t3_hw.c 105 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535
  1. /*
  2. * Copyright (c) 2003-2007 Chelsio, Inc. All rights reserved.
  3. *
  4. * This software is available to you under a choice of one of two
  5. * licenses. You may choose to be licensed under the terms of the GNU
  6. * General Public License (GPL) Version 2, available from the file
  7. * COPYING in the main directory of this source tree, or the
  8. * OpenIB.org BSD license below:
  9. *
  10. * Redistribution and use in source and binary forms, with or
  11. * without modification, are permitted provided that the following
  12. * conditions are met:
  13. *
  14. * - Redistributions of source code must retain the above
  15. * copyright notice, this list of conditions and the following
  16. * disclaimer.
  17. *
  18. * - Redistributions in binary form must reproduce the above
  19. * copyright notice, this list of conditions and the following
  20. * disclaimer in the documentation and/or other materials
  21. * provided with the distribution.
  22. *
  23. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  24. * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  25. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  26. * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  27. * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  28. * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  29. * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  30. * SOFTWARE.
  31. */
  32. #include "common.h"
  33. #include "regs.h"
  34. #include "sge_defs.h"
  35. #include "firmware_exports.h"
  36. /**
  37. * t3_wait_op_done_val - wait until an operation is completed
  38. * @adapter: the adapter performing the operation
  39. * @reg: the register to check for completion
  40. * @mask: a single-bit field within @reg that indicates completion
  41. * @polarity: the value of the field when the operation is completed
  42. * @attempts: number of check iterations
  43. * @delay: delay in usecs between iterations
  44. * @valp: where to store the value of the register at completion time
  45. *
  46. * Wait until an operation is completed by checking a bit in a register
  47. * up to @attempts times. If @valp is not NULL the value of the register
  48. * at the time it indicated completion is stored there. Returns 0 if the
  49. * operation completes and -EAGAIN otherwise.
  50. */
  51. int t3_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
  52. int polarity, int attempts, int delay, u32 *valp)
  53. {
  54. while (1) {
  55. u32 val = t3_read_reg(adapter, reg);
  56. if (!!(val & mask) == polarity) {
  57. if (valp)
  58. *valp = val;
  59. return 0;
  60. }
  61. if (--attempts == 0)
  62. return -EAGAIN;
  63. if (delay)
  64. udelay(delay);
  65. }
  66. }
  67. /**
  68. * t3_write_regs - write a bunch of registers
  69. * @adapter: the adapter to program
  70. * @p: an array of register address/register value pairs
  71. * @n: the number of address/value pairs
  72. * @offset: register address offset
  73. *
  74. * Takes an array of register address/register value pairs and writes each
  75. * value to the corresponding register. Register addresses are adjusted
  76. * by the supplied offset.
  77. */
  78. void t3_write_regs(struct adapter *adapter, const struct addr_val_pair *p,
  79. int n, unsigned int offset)
  80. {
  81. while (n--) {
  82. t3_write_reg(adapter, p->reg_addr + offset, p->val);
  83. p++;
  84. }
  85. }
  86. /**
  87. * t3_set_reg_field - set a register field to a value
  88. * @adapter: the adapter to program
  89. * @addr: the register address
  90. * @mask: specifies the portion of the register to modify
  91. * @val: the new value for the register field
  92. *
  93. * Sets a register field specified by the supplied mask to the
  94. * given value.
  95. */
  96. void t3_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
  97. u32 val)
  98. {
  99. u32 v = t3_read_reg(adapter, addr) & ~mask;
  100. t3_write_reg(adapter, addr, v | val);
  101. t3_read_reg(adapter, addr); /* flush */
  102. }
  103. /**
  104. * t3_read_indirect - read indirectly addressed registers
  105. * @adap: the adapter
  106. * @addr_reg: register holding the indirect address
  107. * @data_reg: register holding the value of the indirect register
  108. * @vals: where the read register values are stored
  109. * @start_idx: index of first indirect register to read
  110. * @nregs: how many indirect registers to read
  111. *
  112. * Reads registers that are accessed indirectly through an address/data
  113. * register pair.
  114. */
  115. void t3_read_indirect(struct adapter *adap, unsigned int addr_reg,
  116. unsigned int data_reg, u32 *vals, unsigned int nregs,
  117. unsigned int start_idx)
  118. {
  119. while (nregs--) {
  120. t3_write_reg(adap, addr_reg, start_idx);
  121. *vals++ = t3_read_reg(adap, data_reg);
  122. start_idx++;
  123. }
  124. }
  125. /**
  126. * t3_mc7_bd_read - read from MC7 through backdoor accesses
  127. * @mc7: identifies MC7 to read from
  128. * @start: index of first 64-bit word to read
  129. * @n: number of 64-bit words to read
  130. * @buf: where to store the read result
  131. *
  132. * Read n 64-bit words from MC7 starting at word start, using backdoor
  133. * accesses.
  134. */
  135. int t3_mc7_bd_read(struct mc7 *mc7, unsigned int start, unsigned int n,
  136. u64 *buf)
  137. {
  138. static const int shift[] = { 0, 0, 16, 24 };
  139. static const int step[] = { 0, 32, 16, 8 };
  140. unsigned int size64 = mc7->size / 8; /* # of 64-bit words */
  141. struct adapter *adap = mc7->adapter;
  142. if (start >= size64 || start + n > size64)
  143. return -EINVAL;
  144. start *= (8 << mc7->width);
  145. while (n--) {
  146. int i;
  147. u64 val64 = 0;
  148. for (i = (1 << mc7->width) - 1; i >= 0; --i) {
  149. int attempts = 10;
  150. u32 val;
  151. t3_write_reg(adap, mc7->offset + A_MC7_BD_ADDR, start);
  152. t3_write_reg(adap, mc7->offset + A_MC7_BD_OP, 0);
  153. val = t3_read_reg(adap, mc7->offset + A_MC7_BD_OP);
  154. while ((val & F_BUSY) && attempts--)
  155. val = t3_read_reg(adap,
  156. mc7->offset + A_MC7_BD_OP);
  157. if (val & F_BUSY)
  158. return -EIO;
  159. val = t3_read_reg(adap, mc7->offset + A_MC7_BD_DATA1);
  160. if (mc7->width == 0) {
  161. val64 = t3_read_reg(adap,
  162. mc7->offset +
  163. A_MC7_BD_DATA0);
  164. val64 |= (u64) val << 32;
  165. } else {
  166. if (mc7->width > 1)
  167. val >>= shift[mc7->width];
  168. val64 |= (u64) val << (step[mc7->width] * i);
  169. }
  170. start += 8;
  171. }
  172. *buf++ = val64;
  173. }
  174. return 0;
  175. }
  176. /*
  177. * Initialize MI1.
  178. */
  179. static void mi1_init(struct adapter *adap, const struct adapter_info *ai)
  180. {
  181. u32 clkdiv = adap->params.vpd.cclk / (2 * adap->params.vpd.mdc) - 1;
  182. u32 val = F_PREEN | V_MDIINV(ai->mdiinv) | V_MDIEN(ai->mdien) |
  183. V_CLKDIV(clkdiv);
  184. if (!(ai->caps & SUPPORTED_10000baseT_Full))
  185. val |= V_ST(1);
  186. t3_write_reg(adap, A_MI1_CFG, val);
  187. }
  188. #define MDIO_ATTEMPTS 10
  189. /*
  190. * MI1 read/write operations for direct-addressed PHYs.
  191. */
  192. static int mi1_read(struct adapter *adapter, int phy_addr, int mmd_addr,
  193. int reg_addr, unsigned int *valp)
  194. {
  195. int ret;
  196. u32 addr = V_REGADDR(reg_addr) | V_PHYADDR(phy_addr);
  197. if (mmd_addr)
  198. return -EINVAL;
  199. mutex_lock(&adapter->mdio_lock);
  200. t3_write_reg(adapter, A_MI1_ADDR, addr);
  201. t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(2));
  202. ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0, MDIO_ATTEMPTS, 20);
  203. if (!ret)
  204. *valp = t3_read_reg(adapter, A_MI1_DATA);
  205. mutex_unlock(&adapter->mdio_lock);
  206. return ret;
  207. }
  208. static int mi1_write(struct adapter *adapter, int phy_addr, int mmd_addr,
  209. int reg_addr, unsigned int val)
  210. {
  211. int ret;
  212. u32 addr = V_REGADDR(reg_addr) | V_PHYADDR(phy_addr);
  213. if (mmd_addr)
  214. return -EINVAL;
  215. mutex_lock(&adapter->mdio_lock);
  216. t3_write_reg(adapter, A_MI1_ADDR, addr);
  217. t3_write_reg(adapter, A_MI1_DATA, val);
  218. t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(1));
  219. ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0, MDIO_ATTEMPTS, 20);
  220. mutex_unlock(&adapter->mdio_lock);
  221. return ret;
  222. }
  223. static const struct mdio_ops mi1_mdio_ops = {
  224. mi1_read,
  225. mi1_write
  226. };
  227. /*
  228. * MI1 read/write operations for indirect-addressed PHYs.
  229. */
  230. static int mi1_ext_read(struct adapter *adapter, int phy_addr, int mmd_addr,
  231. int reg_addr, unsigned int *valp)
  232. {
  233. int ret;
  234. u32 addr = V_REGADDR(mmd_addr) | V_PHYADDR(phy_addr);
  235. mutex_lock(&adapter->mdio_lock);
  236. t3_write_reg(adapter, A_MI1_ADDR, addr);
  237. t3_write_reg(adapter, A_MI1_DATA, reg_addr);
  238. t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(0));
  239. ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0, MDIO_ATTEMPTS, 20);
  240. if (!ret) {
  241. t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(3));
  242. ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0,
  243. MDIO_ATTEMPTS, 20);
  244. if (!ret)
  245. *valp = t3_read_reg(adapter, A_MI1_DATA);
  246. }
  247. mutex_unlock(&adapter->mdio_lock);
  248. return ret;
  249. }
  250. static int mi1_ext_write(struct adapter *adapter, int phy_addr, int mmd_addr,
  251. int reg_addr, unsigned int val)
  252. {
  253. int ret;
  254. u32 addr = V_REGADDR(mmd_addr) | V_PHYADDR(phy_addr);
  255. mutex_lock(&adapter->mdio_lock);
  256. t3_write_reg(adapter, A_MI1_ADDR, addr);
  257. t3_write_reg(adapter, A_MI1_DATA, reg_addr);
  258. t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(0));
  259. ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0, MDIO_ATTEMPTS, 20);
  260. if (!ret) {
  261. t3_write_reg(adapter, A_MI1_DATA, val);
  262. t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(1));
  263. ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0,
  264. MDIO_ATTEMPTS, 20);
  265. }
  266. mutex_unlock(&adapter->mdio_lock);
  267. return ret;
  268. }
  269. static const struct mdio_ops mi1_mdio_ext_ops = {
  270. mi1_ext_read,
  271. mi1_ext_write
  272. };
  273. /**
  274. * t3_mdio_change_bits - modify the value of a PHY register
  275. * @phy: the PHY to operate on
  276. * @mmd: the device address
  277. * @reg: the register address
  278. * @clear: what part of the register value to mask off
  279. * @set: what part of the register value to set
  280. *
  281. * Changes the value of a PHY register by applying a mask to its current
  282. * value and ORing the result with a new value.
  283. */
  284. int t3_mdio_change_bits(struct cphy *phy, int mmd, int reg, unsigned int clear,
  285. unsigned int set)
  286. {
  287. int ret;
  288. unsigned int val;
  289. ret = mdio_read(phy, mmd, reg, &val);
  290. if (!ret) {
  291. val &= ~clear;
  292. ret = mdio_write(phy, mmd, reg, val | set);
  293. }
  294. return ret;
  295. }
  296. /**
  297. * t3_phy_reset - reset a PHY block
  298. * @phy: the PHY to operate on
  299. * @mmd: the device address of the PHY block to reset
  300. * @wait: how long to wait for the reset to complete in 1ms increments
  301. *
  302. * Resets a PHY block and optionally waits for the reset to complete.
  303. * @mmd should be 0 for 10/100/1000 PHYs and the device address to reset
  304. * for 10G PHYs.
  305. */
  306. int t3_phy_reset(struct cphy *phy, int mmd, int wait)
  307. {
  308. int err;
  309. unsigned int ctl;
  310. err = t3_mdio_change_bits(phy, mmd, MII_BMCR, BMCR_PDOWN, BMCR_RESET);
  311. if (err || !wait)
  312. return err;
  313. do {
  314. err = mdio_read(phy, mmd, MII_BMCR, &ctl);
  315. if (err)
  316. return err;
  317. ctl &= BMCR_RESET;
  318. if (ctl)
  319. msleep(1);
  320. } while (ctl && --wait);
  321. return ctl ? -1 : 0;
  322. }
  323. /**
  324. * t3_phy_advertise - set the PHY advertisement registers for autoneg
  325. * @phy: the PHY to operate on
  326. * @advert: bitmap of capabilities the PHY should advertise
  327. *
  328. * Sets a 10/100/1000 PHY's advertisement registers to advertise the
  329. * requested capabilities.
  330. */
  331. int t3_phy_advertise(struct cphy *phy, unsigned int advert)
  332. {
  333. int err;
  334. unsigned int val = 0;
  335. err = mdio_read(phy, 0, MII_CTRL1000, &val);
  336. if (err)
  337. return err;
  338. val &= ~(ADVERTISE_1000HALF | ADVERTISE_1000FULL);
  339. if (advert & ADVERTISED_1000baseT_Half)
  340. val |= ADVERTISE_1000HALF;
  341. if (advert & ADVERTISED_1000baseT_Full)
  342. val |= ADVERTISE_1000FULL;
  343. err = mdio_write(phy, 0, MII_CTRL1000, val);
  344. if (err)
  345. return err;
  346. val = 1;
  347. if (advert & ADVERTISED_10baseT_Half)
  348. val |= ADVERTISE_10HALF;
  349. if (advert & ADVERTISED_10baseT_Full)
  350. val |= ADVERTISE_10FULL;
  351. if (advert & ADVERTISED_100baseT_Half)
  352. val |= ADVERTISE_100HALF;
  353. if (advert & ADVERTISED_100baseT_Full)
  354. val |= ADVERTISE_100FULL;
  355. if (advert & ADVERTISED_Pause)
  356. val |= ADVERTISE_PAUSE_CAP;
  357. if (advert & ADVERTISED_Asym_Pause)
  358. val |= ADVERTISE_PAUSE_ASYM;
  359. return mdio_write(phy, 0, MII_ADVERTISE, val);
  360. }
  361. /**
  362. * t3_set_phy_speed_duplex - force PHY speed and duplex
  363. * @phy: the PHY to operate on
  364. * @speed: requested PHY speed
  365. * @duplex: requested PHY duplex
  366. *
  367. * Force a 10/100/1000 PHY's speed and duplex. This also disables
  368. * auto-negotiation except for GigE, where auto-negotiation is mandatory.
  369. */
  370. int t3_set_phy_speed_duplex(struct cphy *phy, int speed, int duplex)
  371. {
  372. int err;
  373. unsigned int ctl;
  374. err = mdio_read(phy, 0, MII_BMCR, &ctl);
  375. if (err)
  376. return err;
  377. if (speed >= 0) {
  378. ctl &= ~(BMCR_SPEED100 | BMCR_SPEED1000 | BMCR_ANENABLE);
  379. if (speed == SPEED_100)
  380. ctl |= BMCR_SPEED100;
  381. else if (speed == SPEED_1000)
  382. ctl |= BMCR_SPEED1000;
  383. }
  384. if (duplex >= 0) {
  385. ctl &= ~(BMCR_FULLDPLX | BMCR_ANENABLE);
  386. if (duplex == DUPLEX_FULL)
  387. ctl |= BMCR_FULLDPLX;
  388. }
  389. if (ctl & BMCR_SPEED1000) /* auto-negotiation required for GigE */
  390. ctl |= BMCR_ANENABLE;
  391. return mdio_write(phy, 0, MII_BMCR, ctl);
  392. }
  393. static const struct adapter_info t3_adap_info[] = {
  394. {2, 0, 0, 0,
  395. F_GPIO2_OEN | F_GPIO4_OEN |
  396. F_GPIO2_OUT_VAL | F_GPIO4_OUT_VAL, F_GPIO3 | F_GPIO5,
  397. 0,
  398. &mi1_mdio_ops, "Chelsio PE9000"},
  399. {2, 0, 0, 0,
  400. F_GPIO2_OEN | F_GPIO4_OEN |
  401. F_GPIO2_OUT_VAL | F_GPIO4_OUT_VAL, F_GPIO3 | F_GPIO5,
  402. 0,
  403. &mi1_mdio_ops, "Chelsio T302"},
  404. {1, 0, 0, 0,
  405. F_GPIO1_OEN | F_GPIO6_OEN | F_GPIO7_OEN | F_GPIO10_OEN |
  406. F_GPIO1_OUT_VAL | F_GPIO6_OUT_VAL | F_GPIO10_OUT_VAL, 0,
  407. SUPPORTED_10000baseT_Full | SUPPORTED_AUI,
  408. &mi1_mdio_ext_ops, "Chelsio T310"},
  409. {2, 0, 0, 0,
  410. F_GPIO1_OEN | F_GPIO2_OEN | F_GPIO4_OEN | F_GPIO5_OEN | F_GPIO6_OEN |
  411. F_GPIO7_OEN | F_GPIO10_OEN | F_GPIO11_OEN | F_GPIO1_OUT_VAL |
  412. F_GPIO5_OUT_VAL | F_GPIO6_OUT_VAL | F_GPIO10_OUT_VAL, 0,
  413. SUPPORTED_10000baseT_Full | SUPPORTED_AUI,
  414. &mi1_mdio_ext_ops, "Chelsio T320"},
  415. };
  416. /*
  417. * Return the adapter_info structure with a given index. Out-of-range indices
  418. * return NULL.
