skge.c 106 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159
  1. /*
  2. * New driver for Marvell Yukon chipset and SysKonnect Gigabit
  3. * Ethernet adapters. Based on earlier sk98lin, e100 and
  4. * FreeBSD if_sk drivers.
  5. *
  6. * This driver intentionally does not support all the features
  7. * of the original driver such as link fail-over and link management because
  8. * those should be done at higher levels.
  9. *
  10. * Copyright (C) 2004, 2005 Stephen Hemminger <shemminger@osdl.org>
  11. *
  12. * This program is free software; you can redistribute it and/or modify
  13. * it under the terms of the GNU General Public License as published by
  14. * the Free Software Foundation; either version 2 of the License.
  15. *
  16. * This program is distributed in the hope that it will be useful,
  17. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  18. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  19. * GNU General Public License for more details.
  20. *
  21. * You should have received a copy of the GNU General Public License
  22. * along with this program; if not, write to the Free Software
  23. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  24. */
  25. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  26. #include <linux/in.h>
  27. #include <linux/kernel.h>
  28. #include <linux/module.h>
  29. #include <linux/moduleparam.h>
  30. #include <linux/netdevice.h>
  31. #include <linux/etherdevice.h>
  32. #include <linux/ethtool.h>
  33. #include <linux/pci.h>
  34. #include <linux/if_vlan.h>
  35. #include <linux/ip.h>
  36. #include <linux/delay.h>
  37. #include <linux/crc32.h>
  38. #include <linux/dma-mapping.h>
  39. #include <linux/debugfs.h>
  40. #include <linux/sched.h>
  41. #include <linux/seq_file.h>
  42. #include <linux/mii.h>
  43. #include <linux/slab.h>
  44. #include <linux/dmi.h>
  45. #include <asm/irq.h>
  46. #include "skge.h"
  47. #define DRV_NAME "skge"
  48. #define DRV_VERSION "1.13"
  49. #define DEFAULT_TX_RING_SIZE 128
  50. #define DEFAULT_RX_RING_SIZE 512
  51. #define MAX_TX_RING_SIZE 1024
  52. #define TX_LOW_WATER (MAX_SKB_FRAGS + 1)
  53. #define MAX_RX_RING_SIZE 4096
  54. #define RX_COPY_THRESHOLD 128
  55. #define RX_BUF_SIZE 1536
  56. #define PHY_RETRIES 1000
  57. #define ETH_JUMBO_MTU 9000
  58. #define TX_WATCHDOG (5 * HZ)
  59. #define NAPI_WEIGHT 64
  60. #define BLINK_MS 250
  61. #define LINK_HZ HZ
  62. #define SKGE_EEPROM_MAGIC 0x9933aabb
  63. MODULE_DESCRIPTION("SysKonnect Gigabit Ethernet driver");
  64. MODULE_AUTHOR("Stephen Hemminger <shemminger@linux-foundation.org>");
  65. MODULE_LICENSE("GPL");
  66. MODULE_VERSION(DRV_VERSION);
  67. static const u32 default_msg = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
  68. NETIF_MSG_LINK | NETIF_MSG_IFUP |
  69. NETIF_MSG_IFDOWN);
  70. static int debug = -1; /* defaults above */
  71. module_param(debug, int, 0);
  72. MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  73. static DEFINE_PCI_DEVICE_TABLE(skge_id_table) = {
  74. { PCI_DEVICE(PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C940) },
  75. { PCI_DEVICE(PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C940B) },
  76. { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, PCI_DEVICE_ID_SYSKONNECT_GE) },
  77. { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, PCI_DEVICE_ID_SYSKONNECT_YU) },
  78. { PCI_DEVICE(PCI_VENDOR_ID_DLINK, PCI_DEVICE_ID_DLINK_DGE510T) },
  79. { PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4b01) }, /* DGE-530T */
  80. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4320) },
  81. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5005) }, /* Belkin */
  82. { PCI_DEVICE(PCI_VENDOR_ID_CNET, PCI_DEVICE_ID_CNET_GIGACARD) },
  83. { PCI_DEVICE(PCI_VENDOR_ID_LINKSYS, PCI_DEVICE_ID_LINKSYS_EG1064) },
  84. { PCI_VENDOR_ID_LINKSYS, 0x1032, PCI_ANY_ID, 0x0015 },
  85. { 0 }
  86. };
  87. MODULE_DEVICE_TABLE(pci, skge_id_table);
  88. static int skge_up(struct net_device *dev);
  89. static int skge_down(struct net_device *dev);
  90. static void skge_phy_reset(struct skge_port *skge);
  91. static void skge_tx_clean(struct net_device *dev);
  92. static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
  93. static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
  94. static void genesis_get_stats(struct skge_port *skge, u64 *data);
  95. static void yukon_get_stats(struct skge_port *skge, u64 *data);
  96. static void yukon_init(struct skge_hw *hw, int port);
  97. static void genesis_mac_init(struct skge_hw *hw, int port);
  98. static void genesis_link_up(struct skge_port *skge);
  99. static void skge_set_multicast(struct net_device *dev);
  100. /* Avoid conditionals by using array */
  101. static const int txqaddr[] = { Q_XA1, Q_XA2 };
  102. static const int rxqaddr[] = { Q_R1, Q_R2 };
  103. static const u32 rxirqmask[] = { IS_R1_F, IS_R2_F };
  104. static const u32 txirqmask[] = { IS_XA1_F, IS_XA2_F };
  105. static const u32 napimask[] = { IS_R1_F|IS_XA1_F, IS_R2_F|IS_XA2_F };
  106. static const u32 portmask[] = { IS_PORT_1, IS_PORT_2 };
  107. static int skge_get_regs_len(struct net_device *dev)
  108. {
  109. return 0x4000;
  110. }
  111. /*
  112. * Returns copy of whole control register region
  113. * Note: skip RAM address register because accessing it will
  114. * cause bus hangs!
  115. */
  116. static void skge_get_regs(struct net_device *dev, struct ethtool_regs *regs,
  117. void *p)
  118. {
  119. const struct skge_port *skge = netdev_priv(dev);
  120. const void __iomem *io = skge->hw->regs;
  121. regs->version = 1;
  122. memset(p, 0, regs->len);
  123. memcpy_fromio(p, io, B3_RAM_ADDR);
  124. memcpy_fromio(p + B3_RI_WTO_R1, io + B3_RI_WTO_R1,
  125. regs->len - B3_RI_WTO_R1);
  126. }
  127. /* Wake on Lan only supported on Yukon chips with rev 1 or above */
  128. static u32 wol_supported(const struct skge_hw *hw)
  129. {
  130. if (hw->chip_id == CHIP_ID_GENESIS)
  131. return 0;
  132. if (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)
  133. return 0;
  134. return WAKE_MAGIC | WAKE_PHY;
  135. }
  136. static void skge_wol_init(struct skge_port *skge)
  137. {
  138. struct skge_hw *hw = skge->hw;
  139. int port = skge->port;
  140. u16 ctrl;
  141. skge_write16(hw, B0_CTST, CS_RST_CLR);
  142. skge_write16(hw, SK_REG(port, GMAC_LINK_CTRL), GMLC_RST_CLR);
  143. /* Turn on Vaux */
  144. skge_write8(hw, B0_POWER_CTRL,
  145. PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_ON | PC_VCC_OFF);
  146. /* WA code for COMA mode -- clear PHY reset */
  147. if (hw->chip_id == CHIP_ID_YUKON_LITE &&
  148. hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
  149. u32 reg = skge_read32(hw, B2_GP_IO);
  150. reg |= GP_DIR_9;
  151. reg &= ~GP_IO_9;
  152. skge_write32(hw, B2_GP_IO, reg);
  153. }
  154. skge_write32(hw, SK_REG(port, GPHY_CTRL),
  155. GPC_DIS_SLEEP |
  156. GPC_HWCFG_M_3 | GPC_HWCFG_M_2 | GPC_HWCFG_M_1 | GPC_HWCFG_M_0 |
  157. GPC_ANEG_1 | GPC_RST_SET);
  158. skge_write32(hw, SK_REG(port, GPHY_CTRL),
  159. GPC_DIS_SLEEP |
  160. GPC_HWCFG_M_3 | GPC_HWCFG_M_2 | GPC_HWCFG_M_1 | GPC_HWCFG_M_0 |
  161. GPC_ANEG_1 | GPC_RST_CLR);
  162. skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_CLR);
  163. /* Force to 10/100 skge_reset will re-enable on resume */
  164. gm_phy_write(hw, port, PHY_MARV_AUNE_ADV,
  165. (PHY_AN_100FULL | PHY_AN_100HALF |
  166. PHY_AN_10FULL | PHY_AN_10HALF | PHY_AN_CSMA));
  167. /* no 1000 HD/FD */
  168. gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, 0);
  169. gm_phy_write(hw, port, PHY_MARV_CTRL,
  170. PHY_CT_RESET | PHY_CT_SPS_LSB | PHY_CT_ANE |
  171. PHY_CT_RE_CFG | PHY_CT_DUP_MD);
  172. /* Set GMAC to no flow control and auto update for speed/duplex */
  173. gma_write16(hw, port, GM_GP_CTRL,
  174. GM_GPCR_FC_TX_DIS|GM_GPCR_TX_ENA|GM_GPCR_RX_ENA|
  175. GM_GPCR_DUP_FULL|GM_GPCR_FC_RX_DIS|GM_GPCR_AU_FCT_DIS);
  176. /* Set WOL address */
  177. memcpy_toio(hw->regs + WOL_REGS(port, WOL_MAC_ADDR),
  178. skge->netdev->dev_addr, ETH_ALEN);
  179. /* Turn on appropriate WOL control bits */
  180. skge_write16(hw, WOL_REGS(port, WOL_CTRL_STAT), WOL_CTL_CLEAR_RESULT);
  181. ctrl = 0;
  182. if (skge->wol & WAKE_PHY)
  183. ctrl |= WOL_CTL_ENA_PME_ON_LINK_CHG|WOL_CTL_ENA_LINK_CHG_UNIT;
  184. else
  185. ctrl |= WOL_CTL_DIS_PME_ON_LINK_CHG|WOL_CTL_DIS_LINK_CHG_UNIT;
  186. if (skge->wol & WAKE_MAGIC)
  187. ctrl |= WOL_CTL_ENA_PME_ON_MAGIC_PKT|WOL_CTL_ENA_MAGIC_PKT_UNIT;
  188. else
  189. ctrl |= WOL_CTL_DIS_PME_ON_MAGIC_PKT|WOL_CTL_DIS_MAGIC_PKT_UNIT;
  190. ctrl |= WOL_CTL_DIS_PME_ON_PATTERN|WOL_CTL_DIS_PATTERN_UNIT;
  191. skge_write16(hw, WOL_REGS(port, WOL_CTRL_STAT), ctrl);
  192. /* block receiver */
  193. skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
  194. }
  195. static void skge_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  196. {
  197. struct skge_port *skge = netdev_priv(dev);
  198. wol->supported = wol_supported(skge->hw);
  199. wol->wolopts = skge->wol;
  200. }
  201. static int skge_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  202. {
  203. struct skge_port *skge = netdev_priv(dev);
  204. struct skge_hw *hw = skge->hw;
  205. if ((wol->wolopts & ~wol_supported(hw)) ||
  206. !device_can_wakeup(&hw->pdev->dev))
  207. return -EOPNOTSUPP;
  208. skge->wol = wol->wolopts;
  209. device_set_wakeup_enable(&hw->pdev->dev, skge->wol);
  210. return 0;
  211. }
  212. /* Determine supported/advertised modes based on hardware.
  213. * Note: ethtool ADVERTISED_xxx == SUPPORTED_xxx
  214. */
  215. static u32 skge_supported_modes(const struct skge_hw *hw)
  216. {
  217. u32 supported;
  218. if (hw->copper) {
  219. supported = (SUPPORTED_10baseT_Half |
  220. SUPPORTED_10baseT_Full |
  221. SUPPORTED_100baseT_Half |
  222. SUPPORTED_100baseT_Full |
  223. SUPPORTED_1000baseT_Half |
  224. SUPPORTED_1000baseT_Full |
  225. SUPPORTED_Autoneg |
  226. SUPPORTED_TP);
  227. if (hw->chip_id == CHIP_ID_GENESIS)
  228. supported &= ~(SUPPORTED_10baseT_Half |
  229. SUPPORTED_10baseT_Full |
  230. SUPPORTED_100baseT_Half |
  231. SUPPORTED_100baseT_Full);
  232. else if (hw->chip_id == CHIP_ID_YUKON)
  233. supported &= ~SUPPORTED_1000baseT_Half;
  234. } else
  235. supported = (SUPPORTED_1000baseT_Full |
  236. SUPPORTED_1000baseT_Half |
  237. SUPPORTED_FIBRE |
  238. SUPPORTED_Autoneg);
  239. return supported;
  240. }
  241. static int skge_get_settings(struct net_device *dev,
  242. struct ethtool_cmd *ecmd)
  243. {
  244. struct skge_port *skge = netdev_priv(dev);
  245. struct skge_hw *hw = skge->hw;
  246. ecmd->transceiver = XCVR_INTERNAL;
  247. ecmd->supported = skge_supported_modes(hw);
  248. if (hw->copper) {
  249. ecmd->port = PORT_TP;
  250. ecmd->phy_address = hw->phy_addr;
  251. } else
  252. ecmd->port = PORT_FIBRE;
  253. ecmd->advertising = skge->advertising;
  254. ecmd->autoneg = skge->autoneg;
  255. ecmd->speed = skge->speed;
  256. ecmd->duplex = skge->duplex;
  257. return 0;
  258. }
  259. static int skge_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
  260. {
  261. struct skge_port *skge = netdev_priv(dev);
  262. const struct skge_hw *hw = skge->hw;
  263. u32 supported = skge_supported_modes(hw);
  264. int err = 0;
  265. if (ecmd->autoneg == AUTONEG_ENABLE) {
  266. ecmd->advertising = supported;
  267. skge->duplex = -1;
  268. skge->speed = -1;
  269. } else {
  270. u32 setting;
  271. switch (ecmd->speed) {
  272. case SPEED_1000:
  273. if (ecmd->duplex == DUPLEX_FULL)
  274. setting = SUPPORTED_1000baseT_Full;
  275. else if (ecmd->duplex == DUPLEX_HALF)
  276. setting = SUPPORTED_1000baseT_Half;
  277. else
  278. return -EINVAL;
  279. break;
  280. case SPEED_100:
  281. if (ecmd->duplex == DUPLEX_FULL)
  282. setting = SUPPORTED_100baseT_Full;
  283. else if (ecmd->duplex == DUPLEX_HALF)
  284. setting = SUPPORTED_100baseT_Half;
  285. else
  286. return -EINVAL;
  287. break;
  288. case SPEED_10:
  289. if (ecmd->duplex == DUPLEX_FULL)
  290. setting = SUPPORTED_10baseT_Full;
  291. else if (ecmd->duplex == DUPLEX_HALF)
  292. setting = SUPPORTED_10baseT_Half;
  293. else
  294. return -EINVAL;
  295. break;
  296. default:
  297. return -EINVAL;
  298. }
  299. if ((setting & supported) == 0)
  300. return -EINVAL;
  301. skge->speed = ecmd->speed;
  302. skge->duplex = ecmd->duplex;
  303. }
  304. skge->autoneg = ecmd->autoneg;
  305. skge->advertising = ecmd->advertising;
  306. if (netif_running(dev)) {
  307. skge_down(dev);
  308. err = skge_up(dev);
  309. if (err) {
  310. dev_close(dev);
  311. return err;
  312. }
  313. }
  314. return 0;
  315. }
  316. static void skge_get_drvinfo(struct net_device *dev,
  317. struct ethtool_drvinfo *info)
  318. {
  319. struct skge_port *skge = netdev_priv(dev);
  320. strcpy(info->driver, DRV_NAME);
  321. strcpy(info->version, DRV_VERSION);
  322. strcpy(info->fw_version, "N/A");
  323. strcpy(info->bus_info, pci_name(skge->hw->pdev));
  324. }
  325. static const struct skge_stat {
  326. char name[ETH_GSTRING_LEN];
  327. u16 xmac_offset;
  328. u16 gma_offset;
  329. } skge_stats[] = {
  330. { "tx_bytes", XM_TXO_OK_HI, GM_TXO_OK_HI },
  331. { "rx_bytes", XM_RXO_OK_HI, GM_RXO_OK_HI },
  332. { "tx_broadcast", XM_TXF_BC_OK, GM_TXF_BC_OK },
  333. { "rx_broadcast", XM_RXF_BC_OK, GM_RXF_BC_OK },
  334. { "tx_multicast", XM_TXF_MC_OK, GM_TXF_MC_OK },
  335. { "rx_multicast", XM_RXF_MC_OK, GM_RXF_MC_OK },
  336. { "tx_unicast", XM_TXF_UC_OK, GM_TXF_UC_OK },
  337. { "rx_unicast", XM_RXF_UC_OK, GM_RXF_UC_OK },
  338. { "tx_mac_pause", XM_TXF_MPAUSE, GM_TXF_MPAUSE },
  339. { "rx_mac_pause", XM_RXF_MPAUSE, GM_RXF_MPAUSE },
  340. { "collisions", XM_TXF_SNG_COL, GM_TXF_SNG_COL },
  341. { "multi_collisions", XM_TXF_MUL_COL, GM_TXF_MUL_COL },
  342. { "aborted", XM_TXF_ABO_COL, GM_TXF_ABO_COL },
  343. { "late_collision", XM_TXF_LAT_COL, GM_TXF_LAT_COL },
  344. { "fifo_underrun", XM_TXE_FIFO_UR, GM_TXE_FIFO_UR },
  345. { "fifo_overflow", XM_RXE_FIFO_OV, GM_RXE_FIFO_OV },
  346. { "rx_toolong", XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
  347. { "rx_jabber", XM_RXF_JAB_PKT, GM_RXF_JAB_PKT },
  348. { "rx_runt", XM_RXE_RUNT, GM_RXE_FRAG },
  349. { "rx_too_long", XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
  350. { "rx_fcs_error", XM_RXF_FCS_ERR, GM_RXF_FCS_ERR },
  351. };
  352. static int skge_get_sset_count(struct net_device *dev, int sset)
  353. {
  354. switch (sset) {
  355. case ETH_SS_STATS:
  356. return ARRAY_SIZE(skge_stats);
  357. default:
  358. return -EOPNOTSUPP;
  359. }
  360. }
  361. static void skge_get_ethtool_stats(struct net_device *dev,
  362. struct ethtool_stats *stats, u64 *data)
  363. {
  364. struct skge_port *skge = netdev_priv(dev);
  365. if (skge->hw->chip_id == CHIP_ID_GENESIS)
  366. genesis_get_stats(skge, data);
  367. else
  368. yukon_get_stats(skge, data);
  369. }
  370. /* Use hardware MIB variables for critical path statistics and
  371. * transmit feedback not reported at interrupt.
  372. * Other errors are accounted for in interrupt handler.
