(vmx_io_bitmap_b));
  1337. vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
  1338. /* Control */
  1339. vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
  1340. vmcs_config.pin_based_exec_ctrl);
  1341. exec_control = vmcs_config.cpu_based_exec_ctrl;
  1342. if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
  1343. exec_control &= ~CPU_BASED_TPR_SHADOW;
  1344. #ifdef CONFIG_X86_64
  1345. exec_control |= CPU_BASED_CR8_STORE_EXITING |
  1346. CPU_BASED_CR8_LOAD_EXITING;
  1347. #endif
  1348. }
  1349. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
  1350. if (cpu_has_secondary_exec_ctrls()) {
  1351. exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
  1352. if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  1353. exec_control &=
  1354. ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  1355. if (vmx->vpid == 0)
  1356. exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
  1357. vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
  1358. }
  1359. vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, !!bypass_guest_pf);
  1360. vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, !!bypass_guest_pf);
  1361. vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
  1362. vmcs_writel(HOST_CR0, read_cr0()); /* 22.2.3 */
  1363. vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
  1364. vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
  1365. vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
  1366. vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1367. vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1368. vmcs_write16(HOST_FS_SELECTOR, read_fs()); /* 22.2.4 */
  1369. vmcs_write16(HOST_GS_SELECTOR, read_gs()); /* 22.2.4 */
  1370. vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1371. #ifdef CONFIG_X86_64
  1372. rdmsrl(MSR_FS_BASE, a);
  1373. vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
  1374. rdmsrl(MSR_GS_BASE, a);
  1375. vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
  1376. #else
  1377. vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
  1378. vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
  1379. #endif
  1380. vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
  1381. get_idt(&dt);
  1382. vmcs_writel(HOST_IDTR_BASE, dt.base); /* 22.2.4 */
  1383. asm("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
  1384. vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
  1385. vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
  1386. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
  1387. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
  1388. rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
  1389. vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
  1390. rdmsrl(MSR_IA32_SYSENTER_ESP, a);
  1391. vmcs_writel(HOST_IA32_SYSENTER_ESP, a); /* 22.2.3 */
  1392. rdmsrl(MSR_IA32_SYSENTER_EIP, a);
  1393. vmcs_writel(HOST_IA32_SYSENTER_EIP, a); /* 22.2.3 */
  1394. for (i = 0; i < NR_VMX_MSR; ++i) {
  1395. u32 index = vmx_msr_index[i];
  1396. u32 data_low, data_high;
  1397. u64 data;
  1398. int j = vmx->nmsrs;
  1399. if (rdmsr_safe(index, &data_low, &data_high) < 0)
  1400. continue;
  1401. if (wrmsr_safe(index, data_low, data_high) < 0)
  1402. continue;
  1403. data = data_low | ((u64)data_high << 32);
  1404. vmx->host_msrs[j].index = index;
  1405. vmx->host_msrs[j].reserved = 0;
  1406. vmx->host_msrs[j].data = data;
  1407. vmx->guest_msrs[j] = vmx->host_msrs[j];
  1408. ++vmx->nmsrs;
  1409. }
  1410. vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
  1411. /* 22.2.1, 20.8.1 */
  1412. vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
  1413. vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
  1414. vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK);
  1415. return 0;
  1416. }
  1417. static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
  1418. {
  1419. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1420. u64 msr;
  1421. int ret;
  1422. if (!init_rmode_tss(vmx->vcpu.kvm)) {
  1423. ret = -ENOMEM;
  1424. goto out;
  1425. }
  1426. vmx->vcpu.arch.rmode.active = 0;
  1427. vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
  1428. set_cr8(&vmx->vcpu, 0);
  1429. msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
  1430. if (vmx->vcpu.vcpu_id == 0)
  1431. msr |= MSR_IA32_APICBASE_BSP;
  1432. kvm_set_apic_base(&vmx->vcpu, msr);
  1433. fx_init(&vmx->vcpu);
  1434. /*
  1435. * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
  1436. * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
  1437. */
  1438. if (vmx->vcpu.vcpu_id == 0) {
  1439. vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
  1440. vmcs_writel(GUEST_CS_BASE, 0x000f0000);
  1441. } else {
  1442. vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
  1443. vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
  1444. }
  1445. vmcs_write32(GUEST_CS_LIMIT, 0xffff);
  1446. vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
  1447. seg_setup(VCPU_SREG_DS);
  1448. seg_setup(VCPU_SREG_ES);
  1449. seg_setup(VCPU_SREG_FS);
  1450. seg_setup(VCPU_SREG_GS);
  1451. seg_setup(VCPU_SREG_SS);
  1452. vmcs_write16(GUEST_TR_SELECTOR, 0);
  1453. vmcs_writel(GUEST_TR_BASE, 0);
  1454. vmcs_write32(GUEST_TR_LIMIT, 0xffff);
  1455. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  1456. vmcs_write16(GUEST_LDTR_SELECTOR, 0);
  1457. vmcs_writel(GUEST_LDTR_BASE, 0);
  1458. vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