  419. */
  420. const struct adapter_info *t3_get_adapter_info(unsigned int id)
  421. {
  422. return id < ARRAY_SIZE(t3_adap_info) ? &t3_adap_info[id] : NULL;
  423. }
  424. #define CAPS_1G (SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Full | \
  425. SUPPORTED_1000baseT_Full | SUPPORTED_Autoneg | SUPPORTED_MII)
  426. #define CAPS_10G (SUPPORTED_10000baseT_Full | SUPPORTED_AUI)
  427. static const struct port_type_info port_types[] = {
  428. {NULL},
  429. {t3_ael1002_phy_prep, CAPS_10G | SUPPORTED_FIBRE,
  430. "10GBASE-XR"},
  431. {t3_vsc8211_phy_prep, CAPS_1G | SUPPORTED_TP | SUPPORTED_IRQ,
  432. "10/100/1000BASE-T"},
  433. {NULL, CAPS_1G | SUPPORTED_TP | SUPPORTED_IRQ,
  434. "10/100/1000BASE-T"},
  435. {t3_xaui_direct_phy_prep, CAPS_10G | SUPPORTED_TP, "10GBASE-CX4"},
  436. {NULL, CAPS_10G, "10GBASE-KX4"},
  437. {t3_qt2045_phy_prep, CAPS_10G | SUPPORTED_TP, "10GBASE-CX4"},
  438. {t3_ael1006_phy_prep, CAPS_10G | SUPPORTED_FIBRE,
  439. "10GBASE-SR"},
  440. {NULL, CAPS_10G | SUPPORTED_TP, "10GBASE-CX4"},
  441. };
  442. #undef CAPS_1G
  443. #undef CAPS_10G
  444. #define VPD_ENTRY(name, len) \
  445. u8 name##_kword[2]; u8 name##_len; u8 name##_data[len]
  446. /*
  447. * Partial EEPROM Vital Product Data structure. Includes only the ID and
  448. * VPD-R sections.
  449. */
  450. struct t3_vpd {
  451. u8 id_tag;
  452. u8 id_len[2];
  453. u8 id_data[16];
  454. u8 vpdr_tag;
  455. u8 vpdr_len[2];
  456. VPD_ENTRY(pn, 16); /* part number */
  457. VPD_ENTRY(ec, 16); /* EC level */
  458. VPD_ENTRY(sn, SERNUM_LEN); /* serial number */
  459. VPD_ENTRY(na, 12); /* MAC address base */
  460. VPD_ENTRY(cclk, 6); /* core clock */
  461. VPD_ENTRY(mclk, 6); /* mem clock */
  462. VPD_ENTRY(uclk, 6); /* uP clk */
  463. VPD_ENTRY(mdc, 6); /* MDIO clk */
  464. VPD_ENTRY(mt, 2); /* mem timing */
  465. VPD_ENTRY(xaui0cfg, 6); /* XAUI0 config */
  466. VPD_ENTRY(xaui1cfg, 6); /* XAUI1 config */
  467. VPD_ENTRY(port0, 2); /* PHY0 complex */
  468. VPD_ENTRY(port1, 2); /* PHY1 complex */
  469. VPD_ENTRY(port2, 2); /* PHY2 complex */
  470. VPD_ENTRY(port3, 2); /* PHY3 complex */
  471. VPD_ENTRY(rv, 1); /* csum */
  472. u32 pad; /* for multiple-of-4 sizing and alignment */
  473. };
  474. #define EEPROM_MAX_POLL 4
  475. #define EEPROM_STAT_ADDR 0x4000
  476. #define VPD_BASE 0xc00
  477. /**
  478. * t3_seeprom_read - read a VPD EEPROM location
  479. * @adapter: adapter to read
  480. * @addr: EEPROM address
  481. * @data: where to store the read data
  482. *
  483. * Read a 32-bit word from a location in VPD EEPROM using the card's PCI
  484. * VPD ROM capability. A zero is written to the flag bit when the
  485. * addres is written to the control register. The hardware device will
  486. * set the flag to 1 when 4 bytes have been read into the data register.
  487. */
  488. int t3_seeprom_read(struct adapter *adapter, u32 addr, u32 *data)
  489. {
  490. u16 val;
  491. int attempts = EEPROM_MAX_POLL;
  492. unsigned int base = adapter->params.pci.vpd_cap_addr;
  493. if ((addr >= EEPROMSIZE && addr != EEPROM_STAT_ADDR) || (addr & 3))
  494. return -EINVAL;
  495. pci_write_config_word(adapter->pdev, base + PCI_VPD_ADDR, addr);
  496. do {
  497. udelay(10);
  498. pci_read_config_word(adapter->pdev, base + PCI_VPD_ADDR, &val);
  499. } while (!(val & PCI_VPD_ADDR_F) && --attempts);
  500. if (!(val & PCI_VPD_ADDR_F)) {
  501. CH_ERR(adapter, "reading EEPROM address 0x%x failed\n", addr);
  502. return -EIO;
  503. }
  504. pci_read_config_dword(adapter->pdev, base + PCI_VPD_DATA, data);
  505. *data = le32_to_cpu(*data);
  506. return 0;
  507. }
  508. /**
  509. * t3_seeprom_write - write a VPD EEPROM location
  510. * @adapter: adapter to write
  511. * @addr: EEPROM address
  512. * @data: value to write
  513. *
  514. * Write a 32-bit word to a location in VPD EEPROM using the card's PCI
  515. * VPD ROM capability.
  516. */
  517. int t3_seeprom_write(struct adapter *adapter, u32 addr, u32 data)
  518. {
  519. u16 val;
  520. int attempts = EEPROM_MAX_POLL;
  521. unsigned int base = adapter->params.pci.vpd_cap_addr;
  522. if ((addr >= EEPROMSIZE && addr != EEPROM_STAT_ADDR) || (addr & 3))
  523. return -EINVAL;
  524. pci_write_config_dword(adapter->pdev, base + PCI_VPD_DATA,
  525. cpu_to_le32(data));
  526. pci_write_config_word(adapter->pdev,base + PCI_VPD_ADDR,
  527. addr | PCI_VPD_ADDR_F);
  528. do {
  529. msleep(1);
  530. pci_read_config_word(adapter->pdev, base + PCI_VPD_ADDR, &val);
  531. } while ((val & PCI_VPD_ADDR_F) && --attempts);
  532. if (val & PCI_VPD_ADDR_F) {
  533. CH_ERR(adapter, "write to EEPROM address 0x%x failed\n", addr);
  534. return -EIO;
  535. }
  536. return 0;
  537. }
  538. /**
  539. * t3_seeprom_wp - enable/disable EEPROM write protection
  540. * @adapter: the adapter
  541. * @enable: 1 to enable write protection, 0 to disable it
  542. *
  543. * Enables or disables write protection on the serial EEPROM.
  544. */
  545. int t3_seeprom_wp(struct adapter *adapter, int enable)
  546. {
  547. return t3_seeprom_write(adapter, EEPROM_STAT_ADDR, enable ? 0xc : 0);
  548. }
  549. /*
  550. * Convert a character holding a hex digit to a number.
  551. */
  552. static unsigned int hex2int(unsigned char c)
  553. {
  554. return isdigit(c) ? c - '0' : toupper(c) - 'A' + 10;
  555. }
  556. /**
  557. * get_vpd_params - read VPD parameters from VPD EEPROM
  558. * @adapter: adapter to read
  559. * @p: where to store the parameters
  560. *
  561. * Reads card parameters stored in VPD EEPROM.
  562. */
  563. static int get_vpd_params(struct adapter *adapter, struct vpd_params *p)
  564. {
  565. int i, addr, ret;
  566. struct t3_vpd vpd;
  567. /*
  568. * Card information is normally at VPD_BASE but some early cards had
  569. * it at 0.
  570. */
  571. ret = t3_seeprom_read(adapter, VPD_BASE, (u32 *)&vpd);
  572. if (ret)
  573. return ret;
  574. addr = vpd.id_tag == 0x82 ? VPD_BASE : 0;
  575. for (i = 0; i < sizeof(vpd); i += 4) {
  576. ret = t3_seeprom_read(adapter, addr + i,
  577. (u32 *)((u8 *)&vpd + i));
  578. if (ret)
  579. return ret;
  580. }
  581. p->cclk = simple_strtoul(vpd.cclk_data, NULL, 10);
  582. p->mclk = simple_strtoul(vpd.mclk_data, NULL, 10);
  583. p->uclk = simple_strtoul(vpd.uclk_data, NULL, 10);
  584. p->mdc = simple_strtoul(vpd.mdc_data, NULL, 10);
  585. p->mem_timing = simple_strtoul(vpd.mt_data, NULL, 10);
  586. memcpy(p->sn, vpd.sn_data, SERNUM_LEN);
  587. /* Old eeproms didn't have port information */
  588. if (adapter->params.rev == 0 && !vpd.port0_data[0]) {
  589. p->port_type[0] = uses_xaui(adapter) ? 1 : 2;
  590. p->port_type[1] = uses_xaui(adapter) ? 6 : 2;
  591. } else {
  592. p->port_type[0] = hex2int(vpd.port0_data[0]);
  593. p->port_type[1] = hex2int(vpd.port1_data[0]);
  594. p->xauicfg[0] = simple_strtoul(vpd.xaui0cfg_data, NULL, 16);
  595. p->xauicfg[1] = simple_strtoul(vpd.xaui1cfg_data, NULL, 16);
  596. }
  597. for (i = 0; i < 6; i++)
  598. p->eth_base[i] = hex2int(vpd.na_data[2 * i]) * 16 +
  599. hex2int(vpd.na_data[2 * i + 1]);
  600. return 0;
  601. }
  602. /* serial flash and firmware constants */
  603. enum {
  604. SF_ATTEMPTS = 5, /* max retries for SF1 operations */
  605. SF_SEC_SIZE = 64 * 1024, /* serial flash sector size */
  606. SF_SIZE = SF_SEC_SIZE * 8, /* serial flash size */
  607. /* flash command opcodes */
  608. SF_PROG_PAGE = 2, /* program page */
  609. SF_WR_DISABLE = 4, /* disable writes */
  610. SF_RD_STATUS = 5, /* read status register */
  611. SF_WR_ENABLE = 6, /* enable writes */
  612. SF_RD_DATA_FAST = 0xb, /* read flash */
  613. SF_ERASE_SECTOR = 0xd8, /* erase sector */
  614. FW_FLASH_BOOT_ADDR = 0x70000, /* start address of FW in flash */
  615. FW_VERS_ADDR = 0x77ffc, /* flash address holding FW version */
  616. FW_MIN_SIZE = 8 /* at least version and csum */
  617. };
  618. /**
  619. * sf1_read - read data from the serial flash
  620. * @adapter: the adapter
  621. * @byte_cnt: number of bytes to read
  622. * @cont: whether another operation will be chained
  623. * @valp: where to store the read data
  624. *
  625. * Reads up to 4 bytes of data from the serial flash. The location of
  626. * the read needs to be specified prior to calling this by issuing the
  627. * appropriate commands to the serial flash.
  628. */
  629. static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
  630. u32 *valp)
  631. {
  632. int ret;
  633. if (!byte_cnt || byte_cnt > 4)
  634. return -EINVAL;
  635. if (t3_read_reg(adapter, A_SF_OP) & F_BUSY)
  636. return -EBUSY;
  637. t3_write_reg(adapter, A_SF_OP, V_CONT(cont) | V_BYTECNT(byte_cnt - 1));
  638. ret = t3_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 10);
  639. if (!ret)
  640. *valp = t3_read_reg(adapter, A_SF_DATA);
  641. return ret;
  642. }
  643. /**
  644. * sf1_write - write data to the serial flash
  645. * @adapter: the adapter
  646. * @byte_cnt: number of bytes to write
  647. * @cont: whether another operation will be chained
  648. * @val: value to write
  649. *
  650. * Writes up to 4 bytes of data to the serial flash. The location of
  651. * the write needs to be specified prior to calling this by issuing the
  652. * appropriate commands to the serial flash.
  653. */
  654. static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
  655. u32 val)
  656. {
  657. if (!byte_cnt || byte_cnt > 4)
  658. return -EINVAL;
  659. if (t3_read_reg(adapter, A_SF_OP) & F_BUSY)
  660. return -EBUSY;
  661. t3_write_reg(adapter, A_SF_DATA, val);
  662. t3_write_reg(adapter, A_SF_OP,
  663. V_CONT(cont) | V_BYTECNT(byte_cnt - 1) | V_OP(1));
  664. return t3_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 10);
  665. }
  666. /**
  667. * flash_wait_op - wait for a flash operation to complete
  668. * @adapter: the adapter
  669. * @attempts: max number of polls of the status register
  670. * @delay: delay between polls in ms
  671. *
  672. * Wait for a flash operation to complete by polling the status register.
  673. */
  674. static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
  675. {
  676. int ret;
  677. u32 status;
  678. while (1) {
  679. if ((ret = sf1_write(adapter, 1, 1, SF_RD_STATUS)) != 0 ||
  680. (ret = sf1_read(adapter, 1, 0, &status)) != 0)
  681. return ret;
  682. if (!(status & 1))
  683. return 0;
  684. if (--attempts == 0)
  685. return -EAGAIN;
  686. if (delay)
  687. msleep(delay);
  688. }
  689. }
  690. /**
  691. * t3_read_flash - read words from serial flash
  692. * @adapter: the adapter
  693. * @addr: the start address for the read
  694. * @nwords: how many 32-bit words to read
  695. * @data: where to store the read data
  696. * @byte_oriented: whether to store data as bytes or as words
  697. *
  698. * Read the specified number of 32-bit words from the serial flash.
  699. * If @byte_oriented is set the read data is stored as a byte array
  700. * (i.e., big-endian), otherwise as 32-bit words in the platform's
  701. * natural endianess.
  702. */
  703. int t3_read_flash(struct adapter *adapter, unsigned int addr,
  704. unsigned int nwords, u32 *data, int byte_oriented)
  705. {
  706. int ret;
  707. if (addr + nwords * sizeof(u32) > SF_SIZE || (addr & 3))
  708. return -EINVAL;
  709. addr = swab32(addr) | SF_RD_DATA_FAST;
  710. if ((ret = sf1_write(adapter, 4, 1, addr)) != 0 ||
  711. (ret = sf1_read(adapter, 1, 1, data)) != 0)
  712. return ret;
  713. for (; nwords; nwords--, data++) {
  714. ret = sf1_read(adapter, 4, nwords > 1, data);
  715. if (ret)
  716. return ret;
  717. if (byte_oriented)
  718. *data = htonl(*data);
  719. }
  720. return 0;
  721. }
  722. /**
  723. * t3_write_flash - write up to a page of data to the serial flash
  724. * @adapter: the adapter
  725. * @addr: the start address to write
  726. * @n: length of data to write
  727. * @data: the data to write
  728. *
  729. * Writes up to a page of data (256 bytes) to the serial flash starting
  730. * at the given address.
  731. */
  732. static int t3_write_flash(struct adapter *adapter, unsigned int addr,
  733. unsigned int n, const u8 *data)
  734. {
  735. int ret;
  736. u32 buf[64];
  737. unsigned int i, c, left, val, offset = addr & 0xff;
  738. if (addr + n > SF_SIZE || offset + n > 256)
  739. return -EINVAL;
  740. val = swab32(addr) | SF_PROG_PAGE;
  741. if ((ret = sf1_write(adapter, 1, 0, SF_WR_ENABLE)) != 0 ||
  742. (ret = sf1_write(adapter, 4, 1, val)) != 0)
  743. return ret;
  744. for (left = n; left; left -= c) {
  745. c = min(left, 4U);
  746. for (val = 0, i = 0; i < c; ++i)
  747. val = (val << 8) + *data++;
  748. ret = sf1_write(adapter, c, c != left, val);
  749. if (ret)
  750. return ret;
  751. }
  752. if ((ret = flash_wait_op(adapter, 5, 1)) != 0)
  753. return ret;
  754. /* Read the page to verify the write succeeded */
  755. ret = t3_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 1);
  756. if (ret)
  757. return ret;
  758. if (memcmp(data - n, (u8 *) buf + offset, n))
  759. return -EIO;
  760. return 0;
  761. }
  762. /**
  763. * t3_get_tp_version - read the tp sram version
  764. * @adapter: the adapter
  765. * @vers: where to place the version
  766. *
  767. * Reads the protocol sram version from sram.
  768. */
  769. int t3_get_tp_version(struct adapter *adapter, u32 *vers)
  770. {
  771. int ret;
  772. /* Get version loaded in SRAM */
  773. t3_write_reg(adapter, A_TP_EMBED_OP_FIELD0, 0);
  774. ret = t3_wait_op_done(adapter, A_TP_EMBED_OP_FIELD0,
  775. 1, 1, 5, 1);
  776. if (ret)
  777. return ret;
  778. *vers = t3_read_reg(adapter, A_TP_EMBED_OP_FIELD1);
  779. return 0;
  780. }
  781. /**
  782. * t3_check_tpsram_version - read the tp sram version
  783. * @adapter: the adapter
  784. * @must_load: set to 1 if loading a new microcode image is required
  785. *
  786. * Reads the protocol sram version from flash.
  787. */
  788. int t3_check_tpsram_version(struct adapter *adapter, int *must_load)
  789. {
  790. int ret;
  791. u32 vers;
  792. unsigned int major, minor;
  793. if (adapter->params.rev == T3_REV_A)
  794. return 0;
  795. *must_load = 1;
  796. ret = t3_get_tp_version(adapter, &vers);
  797. if (ret)
  798. return ret;
  799. major = G_TP_VERSION_MAJOR(vers);
  800. minor = G_TP_VERSION_MINOR(vers);
  801. if (major == TP_VERSION_MAJOR && minor == TP_VERSION_MINOR)
  802. return 0;
  803. if (major != TP_VERSION_MAJOR)
  804. CH_ERR(adapter, "found wrong TP version (%u.%u), "
  805. "driver needs version %d.%d\n", major, minor,
  806. TP_VERSION_MAJOR, TP_VERSION_MINOR);
  807. else {
  808. *must_load = 0;
  809. CH_ERR(adapter, "found wrong TP version (%u.%u), "
  810. "driver compiled for version %d.%d\n", major, minor,
  811. TP_VERSION_MAJOR, TP_VERSION_MINOR);
  812. }
  813. return -EINVAL;
  814. }
  815. /**
  816. * t3_check_tpsram - check if provided protocol SRAM
  817. * is compatible with this driver
  818. * @adapter: the adapter
  819. * @tp_sram: the firmware image to write
  820. * @size: image size
  821. *
  822. * Checks if an adapter's tp sram is compatible with the driver.
  823. * Returns 0 if the versions are compatible, a negative error otherwise.
  824. */
  825. int t3_check_tpsram(struct adapter *adapter, u8 *tp_sram, unsigned int size)
  826. {
  827. u32 csum;
  828. unsigned int i;
  829. const u32 *p = (const u32 *)tp_sram;
  830. /* Verify checksum */
  831. for (csum = 0, i = 0; i < size / sizeof(csum); i++)
  832. csum += ntohl(p[i]);
  833. if (csum != 0xffffffff) {
  834. CH_ERR(adapter, "corrupted protocol SRAM image, checksum %u\n",
  835. csum);
  836. return -EINVAL;
  837. }
  838. return 0;
  839. }
  840. enum fw_version_type {
  841. FW_VERSION_N3,
  842. FW_VERSION_T3
  843. };
  844. /**
  845. * t3_get_fw_version - read the firmware version
  846. * @adapter: the adapter
  847. * @vers: where to place the version
  848. *
  849. * Reads the FW version from flash.
