messenger.c 64 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605
  1. #include <linux/ceph/ceph_debug.h>
  2. #include <linux/crc32c.h>
  3. #include <linux/ctype.h>
  4. #include <linux/highmem.h>
  5. #include <linux/inet.h>
  6. #include <linux/kthread.h>
  7. #include <linux/net.h>
  8. #include <linux/slab.h>
  9. #include <linux/socket.h>
  10. #include <linux/string.h>
  11. #include <linux/bio.h>
  12. #include <linux/blkdev.h>
  13. #include <linux/dns_resolver.h>
  14. #include <net/tcp.h>
  15. #include <linux/ceph/libceph.h>
  16. #include <linux/ceph/messenger.h>
  17. #include <linux/ceph/decode.h>
  18. #include <linux/ceph/pagelist.h>
  19. #include <linux/export.h>
  20. /*
  21. * Ceph uses the messenger to exchange ceph_msg messages with other
  22. * hosts in the system. The messenger provides ordered and reliable
  23. * delivery. We tolerate TCP disconnects by reconnecting (with
  24. * exponential backoff) in the case of a fault (disconnection, bad
  25. * crc, protocol error). Acks allow sent messages to be discarded by
  26. * the sender.
  27. */
  28. /* static tag bytes (protocol control messages) */
  29. static char tag_msg = CEPH_MSGR_TAG_MSG;
  30. static char tag_ack = CEPH_MSGR_TAG_ACK;
  31. static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
  32. #ifdef CONFIG_LOCKDEP
  33. static struct lock_class_key socket_class;
  34. #endif
  35. static void queue_con(struct ceph_connection *con);
  36. static void con_work(struct work_struct *);
  37. static void ceph_fault(struct ceph_connection *con);
  38. /*
  39. * nicely render a sockaddr as a string.
  40. */
  41. #define MAX_ADDR_STR 20
  42. #define MAX_ADDR_STR_LEN 60
  43. static char addr_str[MAX_ADDR_STR][MAX_ADDR_STR_LEN];
  44. static DEFINE_SPINLOCK(addr_str_lock);
  45. static int last_addr_str;
  46. static struct page *zero_page; /* used in certain error cases */
  47. static void *zero_page_address; /* kernel virtual addr of zero_page */
  48. const char *ceph_pr_addr(const struct sockaddr_storage *ss)
  49. {
  50. int i;
  51. char *s;
  52. struct sockaddr_in *in4 = (void *)ss;
  53. struct sockaddr_in6 *in6 = (void *)ss;
  54. spin_lock(&addr_str_lock);
  55. i = last_addr_str++;
  56. if (last_addr_str == MAX_ADDR_STR)
  57. last_addr_str = 0;
  58. spin_unlock(&addr_str_lock);
  59. s = addr_str[i];
  60. switch (ss->ss_family) {
  61. case AF_INET:
  62. snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%u", &in4->sin_addr,
  63. (unsigned int)ntohs(in4->sin_port));
  64. break;
  65. case AF_INET6:
  66. snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%u", &in6->sin6_addr,
  67. (unsigned int)ntohs(in6->sin6_port));
  68. break;
  69. default:
  70. snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %d)",
  71. (int)ss->ss_family);
  72. }
  73. return s;
  74. }
  75. EXPORT_SYMBOL(ceph_pr_addr);
  76. static void encode_my_addr(struct ceph_messenger *msgr)
  77. {
  78. memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
  79. ceph_encode_addr(&msgr->my_enc_addr);
  80. }
  81. /*
  82. * work queue for all reading and writing to/from the socket.
  83. */
  84. struct workqueue_struct *ceph_msgr_wq;
  85. int ceph_msgr_init(void)
  86. {
  87. BUG_ON(zero_page != NULL);
  88. zero_page = ZERO_PAGE(0);
  89. page_cache_get(zero_page);
  90. BUG_ON(zero_page_address != NULL);
  91. zero_page_address = kmap(zero_page);
  92. ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_NON_REENTRANT, 0);
  93. if (!ceph_msgr_wq) {
  94. pr_err("msgr_init failed to create workqueue\n");
  95. zero_page_address = NULL;
  96. kunmap(zero_page);
  97. page_cache_release(zero_page);
  98. zero_page = NULL;
  99. return -ENOMEM;
  100. }
  101. return 0;
  102. }
  103. EXPORT_SYMBOL(ceph_msgr_init);
  104. void ceph_msgr_exit(void)
  105. {
  106. BUG_ON(ceph_msgr_wq == NULL);
  107. destroy_workqueue(ceph_msgr_wq);
  108. BUG_ON(zero_page_address == NULL);
  109. zero_page_address = NULL;
  110. BUG_ON(zero_page == NULL);
  111. kunmap(zero_page);
  112. page_cache_release(zero_page);
  113. zero_page = NULL;
  114. }
  115. EXPORT_SYMBOL(ceph_msgr_exit);
  116. void ceph_msgr_flush(void)
  117. {
  118. flush_workqueue(ceph_msgr_wq);
  119. }
  120. EXPORT_SYMBOL(ceph_msgr_flush);
  121. /*
  122. * socket callback functions
  123. */
  124. /* data available on socket, or listen socket received a connect */
  125. static void ceph_data_ready(struct sock *sk, int count_unused)
  126. {
  127. struct ceph_connection *con =
  128. (struct ceph_connection *)sk->sk_user_data;
  129. if (sk->sk_state != TCP_CLOSE_WAIT) {
  130. dout("ceph_data_ready on %p state = %lu, queueing work\n",
  131. con, con->state);
  132. queue_con(con);
  133. }
  134. }
  135. /* socket has buffer space for writing */
  136. static void ceph_write_space(struct sock *sk)
  137. {
  138. struct ceph_connection *con =
  139. (struct ceph_connection *)sk->sk_user_data;
  140. /* only queue to workqueue if there is data we want to write,
  141. * and there is sufficient space in the socket buffer to accept
  142. * more data. clear SOCK_NOSPACE so that ceph_write_space()
  143. * doesn't get called again until try_write() fills the socket
  144. * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
  145. * and net/core/stream.c:sk_stream_write_space().
  146. */
  147. if (test_bit(WRITE_PENDING, &con->state)) {
  148. if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) {
  149. dout("ceph_write_space %p queueing write work\n", con);
  150. clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
  151. queue_con(con);
  152. }
  153. } else {
  154. dout("ceph_write_space %p nothing to write\n", con);
  155. }
  156. }
  157. /* socket's state has changed */
  158. static void ceph_state_change(struct sock *sk)
  159. {
  160. struct ceph_connection *con =
  161. (struct ceph_connection *)sk->sk_user_data;
  162. dout("ceph_state_change %p state = %lu sk_state = %u\n",
  163. con, con->state, sk->sk_state);
  164. if (test_bit(CLOSED, &con->state))
  165. return;
  166. switch (sk->sk_state) {
  167. case TCP_CLOSE:
  168. dout("ceph_state_change TCP_CLOSE\n");
  169. case TCP_CLOSE_WAIT:
  170. dout("ceph_state_change TCP_CLOSE_WAIT\n");
  171. if (test_and_set_bit(SOCK_CLOSED, &con->state) == 0) {
  172. if (test_bit(CONNECTING, &con->state))
  173. con->error_msg = "connection failed";
  174. else
  175. con->error_msg = "socket closed";
  176. queue_con(con);
  177. }
  178. break;
  179. case TCP_ESTABLISHED:
  180. dout("ceph_state_change TCP_ESTABLISHED\n");
  181. queue_con(con);
  182. break;
  183. }
  184. }
  185. /*
  186. * set up socket callbacks
  187. */
  188. static void set_sock_callbacks(struct socket *sock,
  189. struct ceph_connection *con)
  190. {
  191. struct sock *sk = sock->sk;
  192. sk->sk_user_data = (void *)con;
  193. sk->sk_data_ready = ceph_data_ready;
  194. sk->sk_write_space = ceph_write_space;
  195. sk->sk_state_change = ceph_state_change;
  196. }
  197. /*
  198. * socket helpers
  199. */
  200. /*
  201. * initiate connection to a remote socket.
  202. */
  203. static struct socket *ceph_tcp_connect(struct ceph_connection *con)
  204. {
  205. struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
  206. struct socket *sock;
  207. int ret;
  208. BUG_ON(con->sock);
  209. ret = sock_create_kern(con->peer_addr.in_addr.ss_family, SOCK_STREAM,
  210. IPPROTO_TCP, &sock);
  211. if (ret)
  212. return ERR_PTR(ret);
  213. sock->sk->sk_allocation = GFP_NOFS;
  214. #ifdef CONFIG_LOCKDEP
  215. lockdep_set_class(&sock->sk->sk_lock, &socket_class);
  216. #endif
  217. set_sock_callbacks(sock, con);
  218. dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
  219. ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
  220. O_NONBLOCK);
  221. if (ret == -EINPROGRESS) {
  222. dout("connect %s EINPROGRESS sk_state = %u\n",
  223. ceph_pr_addr(&con->peer_addr.in_addr),
  224. sock->sk->sk_state);
  225. } else if (ret < 0) {
  226. pr_err("connect %s error %d\n",
  227. ceph_pr_addr(&con->peer_addr.in_addr), ret);
  228. sock_release(sock);
  229. con->error_msg = "connect error";
  230. return ERR_PTR(ret);
  231. }
  232. con->sock = sock;
  233. return sock;
  234. }
  235. static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
  236. {
  237. struct kvec iov = {buf, len};
  238. struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
  239. int r;
  240. r = kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags);
  241. if (r == -EAGAIN)
  242. r = 0;
  243. return r;
  244. }
  245. /*
  246. * write something. @more is true if caller will be sending more data
  247. * shortly.
  248. */
  249. static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
  250. size_t kvlen, size_t len, int more)
  251. {
  252. struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
  253. int r;
  254. if (more)
  255. msg.msg_flags |= MSG_MORE;
  256. else
  257. msg.msg_flags |= MSG_EOR; /* superfluous, but what the hell */
  258. r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
  259. if (r == -EAGAIN)
  260. r = 0;
  261. return r;
  262. }
  263. /*
  264. * Shutdown/close the socket for the given connection.
  265. */
  266. static int con_close_socket(struct ceph_connection *con)
  267. {
  268. int rc;
  269. dout("con_close_socket on %p sock %p\n", con, con->sock);
  270. if (!con->sock)
  271. return 0;
  272. set_bit(SOCK_CLOSED, &con->state);
  273. rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
  274. sock_release(con->sock);
  275. con->sock = NULL;
  276. clear_bit(SOCK_CLOSED, &con->state);
  277. return rc;
  278. }
  279. /*
  280. * Reset a connection. Discard all incoming and outgoing messages
  281. * and clear *_seq state.
  282. */
  283. static void ceph_msg_remove(struct ceph_msg *msg)
  284. {
  285. list_del_init(&msg->list_head);
  286. ceph_msg_put(msg);
  287. }
  288. static void ceph_msg_remove_list(struct list_head *head)
  289. {
  290. while (!list_empty(head)) {
  291. struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
  292. list_head);
  293. ceph_msg_remove(msg);
  294. }
  295. }
  296. static void reset_connection(struct ceph_connection *con)
  297. {
  298. /* reset connection, out_queue, msg_ and connect_seq */
  299. /* discard existing out_queue and msg_seq */
  300. ceph_msg_remove_list(&con->out_queue);
  301. ceph_msg_remove_list(&con->out_sent);
  302. if (con->in_msg) {
  303. ceph_msg_put(con->in_msg);
  304. con->in_msg = NULL;
  305. }
  306. con->connect_seq = 0;
  307. con->out_seq = 0;
  308. if (con->out_msg) {
  309. ceph_msg_put(con->out_msg);
  310. con->out_msg = NULL;
  311. }
  312. con->in_seq = 0;
  313. con->in_seq_acked = 0;
  314. }
  315. /*
  316. * mark a peer down. drop any open connections.