  1459. vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
  1460. vmcs_write32(GUEST_SYSENTER_CS, 0);
  1461. vmcs_writel(GUEST_SYSENTER_ESP, 0);
  1462. vmcs_writel(GUEST_SYSENTER_EIP, 0);
  1463. vmcs_writel(GUEST_RFLAGS, 0x02);
  1464. if (vmx->vcpu.vcpu_id == 0)
  1465. vmcs_writel(GUEST_RIP, 0xfff0);
  1466. else
  1467. vmcs_writel(GUEST_RIP, 0);
  1468. vmcs_writel(GUEST_RSP, 0);
  1469. /* todo: dr0 = dr1 = dr2 = dr3 = 0; dr6 = 0xffff0ff0 */
  1470. vmcs_writel(GUEST_DR7, 0x400);
  1471. vmcs_writel(GUEST_GDTR_BASE, 0);
  1472. vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
  1473. vmcs_writel(GUEST_IDTR_BASE, 0);
  1474. vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
  1475. vmcs_write32(GUEST_ACTIVITY_STATE, 0);
  1476. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
  1477. vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
  1478. guest_write_tsc(0);
  1479. /* Special registers */
  1480. vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
  1481. setup_msrs(vmx);
  1482. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
  1483. if (cpu_has_vmx_tpr_shadow()) {
  1484. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
  1485. if (vm_need_tpr_shadow(vmx->vcpu.kvm))
  1486. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
  1487. page_to_phys(vmx->vcpu.arch.apic->regs_page));
  1488. vmcs_write32(TPR_THRESHOLD, 0);
  1489. }
  1490. if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  1491. vmcs_write64(APIC_ACCESS_ADDR,
  1492. page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
  1493. if (vmx->vpid != 0)
  1494. vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
  1495. vmx->vcpu.arch.cr0 = 0x60000010;
  1496. vmx_set_cr0(&vmx->vcpu, vmx->vcpu.arch.cr0); /* enter rmode */
  1497. vmx_set_cr4(&vmx->vcpu, 0);
  1498. vmx_set_efer(&vmx->vcpu, 0);
  1499. vmx_fpu_activate(&vmx->vcpu);
  1500. update_exception_bitmap(&vmx->vcpu);
  1501. vpid_sync_vcpu_all(vmx);
  1502. return 0;
  1503. out:
  1504. return ret;
  1505. }
  1506. static void vmx_inject_irq(struct kvm_vcpu *vcpu, int irq)
  1507. {
  1508. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1509. if (vcpu->arch.rmode.active) {
  1510. vmx->rmode.irq.pending = true;
  1511. vmx->rmode.irq.vector = irq;
  1512. vmx->rmode.irq.rip = vmcs_readl(GUEST_RIP);
  1513. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  1514. irq | INTR_TYPE_SOFT_INTR | INTR_INFO_VALID_MASK);
  1515. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
  1516. vmcs_writel(GUEST_RIP, vmx->rmode.irq.rip - 1);
  1517. return;
  1518. }
  1519. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  1520. irq | INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  1521. }
  1522. static void kvm_do_inject_irq(struct kvm_vcpu *vcpu)
  1523. {
  1524. int word_index = __ffs(vcpu->arch.irq_summary);
  1525. int bit_index = __ffs(vcpu->arch.irq_pending[word_index]);
  1526. int irq = word_index * BITS_PER_LONG + bit_index;
  1527. clear_bit(bit_index, &vcpu->arch.irq_pending[word_index]);
  1528. if (!vcpu->arch.irq_pending[word_index])
  1529. clear_bit(word_index, &vcpu->arch.irq_summary);
  1530. vmx_inject_irq(vcpu, irq);
  1531. }
  1532. static void do_interrupt_requests(struct kvm_vcpu *vcpu,
  1533. struct kvm_run *kvm_run)
  1534. {
  1535. u32 cpu_based_vm_exec_control;
  1536. vcpu->arch.interrupt_window_open =
  1537. ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
  1538. (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0);
  1539. if (vcpu->arch.interrupt_window_open &&
  1540. vcpu->arch.irq_summary &&
  1541. !(vmcs_read32(VM_ENTRY_INTR_INFO_FIELD) & INTR_INFO_VALID_MASK))
  1542. /*
  1543. * If interrupts enabled, and not blocked by sti or mov ss. Good.
  1544. */
  1545. kvm_do_inject_irq(vcpu);
  1546. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  1547. if (!vcpu->arch.interrupt_window_open &&
  1548. (vcpu->arch.irq_summary || kvm_run->request_interrupt_window))
  1549. /*
  1550. * Interrupts blocked. Wait for unblock.
  1551. */
  1552. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
  1553. else
  1554. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
  1555. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  1556. }
  1557. static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
  1558. {
  1559. int ret;
  1560. struct kvm_userspace_memory_region tss_mem = {
  1561. .slot = 8,
  1562. .guest_phys_addr = addr,
  1563. .memory_size = PAGE_SIZE * 3,
  1564. .flags = 0,
  1565. };
  1566. ret = kvm_set_memory_region(kvm, &tss_mem, 0);
  1567. if (ret)
  1568. return ret;
  1569. kvm->arch.tss_addr = addr;
  1570. return 0;
  1571. }
  1572. static void kvm_guest_debug_pre(struct kvm_vcpu *vcpu)
  1573. {
  1574. struct kvm_guest_debug *dbg = &vcpu->guest_debug;
  1575. set_debugreg(dbg->bp[0], 0);
  1576. set_debugreg(dbg->bp[1], 1);
  1577. set_debugreg(dbg->bp[2], 2);
  1578. set_debugreg(dbg->bp[3], 3);
  1579. if (dbg->singlestep) {
  1580. unsigned long flags;
  1581. flags = vmcs_readl(GUEST_RFLAGS);
  1582. flags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
  1583. vmcs_writel(GUEST_RFLAGS, flags);
  1584. }
  1585. }
  1586. static int handle_rmode_exception(struct kvm_vcpu *vcpu,
  1587. int vec, u32 err_code)
  1588. {
  1589. if (!vcpu->arch.rmode.active)
  1590. return 0;
  1591. /*
  1592. * Instruction with address size override prefix opcode 0x67
  1593. * Cause the #SS fault with 0 error code in VM86 mode.