  850. */
  851. int t3_get_fw_version(struct adapter *adapter, u32 *vers)
  852. {
  853. return t3_read_flash(adapter, FW_VERS_ADDR, 1, vers, 0);
  854. }
  855. /**
  856. * t3_check_fw_version - check if the FW is compatible with this driver
  857. * @adapter: the adapter
  858. * @must_load: set to 1 if loading a new FW image is required
  859. * Checks if an adapter's FW is compatible with the driver. Returns 0
  860. * if the versions are compatible, a negative error otherwise.
  861. */
  862. int t3_check_fw_version(struct adapter *adapter, int *must_load)
  863. {
  864. int ret;
  865. u32 vers;
  866. unsigned int type, major, minor;
  867. *must_load = 1;
  868. ret = t3_get_fw_version(adapter, &vers);
  869. if (ret)
  870. return ret;
  871. type = G_FW_VERSION_TYPE(vers);
  872. major = G_FW_VERSION_MAJOR(vers);
  873. minor = G_FW_VERSION_MINOR(vers);
  874. if (type == FW_VERSION_T3 && major == FW_VERSION_MAJOR &&
  875. minor == FW_VERSION_MINOR)
  876. return 0;
  877. if (major != FW_VERSION_MAJOR)
  878. CH_ERR(adapter, "found wrong FW version(%u.%u), "
  879. "driver needs version %u.%u\n", major, minor,
  880. FW_VERSION_MAJOR, FW_VERSION_MINOR);
  881. else {
  882. *must_load = 0;
  883. CH_WARN(adapter, "found wrong FW minor version(%u.%u), "
  884. "driver compiled for version %u.%u\n", major, minor,
  885. FW_VERSION_MAJOR, FW_VERSION_MINOR);
  886. }
  887. return -EINVAL;
  888. }
  889. /**
  890. * t3_flash_erase_sectors - erase a range of flash sectors
  891. * @adapter: the adapter
  892. * @start: the first sector to erase
  893. * @end: the last sector to erase
  894. *
  895. * Erases the sectors in the given range.
  896. */
  897. static int t3_flash_erase_sectors(struct adapter *adapter, int start, int end)
  898. {
  899. while (start <= end) {
  900. int ret;
  901. if ((ret = sf1_write(adapter, 1, 0, SF_WR_ENABLE)) != 0 ||
  902. (ret = sf1_write(adapter, 4, 0,
  903. SF_ERASE_SECTOR | (start << 8))) != 0 ||
  904. (ret = flash_wait_op(adapter, 5, 500)) != 0)
  905. return ret;
  906. start++;
  907. }
  908. return 0;
  909. }
  910. /*
  911. * t3_load_fw - download firmware
  912. * @adapter: the adapter
  913. * @fw_data: the firmware image to write
  914. * @size: image size
  915. *
  916. * Write the supplied firmware image to the card's serial flash.
  917. * The FW image has the following sections: @size - 8 bytes of code and
  918. * data, followed by 4 bytes of FW version, followed by the 32-bit
  919. * 1's complement checksum of the whole image.
  920. */
  921. int t3_load_fw(struct adapter *adapter, const u8 *fw_data, unsigned int size)
  922. {
  923. u32 csum;
  924. unsigned int i;
  925. const u32 *p = (const u32 *)fw_data;
  926. int ret, addr, fw_sector = FW_FLASH_BOOT_ADDR >> 16;
  927. if ((size & 3) || size < FW_MIN_SIZE)
  928. return -EINVAL;
  929. if (size > FW_VERS_ADDR + 8 - FW_FLASH_BOOT_ADDR)
  930. return -EFBIG;
  931. for (csum = 0, i = 0; i < size / sizeof(csum); i++)
  932. csum += ntohl(p[i]);
  933. if (csum != 0xffffffff) {
  934. CH_ERR(adapter, "corrupted firmware image, checksum %u\n",
  935. csum);
  936. return -EINVAL;
  937. }
  938. ret = t3_flash_erase_sectors(adapter, fw_sector, fw_sector);
  939. if (ret)
  940. goto out;
  941. size -= 8; /* trim off version and checksum */
  942. for (addr = FW_FLASH_BOOT_ADDR; size;) {
  943. unsigned int chunk_size = min(size, 256U);
  944. ret = t3_write_flash(adapter, addr, chunk_size, fw_data);
  945. if (ret)
  946. goto out;
  947. addr += chunk_size;
  948. fw_data += chunk_size;
  949. size -= chunk_size;
  950. }
  951. ret = t3_write_flash(adapter, FW_VERS_ADDR, 4, fw_data);
  952. out:
  953. if (ret)
  954. CH_ERR(adapter, "firmware download failed, error %d\n", ret);
  955. return ret;
  956. }
  957. #define CIM_CTL_BASE 0x2000
  958. /**
  959. * t3_cim_ctl_blk_read - read a block from CIM control region
  960. *
  961. * @adap: the adapter
  962. * @addr: the start address within the CIM control region
  963. * @n: number of words to read
  964. * @valp: where to store the result
  965. *
  966. * Reads a block of 4-byte words from the CIM control region.
  967. */
  968. int t3_cim_ctl_blk_read(struct adapter *adap, unsigned int addr,
  969. unsigned int n, unsigned int *valp)
  970. {
  971. int ret = 0;
  972. if (t3_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY)
  973. return -EBUSY;
  974. for ( ; !ret && n--; addr += 4) {
  975. t3_write_reg(adap, A_CIM_HOST_ACC_CTRL, CIM_CTL_BASE + addr);
  976. ret = t3_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY,
  977. 0, 5, 2);
  978. if (!ret)
  979. *valp++ = t3_read_reg(adap, A_CIM_HOST_ACC_DATA);
  980. }
  981. return ret;
  982. }
  983. /**
  984. * t3_link_changed - handle interface link changes
  985. * @adapter: the adapter
  986. * @port_id: the port index that changed link state
  987. *
  988. * Called when a port's link settings change to propagate the new values
  989. * to the associated PHY and MAC. After performing the common tasks it
  990. * invokes an OS-specific handler.
  991. */
  992. void t3_link_changed(struct adapter *adapter, int port_id)
  993. {
  994. int link_ok, speed, duplex, fc;
  995. struct port_info *pi = adap2pinfo(adapter, port_id);
  996. struct cphy *phy = &pi->phy;
  997. struct cmac *mac = &pi->mac;
  998. struct link_config *lc = &pi->link_config;
  999. phy->ops->get_link_status(phy, &link_ok, &speed, &duplex, &fc);
  1000. if (link_ok != lc->link_ok && adapter->params.rev > 0 &&
  1001. uses_xaui(adapter)) {
  1002. if (link_ok)
  1003. t3b_pcs_reset(mac);
  1004. t3_write_reg(adapter, A_XGM_XAUI_ACT_CTRL + mac->offset,
  1005. link_ok ? F_TXACTENABLE | F_RXEN : 0);
  1006. }
  1007. lc->link_ok = link_ok;
  1008. lc->speed = speed < 0 ? SPEED_INVALID : speed;
  1009. lc->duplex = duplex < 0 ? DUPLEX_INVALID : duplex;
  1010. if (lc->requested_fc & PAUSE_AUTONEG)
  1011. fc &= lc->requested_fc;
  1012. else
  1013. fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
  1014. if (link_ok && speed >= 0 && lc->autoneg == AUTONEG_ENABLE) {
  1015. /* Set MAC speed, duplex, and flow control to match PHY. */
  1016. t3_mac_set_speed_duplex_fc(mac, speed, duplex, fc);
  1017. lc->fc = fc;
  1018. }
  1019. t3_os_link_changed(adapter, port_id, link_ok, speed, duplex, fc);
  1020. }
  1021. /**
  1022. * t3_link_start - apply link configuration to MAC/PHY
  1023. * @phy: the PHY to setup
  1024. * @mac: the MAC to setup
  1025. * @lc: the requested link configuration
  1026. *
  1027. * Set up a port's MAC and PHY according to a desired link configuration.
  1028. * - If the PHY can auto-negotiate first decide what to advertise, then
  1029. * enable/disable auto-negotiation as desired, and reset.
  1030. * - If the PHY does not auto-negotiate just reset it.
  1031. * - If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
  1032. * otherwise do it later based on the outcome of auto-negotiation.
  1033. */
  1034. int t3_link_start(struct cphy *phy, struct cmac *mac, struct link_config *lc)
  1035. {
  1036. unsigned int fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
  1037. lc->link_ok = 0;
  1038. if (lc->supported & SUPPORTED_Autoneg) {
  1039. lc->advertising &= ~(ADVERTISED_Asym_Pause | ADVERTISED_Pause);
  1040. if (fc) {
  1041. lc->advertising |= ADVERTISED_Asym_Pause;
  1042. if (fc & PAUSE_RX)
  1043. lc->advertising |= ADVERTISED_Pause;
  1044. }
  1045. phy->ops->advertise(phy, lc->advertising);
  1046. if (lc->autoneg == AUTONEG_DISABLE) {
  1047. lc->speed = lc->requested_speed;
  1048. lc->duplex = lc->requested_duplex;
  1049. lc->fc = (unsigned char)fc;
  1050. t3_mac_set_speed_duplex_fc(mac, lc->speed, lc->duplex,
  1051. fc);
  1052. /* Also disables autoneg */
  1053. phy->ops->set_speed_duplex(phy, lc->speed, lc->duplex);
  1054. phy->ops->reset(phy, 0);
  1055. } else
  1056. phy->ops->autoneg_enable(phy);
  1057. } else {
  1058. t3_mac_set_speed_duplex_fc(mac, -1, -1, fc);
  1059. lc->fc = (unsigned char)fc;
  1060. phy->ops->reset(phy, 0);
  1061. }
  1062. return 0;
  1063. }
  1064. /**
  1065. * t3_set_vlan_accel - control HW VLAN extraction
  1066. * @adapter: the adapter
  1067. * @ports: bitmap of adapter ports to operate on
  1068. * @on: enable (1) or disable (0) HW VLAN extraction
  1069. *
  1070. * Enables or disables HW extraction of VLAN tags for the given port.
  1071. */
  1072. void t3_set_vlan_accel(struct adapter *adapter, unsigned int ports, int on)
  1073. {
  1074. t3_set_reg_field(adapter, A_TP_OUT_CONFIG,
  1075. ports << S_VLANEXTRACTIONENABLE,
  1076. on ? (ports << S_VLANEXTRACTIONENABLE) : 0);
  1077. }
  1078. struct intr_info {
  1079. unsigned int mask; /* bits to check in interrupt status */
  1080. const char *msg; /* message to print or NULL */
  1081. short stat_idx; /* stat counter to increment or -1 */
  1082. unsigned short fatal:1; /* whether the condition reported is fatal */
  1083. };
  1084. /**
  1085. * t3_handle_intr_status - table driven interrupt handler
  1086. * @adapter: the adapter that generated the interrupt
  1087. * @reg: the interrupt status register to process
  1088. * @mask: a mask to apply to the interrupt status
  1089. * @acts: table of interrupt actions
  1090. * @stats: statistics counters tracking interrupt occurences
  1091. *
  1092. * A table driven interrupt handler that applies a set of masks to an
  1093. * interrupt status word and performs the corresponding actions if the
  1094. * interrupts described by the mask have occured. The actions include
  1095. * optionally printing a warning or alert message, and optionally
  1096. * incrementing a stat counter. The table is terminated by an entry
  1097. * specifying mask 0. Returns the number of fatal interrupt conditions.
  1098. */
  1099. static int t3_handle_intr_status(struct adapter *adapter, unsigned int reg,
  1100. unsigned int mask,
  1101. const struct intr_info *acts,
  1102. unsigned long *stats)
  1103. {
  1104. int fatal = 0;
  1105. unsigned int status = t3_read_reg(adapter, reg) & mask;
  1106. for (; acts->mask; ++acts) {
  1107. if (!(status & acts->mask))
  1108. continue;
  1109. if (acts->fatal) {
  1110. fatal++;
  1111. CH_ALERT(adapter, "%s (0x%x)\n",
  1112. acts->msg, status & acts->mask);
  1113. } else if (acts->msg)
  1114. CH_WARN(adapter, "%s (0x%x)\n",
  1115. acts->msg, status & acts->mask);
  1116. if (acts->stat_idx >= 0)
  1117. stats[acts->stat_idx]++;
  1118. }
  1119. if (status) /* clear processed interrupts */
  1120. t3_write_reg(adapter, reg, status);
  1121. return fatal;
  1122. }
  1123. #define SGE_INTR_MASK (F_RSPQDISABLED)
  1124. #define MC5_INTR_MASK (F_PARITYERR | F_ACTRGNFULL | F_UNKNOWNCMD | \
  1125. F_REQQPARERR | F_DISPQPARERR | F_DELACTEMPTY | \
  1126. F_NFASRCHFAIL)
  1127. #define MC7_INTR_MASK (F_AE | F_UE | F_CE | V_PE(M_PE))
  1128. #define XGM_INTR_MASK (V_TXFIFO_PRTY_ERR(M_TXFIFO_PRTY_ERR) | \
  1129. V_RXFIFO_PRTY_ERR(M_RXFIFO_PRTY_ERR) | \
  1130. F_TXFIFO_UNDERRUN | F_RXFIFO_OVERFLOW)
  1131. #define PCIX_INTR_MASK (F_MSTDETPARERR | F_SIGTARABT | F_RCVTARABT | \
  1132. F_RCVMSTABT | F_SIGSYSERR | F_DETPARERR | \
  1133. F_SPLCMPDIS | F_UNXSPLCMP | F_RCVSPLCMPERR | \
  1134. F_DETCORECCERR | F_DETUNCECCERR | F_PIOPARERR | \
  1135. V_WFPARERR(M_WFPARERR) | V_RFPARERR(M_RFPARERR) | \
  1136. V_CFPARERR(M_CFPARERR) /* | V_MSIXPARERR(M_MSIXPARERR) */)
  1137. #define PCIE_INTR_MASK (F_UNXSPLCPLERRR | F_UNXSPLCPLERRC | F_PCIE_PIOPARERR |\
  1138. F_PCIE_WFPARERR | F_PCIE_RFPARERR | F_PCIE_CFPARERR | \
  1139. /* V_PCIE_MSIXPARERR(M_PCIE_MSIXPARERR) | */ \
  1140. V_BISTERR(M_BISTERR) | F_PEXERR)
  1141. #define ULPRX_INTR_MASK F_PARERR
  1142. #define ULPTX_INTR_MASK 0
  1143. #define CPLSW_INTR_MASK (F_TP_FRAMING_ERROR | \
  1144. F_SGE_FRAMING_ERROR | F_CIM_FRAMING_ERROR | \
  1145. F_ZERO_SWITCH_ERROR)
  1146. #define CIM_INTR_MASK (F_BLKWRPLINT | F_BLKRDPLINT | F_BLKWRCTLINT | \
  1147. F_BLKRDCTLINT | F_BLKWRFLASHINT | F_BLKRDFLASHINT | \
  1148. F_SGLWRFLASHINT | F_WRBLKFLASHINT | F_BLKWRBOOTINT | \
  1149. F_FLASHRANGEINT | F_SDRAMRANGEINT | F_RSVDSPACEINT)
  1150. #define PMTX_INTR_MASK (F_ZERO_C_CMD_ERROR | ICSPI_FRM_ERR | OESPI_FRM_ERR | \
  1151. V_ICSPI_PAR_ERROR(M_ICSPI_PAR_ERROR) | \
  1152. V_OESPI_PAR_ERROR(M_OESPI_PAR_ERROR))
  1153. #define PMRX_INTR_MASK (F_ZERO_E_CMD_ERROR | IESPI_FRM_ERR | OCSPI_FRM_ERR | \
  1154. V_IESPI_PAR_ERROR(M_IESPI_PAR_ERROR) | \
  1155. V_OCSPI_PAR_ERROR(M_OCSPI_PAR_ERROR))
  1156. #define MPS_INTR_MASK (V_TX0TPPARERRENB(M_TX0TPPARERRENB) | \
  1157. V_TX1TPPARERRENB(M_TX1TPPARERRENB) | \
  1158. V_RXTPPARERRENB(M_RXTPPARERRENB) | \
  1159. V_MCAPARERRENB(M_MCAPARERRENB))
  1160. #define PL_INTR_MASK (F_T3DBG | F_XGMAC0_0 | F_XGMAC0_1 | F_MC5A | F_PM1_TX | \
  1161. F_PM1_RX | F_ULP2_TX | F_ULP2_RX | F_TP1 | F_CIM | \
  1162. F_MC7_CM | F_MC7_PMTX | F_MC7_PMRX | F_SGE3 | F_PCIM0 | \
  1163. F_MPS0 | F_CPL_SWITCH)
  1164. /*
  1165. * Interrupt handler for the PCIX1 module.
  1166. */
  1167. static void pci_intr_handler(struct adapter *adapter)
  1168. {
  1169. static const struct intr_info pcix1_intr_info[] = {
  1170. {F_MSTDETPARERR, "PCI master detected parity error", -1, 1},
  1171. {F_SIGTARABT, "PCI signaled target abort", -1, 1},
  1172. {F_RCVTARABT, "PCI received target abort", -1, 1},
  1173. {F_RCVMSTABT, "PCI received master abort", -1, 1},
  1174. {F_SIGSYSERR, "PCI signaled system error", -1, 1},
  1175. {F_DETPARERR, "PCI detected parity error", -1, 1},
  1176. {F_SPLCMPDIS, "PCI split completion discarded", -1, 1},
  1177. {F_UNXSPLCMP, "PCI unexpected split completion error", -1, 1},
  1178. {F_RCVSPLCMPERR, "PCI received split completion error", -1,
  1179. 1},
  1180. {F_DETCORECCERR, "PCI correctable ECC error",
  1181. STAT_PCI_CORR_ECC, 0},
  1182. {F_DETUNCECCERR, "PCI uncorrectable ECC error", -1, 1},
  1183. {F_PIOPARERR, "PCI PIO FIFO parity error", -1, 1},
  1184. {V_WFPARERR(M_WFPARERR), "PCI write FIFO parity error", -1,
  1185. 1},
  1186. {V_RFPARERR(M_RFPARERR), "PCI read FIFO parity error", -1,
  1187. 1},
  1188. {V_CFPARERR(M_CFPARERR), "PCI command FIFO parity error", -1,
  1189. 1},
  1190. {V_MSIXPARERR(M_MSIXPARERR), "PCI MSI-X table/PBA parity "
  1191. "error", -1, 1},
  1192. {0}
  1193. };
  1194. if (t3_handle_intr_status(adapter, A_PCIX_INT_CAUSE, PCIX_INTR_MASK,
  1195. pcix1_intr_info, adapter->irq_stats))
  1196. t3_fatal_err(adapter);
  1197. }
  1198. /*
  1199. * Interrupt handler for the PCIE module.