  317. */
  318. void ceph_con_close(struct ceph_connection *con)
  319. {
  320. dout("con_close %p peer %s\n", con,
  321. ceph_pr_addr(&con->peer_addr.in_addr));
  322. set_bit(CLOSED, &con->state); /* in case there's queued work */
  323. clear_bit(STANDBY, &con->state); /* avoid connect_seq bump */
  324. clear_bit(LOSSYTX, &con->state); /* so we retry next connect */
  325. clear_bit(KEEPALIVE_PENDING, &con->state);
  326. clear_bit(WRITE_PENDING, &con->state);
  327. mutex_lock(&con->mutex);
  328. reset_connection(con);
  329. con->peer_global_seq = 0;
  330. cancel_delayed_work(&con->work);
  331. mutex_unlock(&con->mutex);
  332. queue_con(con);
  333. }
  334. EXPORT_SYMBOL(ceph_con_close);
  335. /*
  336. * Reopen a closed connection, with a new peer address.
  337. */
  338. void ceph_con_open(struct ceph_connection *con, struct ceph_entity_addr *addr)
  339. {
  340. dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
  341. set_bit(OPENING, &con->state);
  342. clear_bit(CLOSED, &con->state);
  343. memcpy(&con->peer_addr, addr, sizeof(*addr));
  344. con->delay = 0; /* reset backoff memory */
  345. queue_con(con);
  346. }
  347. EXPORT_SYMBOL(ceph_con_open);
  348. /*
  349. * return true if this connection ever successfully opened
  350. */
  351. bool ceph_con_opened(struct ceph_connection *con)
  352. {
  353. return con->connect_seq > 0;
  354. }
  355. /*
  356. * generic get/put
  357. */
  358. struct ceph_connection *ceph_con_get(struct ceph_connection *con)
  359. {
  360. dout("con_get %p nref = %d -> %d\n", con,
  361. atomic_read(&con->nref), atomic_read(&con->nref) + 1);
  362. if (atomic_inc_not_zero(&con->nref))
  363. return con;
  364. return NULL;
  365. }
  366. void ceph_con_put(struct ceph_connection *con)
  367. {
  368. dout("con_put %p nref = %d -> %d\n", con,
  369. atomic_read(&con->nref), atomic_read(&con->nref) - 1);
  370. BUG_ON(atomic_read(&con->nref) == 0);
  371. if (atomic_dec_and_test(&con->nref)) {
  372. BUG_ON(con->sock);
  373. kfree(con);
  374. }
  375. }
  376. /*
  377. * initialize a new connection.
  378. */
  379. void ceph_con_init(struct ceph_messenger *msgr, struct ceph_connection *con)
  380. {
  381. dout("con_init %p\n", con);
  382. memset(con, 0, sizeof(*con));
  383. atomic_set(&con->nref, 1);
  384. con->msgr = msgr;
  385. mutex_init(&con->mutex);
  386. INIT_LIST_HEAD(&con->out_queue);
  387. INIT_LIST_HEAD(&con->out_sent);
  388. INIT_DELAYED_WORK(&con->work, con_work);
  389. }
  390. EXPORT_SYMBOL(ceph_con_init);
  391. /*
  392. * We maintain a global counter to order connection attempts. Get
  393. * a unique seq greater than @gt.
  394. */
  395. static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
  396. {
  397. u32 ret;
  398. spin_lock(&msgr->global_seq_lock);
  399. if (msgr->global_seq < gt)
  400. msgr->global_seq = gt;
  401. ret = ++msgr->global_seq;
  402. spin_unlock(&msgr->global_seq_lock);
  403. return ret;
  404. }
  405. /*
  406. * Prepare footer for currently outgoing message, and finish things
  407. * off. Assumes out_kvec* are already valid.. we just add on to the end.
  408. */
  409. static void prepare_write_message_footer(struct ceph_connection *con, int v)
  410. {
  411. struct ceph_msg *m = con->out_msg;
  412. dout("prepare_write_message_footer %p\n", con);
  413. con->out_kvec_is_msg = true;
  414. con->out_kvec[v].iov_base = &m->footer;
  415. con->out_kvec[v].iov_len = sizeof(m->footer);
  416. con->out_kvec_bytes += sizeof(m->footer);
  417. con->out_kvec_left++;
  418. con->out_more = m->more_to_follow;
  419. con->out_msg_done = true;
  420. }
  421. /*
  422. * Prepare headers for the next outgoing message.
  423. */
  424. static void prepare_write_message(struct ceph_connection *con)
  425. {
  426. struct ceph_msg *m;
  427. int v = 0;
  428. con->out_kvec_bytes = 0;
  429. con->out_kvec_is_msg = true;
  430. con->out_msg_done = false;
  431. /* Sneak an ack in there first? If we can get it into the same
  432. * TCP packet that's a good thing. */
  433. if (con->in_seq > con->in_seq_acked) {
  434. con->in_seq_acked = con->in_seq;
  435. con->out_kvec[v].iov_base = &tag_ack;
  436. con->out_kvec[v++].iov_len = 1;
  437. con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
  438. con->out_kvec[v].iov_base = &con->out_temp_ack;
  439. con->out_kvec[v++].iov_len = sizeof(con->out_temp_ack);
  440. con->out_kvec_bytes = 1 + sizeof(con->out_temp_ack);
  441. }
  442. m = list_first_entry(&con->out_queue,
  443. struct ceph_msg, list_head);
  444. con->out_msg = m;
  445. /* put message on sent list */
  446. ceph_msg_get(m);
  447. list_move_tail(&m->list_head, &con->out_sent);
  448. /*
  449. * only assign outgoing seq # if we haven't sent this message
  450. * yet. if it is requeued, resend with it's original seq.
  451. */
  452. if (m->needs_out_seq) {
  453. m->hdr.seq = cpu_to_le64(++con->out_seq);
  454. m->needs_out_seq = false;
  455. }
  456. dout("prepare_write_message %p seq %lld type %d len %d+%d+%d %d pgs\n",
  457. m, con->out_seq, le16_to_cpu(m->hdr.type),
  458. le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
  459. le32_to_cpu(m->hdr.data_len),
  460. m->nr_pages);
  461. BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
  462. /* tag + hdr + front + middle */
  463. con->out_kvec[v].iov_base = &tag_msg;
  464. con->out_kvec[v++].iov_len = 1;
  465. con->out_kvec[v].iov_base = &m->hdr;
  466. con->out_kvec[v++].iov_len = sizeof(m->hdr);
  467. con->out_kvec[v++] = m->front;
  468. if (m->middle)
  469. con->out_kvec[v++] = m->middle->vec;
  470. con->out_kvec_left = v;
  471. con->out_kvec_bytes += 1 + sizeof(m->hdr) + m->front.iov_len +
  472. (m->middle ? m->middle->vec.iov_len : 0);
  473. con->out_kvec_cur = con->out_kvec;
  474. /* fill in crc (except data pages), footer */
  475. con->out_msg->hdr.crc =
  476. cpu_to_le32(crc32c(0, (void *)&m->hdr,
  477. sizeof(m->hdr) - sizeof(m->hdr.crc)));
  478. con->out_msg->footer.flags = CEPH_MSG_FOOTER_COMPLETE;
  479. con->out_msg->footer.front_crc =
  480. cpu_to_le32(crc32c(0, m->front.iov_base, m->front.iov_len));
  481. if (m->middle)
  482. con->out_msg->footer.middle_crc =
  483. cpu_to_le32(crc32c(0, m->middle->vec.iov_base,
  484. m->middle->vec.iov_len));
  485. else
  486. con->out_msg->footer.middle_crc = 0;
  487. con->out_msg->footer.data_crc = 0;
  488. dout("prepare_write_message front_crc %u data_crc %u\n",
  489. le32_to_cpu(con->out_msg->footer.front_crc),
  490. le32_to_cpu(con->out_msg->footer.middle_crc));
  491. /* is there a data payload? */
  492. if (le32_to_cpu(m->hdr.data_len) > 0) {
  493. /* initialize page iterator */
  494. con->out_msg_pos.page = 0;
  495. if (m->pages)
  496. con->out_msg_pos.page_pos = m->page_alignment;
  497. else
  498. con->out_msg_pos.page_pos = 0;
  499. con->out_msg_pos.data_pos = 0;
  500. con->out_msg_pos.did_page_crc = 0;
  501. con->out_more = 1; /* data + footer will follow */
  502. } else {
  503. /* no, queue up footer too and be done */
  504. prepare_write_message_footer(con, v);
  505. }
  506. set_bit(WRITE_PENDING, &con->state);
  507. }
  508. /*
  509. * Prepare an ack.
  510. */
  511. static void prepare_write_ack(struct ceph_connection *con)
  512. {
  513. dout("prepare_write_ack %p %llu -> %llu\n", con,
  514. con->in_seq_acked, con->in_seq);
  515. con->in_seq_acked = con->in_seq;
  516. con->out_kvec[0].iov_base = &tag_ack;
  517. con->out_kvec[0].iov_len = 1;
  518. con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
  519. con->out_kvec[1].iov_base = &con->out_temp_ack;
  520. con->out_kvec[1].iov_len = sizeof(con->out_temp_ack);
  521. con->out_kvec_left = 2;
  522. con->out_kvec_bytes = 1 + sizeof(con->out_temp_ack);
  523. con->out_kvec_cur = con->out_kvec;
  524. con->out_more = 1; /* more will follow.. eventually.. */
  525. set_bit(WRITE_PENDING, &con->state);
  526. }
  527. /*
  528. * Prepare to write keepalive byte.
  529. */
  530. static void prepare_write_keepalive(struct ceph_connection *con)
  531. {
  532. dout("prepare_write_keepalive %p\n", con);
  533. con->out_kvec[0].iov_base = &tag_keepalive;
  534. con->out_kvec[0].iov_len = 1;
  535. con->out_kvec_left = 1;
  536. con->out_kvec_bytes = 1;
  537. con->out_kvec_cur = con->out_kvec;
  538. set_bit(WRITE_PENDING, &con->state);
  539. }
  540. /*
  541. * Connection negotiation.
  542. */
  543. static int prepare_connect_authorizer(struct ceph_connection *con)
  544. {
  545. void *auth_buf;
  546. int auth_len = 0;
  547. int auth_protocol = 0;
  548. mutex_unlock(&con->mutex);
  549. if (con->ops->get_authorizer)
  550. con->ops->get_authorizer(con, &auth_buf, &auth_len,
  551. &auth_protocol, &con->auth_reply_buf,
  552. &con->auth_reply_buf_len,
  553. con->auth_retry);
  554. mutex_lock(&con->mutex);
  555. if (test_bit(CLOSED, &con->state) ||
  556. test_bit(OPENING, &con->state))
  557. return -EAGAIN;
  558. con->out_connect.authorizer_protocol = cpu_to_le32(auth_protocol);
  559. con->out_connect.authorizer_len = cpu_to_le32(auth_len);
  560. if (auth_len) {
  561. con->out_kvec[con->out_kvec_left].iov_base = auth_buf;
  562. con->out_kvec[con->out_kvec_left].iov_len = auth_len;
  563. con->out_kvec_left++;
  564. con->out_kvec_bytes += auth_len;
  565. }
  566. return 0;
  567. }
  568. /*
  569. * We connected to a peer and are saying hello.