  1594. */
  1595. if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
  1596. if (emulate_instruction(vcpu, NULL, 0, 0, 0) == EMULATE_DONE)
  1597. return 1;
  1598. return 0;
  1599. }
  1600. static int handle_exception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1601. {
  1602. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1603. u32 intr_info, error_code;
  1604. unsigned long cr2, rip;
  1605. u32 vect_info;
  1606. enum emulation_result er;
  1607. vect_info = vmx->idt_vectoring_info;
  1608. intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  1609. if ((vect_info & VECTORING_INFO_VALID_MASK) &&
  1610. !is_page_fault(intr_info))
  1611. printk(KERN_ERR "%s: unexpected, vectoring info 0x%x "
  1612. "intr info 0x%x\n", __FUNCTION__, vect_info, intr_info);
  1613. if (!irqchip_in_kernel(vcpu->kvm) && is_external_interrupt(vect_info)) {
  1614. int irq = vect_info & VECTORING_INFO_VECTOR_MASK;
  1615. set_bit(irq, vcpu->arch.irq_pending);
  1616. set_bit(irq / BITS_PER_LONG, &vcpu->arch.irq_summary);
  1617. }
  1618. if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200) /* nmi */
  1619. return 1; /* already handled by vmx_vcpu_run() */
  1620. if (is_no_device(intr_info)) {
  1621. vmx_fpu_activate(vcpu);
  1622. return 1;
  1623. }
  1624. if (is_invalid_opcode(intr_info)) {
  1625. er = emulate_instruction(vcpu, kvm_run, 0, 0, EMULTYPE_TRAP_UD);
  1626. if (er != EMULATE_DONE)
  1627. kvm_queue_exception(vcpu, UD_VECTOR);
  1628. return 1;
  1629. }
  1630. error_code = 0;
  1631. rip = vmcs_readl(GUEST_RIP);
  1632. if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
  1633. error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
  1634. if (is_page_fault(intr_info)) {
  1635. cr2 = vmcs_readl(EXIT_QUALIFICATION);
  1636. return kvm_mmu_page_fault(vcpu, cr2, error_code);
  1637. }
  1638. if (vcpu->arch.rmode.active &&
  1639. handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
  1640. error_code)) {
  1641. if (vcpu->arch.halt_request) {
  1642. vcpu->arch.halt_request = 0;
  1643. return kvm_emulate_halt(vcpu);
  1644. }
  1645. return 1;
  1646. }
  1647. if ((intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK)) ==
  1648. (INTR_TYPE_EXCEPTION | 1)) {
  1649. kvm_run->exit_reason = KVM_EXIT_DEBUG;
  1650. return 0;
  1651. }
  1652. kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
  1653. kvm_run->ex.exception = intr_info & INTR_INFO_VECTOR_MASK;
  1654. kvm_run->ex.error_code = error_code;
  1655. return 0;
  1656. }
  1657. static int handle_external_interrupt(struct kvm_vcpu *vcpu,
  1658. struct kvm_run *kvm_run)
  1659. {
  1660. ++vcpu->stat.irq_exits;
  1661. return 1;
  1662. }
  1663. static int handle_triple_fault(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1664. {
  1665. kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
  1666. return 0;
  1667. }
  1668. static int handle_io(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1669. {
  1670. unsigned long exit_qualification;
  1671. int size, down, in, string, rep;
  1672. unsigned port;
  1673. ++vcpu->stat.io_exits;
  1674. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  1675. string = (exit_qualification & 16) != 0;
  1676. if (string) {
  1677. if (emulate_instruction(vcpu,
  1678. kvm_run, 0, 0, 0) == EMULATE_DO_MMIO)
  1679. return 0;
  1680. return 1;
  1681. }
  1682. size = (exit_qualification & 7) + 1;
  1683. in = (exit_qualification & 8) != 0;
  1684. down = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_DF) != 0;
  1685. rep = (exit_qualification & 32) != 0;
  1686. port = exit_qualification >> 16;
  1687. return kvm_emulate_pio(vcpu, kvm_run, in, size, port);
  1688. }
  1689. static void
  1690. vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
  1691. {
  1692. /*
  1693. * Patch in the VMCALL instruction:
  1694. */
  1695. hypercall[0] = 0x0f;
  1696. hypercall[1] = 0x01;
  1697. hypercall[2] = 0xc1;
  1698. }
  1699. static int handle_cr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1700. {
  1701. unsigned long exit_qualification;
  1702. int cr;
  1703. int reg;
  1704. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  1705. cr = exit_qualification & 15;
  1706. reg = (exit_qualification >> 8) & 15;
  1707. switch ((exit_qualification >> 4) & 3) {
  1708. case 0: /* mov to cr */
  1709. switch (cr) {
  1710. case 0:
  1711. vcpu_load_rsp_rip(vcpu);
  1712. set_cr0(vcpu, vcpu->arch.regs[reg]);
  1713. skip_emulated_instruction(vcpu);
  1714. return 1;
  1715. case 3:
  1716. vcpu_load_rsp_rip(vcpu);
  1717. set_cr3(vcpu, vcpu->arch.regs[reg]);
  1718. skip_emulated_instruction(vcpu);
  1719. return 1;
  1720. case 4:
  1721. vcpu_load_rsp_rip(vcpu);
  1722. set_cr4(vcpu, vcpu->arch.regs[reg]);
  1723. skip_emulated_instruction(vcpu);
  1724. return 1;
  1725. case 8:
  1726. vcpu_load_rsp_rip(vcpu);
  1727. set_cr8(vcpu, vcpu->arch.regs[reg]);
  1728. skip_emulated_instruction(vcpu);
  1729. if (irqchip_in_kernel(vcpu->kvm))
  1730. return 1;
  1731. kvm_run->exit_reason = KVM_EXIT_SET_TPR;
  1732. return 0;
  1733. };
  1734. break;
  1735. case 2: /* clts */
  1736. vcpu_load_rsp_rip(vcpu);
  1737. vmx_fpu_deactivate(vcpu);
  1738. vcpu->arch.cr0 &= ~X86_CR0_TS;