  1200. */
  1201. static void pcie_intr_handler(struct adapter *adapter)
  1202. {
  1203. static const struct intr_info pcie_intr_info[] = {
  1204. {F_PEXERR, "PCI PEX error", -1, 1},
  1205. {F_UNXSPLCPLERRR,
  1206. "PCI unexpected split completion DMA read error", -1, 1},
  1207. {F_UNXSPLCPLERRC,
  1208. "PCI unexpected split completion DMA command error", -1, 1},
  1209. {F_PCIE_PIOPARERR, "PCI PIO FIFO parity error", -1, 1},
  1210. {F_PCIE_WFPARERR, "PCI write FIFO parity error", -1, 1},
  1211. {F_PCIE_RFPARERR, "PCI read FIFO parity error", -1, 1},
  1212. {F_PCIE_CFPARERR, "PCI command FIFO parity error", -1, 1},
  1213. {V_PCIE_MSIXPARERR(M_PCIE_MSIXPARERR),
  1214. "PCI MSI-X table/PBA parity error", -1, 1},
  1215. {V_BISTERR(M_BISTERR), "PCI BIST error", -1, 1},
  1216. {0}
  1217. };
  1218. if (t3_handle_intr_status(adapter, A_PCIE_INT_CAUSE, PCIE_INTR_MASK,
  1219. pcie_intr_info, adapter->irq_stats))
  1220. t3_fatal_err(adapter);
  1221. }
  1222. /*
  1223. * TP interrupt handler.
  1224. */
  1225. static void tp_intr_handler(struct adapter *adapter)
  1226. {
  1227. static const struct intr_info tp_intr_info[] = {
  1228. {0xffffff, "TP parity error", -1, 1},
  1229. {0x1000000, "TP out of Rx pages", -1, 1},
  1230. {0x2000000, "TP out of Tx pages", -1, 1},
  1231. {0}
  1232. };
  1233. if (t3_handle_intr_status(adapter, A_TP_INT_CAUSE, 0xffffffff,
  1234. tp_intr_info, NULL))
  1235. t3_fatal_err(adapter);
  1236. }
  1237. /*
  1238. * CIM interrupt handler.
  1239. */
  1240. static void cim_intr_handler(struct adapter *adapter)
  1241. {
  1242. static const struct intr_info cim_intr_info[] = {
  1243. {F_RSVDSPACEINT, "CIM reserved space write", -1, 1},
  1244. {F_SDRAMRANGEINT, "CIM SDRAM address out of range", -1, 1},
  1245. {F_FLASHRANGEINT, "CIM flash address out of range", -1, 1},
  1246. {F_BLKWRBOOTINT, "CIM block write to boot space", -1, 1},
  1247. {F_WRBLKFLASHINT, "CIM write to cached flash space", -1, 1},
  1248. {F_SGLWRFLASHINT, "CIM single write to flash space", -1, 1},
  1249. {F_BLKRDFLASHINT, "CIM block read from flash space", -1, 1},
  1250. {F_BLKWRFLASHINT, "CIM block write to flash space", -1, 1},
  1251. {F_BLKRDCTLINT, "CIM block read from CTL space", -1, 1},
  1252. {F_BLKWRCTLINT, "CIM block write to CTL space", -1, 1},
  1253. {F_BLKRDPLINT, "CIM block read from PL space", -1, 1},
  1254. {F_BLKWRPLINT, "CIM block write to PL space", -1, 1},
  1255. {0}
  1256. };
  1257. if (t3_handle_intr_status(adapter, A_CIM_HOST_INT_CAUSE, 0xffffffff,
  1258. cim_intr_info, NULL))
  1259. t3_fatal_err(adapter);
  1260. }
  1261. /*
  1262. * ULP RX interrupt handler.
  1263. */
  1264. static void ulprx_intr_handler(struct adapter *adapter)
  1265. {
  1266. static const struct intr_info ulprx_intr_info[] = {
  1267. {F_PARERR, "ULP RX parity error", -1, 1},
  1268. {0}
  1269. };
  1270. if (t3_handle_intr_status(adapter, A_ULPRX_INT_CAUSE, 0xffffffff,
  1271. ulprx_intr_info, NULL))
  1272. t3_fatal_err(adapter);
  1273. }
  1274. /*
  1275. * ULP TX interrupt handler.
  1276. */
  1277. static void ulptx_intr_handler(struct adapter *adapter)
  1278. {
  1279. static const struct intr_info ulptx_intr_info[] = {
  1280. {F_PBL_BOUND_ERR_CH0, "ULP TX channel 0 PBL out of bounds",
  1281. STAT_ULP_CH0_PBL_OOB, 0},
  1282. {F_PBL_BOUND_ERR_CH1, "ULP TX channel 1 PBL out of bounds",
  1283. STAT_ULP_CH1_PBL_OOB, 0},
  1284. {0}
  1285. };
  1286. if (t3_handle_intr_status(adapter, A_ULPTX_INT_CAUSE, 0xffffffff,
  1287. ulptx_intr_info, adapter->irq_stats))
  1288. t3_fatal_err(adapter);
  1289. }
  1290. #define ICSPI_FRM_ERR (F_ICSPI0_FIFO2X_RX_FRAMING_ERROR | \
  1291. F_ICSPI1_FIFO2X_RX_FRAMING_ERROR | F_ICSPI0_RX_FRAMING_ERROR | \
  1292. F_ICSPI1_RX_FRAMING_ERROR | F_ICSPI0_TX_FRAMING_ERROR | \
  1293. F_ICSPI1_TX_FRAMING_ERROR)
  1294. #define OESPI_FRM_ERR (F_OESPI0_RX_FRAMING_ERROR | \
  1295. F_OESPI1_RX_FRAMING_ERROR | F_OESPI0_TX_FRAMING_ERROR | \
  1296. F_OESPI1_TX_FRAMING_ERROR | F_OESPI0_OFIFO2X_TX_FRAMING_ERROR | \
  1297. F_OESPI1_OFIFO2X_TX_FRAMING_ERROR)
  1298. /*
  1299. * PM TX interrupt handler.
  1300. */
  1301. static void pmtx_intr_handler(struct adapter *adapter)
  1302. {
  1303. static const struct intr_info pmtx_intr_info[] = {
  1304. {F_ZERO_C_CMD_ERROR, "PMTX 0-length pcmd", -1, 1},
  1305. {ICSPI_FRM_ERR, "PMTX ispi framing error", -1, 1},
  1306. {OESPI_FRM_ERR, "PMTX ospi framing error", -1, 1},
  1307. {V_ICSPI_PAR_ERROR(M_ICSPI_PAR_ERROR),
  1308. "PMTX ispi parity error", -1, 1},
  1309. {V_OESPI_PAR_ERROR(M_OESPI_PAR_ERROR),
  1310. "PMTX ospi parity error", -1, 1},
  1311. {0}
  1312. };
  1313. if (t3_handle_intr_status(adapter, A_PM1_TX_INT_CAUSE, 0xffffffff,
  1314. pmtx_intr_info, NULL))
  1315. t3_fatal_err(adapter);
  1316. }
  1317. #define IESPI_FRM_ERR (F_IESPI0_FIFO2X_RX_FRAMING_ERROR | \
  1318. F_IESPI1_FIFO2X_RX_FRAMING_ERROR | F_IESPI0_RX_FRAMING_ERROR | \
  1319. F_IESPI1_RX_FRAMING_ERROR | F_IESPI0_TX_FRAMING_ERROR | \
  1320. F_IESPI1_TX_FRAMING_ERROR)
  1321. #define OCSPI_FRM_ERR (F_OCSPI0_RX_FRAMING_ERROR | \
  1322. F_OCSPI1_RX_FRAMING_ERROR | F_OCSPI0_TX_FRAMING_ERROR | \
  1323. F_OCSPI1_TX_FRAMING_ERROR | F_OCSPI0_OFIFO2X_TX_FRAMING_ERROR | \
  1324. F_OCSPI1_OFIFO2X_TX_FRAMING_ERROR)
  1325. /*
  1326. * PM RX interrupt handler.
  1327. */
  1328. static void pmrx_intr_handler(struct adapter *adapter)
  1329. {
  1330. static const struct intr_info pmrx_intr_info[] = {
  1331. {F_ZERO_E_CMD_ERROR, "PMRX 0-length pcmd", -1, 1},
  1332. {IESPI_FRM_ERR, "PMRX ispi framing error", -1, 1},
  1333. {OCSPI_FRM_ERR, "PMRX ospi framing error", -1, 1},
  1334. {V_IESPI_PAR_ERROR(M_IESPI_PAR_ERROR),
  1335. "PMRX ispi parity error", -1, 1},
  1336. {V_OCSPI_PAR_ERROR(M_OCSPI_PAR_ERROR),
  1337. "PMRX ospi parity error", -1, 1},
  1338. {0}
  1339. };
  1340. if (t3_handle_intr_status(adapter, A_PM1_RX_INT_CAUSE, 0xffffffff,
  1341. pmrx_intr_info, NULL))
  1342. t3_fatal_err(adapter);
  1343. }
  1344. /*
  1345. * CPL switch interrupt handler.
  1346. */
  1347. static void cplsw_intr_handler(struct adapter *adapter)
  1348. {
  1349. static const struct intr_info cplsw_intr_info[] = {
  1350. /* { F_CIM_OVFL_ERROR, "CPL switch CIM overflow", -1, 1 }, */
  1351. {F_TP_FRAMING_ERROR, "CPL switch TP framing error", -1, 1},
  1352. {F_SGE_FRAMING_ERROR, "CPL switch SGE framing error", -1, 1},
  1353. {F_CIM_FRAMING_ERROR, "CPL switch CIM framing error", -1, 1},
  1354. {F_ZERO_SWITCH_ERROR, "CPL switch no-switch error", -1, 1},
  1355. {0}
  1356. };
  1357. if (t3_handle_intr_status(adapter, A_CPL_INTR_CAUSE, 0xffffffff,
  1358. cplsw_intr_info, NULL))
  1359. t3_fatal_err(adapter);
  1360. }
  1361. /*
  1362. * MPS interrupt handler.
  1363. */
  1364. static void mps_intr_handler(struct adapter *adapter)
  1365. {
  1366. static const struct intr_info mps_intr_info[] = {
  1367. {0x1ff, "MPS parity error", -1, 1},
  1368. {0}
  1369. };
  1370. if (t3_handle_intr_status(adapter, A_MPS_INT_CAUSE, 0xffffffff,
  1371. mps_intr_info, NULL))
  1372. t3_fatal_err(adapter);
  1373. }
  1374. #define MC7_INTR_FATAL (F_UE | V_PE(M_PE) | F_AE)
  1375. /*
  1376. * MC7 interrupt handler.
  1377. */
  1378. static void mc7_intr_handler(struct mc7 *mc7)
  1379. {
  1380. struct adapter *adapter = mc7->adapter;
  1381. u32 cause = t3_read_reg(adapter, mc7->offset + A_MC7_INT_CAUSE);
  1382. if (cause & F_CE) {
  1383. mc7->stats.corr_err++;
  1384. CH_WARN(adapter, "%s MC7 correctable error at addr 0x%x, "
  1385. "data 0x%x 0x%x 0x%x\n", mc7->name,
  1386. t3_read_reg(adapter, mc7->offset + A_MC7_CE_ADDR),
  1387. t3_read_reg(adapter, mc7->offset + A_MC7_CE_DATA0),
  1388. t3_read_reg(adapter, mc7->offset + A_MC7_CE_DATA1),
  1389. t3_read_reg(adapter, mc7->offset + A_MC7_CE_DATA2));
  1390. }
  1391. if (cause & F_UE) {
  1392. mc7->stats.uncorr_err++;
  1393. CH_ALERT(adapter, "%s MC7 uncorrectable error at addr 0x%x, "
  1394. "data 0x%x 0x%x 0x%x\n", mc7->name,
  1395. t3_read_reg(adapter, mc7->offset + A_MC7_UE_ADDR),
  1396. t3_read_reg(adapter, mc7->offset + A_MC7_UE_DATA0),
  1397. t3_read_reg(adapter, mc7->offset + A_MC7_UE_DATA1),
  1398. t3_read_reg(adapter, mc7->offset + A_MC7_UE_DATA2));
  1399. }
  1400. if (G_PE(cause)) {
  1401. mc7->stats.parity_err++;
  1402. CH_ALERT(adapter, "%s MC7 parity error 0x%x\n",
  1403. mc7->name, G_PE(cause));
  1404. }
  1405. if (cause & F_AE) {
  1406. u32 addr = 0;
  1407. if (adapter->params.rev > 0)
  1408. addr = t3_read_reg(adapter,
  1409. mc7->offset + A_MC7_ERR_ADDR);
  1410. mc7->stats.addr_err++;
  1411. CH_ALERT(adapter, "%s MC7 address error: 0x%x\n",
  1412. mc7->name, addr);
  1413. }
  1414. if (cause & MC7_INTR_FATAL)
  1415. t3_fatal_err(adapter);
  1416. t3_write_reg(adapter, mc7->offset + A_MC7_INT_CAUSE, cause);
  1417. }
  1418. #define XGM_INTR_FATAL (V_TXFIFO_PRTY_ERR(M_TXFIFO_PRTY_ERR) | \
  1419. V_RXFIFO_PRTY_ERR(M_RXFIFO_PRTY_ERR))
  1420. /*
  1421. * XGMAC interrupt handler.
  1422. */
  1423. static int mac_intr_handler(struct adapter *adap, unsigned int idx)
  1424. {
  1425. struct cmac *mac = &adap2pinfo(adap, idx)->mac;
  1426. u32 cause = t3_read_reg(adap, A_XGM_INT_CAUSE + mac->offset);
  1427. if (cause & V_TXFIFO_PRTY_ERR(M_TXFIFO_PRTY_ERR)) {
  1428. mac->stats.tx_fifo_parity_err++;
  1429. CH_ALERT(adap, "port%d: MAC TX FIFO parity error\n", idx);
  1430. }
  1431. if (cause & V_RXFIFO_PRTY_ERR(M_RXFIFO_PRTY_ERR)) {
  1432. mac->stats.rx_fifo_parity_err++;
  1433. CH_ALERT(adap, "port%d: MAC RX FIFO parity error\n", idx);
  1434. }
  1435. if (cause & F_TXFIFO_UNDERRUN)
  1436. mac->stats.tx_fifo_urun++;
  1437. if (cause & F_RXFIFO_OVERFLOW)
  1438. mac->stats.rx_fifo_ovfl++;
  1439. if (cause & V_SERDES_LOS(M_SERDES_LOS))
  1440. mac->stats.serdes_signal_loss++;
  1441. if (cause & F_XAUIPCSCTCERR)
  1442. mac->stats.xaui_pcs_ctc_err++;
  1443. if (cause & F_XAUIPCSALIGNCHANGE)
  1444. mac->stats.xaui_pcs_align_change++;
  1445. t3_write_reg(adap, A_XGM_INT_CAUSE + mac->offset, cause);
  1446. if (cause & XGM_INTR_FATAL)
  1447. t3_fatal_err(adap);
  1448. return cause != 0;
  1449. }
  1450. /*
  1451. * Interrupt handler for PHY events.
  1452. */
  1453. int t3_phy_intr_handler(struct adapter *adapter)
  1454. {
  1455. u32 mask, gpi = adapter_info(adapter)->gpio_intr;
  1456. u32 i, cause = t3_read_reg(adapter, A_T3DBG_INT_CAUSE);
  1457. for_each_port(adapter, i) {
  1458. struct port_info *p = adap2pinfo(adapter, i);
  1459. mask = gpi - (gpi & (gpi - 1));
  1460. gpi -= mask;
  1461. if (!(p->port_type->caps & SUPPORTED_IRQ))
  1462. continue;
  1463. if (cause & mask) {
  1464. int phy_cause = p->phy.ops->intr_handler(&p->phy);
  1465. if (phy_cause & cphy_cause_link_change)
  1466. t3_link_changed(adapter, i);
  1467. if (phy_cause & cphy_cause_fifo_error)
  1468. p->phy.fifo_errors++;
  1469. }
  1470. }
  1471. t3_write_reg(adapter, A_T3DBG_INT_CAUSE, cause);
  1472. return 0;
  1473. }
  1474. /*
  1475. * T3 slow path (non-data) interrupt handler.
  1476. */
  1477. int t3_slow_intr_handler(struct adapter *adapter)
  1478. {
  1479. u32 cause = t3_read_reg(adapter, A_PL_INT_CAUSE0);
  1480. cause &= adapter->slow_intr_mask;
  1481. if (!cause)
  1482. return 0;
  1483. if (cause & F_PCIM0) {
  1484. if (is_pcie(adapter))
  1485. pcie_intr_handler(adapter);
  1486. else
  1487. pci_intr_handler(adapter);
  1488. }
  1489. if (cause & F_SGE3)
  1490. t3_sge_err_intr_handler(adapter);
  1491. if (cause & F_MC7_PMRX)
  1492. mc7_intr_handler(&adapter->pmrx);
  1493. if (cause & F_MC7_PMTX)
  1494. mc7_intr_handler(&adapter->pmtx);
  1495. if (cause & F_MC7_CM)
  1496. mc7_intr_handler(&adapter->cm);
  1497. if (cause & F_CIM)
  1498. cim_intr_handler(adapter);
  1499. if (cause & F_TP1)
  1500. tp_intr_handler(adapter);
  1501. if (cause & F_ULP2_RX)
  1502. ulprx_intr_handler(adapter);
  1503. if (cause & F_ULP2_TX)
  1504. ulptx_intr_handler(adapter);
  1505. if (cause & F_PM1_RX)
  1506. pmrx_intr_handler(adapter);
  1507. if (cause & F_PM1_TX)
  1508. pmtx_intr_handler(adapter);
  1509. if (cause & F_CPL_SWITCH)
  1510. cplsw_intr_handler(adapter);
  1511. if (cause & F_MPS0)
  1512. mps_intr_handler(adapter);
  1513. if (cause & F_MC5A)
  1514. t3_mc5_intr_handler(&adapter->mc5);
  1515. if (cause & F_XGMAC0_0)
  1516. mac_intr_handler(adapter, 0);
  1517. if (cause & F_XGMAC0_1)
  1518. mac_intr_handler(adapter, 1);
  1519. if (cause & F_T3DBG)
  1520. t3_os_ext_intr_handler(adapter);
  1521. /* Clear the interrupts just processed. */
  1522. t3_write_reg(adapter, A_PL_INT_CAUSE0, cause);
  1523. t3_read_reg(adapter, A_PL_INT_CAUSE0); /* flush */
  1524. return 1;
  1525. }
  1526. /**
  1527. * t3_intr_enable - enable interrupts
  1528. * @adapter: the adapter whose interrupts should be enabled
  1529. *
  1530. * Enable interrupts by setting the interrupt enable registers of the
  1531. * various HW modules and then enabling the top-level interrupt
  1532. * concentrator.