  570. */
  571. static void prepare_write_banner(struct ceph_messenger *msgr,
  572. struct ceph_connection *con)
  573. {
  574. int len = strlen(CEPH_BANNER);
  575. con->out_kvec[0].iov_base = CEPH_BANNER;
  576. con->out_kvec[0].iov_len = len;
  577. con->out_kvec[1].iov_base = &msgr->my_enc_addr;
  578. con->out_kvec[1].iov_len = sizeof(msgr->my_enc_addr);
  579. con->out_kvec_left = 2;
  580. con->out_kvec_bytes = len + sizeof(msgr->my_enc_addr);
  581. con->out_kvec_cur = con->out_kvec;
  582. con->out_more = 0;
  583. set_bit(WRITE_PENDING, &con->state);
  584. }
  585. static int prepare_write_connect(struct ceph_messenger *msgr,
  586. struct ceph_connection *con,
  587. int after_banner)
  588. {
  589. unsigned global_seq = get_global_seq(con->msgr, 0);
  590. int proto;
  591. switch (con->peer_name.type) {
  592. case CEPH_ENTITY_TYPE_MON:
  593. proto = CEPH_MONC_PROTOCOL;
  594. break;
  595. case CEPH_ENTITY_TYPE_OSD:
  596. proto = CEPH_OSDC_PROTOCOL;
  597. break;
  598. case CEPH_ENTITY_TYPE_MDS:
  599. proto = CEPH_MDSC_PROTOCOL;
  600. break;
  601. default:
  602. BUG();
  603. }
  604. dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
  605. con->connect_seq, global_seq, proto);
  606. con->out_connect.features = cpu_to_le64(msgr->supported_features);
  607. con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
  608. con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
  609. con->out_connect.global_seq = cpu_to_le32(global_seq);
  610. con->out_connect.protocol_version = cpu_to_le32(proto);
  611. con->out_connect.flags = 0;
  612. if (!after_banner) {
  613. con->out_kvec_left = 0;
  614. con->out_kvec_bytes = 0;
  615. }
  616. con->out_kvec[con->out_kvec_left].iov_base = &con->out_connect;
  617. con->out_kvec[con->out_kvec_left].iov_len = sizeof(con->out_connect);
  618. con->out_kvec_left++;
  619. con->out_kvec_bytes += sizeof(con->out_connect);
  620. con->out_kvec_cur = con->out_kvec;
  621. con->out_more = 0;
  622. set_bit(WRITE_PENDING, &con->state);
  623. return prepare_connect_authorizer(con);
  624. }
  625. /*
  626. * write as much of pending kvecs to the socket as we can.
  627. * 1 -> done
  628. * 0 -> socket full, but more to do
  629. * <0 -> error
  630. */
  631. static int write_partial_kvec(struct ceph_connection *con)
  632. {
  633. int ret;
  634. dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
  635. while (con->out_kvec_bytes > 0) {
  636. ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
  637. con->out_kvec_left, con->out_kvec_bytes,
  638. con->out_more);
  639. if (ret <= 0)
  640. goto out;
  641. con->out_kvec_bytes -= ret;
  642. if (con->out_kvec_bytes == 0)
  643. break; /* done */
  644. while (ret > 0) {
  645. if (ret >= con->out_kvec_cur->iov_len) {
  646. ret -= con->out_kvec_cur->iov_len;
  647. con->out_kvec_cur++;
  648. con->out_kvec_left--;
  649. } else {
  650. con->out_kvec_cur->iov_len -= ret;
  651. con->out_kvec_cur->iov_base += ret;
  652. ret = 0;
  653. break;
  654. }
  655. }
  656. }
  657. con->out_kvec_left = 0;
  658. con->out_kvec_is_msg = false;
  659. ret = 1;
  660. out:
  661. dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
  662. con->out_kvec_bytes, con->out_kvec_left, ret);
  663. return ret; /* done! */
  664. }
  665. #ifdef CONFIG_BLOCK
  666. static void init_bio_iter(struct bio *bio, struct bio **iter, int *seg)
  667. {
  668. if (!bio) {
  669. *iter = NULL;
  670. *seg = 0;
  671. return;
  672. }
  673. *iter = bio;
  674. *seg = bio->bi_idx;
  675. }
  676. static void iter_bio_next(struct bio **bio_iter, int *seg)
  677. {
  678. if (*bio_iter == NULL)
  679. return;
  680. BUG_ON(*seg >= (*bio_iter)->bi_vcnt);
  681. (*seg)++;
  682. if (*seg == (*bio_iter)->bi_vcnt)
  683. init_bio_iter((*bio_iter)->bi_next, bio_iter, seg);
  684. }
  685. #endif
  686. /*
  687. * Write as much message data payload as we can. If we finish, queue
  688. * up the footer.
  689. * 1 -> done, footer is now queued in out_kvec[].
  690. * 0 -> socket full, but more to do
  691. * <0 -> error
  692. */
  693. static int write_partial_msg_pages(struct ceph_connection *con)
  694. {
  695. struct ceph_msg *msg = con->out_msg;
  696. unsigned data_len = le32_to_cpu(msg->hdr.data_len);
  697. size_t len;
  698. int crc = con->msgr->nocrc;
  699. int ret;
  700. int total_max_write;
  701. int in_trail = 0;
  702. size_t trail_len = (msg->trail ? msg->trail->length : 0);
  703. dout("write_partial_msg_pages %p msg %p page %d/%d offset %d\n",
  704. con, con->out_msg, con->out_msg_pos.page, con->out_msg->nr_pages,
  705. con->out_msg_pos.page_pos);
  706. #ifdef CONFIG_BLOCK
  707. if (msg->bio && !msg->bio_iter)
  708. init_bio_iter(msg->bio, &msg->bio_iter, &msg->bio_seg);
  709. #endif
  710. while (data_len > con->out_msg_pos.data_pos) {
  711. struct page *page = NULL;
  712. void *kaddr = NULL;
  713. int max_write = PAGE_SIZE;
  714. int page_shift = 0;
  715. total_max_write = data_len - trail_len -
  716. con->out_msg_pos.data_pos;
  717. /*
  718. * if we are calculating the data crc (the default), we need
  719. * to map the page. if our pages[] has been revoked, use the
  720. * zero page.
  721. */
  722. /* have we reached the trail part of the data? */
  723. if (con->out_msg_pos.data_pos >= data_len - trail_len) {
  724. in_trail = 1;
  725. total_max_write = data_len - con->out_msg_pos.data_pos;
  726. page = list_first_entry(&msg->trail->head,
  727. struct page, lru);
  728. if (crc)
  729. kaddr = kmap(page);
  730. max_write = PAGE_SIZE;
  731. } else if (msg->pages) {
  732. page = msg->pages[con->out_msg_pos.page];
  733. if (crc)
  734. kaddr = kmap(page);
  735. } else if (msg->pagelist) {
  736. page = list_first_entry(&msg->pagelist->head,
  737. struct page, lru);
  738. if (crc)
  739. kaddr = kmap(page);
  740. #ifdef CONFIG_BLOCK
  741. } else if (msg->bio) {
  742. struct bio_vec *bv;
  743. bv = bio_iovec_idx(msg->bio_iter, msg->bio_seg);
  744. page = bv->bv_page;
  745. page_shift = bv->bv_offset;
  746. if (crc)
  747. kaddr = kmap(page) + page_shift;
  748. max_write = bv->bv_len;
  749. #endif
  750. } else {
  751. page = zero_page;
  752. if (crc)
  753. kaddr = zero_page_address;
  754. }
  755. len = min_t(int, max_write - con->out_msg_pos.page_pos,
  756. total_max_write);
  757. if (crc && !con->out_msg_pos.did_page_crc) {
  758. void *base = kaddr + con->out_msg_pos.page_pos;
  759. u32 tmpcrc = le32_to_cpu(con->out_msg->footer.data_crc);
  760. BUG_ON(kaddr == NULL);
  761. con->out_msg->footer.data_crc =
  762. cpu_to_le32(crc32c(tmpcrc, base, len));
  763. con->out_msg_pos.did_page_crc = 1;
  764. }
  765. ret = kernel_sendpage(con->sock, page,
  766. con->out_msg_pos.page_pos + page_shift,
  767. len,
  768. MSG_DONTWAIT | MSG_NOSIGNAL |
  769. MSG_MORE);
  770. if (crc &&
  771. (msg->pages || msg->pagelist || msg->bio || in_trail))
  772. kunmap(page);
  773. if (ret == -EAGAIN)
  774. ret = 0;
  775. if (ret <= 0)
  776. goto out;
  777. con->out_msg_pos.data_pos += ret;
  778. con->out_msg_pos.page_pos += ret;
  779. if (ret == len) {
  780. con->out_msg_pos.page_pos = 0;
  781. con->out_msg_pos.page++;
  782. con->out_msg_pos.did_page_crc = 0;
  783. if (in_trail)
  784. list_move_tail(&page->lru,
  785. &msg->trail->head);
  786. else if (msg->pagelist)
  787. list_move_tail(&page->lru,
  788. &msg->pagelist->head);
  789. #ifdef CONFIG_BLOCK
  790. else if (msg->bio)
  791. iter_bio_next(&msg->bio_iter, &msg->bio_seg);
  792. #endif
  793. }
  794. }
  795. dout("write_partial_msg_pages %p msg %p done\n", con, msg);
  796. /* prepare and queue up footer, too */
  797. if (!crc)
  798. con->out_msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
  799. con->out_kvec_bytes = 0;
  800. con->out_kvec_left = 0;
  801. con->out_kvec_cur = con->out_kvec;
  802. prepare_write_message_footer(con, 0);
  803. ret = 1;
  804. out:
  805. return ret;
  806. }
  807. /*
  808. * write some zeros
  809. */
  810. static int write_partial_skip(struct ceph_connection *con)
  811. {
  812. int ret;
  813. while (con->out_skip > 0) {
  814. struct kvec iov = {
  815. .iov_base = zero_page_address,
  816. .iov_len = min(con->out_skip, (int)PAGE_CACHE_SIZE)
  817. };
  818. ret = ceph_tcp_sendmsg(con->sock, &iov, 1, iov.iov_len, 1);
  819. if (ret <= 0)
  820. goto out;
  821. con->out_skip -= ret;
  822. }
  823. ret = 1;
  824. out:
  825. return ret;
  826. }
  827. /*
  828. * Prepare to read connection handshake, or an ack.
  829. */
  830. static void prepare_read_banner(struct ceph_connection *con)
  831. {
  832. dout("prepare_read_banner %p\n", con);
  833. con->in_base_pos = 0;
  834. }
  835. static void prepare_read_connect(struct ceph_connection *con)
  836. {
  837. dout("prepare_read_connect %p\n", con);
  838. con->in_base_pos = 0;
  839. }
  840. static void prepare_read_ack(struct ceph_connection *con)
  841. {
  842. dout("prepare_read_ack %p\n", con);
  843. con->in_base_pos = 0;
  844. }
  845. static void prepare_read_tag(struct ceph_connection *con)
  846. {
  847. dout("prepare_read_tag %p\n", con);
  848. con->in_base_pos = 0;
  849. con->in_tag = CEPH_MSGR_TAG_READY;
  850. }
  851. /*
  852. * Prepare to read a message.