  1739. vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
  1740. vmx_fpu_activate(vcpu);
  1741. skip_emulated_instruction(vcpu);
  1742. return 1;
  1743. case 1: /*mov from cr*/
  1744. switch (cr) {
  1745. case 3:
  1746. vcpu_load_rsp_rip(vcpu);
  1747. vcpu->arch.regs[reg] = vcpu->arch.cr3;
  1748. vcpu_put_rsp_rip(vcpu);
  1749. skip_emulated_instruction(vcpu);
  1750. return 1;
  1751. case 8:
  1752. vcpu_load_rsp_rip(vcpu);
  1753. vcpu->arch.regs[reg] = get_cr8(vcpu);
  1754. vcpu_put_rsp_rip(vcpu);
  1755. skip_emulated_instruction(vcpu);
  1756. return 1;
  1757. }
  1758. break;
  1759. case 3: /* lmsw */
  1760. lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
  1761. skip_emulated_instruction(vcpu);
  1762. return 1;
  1763. default:
  1764. break;
  1765. }
  1766. kvm_run->exit_reason = 0;
  1767. pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
  1768. (int)(exit_qualification >> 4) & 3, cr);
  1769. return 0;
  1770. }
  1771. static int handle_dr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1772. {
  1773. unsigned long exit_qualification;
  1774. unsigned long val;
  1775. int dr, reg;
  1776. /*
  1777. * FIXME: this code assumes the host is debugging the guest.
  1778. * need to deal with guest debugging itself too.
  1779. */
  1780. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  1781. dr = exit_qualification & 7;
  1782. reg = (exit_qualification >> 8) & 15;
  1783. vcpu_load_rsp_rip(vcpu);
  1784. if (exit_qualification & 16) {
  1785. /* mov from dr */
  1786. switch (dr) {
  1787. case 6:
  1788. val = 0xffff0ff0;
  1789. break;
  1790. case 7:
  1791. val = 0x400;
  1792. break;
  1793. default:
  1794. val = 0;
  1795. }
  1796. vcpu->arch.regs[reg] = val;
  1797. } else {
  1798. /* mov to dr */
  1799. }
  1800. vcpu_put_rsp_rip(vcpu);
  1801. skip_emulated_instruction(vcpu);
  1802. return 1;
  1803. }
  1804. static int handle_cpuid(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1805. {
  1806. kvm_emulate_cpuid(vcpu);
  1807. return 1;
  1808. }
  1809. static int handle_rdmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1810. {
  1811. u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  1812. u64 data;
  1813. if (vmx_get_msr(vcpu, ecx, &data)) {
  1814. kvm_inject_gp(vcpu, 0);
  1815. return 1;
  1816. }
  1817. /* FIXME: handling of bits 32:63 of rax, rdx */
  1818. vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
  1819. vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
  1820. skip_emulated_instruction(vcpu);
  1821. return 1;
  1822. }
  1823. static int handle_wrmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1824. {
  1825. u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  1826. u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
  1827. | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
  1828. if (vmx_set_msr(vcpu, ecx, data) != 0) {
  1829. kvm_inject_gp(vcpu, 0);
  1830. return 1;
  1831. }
  1832. skip_emulated_instruction(vcpu);
  1833. return 1;
  1834. }
  1835. static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu,
  1836. struct kvm_run *kvm_run)
  1837. {
  1838. return 1;
  1839. }
  1840. static int handle_interrupt_window(struct kvm_vcpu *vcpu,
  1841. struct kvm_run *kvm_run)
  1842. {
  1843. u32 cpu_based_vm_exec_control;
  1844. /* clear pending irq */
  1845. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  1846. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
  1847. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  1848. /*
  1849. * If the user space waits to inject interrupts, exit as soon as
  1850. * possible
  1851. */
  1852. if (kvm_run->request_interrupt_window &&
  1853. !vcpu->arch.irq_summary) {
  1854. kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
  1855. ++vcpu->stat.irq_window_exits;
  1856. return 0;
  1857. }
  1858. return 1;
  1859. }
  1860. static int handle_halt(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1861. {
  1862. skip_emulated_instruction(vcpu);
  1863. return kvm_emulate_halt(vcpu);
  1864. }
  1865. static int handle_vmcall(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1866. {
  1867. skip_emulated_instruction(vcpu);
  1868. kvm_emulate_hypercall(vcpu);
  1869. return 1;
  1870. }
  1871. static int handle_wbinvd(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1872. {
  1873. skip_emulated_instruction(vcpu);
  1874. /* TODO: Add support for VT-d/pass-through device */
  1875. return 1;
  1876. }
  1877. static int handle_apic_access(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1878. {
  1879. u64 exit_qualification;
  1880. enum emulation_result er;
  1881. unsigned long offset;
  1882. exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
  1883. offset = exit_qualification & 0xffful;
  1884. er = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
  1885. if (er != EMULATE_DONE) {
  1886. printk(KERN_ERR
  1887. "Fail to handle apic access vmexit! Offset is 0x%lx\n",
  1888. offset);
  1889. return -ENOTSUPP;
  1890. }
  1891. return 1;
  1892. }
  1893. /*
  1894. * The exit handlers return 1 if the exit was handled fully and guest execution
  1895. * may resume. Otherwise they set the kvm_run parameter to indicate what needs
  1896. * to be done to userspace and return 0.