  373. */
  374. static struct net_device_stats *skge_get_stats(struct net_device *dev)
  375. {
  376. struct skge_port *skge = netdev_priv(dev);
  377. u64 data[ARRAY_SIZE(skge_stats)];
  378. if (skge->hw->chip_id == CHIP_ID_GENESIS)
  379. genesis_get_stats(skge, data);
  380. else
  381. yukon_get_stats(skge, data);
  382. dev->stats.tx_bytes = data[0];
  383. dev->stats.rx_bytes = data[1];
  384. dev->stats.tx_packets = data[2] + data[4] + data[6];
  385. dev->stats.rx_packets = data[3] + data[5] + data[7];
  386. dev->stats.multicast = data[3] + data[5];
  387. dev->stats.collisions = data[10];
  388. dev->stats.tx_aborted_errors = data[12];
  389. return &dev->stats;
  390. }
  391. static void skge_get_strings(struct net_device *dev, u32 stringset, u8 *data)
  392. {
  393. int i;
  394. switch (stringset) {
  395. case ETH_SS_STATS:
  396. for (i = 0; i < ARRAY_SIZE(skge_stats); i++)
  397. memcpy(data + i * ETH_GSTRING_LEN,
  398. skge_stats[i].name, ETH_GSTRING_LEN);
  399. break;
  400. }
  401. }
  402. static void skge_get_ring_param(struct net_device *dev,
  403. struct ethtool_ringparam *p)
  404. {
  405. struct skge_port *skge = netdev_priv(dev);
  406. p->rx_max_pending = MAX_RX_RING_SIZE;
  407. p->tx_max_pending = MAX_TX_RING_SIZE;
  408. p->rx_mini_max_pending = 0;
  409. p->rx_jumbo_max_pending = 0;
  410. p->rx_pending = skge->rx_ring.count;
  411. p->tx_pending = skge->tx_ring.count;
  412. p->rx_mini_pending = 0;
  413. p->rx_jumbo_pending = 0;
  414. }
  415. static int skge_set_ring_param(struct net_device *dev,
  416. struct ethtool_ringparam *p)
  417. {
  418. struct skge_port *skge = netdev_priv(dev);
  419. int err = 0;
  420. if (p->rx_pending == 0 || p->rx_pending > MAX_RX_RING_SIZE ||
  421. p->tx_pending < TX_LOW_WATER || p->tx_pending > MAX_TX_RING_SIZE)
  422. return -EINVAL;
  423. skge->rx_ring.count = p->rx_pending;
  424. skge->tx_ring.count = p->tx_pending;
  425. if (netif_running(dev)) {
  426. skge_down(dev);
  427. err = skge_up(dev);
  428. if (err)
  429. dev_close(dev);
  430. }
  431. return err;
  432. }
  433. static u32 skge_get_msglevel(struct net_device *netdev)
  434. {
  435. struct skge_port *skge = netdev_priv(netdev);
  436. return skge->msg_enable;
  437. }
  438. static void skge_set_msglevel(struct net_device *netdev, u32 value)
  439. {
  440. struct skge_port *skge = netdev_priv(netdev);
  441. skge->msg_enable = value;
  442. }
  443. static int skge_nway_reset(struct net_device *dev)
  444. {
  445. struct skge_port *skge = netdev_priv(dev);
  446. if (skge->autoneg != AUTONEG_ENABLE || !netif_running(dev))
  447. return -EINVAL;
  448. skge_phy_reset(skge);
  449. return 0;
  450. }
  451. static int skge_set_sg(struct net_device *dev, u32 data)
  452. {
  453. struct skge_port *skge = netdev_priv(dev);
  454. struct skge_hw *hw = skge->hw;
  455. if (hw->chip_id == CHIP_ID_GENESIS && data)
  456. return -EOPNOTSUPP;
  457. return ethtool_op_set_sg(dev, data);
  458. }
  459. static int skge_set_tx_csum(struct net_device *dev, u32 data)
  460. {
  461. struct skge_port *skge = netdev_priv(dev);
  462. struct skge_hw *hw = skge->hw;
  463. if (hw->chip_id == CHIP_ID_GENESIS && data)
  464. return -EOPNOTSUPP;
  465. return ethtool_op_set_tx_csum(dev, data);
  466. }
  467. static u32 skge_get_rx_csum(struct net_device *dev)
  468. {
  469. struct skge_port *skge = netdev_priv(dev);
  470. return skge->rx_csum;
  471. }
  472. /* Only Yukon supports checksum offload. */
  473. static int skge_set_rx_csum(struct net_device *dev, u32 data)
  474. {
  475. struct skge_port *skge = netdev_priv(dev);
  476. if (skge->hw->chip_id == CHIP_ID_GENESIS && data)
  477. return -EOPNOTSUPP;
  478. skge->rx_csum = data;
  479. return 0;
  480. }
  481. static void skge_get_pauseparam(struct net_device *dev,
  482. struct ethtool_pauseparam *ecmd)
  483. {
  484. struct skge_port *skge = netdev_priv(dev);
  485. ecmd->rx_pause = ((skge->flow_control == FLOW_MODE_SYMMETRIC) ||
  486. (skge->flow_control == FLOW_MODE_SYM_OR_REM));
  487. ecmd->tx_pause = (ecmd->rx_pause ||
  488. (skge->flow_control == FLOW_MODE_LOC_SEND));
  489. ecmd->autoneg = ecmd->rx_pause || ecmd->tx_pause;
  490. }
  491. static int skge_set_pauseparam(struct net_device *dev,
  492. struct ethtool_pauseparam *ecmd)
  493. {
  494. struct skge_port *skge = netdev_priv(dev);
  495. struct ethtool_pauseparam old;
  496. int err = 0;
  497. skge_get_pauseparam(dev, &old);
  498. if (ecmd->autoneg != old.autoneg)
  499. skge->flow_control = ecmd->autoneg ? FLOW_MODE_NONE : FLOW_MODE_SYMMETRIC;
  500. else {
  501. if (ecmd->rx_pause && ecmd->tx_pause)
  502. skge->flow_control = FLOW_MODE_SYMMETRIC;
  503. else if (ecmd->rx_pause && !ecmd->tx_pause)
  504. skge->flow_control = FLOW_MODE_SYM_OR_REM;
  505. else if (!ecmd->rx_pause && ecmd->tx_pause)
  506. skge->flow_control = FLOW_MODE_LOC_SEND;
  507. else
  508. skge->flow_control = FLOW_MODE_NONE;
  509. }
  510. if (netif_running(dev)) {
  511. skge_down(dev);
  512. err = skge_up(dev);
  513. if (err) {
  514. dev_close(dev);
  515. return err;
  516. }
  517. }
  518. return 0;
  519. }
  520. /* Chip internal frequency for clock calculations */
  521. static inline u32 hwkhz(const struct skge_hw *hw)
  522. {
  523. return (hw->chip_id == CHIP_ID_GENESIS) ? 53125 : 78125;
  524. }
  525. /* Chip HZ to microseconds */
  526. static inline u32 skge_clk2usec(const struct skge_hw *hw, u32 ticks)
  527. {
  528. return (ticks * 1000) / hwkhz(hw);
  529. }
  530. /* Microseconds to chip HZ */
  531. static inline u32 skge_usecs2clk(const struct skge_hw *hw, u32 usec)
  532. {
  533. return hwkhz(hw) * usec / 1000;
  534. }
  535. static int skge_get_coalesce(struct net_device *dev,
  536. struct ethtool_coalesce *ecmd)
  537. {
  538. struct skge_port *skge = netdev_priv(dev);
  539. struct skge_hw *hw = skge->hw;
  540. int port = skge->port;
  541. ecmd->rx_coalesce_usecs = 0;
  542. ecmd->tx_coalesce_usecs = 0;
  543. if (skge_read32(hw, B2_IRQM_CTRL) & TIM_START) {
  544. u32 delay = skge_clk2usec(hw, skge_read32(hw, B2_IRQM_INI));
  545. u32 msk = skge_read32(hw, B2_IRQM_MSK);
  546. if (msk & rxirqmask[port])
  547. ecmd->rx_coalesce_usecs = delay;
  548. if (msk & txirqmask[port])
  549. ecmd->tx_coalesce_usecs = delay;
  550. }
  551. return 0;
  552. }
  553. /* Note: interrupt timer is per board, but can turn on/off per port */
  554. static int skge_set_coalesce(struct net_device *dev,
  555. struct ethtool_coalesce *ecmd)
  556. {
  557. struct skge_port *skge = netdev_priv(dev);
  558. struct skge_hw *hw = skge->hw;
  559. int port = skge->port;
  560. u32 msk = skge_read32(hw, B2_IRQM_MSK);
  561. u32 delay = 25;
  562. if (ecmd->rx_coalesce_usecs == 0)
  563. msk &= ~rxirqmask[port];
  564. else if (ecmd->rx_coalesce_usecs < 25 ||
  565. ecmd->rx_coalesce_usecs > 33333)
  566. return -EINVAL;
  567. else {
  568. msk |= rxirqmask[port];
  569. delay = ecmd->rx_coalesce_usecs;
  570. }
  571. if (ecmd->tx_coalesce_usecs == 0)
  572. msk &= ~txirqmask[port];
  573. else if (ecmd->tx_coalesce_usecs < 25 ||
  574. ecmd->tx_coalesce_usecs > 33333)
  575. return -EINVAL;
  576. else {
  577. msk |= txirqmask[port];
  578. delay = min(delay, ecmd->rx_coalesce_usecs);
  579. }
  580. skge_write32(hw, B2_IRQM_MSK, msk);
  581. if (msk == 0)
  582. skge_write32(hw, B2_IRQM_CTRL, TIM_STOP);
  583. else {
  584. skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, delay));
  585. skge_write32(hw, B2_IRQM_CTRL, TIM_START);
  586. }
  587. return 0;
  588. }
  589. enum led_mode { LED_MODE_OFF, LED_MODE_ON, LED_MODE_TST };
  590. static void skge_led(struct skge_port *skge, enum led_mode mode)
  591. {
  592. struct skge_hw *hw = skge->hw;
  593. int port = skge->port;
  594. spin_lock_bh(&hw->phy_lock);
  595. if (hw->chip_id == CHIP_ID_GENESIS) {
  596. switch (mode) {
  597. case LED_MODE_OFF:
  598. if (hw->phy_type == SK_PHY_BCOM)
  599. xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_OFF);
  600. else {
  601. skge_write32(hw, SK_REG(port, TX_LED_VAL), 0);
  602. skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_T_OFF);
  603. }
  604. skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_OFF);
  605. skge_write32(hw, SK_REG(port, RX_LED_VAL), 0);
  606. skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_T_OFF);
  607. break;
  608. case LED_MODE_ON:
  609. skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_ON);
  610. skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_LINKSYNC_ON);
  611. skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
  612. skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
  613. break;
  614. case LED_MODE_TST:
  615. skge_write8(hw, SK_REG(port, RX_LED_TST), LED_T_ON);
  616. skge_write32(hw, SK_REG(port, RX_LED_VAL), 100);
  617. skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
  618. if (hw->phy_type == SK_PHY_BCOM)
  619. xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_ON);
  620. else {
  621. skge_write8(hw, SK_REG(port, TX_LED_TST), LED_T_ON);
  622. skge_write32(hw, SK_REG(port, TX_LED_VAL), 100);
  623. skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
  624. }
  625. }
  626. } else {
  627. switch (mode) {
  628. case LED_MODE_OFF:
  629. gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
  630. gm_phy_write(hw, port, PHY_MARV_LED_OVER,
  631. PHY_M_LED_MO_DUP(MO_LED_OFF) |
  632. PHY_M_LED_MO_10(MO_LED_OFF) |
  633. PHY_M_LED_MO_100(MO_LED_OFF) |
  634. PHY_M_LED_MO_1000(MO_LED_OFF) |
  635. PHY_M_LED_MO_RX(MO_LED_OFF));
  636. break;
  637. case LED_MODE_ON:
  638. gm_phy_write(hw, port, PHY_MARV_LED_CTRL,
  639. PHY_M_LED_PULS_DUR(PULS_170MS) |
  640. PHY_M_LED_BLINK_RT(BLINK_84MS) |
  641. PHY_M_LEDC_TX_CTRL |
  642. PHY_M_LEDC_DP_CTRL);
  643. gm_phy_write(hw, port, PHY_MARV_LED_OVER,
  644. PHY_M_LED_MO_RX(MO_LED_OFF) |
  645. (skge->speed == SPEED_100 ?
  646. PHY_M_LED_MO_100(MO_LED_ON) : 0));
  647. break;
  648. case LED_MODE_TST:
  649. gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
  650. gm_phy_write(hw, port, PHY_MARV_LED_OVER,
  651. PHY_M_LED_MO_DUP(MO_LED_ON) |
  652. PHY_M_LED_MO_10(MO_LED_ON) |
  653. PHY_M_LED_MO_100(MO_LED_ON) |
  654. PHY_M_LED_MO_1000(MO_LED_ON) |
  655. PHY_M_LED_MO_RX(MO_LED_ON));
  656. }
  657. }
  658. spin_unlock_bh(&hw->phy_lock);
  659. }
  660. /* blink LED's for finding board */
  661. static int skge_set_phys_id(struct net_device *dev,
  662. enum ethtool_phys_id_state state)
  663. {
  664. struct skge_port *skge = netdev_priv(dev);
  665. switch (state) {
  666. case ETHTOOL_ID_ACTIVE:
  667. return -EINVAL;
  668. case ETHTOOL_ID_ON:
  669. skge_led(skge, LED_MODE_TST);
  670. break;
  671. case ETHTOOL_ID_OFF:
  672. skge_led(skge, LED_MODE_OFF);
  673. break;
  674. case ETHTOOL_ID_INACTIVE:
  675. /* back to regular LED state */
  676. skge_led(skge, netif_running(dev) ? LED_MODE_ON : LED_MODE_OFF);
  677. }
  678. return 0;
  679. }
  680. static int skge_get_eeprom_len(struct net_device *dev)
  681. {
  682. struct skge_port *skge = netdev_priv(dev);
  683. u32 reg2;
  684. pci_read_config_dword(skge->hw->pdev, PCI_DEV_REG2, &reg2);
  685. return 1 << (((reg2 & PCI_VPD_ROM_SZ) >> 14) + 8);
  686. }
  687. static u32 skge_vpd_read(struct pci_dev *pdev, int cap, u16 offset)
  688. {
  689. u32 val;
  690. pci_write_config_word(pdev, cap + PCI_VPD_ADDR, offset);
  691. do {
  692. pci_read_config_word(pdev, cap + PCI_VPD_ADDR, &offset);
  693. } while (!(offset & PCI_VPD_ADDR_F));
  694. pci_read_config_dword(pdev, cap + PCI_VPD_DATA, &val);
  695. return val;
  696. }
  697. static void skge_vpd_write(struct pci_dev *pdev, int cap, u16 offset, u32 val)
  698. {
  699. pci_write_config_dword(pdev, cap + PCI_VPD_DATA, val);
  700. pci_write_config_word(pdev, cap + PCI_VPD_ADDR,
  701. offset | PCI_VPD_ADDR_F);
  702. do {
  703. pci_read_config_word(pdev, cap + PCI_VPD_ADDR, &offset);
  704. } while (offset & PCI_VPD_ADDR_F);
  705. }
  706. static int skge_get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
  707. u8 *data)
  708. {
  709. struct skge_port *skge = netdev_priv(dev);
  710. struct pci_dev *pdev = skge->hw->pdev;
  711. int cap = pci_find_capability(pdev, PCI_CAP_ID_VPD);
  712. int length = eeprom->len;
  713. u16 offset = eeprom->offset;
  714. if (!cap)
  715. return -EINVAL;
  716. eeprom->magic = SKGE_EEPROM_MAGIC;
  717. while (length > 0) {
  718. u32 val = skge_vpd_read(pdev, cap, offset);
  719. int n = min_t(int, length, sizeof(val));
  720. memcpy(data, &val, n);
  721. length -= n;
  722. data += n;
  723. offset += n;
  724. }
  725. return 0;
  726. }
  727. static int skge_set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
  728. u8 *data)
  729. {
  730. struct skge_port *skge = netdev_priv(dev);
  731. struct pci_dev *pdev = skge->hw->pdev;
  732. int cap = pci_find_capability(pdev, PCI_CAP_ID_VPD);
  733. int length = eeprom->len;
  734. u16 offset = eeprom->offset;
  735. if (!cap)
  736. return -EINVAL;
  737. if (eeprom->magic != SKGE_EEPROM_MAGIC)
  738. return -EINVAL;
  739. while (length > 0) {
  740. u32 val;
  741. int n = min_t(int, length, sizeof(val));
  742. if (n < sizeof(val))
  743. val = skge_vpd_read(pdev, cap, offset);
  744. memcpy(&val, data, n);
  745. skge_vpd_write(pdev, cap, offset, val);
  746. length -= n;
  747. data += n;
  748. offset += n;
  749. }
  750. return 0;
  751. }
  752. static const struct ethtool_ops skge_ethtool_ops = {
  753. .get_settings = skge_get_settings,
  754. .set_settings = skge_set_settings,
  755. .get_drvinfo = skge_get_drvinfo,
  756. .get_regs_len = skge_get_regs_len,
  757. .get_regs = skge_get_regs,
  758. .get_wol = skge_get_wol,
  759. .set_wol = skge_set_wol,
  760. .get_msglevel = skge_get_msglevel,
  761. .set_msglevel = skge_set_msglevel,
  762. .nway_reset = skge_nway_reset,
  763. .get_link = ethtool_op_get_link,
  764. .get_eeprom_len = skge_get_eeprom_len,
  765. .get_eeprom = skge_get_eeprom,
  766. .set_eeprom = skge_set_eeprom,
  767. .get_ringparam = skge_get_ring_param,
  768. .set_ringparam = skge_set_ring_param,
  769. .get_pauseparam = skge_get_pauseparam,
  770. .set_pauseparam = skge_set_pauseparam,
  771. .get_coalesce = skge_get_coalesce,
  772. .set_coalesce = skge_set_coalesce,
  773. .set_sg = skge_set_sg,
  774. .set_tx_csum = skge_set_tx_csum,
  775. .get_rx_csum = skge_get_rx_csum,
  776. .set_rx_csum = skge_set_rx_csum,
  777. .get_strings = skge_get_strings,
  778. .set_phys_id = skge_set_phys_id,
  779. .get_sset_count = skge_get_sset_count,
  780. .get_ethtool_stats = skge_get_ethtool_stats,
  781. };
  782. /*
  783. * Allocate ring elements and chain them together
  784. * One-to-one association of board descriptors with ring elements
  785. */
  786. static int skge_ring_alloc(struct skge_ring *ring, void *vaddr, u32 base)
  787. {
  788. struct skge_tx_desc *d;
  789. struct skge_element *e;
  790. int i;
  791. ring->start = kcalloc(ring->count, sizeof(*e), GFP_KERNEL);
  792. if (!ring->start)
  793. return -ENOMEM;
  794. for (i = 0, e = ring->start, d = vaddr; i < ring->count; i++, e++, d++) {
  795. e->desc = d;
  796. if (i == ring->count - 1) {
  797. e->next = ring->start;
  798. d->next_offset = base;
  799. } else {
  800. e->next = e + 1;
  801. d->next_offset = base + (i+1) * sizeof(*d);
  802. }
  803. }
  804. ring->to_use = ring->to_clean = ring->start;
  805. return 0;
  806. }
  807. /* Allocate and setup a new buffer for receiving */
  808. static void skge_rx_setup(struct skge_port *skge, struct skge_element *e,
  809. struct sk_buff *skb, unsigned int bufsize)
  810. {
  811. struct skge_rx_desc *rd = e->desc;
  812. u64 map;
  813. map = pci_map_single(skge->hw->pdev, skb->data, bufsize,
  814. PCI_DMA_FROMDEVICE);
  815. rd->dma_lo = map;
  816. rd->dma_hi = map >> 32;
  817. e->skb = skb;
  818. rd->csum1_start = ETH_HLEN;
  819. rd->csum2_start = ETH_HLEN;
  820. rd->csum1 = 0;
  821. rd->csum2 = 0;
  822. wmb();
  823. rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | bufsize;
  824. dma_unmap_addr_set(e, mapaddr, map);
  825. dma_unmap_len_set(e, maplen, bufsize);
  826. }
  827. /* Resume receiving using existing skb,
  828. * Note: DMA address is not changed by chip.
  829. * MTU not changed while receiver active.
  830. */
  831. static inline void skge_rx_reuse(struct skge_element *e, unsigned int size)
  832. {
  833. struct skge_rx_desc *rd = e->desc;
  834. rd->csum2 = 0;
  835. rd->csum2_start = ETH_HLEN;
  836. wmb();
  837. rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | size;
  838. }
  839. /* Free all buffers in receive ring, assumes receiver stopped */
  840. static void skge_rx_clean(struct skge_port *skge)
  841. {
  842. struct skge_hw *hw = skge->hw;
  843. struct skge_ring *ring = &skge->rx_ring;
  844. struct skge_element *e;
  845. e = ring->start;
  846. do {
  847. struct skge_rx_desc *rd = e->desc;
  848. rd->control = 0;
  849. if (e->skb) {
  850. pci_unmap_single(hw->pdev,
  851. dma_unmap_addr(e, mapaddr),
  852. dma_unmap_len(e, maplen),
  853. PCI_DMA_FROMDEVICE);
  854. dev_kfree_skb(e->skb);
  855. e->skb = NULL;
  856. }
  857. } while ((e = e->next) != ring->start);
  858. }
  859. /* Allocate buffers for receive ring
  860. * For receive: to_clean is next received frame.