  853. */
  854. static int prepare_read_message(struct ceph_connection *con)
  855. {
  856. dout("prepare_read_message %p\n", con);
  857. BUG_ON(con->in_msg != NULL);
  858. con->in_base_pos = 0;
  859. con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
  860. return 0;
  861. }
  862. static int read_partial(struct ceph_connection *con,
  863. int *to, int size, void *object)
  864. {
  865. *to += size;
  866. while (con->in_base_pos < *to) {
  867. int left = *to - con->in_base_pos;
  868. int have = size - left;
  869. int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
  870. if (ret <= 0)
  871. return ret;
  872. con->in_base_pos += ret;
  873. }
  874. return 1;
  875. }
  876. /*
  877. * Read all or part of the connect-side handshake on a new connection
  878. */
  879. static int read_partial_banner(struct ceph_connection *con)
  880. {
  881. int ret, to = 0;
  882. dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
  883. /* peer's banner */
  884. ret = read_partial(con, &to, strlen(CEPH_BANNER), con->in_banner);
  885. if (ret <= 0)
  886. goto out;
  887. ret = read_partial(con, &to, sizeof(con->actual_peer_addr),
  888. &con->actual_peer_addr);
  889. if (ret <= 0)
  890. goto out;
  891. ret = read_partial(con, &to, sizeof(con->peer_addr_for_me),
  892. &con->peer_addr_for_me);
  893. if (ret <= 0)
  894. goto out;
  895. out:
  896. return ret;
  897. }
  898. static int read_partial_connect(struct ceph_connection *con)
  899. {
  900. int ret, to = 0;
  901. dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
  902. ret = read_partial(con, &to, sizeof(con->in_reply), &con->in_reply);
  903. if (ret <= 0)
  904. goto out;
  905. ret = read_partial(con, &to, le32_to_cpu(con->in_reply.authorizer_len),
  906. con->auth_reply_buf);
  907. if (ret <= 0)
  908. goto out;
  909. dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
  910. con, (int)con->in_reply.tag,
  911. le32_to_cpu(con->in_reply.connect_seq),
  912. le32_to_cpu(con->in_reply.global_seq));
  913. out:
  914. return ret;
  915. }
  916. /*
  917. * Verify the hello banner looks okay.
  918. */
  919. static int verify_hello(struct ceph_connection *con)
  920. {
  921. if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
  922. pr_err("connect to %s got bad banner\n",
  923. ceph_pr_addr(&con->peer_addr.in_addr));
  924. con->error_msg = "protocol error, bad banner";
  925. return -1;
  926. }
  927. return 0;
  928. }
  929. static bool addr_is_blank(struct sockaddr_storage *ss)
  930. {
  931. switch (ss->ss_family) {
  932. case AF_INET:
  933. return ((struct sockaddr_in *)ss)->sin_addr.s_addr == 0;
  934. case AF_INET6:
  935. return
  936. ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[0] == 0 &&
  937. ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[1] == 0 &&
  938. ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[2] == 0 &&
  939. ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[3] == 0;
  940. }
  941. return false;
  942. }
  943. static int addr_port(struct sockaddr_storage *ss)
  944. {
  945. switch (ss->ss_family) {
  946. case AF_INET:
  947. return ntohs(((struct sockaddr_in *)ss)->sin_port);
  948. case AF_INET6:
  949. return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
  950. }
  951. return 0;
  952. }
  953. static void addr_set_port(struct sockaddr_storage *ss, int p)
  954. {
  955. switch (ss->ss_family) {
  956. case AF_INET:
  957. ((struct sockaddr_in *)ss)->sin_port = htons(p);
  958. break;
  959. case AF_INET6:
  960. ((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
  961. break;
  962. }
  963. }
  964. /*
  965. * Unlike other *_pton function semantics, zero indicates success.
  966. */
  967. static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss,
  968. char delim, const char **ipend)
  969. {
  970. struct sockaddr_in *in4 = (void *)ss;
  971. struct sockaddr_in6 *in6 = (void *)ss;
  972. memset(ss, 0, sizeof(*ss));
  973. if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) {
  974. ss->ss_family = AF_INET;
  975. return 0;
  976. }
  977. if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) {
  978. ss->ss_family = AF_INET6;
  979. return 0;
  980. }
  981. return -EINVAL;
  982. }
  983. /*
  984. * Extract hostname string and resolve using kernel DNS facility.
  985. */
  986. #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
  987. static int ceph_dns_resolve_name(const char *name, size_t namelen,
  988. struct sockaddr_storage *ss, char delim, const char **ipend)
  989. {
  990. const char *end, *delim_p;
  991. char *colon_p, *ip_addr = NULL;
  992. int ip_len, ret;
  993. /*
  994. * The end of the hostname occurs immediately preceding the delimiter or
  995. * the port marker (':') where the delimiter takes precedence.
  996. */
  997. delim_p = memchr(name, delim, namelen);
  998. colon_p = memchr(name, ':', namelen);
  999. if (delim_p && colon_p)
  1000. end = delim_p < colon_p ? delim_p : colon_p;
  1001. else if (!delim_p && colon_p)
  1002. end = colon_p;
  1003. else {
  1004. end = delim_p;
  1005. if (!end) /* case: hostname:/ */
  1006. end = name + namelen;
  1007. }
  1008. if (end <= name)
  1009. return -EINVAL;
  1010. /* do dns_resolve upcall */
  1011. ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL);
  1012. if (ip_len > 0)
  1013. ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL);
  1014. else
  1015. ret = -ESRCH;
  1016. kfree(ip_addr);
  1017. *ipend = end;
  1018. pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
  1019. ret, ret ? "failed" : ceph_pr_addr(ss));
  1020. return ret;
  1021. }
  1022. #else
  1023. static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
  1024. struct sockaddr_storage *ss, char delim, const char **ipend)
  1025. {
  1026. return -EINVAL;
  1027. }
  1028. #endif
  1029. /*
  1030. * Parse a server name (IP or hostname). If a valid IP address is not found
  1031. * then try to extract a hostname to resolve using userspace DNS upcall.
  1032. */
  1033. static int ceph_parse_server_name(const char *name, size_t namelen,
  1034. struct sockaddr_storage *ss, char delim, const char **ipend)
  1035. {
  1036. int ret;
  1037. ret = ceph_pton(name, namelen, ss, delim, ipend);
  1038. if (ret)
  1039. ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend);
  1040. return ret;
  1041. }
  1042. /*
  1043. * Parse an ip[:port] list into an addr array. Use the default
  1044. * monitor port if a port isn't specified.
  1045. */
  1046. int ceph_parse_ips(const char *c, const char *end,
  1047. struct ceph_entity_addr *addr,
  1048. int max_count, int *count)
  1049. {
  1050. int i, ret = -EINVAL;
  1051. const char *p = c;
  1052. dout("parse_ips on '%.*s'\n", (int)(end-c), c);
  1053. for (i = 0; i < max_count; i++) {
  1054. const char *ipend;
  1055. struct sockaddr_storage *ss = &addr[i].in_addr;
  1056. int port;
  1057. char delim = ',';
  1058. if (*p == '[') {
  1059. delim = ']';
  1060. p++;
  1061. }
  1062. ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend);
  1063. if (ret)
  1064. goto bad;
  1065. ret = -EINVAL;
  1066. p = ipend;
  1067. if (delim == ']') {
  1068. if (*p != ']') {
  1069. dout("missing matching ']'\n");
  1070. goto bad;
  1071. }
  1072. p++;
  1073. }
  1074. /* port? */
  1075. if (p < end && *p == ':') {
  1076. port = 0;
  1077. p++;
  1078. while (p < end && *p >= '0' && *p <= '9') {
  1079. port = (port * 10) + (*p - '0');
  1080. p++;
  1081. }
  1082. if (port > 65535 || port == 0)
  1083. goto bad;
  1084. } else {
  1085. port = CEPH_MON_PORT;
  1086. }
  1087. addr_set_port(ss, port);
  1088. dout("parse_ips got %s\n", ceph_pr_addr(ss));
  1089. if (p == end)
  1090. break;
  1091. if (*p != ',')
  1092. goto bad;
  1093. p++;
  1094. }
  1095. if (p != end)
  1096. goto bad;
  1097. if (count)
  1098. *count = i + 1;
  1099. return 0;
  1100. bad:
  1101. pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
  1102. return ret;
  1103. }
  1104. EXPORT_SYMBOL(ceph_parse_ips);
  1105. static int process_banner(struct ceph_connection *con)
  1106. {
  1107. dout("process_banner on %p\n", con);
  1108. if (verify_hello(con) < 0)
  1109. return -1;
  1110. ceph_decode_addr(&con->actual_peer_addr);
  1111. ceph_decode_addr(&con->peer_addr_for_me);
  1112. /*
  1113. * Make sure the other end is who we wanted. note that the other
  1114. * end may not yet know their ip address, so if it's 0.0.0.0, give
  1115. * them the benefit of the doubt.
  1116. */
  1117. if (memcmp(&con->peer_addr, &con->actual_peer_addr,
  1118. sizeof(con->peer_addr)) != 0 &&
  1119. !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
  1120. con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
  1121. pr_warning("wrong peer, want %s/%d, got %s/%d\n",
  1122. ceph_pr_addr(&con->peer_addr.in_addr),
  1123. (int)le32_to_cpu(con->peer_addr.nonce),
  1124. ceph_pr_addr(&con->actual_peer_addr.in_addr),
  1125. (int)le32_to_cpu(con->actual_peer_addr.nonce));
  1126. con->error_msg = "wrong peer at address";
  1127. return -1;
  1128. }
  1129. /*
  1130. * did we learn our address?