  1897. */
  1898. static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu,
  1899. struct kvm_run *kvm_run) = {
  1900. [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
  1901. [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
  1902. [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
  1903. [EXIT_REASON_IO_INSTRUCTION] = handle_io,
  1904. [EXIT_REASON_CR_ACCESS] = handle_cr,
  1905. [EXIT_REASON_DR_ACCESS] = handle_dr,
  1906. [EXIT_REASON_CPUID] = handle_cpuid,
  1907. [EXIT_REASON_MSR_READ] = handle_rdmsr,
  1908. [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
  1909. [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
  1910. [EXIT_REASON_HLT] = handle_halt,
  1911. [EXIT_REASON_VMCALL] = handle_vmcall,
  1912. [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
  1913. [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
  1914. [EXIT_REASON_WBINVD] = handle_wbinvd,
  1915. };
  1916. static const int kvm_vmx_max_exit_handlers =
  1917. ARRAY_SIZE(kvm_vmx_exit_handlers);
  1918. /*
  1919. * The guest has exited. See if we can fix it or if we need userspace
  1920. * assistance.
  1921. */
  1922. static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
  1923. {
  1924. u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
  1925. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1926. u32 vectoring_info = vmx->idt_vectoring_info;
  1927. if (unlikely(vmx->fail)) {
  1928. kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  1929. kvm_run->fail_entry.hardware_entry_failure_reason
  1930. = vmcs_read32(VM_INSTRUCTION_ERROR);
  1931. return 0;
  1932. }
  1933. if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
  1934. exit_reason != EXIT_REASON_EXCEPTION_NMI)
  1935. printk(KERN_WARNING "%s: unexpected, valid vectoring info and "
  1936. "exit reason is 0x%x\n", __FUNCTION__, exit_reason);
  1937. if (exit_reason < kvm_vmx_max_exit_handlers
  1938. && kvm_vmx_exit_handlers[exit_reason])
  1939. return kvm_vmx_exit_handlers[exit_reason](vcpu, kvm_run);
  1940. else {
  1941. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  1942. kvm_run->hw.hardware_exit_reason = exit_reason;
  1943. }
  1944. return 0;
  1945. }
  1946. static void update_tpr_threshold(struct kvm_vcpu *vcpu)
  1947. {
  1948. int max_irr, tpr;
  1949. if (!vm_need_tpr_shadow(vcpu->kvm))
  1950. return;
  1951. if (!kvm_lapic_enabled(vcpu) ||
  1952. ((max_irr = kvm_lapic_find_highest_irr(vcpu)) == -1)) {
  1953. vmcs_write32(TPR_THRESHOLD, 0);
  1954. return;
  1955. }
  1956. tpr = (kvm_lapic_get_cr8(vcpu) & 0x0f) << 4;
  1957. vmcs_write32(TPR_THRESHOLD, (max_irr > tpr) ? tpr >> 4 : max_irr >> 4);
  1958. }
  1959. static void enable_irq_window(struct kvm_vcpu *vcpu)
  1960. {
  1961. u32 cpu_based_vm_exec_control;
  1962. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  1963. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
  1964. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  1965. }
  1966. static void vmx_intr_assist(struct kvm_vcpu *vcpu)
  1967. {
  1968. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1969. u32 idtv_info_field, intr_info_field;
  1970. int has_ext_irq, interrupt_window_open;
  1971. int vector;
  1972. update_tpr_threshold(vcpu);
  1973. has_ext_irq = kvm_cpu_has_interrupt(vcpu);
  1974. intr_info_field = vmcs_read32(VM_ENTRY_INTR_INFO_FIELD);
  1975. idtv_info_field = vmx->idt_vectoring_info;
  1976. if (intr_info_field & INTR_INFO_VALID_MASK) {
  1977. if (idtv_info_field & INTR_INFO_VALID_MASK) {
  1978. /* TODO: fault when IDT_Vectoring */
  1979. if (printk_ratelimit())
  1980. printk(KERN_ERR "Fault when IDT_Vectoring\n");
  1981. }
  1982. if (has_ext_irq)
  1983. enable_irq_window(vcpu);
  1984. return;
  1985. }
  1986. if (unlikely(idtv_info_field & INTR_INFO_VALID_MASK)) {
  1987. if ((idtv_info_field & VECTORING_INFO_TYPE_MASK)
  1988. == INTR_TYPE_EXT_INTR
  1989. && vcpu->arch.rmode.active) {
  1990. u8 vect = idtv_info_field & VECTORING_INFO_VECTOR_MASK;
  1991. vmx_inject_irq(vcpu, vect);
  1992. if (unlikely(has_ext_irq))
  1993. enable_irq_window(vcpu);
  1994. return;
  1995. }
  1996. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, idtv_info_field);
  1997. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
  1998. vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
  1999. if (unlikely(idtv_info_field & INTR_INFO_DELIVER_CODE_MASK))
  2000. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
  2001. vmcs_read32(IDT_VECTORING_ERROR_CODE));
  2002. if (unlikely(has_ext_irq))
  2003. enable_irq_window(vcpu);
  2004. return;
  2005. }
  2006. if (!has_ext_irq)
  2007. return;
  2008. interrupt_window_open =
  2009. ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
  2010. (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0);
  2011. if (interrupt_window_open) {
  2012. vector = kvm_cpu_get_interrupt(vcpu);
  2013. vmx_inject_irq(vcpu, vector);
  2014. kvm_timer_intr_post(vcpu, vector);
  2015. } else
  2016. enable_irq_window(vcpu);
  2017. }
  2018. /*
  2019. * Failure to inject an interrupt should give us the information
  2020. * in IDT_VECTORING_INFO_FIELD. However, if the failure occurs
  2021. * when fetching the interrupt redirection bitmap in the real-mode
  2022. * tss, this doesn't happen. So we do it ourselves.