  1533. */
  1534. void t3_intr_enable(struct adapter *adapter)
  1535. {
  1536. static const struct addr_val_pair intr_en_avp[] = {
  1537. {A_SG_INT_ENABLE, SGE_INTR_MASK},
  1538. {A_MC7_INT_ENABLE, MC7_INTR_MASK},
  1539. {A_MC7_INT_ENABLE - MC7_PMRX_BASE_ADDR + MC7_PMTX_BASE_ADDR,
  1540. MC7_INTR_MASK},
  1541. {A_MC7_INT_ENABLE - MC7_PMRX_BASE_ADDR + MC7_CM_BASE_ADDR,
  1542. MC7_INTR_MASK},
  1543. {A_MC5_DB_INT_ENABLE, MC5_INTR_MASK},
  1544. {A_ULPRX_INT_ENABLE, ULPRX_INTR_MASK},
  1545. {A_TP_INT_ENABLE, 0x3bfffff},
  1546. {A_PM1_TX_INT_ENABLE, PMTX_INTR_MASK},
  1547. {A_PM1_RX_INT_ENABLE, PMRX_INTR_MASK},
  1548. {A_CIM_HOST_INT_ENABLE, CIM_INTR_MASK},
  1549. {A_MPS_INT_ENABLE, MPS_INTR_MASK},
  1550. };
  1551. adapter->slow_intr_mask = PL_INTR_MASK;
  1552. t3_write_regs(adapter, intr_en_avp, ARRAY_SIZE(intr_en_avp), 0);
  1553. if (adapter->params.rev > 0) {
  1554. t3_write_reg(adapter, A_CPL_INTR_ENABLE,
  1555. CPLSW_INTR_MASK | F_CIM_OVFL_ERROR);
  1556. t3_write_reg(adapter, A_ULPTX_INT_ENABLE,
  1557. ULPTX_INTR_MASK | F_PBL_BOUND_ERR_CH0 |
  1558. F_PBL_BOUND_ERR_CH1);
  1559. } else {
  1560. t3_write_reg(adapter, A_CPL_INTR_ENABLE, CPLSW_INTR_MASK);
  1561. t3_write_reg(adapter, A_ULPTX_INT_ENABLE, ULPTX_INTR_MASK);
  1562. }
  1563. t3_write_reg(adapter, A_T3DBG_GPIO_ACT_LOW,
  1564. adapter_info(adapter)->gpio_intr);
  1565. t3_write_reg(adapter, A_T3DBG_INT_ENABLE,
  1566. adapter_info(adapter)->gpio_intr);
  1567. if (is_pcie(adapter))
  1568. t3_write_reg(adapter, A_PCIE_INT_ENABLE, PCIE_INTR_MASK);
  1569. else
  1570. t3_write_reg(adapter, A_PCIX_INT_ENABLE, PCIX_INTR_MASK);
  1571. t3_write_reg(adapter, A_PL_INT_ENABLE0, adapter->slow_intr_mask);
  1572. t3_read_reg(adapter, A_PL_INT_ENABLE0); /* flush */
  1573. }
  1574. /**
  1575. * t3_intr_disable - disable a card's interrupts
  1576. * @adapter: the adapter whose interrupts should be disabled
  1577. *
  1578. * Disable interrupts. We only disable the top-level interrupt
  1579. * concentrator and the SGE data interrupts.
  1580. */
  1581. void t3_intr_disable(struct adapter *adapter)
  1582. {
  1583. t3_write_reg(adapter, A_PL_INT_ENABLE0, 0);
  1584. t3_read_reg(adapter, A_PL_INT_ENABLE0); /* flush */
  1585. adapter->slow_intr_mask = 0;
  1586. }
  1587. /**
  1588. * t3_intr_clear - clear all interrupts
  1589. * @adapter: the adapter whose interrupts should be cleared
  1590. *
  1591. * Clears all interrupts.
  1592. */
  1593. void t3_intr_clear(struct adapter *adapter)
  1594. {
  1595. static const unsigned int cause_reg_addr[] = {
  1596. A_SG_INT_CAUSE,
  1597. A_SG_RSPQ_FL_STATUS,
  1598. A_PCIX_INT_CAUSE,
  1599. A_MC7_INT_CAUSE,
  1600. A_MC7_INT_CAUSE - MC7_PMRX_BASE_ADDR + MC7_PMTX_BASE_ADDR,
  1601. A_MC7_INT_CAUSE - MC7_PMRX_BASE_ADDR + MC7_CM_BASE_ADDR,
  1602. A_CIM_HOST_INT_CAUSE,
  1603. A_TP_INT_CAUSE,
  1604. A_MC5_DB_INT_CAUSE,
  1605. A_ULPRX_INT_CAUSE,
  1606. A_ULPTX_INT_CAUSE,
  1607. A_CPL_INTR_CAUSE,
  1608. A_PM1_TX_INT_CAUSE,
  1609. A_PM1_RX_INT_CAUSE,
  1610. A_MPS_INT_CAUSE,
  1611. A_T3DBG_INT_CAUSE,
  1612. };
  1613. unsigned int i;
  1614. /* Clear PHY and MAC interrupts for each port. */
  1615. for_each_port(adapter, i)
  1616. t3_port_intr_clear(adapter, i);
  1617. for (i = 0; i < ARRAY_SIZE(cause_reg_addr); ++i)
  1618. t3_write_reg(adapter, cause_reg_addr[i], 0xffffffff);
  1619. t3_write_reg(adapter, A_PL_INT_CAUSE0, 0xffffffff);
  1620. t3_read_reg(adapter, A_PL_INT_CAUSE0); /* flush */
  1621. }
  1622. /**
  1623. * t3_port_intr_enable - enable port-specific interrupts
  1624. * @adapter: associated adapter
  1625. * @idx: index of port whose interrupts should be enabled
  1626. *
  1627. * Enable port-specific (i.e., MAC and PHY) interrupts for the given
  1628. * adapter port.
  1629. */
  1630. void t3_port_intr_enable(struct adapter *adapter, int idx)
  1631. {
  1632. struct cphy *phy = &adap2pinfo(adapter, idx)->phy;
  1633. t3_write_reg(adapter, XGM_REG(A_XGM_INT_ENABLE, idx), XGM_INTR_MASK);
  1634. t3_read_reg(adapter, XGM_REG(A_XGM_INT_ENABLE, idx)); /* flush */
  1635. phy->ops->intr_enable(phy);
  1636. }
  1637. /**
  1638. * t3_port_intr_disable - disable port-specific interrupts
  1639. * @adapter: associated adapter
  1640. * @idx: index of port whose interrupts should be disabled
  1641. *
  1642. * Disable port-specific (i.e., MAC and PHY) interrupts for the given
  1643. * adapter port.
  1644. */
  1645. void t3_port_intr_disable(struct adapter *adapter, int idx)
  1646. {
  1647. struct cphy *phy = &adap2pinfo(adapter, idx)->phy;
  1648. t3_write_reg(adapter, XGM_REG(A_XGM_INT_ENABLE, idx), 0);
  1649. t3_read_reg(adapter, XGM_REG(A_XGM_INT_ENABLE, idx)); /* flush */
  1650. phy->ops->intr_disable(phy);
  1651. }
  1652. /**
  1653. * t3_port_intr_clear - clear port-specific interrupts
  1654. * @adapter: associated adapter
  1655. * @idx: index of port whose interrupts to clear
  1656. *
  1657. * Clear port-specific (i.e., MAC and PHY) interrupts for the given
  1658. * adapter port.
  1659. */
  1660. void t3_port_intr_clear(struct adapter *adapter, int idx)
  1661. {
  1662. struct cphy *phy = &adap2pinfo(adapter, idx)->phy;
  1663. t3_write_reg(adapter, XGM_REG(A_XGM_INT_CAUSE, idx), 0xffffffff);
  1664. t3_read_reg(adapter, XGM_REG(A_XGM_INT_CAUSE, idx)); /* flush */
  1665. phy->ops->intr_clear(phy);
  1666. }
  1667. /**
  1668. * t3_sge_write_context - write an SGE context
  1669. * @adapter: the adapter
  1670. * @id: the context id
  1671. * @type: the context type
  1672. *
  1673. * Program an SGE context with the values already loaded in the
  1674. * CONTEXT_DATA? registers.
  1675. */
  1676. static int t3_sge_write_context(struct adapter *adapter, unsigned int id,
  1677. unsigned int type)
  1678. {
  1679. t3_write_reg(adapter, A_SG_CONTEXT_MASK0, 0xffffffff);
  1680. t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0xffffffff);
  1681. t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0xffffffff);
  1682. t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0xffffffff);
  1683. t3_write_reg(adapter, A_SG_CONTEXT_CMD,
  1684. V_CONTEXT_CMD_OPCODE(1) | type | V_CONTEXT(id));
  1685. return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
  1686. 0, 5, 1);
  1687. }
  1688. /**
  1689. * t3_sge_init_ecntxt - initialize an SGE egress context
  1690. * @adapter: the adapter to configure
  1691. * @id: the context id
  1692. * @gts_enable: whether to enable GTS for the context
  1693. * @type: the egress context type
  1694. * @respq: associated response queue
  1695. * @base_addr: base address of queue
  1696. * @size: number of queue entries
  1697. * @token: uP token
  1698. * @gen: initial generation value for the context
  1699. * @cidx: consumer pointer
  1700. *
  1701. * Initialize an SGE egress context and make it ready for use. If the
  1702. * platform allows concurrent context operations, the caller is
  1703. * responsible for appropriate locking.
  1704. */
  1705. int t3_sge_init_ecntxt(struct adapter *adapter, unsigned int id, int gts_enable,
  1706. enum sge_context_type type, int respq, u64 base_addr,
  1707. unsigned int size, unsigned int token, int gen,
  1708. unsigned int cidx)
  1709. {
  1710. unsigned int credits = type == SGE_CNTXT_OFLD ? 0 : FW_WR_NUM;
  1711. if (base_addr & 0xfff) /* must be 4K aligned */
  1712. return -EINVAL;
  1713. if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
  1714. return -EBUSY;
  1715. base_addr >>= 12;
  1716. t3_write_reg(adapter, A_SG_CONTEXT_DATA0, V_EC_INDEX(cidx) |
  1717. V_EC_CREDITS(credits) | V_EC_GTS(gts_enable));
  1718. t3_write_reg(adapter, A_SG_CONTEXT_DATA1, V_EC_SIZE(size) |
  1719. V_EC_BASE_LO(base_addr & 0xffff));
  1720. base_addr >>= 16;
  1721. t3_write_reg(adapter, A_SG_CONTEXT_DATA2, base_addr);
  1722. base_addr >>= 32;
  1723. t3_write_reg(adapter, A_SG_CONTEXT_DATA3,
  1724. V_EC_BASE_HI(base_addr & 0xf) | V_EC_RESPQ(respq) |
  1725. V_EC_TYPE(type) | V_EC_GEN(gen) | V_EC_UP_TOKEN(token) |
  1726. F_EC_VALID);
  1727. return t3_sge_write_context(adapter, id, F_EGRESS);
  1728. }
  1729. /**
  1730. * t3_sge_init_flcntxt - initialize an SGE free-buffer list context
  1731. * @adapter: the adapter to configure
  1732. * @id: the context id
  1733. * @gts_enable: whether to enable GTS for the context
  1734. * @base_addr: base address of queue
  1735. * @size: number of queue entries
  1736. * @bsize: size of each buffer for this queue
  1737. * @cong_thres: threshold to signal congestion to upstream producers
  1738. * @gen: initial generation value for the context
  1739. * @cidx: consumer pointer
  1740. *
  1741. * Initialize an SGE free list context and make it ready for use. The
  1742. * caller is responsible for ensuring only one context operation occurs
  1743. * at a time.
  1744. */
  1745. int t3_sge_init_flcntxt(struct adapter *adapter, unsigned int id,
  1746. int gts_enable, u64 base_addr, unsigned int size,
  1747. unsigned int bsize, unsigned int cong_thres, int gen,
  1748. unsigned int cidx)
  1749. {
  1750. if (base_addr & 0xfff) /* must be 4K aligned */
  1751. return -EINVAL;
  1752. if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
  1753. return -EBUSY;
  1754. base_addr >>= 12;
  1755. t3_write_reg(adapter, A_SG_CONTEXT_DATA0, base_addr);
  1756. base_addr >>= 32;
  1757. t3_write_reg(adapter, A_SG_CONTEXT_DATA1,
  1758. V_FL_BASE_HI((u32) base_addr) |
  1759. V_FL_INDEX_LO(cidx & M_FL_INDEX_LO));
  1760. t3_write_reg(adapter, A_SG_CONTEXT_DATA2, V_FL_SIZE(size) |
  1761. V_FL_GEN(gen) | V_FL_INDEX_HI(cidx >> 12) |
  1762. V_FL_ENTRY_SIZE_LO(bsize & M_FL_ENTRY_SIZE_LO));
  1763. t3_write_reg(adapter, A_SG_CONTEXT_DATA3,
  1764. V_FL_ENTRY_SIZE_HI(bsize >> (32 - S_FL_ENTRY_SIZE_LO)) |
  1765. V_FL_CONG_THRES(cong_thres) | V_FL_GTS(gts_enable));
  1766. return t3_sge_write_context(adapter, id, F_FREELIST);
  1767. }
  1768. /**
  1769. * t3_sge_init_rspcntxt - initialize an SGE response queue context
  1770. * @adapter: the adapter to configure
  1771. * @id: the context id
  1772. * @irq_vec_idx: MSI-X interrupt vector index, 0 if no MSI-X, -1 if no IRQ
  1773. * @base_addr: base address of queue
  1774. * @size: number of queue entries
  1775. * @fl_thres: threshold for selecting the normal or jumbo free list
  1776. * @gen: initial generation value for the context
  1777. * @cidx: consumer pointer
  1778. *
  1779. * Initialize an SGE response queue context and make it ready for use.
  1780. * The caller is responsible for ensuring only one context operation
  1781. * occurs at a time.
  1782. */
  1783. int t3_sge_init_rspcntxt(struct adapter *adapter, unsigned int id,
  1784. int irq_vec_idx, u64 base_addr, unsigned int size,
  1785. unsigned int fl_thres, int gen, unsigned int cidx)
  1786. {
  1787. unsigned int intr = 0;
  1788. if (base_addr & 0xfff) /* must be 4K aligned */
  1789. return -EINVAL;
  1790. if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
  1791. return -EBUSY;
  1792. base_addr >>= 12;
  1793. t3_write_reg(adapter, A_SG_CONTEXT_DATA0, V_CQ_SIZE(size) |
  1794. V_CQ_INDEX(cidx));
  1795. t3_write_reg(adapter, A_SG_CONTEXT_DATA1, base_addr);
  1796. base_addr >>= 32;
  1797. if (irq_vec_idx >= 0)
  1798. intr = V_RQ_MSI_VEC(irq_vec_idx) | F_RQ_INTR_EN;
  1799. t3_write_reg(adapter, A_SG_CONTEXT_DATA2,
  1800. V_CQ_BASE_HI((u32) base_addr) | intr | V_RQ_GEN(gen));
  1801. t3_write_reg(adapter, A_SG_CONTEXT_DATA3, fl_thres);
  1802. return t3_sge_write_context(adapter, id, F_RESPONSEQ);
  1803. }
  1804. /**
  1805. * t3_sge_init_cqcntxt - initialize an SGE completion queue context
  1806. * @adapter: the adapter to configure
  1807. * @id: the context id
  1808. * @base_addr: base address of queue
  1809. * @size: number of queue entries
  1810. * @rspq: response queue for async notifications
  1811. * @ovfl_mode: CQ overflow mode
  1812. * @credits: completion queue credits
  1813. * @credit_thres: the credit threshold
  1814. *
  1815. * Initialize an SGE completion queue context and make it ready for use.
  1816. * The caller is responsible for ensuring only one context operation
  1817. * occurs at a time.
  1818. */
  1819. int t3_sge_init_cqcntxt(struct adapter *adapter, unsigned int id, u64 base_addr,
  1820. unsigned int size, int rspq, int ovfl_mode,
  1821. unsigned int credits, unsigned int credit_thres)
  1822. {
  1823. if (base_addr & 0xfff) /* must be 4K aligned */
  1824. return -EINVAL;
  1825. if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
  1826. return -EBUSY;
  1827. base_addr >>= 12;
  1828. t3_write_reg(adapter, A_SG_CONTEXT_DATA0, V_CQ_SIZE(size));
  1829. t3_write_reg(adapter, A_SG_CONTEXT_DATA1, base_addr);
  1830. base_addr >>= 32;
  1831. t3_write_reg(adapter, A_SG_CONTEXT_DATA2,
  1832. V_CQ_BASE_HI((u32) base_addr) | V_CQ_RSPQ(rspq) |
  1833. V_CQ_GEN(1) | V_CQ_OVERFLOW_MODE(ovfl_mode));
  1834. t3_write_reg(adapter, A_SG_CONTEXT_DATA3, V_CQ_CREDITS(credits) |
  1835. V_CQ_CREDIT_THRES(credit_thres));
  1836. return t3_sge_write_context(adapter, id, F_CQ);
  1837. }
  1838. /**
  1839. * t3_sge_enable_ecntxt - enable/disable an SGE egress context
  1840. * @adapter: the adapter
  1841. * @id: the egress context id
  1842. * @enable: enable (1) or disable (0) the context
  1843. *
  1844. * Enable or disable an SGE egress context. The caller is responsible for
  1845. * ensuring only one context operation occurs at a time.
  1846. */
  1847. int t3_sge_enable_ecntxt(struct adapter *adapter, unsigned int id, int enable)
  1848. {
  1849. if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
  1850. return -EBUSY;
  1851. t3_write_reg(adapter, A_SG_CONTEXT_MASK0, 0);
  1852. t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0);
  1853. t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0);
  1854. t3_write_reg(adapter, A_SG_CONTEXT_MASK3, F_EC_VALID);
  1855. t3_write_reg(adapter, A_SG_CONTEXT_DATA3, V_EC_VALID(enable));
  1856. t3_write_reg(adapter, A_SG_CONTEXT_CMD,
  1857. V_CONTEXT_CMD_OPCODE(1) | F_EGRESS | V_CONTEXT(id));
  1858. return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
  1859. 0, 5, 1);
  1860. }
  1861. /**
  1862. * t3_sge_disable_fl - disable an SGE free-buffer list
  1863. * @adapter: the adapter
  1864. * @id: the free list context id
  1865. *
  1866. * Disable an SGE free-buffer list. The caller is responsible for
  1867. * ensuring only one context operation occurs at a time.