  1131. */
  1132. if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
  1133. int port = addr_port(&con->msgr->inst.addr.in_addr);
  1134. memcpy(&con->msgr->inst.addr.in_addr,
  1135. &con->peer_addr_for_me.in_addr,
  1136. sizeof(con->peer_addr_for_me.in_addr));
  1137. addr_set_port(&con->msgr->inst.addr.in_addr, port);
  1138. encode_my_addr(con->msgr);
  1139. dout("process_banner learned my addr is %s\n",
  1140. ceph_pr_addr(&con->msgr->inst.addr.in_addr));
  1141. }
  1142. set_bit(NEGOTIATING, &con->state);
  1143. prepare_read_connect(con);
  1144. return 0;
  1145. }
  1146. static void fail_protocol(struct ceph_connection *con)
  1147. {
  1148. reset_connection(con);
  1149. set_bit(CLOSED, &con->state); /* in case there's queued work */
  1150. mutex_unlock(&con->mutex);
  1151. if (con->ops->bad_proto)
  1152. con->ops->bad_proto(con);
  1153. mutex_lock(&con->mutex);
  1154. }
  1155. static int process_connect(struct ceph_connection *con)
  1156. {
  1157. u64 sup_feat = con->msgr->supported_features;
  1158. u64 req_feat = con->msgr->required_features;
  1159. u64 server_feat = le64_to_cpu(con->in_reply.features);
  1160. int ret;
  1161. dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
  1162. switch (con->in_reply.tag) {
  1163. case CEPH_MSGR_TAG_FEATURES:
  1164. pr_err("%s%lld %s feature set mismatch,"
  1165. " my %llx < server's %llx, missing %llx\n",
  1166. ENTITY_NAME(con->peer_name),
  1167. ceph_pr_addr(&con->peer_addr.in_addr),
  1168. sup_feat, server_feat, server_feat & ~sup_feat);
  1169. con->error_msg = "missing required protocol features";
  1170. fail_protocol(con);
  1171. return -1;
  1172. case CEPH_MSGR_TAG_BADPROTOVER:
  1173. pr_err("%s%lld %s protocol version mismatch,"
  1174. " my %d != server's %d\n",
  1175. ENTITY_NAME(con->peer_name),
  1176. ceph_pr_addr(&con->peer_addr.in_addr),
  1177. le32_to_cpu(con->out_connect.protocol_version),
  1178. le32_to_cpu(con->in_reply.protocol_version));
  1179. con->error_msg = "protocol version mismatch";
  1180. fail_protocol(con);
  1181. return -1;
  1182. case CEPH_MSGR_TAG_BADAUTHORIZER:
  1183. con->auth_retry++;
  1184. dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
  1185. con->auth_retry);
  1186. if (con->auth_retry == 2) {
  1187. con->error_msg = "connect authorization failure";
  1188. return -1;
  1189. }
  1190. con->auth_retry = 1;
  1191. ret = prepare_write_connect(con->msgr, con, 0);
  1192. if (ret < 0)
  1193. return ret;
  1194. prepare_read_connect(con);
  1195. break;
  1196. case CEPH_MSGR_TAG_RESETSESSION:
  1197. /*
  1198. * If we connected with a large connect_seq but the peer
  1199. * has no record of a session with us (no connection, or
  1200. * connect_seq == 0), they will send RESETSESION to indicate
  1201. * that they must have reset their session, and may have
  1202. * dropped messages.
  1203. */
  1204. dout("process_connect got RESET peer seq %u\n",
  1205. le32_to_cpu(con->in_connect.connect_seq));
  1206. pr_err("%s%lld %s connection reset\n",
  1207. ENTITY_NAME(con->peer_name),
  1208. ceph_pr_addr(&con->peer_addr.in_addr));
  1209. reset_connection(con);
  1210. prepare_write_connect(con->msgr, con, 0);
  1211. prepare_read_connect(con);
  1212. /* Tell ceph about it. */
  1213. mutex_unlock(&con->mutex);
  1214. pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
  1215. if (con->ops->peer_reset)
  1216. con->ops->peer_reset(con);
  1217. mutex_lock(&con->mutex);
  1218. if (test_bit(CLOSED, &con->state) ||
  1219. test_bit(OPENING, &con->state))
  1220. return -EAGAIN;
  1221. break;
  1222. case CEPH_MSGR_TAG_RETRY_SESSION:
  1223. /*
  1224. * If we sent a smaller connect_seq than the peer has, try
  1225. * again with a larger value.
  1226. */
  1227. dout("process_connect got RETRY my seq = %u, peer_seq = %u\n",
  1228. le32_to_cpu(con->out_connect.connect_seq),
  1229. le32_to_cpu(con->in_connect.connect_seq));
  1230. con->connect_seq = le32_to_cpu(con->in_connect.connect_seq);
  1231. prepare_write_connect(con->msgr, con, 0);
  1232. prepare_read_connect(con);
  1233. break;
  1234. case CEPH_MSGR_TAG_RETRY_GLOBAL:
  1235. /*
  1236. * If we sent a smaller global_seq than the peer has, try
  1237. * again with a larger value.
  1238. */
  1239. dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
  1240. con->peer_global_seq,
  1241. le32_to_cpu(con->in_connect.global_seq));
  1242. get_global_seq(con->msgr,
  1243. le32_to_cpu(con->in_connect.global_seq));
  1244. prepare_write_connect(con->msgr, con, 0);
  1245. prepare_read_connect(con);
  1246. break;
  1247. case CEPH_MSGR_TAG_READY:
  1248. if (req_feat & ~server_feat) {
  1249. pr_err("%s%lld %s protocol feature mismatch,"
  1250. " my required %llx > server's %llx, need %llx\n",
  1251. ENTITY_NAME(con->peer_name),
  1252. ceph_pr_addr(&con->peer_addr.in_addr),
  1253. req_feat, server_feat, req_feat & ~server_feat);
  1254. con->error_msg = "missing required protocol features";
  1255. fail_protocol(con);
  1256. return -1;
  1257. }
  1258. clear_bit(CONNECTING, &con->state);
  1259. con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
  1260. con->connect_seq++;
  1261. con->peer_features = server_feat;
  1262. dout("process_connect got READY gseq %d cseq %d (%d)\n",
  1263. con->peer_global_seq,
  1264. le32_to_cpu(con->in_reply.connect_seq),
  1265. con->connect_seq);
  1266. WARN_ON(con->connect_seq !=
  1267. le32_to_cpu(con->in_reply.connect_seq));
  1268. if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
  1269. set_bit(LOSSYTX, &con->state);
  1270. prepare_read_tag(con);
  1271. break;
  1272. case CEPH_MSGR_TAG_WAIT:
  1273. /*
  1274. * If there is a connection race (we are opening
  1275. * connections to each other), one of us may just have
  1276. * to WAIT. This shouldn't happen if we are the
  1277. * client.
  1278. */
  1279. pr_err("process_connect got WAIT as client\n");
  1280. con->error_msg = "protocol error, got WAIT as client";
  1281. return -1;
  1282. default:
  1283. pr_err("connect protocol error, will retry\n");
  1284. con->error_msg = "protocol error, garbage tag during connect";
  1285. return -1;
  1286. }
  1287. return 0;
  1288. }
  1289. /*
  1290. * read (part of) an ack
  1291. */
  1292. static int read_partial_ack(struct ceph_connection *con)
  1293. {
  1294. int to = 0;
  1295. return read_partial(con, &to, sizeof(con->in_temp_ack),
  1296. &con->in_temp_ack);
  1297. }
  1298. /*
  1299. * We can finally discard anything that's been acked.
  1300. */
  1301. static void process_ack(struct ceph_connection *con)
  1302. {
  1303. struct ceph_msg *m;
  1304. u64 ack = le64_to_cpu(con->in_temp_ack);
  1305. u64 seq;
  1306. while (!list_empty(&con->out_sent)) {
  1307. m = list_first_entry(&con->out_sent, struct ceph_msg,
  1308. list_head);
  1309. seq = le64_to_cpu(m->hdr.seq);
  1310. if (seq > ack)
  1311. break;
  1312. dout("got ack for seq %llu type %d at %p\n", seq,
  1313. le16_to_cpu(m->hdr.type), m);
  1314. m->ack_stamp = jiffies;
  1315. ceph_msg_remove(m);
  1316. }
  1317. prepare_read_tag(con);
  1318. }
  1319. static int read_partial_message_section(struct ceph_connection *con,
  1320. struct kvec *section,
  1321. unsigned int sec_len, u32 *crc)
  1322. {
  1323. int ret, left;
  1324. BUG_ON(!section);
  1325. while (section->iov_len < sec_len) {
  1326. BUG_ON(section->iov_base == NULL);
  1327. left = sec_len - section->iov_len;
  1328. ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
  1329. section->iov_len, left);
  1330. if (ret <= 0)
  1331. return ret;
  1332. section->iov_len += ret;
  1333. if (section->iov_len == sec_len)
  1334. *crc = crc32c(0, section->iov_base,
  1335. section->iov_len);
  1336. }
  1337. return 1;
  1338. }
  1339. static struct ceph_msg *ceph_alloc_msg(struct ceph_connection *con,
  1340. struct ceph_msg_header *hdr,
  1341. int *skip);
  1342. static int read_partial_message_pages(struct ceph_connection *con,
  1343. struct page **pages,
  1344. unsigned data_len, int datacrc)
  1345. {
  1346. void *p;
  1347. int ret;
  1348. int left;
  1349. left = min((int)(data_len - con->in_msg_pos.data_pos),
  1350. (int)(PAGE_SIZE - con->in_msg_pos.page_pos));
  1351. /* (page) data */
  1352. BUG_ON(pages == NULL);
  1353. p = kmap(pages[con->in_msg_pos.page]);
  1354. ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
  1355. left);
  1356. if (ret > 0 && datacrc)
  1357. con->in_data_crc =
  1358. crc32c(con->in_data_crc,
  1359. p + con->in_msg_pos.page_pos, ret);
  1360. kunmap(pages[con->in_msg_pos.page]);
  1361. if (ret <= 0)
  1362. return ret;
  1363. con->in_msg_pos.data_pos += ret;
  1364. con->in_msg_pos.page_pos += ret;
  1365. if (con->in_msg_pos.page_pos == PAGE_SIZE) {
  1366. con->in_msg_pos.page_pos = 0;
  1367. con->in_msg_pos.page++;
  1368. }
  1369. return ret;
  1370. }
  1371. #ifdef CONFIG_BLOCK
  1372. static int read_partial_message_bio(struct ceph_connection *con,
  1373. struct bio **bio_iter, int *bio_seg,
  1374. unsigned data_len, int datacrc)
  1375. {
  1376. struct bio_vec *bv = bio_iovec_idx(*bio_iter, *bio_seg);
  1377. void *p;
  1378. int ret, left;
  1379. if (IS_ERR(bv))
  1380. return PTR_ERR(bv);
  1381. left = min((int)(data_len - con->in_msg_pos.data_pos),
  1382. (int)(bv->bv_len - con->in_msg_pos.page_pos));
  1383. p = kmap(bv->bv_page) + bv->bv_offset;
  1384. ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
  1385. left);
  1386. if (ret > 0 && datacrc)
  1387. con->in_data_crc =
  1388. crc32c(con->in_data_crc,
  1389. p + con->in_msg_pos.page_pos, ret);
  1390. kunmap(bv->bv_page);
  1391. if (ret <= 0)
  1392. return ret;
  1393. con->in_msg_pos.data_pos += ret;
  1394. con->in_msg_pos.page_pos += ret;
  1395. if (con->in_msg_pos.page_pos == bv->bv_len) {
  1396. con->in_msg_pos.page_pos = 0;
  1397. iter_bio_next(bio_iter, bio_seg);
  1398. }
  1399. return ret;
  1400. }
  1401. #endif
  1402. /*
  1403. * read (part of) a message.