  861. */
  862. static int skge_rx_fill(struct net_device *dev)
  863. {
  864. struct skge_port *skge = netdev_priv(dev);
  865. struct skge_ring *ring = &skge->rx_ring;
  866. struct skge_element *e;
  867. e = ring->start;
  868. do {
  869. struct sk_buff *skb;
  870. skb = __netdev_alloc_skb(dev, skge->rx_buf_size + NET_IP_ALIGN,
  871. GFP_KERNEL);
  872. if (!skb)
  873. return -ENOMEM;
  874. skb_reserve(skb, NET_IP_ALIGN);
  875. skge_rx_setup(skge, e, skb, skge->rx_buf_size);
  876. } while ((e = e->next) != ring->start);
  877. ring->to_clean = ring->start;
  878. return 0;
  879. }
  880. static const char *skge_pause(enum pause_status status)
  881. {
  882. switch (status) {
  883. case FLOW_STAT_NONE:
  884. return "none";
  885. case FLOW_STAT_REM_SEND:
  886. return "rx only";
  887. case FLOW_STAT_LOC_SEND:
  888. return "tx_only";
  889. case FLOW_STAT_SYMMETRIC: /* Both station may send PAUSE */
  890. return "both";
  891. default:
  892. return "indeterminated";
  893. }
  894. }
  895. static void skge_link_up(struct skge_port *skge)
  896. {
  897. skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG),
  898. LED_BLK_OFF|LED_SYNC_OFF|LED_ON);
  899. netif_carrier_on(skge->netdev);
  900. netif_wake_queue(skge->netdev);
  901. netif_info(skge, link, skge->netdev,
  902. "Link is up at %d Mbps, %s duplex, flow control %s\n",
  903. skge->speed,
  904. skge->duplex == DUPLEX_FULL ? "full" : "half",
  905. skge_pause(skge->flow_status));
  906. }
  907. static void skge_link_down(struct skge_port *skge)
  908. {
  909. skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_OFF);
  910. netif_carrier_off(skge->netdev);
  911. netif_stop_queue(skge->netdev);
  912. netif_info(skge, link, skge->netdev, "Link is down\n");
  913. }
  914. static void xm_link_down(struct skge_hw *hw, int port)
  915. {
  916. struct net_device *dev = hw->dev[port];
  917. struct skge_port *skge = netdev_priv(dev);
  918. xm_write16(hw, port, XM_IMSK, XM_IMSK_DISABLE);
  919. if (netif_carrier_ok(dev))
  920. skge_link_down(skge);
  921. }
  922. static int __xm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
  923. {
  924. int i;
  925. xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
  926. *val = xm_read16(hw, port, XM_PHY_DATA);
  927. if (hw->phy_type == SK_PHY_XMAC)
  928. goto ready;
  929. for (i = 0; i < PHY_RETRIES; i++) {
  930. if (xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_RDY)
  931. goto ready;
  932. udelay(1);
  933. }
  934. return -ETIMEDOUT;
  935. ready:
  936. *val = xm_read16(hw, port, XM_PHY_DATA);
  937. return 0;
  938. }
  939. static u16 xm_phy_read(struct skge_hw *hw, int port, u16 reg)
  940. {
  941. u16 v = 0;
  942. if (__xm_phy_read(hw, port, reg, &v))
  943. pr_warning("%s: phy read timed out\n", hw->dev[port]->name);
  944. return v;
  945. }
  946. static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
  947. {
  948. int i;
  949. xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
  950. for (i = 0; i < PHY_RETRIES; i++) {
  951. if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
  952. goto ready;
  953. udelay(1);
  954. }
  955. return -EIO;
  956. ready:
  957. xm_write16(hw, port, XM_PHY_DATA, val);
  958. for (i = 0; i < PHY_RETRIES; i++) {
  959. if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
  960. return 0;
  961. udelay(1);
  962. }
  963. return -ETIMEDOUT;
  964. }
  965. static void genesis_init(struct skge_hw *hw)
  966. {
  967. /* set blink source counter */
  968. skge_write32(hw, B2_BSC_INI, (SK_BLK_DUR * SK_FACT_53) / 100);
  969. skge_write8(hw, B2_BSC_CTRL, BSC_START);
  970. /* configure mac arbiter */
  971. skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
  972. /* configure mac arbiter timeout values */
  973. skge_write8(hw, B3_MA_TOINI_RX1, SK_MAC_TO_53);
  974. skge_write8(hw, B3_MA_TOINI_RX2, SK_MAC_TO_53);
  975. skge_write8(hw, B3_MA_TOINI_TX1, SK_MAC_TO_53);
  976. skge_write8(hw, B3_MA_TOINI_TX2, SK_MAC_TO_53);
  977. skge_write8(hw, B3_MA_RCINI_RX1, 0);
  978. skge_write8(hw, B3_MA_RCINI_RX2, 0);
  979. skge_write8(hw, B3_MA_RCINI_TX1, 0);
  980. skge_write8(hw, B3_MA_RCINI_TX2, 0);
  981. /* configure packet arbiter timeout */
  982. skge_write16(hw, B3_PA_CTRL, PA_RST_CLR);
  983. skge_write16(hw, B3_PA_TOINI_RX1, SK_PKT_TO_MAX);
  984. skge_write16(hw, B3_PA_TOINI_TX1, SK_PKT_TO_MAX);
  985. skge_write16(hw, B3_PA_TOINI_RX2, SK_PKT_TO_MAX);
  986. skge_write16(hw, B3_PA_TOINI_TX2, SK_PKT_TO_MAX);
  987. }
  988. static void genesis_reset(struct skge_hw *hw, int port)
  989. {
  990. static const u8 zero[8] = { 0 };
  991. u32 reg;
  992. skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
  993. /* reset the statistics module */
  994. xm_write32(hw, port, XM_GP_PORT, XM_GP_RES_STAT);
  995. xm_write16(hw, port, XM_IMSK, XM_IMSK_DISABLE);
  996. xm_write32(hw, port, XM_MODE, 0); /* clear Mode Reg */
  997. xm_write16(hw, port, XM_TX_CMD, 0); /* reset TX CMD Reg */
  998. xm_write16(hw, port, XM_RX_CMD, 0); /* reset RX CMD Reg */
  999. /* disable Broadcom PHY IRQ */
  1000. if (hw->phy_type == SK_PHY_BCOM)
  1001. xm_write16(hw, port, PHY_BCOM_INT_MASK, 0xffff);
  1002. xm_outhash(hw, port, XM_HSM, zero);
  1003. /* Flush TX and RX fifo */
  1004. reg = xm_read32(hw, port, XM_MODE);
  1005. xm_write32(hw, port, XM_MODE, reg | XM_MD_FTF);
  1006. xm_write32(hw, port, XM_MODE, reg | XM_MD_FRF);
  1007. }
  1008. /* Convert mode to MII values */
  1009. static const u16 phy_pause_map[] = {
  1010. [FLOW_MODE_NONE] = 0,
  1011. [FLOW_MODE_LOC_SEND] = PHY_AN_PAUSE_ASYM,
  1012. [FLOW_MODE_SYMMETRIC] = PHY_AN_PAUSE_CAP,
  1013. [FLOW_MODE_SYM_OR_REM] = PHY_AN_PAUSE_CAP | PHY_AN_PAUSE_ASYM,
  1014. };
  1015. /* special defines for FIBER (88E1011S only) */
  1016. static const u16 fiber_pause_map[] = {
  1017. [FLOW_MODE_NONE] = PHY_X_P_NO_PAUSE,
  1018. [FLOW_MODE_LOC_SEND] = PHY_X_P_ASYM_MD,
  1019. [FLOW_MODE_SYMMETRIC] = PHY_X_P_SYM_MD,
  1020. [FLOW_MODE_SYM_OR_REM] = PHY_X_P_BOTH_MD,
  1021. };
  1022. /* Check status of Broadcom phy link */
  1023. static void bcom_check_link(struct skge_hw *hw, int port)
  1024. {
  1025. struct net_device *dev = hw->dev[port];
  1026. struct skge_port *skge = netdev_priv(dev);
  1027. u16 status;
  1028. /* read twice because of latch */
  1029. xm_phy_read(hw, port, PHY_BCOM_STAT);
  1030. status = xm_phy_read(hw, port, PHY_BCOM_STAT);
  1031. if ((status & PHY_ST_LSYNC) == 0) {
  1032. xm_link_down(hw, port);
  1033. return;
  1034. }
  1035. if (skge->autoneg == AUTONEG_ENABLE) {
  1036. u16 lpa, aux;
  1037. if (!(status & PHY_ST_AN_OVER))
  1038. return;
  1039. lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP);
  1040. if (lpa & PHY_B_AN_RF) {
  1041. netdev_notice(dev, "remote fault\n");
  1042. return;
  1043. }
  1044. aux = xm_phy_read(hw, port, PHY_BCOM_AUX_STAT);
  1045. /* Check Duplex mismatch */
  1046. switch (aux & PHY_B_AS_AN_RES_MSK) {
  1047. case PHY_B_RES_1000FD:
  1048. skge->duplex = DUPLEX_FULL;
  1049. break;
  1050. case PHY_B_RES_1000HD:
  1051. skge->duplex = DUPLEX_HALF;
  1052. break;
  1053. default:
  1054. netdev_notice(dev, "duplex mismatch\n");
  1055. return;
  1056. }
  1057. /* We are using IEEE 802.3z/D5.0 Table 37-4 */
  1058. switch (aux & PHY_B_AS_PAUSE_MSK) {
  1059. case PHY_B_AS_PAUSE_MSK:
  1060. skge->flow_status = FLOW_STAT_SYMMETRIC;
  1061. break;
  1062. case PHY_B_AS_PRR:
  1063. skge->flow_status = FLOW_STAT_REM_SEND;
  1064. break;
  1065. case PHY_B_AS_PRT:
  1066. skge->flow_status = FLOW_STAT_LOC_SEND;
  1067. break;
  1068. default:
  1069. skge->flow_status = FLOW_STAT_NONE;
  1070. }
  1071. skge->speed = SPEED_1000;
  1072. }
  1073. if (!netif_carrier_ok(dev))
  1074. genesis_link_up(skge);
  1075. }
  1076. /* Broadcom 5400 only supports giagabit! SysKonnect did not put an additional
  1077. * Phy on for 100 or 10Mbit operation
  1078. */
  1079. static void bcom_phy_init(struct skge_port *skge)
  1080. {
  1081. struct skge_hw *hw = skge->hw;
  1082. int port = skge->port;
  1083. int i;
  1084. u16 id1, r, ext, ctl;
  1085. /* magic workaround patterns for Broadcom */
  1086. static const struct {
  1087. u16 reg;
  1088. u16 val;
  1089. } A1hack[] = {
  1090. { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 },
  1091. { 0x17, 0x0013 }, { 0x15, 0x0404 }, { 0x17, 0x8006 },
  1092. { 0x15, 0x0132 }, { 0x17, 0x8006 }, { 0x15, 0x0232 },
  1093. { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
  1094. }, C0hack[] = {
  1095. { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1204 },
  1096. { 0x17, 0x0013 }, { 0x15, 0x0A04 }, { 0x18, 0x0420 },
  1097. };
  1098. /* read Id from external PHY (all have the same address) */
  1099. id1 = xm_phy_read(hw, port, PHY_XMAC_ID1);
  1100. /* Optimize MDIO transfer by suppressing preamble. */
  1101. r = xm_read16(hw, port, XM_MMU_CMD);
  1102. r |= XM_MMU_NO_PRE;
  1103. xm_write16(hw, port, XM_MMU_CMD, r);
  1104. switch (id1) {
  1105. case PHY_BCOM_ID1_C0:
  1106. /*
  1107. * Workaround BCOM Errata for the C0 type.
  1108. * Write magic patterns to reserved registers.
  1109. */
  1110. for (i = 0; i < ARRAY_SIZE(C0hack); i++)
  1111. xm_phy_write(hw, port,
  1112. C0hack[i].reg, C0hack[i].val);
  1113. break;
  1114. case PHY_BCOM_ID1_A1:
  1115. /*
  1116. * Workaround BCOM Errata for the A1 type.
  1117. * Write magic patterns to reserved registers.
  1118. */
  1119. for (i = 0; i < ARRAY_SIZE(A1hack); i++)
  1120. xm_phy_write(hw, port,
  1121. A1hack[i].reg, A1hack[i].val);
  1122. break;
  1123. }
  1124. /*
  1125. * Workaround BCOM Errata (#10523) for all BCom PHYs.
  1126. * Disable Power Management after reset.
  1127. */
  1128. r = xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL);
  1129. r |= PHY_B_AC_DIS_PM;
  1130. xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL, r);
  1131. /* Dummy read */
  1132. xm_read16(hw, port, XM_ISRC);
  1133. ext = PHY_B_PEC_EN_LTR; /* enable tx led */
  1134. ctl = PHY_CT_SP1000; /* always 1000mbit */
  1135. if (skge->autoneg == AUTONEG_ENABLE) {
  1136. /*
  1137. * Workaround BCOM Errata #1 for the C5 type.
  1138. * 1000Base-T Link Acquisition Failure in Slave Mode
  1139. * Set Repeater/DTE bit 10 of the 1000Base-T Control Register
  1140. */
  1141. u16 adv = PHY_B_1000C_RD;
  1142. if (skge->advertising & ADVERTISED_1000baseT_Half)
  1143. adv |= PHY_B_1000C_AHD;
  1144. if (skge->advertising & ADVERTISED_1000baseT_Full)
  1145. adv |= PHY_B_1000C_AFD;
  1146. xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, adv);
  1147. ctl |= PHY_CT_ANE | PHY_CT_RE_CFG;
  1148. } else {
  1149. if (skge->duplex == DUPLEX_FULL)
  1150. ctl |= PHY_CT_DUP_MD;
  1151. /* Force to slave */
  1152. xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, PHY_B_1000C_MSE);
  1153. }
  1154. /* Set autonegotiation pause parameters */
  1155. xm_phy_write(hw, port, PHY_BCOM_AUNE_ADV,
  1156. phy_pause_map[skge->flow_control] | PHY_AN_CSMA);
  1157. /* Handle Jumbo frames */
  1158. if (hw->dev[port]->mtu > ETH_DATA_LEN) {
  1159. xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
  1160. PHY_B_AC_TX_TST | PHY_B_AC_LONG_PACK);
  1161. ext |= PHY_B_PEC_HIGH_LA;
  1162. }
  1163. xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, ext);
  1164. xm_phy_write(hw, port, PHY_BCOM_CTRL, ctl);
  1165. /* Use link status change interrupt */
  1166. xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
  1167. }
  1168. static void xm_phy_init(struct skge_port *skge)
  1169. {
  1170. struct skge_hw *hw = skge->hw;
  1171. int port = skge->port;
  1172. u16 ctrl = 0;
  1173. if (skge->autoneg == AUTONEG_ENABLE) {
  1174. if (skge->advertising & ADVERTISED_1000baseT_Half)
  1175. ctrl |= PHY_X_AN_HD;
  1176. if (skge->advertising & ADVERTISED_1000baseT_Full)
  1177. ctrl |= PHY_X_AN_FD;
  1178. ctrl |= fiber_pause_map[skge->flow_control];
  1179. xm_phy_write(hw, port, PHY_XMAC_AUNE_ADV, ctrl);
  1180. /* Restart Auto-negotiation */
  1181. ctrl = PHY_CT_ANE | PHY_CT_RE_CFG;
  1182. } else {
  1183. /* Set DuplexMode in Config register */
  1184. if (skge->duplex == DUPLEX_FULL)
  1185. ctrl |= PHY_CT_DUP_MD;
  1186. /*
  1187. * Do NOT enable Auto-negotiation here. This would hold
  1188. * the link down because no IDLEs are transmitted
  1189. */
  1190. }
  1191. xm_phy_write(hw, port, PHY_XMAC_CTRL, ctrl);
  1192. /* Poll PHY for status changes */
  1193. mod_timer(&skge->link_timer, jiffies + LINK_HZ);
  1194. }
  1195. static int xm_check_link(struct net_device *dev)
  1196. {
  1197. struct skge_port *skge = netdev_priv(dev);
  1198. struct skge_hw *hw = skge->hw;
  1199. int port = skge->port;
  1200. u16 status;
  1201. /* read twice because of latch */
  1202. xm_phy_read(hw, port, PHY_XMAC_STAT);
  1203. status = xm_phy_read(hw, port, PHY_XMAC_STAT);
  1204. if ((status & PHY_ST_LSYNC) == 0) {
  1205. xm_link_down(hw, port);
  1206. return 0;
  1207. }
  1208. if (skge->autoneg == AUTONEG_ENABLE) {
  1209. u16 lpa, res;
  1210. if (!(status & PHY_ST_AN_OVER))
  1211. return 0;
  1212. lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP);
  1213. if (lpa & PHY_B_AN_RF) {
  1214. netdev_notice(dev, "remote fault\n");
  1215. return 0;
  1216. }
  1217. res = xm_phy_read(hw, port, PHY_XMAC_RES_ABI);
  1218. /* Check Duplex mismatch */
  1219. switch (res & (PHY_X_RS_HD | PHY_X_RS_FD)) {
  1220. case PHY_X_RS_FD:
  1221. skge->duplex = DUPLEX_FULL;
  1222. break;
  1223. case PHY_X_RS_HD:
  1224. skge->duplex = DUPLEX_HALF;
  1225. break;
  1226. default:
  1227. netdev_notice(dev, "duplex mismatch\n");
  1228. return 0;
  1229. }
  1230. /* We are using IEEE 802.3z/D5.0 Table 37-4 */
  1231. if ((skge->flow_control == FLOW_MODE_SYMMETRIC ||
  1232. skge->flow_control == FLOW_MODE_SYM_OR_REM) &&
  1233. (lpa & PHY_X_P_SYM_MD))
  1234. skge->flow_status = FLOW_STAT_SYMMETRIC;
  1235. else if (skge->flow_control == FLOW_MODE_SYM_OR_REM &&
  1236. (lpa & PHY_X_RS_PAUSE) == PHY_X_P_ASYM_MD)
  1237. /* Enable PAUSE receive, disable PAUSE transmit */
  1238. skge->flow_status = FLOW_STAT_REM_SEND;
  1239. else if (skge->flow_control == FLOW_MODE_LOC_SEND &&
  1240. (lpa & PHY_X_RS_PAUSE) == PHY_X_P_BOTH_MD)
  1241. /* Disable PAUSE receive, enable PAUSE transmit */
  1242. skge->flow_status = FLOW_STAT_LOC_SEND;
  1243. else
  1244. skge->flow_status = FLOW_STAT_NONE;
  1245. skge->speed = SPEED_1000;
  1246. }
  1247. if (!netif_carrier_ok(dev))
  1248. genesis_link_up(skge);
  1249. return 1;
  1250. }
  1251. /* Poll to check for link coming up.
  1252. *
  1253. * Since internal PHY is wired to a level triggered pin, can't
  1254. * get an interrupt when carrier is detected, need to poll for
  1255. * link coming up.
  1256. */
  1257. static void xm_link_timer(unsigned long arg)
  1258. {
  1259. struct skge_port *skge = (struct skge_port *) arg;
  1260. struct net_device *dev = skge->netdev;
  1261. struct skge_hw *hw = skge->hw;
  1262. int port = skge->port;
  1263. int i;
  1264. unsigned long flags;
  1265. if (!netif_running(dev))
  1266. return;
  1267. spin_lock_irqsave(&hw->phy_lock, flags);
  1268. /*
  1269. * Verify that the link by checking GPIO register three times.
  1270. * This pin has the signal from the link_sync pin connected to it.
  1271. */
  1272. for (i = 0; i < 3; i++) {
  1273. if (xm_read16(hw, port, XM_GP_PORT) & XM_GP_INP_ASS)
  1274. goto link_down;
  1275. }
  1276. /* Re-enable interrupt to detect link down */
  1277. if (xm_check_link(dev)) {
  1278. u16 msk = xm_read16(hw, port, XM_IMSK);
  1279. msk &= ~XM_IS_INP_ASS;
  1280. xm_write16(hw, port, XM_IMSK, msk);
  1281. xm_read16(hw, port, XM_ISRC);
  1282. } else {
  1283. link_down:
  1284. mod_timer(&skge->link_timer,
  1285. round_jiffies(jiffies + LINK_HZ));
  1286. }
  1287. spin_unlock_irqrestore(&hw->phy_lock, flags);
  1288. }
  1289. static void genesis_mac_init(struct skge_hw *hw, int port)
  1290. {
  1291. struct net_device *dev = hw->dev[port];
  1292. struct skge_port *skge = netdev_priv(dev);
  1293. int jumbo = hw->dev[port]->mtu > ETH_DATA_LEN;
  1294. int i;
  1295. u32 r;
  1296. static const u8 zero[6] = { 0 };
  1297. for (i = 0; i < 10; i++) {
  1298. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
  1299. MFF_SET_MAC_RST);
  1300. if (skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST)
  1301. goto reset_ok;
  1302. udelay(1);
  1303. }
  1304. netdev_warn(dev, "genesis reset failed\n");
  1305. reset_ok:
  1306. /* Unreset the XMAC. */
  1307. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
  1308. /*
  1309. * Perform additional initialization for external PHYs,
  1310. * namely for the 1000baseTX cards that use the XMAC's
  1311. * GMII mode.