  2023. */
  2024. static void fixup_rmode_irq(struct vcpu_vmx *vmx)
  2025. {
  2026. vmx->rmode.irq.pending = 0;
  2027. if (vmcs_readl(GUEST_RIP) + 1 != vmx->rmode.irq.rip)
  2028. return;
  2029. vmcs_writel(GUEST_RIP, vmx->rmode.irq.rip);
  2030. if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) {
  2031. vmx->idt_vectoring_info &= ~VECTORING_INFO_TYPE_MASK;
  2032. vmx->idt_vectoring_info |= INTR_TYPE_EXT_INTR;
  2033. return;
  2034. }
  2035. vmx->idt_vectoring_info =
  2036. VECTORING_INFO_VALID_MASK
  2037. | INTR_TYPE_EXT_INTR
  2038. | vmx->rmode.irq.vector;
  2039. }
  2040. static void vmx_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2041. {
  2042. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2043. u32 intr_info;
  2044. /*
  2045. * Loading guest fpu may have cleared host cr0.ts
  2046. */
  2047. vmcs_writel(HOST_CR0, read_cr0());
  2048. asm(
  2049. /* Store host registers */
  2050. #ifdef CONFIG_X86_64
  2051. "push %%rdx; push %%rbp;"
  2052. "push %%rcx \n\t"
  2053. #else
  2054. "push %%edx; push %%ebp;"
  2055. "push %%ecx \n\t"
  2056. #endif
  2057. ASM_VMX_VMWRITE_RSP_RDX "\n\t"
  2058. /* Check if vmlaunch of vmresume is needed */
  2059. "cmpl $0, %c[launched](%0) \n\t"
  2060. /* Load guest registers. Don't clobber flags. */
  2061. #ifdef CONFIG_X86_64
  2062. "mov %c[cr2](%0), %%rax \n\t"
  2063. "mov %%rax, %%cr2 \n\t"
  2064. "mov %c[rax](%0), %%rax \n\t"
  2065. "mov %c[rbx](%0), %%rbx \n\t"
  2066. "mov %c[rdx](%0), %%rdx \n\t"
  2067. "mov %c[rsi](%0), %%rsi \n\t"
  2068. "mov %c[rdi](%0), %%rdi \n\t"
  2069. "mov %c[rbp](%0), %%rbp \n\t"
  2070. "mov %c[r8](%0), %%r8 \n\t"
  2071. "mov %c[r9](%0), %%r9 \n\t"
  2072. "mov %c[r10](%0), %%r10 \n\t"
  2073. "mov %c[r11](%0), %%r11 \n\t"
  2074. "mov %c[r12](%0), %%r12 \n\t"
  2075. "mov %c[r13](%0), %%r13 \n\t"
  2076. "mov %c[r14](%0), %%r14 \n\t"
  2077. "mov %c[r15](%0), %%r15 \n\t"
  2078. "mov %c[rcx](%0), %%rcx \n\t" /* kills %0 (rcx) */
  2079. #else
  2080. "mov %c[cr2](%0), %%eax \n\t"
  2081. "mov %%eax, %%cr2 \n\t"
  2082. "mov %c[rax](%0), %%eax \n\t"
  2083. "mov %c[rbx](%0), %%ebx \n\t"
  2084. "mov %c[rdx](%0), %%edx \n\t"
  2085. "mov %c[rsi](%0), %%esi \n\t"
  2086. "mov %c[rdi](%0), %%edi \n\t"
  2087. "mov %c[rbp](%0), %%ebp \n\t"
  2088. "mov %c[rcx](%0), %%ecx \n\t" /* kills %0 (ecx) */
  2089. #endif
  2090. /* Enter guest mode */
  2091. "jne .Llaunched \n\t"
  2092. ASM_VMX_VMLAUNCH "\n\t"
  2093. "jmp .Lkvm_vmx_return \n\t"
  2094. ".Llaunched: " ASM_VMX_VMRESUME "\n\t"
  2095. ".Lkvm_vmx_return: "
  2096. /* Save guest registers, load host registers, keep flags */
  2097. #ifdef CONFIG_X86_64
  2098. "xchg %0, (%%rsp) \n\t"
  2099. "mov %%rax, %c[rax](%0) \n\t"
  2100. "mov %%rbx, %c[rbx](%0) \n\t"
  2101. "pushq (%%rsp); popq %c[rcx](%0) \n\t"
  2102. "mov %%rdx, %c[rdx](%0) \n\t"
  2103. "mov %%rsi, %c[rsi](%0) \n\t"
  2104. "mov %%rdi, %c[rdi](%0) \n\t"
  2105. "mov %%rbp, %c[rbp](%0) \n\t"
  2106. "mov %%r8, %c[r8](%0) \n\t"
  2107. "mov %%r9, %c[r9](%0) \n\t"
  2108. "mov %%r10, %c[r10](%0) \n\t"
  2109. "mov %%r11, %c[r11](%0) \n\t"
  2110. "mov %%r12, %c[r12](%0) \n\t"
  2111. "mov %%r13, %c[r13](%0) \n\t"
  2112. "mov %%r14, %c[r14](%0) \n\t"
  2113. "mov %%r15, %c[r15](%0) \n\t"
  2114. "mov %%cr2, %%rax \n\t"
  2115. "mov %%rax, %c[cr2](%0) \n\t"
  2116. "pop %%rbp; pop %%rbp; pop %%rdx \n\t"
  2117. #else
  2118. "xchg %0, (%%esp) \n\t"
  2119. "mov %%eax, %c[rax](%0) \n\t"
  2120. "mov %%ebx, %c[rbx](%0) \n\t"
  2121. "pushl (%%esp); popl %c[rcx](%0) \n\t"
  2122. "mov %%edx, %c[rdx](%0) \n\t"
  2123. "mov %%esi, %c[rsi](%0) \n\t"
  2124. "mov %%edi, %c[rdi](%0) \n\t"
  2125. "mov %%ebp, %c[rbp](%0) \n\t"
  2126. "mov %%cr2, %%eax \n\t"
  2127. "mov %%eax, %c[cr2](%0) \n\t"
  2128. "pop %%ebp; pop %%ebp; pop %%edx \n\t"
  2129. #endif
  2130. "setbe %c[fail](%0) \n\t"
  2131. : : "c"(vmx), "d"((unsigned long)HOST_RSP),
  2132. [launched]"i"(offsetof(struct vcpu_vmx, launched)),