  1404. */
  1405. static int read_partial_message(struct ceph_connection *con)
  1406. {
  1407. struct ceph_msg *m = con->in_msg;
  1408. int ret;
  1409. int to, left;
  1410. unsigned front_len, middle_len, data_len;
  1411. int datacrc = con->msgr->nocrc;
  1412. int skip;
  1413. u64 seq;
  1414. dout("read_partial_message con %p msg %p\n", con, m);
  1415. /* header */
  1416. while (con->in_base_pos < sizeof(con->in_hdr)) {
  1417. left = sizeof(con->in_hdr) - con->in_base_pos;
  1418. ret = ceph_tcp_recvmsg(con->sock,
  1419. (char *)&con->in_hdr + con->in_base_pos,
  1420. left);
  1421. if (ret <= 0)
  1422. return ret;
  1423. con->in_base_pos += ret;
  1424. if (con->in_base_pos == sizeof(con->in_hdr)) {
  1425. u32 crc = crc32c(0, (void *)&con->in_hdr,
  1426. sizeof(con->in_hdr) - sizeof(con->in_hdr.crc));
  1427. if (crc != le32_to_cpu(con->in_hdr.crc)) {
  1428. pr_err("read_partial_message bad hdr "
  1429. " crc %u != expected %u\n",
  1430. crc, con->in_hdr.crc);
  1431. return -EBADMSG;
  1432. }
  1433. }
  1434. }
  1435. front_len = le32_to_cpu(con->in_hdr.front_len);
  1436. if (front_len > CEPH_MSG_MAX_FRONT_LEN)
  1437. return -EIO;
  1438. middle_len = le32_to_cpu(con->in_hdr.middle_len);
  1439. if (middle_len > CEPH_MSG_MAX_DATA_LEN)
  1440. return -EIO;
  1441. data_len = le32_to_cpu(con->in_hdr.data_len);
  1442. if (data_len > CEPH_MSG_MAX_DATA_LEN)
  1443. return -EIO;
  1444. /* verify seq# */
  1445. seq = le64_to_cpu(con->in_hdr.seq);
  1446. if ((s64)seq - (s64)con->in_seq < 1) {
  1447. pr_info("skipping %s%lld %s seq %lld expected %lld\n",
  1448. ENTITY_NAME(con->peer_name),
  1449. ceph_pr_addr(&con->peer_addr.in_addr),
  1450. seq, con->in_seq + 1);
  1451. con->in_base_pos = -front_len - middle_len - data_len -
  1452. sizeof(m->footer);
  1453. con->in_tag = CEPH_MSGR_TAG_READY;
  1454. return 0;
  1455. } else if ((s64)seq - (s64)con->in_seq > 1) {
  1456. pr_err("read_partial_message bad seq %lld expected %lld\n",
  1457. seq, con->in_seq + 1);
  1458. con->error_msg = "bad message sequence # for incoming message";
  1459. return -EBADMSG;
  1460. }
  1461. /* allocate message? */
  1462. if (!con->in_msg) {
  1463. dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
  1464. con->in_hdr.front_len, con->in_hdr.data_len);
  1465. skip = 0;
  1466. con->in_msg = ceph_alloc_msg(con, &con->in_hdr, &skip);
  1467. if (skip) {
  1468. /* skip this message */
  1469. dout("alloc_msg said skip message\n");
  1470. BUG_ON(con->in_msg);
  1471. con->in_base_pos = -front_len - middle_len - data_len -
  1472. sizeof(m->footer);
  1473. con->in_tag = CEPH_MSGR_TAG_READY;
  1474. con->in_seq++;
  1475. return 0;
  1476. }
  1477. if (!con->in_msg) {
  1478. con->error_msg =
  1479. "error allocating memory for incoming message";
  1480. return -ENOMEM;
  1481. }
  1482. m = con->in_msg;
  1483. m->front.iov_len = 0; /* haven't read it yet */
  1484. if (m->middle)
  1485. m->middle->vec.iov_len = 0;
  1486. con->in_msg_pos.page = 0;
  1487. if (m->pages)
  1488. con->in_msg_pos.page_pos = m->page_alignment;
  1489. else
  1490. con->in_msg_pos.page_pos = 0;
  1491. con->in_msg_pos.data_pos = 0;
  1492. }
  1493. /* front */
  1494. ret = read_partial_message_section(con, &m->front, front_len,
  1495. &con->in_front_crc);
  1496. if (ret <= 0)
  1497. return ret;
  1498. /* middle */
  1499. if (m->middle) {
  1500. ret = read_partial_message_section(con, &m->middle->vec,
  1501. middle_len,
  1502. &con->in_middle_crc);
  1503. if (ret <= 0)
  1504. return ret;
  1505. }
  1506. #ifdef CONFIG_BLOCK
  1507. if (m->bio && !m->bio_iter)
  1508. init_bio_iter(m->bio, &m->bio_iter, &m->bio_seg);
  1509. #endif
  1510. /* (page) data */
  1511. while (con->in_msg_pos.data_pos < data_len) {
  1512. if (m->pages) {
  1513. ret = read_partial_message_pages(con, m->pages,
  1514. data_len, datacrc);
  1515. if (ret <= 0)
  1516. return ret;
  1517. #ifdef CONFIG_BLOCK
  1518. } else if (m->bio) {
  1519. ret = read_partial_message_bio(con,
  1520. &m->bio_iter, &m->bio_seg,
  1521. data_len, datacrc);
  1522. if (ret <= 0)
  1523. return ret;
  1524. #endif
  1525. } else {
  1526. BUG_ON(1);
  1527. }
  1528. }
  1529. /* footer */
  1530. to = sizeof(m->hdr) + sizeof(m->footer);
  1531. while (con->in_base_pos < to) {
  1532. left = to - con->in_base_pos;
  1533. ret = ceph_tcp_recvmsg(con->sock, (char *)&m->footer +
  1534. (con->in_base_pos - sizeof(m->hdr)),
  1535. left);
  1536. if (ret <= 0)
  1537. return ret;
  1538. con->in_base_pos += ret;
  1539. }
  1540. dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
  1541. m, front_len, m->footer.front_crc, middle_len,
  1542. m->footer.middle_crc, data_len, m->footer.data_crc);
  1543. /* crc ok? */
  1544. if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
  1545. pr_err("read_partial_message %p front crc %u != exp. %u\n",
  1546. m, con->in_front_crc, m->footer.front_crc);
  1547. return -EBADMSG;
  1548. }
  1549. if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
  1550. pr_err("read_partial_message %p middle crc %u != exp %u\n",
  1551. m, con->in_middle_crc, m->footer.middle_crc);
  1552. return -EBADMSG;
  1553. }
  1554. if (datacrc &&
  1555. (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
  1556. con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
  1557. pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
  1558. con->in_data_crc, le32_to_cpu(m->footer.data_crc));
  1559. return -EBADMSG;
  1560. }
  1561. return 1; /* done! */
  1562. }
  1563. /*
  1564. * Process message. This happens in the worker thread. The callback should
  1565. * be careful not to do anything that waits on other incoming messages or it
  1566. * may deadlock.
  1567. */
  1568. static void process_message(struct ceph_connection *con)
  1569. {
  1570. struct ceph_msg *msg;
  1571. msg = con->in_msg;
  1572. con->in_msg = NULL;
  1573. /* if first message, set peer_name */
  1574. if (con->peer_name.type == 0)
  1575. con->peer_name = msg->hdr.src;
  1576. con->in_seq++;
  1577. mutex_unlock(&con->mutex);
  1578. dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
  1579. msg, le64_to_cpu(msg->hdr.seq),
  1580. ENTITY_NAME(msg->hdr.src),
  1581. le16_to_cpu(msg->hdr.type),
  1582. ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
  1583. le32_to_cpu(msg->hdr.front_len),
  1584. le32_to_cpu(msg->hdr.data_len),
  1585. con->in_front_crc, con->in_middle_crc, con->in_data_crc);
  1586. con->ops->dispatch(con, msg);
  1587. mutex_lock(&con->mutex);
  1588. prepare_read_tag(con);
  1589. }
  1590. /*
  1591. * Write something to the socket. Called in a worker thread when the
  1592. * socket appears to be writeable and we have something ready to send.
  1593. */
  1594. static int try_write(struct ceph_connection *con)
  1595. {
  1596. struct ceph_messenger *msgr = con->msgr;
  1597. int ret = 1;
  1598. dout("try_write start %p state %lu nref %d\n", con, con->state,
  1599. atomic_read(&con->nref));
  1600. more:
  1601. dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
  1602. /* open the socket first? */
  1603. if (con->sock == NULL) {
  1604. prepare_write_banner(msgr, con);
  1605. prepare_write_connect(msgr, con, 1);
  1606. prepare_read_banner(con);
  1607. set_bit(CONNECTING, &con->state);
  1608. clear_bit(NEGOTIATING, &con->state);
  1609. BUG_ON(con->in_msg);
  1610. con->in_tag = CEPH_MSGR_TAG_READY;
  1611. dout("try_write initiating connect on %p new state %lu\n",
  1612. con, con->state);
  1613. con->sock = ceph_tcp_connect(con);
  1614. if (IS_ERR(con->sock)) {
  1615. con->sock = NULL;
  1616. con->error_msg = "connect error";
  1617. ret = -1;
  1618. goto out;
  1619. }
  1620. }
  1621. more_kvec:
  1622. /* kvec data queued? */
  1623. if (con->out_skip) {
  1624. ret = write_partial_skip(con);
  1625. if (ret <= 0)
  1626. goto out;
  1627. }
  1628. if (con->out_kvec_left) {
  1629. ret = write_partial_kvec(con);
  1630. if (ret <= 0)
  1631. goto out;
  1632. }
  1633. /* msg pages? */
  1634. if (con->out_msg) {
  1635. if (con->out_msg_done) {
  1636. ceph_msg_put(con->out_msg);
  1637. con->out_msg = NULL; /* we're done with this one */
  1638. goto do_next;
  1639. }
  1640. ret = write_partial_msg_pages(con);
  1641. if (ret == 1)
  1642. goto more_kvec; /* we need to send the footer, too! */
  1643. if (ret == 0)
  1644. goto out;
  1645. if (ret < 0) {
  1646. dout("try_write write_partial_msg_pages err %d\n",
  1647. ret);
  1648. goto out;
  1649. }
  1650. }
  1651. do_next:
  1652. if (!test_bit(CONNECTING, &con->state)) {
  1653. /* is anything else pending? */
  1654. if (!list_empty(&con->out_queue)) {
  1655. prepare_write_message(con);
  1656. goto more;
  1657. }
  1658. if (con->in_seq > con->in_seq_acked) {
  1659. prepare_write_ack(con);
  1660. goto more;
  1661. }
  1662. if (test_and_clear_bit(KEEPALIVE_PENDING, &con->state)) {
  1663. prepare_write_keepalive(con);
  1664. goto more;
  1665. }
  1666. }
  1667. /* Nothing to do! */
  1668. clear_bit(WRITE_PENDING, &con->state);
  1669. dout("try_write nothing else to write.\n");
  1670. ret = 0;
  1671. out:
  1672. dout("try_write done on %p ret %d\n", con, ret);
  1673. return ret;
  1674. }
  1675. /*
  1676. * Read what we can from the socket.
  1677. */
  1678. static int try_read(struct ceph_connection *con)
  1679. {
  1680. int ret = -1;
  1681. if (!con->sock)
  1682. return 0;
  1683. if (test_bit(STANDBY, &con->state))
  1684. return 0;
  1685. dout("try_read start on %p\n", con);
  1686. more:
  1687. dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
  1688. con->in_base_pos);
  1689. /*
  1690. * process_connect and process_message drop and re-take
  1691. * con->mutex. make sure we handle a racing close or reopen.