  1312. */
  1313. if (hw->phy_type != SK_PHY_XMAC) {
  1314. /* Take external Phy out of reset */
  1315. r = skge_read32(hw, B2_GP_IO);
  1316. if (port == 0)
  1317. r |= GP_DIR_0|GP_IO_0;
  1318. else
  1319. r |= GP_DIR_2|GP_IO_2;
  1320. skge_write32(hw, B2_GP_IO, r);
  1321. /* Enable GMII interface */
  1322. xm_write16(hw, port, XM_HW_CFG, XM_HW_GMII_MD);
  1323. }
  1324. switch (hw->phy_type) {
  1325. case SK_PHY_XMAC:
  1326. xm_phy_init(skge);
  1327. break;
  1328. case SK_PHY_BCOM:
  1329. bcom_phy_init(skge);
  1330. bcom_check_link(hw, port);
  1331. }
  1332. /* Set Station Address */
  1333. xm_outaddr(hw, port, XM_SA, dev->dev_addr);
  1334. /* We don't use match addresses so clear */
  1335. for (i = 1; i < 16; i++)
  1336. xm_outaddr(hw, port, XM_EXM(i), zero);
  1337. /* Clear MIB counters */
  1338. xm_write16(hw, port, XM_STAT_CMD,
  1339. XM_SC_CLR_RXC | XM_SC_CLR_TXC);
  1340. /* Clear two times according to Errata #3 */
  1341. xm_write16(hw, port, XM_STAT_CMD,
  1342. XM_SC_CLR_RXC | XM_SC_CLR_TXC);
  1343. /* configure Rx High Water Mark (XM_RX_HI_WM) */
  1344. xm_write16(hw, port, XM_RX_HI_WM, 1450);
  1345. /* We don't need the FCS appended to the packet. */
  1346. r = XM_RX_LENERR_OK | XM_RX_STRIP_FCS;
  1347. if (jumbo)
  1348. r |= XM_RX_BIG_PK_OK;
  1349. if (skge->duplex == DUPLEX_HALF) {
  1350. /*
  1351. * If in manual half duplex mode the other side might be in
  1352. * full duplex mode, so ignore if a carrier extension is not seen
  1353. * on frames received
  1354. */
  1355. r |= XM_RX_DIS_CEXT;
  1356. }
  1357. xm_write16(hw, port, XM_RX_CMD, r);
  1358. /* We want short frames padded to 60 bytes. */
  1359. xm_write16(hw, port, XM_TX_CMD, XM_TX_AUTO_PAD);
  1360. /* Increase threshold for jumbo frames on dual port */
  1361. if (hw->ports > 1 && jumbo)
  1362. xm_write16(hw, port, XM_TX_THR, 1020);
  1363. else
  1364. xm_write16(hw, port, XM_TX_THR, 512);
  1365. /*
  1366. * Enable the reception of all error frames. This is is
  1367. * a necessary evil due to the design of the XMAC. The
  1368. * XMAC's receive FIFO is only 8K in size, however jumbo
  1369. * frames can be up to 9000 bytes in length. When bad
  1370. * frame filtering is enabled, the XMAC's RX FIFO operates
  1371. * in 'store and forward' mode. For this to work, the
  1372. * entire frame has to fit into the FIFO, but that means
  1373. * that jumbo frames larger than 8192 bytes will be
  1374. * truncated. Disabling all bad frame filtering causes
  1375. * the RX FIFO to operate in streaming mode, in which
  1376. * case the XMAC will start transferring frames out of the
  1377. * RX FIFO as soon as the FIFO threshold is reached.
  1378. */
  1379. xm_write32(hw, port, XM_MODE, XM_DEF_MODE);
  1380. /*
  1381. * Initialize the Receive Counter Event Mask (XM_RX_EV_MSK)
  1382. * - Enable all bits excepting 'Octets Rx OK Low CntOv'
  1383. * and 'Octets Rx OK Hi Cnt Ov'.
  1384. */
  1385. xm_write32(hw, port, XM_RX_EV_MSK, XMR_DEF_MSK);
  1386. /*
  1387. * Initialize the Transmit Counter Event Mask (XM_TX_EV_MSK)
  1388. * - Enable all bits excepting 'Octets Tx OK Low CntOv'
  1389. * and 'Octets Tx OK Hi Cnt Ov'.
  1390. */
  1391. xm_write32(hw, port, XM_TX_EV_MSK, XMT_DEF_MSK);
  1392. /* Configure MAC arbiter */
  1393. skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
  1394. /* configure timeout values */
  1395. skge_write8(hw, B3_MA_TOINI_RX1, 72);
  1396. skge_write8(hw, B3_MA_TOINI_RX2, 72);
  1397. skge_write8(hw, B3_MA_TOINI_TX1, 72);
  1398. skge_write8(hw, B3_MA_TOINI_TX2, 72);
  1399. skge_write8(hw, B3_MA_RCINI_RX1, 0);
  1400. skge_write8(hw, B3_MA_RCINI_RX2, 0);
  1401. skge_write8(hw, B3_MA_RCINI_TX1, 0);
  1402. skge_write8(hw, B3_MA_RCINI_TX2, 0);
  1403. /* Configure Rx MAC FIFO */
  1404. skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_CLR);
  1405. skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_TIM_PAT);
  1406. skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_ENA_OP_MD);
  1407. /* Configure Tx MAC FIFO */
  1408. skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_CLR);
  1409. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_TX_CTRL_DEF);
  1410. skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_ENA_OP_MD);
  1411. if (jumbo) {
  1412. /* Enable frame flushing if jumbo frames used */
  1413. skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_FLUSH);
  1414. } else {
  1415. /* enable timeout timers if normal frames */
  1416. skge_write16(hw, B3_PA_CTRL,
  1417. (port == 0) ? PA_ENA_TO_TX1 : PA_ENA_TO_TX2);
  1418. }
  1419. }
  1420. static void genesis_stop(struct skge_port *skge)
  1421. {
  1422. struct skge_hw *hw = skge->hw;
  1423. int port = skge->port;
  1424. unsigned retries = 1000;
  1425. u16 cmd;
  1426. /* Disable Tx and Rx */
  1427. cmd = xm_read16(hw, port, XM_MMU_CMD);
  1428. cmd &= ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX);
  1429. xm_write16(hw, port, XM_MMU_CMD, cmd);
  1430. genesis_reset(hw, port);
  1431. /* Clear Tx packet arbiter timeout IRQ */
  1432. skge_write16(hw, B3_PA_CTRL,
  1433. port == 0 ? PA_CLR_TO_TX1 : PA_CLR_TO_TX2);
  1434. /* Reset the MAC */
  1435. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
  1436. do {
  1437. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_SET_MAC_RST);
  1438. if (!(skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST))
  1439. break;
  1440. } while (--retries > 0);
  1441. /* For external PHYs there must be special handling */
  1442. if (hw->phy_type != SK_PHY_XMAC) {
  1443. u32 reg = skge_read32(hw, B2_GP_IO);
  1444. if (port == 0) {
  1445. reg |= GP_DIR_0;
  1446. reg &= ~GP_IO_0;
  1447. } else {
  1448. reg |= GP_DIR_2;
  1449. reg &= ~GP_IO_2;
  1450. }
  1451. skge_write32(hw, B2_GP_IO, reg);
  1452. skge_read32(hw, B2_GP_IO);
  1453. }
  1454. xm_write16(hw, port, XM_MMU_CMD,
  1455. xm_read16(hw, port, XM_MMU_CMD)
  1456. & ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX));
  1457. xm_read16(hw, port, XM_MMU_CMD);
  1458. }
  1459. static void genesis_get_stats(struct skge_port *skge, u64 *data)
  1460. {
  1461. struct skge_hw *hw = skge->hw;
  1462. int port = skge->port;
  1463. int i;
  1464. unsigned long timeout = jiffies + HZ;
  1465. xm_write16(hw, port,
  1466. XM_STAT_CMD, XM_SC_SNP_TXC | XM_SC_SNP_RXC);
  1467. /* wait for update to complete */
  1468. while (xm_read16(hw, port, XM_STAT_CMD)
  1469. & (XM_SC_SNP_TXC | XM_SC_SNP_RXC)) {
  1470. if (time_after(jiffies, timeout))
  1471. break;
  1472. udelay(10);
  1473. }
  1474. /* special case for 64 bit octet counter */
  1475. data[0] = (u64) xm_read32(hw, port, XM_TXO_OK_HI) << 32
  1476. | xm_read32(hw, port, XM_TXO_OK_LO);
  1477. data[1] = (u64) xm_read32(hw, port, XM_RXO_OK_HI) << 32
  1478. | xm_read32(hw, port, XM_RXO_OK_LO);
  1479. for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
  1480. data[i] = xm_read32(hw, port, skge_stats[i].xmac_offset);
  1481. }
  1482. static void genesis_mac_intr(struct skge_hw *hw, int port)
  1483. {
  1484. struct net_device *dev = hw->dev[port];
  1485. struct skge_port *skge = netdev_priv(dev);
  1486. u16 status = xm_read16(hw, port, XM_ISRC);
  1487. netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
  1488. "mac interrupt status 0x%x\n", status);
  1489. if (hw->phy_type == SK_PHY_XMAC && (status & XM_IS_INP_ASS)) {
  1490. xm_link_down(hw, port);
  1491. mod_timer(&skge->link_timer, jiffies + 1);
  1492. }
  1493. if (status & XM_IS_TXF_UR) {
  1494. xm_write32(hw, port, XM_MODE, XM_MD_FTF);
  1495. ++dev->stats.tx_fifo_errors;
  1496. }
  1497. }
  1498. static void genesis_link_up(struct skge_port *skge)
  1499. {
  1500. struct skge_hw *hw = skge->hw;
  1501. int port = skge->port;
  1502. u16 cmd, msk;
  1503. u32 mode;
  1504. cmd = xm_read16(hw, port, XM_MMU_CMD);
  1505. /*
  1506. * enabling pause frame reception is required for 1000BT
  1507. * because the XMAC is not reset if the link is going down
  1508. */
  1509. if (skge->flow_status == FLOW_STAT_NONE ||
  1510. skge->flow_status == FLOW_STAT_LOC_SEND)
  1511. /* Disable Pause Frame Reception */
  1512. cmd |= XM_MMU_IGN_PF;
  1513. else
  1514. /* Enable Pause Frame Reception */
  1515. cmd &= ~XM_MMU_IGN_PF;
  1516. xm_write16(hw, port, XM_MMU_CMD, cmd);
  1517. mode = xm_read32(hw, port, XM_MODE);
  1518. if (skge->flow_status == FLOW_STAT_SYMMETRIC ||
  1519. skge->flow_status == FLOW_STAT_LOC_SEND) {
  1520. /*
  1521. * Configure Pause Frame Generation
  1522. * Use internal and external Pause Frame Generation.
  1523. * Sending pause frames is edge triggered.
  1524. * Send a Pause frame with the maximum pause time if
  1525. * internal oder external FIFO full condition occurs.
  1526. * Send a zero pause time frame to re-start transmission.
  1527. */
  1528. /* XM_PAUSE_DA = '010000C28001' (default) */
  1529. /* XM_MAC_PTIME = 0xffff (maximum) */
  1530. /* remember this value is defined in big endian (!) */
  1531. xm_write16(hw, port, XM_MAC_PTIME, 0xffff);
  1532. mode |= XM_PAUSE_MODE;
  1533. skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_PAUSE);
  1534. } else {
  1535. /*
  1536. * disable pause frame generation is required for 1000BT
  1537. * because the XMAC is not reset if the link is going down
  1538. */
  1539. /* Disable Pause Mode in Mode Register */
  1540. mode &= ~XM_PAUSE_MODE;
  1541. skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_DIS_PAUSE);
  1542. }
  1543. xm_write32(hw, port, XM_MODE, mode);
  1544. /* Turn on detection of Tx underrun */
  1545. msk = xm_read16(hw, port, XM_IMSK);
  1546. msk &= ~XM_IS_TXF_UR;
  1547. xm_write16(hw, port, XM_IMSK, msk);
  1548. xm_read16(hw, port, XM_ISRC);
  1549. /* get MMU Command Reg. */
  1550. cmd = xm_read16(hw, port, XM_MMU_CMD);
  1551. if (hw->phy_type != SK_PHY_XMAC && skge->duplex == DUPLEX_FULL)
  1552. cmd |= XM_MMU_GMII_FD;
  1553. /*
  1554. * Workaround BCOM Errata (#10523) for all BCom Phys
  1555. * Enable Power Management after link up
  1556. */
  1557. if (hw->phy_type == SK_PHY_BCOM) {
  1558. xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
  1559. xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL)
  1560. & ~PHY_B_AC_DIS_PM);
  1561. xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
  1562. }
  1563. /* enable Rx/Tx */
  1564. xm_write16(hw, port, XM_MMU_CMD,
  1565. cmd | XM_MMU_ENA_RX | XM_MMU_ENA_TX);
  1566. skge_link_up(skge);
  1567. }
  1568. static inline void bcom_phy_intr(struct skge_port *skge)
  1569. {
  1570. struct skge_hw *hw = skge->hw;
  1571. int port = skge->port;
  1572. u16 isrc;
  1573. isrc = xm_phy_read(hw, port, PHY_BCOM_INT_STAT);
  1574. netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
  1575. "phy interrupt status 0x%x\n", isrc);
  1576. if (isrc & PHY_B_IS_PSE)
  1577. pr_err("%s: uncorrectable pair swap error\n",
  1578. hw->dev[port]->name);
  1579. /* Workaround BCom Errata:
  1580. * enable and disable loopback mode if "NO HCD" occurs.
  1581. */
  1582. if (isrc & PHY_B_IS_NO_HDCL) {
  1583. u16 ctrl = xm_phy_read(hw, port, PHY_BCOM_CTRL);
  1584. xm_phy_write(hw, port, PHY_BCOM_CTRL,
  1585. ctrl | PHY_CT_LOOP);
  1586. xm_phy_write(hw, port, PHY_BCOM_CTRL,
  1587. ctrl & ~PHY_CT_LOOP);
  1588. }
  1589. if (isrc & (PHY_B_IS_AN_PR | PHY_B_IS_LST_CHANGE))
  1590. bcom_check_link(hw, port);
  1591. }
  1592. static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
  1593. {
  1594. int i;
  1595. gma_write16(hw, port, GM_SMI_DATA, val);
  1596. gma_write16(hw, port, GM_SMI_CTRL,
  1597. GM_SMI_CT_PHY_AD(hw->phy_addr) | GM_SMI_CT_REG_AD(reg));
  1598. for (i = 0; i < PHY_RETRIES; i++) {
  1599. udelay(1);
  1600. if (!(gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_BUSY))
  1601. return 0;
  1602. }
  1603. pr_warning("%s: phy write timeout\n", hw->dev[port]->name);
  1604. return -EIO;
  1605. }
  1606. static int __gm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
  1607. {
  1608. int i;
  1609. gma_write16(hw, port, GM_SMI_CTRL,
  1610. GM_SMI_CT_PHY_AD(hw->phy_addr)
  1611. | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);
  1612. for (i = 0; i < PHY_RETRIES; i++) {
  1613. udelay(1);
  1614. if (gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_RD_VAL)
  1615. goto ready;
  1616. }
  1617. return -ETIMEDOUT;
  1618. ready:
  1619. *val = gma_read16(hw, port, GM_SMI_DATA);
  1620. return 0;
  1621. }
  1622. static u16 gm_phy_read(struct skge_hw *hw, int port, u16 reg)
  1623. {
  1624. u16 v = 0;
  1625. if (__gm_phy_read(hw, port, reg, &v))
  1626. pr_warning("%s: phy read timeout\n", hw->dev[port]->name);
  1627. return v;
  1628. }
  1629. /* Marvell Phy Initialization */
  1630. static void yukon_init(struct skge_hw *hw, int port)
  1631. {
  1632. struct skge_port *skge = netdev_priv(hw->dev[port]);
  1633. u16 ctrl, ct1000, adv;
  1634. if (skge->autoneg == AUTONEG_ENABLE) {
  1635. u16 ectrl = gm_phy_read(hw, port, PHY_MARV_EXT_CTRL);
  1636. ectrl &= ~(PHY_M_EC_M_DSC_MSK | PHY_M_EC_S_DSC_MSK |
  1637. PHY_M_EC_MAC_S_MSK);
  1638. ectrl |= PHY_M_EC_MAC_S(MAC_TX_CLK_25_MHZ);
  1639. ectrl |= PHY_M_EC_M_DSC(0) | PHY_M_EC_S_DSC(1);
  1640. gm_phy_write(hw, port, PHY_MARV_EXT_CTRL, ectrl);
  1641. }
  1642. ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
  1643. if (skge->autoneg == AUTONEG_DISABLE)
  1644. ctrl &= ~PHY_CT_ANE;
  1645. ctrl |= PHY_CT_RESET;
  1646. gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
  1647. ctrl = 0;
  1648. ct1000 = 0;
  1649. adv = PHY_AN_CSMA;
  1650. if (skge->autoneg == AUTONEG_ENABLE) {
  1651. if (hw->copper) {
  1652. if (skge->advertising & ADVERTISED_1000baseT_Full)
  1653. ct1000 |= PHY_M_1000C_AFD;
  1654. if (skge->advertising & ADVERTISED_1000baseT_Half)
  1655. ct1000 |= PHY_M_1000C_AHD;
  1656. if (skge->advertising & ADVERTISED_100baseT_Full)
  1657. adv |= PHY_M_AN_100_FD;
  1658. if (skge->advertising & ADVERTISED_100baseT_Half)
  1659. adv |= PHY_M_AN_100_HD;
  1660. if (skge->advertising & ADVERTISED_10baseT_Full)
  1661. adv |= PHY_M_AN_10_FD;
  1662. if (skge->advertising & ADVERTISED_10baseT_Half)
  1663. adv |= PHY_M_AN_10_HD;
  1664. /* Set Flow-control capabilities */
  1665. adv |= phy_pause_map[skge->flow_control];
  1666. } else {
  1667. if (skge->advertising & ADVERTISED_1000baseT_Full)
  1668. adv |= PHY_M_AN_1000X_AFD;
  1669. if (skge->advertising & ADVERTISED_1000baseT_Half)
  1670. adv |= PHY_M_AN_1000X_AHD;
  1671. adv |= fiber_pause_map[skge->flow_control];
  1672. }
  1673. /* Restart Auto-negotiation */
  1674. ctrl |= PHY_CT_ANE | PHY_CT_RE_CFG;
  1675. } else {
  1676. /* forced speed/duplex settings */
  1677. ct1000 = PHY_M_1000C_MSE;
  1678. if (skge->duplex == DUPLEX_FULL)
  1679. ctrl |= PHY_CT_DUP_MD;
  1680. switch (skge->speed) {
  1681. case SPEED_1000:
  1682. ctrl |= PHY_CT_SP1000;
  1683. break;
  1684. case SPEED_100:
  1685. ctrl |= PHY_CT_SP100;
  1686. break;
  1687. }
  1688. ctrl |= PHY_CT_RESET;
  1689. }
  1690. gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, ct1000);
  1691. gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, adv);
  1692. gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
  1693. /* Enable phy interrupt on autonegotiation complete (or link up) */
  1694. if (skge->autoneg == AUTONEG_ENABLE)
  1695. gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_AN_MSK);
  1696. else
  1697. gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
  1698. }