  1868. */
  1869. int t3_sge_disable_fl(struct adapter *adapter, unsigned int id)
  1870. {
  1871. if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
  1872. return -EBUSY;
  1873. t3_write_reg(adapter, A_SG_CONTEXT_MASK0, 0);
  1874. t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0);
  1875. t3_write_reg(adapter, A_SG_CONTEXT_MASK2, V_FL_SIZE(M_FL_SIZE));
  1876. t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0);
  1877. t3_write_reg(adapter, A_SG_CONTEXT_DATA2, 0);
  1878. t3_write_reg(adapter, A_SG_CONTEXT_CMD,
  1879. V_CONTEXT_CMD_OPCODE(1) | F_FREELIST | V_CONTEXT(id));
  1880. return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
  1881. 0, 5, 1);
  1882. }
  1883. /**
  1884. * t3_sge_disable_rspcntxt - disable an SGE response queue
  1885. * @adapter: the adapter
  1886. * @id: the response queue context id
  1887. *
  1888. * Disable an SGE response queue. The caller is responsible for
  1889. * ensuring only one context operation occurs at a time.
  1890. */
  1891. int t3_sge_disable_rspcntxt(struct adapter *adapter, unsigned int id)
  1892. {
  1893. if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
  1894. return -EBUSY;
  1895. t3_write_reg(adapter, A_SG_CONTEXT_MASK0, V_CQ_SIZE(M_CQ_SIZE));
  1896. t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0);
  1897. t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0);
  1898. t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0);
  1899. t3_write_reg(adapter, A_SG_CONTEXT_DATA0, 0);
  1900. t3_write_reg(adapter, A_SG_CONTEXT_CMD,
  1901. V_CONTEXT_CMD_OPCODE(1) | F_RESPONSEQ | V_CONTEXT(id));
  1902. return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
  1903. 0, 5, 1);
  1904. }
  1905. /**
  1906. * t3_sge_disable_cqcntxt - disable an SGE completion queue
  1907. * @adapter: the adapter
  1908. * @id: the completion queue context id
  1909. *
  1910. * Disable an SGE completion queue. The caller is responsible for
  1911. * ensuring only one context operation occurs at a time.
  1912. */
  1913. int t3_sge_disable_cqcntxt(struct adapter *adapter, unsigned int id)
  1914. {
  1915. if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
  1916. return -EBUSY;
  1917. t3_write_reg(adapter, A_SG_CONTEXT_MASK0, V_CQ_SIZE(M_CQ_SIZE));
  1918. t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0);
  1919. t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0);
  1920. t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0);
  1921. t3_write_reg(adapter, A_SG_CONTEXT_DATA0, 0);
  1922. t3_write_reg(adapter, A_SG_CONTEXT_CMD,
  1923. V_CONTEXT_CMD_OPCODE(1) | F_CQ | V_CONTEXT(id));
  1924. return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
  1925. 0, 5, 1);
  1926. }
  1927. /**
  1928. * t3_sge_cqcntxt_op - perform an operation on a completion queue context
  1929. * @adapter: the adapter
  1930. * @id: the context id
  1931. * @op: the operation to perform
  1932. *
  1933. * Perform the selected operation on an SGE completion queue context.
  1934. * The caller is responsible for ensuring only one context operation
  1935. * occurs at a time.
  1936. */
  1937. int t3_sge_cqcntxt_op(struct adapter *adapter, unsigned int id, unsigned int op,
  1938. unsigned int credits)
  1939. {
  1940. u32 val;
  1941. if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
  1942. return -EBUSY;
  1943. t3_write_reg(adapter, A_SG_CONTEXT_DATA0, credits << 16);
  1944. t3_write_reg(adapter, A_SG_CONTEXT_CMD, V_CONTEXT_CMD_OPCODE(op) |
  1945. V_CONTEXT(id) | F_CQ);
  1946. if (t3_wait_op_done_val(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
  1947. 0, 5, 1, &val))
  1948. return -EIO;
  1949. if (op >= 2 && op < 7) {
  1950. if (adapter->params.rev > 0)
  1951. return G_CQ_INDEX(val);
  1952. t3_write_reg(adapter, A_SG_CONTEXT_CMD,
  1953. V_CONTEXT_CMD_OPCODE(0) | F_CQ | V_CONTEXT(id));
  1954. if (t3_wait_op_done(adapter, A_SG_CONTEXT_CMD,
  1955. F_CONTEXT_CMD_BUSY, 0, 5, 1))
  1956. return -EIO;
  1957. return G_CQ_INDEX(t3_read_reg(adapter, A_SG_CONTEXT_DATA0));
  1958. }
  1959. return 0;
  1960. }
  1961. /**
  1962. * t3_sge_read_context - read an SGE context
  1963. * @type: the context type
  1964. * @adapter: the adapter
  1965. * @id: the context id
  1966. * @data: holds the retrieved context
  1967. *
  1968. * Read an SGE egress context. The caller is responsible for ensuring
  1969. * only one context operation occurs at a time.
  1970. */
  1971. static int t3_sge_read_context(unsigned int type, struct adapter *adapter,
  1972. unsigned int id, u32 data[4])
  1973. {
  1974. if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
  1975. return -EBUSY;
  1976. t3_write_reg(adapter, A_SG_CONTEXT_CMD,
  1977. V_CONTEXT_CMD_OPCODE(0) | type | V_CONTEXT(id));
  1978. if (t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY, 0,
  1979. 5, 1))
  1980. return -EIO;
  1981. data[0] = t3_read_reg(adapter, A_SG_CONTEXT_DATA0);
  1982. data[1] = t3_read_reg(adapter, A_SG_CONTEXT_DATA1);
  1983. data[2] = t3_read_reg(adapter, A_SG_CONTEXT_DATA2);
  1984. data[3] = t3_read_reg(adapter, A_SG_CONTEXT_DATA3);
  1985. return 0;
  1986. }
  1987. /**
  1988. * t3_sge_read_ecntxt - read an SGE egress context
  1989. * @adapter: the adapter
  1990. * @id: the context id
  1991. * @data: holds the retrieved context
  1992. *
  1993. * Read an SGE egress context. The caller is responsible for ensuring
  1994. * only one context operation occurs at a time.
  1995. */
  1996. int t3_sge_read_ecntxt(struct adapter *adapter, unsigned int id, u32 data[4])
  1997. {
  1998. if (id >= 65536)
  1999. return -EINVAL;
  2000. return t3_sge_read_context(F_EGRESS, adapter, id, data);
  2001. }
  2002. /**
  2003. * t3_sge_read_cq - read an SGE CQ context
  2004. * @adapter: the adapter
  2005. * @id: the context id
  2006. * @data: holds the retrieved context
  2007. *
  2008. * Read an SGE CQ context. The caller is responsible for ensuring
  2009. * only one context operation occurs at a time.
  2010. */
  2011. int t3_sge_read_cq(struct adapter *adapter, unsigned int id, u32 data[4])
  2012. {
  2013. if (id >= 65536)
  2014. return -EINVAL;
  2015. return t3_sge_read_context(F_CQ, adapter, id, data);
  2016. }
  2017. /**
  2018. * t3_sge_read_fl - read an SGE free-list context
  2019. * @adapter: the adapter
  2020. * @id: the context id
  2021. * @data: holds the retrieved context
  2022. *
  2023. * Read an SGE free-list context. The caller is responsible for ensuring
  2024. * only one context operation occurs at a time.
  2025. */
  2026. int t3_sge_read_fl(struct adapter *adapter, unsigned int id, u32 data[4])
  2027. {
  2028. if (id >= SGE_QSETS * 2)
  2029. return -EINVAL;
  2030. return t3_sge_read_context(F_FREELIST, adapter, id, data);
  2031. }
  2032. /**
  2033. * t3_sge_read_rspq - read an SGE response queue context
  2034. * @adapter: the adapter
  2035. * @id: the context id
  2036. * @data: holds the retrieved context
  2037. *
  2038. * Read an SGE response queue context. The caller is responsible for
  2039. * ensuring only one context operation occurs at a time.
  2040. */
  2041. int t3_sge_read_rspq(struct adapter *adapter, unsigned int id, u32 data[4])
  2042. {
  2043. if (id >= SGE_QSETS)
  2044. return -EINVAL;
  2045. return t3_sge_read_context(F_RESPONSEQ, adapter, id, data);
  2046. }
  2047. /**
  2048. * t3_config_rss - configure Rx packet steering
  2049. * @adapter: the adapter
  2050. * @rss_config: RSS settings (written to TP_RSS_CONFIG)
  2051. * @cpus: values for the CPU lookup table (0xff terminated)
  2052. * @rspq: values for the response queue lookup table (0xffff terminated)
  2053. *
  2054. * Programs the receive packet steering logic. @cpus and @rspq provide
  2055. * the values for the CPU and response queue lookup tables. If they
  2056. * provide fewer values than the size of the tables the supplied values
  2057. * are used repeatedly until the tables are fully populated.
  2058. */
  2059. void t3_config_rss(struct adapter *adapter, unsigned int rss_config,
  2060. const u8 * cpus, const u16 *rspq)
  2061. {
  2062. int i, j, cpu_idx = 0, q_idx = 0;
  2063. if (cpus)
  2064. for (i = 0; i < RSS_TABLE_SIZE; ++i) {
  2065. u32 val = i << 16;
  2066. for (j = 0; j < 2; ++j) {
  2067. val |= (cpus[cpu_idx++] & 0x3f) << (8 * j);
  2068. if (cpus[cpu_idx] == 0xff)
  2069. cpu_idx = 0;
  2070. }
  2071. t3_write_reg(adapter, A_TP_RSS_LKP_TABLE, val);
  2072. }
  2073. if (rspq)
  2074. for (i = 0; i < RSS_TABLE_SIZE; ++i) {
  2075. t3_write_reg(adapter, A_TP_RSS_MAP_TABLE,
  2076. (i << 16) | rspq[q_idx++]);
  2077. if (rspq[q_idx] == 0xffff)
  2078. q_idx = 0;
  2079. }
  2080. t3_write_reg(adapter, A_TP_RSS_CONFIG, rss_config);
  2081. }
  2082. /**
  2083. * t3_read_rss - read the contents of the RSS tables
  2084. * @adapter: the adapter
  2085. * @lkup: holds the contents of the RSS lookup table
  2086. * @map: holds the contents of the RSS map table
  2087. *
  2088. * Reads the contents of the receive packet steering tables.
  2089. */
  2090. int t3_read_rss(struct adapter *adapter, u8 * lkup, u16 *map)
  2091. {
  2092. int i;
  2093. u32 val;
  2094. if (lkup)
  2095. for (i = 0; i < RSS_TABLE_SIZE; ++i) {
  2096. t3_write_reg(adapter, A_TP_RSS_LKP_TABLE,
  2097. 0xffff0000 | i);
  2098. val = t3_read_reg(adapter, A_TP_RSS_LKP_TABLE);
  2099. if (!(val & 0x80000000))
  2100. return -EAGAIN;
  2101. *lkup++ = val;
  2102. *lkup++ = (val >> 8);
  2103. }
  2104. if (map)
  2105. for (i = 0; i < RSS_TABLE_SIZE; ++i) {
  2106. t3_write_reg(adapter, A_TP_RSS_MAP_TABLE,
  2107. 0xffff0000 | i);
  2108. val = t3_read_reg(adapter, A_TP_RSS_MAP_TABLE);
  2109. if (!(val & 0x80000000))
  2110. return -EAGAIN;
  2111. *map++ = val;
  2112. }
  2113. return 0;
  2114. }
  2115. /**
  2116. * t3_tp_set_offload_mode - put TP in NIC/offload mode
  2117. * @adap: the adapter
  2118. * @enable: 1 to select offload mode, 0 for regular NIC
  2119. *
  2120. * Switches TP to NIC/offload mode.
  2121. */
  2122. void t3_tp_set_offload_mode(struct adapter *adap, int enable)
  2123. {
  2124. if (is_offload(adap) || !enable)
  2125. t3_set_reg_field(adap, A_TP_IN_CONFIG, F_NICMODE,
  2126. V_NICMODE(!enable));
  2127. }
  2128. /**
  2129. * pm_num_pages - calculate the number of pages of the payload memory
  2130. * @mem_size: the size of the payload memory
  2131. * @pg_size: the size of each payload memory page
  2132. *
  2133. * Calculate the number of pages, each of the given size, that fit in a
  2134. * memory of the specified size, respecting the HW requirement that the
  2135. * number of pages must be a multiple of 24.
  2136. */
  2137. static inline unsigned int pm_num_pages(unsigned int mem_size,
  2138. unsigned int pg_size)
  2139. {
  2140. unsigned int n = mem_size / pg_size;
  2141. return n - n % 24;
  2142. }
  2143. #define mem_region(adap, start, size, reg) \
  2144. t3_write_reg((adap), A_ ## reg, (start)); \
  2145. start += size
  2146. /*
  2147. * partition_mem - partition memory and configure TP memory settings
  2148. * @adap: the adapter
  2149. * @p: the TP parameters
  2150. *
  2151. * Partitions context and payload memory and configures TP's memory
  2152. * registers.
  2153. */
  2154. static void partition_mem(struct adapter *adap, const struct tp_params *p)
  2155. {
  2156. unsigned int m, pstructs, tids = t3_mc5_size(&adap->mc5);
  2157. unsigned int timers = 0, timers_shift = 22;
  2158. if (adap->params.rev > 0) {
  2159. if (tids <= 16 * 1024) {
  2160. timers = 1;
  2161. timers_shift = 16;
  2162. } else if (tids <= 64 * 1024) {
  2163. timers = 2;
  2164. timers_shift = 18;
  2165. } else if (tids <= 256 * 1024) {
  2166. timers = 3;
  2167. timers_shift = 20;
  2168. }
  2169. }
  2170. t3_write_reg(adap, A_TP_PMM_SIZE,
  2171. p->chan_rx_size | (p->chan_tx_size >> 16));
  2172. t3_write_reg(adap, A_TP_PMM_TX_BASE, 0);
  2173. t3_write_reg(adap, A_TP_PMM_TX_PAGE_SIZE, p->tx_pg_size);
  2174. t3_write_reg(adap, A_TP_PMM_TX_MAX_PAGE, p->tx_num_pgs);
  2175. t3_set_reg_field(adap, A_TP_PARA_REG3, V_TXDATAACKIDX(M_TXDATAACKIDX),
  2176. V_TXDATAACKIDX(fls(p->tx_pg_size) - 12));
  2177. t3_write_reg(adap, A_TP_PMM_RX_BASE, 0);
  2178. t3_write_reg(adap, A_TP_PMM_RX_PAGE_SIZE, p->rx_pg_size);
  2179. t3_write_reg(adap, A_TP_PMM_RX_MAX_PAGE, p->rx_num_pgs);
  2180. pstructs = p->rx_num_pgs + p->tx_num_pgs;
  2181. /* Add a bit of headroom and make multiple of 24 */
  2182. pstructs += 48;
  2183. pstructs -= pstructs % 24;
  2184. t3_write_reg(adap, A_TP_CMM_MM_MAX_PSTRUCT, pstructs);
  2185. m = tids * TCB_SIZE;
  2186. mem_region(adap, m, (64 << 10) * 64, SG_EGR_CNTX_BADDR);
  2187. mem_region(adap, m, (64 << 10) * 64, SG_CQ_CONTEXT_BADDR);
  2188. t3_write_reg(adap, A_TP_CMM_TIMER_BASE, V_CMTIMERMAXNUM(timers) | m);
  2189. m += ((p->ntimer_qs - 1) << timers_shift) + (1 << 22);
  2190. mem_region(adap, m, pstructs * 64, TP_CMM_MM_BASE);
  2191. mem_region(adap, m, 64 * (pstructs / 24), TP_CMM_MM_PS_FLST_BASE);
  2192. mem_region(adap, m, 64 * (p->rx_num_pgs / 24), TP_CMM_MM_RX_FLST_BASE);
  2193. mem_region(adap, m, 64 * (p->tx_num_pgs / 24), TP_CMM_MM_TX_FLST_BASE);
  2194. m = (m + 4095) & ~0xfff;
  2195. t3_write_reg(adap, A_CIM_SDRAM_BASE_ADDR, m);
  2196. t3_write_reg(adap, A_CIM_SDRAM_ADDR_SIZE, p->cm_size - m);
  2197. tids = (p->cm_size - m - (3 << 20)) / 3072 - 32;
  2198. m = t3_mc5_size(&adap->mc5) - adap->params.mc5.nservers -
  2199. adap->params.mc5.nfilters - adap->params.mc5.nroutes;
  2200. if (tids < m)
  2201. adap->params.mc5.nservers += m - tids;
  2202. }
  2203. static inline void tp_wr_indirect(struct adapter *adap, unsigned int addr,
  2204. u32 val)
  2205. {
  2206. t3_write_reg(adap, A_TP_PIO_ADDR, addr);
  2207. t3_write_reg(adap, A_TP_PIO_DATA, val);
  2208. }
  2209. static void tp_config(struct adapter *adap, const struct tp_params *p)
  2210. {
  2211. t3_write_reg(adap, A_TP_GLOBAL_CONFIG, F_TXPACINGENABLE | F_PATHMTU |
  2212. F_IPCHECKSUMOFFLOAD | F_UDPCHECKSUMOFFLOAD |
  2213. F_TCPCHECKSUMOFFLOAD | V_IPTTL(64));
  2214. t3_write_reg(adap, A_TP_TCP_OPTIONS, V_MTUDEFAULT(576) |
  2215. F_MTUENABLE | V_WINDOWSCALEMODE(1) |
  2216. V_TIMESTAMPSMODE(0) | V_SACKMODE(1) | V_SACKRX(1));
  2217. t3_write_reg(adap, A_TP_DACK_CONFIG, V_AUTOSTATE3(1) |
  2218. V_AUTOSTATE2(1) | V_AUTOSTATE1(0) |
  2219. V_BYTETHRESHOLD(16384) | V_MSSTHRESHOLD(2) |
  2220. F_AUTOCAREFUL | F_AUTOENABLE | V_DACK_MODE(1));
  2221. t3_set_reg_field(adap, A_TP_IN_CONFIG, F_IPV6ENABLE | F_NICMODE,
  2222. F_IPV6ENABLE | F_NICMODE);
  2223. t3_write_reg(adap, A_TP_TX_RESOURCE_LIMIT, 0x18141814);
  2224. t3_write_reg(adap, A_TP_PARA_REG4, 0x5050105);
  2225. t3_set_reg_field(adap, A_TP_PARA_REG6, 0,
  2226. adap->params.rev > 0 ? F_ENABLEESND :
  2227. F_T3A_ENABLEESND);
  2228. t3_set_reg_field(adap, A_TP_PC_CONFIG,
  2229. F_ENABLEEPCMDAFULL,
  2230. F_ENABLEOCSPIFULL |F_TXDEFERENABLE | F_HEARBEATDACK |
  2231. F_TXCONGESTIONMODE | F_RXCONGESTIONMODE);
  2232. t3_set_reg_field(adap, A_TP_PC_CONFIG2, F_CHDRAFULL, 0);
  2233. t3_write_reg(adap, A_TP_PROXY_FLOW_CNTL, 1080);
  2234. t3_write_reg(adap, A_TP_PROXY_FLOW_CNTL, 1000);
  2235. if (adap->params.rev > 0) {
  2236. tp_wr_indirect(adap, A_TP_EGRESS_CONFIG, F_REWRITEFORCETOSIZE);
  2237. t3_set_reg_field(adap, A_TP_PARA_REG3, F_TXPACEAUTO,
  2238. F_TXPACEAUTO);
  2239. t3_set_reg_field(adap, A_TP_PC_CONFIG, F_LOCKTID, F_LOCKTID);
  2240. t3_set_reg_field(adap, A_TP_PARA_REG3, 0, F_TXPACEAUTOSTRICT);
  2241. } else
  2242. t3_set_reg_field(adap, A_TP_PARA_REG3, 0, F_TXPACEFIXED);
  2243. t3_write_reg(adap, A_TP_TX_MOD_QUEUE_WEIGHT1, 0);
  2244. t3_write_reg(adap, A_TP_TX_MOD_QUEUE_WEIGHT0, 0);
  2245. t3_write_reg(adap, A_TP_MOD_CHANNEL_WEIGHT, 0);
  2246. t3_write_reg(adap, A_TP_MOD_RATE_LIMIT, 0xf2200000);
  2247. }
  2248. /* Desired TP timer resolution in usec */
  2249. #define TP_TMR_RES 50
  2250. /* TCP timer values in ms */
  2251. #define TP_DACK_TIMER 50
  2252. #define TP_RTO_MIN 250
  2253. /**
  2254. * tp_set_timers - set TP timing parameters
  2255. * @adap: the adapter to set
  2256. * @core_clk: the core clock frequency in Hz
  2257. *
  2258. * Set TP's timing parameters, such as the various timer resolutions and
  2259. * the TCP timer values.