  1692. */
  1693. if (test_bit(CLOSED, &con->state) ||
  1694. test_bit(OPENING, &con->state)) {
  1695. ret = -EAGAIN;
  1696. goto out;
  1697. }
  1698. if (test_bit(CONNECTING, &con->state)) {
  1699. if (!test_bit(NEGOTIATING, &con->state)) {
  1700. dout("try_read connecting\n");
  1701. ret = read_partial_banner(con);
  1702. if (ret <= 0)
  1703. goto out;
  1704. ret = process_banner(con);
  1705. if (ret < 0)
  1706. goto out;
  1707. }
  1708. ret = read_partial_connect(con);
  1709. if (ret <= 0)
  1710. goto out;
  1711. ret = process_connect(con);
  1712. if (ret < 0)
  1713. goto out;
  1714. goto more;
  1715. }
  1716. if (con->in_base_pos < 0) {
  1717. /*
  1718. * skipping + discarding content.
  1719. *
  1720. * FIXME: there must be a better way to do this!
  1721. */
  1722. static char buf[1024];
  1723. int skip = min(1024, -con->in_base_pos);
  1724. dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
  1725. ret = ceph_tcp_recvmsg(con->sock, buf, skip);
  1726. if (ret <= 0)
  1727. goto out;
  1728. con->in_base_pos += ret;
  1729. if (con->in_base_pos)
  1730. goto more;
  1731. }
  1732. if (con->in_tag == CEPH_MSGR_TAG_READY) {
  1733. /*
  1734. * what's next?
  1735. */
  1736. ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
  1737. if (ret <= 0)
  1738. goto out;
  1739. dout("try_read got tag %d\n", (int)con->in_tag);
  1740. switch (con->in_tag) {
  1741. case CEPH_MSGR_TAG_MSG:
  1742. prepare_read_message(con);
  1743. break;
  1744. case CEPH_MSGR_TAG_ACK:
  1745. prepare_read_ack(con);
  1746. break;
  1747. case CEPH_MSGR_TAG_CLOSE:
  1748. set_bit(CLOSED, &con->state); /* fixme */
  1749. goto out;
  1750. default:
  1751. goto bad_tag;
  1752. }
  1753. }
  1754. if (con->in_tag == CEPH_MSGR_TAG_MSG) {
  1755. ret = read_partial_message(con);
  1756. if (ret <= 0) {
  1757. switch (ret) {
  1758. case -EBADMSG:
  1759. con->error_msg = "bad crc";
  1760. ret = -EIO;
  1761. break;
  1762. case -EIO:
  1763. con->error_msg = "io error";
  1764. break;
  1765. }
  1766. goto out;
  1767. }
  1768. if (con->in_tag == CEPH_MSGR_TAG_READY)
  1769. goto more;
  1770. process_message(con);
  1771. goto more;
  1772. }
  1773. if (con->in_tag == CEPH_MSGR_TAG_ACK) {
  1774. ret = read_partial_ack(con);
  1775. if (ret <= 0)
  1776. goto out;
  1777. process_ack(con);
  1778. goto more;
  1779. }
  1780. out:
  1781. dout("try_read done on %p ret %d\n", con, ret);
  1782. return ret;
  1783. bad_tag:
  1784. pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
  1785. con->error_msg = "protocol error, garbage tag";
  1786. ret = -1;
  1787. goto out;
  1788. }
  1789. /*
  1790. * Atomically queue work on a connection. Bump @con reference to
  1791. * avoid races with connection teardown.
  1792. */
  1793. static void queue_con(struct ceph_connection *con)
  1794. {
  1795. if (test_bit(DEAD, &con->state)) {
  1796. dout("queue_con %p ignoring: DEAD\n",
  1797. con);
  1798. return;
  1799. }
  1800. if (!con->ops->get(con)) {
  1801. dout("queue_con %p ref count 0\n", con);
  1802. return;
  1803. }
  1804. if (!queue_delayed_work(ceph_msgr_wq, &con->work, 0)) {
  1805. dout("queue_con %p - already queued\n", con);
  1806. con->ops->put(con);
  1807. } else {
  1808. dout("queue_con %p\n", con);
  1809. }
  1810. }
  1811. /*
  1812. * Do some work on a connection. Drop a connection ref when we're done.
  1813. */
  1814. static void con_work(struct work_struct *work)
  1815. {
  1816. struct ceph_connection *con = container_of(work, struct ceph_connection,
  1817. work.work);
  1818. int ret;
  1819. mutex_lock(&con->mutex);
  1820. restart:
  1821. if (test_and_clear_bit(BACKOFF, &con->state)) {
  1822. dout("con_work %p backing off\n", con);
  1823. if (queue_delayed_work(ceph_msgr_wq, &con->work,
  1824. round_jiffies_relative(con->delay))) {
  1825. dout("con_work %p backoff %lu\n", con, con->delay);
  1826. mutex_unlock(&con->mutex);
  1827. return;
  1828. } else {
  1829. con->ops->put(con);
  1830. dout("con_work %p FAILED to back off %lu\n", con,
  1831. con->delay);
  1832. }
  1833. }
  1834. if (test_bit(STANDBY, &con->state)) {
  1835. dout("con_work %p STANDBY\n", con);
  1836. goto done;
  1837. }
  1838. if (test_bit(CLOSED, &con->state)) { /* e.g. if we are replaced */
  1839. dout("con_work CLOSED\n");
  1840. con_close_socket(con);
  1841. goto done;
  1842. }
  1843. if (test_and_clear_bit(OPENING, &con->state)) {
  1844. /* reopen w/ new peer */
  1845. dout("con_work OPENING\n");
  1846. con_close_socket(con);
  1847. }
  1848. if (test_and_clear_bit(SOCK_CLOSED, &con->state))
  1849. goto fault;
  1850. ret = try_read(con);
  1851. if (ret == -EAGAIN)
  1852. goto restart;
  1853. if (ret < 0)
  1854. goto fault;
  1855. ret = try_write(con);
  1856. if (ret == -EAGAIN)
  1857. goto restart;
  1858. if (ret < 0)
  1859. goto fault;
  1860. done:
  1861. mutex_unlock(&con->mutex);
  1862. done_unlocked:
  1863. con->ops->put(con);
  1864. return;
  1865. fault:
  1866. mutex_unlock(&con->mutex);
  1867. ceph_fault(con); /* error/fault path */
  1868. goto done_unlocked;
  1869. }
  1870. /*
  1871. * Generic error/fault handler. A retry mechanism is used with
  1872. * exponential backoff
  1873. */
  1874. static void ceph_fault(struct ceph_connection *con)
  1875. {
  1876. pr_err("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
  1877. ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
  1878. dout("fault %p state %lu to peer %s\n",
  1879. con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
  1880. if (test_bit(LOSSYTX, &con->state)) {
  1881. dout("fault on LOSSYTX channel\n");
  1882. goto out;
  1883. }
  1884. mutex_lock(&con->mutex);
  1885. if (test_bit(CLOSED, &con->state))
  1886. goto out_unlock;
  1887. con_close_socket(con);
  1888. if (con->in_msg) {
  1889. ceph_msg_put(con->in_msg);
  1890. con->in_msg = NULL;
  1891. }
  1892. /* Requeue anything that hasn't been acked */
  1893. list_splice_init(&con->out_sent, &con->out_queue);
  1894. /* If there are no messages queued or keepalive pending, place
  1895. * the connection in a STANDBY state */
  1896. if (list_empty(&con->out_queue) &&
  1897. !test_bit(KEEPALIVE_PENDING, &con->state)) {
  1898. dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
  1899. clear_bit(WRITE_PENDING, &con->state);
  1900. set_bit(STANDBY, &con->state);
  1901. } else {
  1902. /* retry after a delay. */
  1903. if (con->delay == 0)
  1904. con->delay = BASE_DELAY_INTERVAL;
  1905. else if (con->delay < MAX_DELAY_INTERVAL)
  1906. con->delay *= 2;
  1907. con->ops->get(con);
  1908. if (queue_delayed_work(ceph_msgr_wq, &con->work,
  1909. round_jiffies_relative(con->delay))) {
  1910. dout("fault queued %p delay %lu\n", con, con->delay);
  1911. } else {
  1912. con->ops->put(con);
  1913. dout("fault failed to queue %p delay %lu, backoff\n",
  1914. con, con->delay);
  1915. /*
  1916. * In many cases we see a socket state change
  1917. * while con_work is running and end up
  1918. * queuing (non-delayed) work, such that we
  1919. * can't backoff with a delay. Set a flag so
  1920. * that when con_work restarts we schedule the
  1921. * delay then.
  1922. */
  1923. set_bit(BACKOFF, &con->state);
  1924. }
  1925. }
  1926. out_unlock:
  1927. mutex_unlock(&con->mutex);
  1928. out:
  1929. /*
  1930. * in case we faulted due to authentication, invalidate our
  1931. * current tickets so that we can get new ones.
  1932. */
  1933. if (con->auth_retry && con->ops->invalidate_authorizer) {
  1934. dout("calling invalidate_authorizer()\n");
  1935. con->ops->invalidate_authorizer(con);
  1936. }
  1937. if (con->ops->fault)
  1938. con->ops->fault(con);
  1939. }
  1940. /*
  1941. * create a new messenger instance
  1942. */
  1943. struct ceph_messenger *ceph_messenger_create(struct ceph_entity_addr *myaddr,
  1944. u32 supported_features,
  1945. u32 required_features)
  1946. {
  1947. struct ceph_messenger *msgr;
  1948. msgr = kzalloc(sizeof(*msgr), GFP_KERNEL);
  1949. if (msgr == NULL)
  1950. return ERR_PTR(-ENOMEM);
  1951. msgr->supported_features = supported_features;
  1952. msgr->required_features = required_features;
  1953. spin_lock_init(&msgr->global_seq_lock);
  1954. if (myaddr)
  1955. msgr->inst.addr = *myaddr;
  1956. /* select a random nonce */
  1957. msgr->inst.addr.type = 0;
  1958. get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
  1959. encode_my_addr(msgr);
  1960. dout("messenger_create %p\n", msgr);
  1961. return msgr;
  1962. }
  1963. EXPORT_SYMBOL(ceph_messenger_create);
  1964. void ceph_messenger_destroy(struct ceph_messenger *msgr)
  1965. {
  1966. dout("destroy %p\n", msgr);
  1967. kfree(msgr);
  1968. dout("destroyed messenger %p\n", msgr);
  1969. }
  1970. EXPORT_SYMBOL(ceph_messenger_destroy);
  1971. static void clear_standby(struct ceph_connection *con)
  1972. {
  1973. /* come back from STANDBY? */
  1974. if (test_and_clear_bit(STANDBY, &con->state)) {
  1975. mutex_lock(&con->mutex);
  1976. dout("clear_standby %p and ++connect_seq\n", con);
  1977. con->connect_seq++;
  1978. WARN_ON(test_bit(WRITE_PENDING, &con->state));
  1979. WARN_ON(test_bit(KEEPALIVE_PENDING, &con->state));
  1980. mutex_unlock(&con->mutex);
  1981. }
  1982. }
  1983. /*
  1984. * Queue up an outgoing message on the given connection.