  1699. static void yukon_reset(struct skge_hw *hw, int port)
  1700. {
  1701. gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);/* disable PHY IRQs */
  1702. gma_write16(hw, port, GM_MC_ADDR_H1, 0); /* clear MC hash */
  1703. gma_write16(hw, port, GM_MC_ADDR_H2, 0);
  1704. gma_write16(hw, port, GM_MC_ADDR_H3, 0);
  1705. gma_write16(hw, port, GM_MC_ADDR_H4, 0);
  1706. gma_write16(hw, port, GM_RX_CTRL,
  1707. gma_read16(hw, port, GM_RX_CTRL)
  1708. | GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
  1709. }
  1710. /* Apparently, early versions of Yukon-Lite had wrong chip_id? */
  1711. static int is_yukon_lite_a0(struct skge_hw *hw)
  1712. {
  1713. u32 reg;
  1714. int ret;
  1715. if (hw->chip_id != CHIP_ID_YUKON)
  1716. return 0;
  1717. reg = skge_read32(hw, B2_FAR);
  1718. skge_write8(hw, B2_FAR + 3, 0xff);
  1719. ret = (skge_read8(hw, B2_FAR + 3) != 0);
  1720. skge_write32(hw, B2_FAR, reg);
  1721. return ret;
  1722. }
  1723. static void yukon_mac_init(struct skge_hw *hw, int port)
  1724. {
  1725. struct skge_port *skge = netdev_priv(hw->dev[port]);
  1726. int i;
  1727. u32 reg;
  1728. const u8 *addr = hw->dev[port]->dev_addr;
  1729. /* WA code for COMA mode -- set PHY reset */
  1730. if (hw->chip_id == CHIP_ID_YUKON_LITE &&
  1731. hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
  1732. reg = skge_read32(hw, B2_GP_IO);
  1733. reg |= GP_DIR_9 | GP_IO_9;
  1734. skge_write32(hw, B2_GP_IO, reg);
  1735. }
  1736. /* hard reset */
  1737. skge_write32(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
  1738. skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
  1739. /* WA code for COMA mode -- clear PHY reset */
  1740. if (hw->chip_id == CHIP_ID_YUKON_LITE &&
  1741. hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
  1742. reg = skge_read32(hw, B2_GP_IO);
  1743. reg |= GP_DIR_9;
  1744. reg &= ~GP_IO_9;
  1745. skge_write32(hw, B2_GP_IO, reg);
  1746. }
  1747. /* Set hardware config mode */
  1748. reg = GPC_INT_POL_HI | GPC_DIS_FC | GPC_DIS_SLEEP |
  1749. GPC_ENA_XC | GPC_ANEG_ADV_ALL_M | GPC_ENA_PAUSE;
  1750. reg |= hw->copper ? GPC_HWCFG_GMII_COP : GPC_HWCFG_GMII_FIB;
  1751. /* Clear GMC reset */
  1752. skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_SET);
  1753. skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_CLR);
  1754. skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON | GMC_RST_CLR);
  1755. if (skge->autoneg == AUTONEG_DISABLE) {
  1756. reg = GM_GPCR_AU_ALL_DIS;
  1757. gma_write16(hw, port, GM_GP_CTRL,
  1758. gma_read16(hw, port, GM_GP_CTRL) | reg);
  1759. switch (skge->speed) {
  1760. case SPEED_1000:
  1761. reg &= ~GM_GPCR_SPEED_100;
  1762. reg |= GM_GPCR_SPEED_1000;
  1763. break;
  1764. case SPEED_100:
  1765. reg &= ~GM_GPCR_SPEED_1000;
  1766. reg |= GM_GPCR_SPEED_100;
  1767. break;
  1768. case SPEED_10:
  1769. reg &= ~(GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100);
  1770. break;
  1771. }
  1772. if (skge->duplex == DUPLEX_FULL)
  1773. reg |= GM_GPCR_DUP_FULL;
  1774. } else
  1775. reg = GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100 | GM_GPCR_DUP_FULL;
  1776. switch (skge->flow_control) {
  1777. case FLOW_MODE_NONE:
  1778. skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
  1779. reg |= GM_GPCR_FC_TX_DIS | GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
  1780. break;
  1781. case FLOW_MODE_LOC_SEND:
  1782. /* disable Rx flow-control */
  1783. reg |= GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
  1784. break;
  1785. case FLOW_MODE_SYMMETRIC:
  1786. case FLOW_MODE_SYM_OR_REM:
  1787. /* enable Tx & Rx flow-control */
  1788. break;
  1789. }
  1790. gma_write16(hw, port, GM_GP_CTRL, reg);
  1791. skge_read16(hw, SK_REG(port, GMAC_IRQ_SRC));
  1792. yukon_init(hw, port);
  1793. /* MIB clear */
  1794. reg = gma_read16(hw, port, GM_PHY_ADDR);
  1795. gma_write16(hw, port, GM_PHY_ADDR, reg | GM_PAR_MIB_CLR);
  1796. for (i = 0; i < GM_MIB_CNT_SIZE; i++)
  1797. gma_read16(hw, port, GM_MIB_CNT_BASE + 8*i);
  1798. gma_write16(hw, port, GM_PHY_ADDR, reg);
  1799. /* transmit control */
  1800. gma_write16(hw, port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));
  1801. /* receive control reg: unicast + multicast + no FCS */
  1802. gma_write16(hw, port, GM_RX_CTRL,
  1803. GM_RXCR_UCF_ENA | GM_RXCR_CRC_DIS | GM_RXCR_MCF_ENA);
  1804. /* transmit flow control */
  1805. gma_write16(hw, port, GM_TX_FLOW_CTRL, 0xffff);
  1806. /* transmit parameter */
  1807. gma_write16(hw, port, GM_TX_PARAM,
  1808. TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) |
  1809. TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
  1810. TX_IPG_JAM_DATA(TX_IPG_JAM_DEF));
  1811. /* configure the Serial Mode Register */
  1812. reg = DATA_BLIND_VAL(DATA_BLIND_DEF)
  1813. | GM_SMOD_VLAN_ENA
  1814. | IPG_DATA_VAL(IPG_DATA_DEF);
  1815. if (hw->dev[port]->mtu > ETH_DATA_LEN)
  1816. reg |= GM_SMOD_JUMBO_ENA;
  1817. gma_write16(hw, port, GM_SERIAL_MODE, reg);
  1818. /* physical address: used for pause frames */
  1819. gma_set_addr(hw, port, GM_SRC_ADDR_1L, addr);
  1820. /* virtual address for data */
  1821. gma_set_addr(hw, port, GM_SRC_ADDR_2L, addr);
  1822. /* enable interrupt mask for counter overflows */
  1823. gma_write16(hw, port, GM_TX_IRQ_MSK, 0);
  1824. gma_write16(hw, port, GM_RX_IRQ_MSK, 0);
  1825. gma_write16(hw, port, GM_TR_IRQ_MSK, 0);
  1826. /* Initialize Mac Fifo */
  1827. /* Configure Rx MAC FIFO */
  1828. skge_write16(hw, SK_REG(port, RX_GMF_FL_MSK), RX_FF_FL_DEF_MSK);
  1829. reg = GMF_OPER_ON | GMF_RX_F_FL_ON;
  1830. /* disable Rx GMAC FIFO Flush for YUKON-Lite Rev. A0 only */
  1831. if (is_yukon_lite_a0(hw))
  1832. reg &= ~GMF_RX_F_FL_ON;
  1833. skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_CLR);
  1834. skge_write16(hw, SK_REG(port, RX_GMF_CTRL_T), reg);
  1835. /*
  1836. * because Pause Packet Truncation in GMAC is not working
  1837. * we have to increase the Flush Threshold to 64 bytes
  1838. * in order to flush pause packets in Rx FIFO on Yukon-1
  1839. */
  1840. skge_write16(hw, SK_REG(port, RX_GMF_FL_THR), RX_GMF_FL_THR_DEF+1);
  1841. /* Configure Tx MAC FIFO */
  1842. skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_CLR);
  1843. skge_write16(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_OPER_ON);
  1844. }
  1845. /* Go into power down mode */
  1846. static void yukon_suspend(struct skge_hw *hw, int port)
  1847. {
  1848. u16 ctrl;
  1849. ctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL);
  1850. ctrl |= PHY_M_PC_POL_R_DIS;
  1851. gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ctrl);
  1852. ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
  1853. ctrl |= PHY_CT_RESET;
  1854. gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
  1855. /* switch IEEE compatible power down mode on */
  1856. ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
  1857. ctrl |= PHY_CT_PDOWN;
  1858. gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
  1859. }
  1860. static void yukon_stop(struct skge_port *skge)
  1861. {
  1862. struct skge_hw *hw = skge->hw;
  1863. int port = skge->port;
  1864. skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
  1865. yukon_reset(hw, port);
  1866. gma_write16(hw, port, GM_GP_CTRL,
  1867. gma_read16(hw, port, GM_GP_CTRL)
  1868. & ~(GM_GPCR_TX_ENA|GM_GPCR_RX_ENA));
  1869. gma_read16(hw, port, GM_GP_CTRL);
  1870. yukon_suspend(hw, port);
  1871. /* set GPHY Control reset */
  1872. skge_write8(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
  1873. skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
  1874. }
  1875. static void yukon_get_stats(struct skge_port *skge, u64 *data)
  1876. {
  1877. struct skge_hw *hw = skge->hw;
  1878. int port = skge->port;
  1879. int i;
  1880. data[0] = (u64) gma_read32(hw, port, GM_TXO_OK_HI) << 32
  1881. | gma_read32(hw, port, GM_TXO_OK_LO);
  1882. data[1] = (u64) gma_read32(hw, port, GM_RXO_OK_HI) << 32
  1883. | gma_read32(hw, port, GM_RXO_OK_LO);
  1884. for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
  1885. data[i] = gma_read32(hw, port,
  1886. skge_stats[i].gma_offset);
  1887. }
  1888. static void yukon_mac_intr(struct skge_hw *hw, int port)
  1889. {
  1890. struct net_device *dev = hw->dev[port];
  1891. struct skge_port *skge = netdev_priv(dev);
  1892. u8 status = skge_read8(hw, SK_REG(port, GMAC_IRQ_SRC));
  1893. netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
  1894. "mac interrupt status 0x%x\n", status);
  1895. if (status & GM_IS_RX_FF_OR) {
  1896. ++dev->stats.rx_fifo_errors;
  1897. skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_CLI_RX_FO);
  1898. }
  1899. if (status & GM_IS_TX_FF_UR) {
  1900. ++dev->stats.tx_fifo_errors;
  1901. skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_CLI_TX_FU);
  1902. }
  1903. }
  1904. static u16 yukon_speed(const struct skge_hw *hw, u16 aux)
  1905. {
  1906. switch (aux & PHY_M_PS_SPEED_MSK) {
  1907. case PHY_M_PS_SPEED_1000:
  1908. return SPEED_1000;
  1909. case PHY_M_PS_SPEED_100:
  1910. return SPEED_100;
  1911. default:
  1912. return SPEED_10;
  1913. }
  1914. }
  1915. static void yukon_link_up(struct skge_port *skge)
  1916. {
  1917. struct skge_hw *hw = skge->hw;
  1918. int port = skge->port;
  1919. u16 reg;
  1920. /* Enable Transmit FIFO Underrun */
  1921. skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), GMAC_DEF_MSK);
  1922. reg = gma_read16(hw, port, GM_GP_CTRL);
  1923. if (skge->duplex == DUPLEX_FULL || skge->autoneg == AUTONEG_ENABLE)
  1924. reg |= GM_GPCR_DUP_FULL;
  1925. /* enable Rx/Tx */
  1926. reg |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
  1927. gma_write16(hw, port, GM_GP_CTRL, reg);
  1928. gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
  1929. skge_link_up(skge);
  1930. }
  1931. static void yukon_link_down(struct skge_port *skge)
  1932. {
  1933. struct skge_hw *hw = skge->hw;
  1934. int port = skge->port;
  1935. u16 ctrl;
  1936. ctrl = gma_read16(hw, port, GM_GP_CTRL);
  1937. ctrl &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
  1938. gma_write16(hw, port, GM_GP_CTRL, ctrl);
  1939. if (skge->flow_status == FLOW_STAT_REM_SEND) {
  1940. ctrl = gm_phy_read(hw, port, PHY_MARV_AUNE_ADV);
  1941. ctrl |= PHY_M_AN_ASP;
  1942. /* restore Asymmetric Pause bit */
  1943. gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, ctrl);
  1944. }
  1945. skge_link_down(skge);
  1946. yukon_init(hw, port);
  1947. }
  1948. static void yukon_phy_intr(struct skge_port *skge)
  1949. {
  1950. struct skge_hw *hw = skge->hw;
  1951. int port = skge->port;
  1952. const char *reason = NULL;
  1953. u16 istatus, phystat;
  1954. istatus = gm_phy_read(hw, port, PHY_MARV_INT_STAT);
  1955. phystat = gm_phy_read(hw, port, PHY_MARV_PHY_STAT);
  1956. netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
  1957. "phy interrupt status 0x%x 0x%x\n", istatus, phystat);
  1958. if (istatus & PHY_M_IS_AN_COMPL) {
  1959. if (gm_phy_read(hw, port, PHY_MARV_AUNE_LP)
  1960. & PHY_M_AN_RF) {
  1961. reason = "remote fault";
  1962. goto failed;
  1963. }
  1964. if (gm_phy_read(hw, port, PHY_MARV_1000T_STAT) & PHY_B_1000S_MSF) {
  1965. reason = "master/slave fault";
  1966. goto failed;
  1967. }
  1968. if (!(phystat & PHY_M_PS_SPDUP_RES)) {
  1969. reason = "speed/duplex";
  1970. goto failed;
  1971. }
  1972. skge->duplex = (phystat & PHY_M_PS_FULL_DUP)
  1973. ? DUPLEX_FULL : DUPLEX_HALF;
  1974. skge->speed = yukon_speed(hw, phystat);
  1975. /* We are using IEEE 802.3z/D5.0 Table 37-4 */
  1976. switch (phystat & PHY_M_PS_PAUSE_MSK) {
  1977. case PHY_M_PS_PAUSE_MSK:
  1978. skge->flow_status = FLOW_STAT_SYMMETRIC;
  1979. break;
  1980. case PHY_M_PS_RX_P_EN:
  1981. skge->flow_status = FLOW_STAT_REM_SEND;
  1982. break;
  1983. case PHY_M_PS_TX_P_EN:
  1984. skge->flow_status = FLOW_STAT_LOC_SEND;
  1985. break;
  1986. default:
  1987. skge->flow_status = FLOW_STAT_NONE;
  1988. }
  1989. if (skge->flow_status == FLOW_STAT_NONE ||
  1990. (skge->speed < SPEED_1000 && skge->duplex == DUPLEX_HALF))
  1991. skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
  1992. else
  1993. skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON);
  1994. yukon_link_up(skge);
  1995. return;
  1996. }
  1997. if (istatus & PHY_M_IS_LSP_CHANGE)
  1998. skge->speed = yukon_speed(hw, phystat);
  1999. if (istatus & PHY_M_IS_DUP_CHANGE)
  2000. skge->duplex = (phystat & PHY_M_PS_FULL_DUP) ? DUPLEX_FULL : DUPLEX_HALF;
  2001. if (istatus & PHY_M_IS_LST_CHANGE) {
  2002. if (phystat & PHY_M_PS_LINK_UP)
  2003. yukon_link_up(skge);
  2004. else
  2005. yukon_link_down(skge);
  2006. }
  2007. return;
  2008. failed:
  2009. pr_err("%s: autonegotiation failed (%s)\n", skge->netdev->name, reason);
  2010. /* XXX restart autonegotiation? */
  2011. }
  2012. static void skge_phy_reset(struct skge_port *skge)
  2013. {
  2014. struct skge_hw *hw = skge->hw;
  2015. int port = skge->port;
  2016. struct net_device *dev = hw->dev[port];
  2017. netif_stop_queue(skge->netdev);
  2018. netif_carrier_off(skge->netdev);
  2019. spin_lock_bh(&hw->phy_lock);
  2020. if (hw->chip_id == CHIP_ID_GENESIS) {
  2021. genesis_reset(hw, port);
  2022. genesis_mac_init(hw, port);
  2023. } else {
  2024. yukon_reset(hw, port);
  2025. yukon_init(hw, port);
  2026. }
  2027. spin_unlock_bh(&hw->phy_lock);
  2028. skge_set_multicast(dev);
  2029. }
  2030. /* Basic MII support */
  2031. static int skge_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
  2032. {
  2033. struct mii_ioctl_data *data = if_mii(ifr);
  2034. struct skge_port *skge = netdev_priv(dev);
  2035. struct skge_hw *hw = skge->hw;
  2036. int err = -EOPNOTSUPP;
  2037. if (!netif_running(dev))
  2038. return -ENODEV; /* Phy still in reset */
  2039. switch (cmd) {
  2040. case SIOCGMIIPHY:
  2041. data->phy_id = hw->phy_addr;
  2042. /* fallthru */
  2043. case SIOCGMIIREG: {
  2044. u16 val = 0;
  2045. spin_lock_bh(&hw->phy_lock);
  2046. if (hw->chip_id == CHIP_ID_GENESIS)
  2047. err = __xm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
  2048. else
  2049. err = __gm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
  2050. spin_unlock_bh(&hw->phy_lock);
  2051. data->val_out = val;
  2052. break;
  2053. }
  2054. case SIOCSMIIREG:
  2055. spin_lock_bh(&hw->phy_lock);
  2056. if (hw->chip_id == CHIP_ID_GENESIS)
  2057. err = xm_phy_write(hw, skge->port, data->reg_num & 0x1f,
  2058. data->val_in);
  2059. else
  2060. err = gm_phy_write(hw, skge->port, data->reg_num & 0x1f,
  2061. data->val_in);
  2062. spin_unlock_bh(&hw->phy_lock);
  2063. break;
  2064. }
  2065. return err;
  2066. }
  2067. static void skge_ramset(struct skge_hw *hw, u16 q, u32 start, size_t len)
  2068. {
  2069. u32 end;
  2070. start /= 8;
  2071. len /= 8;
  2072. end = start + len - 1;
  2073. skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_RST_CLR);
  2074. skge_write32(hw, RB_ADDR(q, RB_START), start);
  2075. skge_write32(hw, RB_ADDR(q, RB_WP), start);
  2076. skge_write32(hw, RB_ADDR(q, RB_RP), start);
  2077. skge_write32(hw, RB_ADDR(q, RB_END), end);
  2078. if (q == Q_R1 || q == Q_R2) {
  2079. /* Set thresholds on receive queue's */
  2080. skge_write32(hw, RB_ADDR(q, RB_RX_UTPP),
  2081. start + (2*len)/3);
  2082. skge_write32(hw, RB_ADDR(q, RB_RX_LTPP),
  2083. start + (len/3));
  2084. } else {
  2085. /* Enable store & forward on Tx queue's because