  2260. */
  2261. static void tp_set_timers(struct adapter *adap, unsigned int core_clk)
  2262. {
  2263. unsigned int tre = fls(core_clk / (1000000 / TP_TMR_RES)) - 1;
  2264. unsigned int dack_re = fls(core_clk / 5000) - 1; /* 200us */
  2265. unsigned int tstamp_re = fls(core_clk / 1000); /* 1ms, at least */
  2266. unsigned int tps = core_clk >> tre;
  2267. t3_write_reg(adap, A_TP_TIMER_RESOLUTION, V_TIMERRESOLUTION(tre) |
  2268. V_DELAYEDACKRESOLUTION(dack_re) |
  2269. V_TIMESTAMPRESOLUTION(tstamp_re));
  2270. t3_write_reg(adap, A_TP_DACK_TIMER,
  2271. (core_clk >> dack_re) / (1000 / TP_DACK_TIMER));
  2272. t3_write_reg(adap, A_TP_TCP_BACKOFF_REG0, 0x3020100);
  2273. t3_write_reg(adap, A_TP_TCP_BACKOFF_REG1, 0x7060504);
  2274. t3_write_reg(adap, A_TP_TCP_BACKOFF_REG2, 0xb0a0908);
  2275. t3_write_reg(adap, A_TP_TCP_BACKOFF_REG3, 0xf0e0d0c);
  2276. t3_write_reg(adap, A_TP_SHIFT_CNT, V_SYNSHIFTMAX(6) |
  2277. V_RXTSHIFTMAXR1(4) | V_RXTSHIFTMAXR2(15) |
  2278. V_PERSHIFTBACKOFFMAX(8) | V_PERSHIFTMAX(8) |
  2279. V_KEEPALIVEMAX(9));
  2280. #define SECONDS * tps
  2281. t3_write_reg(adap, A_TP_MSL, adap->params.rev > 0 ? 0 : 2 SECONDS);
  2282. t3_write_reg(adap, A_TP_RXT_MIN, tps / (1000 / TP_RTO_MIN));
  2283. t3_write_reg(adap, A_TP_RXT_MAX, 64 SECONDS);
  2284. t3_write_reg(adap, A_TP_PERS_MIN, 5 SECONDS);
  2285. t3_write_reg(adap, A_TP_PERS_MAX, 64 SECONDS);
  2286. t3_write_reg(adap, A_TP_KEEP_IDLE, 7200 SECONDS);
  2287. t3_write_reg(adap, A_TP_KEEP_INTVL, 75 SECONDS);
  2288. t3_write_reg(adap, A_TP_INIT_SRTT, 3 SECONDS);
  2289. t3_write_reg(adap, A_TP_FINWAIT2_TIMER, 600 SECONDS);
  2290. #undef SECONDS
  2291. }
  2292. /**
  2293. * t3_tp_set_coalescing_size - set receive coalescing size
  2294. * @adap: the adapter
  2295. * @size: the receive coalescing size
  2296. * @psh: whether a set PSH bit should deliver coalesced data
  2297. *
  2298. * Set the receive coalescing size and PSH bit handling.
  2299. */
  2300. int t3_tp_set_coalescing_size(struct adapter *adap, unsigned int size, int psh)
  2301. {
  2302. u32 val;
  2303. if (size > MAX_RX_COALESCING_LEN)
  2304. return -EINVAL;
  2305. val = t3_read_reg(adap, A_TP_PARA_REG3);
  2306. val &= ~(F_RXCOALESCEENABLE | F_RXCOALESCEPSHEN);
  2307. if (size) {
  2308. val |= F_RXCOALESCEENABLE;
  2309. if (psh)
  2310. val |= F_RXCOALESCEPSHEN;
  2311. size = min(MAX_RX_COALESCING_LEN, size);
  2312. t3_write_reg(adap, A_TP_PARA_REG2, V_RXCOALESCESIZE(size) |
  2313. V_MAXRXDATA(MAX_RX_COALESCING_LEN));
  2314. }
  2315. t3_write_reg(adap, A_TP_PARA_REG3, val);
  2316. return 0;
  2317. }
  2318. /**
  2319. * t3_tp_set_max_rxsize - set the max receive size
  2320. * @adap: the adapter
  2321. * @size: the max receive size
  2322. *
  2323. * Set TP's max receive size. This is the limit that applies when
  2324. * receive coalescing is disabled.
  2325. */
  2326. void t3_tp_set_max_rxsize(struct adapter *adap, unsigned int size)
  2327. {
  2328. t3_write_reg(adap, A_TP_PARA_REG7,
  2329. V_PMMAXXFERLEN0(size) | V_PMMAXXFERLEN1(size));
  2330. }
  2331. static void __devinit init_mtus(unsigned short mtus[])
  2332. {
  2333. /*
  2334. * See draft-mathis-plpmtud-00.txt for the values. The min is 88 so
  2335. * it can accomodate max size TCP/IP headers when SACK and timestamps
  2336. * are enabled and still have at least 8 bytes of payload.
  2337. */
  2338. mtus[1] = 88;
  2339. mtus[1] = 88;
  2340. mtus[2] = 256;
  2341. mtus[3] = 512;
  2342. mtus[4] = 576;
  2343. mtus[5] = 1024;
  2344. mtus[6] = 1280;
  2345. mtus[7] = 1492;
  2346. mtus[8] = 1500;
  2347. mtus[9] = 2002;
  2348. mtus[10] = 2048;
  2349. mtus[11] = 4096;
  2350. mtus[12] = 4352;
  2351. mtus[13] = 8192;
  2352. mtus[14] = 9000;
  2353. mtus[15] = 9600;
  2354. }
  2355. /*
  2356. * Initial congestion control parameters.
  2357. */
  2358. static void __devinit init_cong_ctrl(unsigned short *a, unsigned short *b)
  2359. {
  2360. a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
  2361. a[9] = 2;
  2362. a[10] = 3;
  2363. a[11] = 4;
  2364. a[12] = 5;
  2365. a[13] = 6;
  2366. a[14] = 7;
  2367. a[15] = 8;
  2368. a[16] = 9;
  2369. a[17] = 10;
  2370. a[18] = 14;
  2371. a[19] = 17;
  2372. a[20] = 21;
  2373. a[21] = 25;
  2374. a[22] = 30;
  2375. a[23] = 35;
  2376. a[24] = 45;
  2377. a[25] = 60;
  2378. a[26] = 80;
  2379. a[27] = 100;
  2380. a[28] = 200;
  2381. a[29] = 300;
  2382. a[30] = 400;
  2383. a[31] = 500;
  2384. b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
  2385. b[9] = b[10] = 1;
  2386. b[11] = b[12] = 2;
  2387. b[13] = b[14] = b[15] = b[16] = 3;
  2388. b[17] = b[18] = b[19] = b[20] = b[21] = 4;
  2389. b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
  2390. b[28] = b[29] = 6;
  2391. b[30] = b[31] = 7;
  2392. }
  2393. /* The minimum additive increment value for the congestion control table */
  2394. #define CC_MIN_INCR 2U
  2395. /**
  2396. * t3_load_mtus - write the MTU and congestion control HW tables
  2397. * @adap: the adapter
  2398. * @mtus: the unrestricted values for the MTU table
  2399. * @alphs: the values for the congestion control alpha parameter
  2400. * @beta: the values for the congestion control beta parameter
  2401. * @mtu_cap: the maximum permitted effective MTU
  2402. *
  2403. * Write the MTU table with the supplied MTUs capping each at &mtu_cap.
  2404. * Update the high-speed congestion control table with the supplied alpha,
  2405. * beta, and MTUs.
  2406. */
  2407. void t3_load_mtus(struct adapter *adap, unsigned short mtus[NMTUS],
  2408. unsigned short alpha[NCCTRL_WIN],
  2409. unsigned short beta[NCCTRL_WIN], unsigned short mtu_cap)
  2410. {
  2411. static const unsigned int avg_pkts[NCCTRL_WIN] = {
  2412. 2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
  2413. 896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
  2414. 28672, 40960, 57344, 81920, 114688, 163840, 229376
  2415. };
  2416. unsigned int i, w;
  2417. for (i = 0; i < NMTUS; ++i) {
  2418. unsigned int mtu = min(mtus[i], mtu_cap);
  2419. unsigned int log2 = fls(mtu);
  2420. if (!(mtu & ((1 << log2) >> 2))) /* round */
  2421. log2--;
  2422. t3_write_reg(adap, A_TP_MTU_TABLE,
  2423. (i << 24) | (log2 << 16) | mtu);
  2424. for (w = 0; w < NCCTRL_WIN; ++w) {
  2425. unsigned int inc;
  2426. inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
  2427. CC_MIN_INCR);
  2428. t3_write_reg(adap, A_TP_CCTRL_TABLE, (i << 21) |
  2429. (w << 16) | (beta[w] << 13) | inc);
  2430. }
  2431. }
  2432. }
  2433. /**
  2434. * t3_read_hw_mtus - returns the values in the HW MTU table
  2435. * @adap: the adapter
  2436. * @mtus: where to store the HW MTU values
  2437. *
  2438. * Reads the HW MTU table.
  2439. */
  2440. void t3_read_hw_mtus(struct adapter *adap, unsigned short mtus[NMTUS])
  2441. {
  2442. int i;
  2443. for (i = 0; i < NMTUS; ++i) {
  2444. unsigned int val;
  2445. t3_write_reg(adap, A_TP_MTU_TABLE, 0xff000000 | i);
  2446. val = t3_read_reg(adap, A_TP_MTU_TABLE);
  2447. mtus[i] = val & 0x3fff;
  2448. }
  2449. }
  2450. /**
  2451. * t3_get_cong_cntl_tab - reads the congestion control table
  2452. * @adap: the adapter
  2453. * @incr: where to store the alpha values
  2454. *
  2455. * Reads the additive increments programmed into the HW congestion
  2456. * control table.
  2457. */
  2458. void t3_get_cong_cntl_tab(struct adapter *adap,
  2459. unsigned short incr[NMTUS][NCCTRL_WIN])
  2460. {
  2461. unsigned int mtu, w;
  2462. for (mtu = 0; mtu < NMTUS; ++mtu)
  2463. for (w = 0; w < NCCTRL_WIN; ++w) {
  2464. t3_write_reg(adap, A_TP_CCTRL_TABLE,
  2465. 0xffff0000 | (mtu << 5) | w);
  2466. incr[mtu][w] = t3_read_reg(adap, A_TP_CCTRL_TABLE) &
  2467. 0x1fff;
  2468. }
  2469. }
  2470. /**
  2471. * t3_tp_get_mib_stats - read TP's MIB counters
  2472. * @adap: the adapter
  2473. * @tps: holds the returned counter values
  2474. *
  2475. * Returns the values of TP's MIB counters.
  2476. */
  2477. void t3_tp_get_mib_stats(struct adapter *adap, struct tp_mib_stats *tps)
  2478. {
  2479. t3_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_RDATA, (u32 *) tps,
  2480. sizeof(*tps) / sizeof(u32), 0);
  2481. }
  2482. #define ulp_region(adap, name, start, len) \
  2483. t3_write_reg((adap), A_ULPRX_ ## name ## _LLIMIT, (start)); \
  2484. t3_write_reg((adap), A_ULPRX_ ## name ## _ULIMIT, \
  2485. (start) + (len) - 1); \
  2486. start += len
  2487. #define ulptx_region(adap, name, start, len) \
  2488. t3_write_reg((adap), A_ULPTX_ ## name ## _LLIMIT, (start)); \
  2489. t3_write_reg((adap), A_ULPTX_ ## name ## _ULIMIT, \
  2490. (start) + (len) - 1)
  2491. static void ulp_config(struct adapter *adap, const struct tp_params *p)
  2492. {
  2493. unsigned int m = p->chan_rx_size;
  2494. ulp_region(adap, ISCSI, m, p->chan_rx_size / 8);
  2495. ulp_region(adap, TDDP, m, p->chan_rx_size / 8);
  2496. ulptx_region(adap, TPT, m, p->chan_rx_size / 4);
  2497. ulp_region(adap, STAG, m, p->chan_rx_size / 4);
  2498. ulp_region(adap, RQ, m, p->chan_rx_size / 4);
  2499. ulptx_region(adap, PBL, m, p->chan_rx_size / 4);
  2500. ulp_region(adap, PBL, m, p->chan_rx_size / 4);
  2501. t3_write_reg(adap, A_ULPRX_TDDP_TAGMASK, 0xffffffff);
  2502. }
  2503. /**
  2504. * t3_set_proto_sram - set the contents of the protocol sram
  2505. * @adapter: the adapter
  2506. * @data: the protocol image
  2507. *
  2508. * Write the contents of the protocol SRAM.
  2509. */
  2510. int t3_set_proto_sram(struct adapter *adap, u8 *data)
  2511. {
  2512. int i;
  2513. u32 *buf = (u32 *)data;
  2514. for (i = 0; i < PROTO_SRAM_LINES; i++) {
  2515. t3_write_reg(adap, A_TP_EMBED_OP_FIELD5, cpu_to_be32(*buf++));
  2516. t3_write_reg(adap, A_TP_EMBED_OP_FIELD4, cpu_to_be32(*buf++));
  2517. t3_write_reg(adap, A_TP_EMBED_OP_FIELD3, cpu_to_be32(*buf++));
  2518. t3_write_reg(adap, A_TP_EMBED_OP_FIELD2, cpu_to_be32(*buf++));
  2519. t3_write_reg(adap, A_TP_EMBED_OP_FIELD1, cpu_to_be32(*buf++));
  2520. t3_write_reg(adap, A_TP_EMBED_OP_FIELD0, i << 1 | 1 << 31);
  2521. if (t3_wait_op_done(adap, A_TP_EMBED_OP_FIELD0, 1, 1, 5, 1))
  2522. return -EIO;
  2523. }
  2524. t3_write_reg(adap, A_TP_EMBED_OP_FIELD0, 0);
  2525. return 0;
  2526. }
  2527. void t3_config_trace_filter(struct adapter *adapter,
  2528. const struct trace_params *tp, int filter_index,
  2529. int invert, int enable)
  2530. {
  2531. u32 addr, key[4], mask[4];
  2532. key[0] = tp->sport | (tp->sip << 16);
  2533. key[1] = (tp->sip >> 16) | (tp->dport << 16);
  2534. key[2] = tp->dip;
  2535. key[3] = tp->proto | (tp->vlan << 8) | (tp->intf << 20);
  2536. mask[0] = tp->sport_mask | (tp->sip_mask << 16);
  2537. mask[1] = (tp->sip_mask >> 16) | (tp->dport_mask << 16);
  2538. mask[2] = tp->dip_mask;
  2539. mask[3] = tp->proto_mask | (tp->vlan_mask << 8) | (tp->intf_mask << 20);
  2540. if (invert)
  2541. key[3] |= (1 << 29);
  2542. if (enable)
  2543. key[3] |= (1 << 28);
  2544. addr = filter_index ? A_TP_RX_TRC_KEY0 : A_TP_TX_TRC_KEY0;
  2545. tp_wr_indirect(adapter, addr++, key[0]);
  2546. tp_wr_indirect(adapter, addr++, mask[0]);
  2547. tp_wr_indirect(adapter, addr++, key[1]);
  2548. tp_wr_indirect(adapter, addr++, mask[1]);
  2549. tp_wr_indirect(adapter, addr++, key[2]);
  2550. tp_wr_indirect(adapter, addr++, mask[2]);
  2551. tp_wr_indirect(adapter, addr++, key[3]);
  2552. tp_wr_indirect(adapter, addr, mask[3]);
  2553. t3_read_reg(adapter, A_TP_PIO_DATA);
  2554. }
  2555. /**
  2556. * t3_config_sched - configure a HW traffic scheduler
  2557. * @adap: the adapter
  2558. * @kbps: target rate in Kbps
  2559. * @sched: the scheduler index
  2560. *
  2561. * Configure a HW scheduler for the target rate
  2562. */
  2563. int t3_config_sched(struct adapter *adap, unsigned int kbps, int sched)
  2564. {
  2565. unsigned int v, tps, cpt, bpt, delta, mindelta = ~0;
  2566. unsigned int clk = adap->params.vpd.cclk * 1000;
  2567. unsigned int selected_cpt = 0, selected_bpt = 0;
  2568. if (kbps > 0) {
  2569. kbps *= 125; /* -> bytes */
  2570. for (cpt = 1; cpt <= 255; cpt++) {
  2571. tps = clk / cpt;
  2572. bpt = (kbps + tps / 2) / tps;
  2573. if (bpt > 0 && bpt <= 255) {
  2574. v = bpt * tps;
  2575. delta = v >= kbps ? v - kbps : kbps - v;
  2576. if (delta <= mindelta) {
  2577. mindelta = delta;
  2578. selected_cpt = cpt;
  2579. selected_bpt = bpt;
  2580. }
  2581. } else if (selected_cpt)
  2582. break;
  2583. }
  2584. if (!selected_cpt)
  2585. return -EINVAL;
  2586. }
  2587. t3_write_reg(adap, A_TP_TM_PIO_ADDR,
  2588. A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2);
  2589. v = t3_read_reg(adap, A_TP_TM_PIO_DATA);
  2590. if (sched & 1)
  2591. v = (v & 0xffff) | (selected_cpt << 16) | (selected_bpt << 24);
  2592. else
  2593. v = (v & 0xffff0000) | selected_cpt | (selected_bpt << 8);
  2594. t3_write_reg(adap, A_TP_TM_PIO_DATA, v);
  2595. return 0;
  2596. }
  2597. static int tp_init(struct adapter *adap, const struct tp_params *p)
  2598. {
  2599. int busy = 0;
  2600. tp_config(adap, p);
  2601. t3_set_vlan_accel(adap, 3, 0);
  2602. if (is_offload(adap)) {
  2603. tp_set_timers(adap, adap->params.vpd.cclk * 1000);
  2604. t3_write_reg(adap, A_TP_RESET, F_FLSTINITENABLE);
  2605. busy = t3_wait_op_done(adap, A_TP_RESET, F_FLSTINITENABLE,
  2606. 0, 1000, 5);
  2607. if (busy)
  2608. CH_ERR(adap, "TP initialization timed out\n");
  2609. }
  2610. if (!busy)
  2611. t3_write_reg(adap, A_TP_RESET, F_TPRESET);
  2612. return busy;
  2613. }
  2614. int t3_mps_set_active_ports(struct adapter *adap, unsigned int port_mask)
  2615. {
  2616. if (port_mask & ~((1 << adap->params.nports) - 1))
  2617. return -EINVAL;
  2618. t3_set_reg_field(adap, A_MPS_CFG, F_PORT1ACTIVE | F_PORT0ACTIVE,
  2619. port_mask << S_PORT0ACTIVE);
  2620. return 0;
  2621. }
  2622. /*
  2623. * Perform the bits of HW initialization that are dependent on the number
  2624. * of available ports.