  1985. */
  1986. void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
  1987. {
  1988. if (test_bit(CLOSED, &con->state)) {
  1989. dout("con_send %p closed, dropping %p\n", con, msg);
  1990. ceph_msg_put(msg);
  1991. return;
  1992. }
  1993. /* set src+dst */
  1994. msg->hdr.src = con->msgr->inst.name;
  1995. BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
  1996. msg->needs_out_seq = true;
  1997. /* queue */
  1998. mutex_lock(&con->mutex);
  1999. BUG_ON(!list_empty(&msg->list_head));
  2000. list_add_tail(&msg->list_head, &con->out_queue);
  2001. dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
  2002. ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
  2003. ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
  2004. le32_to_cpu(msg->hdr.front_len),
  2005. le32_to_cpu(msg->hdr.middle_len),
  2006. le32_to_cpu(msg->hdr.data_len));
  2007. mutex_unlock(&con->mutex);
  2008. /* if there wasn't anything waiting to send before, queue
  2009. * new work */
  2010. clear_standby(con);
  2011. if (test_and_set_bit(WRITE_PENDING, &con->state) == 0)
  2012. queue_con(con);
  2013. }
  2014. EXPORT_SYMBOL(ceph_con_send);
  2015. /*
  2016. * Revoke a message that was previously queued for send
  2017. */
  2018. void ceph_con_revoke(struct ceph_connection *con, struct ceph_msg *msg)
  2019. {
  2020. mutex_lock(&con->mutex);
  2021. if (!list_empty(&msg->list_head)) {
  2022. dout("con_revoke %p msg %p - was on queue\n", con, msg);
  2023. list_del_init(&msg->list_head);
  2024. ceph_msg_put(msg);
  2025. msg->hdr.seq = 0;
  2026. }
  2027. if (con->out_msg == msg) {
  2028. dout("con_revoke %p msg %p - was sending\n", con, msg);
  2029. con->out_msg = NULL;
  2030. if (con->out_kvec_is_msg) {
  2031. con->out_skip = con->out_kvec_bytes;
  2032. con->out_kvec_is_msg = false;
  2033. }
  2034. ceph_msg_put(msg);
  2035. msg->hdr.seq = 0;
  2036. }
  2037. mutex_unlock(&con->mutex);
  2038. }
  2039. /*
  2040. * Revoke a message that we may be reading data into
  2041. */
  2042. void ceph_con_revoke_message(struct ceph_connection *con, struct ceph_msg *msg)
  2043. {
  2044. mutex_lock(&con->mutex);
  2045. if (con->in_msg && con->in_msg == msg) {
  2046. unsigned front_len = le32_to_cpu(con->in_hdr.front_len);
  2047. unsigned middle_len = le32_to_cpu(con->in_hdr.middle_len);
  2048. unsigned data_len = le32_to_cpu(con->in_hdr.data_len);
  2049. /* skip rest of message */
  2050. dout("con_revoke_pages %p msg %p revoked\n", con, msg);
  2051. con->in_base_pos = con->in_base_pos -
  2052. sizeof(struct ceph_msg_header) -
  2053. front_len -
  2054. middle_len -
  2055. data_len -
  2056. sizeof(struct ceph_msg_footer);
  2057. ceph_msg_put(con->in_msg);
  2058. con->in_msg = NULL;
  2059. con->in_tag = CEPH_MSGR_TAG_READY;
  2060. con->in_seq++;
  2061. } else {
  2062. dout("con_revoke_pages %p msg %p pages %p no-op\n",
  2063. con, con->in_msg, msg);
  2064. }
  2065. mutex_unlock(&con->mutex);
  2066. }
  2067. /*
  2068. * Queue a keepalive byte to ensure the tcp connection is alive.
  2069. */
  2070. void ceph_con_keepalive(struct ceph_connection *con)
  2071. {
  2072. dout("con_keepalive %p\n", con);
  2073. clear_standby(con);
  2074. if (test_and_set_bit(KEEPALIVE_PENDING, &con->state) == 0 &&
  2075. test_and_set_bit(WRITE_PENDING, &con->state) == 0)
  2076. queue_con(con);
  2077. }
  2078. EXPORT_SYMBOL(ceph_con_keepalive);
  2079. /*
  2080. * construct a new message with given type, size
  2081. * the new msg has a ref count of 1.
  2082. */
  2083. struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
  2084. bool can_fail)
  2085. {
  2086. struct ceph_msg *m;
  2087. m = kmalloc(sizeof(*m), flags);
  2088. if (m == NULL)
  2089. goto out;
  2090. kref_init(&m->kref);
  2091. INIT_LIST_HEAD(&m->list_head);
  2092. m->hdr.tid = 0;
  2093. m->hdr.type = cpu_to_le16(type);
  2094. m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
  2095. m->hdr.version = 0;
  2096. m->hdr.front_len = cpu_to_le32(front_len);
  2097. m->hdr.middle_len = 0;
  2098. m->hdr.data_len = 0;
  2099. m->hdr.data_off = 0;
  2100. m->hdr.reserved = 0;
  2101. m->footer.front_crc = 0;
  2102. m->footer.middle_crc = 0;
  2103. m->footer.data_crc = 0;
  2104. m->footer.flags = 0;
  2105. m->front_max = front_len;
  2106. m->front_is_vmalloc = false;
  2107. m->more_to_follow = false;
  2108. m->ack_stamp = 0;
  2109. m->pool = NULL;
  2110. /* middle */
  2111. m->middle = NULL;
  2112. /* data */
  2113. m->nr_pages = 0;
  2114. m->page_alignment = 0;
  2115. m->pages = NULL;
  2116. m->pagelist = NULL;
  2117. m->bio = NULL;
  2118. m->bio_iter = NULL;
  2119. m->bio_seg = 0;
  2120. m->trail = NULL;
  2121. /* front */
  2122. if (front_len) {
  2123. if (front_len > PAGE_CACHE_SIZE) {
  2124. m->front.iov_base = __vmalloc(front_len, flags,
  2125. PAGE_KERNEL);
  2126. m->front_is_vmalloc = true;
  2127. } else {
  2128. m->front.iov_base = kmalloc(front_len, flags);
  2129. }
  2130. if (m->front.iov_base == NULL) {
  2131. dout("ceph_msg_new can't allocate %d bytes\n",
  2132. front_len);
  2133. goto out2;
  2134. }
  2135. } else {
  2136. m->front.iov_base = NULL;
  2137. }
  2138. m->front.iov_len = front_len;
  2139. dout("ceph_msg_new %p front %d\n", m, front_len);
  2140. return m;
  2141. out2:
  2142. ceph_msg_put(m);
  2143. out:
  2144. if (!can_fail) {
  2145. pr_err("msg_new can't create type %d front %d\n", type,
  2146. front_len);
  2147. WARN_ON(1);
  2148. } else {
  2149. dout("msg_new can't create type %d front %d\n", type,
  2150. front_len);
  2151. }
  2152. return NULL;
  2153. }
  2154. EXPORT_SYMBOL(ceph_msg_new);
  2155. /*
  2156. * Allocate "middle" portion of a message, if it is needed and wasn't
  2157. * allocated by alloc_msg. This allows us to read a small fixed-size
  2158. * per-type header in the front and then gracefully fail (i.e.,
  2159. * propagate the error to the caller based on info in the front) when
  2160. * the middle is too large.
  2161. */
  2162. static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
  2163. {
  2164. int type = le16_to_cpu(msg->hdr.type);
  2165. int middle_len = le32_to_cpu(msg->hdr.middle_len);
  2166. dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
  2167. ceph_msg_type_name(type), middle_len);
  2168. BUG_ON(!middle_len);
  2169. BUG_ON(msg->middle);
  2170. msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
  2171. if (!msg->middle)
  2172. return -ENOMEM;
  2173. return 0;
  2174. }
  2175. /*
  2176. * Generic message allocator, for incoming messages.
  2177. */
  2178. static struct ceph_msg *ceph_alloc_msg(struct ceph_connection *con,
  2179. struct ceph_msg_header *hdr,
  2180. int *skip)
  2181. {
  2182. int type = le16_to_cpu(hdr->type);
  2183. int front_len = le32_to_cpu(hdr->front_len);
  2184. int middle_len = le32_to_cpu(hdr->middle_len);
  2185. struct ceph_msg *msg = NULL;
  2186. int ret;
  2187. if (con->ops->alloc_msg) {
  2188. mutex_unlock(&con->mutex);
  2189. msg = con->ops->alloc_msg(con, hdr, skip);
  2190. mutex_lock(&con->mutex);
  2191. if (!msg || *skip)
  2192. return NULL;
  2193. }
  2194. if (!msg) {
  2195. *skip = 0;
  2196. msg = ceph_msg_new(type, front_len, GFP_NOFS, false);
  2197. if (!msg) {
  2198. pr_err("unable to allocate msg type %d len %d\n",
  2199. type, front_len);
  2200. return NULL;
  2201. }
  2202. msg->page_alignment = le16_to_cpu(hdr->data_off);
  2203. }
  2204. memcpy(&msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
  2205. if (middle_len && !msg->middle) {
  2206. ret = ceph_alloc_middle(con, msg);
  2207. if (ret < 0) {
  2208. ceph_msg_put(msg);
  2209. return NULL;
  2210. }
  2211. }
  2212. return msg;
  2213. }
  2214. /*
  2215. * Free a generically kmalloc'd message.
  2216. */
  2217. void ceph_msg_kfree(struct ceph_msg *m)
  2218. {
  2219. dout("msg_kfree %p\n", m);
  2220. if (m->front_is_vmalloc)
  2221. vfree(m->front.iov_base);
  2222. else
  2223. kfree(m->front.iov_base);
  2224. kfree(m);
  2225. }
  2226. /*
  2227. * Drop a msg ref. Destroy as needed.
  2228. */
  2229. void ceph_msg_last_put(struct kref *kref)
  2230. {
  2231. struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
  2232. dout("ceph_msg_put last one on %p\n", m);
  2233. WARN_ON(!list_empty(&m->list_head));
  2234. /* drop middle, data, if any */
  2235. if (m->middle) {
  2236. ceph_buffer_put(m->middle);
  2237. m->middle = NULL;
  2238. }
  2239. m->nr_pages = 0;
  2240. m->pages = NULL;
  2241. if (m->pagelist) {
  2242. ceph_pagelist_release(m->pagelist);
  2243. kfree(m->pagelist);
  2244. m->pagelist = NULL;
  2245. }
  2246. m->trail = NULL;
  2247. if (m->pool)
  2248. ceph_msgpool_put(m->pool, m);
  2249. else
  2250. ceph_msg_kfree(m);
  2251. }
  2252. EXPORT_SYMBOL(ceph_msg_last_put);
  2253. void ceph_msg_dump(struct ceph_msg *msg)
  2254. {
  2255. pr_debug("msg_dump %p (front_max %d nr_pages %d)\n", msg,
  2256. msg->front_max, msg->nr_pages);
  2257. print_hex_dump(KERN_DEBUG, "header: ",
  2258. DUMP_PREFIX_OFFSET, 16, 1,
  2259. &msg->hdr, sizeof(msg->hdr), true);
  2260. print_hex_dump(KERN_DEBUG, " front: ",
  2261. DUMP_PREFIX_OFFSET, 16, 1,
  2262. msg->front.iov_base, msg->front.iov_len, true);
  2263. if (msg->middle)
  2264. print_hex_dump(KERN_DEBUG, "middle: ",
  2265. DUMP_PREFIX_OFFSET, 16, 1,
  2266. msg->middle->vec.iov_base,
  2267. msg->middle->vec.iov_len, true);
  2268. print_hex_dump(KERN_DEBUG, "footer: ",
  2269. DUMP_PREFIX_OFFSET, 16, 1,
  2270. &msg->footer, sizeof(msg->footer), true);
  2271. }
  2272. EXPORT_SYMBOL(ceph_msg_dump);