  2133. [fail]"i"(offsetof(struct vcpu_vmx, fail)),
  2134. [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
  2135. [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
  2136. [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
  2137. [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
  2138. [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
  2139. [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
  2140. [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
  2141. #ifdef CONFIG_X86_64
  2142. [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
  2143. [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
  2144. [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
  2145. [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
  2146. [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
  2147. [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
  2148. [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
  2149. [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
  2150. #endif
  2151. [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2))
  2152. : "cc", "memory"
  2153. #ifdef CONFIG_X86_64
  2154. , "rbx", "rdi", "rsi"
  2155. , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
  2156. #else
  2157. , "ebx", "edi", "rsi"
  2158. #endif
  2159. );
  2160. vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  2161. if (vmx->rmode.irq.pending)
  2162. fixup_rmode_irq(vmx);
  2163. vcpu->arch.interrupt_window_open =
  2164. (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0;
  2165. asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
  2166. vmx->launched = 1;
  2167. intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  2168. /* We need to handle NMIs before interrupts are enabled */
  2169. if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200) /* nmi */
  2170. asm("int $2");
  2171. }
  2172. static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
  2173. {
  2174. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2175. if (vmx->vmcs) {
  2176. on_each_cpu(__vcpu_clear, vmx, 0, 1);
  2177. free_vmcs(vmx->vmcs);
  2178. vmx->vmcs = NULL;
  2179. }
  2180. }
  2181. static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
  2182. {
  2183. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2184. spin_lock(&vmx_vpid_lock);
  2185. if (vmx->vpid != 0)
  2186. __clear_bit(vmx->vpid, vmx_vpid_bitmap);
  2187. spin_unlock(&vmx_vpid_lock);
  2188. vmx_free_vmcs(vcpu);
  2189. kfree(vmx->host_msrs);
  2190. kfree(vmx->guest_msrs);
  2191. kvm_vcpu_uninit(vcpu);
  2192. kmem_cache_free(kvm_vcpu_cache, vmx);
  2193. }
  2194. static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
  2195. {
  2196. int err;
  2197. struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
  2198. int cpu;
  2199. if (!vmx)
  2200. return ERR_PTR(-ENOMEM);
  2201. allocate_vpid(vmx);
  2202. err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
  2203. if (err)
  2204. goto free_vcpu;
  2205. vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  2206. if (!vmx->guest_msrs) {
  2207. err = -ENOMEM;
  2208. goto uninit_vcpu;
  2209. }
  2210. vmx->host_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  2211. if (!vmx->host_msrs)
  2212. goto free_guest_msrs;
  2213. vmx->vmcs = alloc_vmcs();
  2214. if (!vmx->vmcs)
  2215. goto free_msrs;
  2216. vmcs_clear(vmx->vmcs);
  2217. cpu = get_cpu();
  2218. vmx_vcpu_load(&vmx->vcpu, cpu);
  2219. err = vmx_vcpu_setup(vmx);
  2220. vmx_vcpu_put(&vmx->vcpu);
  2221. put_cpu();
  2222. if (err)
  2223. goto free_vmcs;
  2224. if (vm_need_virtualize_apic_accesses(kvm))
  2225. if (alloc_apic_access_page(kvm) != 0)
  2226. goto free_vmcs;
  2227. return &vmx->vcpu;
  2228. free_vmcs:
  2229. free_vmcs(vmx->vmcs);
  2230. free_msrs:
  2231. kfree(vmx->host_msrs);
  2232. free_guest_msrs:
  2233. kfree(vmx->guest_msrs);
  2234. uninit_vcpu:
  2235. kvm_vcpu_uninit(&vmx->vcpu);
  2236. free_vcpu:
  2237. kmem_cache_free(kvm_vcpu_cache, vmx);