  2086. * Tx FIFO is only 4K on Genesis and 1K on Yukon
  2087. */
  2088. skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_STFWD);
  2089. }
  2090. skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_OP_MD);
  2091. }
  2092. /* Setup Bus Memory Interface */
  2093. static void skge_qset(struct skge_port *skge, u16 q,
  2094. const struct skge_element *e)
  2095. {
  2096. struct skge_hw *hw = skge->hw;
  2097. u32 watermark = 0x600;
  2098. u64 base = skge->dma + (e->desc - skge->mem);
  2099. /* optimization to reduce window on 32bit/33mhz */
  2100. if ((skge_read16(hw, B0_CTST) & (CS_BUS_CLOCK | CS_BUS_SLOT_SZ)) == 0)
  2101. watermark /= 2;
  2102. skge_write32(hw, Q_ADDR(q, Q_CSR), CSR_CLR_RESET);
  2103. skge_write32(hw, Q_ADDR(q, Q_F), watermark);
  2104. skge_write32(hw, Q_ADDR(q, Q_DA_H), (u32)(base >> 32));
  2105. skge_write32(hw, Q_ADDR(q, Q_DA_L), (u32)base);
  2106. }
  2107. static int skge_up(struct net_device *dev)
  2108. {
  2109. struct skge_port *skge = netdev_priv(dev);
  2110. struct skge_hw *hw = skge->hw;
  2111. int port = skge->port;
  2112. u32 chunk, ram_addr;
  2113. size_t rx_size, tx_size;
  2114. int err;
  2115. if (!is_valid_ether_addr(dev->dev_addr))
  2116. return -EINVAL;
  2117. netif_info(skge, ifup, skge->netdev, "enabling interface\n");
  2118. if (dev->mtu > RX_BUF_SIZE)
  2119. skge->rx_buf_size = dev->mtu + ETH_HLEN;
  2120. else
  2121. skge->rx_buf_size = RX_BUF_SIZE;
  2122. rx_size = skge->rx_ring.count * sizeof(struct skge_rx_desc);
  2123. tx_size = skge->tx_ring.count * sizeof(struct skge_tx_desc);
  2124. skge->mem_size = tx_size + rx_size;
  2125. skge->mem = pci_alloc_consistent(hw->pdev, skge->mem_size, &skge->dma);
  2126. if (!skge->mem)
  2127. return -ENOMEM;
  2128. BUG_ON(skge->dma & 7);
  2129. if ((u64)skge->dma >> 32 != ((u64) skge->dma + skge->mem_size) >> 32) {
  2130. dev_err(&hw->pdev->dev, "pci_alloc_consistent region crosses 4G boundary\n");
  2131. err = -EINVAL;
  2132. goto free_pci_mem;
  2133. }
  2134. memset(skge->mem, 0, skge->mem_size);
  2135. err = skge_ring_alloc(&skge->rx_ring, skge->mem, skge->dma);
  2136. if (err)
  2137. goto free_pci_mem;
  2138. err = skge_rx_fill(dev);
  2139. if (err)
  2140. goto free_rx_ring;
  2141. err = skge_ring_alloc(&skge->tx_ring, skge->mem + rx_size,
  2142. skge->dma + rx_size);
  2143. if (err)
  2144. goto free_rx_ring;
  2145. /* Initialize MAC */
  2146. spin_lock_bh(&hw->phy_lock);
  2147. if (hw->chip_id == CHIP_ID_GENESIS)
  2148. genesis_mac_init(hw, port);
  2149. else
  2150. yukon_mac_init(hw, port);
  2151. spin_unlock_bh(&hw->phy_lock);
  2152. /* Configure RAMbuffers - equally between ports and tx/rx */
  2153. chunk = (hw->ram_size - hw->ram_offset) / (hw->ports * 2);
  2154. ram_addr = hw->ram_offset + 2 * chunk * port;
  2155. skge_ramset(hw, rxqaddr[port], ram_addr, chunk);
  2156. skge_qset(skge, rxqaddr[port], skge->rx_ring.to_clean);
  2157. BUG_ON(skge->tx_ring.to_use != skge->tx_ring.to_clean);
  2158. skge_ramset(hw, txqaddr[port], ram_addr+chunk, chunk);
  2159. skge_qset(skge, txqaddr[port], skge->tx_ring.to_use);
  2160. /* Start receiver BMU */
  2161. wmb();
  2162. skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_START | CSR_IRQ_CL_F);
  2163. skge_led(skge, LED_MODE_ON);
  2164. spin_lock_irq(&hw->hw_lock);
  2165. hw->intr_mask |= portmask[port];
  2166. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2167. spin_unlock_irq(&hw->hw_lock);
  2168. napi_enable(&skge->napi);
  2169. return 0;
  2170. free_rx_ring:
  2171. skge_rx_clean(skge);
  2172. kfree(skge->rx_ring.start);
  2173. free_pci_mem:
  2174. pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
  2175. skge->mem = NULL;
  2176. return err;
  2177. }
  2178. /* stop receiver */
  2179. static void skge_rx_stop(struct skge_hw *hw, int port)
  2180. {
  2181. skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_STOP);
  2182. skge_write32(hw, RB_ADDR(port ? Q_R2 : Q_R1, RB_CTRL),
  2183. RB_RST_SET|RB_DIS_OP_MD);
  2184. skge_write32(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_SET_RESET);
  2185. }
  2186. static int skge_down(struct net_device *dev)
  2187. {
  2188. struct skge_port *skge = netdev_priv(dev);
  2189. struct skge_hw *hw = skge->hw;
  2190. int port = skge->port;
  2191. if (skge->mem == NULL)
  2192. return 0;
  2193. netif_info(skge, ifdown, skge->netdev, "disabling interface\n");
  2194. netif_tx_disable(dev);
  2195. if (hw->chip_id == CHIP_ID_GENESIS && hw->phy_type == SK_PHY_XMAC)
  2196. del_timer_sync(&skge->link_timer);
  2197. napi_disable(&skge->napi);
  2198. netif_carrier_off(dev);
  2199. spin_lock_irq(&hw->hw_lock);
  2200. hw->intr_mask &= ~portmask[port];
  2201. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2202. spin_unlock_irq(&hw->hw_lock);
  2203. skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_OFF);
  2204. if (hw->chip_id == CHIP_ID_GENESIS)
  2205. genesis_stop(skge);
  2206. else
  2207. yukon_stop(skge);
  2208. /* Stop transmitter */
  2209. skge_write8(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_STOP);
  2210. skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL),
  2211. RB_RST_SET|RB_DIS_OP_MD);
  2212. /* Disable Force Sync bit and Enable Alloc bit */
  2213. skge_write8(hw, SK_REG(port, TXA_CTRL),
  2214. TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);
  2215. /* Stop Interval Timer and Limit Counter of Tx Arbiter */
  2216. skge_write32(hw, SK_REG(port, TXA_ITI_INI), 0L);
  2217. skge_write32(hw, SK_REG(port, TXA_LIM_INI), 0L);
  2218. /* Reset PCI FIFO */
  2219. skge_write32(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_SET_RESET);
  2220. skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL), RB_RST_SET);
  2221. /* Reset the RAM Buffer async Tx queue */
  2222. skge_write8(hw, RB_ADDR(port == 0 ? Q_XA1 : Q_XA2, RB_CTRL), RB_RST_SET);
  2223. skge_rx_stop(hw, port);
  2224. if (hw->chip_id == CHIP_ID_GENESIS) {
  2225. skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_SET);
  2226. skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_SET);
  2227. } else {
  2228. skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
  2229. skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_SET);
  2230. }
  2231. skge_led(skge, LED_MODE_OFF);
  2232. netif_tx_lock_bh(dev);
  2233. skge_tx_clean(dev);
  2234. netif_tx_unlock_bh(dev);
  2235. skge_rx_clean(skge);
  2236. kfree(skge->rx_ring.start);
  2237. kfree(skge->tx_ring.start);
  2238. pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
  2239. skge->mem = NULL;
  2240. return 0;
  2241. }
  2242. static inline int skge_avail(const struct skge_ring *ring)
  2243. {
  2244. smp_mb();
  2245. return ((ring->to_clean > ring->to_use) ? 0 : ring->count)
  2246. + (ring->to_clean - ring->to_use) - 1;
  2247. }
  2248. static netdev_tx_t skge_xmit_frame(struct sk_buff *skb,
  2249. struct net_device *dev)
  2250. {
  2251. struct skge_port *skge = netdev_priv(dev);
  2252. struct skge_hw *hw = skge->hw;
  2253. struct skge_element *e;
  2254. struct skge_tx_desc *td;
  2255. int i;
  2256. u32 control, len;
  2257. u64 map;
  2258. if (skb_padto(skb, ETH_ZLEN))
  2259. return NETDEV_TX_OK;
  2260. if (unlikely(skge_avail(&skge->tx_ring) < skb_shinfo(skb)->nr_frags + 1))
  2261. return NETDEV_TX_BUSY;
  2262. e = skge->tx_ring.to_use;
  2263. td = e->desc;
  2264. BUG_ON(td->control & BMU_OWN);
  2265. e->skb = skb;
  2266. len = skb_headlen(skb);
  2267. map = pci_map_single(hw->pdev, skb->data, len, PCI_DMA_TODEVICE);
  2268. dma_unmap_addr_set(e, mapaddr, map);
  2269. dma_unmap_len_set(e, maplen, len);
  2270. td->dma_lo = map;
  2271. td->dma_hi = map >> 32;
  2272. if (skb->ip_summed == CHECKSUM_PARTIAL) {
  2273. const int offset = skb_checksum_start_offset(skb);
  2274. /* This seems backwards, but it is what the sk98lin
  2275. * does. Looks like hardware is wrong?
  2276. */
  2277. if (ipip_hdr(skb)->protocol == IPPROTO_UDP &&
  2278. hw->chip_rev == 0 && hw->chip_id == CHIP_ID_YUKON)
  2279. control = BMU_TCP_CHECK;
  2280. else
  2281. control = BMU_UDP_CHECK;
  2282. td->csum_offs = 0;
  2283. td->csum_start = offset;
  2284. td->csum_write = offset + skb->csum_offset;
  2285. } else
  2286. control = BMU_CHECK;
  2287. if (!skb_shinfo(skb)->nr_frags) /* single buffer i.e. no fragments */
  2288. control |= BMU_EOF | BMU_IRQ_EOF;
  2289. else {
  2290. struct skge_tx_desc *tf = td;
  2291. control |= BMU_STFWD;
  2292. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  2293. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  2294. map = pci_map_page(hw->pdev, frag->page, frag->page_offset,
  2295. frag->size, PCI_DMA_TODEVICE);
  2296. e = e->next;
  2297. e->skb = skb;
  2298. tf = e->desc;
  2299. BUG_ON(tf->control & BMU_OWN);
  2300. tf->dma_lo = map;
  2301. tf->dma_hi = (u64) map >> 32;
  2302. dma_unmap_addr_set(e, mapaddr, map);
  2303. dma_unmap_len_set(e, maplen, frag->size);
  2304. tf->control = BMU_OWN | BMU_SW | control | frag->size;
  2305. }
  2306. tf->control |= BMU_EOF | BMU_IRQ_EOF;
  2307. }
  2308. /* Make sure all the descriptors written */
  2309. wmb();
  2310. td->control = BMU_OWN | BMU_SW | BMU_STF | control | len;
  2311. wmb();
  2312. skge_write8(hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_START);
  2313. netif_printk(skge, tx_queued, KERN_DEBUG, skge->netdev,
  2314. "tx queued, slot %td, len %d\n",
  2315. e - skge->tx_ring.start, skb->len);
  2316. skge->tx_ring.to_use = e->next;
  2317. smp_wmb();
  2318. if (skge_avail(&skge->tx_ring) <= TX_LOW_WATER) {
  2319. netdev_dbg(dev, "transmit queue full\n");
  2320. netif_stop_queue(dev);
  2321. }
  2322. return NETDEV_TX_OK;
  2323. }
  2324. /* Free resources associated with this reing element */
  2325. static void skge_tx_free(struct skge_port *skge, struct skge_element *e,
  2326. u32 control)
  2327. {
  2328. struct pci_dev *pdev = skge->hw->pdev;
  2329. /* skb header vs. fragment */
  2330. if (control & BMU_STF)
  2331. pci_unmap_single(pdev, dma_unmap_addr(e, mapaddr),
  2332. dma_unmap_len(e, maplen),
  2333. PCI_DMA_TODEVICE);
  2334. else
  2335. pci_unmap_page(pdev, dma_unmap_addr(e, mapaddr),
  2336. dma_unmap_len(e, maplen),
  2337. PCI_DMA_TODEVICE);
  2338. if (control & BMU_EOF) {
  2339. netif_printk(skge, tx_done, KERN_DEBUG, skge->netdev,
  2340. "tx done slot %td\n", e - skge->tx_ring.start);
  2341. dev_kfree_skb(e->skb);
  2342. }
  2343. }
  2344. /* Free all buffers in transmit ring */
  2345. static void skge_tx_clean(struct net_device *dev)
  2346. {
  2347. struct skge_port *skge = netdev_priv(dev);
  2348. struct skge_element *e;
  2349. for (e = skge->tx_ring.to_clean; e != skge->tx_ring.to_use; e = e->next) {
  2350. struct skge_tx_desc *td = e->desc;
  2351. skge_tx_free(skge, e, td->control);
  2352. td->control = 0;
  2353. }
  2354. skge->tx_ring.to_clean = e;
  2355. }
  2356. static void skge_tx_timeout(struct net_device *dev)
  2357. {
  2358. struct skge_port *skge = netdev_priv(dev);
  2359. netif_printk(skge, timer, KERN_DEBUG, skge->netdev, "tx timeout\n");
  2360. skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_STOP);
  2361. skge_tx_clean(dev);
  2362. netif_wake_queue(dev);
  2363. }
  2364. static int skge_change_mtu(struct net_device *dev, int new_mtu)
  2365. {
  2366. int err;
  2367. if (new_mtu < ETH_ZLEN || new_mtu > ETH_JUMBO_MTU)
  2368. return -EINVAL;
  2369. if (!netif_running(dev)) {
  2370. dev->mtu = new_mtu;
  2371. return 0;
  2372. }
  2373. skge_down(dev);
  2374. dev->mtu = new_mtu;
  2375. err = skge_up(dev);
  2376. if (err)
  2377. dev_close(dev);
  2378. return err;
  2379. }
  2380. static const u8 pause_mc_addr[ETH_ALEN] = { 0x1, 0x80, 0xc2, 0x0, 0x0, 0x1 };
  2381. static void genesis_add_filter(u8 filter[8], const u8 *addr)
  2382. {
  2383. u32 crc, bit;
  2384. crc = ether_crc_le(ETH_ALEN, addr);
  2385. bit = ~crc & 0x3f;
  2386. filter[bit/8] |= 1 << (bit%8);
  2387. }
  2388. static void genesis_set_multicast(struct net_device *dev)
  2389. {
  2390. struct skge_port *skge = netdev_priv(dev);
  2391. struct skge_hw *hw = skge->hw;
  2392. int port = skge->port;
  2393. struct netdev_hw_addr *ha;
  2394. u32 mode;
  2395. u8 filter[8];
  2396. mode = xm_read32(hw, port, XM_MODE);
  2397. mode |= XM_MD_ENA_HASH;
  2398. if (dev->flags & IFF_PROMISC)
  2399. mode |= XM_MD_ENA_PROM;
  2400. else
  2401. mode &= ~XM_MD_ENA_PROM;
  2402. if (dev->flags & IFF_ALLMULTI)
  2403. memset(filter, 0xff, sizeof(filter));
  2404. else {
  2405. memset(filter, 0, sizeof(filter));
  2406. if (skge->flow_status == FLOW_STAT_REM_SEND ||
  2407. skge->flow_status == FLOW_STAT_SYMMETRIC)
  2408. genesis_add_filter(filter, pause_mc_addr);
  2409. netdev_for_each_mc_addr(ha, dev)
  2410. genesis_add_filter(filter, ha->addr);
  2411. }
  2412. xm_write32(hw, port, XM_MODE, mode);
  2413. xm_outhash(hw, port, XM_HSM, filter);
  2414. }
  2415. static void yukon_add_filter(u8 filter[8], const u8 *addr)
  2416. {
  2417. u32 bit = ether_crc(ETH_ALEN, addr) & 0x3f;
  2418. filter[bit/8] |= 1 << (bit%8);
  2419. }
  2420. static void yukon_set_multicast(struct net_device *dev)
  2421. {
  2422. struct skge_port *skge = netdev_priv(dev);
  2423. struct skge_hw *hw = skge->hw;
  2424. int port = skge->port;
  2425. struct netdev_hw_addr *ha;
  2426. int rx_pause = (skge->flow_status == FLOW_STAT_REM_SEND ||
  2427. skge->flow_status == FLOW_STAT_SYMMETRIC);
  2428. u16 reg;
  2429. u8 filter[8];
  2430. memset(filter, 0, sizeof(filter));
  2431. reg = gma_read16(hw, port, GM_RX_CTRL);
  2432. reg |= GM_RXCR_UCF_ENA;
  2433. if (dev->flags & IFF_PROMISC) /* promiscuous */
  2434. reg &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
  2435. else if (dev->flags & IFF_ALLMULTI) /* all multicast */
  2436. memset(filter, 0xff, sizeof(filter));
  2437. else if (netdev_mc_empty(dev) && !rx_pause)/* no multicast */
  2438. reg &= ~GM_RXCR_MCF_ENA;
  2439. else {
  2440. reg |= GM_RXCR_MCF_ENA;
  2441. if (rx_pause)
  2442. yukon_add_filter(filter, pause_mc_addr);
  2443. netdev_for_each_mc_addr(ha, dev)
  2444. yukon_add_filter(filter, ha->addr);
  2445. }
  2446. gma_write16(hw, port, GM_MC_ADDR_H1,
  2447. (u16)filter[0] | ((u16)filter[1] << 8));
  2448. gma_write16(hw, port, GM_MC_ADDR_H2,
  2449. (u16)filter[2] | ((u16)filter[3] << 8));
  2450. gma_write16(hw, port, GM_MC_ADDR_H3,
  2451. (u16)filter[4] | ((u16)filter[5] << 8));
  2452. gma_write16(hw, port, GM_MC_ADDR_H4,
  2453. (u16)filter[6] | ((u16)filter[7] << 8));
  2454. gma_write16(hw, port, GM_RX_CTRL, reg);
  2455. }
  2456. static inline u16 phy_length(const struct skge_hw *hw, u32 status)
  2457. {
  2458. if (hw->chip_id == CHIP_ID_GENESIS)
  2459. return status >> XMR_FS_LEN_SHIFT;
  2460. else
  2461. return status >> GMR_FS_LEN_SHIFT;
  2462. }
  2463. static inline int bad_phy_status(const struct skge_hw *hw, u32 status)
  2464. {
  2465. if (hw->chip_id == CHIP_ID_GENESIS)
  2466. return (status & (XMR_FS_ERR | XMR_FS_2L_VLAN)) != 0;
  2467. else
  2468. return (status & GMR_FS_ANY_ERR) ||
  2469. (status & GMR_FS_RX_OK) == 0;
  2470. }
  2471. static void skge_set_multicast(struct net_device *dev)
  2472. {
  2473. struct skge_port *skge = netdev_priv(dev);
  2474. struct skge_hw *hw = skge->hw;
  2475. if (hw->chip_id == CHIP_ID_GENESIS)
  2476. genesis_set_multicast(dev);
  2477. else
  2478. yukon_set_multicast(dev);
  2479. }
  2480. /* Get receive buffer from descriptor.