  2238. return ERR_PTR(err);
  2239. }
  2240. static void __init vmx_check_processor_compat(void *rtn)
  2241. {
  2242. struct vmcs_config vmcs_conf;
  2243. *(int *)rtn = 0;
  2244. if (setup_vmcs_config(&vmcs_conf) < 0)
  2245. *(int *)rtn = -EIO;
  2246. if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
  2247. printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
  2248. smp_processor_id());
  2249. *(int *)rtn = -EIO;
  2250. }
  2251. }
  2252. static struct kvm_x86_ops vmx_x86_ops = {
  2253. .cpu_has_kvm_support = cpu_has_kvm_support,
  2254. .disabled_by_bios = vmx_disabled_by_bios,
  2255. .hardware_setup = hardware_setup,
  2256. .hardware_unsetup = hardware_unsetup,
  2257. .check_processor_compatibility = vmx_check_processor_compat,
  2258. .hardware_enable = hardware_enable,
  2259. .hardware_disable = hardware_disable,
  2260. .cpu_has_accelerated_tpr = cpu_has_vmx_virtualize_apic_accesses,
  2261. .vcpu_create = vmx_create_vcpu,
  2262. .vcpu_free = vmx_free_vcpu,
  2263. .vcpu_reset = vmx_vcpu_reset,
  2264. .prepare_guest_switch = vmx_save_host_state,
  2265. .vcpu_load = vmx_vcpu_load,
  2266. .vcpu_put = vmx_vcpu_put,
  2267. .vcpu_decache = vmx_vcpu_decache,
  2268. .set_guest_debug = set_guest_debug,
  2269. .guest_debug_pre = kvm_guest_debug_pre,
  2270. .get_msr = vmx_get_msr,
  2271. .set_msr = vmx_set_msr,
  2272. .get_segment_base = vmx_get_segment_base,
  2273. .get_segment = vmx_get_segment,
  2274. .set_segment = vmx_set_segment,
  2275. .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
  2276. .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
  2277. .set_cr0 = vmx_set_cr0,
  2278. .set_cr3 = vmx_set_cr3,
  2279. .set_cr4 = vmx_set_cr4,
  2280. .set_efer = vmx_set_efer,
  2281. .get_idt = vmx_get_idt,
  2282. .set_idt = vmx_set_idt,
  2283. .get_gdt = vmx_get_gdt,
  2284. .set_gdt = vmx_set_gdt,
  2285. .cache_regs = vcpu_load_rsp_rip,
  2286. .decache_regs = vcpu_put_rsp_rip,
  2287. .get_rflags = vmx_get_rflags,
  2288. .set_rflags = vmx_set_rflags,
  2289. .tlb_flush = vmx_flush_tlb,
  2290. .run = vmx_vcpu_run,
  2291. .handle_exit = kvm_handle_exit,
  2292. .skip_emulated_instruction = skip_emulated_instruction,
  2293. .patch_hypercall = vmx_patch_hypercall,
  2294. .get_irq = vmx_get_irq,
  2295. .set_irq = vmx_inject_irq,
  2296. .queue_exception = vmx_queue_exception,
  2297. .exception_injected = vmx_exception_injected,
  2298. .inject_pending_irq = vmx_intr_assist,
  2299. .inject_pending_vectors = do_interrupt_requests,
  2300. .set_tss_addr = vmx_set_tss_addr,
  2301. };
  2302. static int __init vmx_init(void)
  2303. {
  2304. void *iova;
  2305. int r;
  2306. vmx_io_bitmap_a = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
  2307. if (!vmx_io_bitmap_a)
  2308. return -ENOMEM;
  2309. vmx_io_bitmap_b = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
  2310. if (!vmx_io_bitmap_b) {
  2311. r = -ENOMEM;
  2312. goto out;
  2313. }
  2314. /*
  2315. * Allow direct access to the PC debug port (it is often used for I/O
  2316. * delays, but the vmexits simply slow things down).
  2317. */
  2318. iova = kmap(vmx_io_bitmap_a);
  2319. memset(iova, 0xff, PAGE_SIZE);
  2320. clear_bit(0x80, iova);
  2321. kunmap(vmx_io_bitmap_a);
  2322. iova = kmap(vmx_io_bitmap_b);
  2323. memset(iova, 0xff, PAGE_SIZE);
  2324. kunmap(vmx_io_bitmap_b);
  2325. set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
  2326. r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx), THIS_MODULE);
  2327. if (r)
  2328. goto out1;
  2329. if (bypass_guest_pf)
  2330. kvm_mmu_set_nonpresent_ptes(~0xffeull, 0ull);
  2331. return 0;
  2332. out1:
  2333. __free_page(vmx_io_bitmap_b);
  2334. out:
  2335. __free_page(vmx_io_bitmap_a);
  2336. return r;
  2337. }
  2338. static void __exit vmx_exit(void)
  2339. {
  2340. __free_page(vmx_io_bitmap_b);
  2341. __free_page(vmx_io_bitmap_a);
  2342. kvm_exit();
  2343. }
  2344. module_init(vmx_init)
  2345. module_exit(vmx_exit)