  2481. * Handles copy of small buffers and reallocation failures
  2482. */
  2483. static struct sk_buff *skge_rx_get(struct net_device *dev,
  2484. struct skge_element *e,
  2485. u32 control, u32 status, u16 csum)
  2486. {
  2487. struct skge_port *skge = netdev_priv(dev);
  2488. struct sk_buff *skb;
  2489. u16 len = control & BMU_BBC;
  2490. netif_printk(skge, rx_status, KERN_DEBUG, skge->netdev,
  2491. "rx slot %td status 0x%x len %d\n",
  2492. e - skge->rx_ring.start, status, len);
  2493. if (len > skge->rx_buf_size)
  2494. goto error;
  2495. if ((control & (BMU_EOF|BMU_STF)) != (BMU_STF|BMU_EOF))
  2496. goto error;
  2497. if (bad_phy_status(skge->hw, status))
  2498. goto error;
  2499. if (phy_length(skge->hw, status) != len)
  2500. goto error;
  2501. if (len < RX_COPY_THRESHOLD) {
  2502. skb = netdev_alloc_skb_ip_align(dev, len);
  2503. if (!skb)
  2504. goto resubmit;
  2505. pci_dma_sync_single_for_cpu(skge->hw->pdev,
  2506. dma_unmap_addr(e, mapaddr),
  2507. len, PCI_DMA_FROMDEVICE);
  2508. skb_copy_from_linear_data(e->skb, skb->data, len);
  2509. pci_dma_sync_single_for_device(skge->hw->pdev,
  2510. dma_unmap_addr(e, mapaddr),
  2511. len, PCI_DMA_FROMDEVICE);
  2512. skge_rx_reuse(e, skge->rx_buf_size);
  2513. } else {
  2514. struct sk_buff *nskb;
  2515. nskb = netdev_alloc_skb_ip_align(dev, skge->rx_buf_size);
  2516. if (!nskb)
  2517. goto resubmit;
  2518. pci_unmap_single(skge->hw->pdev,
  2519. dma_unmap_addr(e, mapaddr),
  2520. dma_unmap_len(e, maplen),
  2521. PCI_DMA_FROMDEVICE);
  2522. skb = e->skb;
  2523. prefetch(skb->data);
  2524. skge_rx_setup(skge, e, nskb, skge->rx_buf_size);
  2525. }
  2526. skb_put(skb, len);
  2527. if (skge->rx_csum) {
  2528. skb->csum = csum;
  2529. skb->ip_summed = CHECKSUM_COMPLETE;
  2530. }
  2531. skb->protocol = eth_type_trans(skb, dev);
  2532. return skb;
  2533. error:
  2534. netif_printk(skge, rx_err, KERN_DEBUG, skge->netdev,
  2535. "rx err, slot %td control 0x%x status 0x%x\n",
  2536. e - skge->rx_ring.start, control, status);
  2537. if (skge->hw->chip_id == CHIP_ID_GENESIS) {
  2538. if (status & (XMR_FS_RUNT|XMR_FS_LNG_ERR))
  2539. dev->stats.rx_length_errors++;
  2540. if (status & XMR_FS_FRA_ERR)
  2541. dev->stats.rx_frame_errors++;
  2542. if (status & XMR_FS_FCS_ERR)
  2543. dev->stats.rx_crc_errors++;
  2544. } else {
  2545. if (status & (GMR_FS_LONG_ERR|GMR_FS_UN_SIZE))
  2546. dev->stats.rx_length_errors++;
  2547. if (status & GMR_FS_FRAGMENT)
  2548. dev->stats.rx_frame_errors++;
  2549. if (status & GMR_FS_CRC_ERR)
  2550. dev->stats.rx_crc_errors++;
  2551. }
  2552. resubmit:
  2553. skge_rx_reuse(e, skge->rx_buf_size);
  2554. return NULL;
  2555. }
  2556. /* Free all buffers in Tx ring which are no longer owned by device */
  2557. static void skge_tx_done(struct net_device *dev)
  2558. {
  2559. struct skge_port *skge = netdev_priv(dev);
  2560. struct skge_ring *ring = &skge->tx_ring;
  2561. struct skge_element *e;
  2562. skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
  2563. for (e = ring->to_clean; e != ring->to_use; e = e->next) {
  2564. u32 control = ((const struct skge_tx_desc *) e->desc)->control;
  2565. if (control & BMU_OWN)
  2566. break;
  2567. skge_tx_free(skge, e, control);
  2568. }
  2569. skge->tx_ring.to_clean = e;
  2570. /* Can run lockless until we need to synchronize to restart queue. */
  2571. smp_mb();
  2572. if (unlikely(netif_queue_stopped(dev) &&
  2573. skge_avail(&skge->tx_ring) > TX_LOW_WATER)) {
  2574. netif_tx_lock(dev);
  2575. if (unlikely(netif_queue_stopped(dev) &&
  2576. skge_avail(&skge->tx_ring) > TX_LOW_WATER)) {
  2577. netif_wake_queue(dev);
  2578. }
  2579. netif_tx_unlock(dev);
  2580. }
  2581. }
  2582. static int skge_poll(struct napi_struct *napi, int to_do)
  2583. {
  2584. struct skge_port *skge = container_of(napi, struct skge_port, napi);
  2585. struct net_device *dev = skge->netdev;
  2586. struct skge_hw *hw = skge->hw;
  2587. struct skge_ring *ring = &skge->rx_ring;
  2588. struct skge_element *e;
  2589. int work_done = 0;
  2590. skge_tx_done(dev);
  2591. skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
  2592. for (e = ring->to_clean; prefetch(e->next), work_done < to_do; e = e->next) {
  2593. struct skge_rx_desc *rd = e->desc;
  2594. struct sk_buff *skb;
  2595. u32 control;
  2596. rmb();
  2597. control = rd->control;
  2598. if (control & BMU_OWN)
  2599. break;
  2600. skb = skge_rx_get(dev, e, control, rd->status, rd->csum2);
  2601. if (likely(skb)) {
  2602. napi_gro_receive(napi, skb);
  2603. ++work_done;
  2604. }
  2605. }
  2606. ring->to_clean = e;
  2607. /* restart receiver */
  2608. wmb();
  2609. skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_START);
  2610. if (work_done < to_do) {
  2611. unsigned long flags;
  2612. napi_gro_flush(napi);
  2613. spin_lock_irqsave(&hw->hw_lock, flags);
  2614. __napi_complete(napi);
  2615. hw->intr_mask |= napimask[skge->port];
  2616. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2617. skge_read32(hw, B0_IMSK);
  2618. spin_unlock_irqrestore(&hw->hw_lock, flags);
  2619. }
  2620. return work_done;
  2621. }
  2622. /* Parity errors seem to happen when Genesis is connected to a switch
  2623. * with no other ports present. Heartbeat error??
  2624. */
  2625. static void skge_mac_parity(struct skge_hw *hw, int port)
  2626. {
  2627. struct net_device *dev = hw->dev[port];
  2628. ++dev->stats.tx_heartbeat_errors;
  2629. if (hw->chip_id == CHIP_ID_GENESIS)
  2630. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
  2631. MFF_CLR_PERR);
  2632. else
  2633. /* HW-Bug #8: cleared by GMF_CLI_TX_FC instead of GMF_CLI_TX_PE */
  2634. skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T),
  2635. (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)
  2636. ? GMF_CLI_TX_FC : GMF_CLI_TX_PE);
  2637. }
  2638. static void skge_mac_intr(struct skge_hw *hw, int port)
  2639. {
  2640. if (hw->chip_id == CHIP_ID_GENESIS)
  2641. genesis_mac_intr(hw, port);
  2642. else
  2643. yukon_mac_intr(hw, port);
  2644. }
  2645. /* Handle device specific framing and timeout interrupts */
  2646. static void skge_error_irq(struct skge_hw *hw)
  2647. {
  2648. struct pci_dev *pdev = hw->pdev;
  2649. u32 hwstatus = skge_read32(hw, B0_HWE_ISRC);
  2650. if (hw->chip_id == CHIP_ID_GENESIS) {
  2651. /* clear xmac errors */
  2652. if (hwstatus & (IS_NO_STAT_M1|IS_NO_TIST_M1))
  2653. skge_write16(hw, RX_MFF_CTRL1, MFF_CLR_INSTAT);
  2654. if (hwstatus & (IS_NO_STAT_M2|IS_NO_TIST_M2))
  2655. skge_write16(hw, RX_MFF_CTRL2, MFF_CLR_INSTAT);
  2656. } else {
  2657. /* Timestamp (unused) overflow */
  2658. if (hwstatus & IS_IRQ_TIST_OV)
  2659. skge_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
  2660. }
  2661. if (hwstatus & IS_RAM_RD_PAR) {
  2662. dev_err(&pdev->dev, "Ram read data parity error\n");
  2663. skge_write16(hw, B3_RI_CTRL, RI_CLR_RD_PERR);
  2664. }
  2665. if (hwstatus & IS_RAM_WR_PAR) {
  2666. dev_err(&pdev->dev, "Ram write data parity error\n");
  2667. skge_write16(hw, B3_RI_CTRL, RI_CLR_WR_PERR);
  2668. }
  2669. if (hwstatus & IS_M1_PAR_ERR)
  2670. skge_mac_parity(hw, 0);
  2671. if (hwstatus & IS_M2_PAR_ERR)
  2672. skge_mac_parity(hw, 1);
  2673. if (hwstatus & IS_R1_PAR_ERR) {
  2674. dev_err(&pdev->dev, "%s: receive queue parity error\n",
  2675. hw->dev[0]->name);
  2676. skge_write32(hw, B0_R1_CSR, CSR_IRQ_CL_P);
  2677. }
  2678. if (hwstatus & IS_R2_PAR_ERR) {
  2679. dev_err(&pdev->dev, "%s: receive queue parity error\n",
  2680. hw->dev[1]->name);
  2681. skge_write32(hw, B0_R2_CSR, CSR_IRQ_CL_P);
  2682. }
  2683. if (hwstatus & (IS_IRQ_MST_ERR|IS_IRQ_STAT)) {
  2684. u16 pci_status, pci_cmd;
  2685. pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd);
  2686. pci_read_config_word(pdev, PCI_STATUS, &pci_status);
  2687. dev_err(&pdev->dev, "PCI error cmd=%#x status=%#x\n",
  2688. pci_cmd, pci_status);
  2689. /* Write the error bits back to clear them. */
  2690. pci_status &= PCI_STATUS_ERROR_BITS;
  2691. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
  2692. pci_write_config_word(pdev, PCI_COMMAND,
  2693. pci_cmd | PCI_COMMAND_SERR | PCI_COMMAND_PARITY);
  2694. pci_write_config_word(pdev, PCI_STATUS, pci_status);
  2695. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
  2696. /* if error still set then just ignore it */
  2697. hwstatus = skge_read32(hw, B0_HWE_ISRC);
  2698. if (hwstatus & IS_IRQ_STAT) {
  2699. dev_warn(&hw->pdev->dev, "unable to clear error (so ignoring them)\n");
  2700. hw->intr_mask &= ~IS_HW_ERR;
  2701. }
  2702. }
  2703. }
  2704. /*
  2705. * Interrupt from PHY are handled in tasklet (softirq)
  2706. * because accessing phy registers requires spin wait which might
  2707. * cause excess interrupt latency.
  2708. */
  2709. static void skge_extirq(unsigned long arg)
  2710. {
  2711. struct skge_hw *hw = (struct skge_hw *) arg;
  2712. int port;
  2713. for (port = 0; port < hw->ports; port++) {
  2714. struct net_device *dev = hw->dev[port];
  2715. if (netif_running(dev)) {
  2716. struct skge_port *skge = netdev_priv(dev);
  2717. spin_lock(&hw->phy_lock);
  2718. if (hw->chip_id != CHIP_ID_GENESIS)
  2719. yukon_phy_intr(skge);
  2720. else if (hw->phy_type == SK_PHY_BCOM)
  2721. bcom_phy_intr(skge);
  2722. spin_unlock(&hw->phy_lock);
  2723. }
  2724. }
  2725. spin_lock_irq(&hw->hw_lock);
  2726. hw->intr_mask |= IS_EXT_REG;
  2727. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2728. skge_read32(hw, B0_IMSK);
  2729. spin_unlock_irq(&hw->hw_lock);
  2730. }
  2731. static irqreturn_t skge_intr(int irq, void *dev_id)
  2732. {
  2733. struct skge_hw *hw = dev_id;
  2734. u32 status;
  2735. int handled = 0;
  2736. spin_lock(&hw->hw_lock);
  2737. /* Reading this register masks IRQ */
  2738. status = skge_read32(hw, B0_SP_ISRC);
  2739. if (status == 0 || status == ~0)
  2740. goto out;
  2741. handled = 1;
  2742. status &= hw->intr_mask;
  2743. if (status & IS_EXT_REG) {
  2744. hw->intr_mask &= ~IS_EXT_REG;
  2745. tasklet_schedule(&hw->phy_task);
  2746. }
  2747. if (status & (IS_XA1_F|IS_R1_F)) {
  2748. struct skge_port *skge = netdev_priv(hw->dev[0]);
  2749. hw->intr_mask &= ~(IS_XA1_F|IS_R1_F);
  2750. napi_schedule(&skge->napi);
  2751. }
  2752. if (status & IS_PA_TO_TX1)
  2753. skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX1);
  2754. if (status & IS_PA_TO_RX1) {
  2755. ++hw->dev[0]->stats.rx_over_errors;
  2756. skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX1);
  2757. }
  2758. if (status & IS_MAC1)
  2759. skge_mac_intr(hw, 0);
  2760. if (hw->dev[1]) {
  2761. struct skge_port *skge = netdev_priv(hw->dev[1]);
  2762. if (status & (IS_XA2_F|IS_R2_F)) {
  2763. hw->intr_mask &= ~(IS_XA2_F|IS_R2_F);
  2764. napi_schedule(&skge->napi);
  2765. }
  2766. if (status & IS_PA_TO_RX2) {
  2767. ++hw->dev[1]->stats.rx_over_errors;
  2768. skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX2);
  2769. }
  2770. if (status & IS_PA_TO_TX2)
  2771. skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX2);
  2772. if (status & IS_MAC2)
  2773. skge_mac_intr(hw, 1);
  2774. }
  2775. if (status & IS_HW_ERR)
  2776. skge_error_irq(hw);
  2777. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2778. skge_read32(hw, B0_IMSK);
  2779. out:
  2780. spin_unlock(&hw->hw_lock);
  2781. return IRQ_RETVAL(handled);
  2782. }
  2783. #ifdef CONFIG_NET_POLL_CONTROLLER
  2784. static void skge_netpoll(struct net_device *dev)
  2785. {
  2786. struct skge_port *skge = netdev_priv(dev);
  2787. disable_irq(dev->irq);
  2788. skge_intr(dev->irq, skge->hw);
  2789. enable_irq(dev->irq);
  2790. }
  2791. #endif
  2792. static int skge_set_mac_address(struct net_device *dev, void *p)
  2793. {
  2794. struct skge_port *skge = netdev_priv(dev);
  2795. struct skge_hw *hw = skge->hw;
  2796. unsigned port = skge->port;
  2797. const struct sockaddr *addr = p;
  2798. u16 ctrl;
  2799. if (!is_valid_ether_addr(addr->sa_data))
  2800. return -EADDRNOTAVAIL;
  2801. memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
  2802. if (!netif_running(dev)) {
  2803. memcpy_toio(hw->regs + B2_MAC_1 + port*8, dev->dev_addr, ETH_ALEN);
  2804. memcpy_toio(hw->regs + B2_MAC_2 + port*8, dev->dev_addr, ETH_ALEN);
  2805. } else {
  2806. /* disable Rx */
  2807. spin_lock_bh(&hw->phy_lock);
  2808. ctrl = gma_read16(hw, port, GM_GP_CTRL);
  2809. gma_write16(hw, port, GM_GP_CTRL, ctrl & ~GM_GPCR_RX_ENA);
  2810. memcpy_toio(hw->regs + B2_MAC_1 + port*8, dev->dev_addr, ETH_ALEN);
  2811. memcpy_toio(hw->regs + B2_MAC_2 + port*8, dev->dev_addr, ETH_ALEN);
  2812. if (hw->chip_id == CHIP_ID_GENESIS)
  2813. xm_outaddr(hw, port, XM_SA, dev->dev_addr);
  2814. else {
  2815. gma_set_addr(hw, port, GM_SRC_ADDR_1L, dev->dev_addr);
  2816. gma_set_addr(hw, port, GM_SRC_ADDR_2L, dev->dev_addr);
  2817. }
  2818. gma_write16(hw, port, GM_GP_CTRL, ctrl);
  2819. spin_unlock_bh(&hw->phy_lock);
  2820. }
  2821. return 0;
  2822. }
  2823. static const struct {
  2824. u8 id;
  2825. const char *name;
  2826. } skge_chips[] = {
  2827. { CHIP_ID_GENESIS, "Genesis" },
  2828. { CHIP_ID_YUKON, "Yukon" },
  2829. { CHIP_ID_YUKON_LITE, "Yukon-Lite"},
  2830. { CHIP_ID_YUKON_LP, "Yukon-LP"},
  2831. };
  2832. static const char *skge_board_name(const struct skge_hw *hw)
  2833. {
  2834. int i;
  2835. static char buf[16];
  2836. for (i = 0; i < ARRAY_SIZE(skge_chips); i++)
  2837. if (skge_chips[i].id == hw->chip_id)
  2838. return skge_chips[i].name;
  2839. snprintf(buf, sizeof buf, "chipid 0x%x", hw->chip_id);
  2840. return buf;
  2841. }
  2842. /*
  2843. * Setup the board data structure, but don't bring up
  2844. * the port(s)
  2845. */
  2846. static int skge_reset(struct skge_hw *hw)
  2847. {
  2848. u32 reg;
  2849. u16 ctst, pci_status;
  2850. u8 t8, mac_cfg, pmd_type;
  2851. int i;
  2852. ctst = skge_read16(hw, B0_CTST);
  2853. /* do a SW reset */
  2854. skge_write8(hw, B0_CTST, CS_RST_SET);
  2855. skge_write8(hw, B0_CTST, CS_RST_CLR);
  2856. /* clear PCI errors, if any */
  2857. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
  2858. skge_write8(hw, B2_TST_CTRL2, 0);
  2859. pci_read_config_word(hw->pdev, PCI_STATUS, &pci_status);
  2860. pci_write_config_word(hw->pdev, PCI_STATUS,
  2861. pci_status | PCI_STATUS_ERROR_BITS);
  2862. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
  2863. skge_write8(hw, B0_CTST, CS_MRST_CLR);
  2864. /* restore CLK_RUN bits (for Yukon-Lite) */
  2865. skge_write16(hw, B0_CTST,
  2866. ctst & (CS_CLK_RUN_HOT|CS_CLK_RUN_RST|CS_CLK_RUN_ENA));
  2867. hw->chip_id = skge_read8(hw, B2_CHIP_ID);
  2868. hw->phy_type = skge_read8(hw, B2_E_1) & 0xf;
  2869. pmd_type = skge_read8(hw, B2_PMD_TYP);
  2870. hw->copper = (pmd_type == 'T' || pmd_type == '1');
  2871. switch (hw->chip_id) {
  2872. case CHIP_ID_GENESIS:
  2873. switch (hw->phy_type) {
  2874. case SK_PHY_XMAC:
  2875. hw->phy_addr = PHY_ADDR_XMAC;
  2876. break;
  2877. case SK_PHY_BCOM:
  2878. hw->phy_addr = PHY_ADDR_BCOM;
  2879. break;
  2880. default:
  2881. dev_err(&hw->pdev->dev, "unsupported phy type 0x%x\n",
  2882. hw->phy_type);
  2883. return -EOPNOTSUPP;
  2884. }
  2885. break;
  2886. case CHIP_ID_YUKON:
  2887. case CHIP_ID_YUKON_LITE:
  2888. case CHIP_ID_YUKON_LP:
  2889. if (hw->phy_type < SK_PHY_MARV_COPPER && pmd_type != 'S')
  2890. hw->copper = 1;
  2891. hw->phy_addr = PHY_ADDR_MARV;
  2892. break;
  2893. default:
  2894. dev_err(&hw->pdev->dev, "unsupported chip type 0x%x\n",
  2895. hw->chip_id);
  2896. return -EOPNOTSUPP;
  2897. }
  2898. mac_cfg = skge_read8(hw, B2_MAC_CFG);
  2899. hw->ports = (mac_cfg & CFG_SNG_MAC) ? 1 : 2;
  2900. hw->chip_rev = (mac_cfg & CFG_CHIP_R_MSK) >> 4;
  2901. /* read the adapters RAM size */
  2902. t8 = skge_read8(hw, B2_E_0);
  2903. if (hw->chip_id == CHIP_ID_GENESIS) {
  2904. if (t8 == 3) {
  2905. /* special case: 4 x 64k x 36, offset = 0x80000 */
  2906. hw->ram_size = 0x100000;
  2907. hw->ram_offset = 0x80000;
  2908. } else
  2909. hw->ram_size = t8 * 512;
  2910. } else if (t8 == 0)
  2911. hw->ram_size = 0x20000;
  2912. else
  2913. hw->ram_size = t8 * 4096;
  2914. hw->intr_mask = IS_HW_ERR;
  2915. /* Use PHY IRQ for all but fiber based Genesis board */
  2916. if (!(hw->chip_id == CHIP_ID_GENESIS && hw->phy_type == SK_PHY_XMAC))
  2917. hw->intr_mask |= IS_EXT_REG;
  2918. if (hw->chip_id == CHIP_ID_GENESIS)
  2919. genesis_init(hw);
  2920. else {
  2921. /* switch power to VCC (WA for VAUX problem) */
  2922. skge_write8(hw, B0_POWER_CTRL,
  2923. PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);
  2924. /* avoid boards with stuck Hardware error bits */
  2925. if ((skge_read32(hw, B0_ISRC) & IS_HW_ERR) &&
  2926. (skge_read32(hw, B0_HWE_ISRC) & IS_IRQ_SENSOR)) {
  2927. dev_warn(&hw->pdev->dev, "stuck hardware sensor bit\n");
  2928. hw->intr_mask &= ~IS_HW_ERR;
  2929. }
  2930. /* Clear PHY COMA */
  2931. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
  2932. pci_read_config_dword(hw->pdev, PCI_DEV_REG1, &reg);
  2933. reg &= ~PCI_PHY_COMA;
  2934. pci_write_config_dword(hw->pdev, PCI_DEV_REG1, reg);
  2935. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
  2936. for (i = 0; i < hw->ports; i++) {
  2937. skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_SET);
  2938. skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_CLR);
  2939. }
  2940. }
  2941. /* turn off hardware timer (unused) */
  2942. skge_write8(hw, B2_TI_CTRL, TIM_STOP);
  2943. skge_write8(hw, B2_TI_CTRL, TIM_CLR_IRQ);
  2944. skge_write8(hw, B0_LED, LED_STAT_ON);
  2945. /* enable the Tx Arbiters */
  2946. for (i = 0; i < hw->ports; i++)
  2947. skge_write8(hw, SK_REG(i, TXA_CTRL), TXA_ENA_ARB);
  2948. /* Initialize ram interface */
  2949. skge_write16(hw, B3_RI_CTRL, RI_RST_CLR);
  2950. skge_write8(hw, B3_RI_WTO_R1, SK_RI_TO_53);
  2951. skge_write8(hw, B3_RI_WTO_XA1, SK_RI_TO_53);
  2952. skge_write8(hw, B3_RI_WTO_XS1, SK_RI_TO_53);
  2953. skge_write8(hw, B3_RI_RTO_R1, SK_RI_TO_53);
  2954. skge_write8(hw, B3_RI_RTO_XA1, SK_RI_TO_53);
  2955. skge_write8(hw, B3_RI_RTO_XS1, SK_RI_TO_53);
  2956. skge_write8(hw, B3_RI_WTO_R2, SK_RI_TO_53);
  2957. skge_write8(hw, B3_RI_WTO_XA2, SK_RI_TO_53);
  2958. skge_write8(hw, B3_RI_WTO_XS2, SK_RI_TO_53);
  2959. skge_write8(hw, B3_RI_RTO_R2, SK_RI_TO_53);
  2960. skge_write8(hw, B3_RI_RTO_XA2, SK_RI_TO_53);
  2961. skge_write8(hw, B3_RI_RTO_XS2, SK_RI_TO_53);
  2962. skge_write32(hw, B0_HWE_IMSK, IS_ERR_MSK);
  2963. /* Set interrupt moderation for Transmit only
  2964. * Receive interrupts avoided by NAPI
  2965. */
  2966. skge_write32(hw, B2_IRQM_MSK, IS_XA1_F|IS_XA2_F);
  2967. skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, 100));
  2968. skge_write32(hw, B2_IRQM_CTRL, TIM_START);
  2969. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2970. for (i = 0; i < hw->ports; i++) {
  2971. if (hw->chip_id == CHIP_ID_GENESIS)
  2972. genesis_reset(hw, i);
  2973. else
  2974. yukon_reset(hw, i);
  2975. }
  2976. return 0;
  2977. }
  2978. #ifdef CONFIG_SKGE_DEBUG
  2979. static struct dentry *skge_debug;
  2980. static int skge_debug_show(struct seq_file *seq, void *v)
  2981. {
  2982. struct net_device *dev = seq->private;
  2983. const struct skge_port *skge = netdev_priv(dev);
  2984. const struct skge_hw *hw = skge->hw;
  2985. const struct skge_element *e;
  2986. if (!netif_running(dev))
  2987. return -ENETDOWN;
  2988. seq_printf(seq, "IRQ src=%x mask=%x\n", skge_read32(hw, B0_ISRC),
  2989. skge_read32(hw, B0_IMSK));
  2990. seq_printf(seq, "Tx Ring: (%d)\n", skge_avail(&skge->tx_ring));
  2991. for (e = skge->tx_ring.to_clean; e != skge->tx_ring.to_use; e = e->next) {
  2992. const struct skge_tx_desc *t = e->desc;
  2993. seq_printf(seq, "%#x dma=%#x%08x %#x csum=%#x/%x/%x\n",
  2994. t->control, t->dma_hi, t->dma_lo, t->status,
  2995. t->csum_offs, t->csum_write, t->csum_start);
  2996. }
  2997. seq_printf(seq, "\nRx Ring:\n");
  2998. for (e = skge->rx_ring.to_clean; ; e = e->next) {
  2999. const struct skge_rx_desc *r = e->desc;
  3000. if (r->control & BMU_OWN)
  3001. break;
  3002. seq_printf(seq, "%#x dma=%#x%08x %#x %#x csum=%#x/%x\n",
  3003. r->control, r->dma_hi, r->dma_lo, r->status,
  3004. r->timestamp, r->csum1, r->csum1_start);
  3005. }
  3006. return 0;
  3007. }
  3008. static int skge_debug_open(struct inode *inode, struct file *file)
  3009. {
  3010. return single_open(file, skge_debug_show, inode->i_private);
  3011. }
  3012. static const struct file_operations skge_debug_fops = {
  3013. .owner = THIS_MODULE,
  3014. .open = skge_debug_open,
  3015. .read = seq_read,
  3016. .llseek = seq_lseek,
  3017. .release = single_release,
  3018. };
  3019. /*
  3020. * Use network device events to create/remove/rename
  3021. * debugfs file entries
  3022. */
  3023. static int skge_device_event(struct notifier_block *unused,
  3024. unsigned long event, void *ptr)
  3025. {
  3026. struct net_device *dev = ptr;
  3027. struct skge_port *skge;
  3028. struct dentry *d;
  3029. if (dev->netdev_ops->ndo_open != &skge_up || !skge_debug)
  3030. goto done;
  3031. skge = netdev_priv(dev);
  3032. switch (event) {
  3033. case NETDEV_CHANGENAME:
  3034. if (skge->debugfs) {
  3035. d = debugfs_rename(skge_debug, skge->debugfs,
  3036. skge_debug, dev->name);
  3037. if (d)
  3038. skge->debugfs = d;
  3039. else {
  3040. netdev_info(dev, "rename failed\n");
  3041. debugfs_remove(skge->debugfs);
  3042. }
  3043. }
  3044. break;
  3045. case NETDEV_GOING_DOWN:
  3046. if (skge->debugfs) {
  3047. debugfs_remove(skge->debugfs);
  3048. skge->debugfs = NULL;
  3049. }
  3050. break;
  3051. case NETDEV_UP:
  3052. d = debugfs_create_file(dev->name, S_IRUGO,
  3053. skge_debug, dev,
  3054. &skge_debug_fops);
  3055. if (!d || IS_ERR(d))
  3056. netdev_info(dev, "debugfs create failed\n");
  3057. else
  3058. skge->debugfs = d;
  3059. break;
  3060. }
  3061. done:
  3062. return NOTIFY_DONE;
  3063. }
  3064. static struct notifier_block skge_notifier = {
  3065. .notifier_call = skge_device_event,
  3066. };
  3067. static __init void skge_debug_init(void)
  3068. {
  3069. struct dentry *ent;
  3070. ent = debugfs_create_dir("skge", NULL);
  3071. if (!ent || IS_ERR(ent)) {
  3072. pr_info("debugfs create directory failed\n");
  3073. return;
  3074. }
  3075. skge_debug = ent;
  3076. register_netdevice_notifier(&skge_notifier);
  3077. }
  3078. static __exit void skge_debug_cleanup(void)
  3079. {
  3080. if (skge_debug) {
  3081. unregister_netdevice_notifier(&skge_notifier);
  3082. debugfs_remove(skge_debug);
  3083. skge_debug = NULL;
  3084. }
  3085. }
  3086. #else
  3087. #define skge_debug_init()
  3088. #define skge_debug_cleanup()
  3089. #endif
  3090. static const struct net_device_ops skge_netdev_ops = {
  3091. .ndo_open = skge_up,
  3092. .ndo_stop = skge_down,
  3093. .ndo_start_xmit = skge_xmit_frame,
  3094. .ndo_do_ioctl = skge_ioctl,
  3095. .ndo_get_stats = skge_get_stats,
  3096. .ndo_tx_timeout = skge_tx_timeout,
  3097. .ndo_change_mtu = skge_change_mtu,
  3098. .ndo_validate_addr = eth_validate_addr,
  3099. .ndo_set_multicast_list = skge_set_multicast,
  3100. .ndo_set_mac_address = skge_set_mac_address,
  3101. #ifdef CONFIG_NET_POLL_CONTROLLER
  3102. .ndo_poll_controller = skge_netpoll,
  3103. #endif
  3104. };
  3105. /* Initialize network device */
  3106. static struct net_device *skge_devinit(struct skge_hw *hw, int port,
  3107. int highmem)
  3108. {
  3109. struct skge_port *skge;
  3110. struct net_device *dev = alloc_etherdev(sizeof(*skge));
  3111. if (!dev) {
  3112. dev_err(&hw->pdev->dev, "etherdev alloc failed\n");
  3113. return NULL;
  3114. }
  3115. SET_NETDEV_DEV(dev, &hw->pdev->dev);
  3116. dev->netdev_ops = &skge_netdev_ops;
  3117. dev->ethtool_ops = &skge_ethtool_ops;
  3118. dev->watchdog_timeo = TX_WATCHDOG;
  3119. dev->irq = hw->pdev->irq;
  3120. if (highmem)
  3121. dev->features |= NETIF_F_HIGHDMA;
  3122. skge = netdev_priv(dev);
  3123. netif_napi_add(dev, &skge->napi, skge_poll, NAPI_WEIGHT);
  3124. skge->netdev = dev;
  3125. skge->hw = hw;
  3126. skge->msg_enable = netif_msg_init(debug, default_msg);
  3127. skge->tx_ring.count = DEFAULT_TX_RING_SIZE;
  3128. skge->rx_ring.count = DEFAULT_RX_RING_SIZE;
  3129. /* Auto speed and flow control */
  3130. skge->autoneg = AUTONEG_ENABLE;
  3131. skge->flow_control = FLOW_MODE_SYM_OR_REM;
  3132. skge->duplex = -1;
  3133. skge->speed = -1;
  3134. skge->advertising = skge_supported_modes(hw);
  3135. if (device_can_wakeup(&hw->pdev->dev)) {
  3136. skge->wol = wol_supported(hw) & WAKE_MAGIC;
  3137. device_set_wakeup_enable(&hw->pdev->dev, skge->wol);
  3138. }
  3139. hw->dev[port] = dev;
  3140. skge->port = port;
  3141. /* Only used for Genesis XMAC */
  3142. setup_timer(&skge->link_timer, xm_link_timer, (unsigned long) skge);
  3143. if (hw->chip_id != CHIP_ID_GENESIS) {
  3144. dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
  3145. skge->rx_csum = 1;
  3146. }
  3147. dev->features |= NETIF_F_GRO;
  3148. /* read the mac address */
  3149. memcpy_fromio(dev->dev_addr, hw->regs + B2_MAC_1 + port*8, ETH_ALEN);
  3150. memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
  3151. return dev;
  3152. }
  3153. static void __devinit skge_show_addr(struct net_device *dev)
  3154. {
  3155. const struct skge_port *skge = netdev_priv(dev);
  3156. netif_info(skge, probe, skge->netdev, "addr %pM\n", dev->dev_addr);
  3157. }
  3158. static int only_32bit_dma;
  3159. static int __devinit skge_probe(struct pci_dev *pdev,
  3160. const struct pci_device_id *ent)
  3161. {
  3162. struct net_device *dev, *dev1;
  3163. struct skge_hw *hw;
  3164. int err, using_dac = 0;
  3165. err = pci_enable_device(pdev);
  3166. if (err) {
  3167. dev_err(&pdev->dev, "cannot enable PCI device\n");
  3168. goto err_out;
  3169. }
  3170. err = pci_request_regions(pdev, DRV_NAME);
  3171. if (err) {
  3172. dev_err(&pdev->dev, "cannot obtain PCI resources\n");
  3173. goto err_out_disable_pdev;
  3174. }
  3175. pci_set_master(pdev);
  3176. if (!only_32bit_dma && !pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
  3177. using_dac = 1;
  3178. err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
  3179. } else if (!(err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)))) {
  3180. using_dac = 0;
  3181. err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
  3182. }
  3183. if (err) {
  3184. dev_err(&pdev->dev, "no usable DMA configuration\n");
  3185. goto err_out_free_regions;
  3186. }
  3187. #ifdef __BIG_ENDIAN
  3188. /* byte swap descriptors in hardware */
  3189. {
  3190. u32 reg;
  3191. pci_read_config_dword(pdev, PCI_DEV_REG2, &reg);
  3192. reg |= PCI_REV_DESC;
  3193. pci_write_config_dword(pdev, PCI_DEV_REG2, reg);
  3194. }
  3195. #endif
  3196. err = -ENOMEM;
  3197. /* space for skge@pci:0000:04:00.0 */
  3198. hw = kzalloc(sizeof(*hw) + strlen(DRV_NAME "@pci:")
  3199. + strlen(pci_name(pdev)) + 1, GFP_KERNEL);
  3200. if (!hw) {
  3201. dev_err(&pdev->dev, "cannot allocate hardware struct\n");
  3202. goto err_out_free_regions;
  3203. }
  3204. sprintf(hw->irq_name, DRV_NAME "@pci:%s", pci_name(pdev));
  3205. hw->pdev = pdev;
  3206. spin_lock_init(&hw->hw_lock);
  3207. spin_lock_init(&hw->phy_lock);
  3208. tasklet_init(&hw->phy_task, skge_extirq, (unsigned long) hw);
  3209. hw->regs = ioremap_nocache(pci_resource_start(pdev, 0), 0x4000);
  3210. if (!hw->regs) {
  3211. dev_err(&pdev->dev, "cannot map device registers\n");
  3212. goto err_out_free_hw;
  3213. }
  3214. err = skge_reset(hw);
  3215. if (err)
  3216. goto err_out_iounmap;
  3217. pr_info("%s addr 0x%llx irq %d chip %s rev %d\n",
  3218. DRV_VERSION,
  3219. (unsigned long long)pci_resource_start(pdev, 0), pdev->irq,
  3220. skge_board_name(hw), hw->chip_rev);
  3221. dev = skge_devinit(hw, 0, using_dac);
  3222. if (!dev)
  3223. goto err_out_led_off;
  3224. /* Some motherboards are broken and has zero in ROM. */
  3225. if (!is_valid_ether_addr(dev->dev_addr))
  3226. dev_warn(&pdev->dev, "bad (zero?) ethernet address in rom\n");
  3227. err = register_netdev(dev);
  3228. if (err) {
  3229. dev_err(&pdev->dev, "cannot register net device\n");
  3230. goto err_out_free_netdev;
  3231. }
  3232. err = request_irq(pdev->irq, skge_intr, IRQF_SHARED, hw->irq_name, hw);
  3233. if (err) {
  3234. dev_err(&pdev->dev, "%s: cannot assign irq %d\n",
  3235. dev->name, pdev->irq);
  3236. goto err_out_unregister;
  3237. }
  3238. skge_show_addr(dev);
  3239. if (hw->ports > 1) {
  3240. dev1 = skge_devinit(hw, 1, using_dac);
  3241. if (dev1 && register_netdev(dev1) == 0)
  3242. skge_show_addr(dev1);
  3243. else {
  3244. /* Failure to register second port need not be fatal */
  3245. dev_warn(&pdev->dev, "register of second port failed\n");
  3246. hw->dev[1] = NULL;
  3247. hw->ports = 1;
  3248. if (dev1)
  3249. free_netdev(dev1);
  3250. }
  3251. }
  3252. pci_set_drvdata(pdev, hw);
  3253. return 0;
  3254. err_out_unregister:
  3255. unregister_netdev(dev);
  3256. err_out_free_netdev:
  3257. free_netdev(dev);
  3258. err_out_led_off:
  3259. skge_write16(hw, B0_LED, LED_STAT_OFF);
  3260. err_out_iounmap:
  3261. iounmap(hw->regs);
  3262. err_out_free_hw:
  3263. kfree(hw);
  3264. err_out_free_regions:
  3265. pci_release_regions(pdev);
  3266. err_out_disable_pdev:
  3267. pci_disable_device(pdev);
  3268. pci_set_drvdata(pdev, NULL);
  3269. err_out:
  3270. return err;
  3271. }
  3272. static void __devexit skge_remove(struct pci_dev *pdev)
  3273. {
  3274. struct skge_hw *hw = pci_get_drvdata(pdev);
  3275. struct net_device *dev0, *dev1;
  3276. if (!hw)
  3277. return;
  3278. dev1 = hw->dev[1];
  3279. if (dev1)
  3280. unregister_netdev(dev1);
  3281. dev0 = hw->dev[0];
  3282. unregister_netdev(dev0);
  3283. tasklet_disable(&hw->phy_task);
  3284. spin_lock_irq(&hw->hw_lock);
  3285. hw->intr_mask = 0;
  3286. skge_write32(hw, B0_IMSK, 0);
  3287. skge_read32(hw, B0_IMSK);
  3288. spin_unlock_irq(&hw->hw_lock);
  3289. skge_write16(hw, B0_LED, LED_STAT_OFF);
  3290. skge_write8(hw, B0_CTST, CS_RST_SET);
  3291. free_irq(pdev->irq, hw);
  3292. pci_release_regions(pdev);
  3293. pci_disable_device(pdev);
  3294. if (dev1)
  3295. free_netdev(dev1);
  3296. free_netdev(dev0);
  3297. iounmap(hw->regs);
  3298. kfree(hw);
  3299. pci_set_drvdata(pdev, NULL);
  3300. }
  3301. #ifdef CONFIG_PM
  3302. static int skge_suspend(struct device *dev)
  3303. {
  3304. struct pci_dev *pdev = to_pci_dev(dev);
  3305. struct skge_hw *hw = pci_get_drvdata(pdev);
  3306. int i;
  3307. if (!hw)
  3308. return 0;
  3309. for (i = 0; i < hw->ports; i++) {
  3310. struct net_device *dev = hw->dev[i];
  3311. struct skge_port *skge = netdev_priv(dev);
  3312. if (netif_running(dev))
  3313. skge_down(dev);
  3314. if (skge->wol)
  3315. skge_wol_init(skge);
  3316. }
  3317. skge_write32(hw, B0_IMSK, 0);
  3318. return 0;
  3319. }
  3320. static int skge_resume(struct device *dev)
  3321. {
  3322. struct pci_dev *pdev = to_pci_dev(dev);
  3323. struct skge_hw *hw = pci_get_drvdata(pdev);
  3324. int i, err;
  3325. if (!hw)
  3326. return 0;
  3327. err = skge_reset(hw);
  3328. if (err)
  3329. goto out;
  3330. for (i = 0; i < hw->ports; i++) {
  3331. struct net_device *dev = hw->dev[i];
  3332. if (netif_running(dev)) {
  3333. err = skge_up(dev);
  3334. if (err) {
  3335. netdev_err(dev, "could not up: %d\n", err);
  3336. dev_close(dev);
  3337. goto out;
  3338. }
  3339. }
  3340. }
  3341. out:
  3342. return err;
  3343. }
  3344. static SIMPLE_DEV_PM_OPS(skge_pm_ops, skge_suspend, skge_resume);
  3345. #define SKGE_PM_OPS (&skge_pm_ops)
  3346. #else
  3347. #define SKGE_PM_OPS NULL
  3348. #endif
  3349. static void skge_shutdown(struct pci_dev *pdev)
  3350. {
  3351. struct skge_hw *hw = pci_get_drvdata(pdev);
  3352. int i;
  3353. if (!hw)
  3354. return;
  3355. for (i = 0; i < hw->ports; i++) {
  3356. struct net_device *dev = hw->dev[i];
  3357. struct skge_port *skge = netdev_priv(dev);
  3358. if (skge->wol)
  3359. skge_wol_init(skge);
  3360. }
  3361. pci_wake_from_d3(pdev, device_may_wakeup(&pdev->dev));
  3362. pci_set_power_state(pdev, PCI_D3hot);
  3363. }
  3364. static struct pci_driver skge_driver = {
  3365. .name = DRV_NAME,
  3366. .id_table = skge_id_table,
  3367. .probe = skge_probe,
  3368. .remove = __devexit_p(skge_remove),
  3369. .shutdown = skge_shutdown,
  3370. .driver.pm = SKGE_PM_OPS,
  3371. };
  3372. static struct dmi_system_id skge_32bit_dma_boards[] = {
  3373. {
  3374. .ident = "Gigabyte nForce boards",
  3375. .matches = {
  3376. DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co"),
  3377. DMI_MATCH(DMI_BOARD_NAME, "nForce"),
  3378. },
  3379. },
  3380. {}
  3381. };
  3382. static int __init skge_init_module(void)
  3383. {
  3384. if (dmi_check_system(skge_32bit_dma_boards))
  3385. only_32bit_dma = 1;
  3386. skge_debug_init();
  3387. return pci_register_driver(&skge_driver);
  3388. }
  3389. static void __exit skge_cleanup_module(void)
  3390. {
  3391. pci_unregister_driver(&skge_driver);
  3392. skge_debug_cleanup();
  3393. }
  3394. module_init(skge_init_module);
  3395. module_exit(skge_cleanup_module);