  2625. */
  2626. static void init_hw_for_avail_ports(struct adapter *adap, int nports)
  2627. {
  2628. int i;
  2629. if (nports == 1) {
  2630. t3_set_reg_field(adap, A_ULPRX_CTL, F_ROUND_ROBIN, 0);
  2631. t3_set_reg_field(adap, A_ULPTX_CONFIG, F_CFG_RR_ARB, 0);
  2632. t3_write_reg(adap, A_MPS_CFG, F_TPRXPORTEN | F_TPTXPORT0EN |
  2633. F_PORT0ACTIVE | F_ENFORCEPKT);
  2634. t3_write_reg(adap, A_PM1_TX_CFG, 0xffffffff);
  2635. } else {
  2636. t3_set_reg_field(adap, A_ULPRX_CTL, 0, F_ROUND_ROBIN);
  2637. t3_set_reg_field(adap, A_ULPTX_CONFIG, 0, F_CFG_RR_ARB);
  2638. t3_write_reg(adap, A_ULPTX_DMA_WEIGHT,
  2639. V_D1_WEIGHT(16) | V_D0_WEIGHT(16));
  2640. t3_write_reg(adap, A_MPS_CFG, F_TPTXPORT0EN | F_TPTXPORT1EN |
  2641. F_TPRXPORTEN | F_PORT0ACTIVE | F_PORT1ACTIVE |
  2642. F_ENFORCEPKT);
  2643. t3_write_reg(adap, A_PM1_TX_CFG, 0x80008000);
  2644. t3_set_reg_field(adap, A_TP_PC_CONFIG, 0, F_TXTOSQUEUEMAPMODE);
  2645. t3_write_reg(adap, A_TP_TX_MOD_QUEUE_REQ_MAP,
  2646. V_TX_MOD_QUEUE_REQ_MAP(0xaa));
  2647. for (i = 0; i < 16; i++)
  2648. t3_write_reg(adap, A_TP_TX_MOD_QUE_TABLE,
  2649. (i << 16) | 0x1010);
  2650. }
  2651. }
  2652. static int calibrate_xgm(struct adapter *adapter)
  2653. {
  2654. if (uses_xaui(adapter)) {
  2655. unsigned int v, i;
  2656. for (i = 0; i < 5; ++i) {
  2657. t3_write_reg(adapter, A_XGM_XAUI_IMP, 0);
  2658. t3_read_reg(adapter, A_XGM_XAUI_IMP);
  2659. msleep(1);
  2660. v = t3_read_reg(adapter, A_XGM_XAUI_IMP);
  2661. if (!(v & (F_XGM_CALFAULT | F_CALBUSY))) {
  2662. t3_write_reg(adapter, A_XGM_XAUI_IMP,
  2663. V_XAUIIMP(G_CALIMP(v) >> 2));
  2664. return 0;
  2665. }
  2666. }
  2667. CH_ERR(adapter, "MAC calibration failed\n");
  2668. return -1;
  2669. } else {
  2670. t3_write_reg(adapter, A_XGM_RGMII_IMP,
  2671. V_RGMIIIMPPD(2) | V_RGMIIIMPPU(3));
  2672. t3_set_reg_field(adapter, A_XGM_RGMII_IMP, F_XGM_IMPSETUPDATE,
  2673. F_XGM_IMPSETUPDATE);
  2674. }
  2675. return 0;
  2676. }
  2677. static void calibrate_xgm_t3b(struct adapter *adapter)
  2678. {
  2679. if (!uses_xaui(adapter)) {
  2680. t3_write_reg(adapter, A_XGM_RGMII_IMP, F_CALRESET |
  2681. F_CALUPDATE | V_RGMIIIMPPD(2) | V_RGMIIIMPPU(3));
  2682. t3_set_reg_field(adapter, A_XGM_RGMII_IMP, F_CALRESET, 0);
  2683. t3_set_reg_field(adapter, A_XGM_RGMII_IMP, 0,
  2684. F_XGM_IMPSETUPDATE);
  2685. t3_set_reg_field(adapter, A_XGM_RGMII_IMP, F_XGM_IMPSETUPDATE,
  2686. 0);
  2687. t3_set_reg_field(adapter, A_XGM_RGMII_IMP, F_CALUPDATE, 0);
  2688. t3_set_reg_field(adapter, A_XGM_RGMII_IMP, 0, F_CALUPDATE);
  2689. }
  2690. }
  2691. struct mc7_timing_params {
  2692. unsigned char ActToPreDly;
  2693. unsigned char ActToRdWrDly;
  2694. unsigned char PreCyc;
  2695. unsigned char RefCyc[5];
  2696. unsigned char BkCyc;
  2697. unsigned char WrToRdDly;
  2698. unsigned char RdToWrDly;
  2699. };
  2700. /*
  2701. * Write a value to a register and check that the write completed. These
  2702. * writes normally complete in a cycle or two, so one read should suffice.
  2703. * The very first read exists to flush the posted write to the device.
  2704. */
  2705. static int wrreg_wait(struct adapter *adapter, unsigned int addr, u32 val)
  2706. {
  2707. t3_write_reg(adapter, addr, val);
  2708. t3_read_reg(adapter, addr); /* flush */
  2709. if (!(t3_read_reg(adapter, addr) & F_BUSY))
  2710. return 0;
  2711. CH_ERR(adapter, "write to MC7 register 0x%x timed out\n", addr);
  2712. return -EIO;
  2713. }
  2714. static int mc7_init(struct mc7 *mc7, unsigned int mc7_clock, int mem_type)
  2715. {
  2716. static const unsigned int mc7_mode[] = {
  2717. 0x632, 0x642, 0x652, 0x432, 0x442
  2718. };
  2719. static const struct mc7_timing_params mc7_timings[] = {
  2720. {12, 3, 4, {20, 28, 34, 52, 0}, 15, 6, 4},
  2721. {12, 4, 5, {20, 28, 34, 52, 0}, 16, 7, 4},
  2722. {12, 5, 6, {20, 28, 34, 52, 0}, 17, 8, 4},
  2723. {9, 3, 4, {15, 21, 26, 39, 0}, 12, 6, 4},
  2724. {9, 4, 5, {15, 21, 26, 39, 0}, 13, 7, 4}
  2725. };
  2726. u32 val;
  2727. unsigned int width, density, slow, attempts;
  2728. struct adapter *adapter = mc7->adapter;
  2729. const struct mc7_timing_params *p = &mc7_timings[mem_type];
  2730. if (!mc7->size)
  2731. return 0;
  2732. val = t3_read_reg(adapter, mc7->offset + A_MC7_CFG);
  2733. slow = val & F_SLOW;
  2734. width = G_WIDTH(val);
  2735. density = G_DEN(val);
  2736. t3_write_reg(adapter, mc7->offset + A_MC7_CFG, val | F_IFEN);
  2737. val = t3_read_reg(adapter, mc7->offset + A_MC7_CFG); /* flush */
  2738. msleep(1);
  2739. if (!slow) {
  2740. t3_write_reg(adapter, mc7->offset + A_MC7_CAL, F_SGL_CAL_EN);
  2741. t3_read_reg(adapter, mc7->offset + A_MC7_CAL);
  2742. msleep(1);
  2743. if (t3_read_reg(adapter, mc7->offset + A_MC7_CAL) &
  2744. (F_BUSY | F_SGL_CAL_EN | F_CAL_FAULT)) {
  2745. CH_ERR(adapter, "%s MC7 calibration timed out\n",
  2746. mc7->name);
  2747. goto out_fail;
  2748. }
  2749. }
  2750. t3_write_reg(adapter, mc7->offset + A_MC7_PARM,
  2751. V_ACTTOPREDLY(p->ActToPreDly) |
  2752. V_ACTTORDWRDLY(p->ActToRdWrDly) | V_PRECYC(p->PreCyc) |
  2753. V_REFCYC(p->RefCyc[density]) | V_BKCYC(p->BkCyc) |
  2754. V_WRTORDDLY(p->WrToRdDly) | V_RDTOWRDLY(p->RdToWrDly));
  2755. t3_write_reg(adapter, mc7->offset + A_MC7_CFG,
  2756. val | F_CLKEN | F_TERM150);
  2757. t3_read_reg(adapter, mc7->offset + A_MC7_CFG); /* flush */
  2758. if (!slow)
  2759. t3_set_reg_field(adapter, mc7->offset + A_MC7_DLL, F_DLLENB,
  2760. F_DLLENB);
  2761. udelay(1);
  2762. val = slow ? 3 : 6;
  2763. if (wrreg_wait(adapter, mc7->offset + A_MC7_PRE, 0) ||
  2764. wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE2, 0) ||
  2765. wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE3, 0) ||
  2766. wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE1, val))
  2767. goto out_fail;
  2768. if (!slow) {
  2769. t3_write_reg(adapter, mc7->offset + A_MC7_MODE, 0x100);
  2770. t3_set_reg_field(adapter, mc7->offset + A_MC7_DLL, F_DLLRST, 0);
  2771. udelay(5);
  2772. }
  2773. if (wrreg_wait(adapter, mc7->offset + A_MC7_PRE, 0) ||
  2774. wrreg_wait(adapter, mc7->offset + A_MC7_REF, 0) ||
  2775. wrreg_wait(adapter, mc7->offset + A_MC7_REF, 0) ||
  2776. wrreg_wait(adapter, mc7->offset + A_MC7_MODE,
  2777. mc7_mode[mem_type]) ||
  2778. wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE1, val | 0x380) ||
  2779. wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE1, val))
  2780. goto out_fail;
  2781. /* clock value is in KHz */
  2782. mc7_clock = mc7_clock * 7812 + mc7_clock / 2; /* ns */
  2783. mc7_clock /= 1000000; /* KHz->MHz, ns->us */
  2784. t3_write_reg(adapter, mc7->offset + A_MC7_REF,
  2785. F_PERREFEN | V_PREREFDIV(mc7_clock));
  2786. t3_read_reg(adapter, mc7->offset + A_MC7_REF); /* flush */
  2787. t3_write_reg(adapter, mc7->offset + A_MC7_ECC, F_ECCGENEN | F_ECCCHKEN);
  2788. t3_write_reg(adapter, mc7->offset + A_MC7_BIST_DATA, 0);
  2789. t3_write_reg(adapter, mc7->offset + A_MC7_BIST_ADDR_BEG, 0);
  2790. t3_write_reg(adapter, mc7->offset + A_MC7_BIST_ADDR_END,
  2791. (mc7->size << width) - 1);
  2792. t3_write_reg(adapter, mc7->offset + A_MC7_BIST_OP, V_OP(1));
  2793. t3_read_reg(adapter, mc7->offset + A_MC7_BIST_OP); /* flush */
  2794. attempts = 50;
  2795. do {
  2796. msleep(250);
  2797. val = t3_read_reg(adapter, mc7->offset + A_MC7_BIST_OP);
  2798. } while ((val & F_BUSY) && --attempts);
  2799. if (val & F_BUSY) {
  2800. CH_ERR(adapter, "%s MC7 BIST timed out\n", mc7->name);
  2801. goto out_fail;
  2802. }
  2803. /* Enable normal memory accesses. */
  2804. t3_set_reg_field(adapter, mc7->offset + A_MC7_CFG, 0, F_RDY);
  2805. return 0;
  2806. out_fail:
  2807. return -1;
  2808. }
  2809. static void config_pcie(struct adapter *adap)
  2810. {
  2811. static const u16 ack_lat[4][6] = {
  2812. {237, 416, 559, 1071, 2095, 4143},
  2813. {128, 217, 289, 545, 1057, 2081},
  2814. {73, 118, 154, 282, 538, 1050},
  2815. {67, 107, 86, 150, 278, 534}
  2816. };
  2817. static const u16 rpl_tmr[4][6] = {
  2818. {711, 1248, 1677, 3213, 6285, 12429},
  2819. {384, 651, 867, 1635, 3171, 6243},
  2820. {219, 354, 462, 846, 1614, 3150},
  2821. {201, 321, 258, 450, 834, 1602}
  2822. };
  2823. u16 val;
  2824. unsigned int log2_width, pldsize;
  2825. unsigned int fst_trn_rx, fst_trn_tx, acklat, rpllmt;
  2826. pci_read_config_word(adap->pdev,
  2827. adap->params.pci.pcie_cap_addr + PCI_EXP_DEVCTL,
  2828. &val);
  2829. pldsize = (val & PCI_EXP_DEVCTL_PAYLOAD) >> 5;
  2830. pci_read_config_word(adap->pdev,
  2831. adap->params.pci.pcie_cap_addr + PCI_EXP_LNKCTL,
  2832. &val);
  2833. fst_trn_tx = G_NUMFSTTRNSEQ(t3_read_reg(adap, A_PCIE_PEX_CTRL0));
  2834. fst_trn_rx = adap->params.rev == 0 ? fst_trn_tx :
  2835. G_NUMFSTTRNSEQRX(t3_read_reg(adap, A_PCIE_MODE));
  2836. log2_width = fls(adap->params.pci.width) - 1;
  2837. acklat = ack_lat[log2_width][pldsize];
  2838. if (val & 1) /* check LOsEnable */
  2839. acklat += fst_trn_tx * 4;
  2840. rpllmt = rpl_tmr[log2_width][pldsize] + fst_trn_rx * 4;
  2841. if (adap->params.rev == 0)
  2842. t3_set_reg_field(adap, A_PCIE_PEX_CTRL1,
  2843. V_T3A_ACKLAT(M_T3A_ACKLAT),
  2844. V_T3A_ACKLAT(acklat));
  2845. else
  2846. t3_set_reg_field(adap, A_PCIE_PEX_CTRL1, V_ACKLAT(M_ACKLAT),
  2847. V_ACKLAT(acklat));
  2848. t3_set_reg_field(adap, A_PCIE_PEX_CTRL0, V_REPLAYLMT(M_REPLAYLMT),
  2849. V_REPLAYLMT(rpllmt));
  2850. t3_write_reg(adap, A_PCIE_PEX_ERR, 0xffffffff);
  2851. t3_set_reg_field(adap, A_PCIE_CFG, F_PCIE_CLIDECEN, F_PCIE_CLIDECEN);
  2852. }
  2853. /*
  2854. * Initialize and configure T3 HW modules. This performs the
  2855. * initialization steps that need to be done once after a card is reset.
  2856. * MAC and PHY initialization is handled separarely whenever a port is enabled.
  2857. *
  2858. * fw_params are passed to FW and their value is platform dependent. Only the
  2859. * top 8 bits are available for use, the rest must be 0.
  2860. */
  2861. int t3_init_hw(struct adapter *adapter, u32 fw_params)
  2862. {
  2863. int err = -EIO, attempts = 100;
  2864. const struct vpd_params *vpd = &adapter->params.vpd;
  2865. if (adapter->params.rev > 0)
  2866. calibrate_xgm_t3b(adapter);
  2867. else if (calibrate_xgm(adapter))
  2868. goto out_err;
  2869. if (vpd->mclk) {
  2870. partition_mem(adapter, &adapter->params.tp);
  2871. if (mc7_init(&adapter->pmrx, vpd->mclk, vpd->mem_timing) ||
  2872. mc7_init(&adapter->pmtx, vpd->mclk, vpd->mem_timing) ||
  2873. mc7_init(&adapter->cm, vpd->mclk, vpd->mem_timing) ||
  2874. t3_mc5_init(&adapter->mc5, adapter->params.mc5.nservers,
  2875. adapter->params.mc5.nfilters,
  2876. adapter->params.mc5.nroutes))
  2877. goto out_err;
  2878. }
  2879. if (tp_init(adapter, &adapter->params.tp))
  2880. goto out_err;
  2881. t3_tp_set_coalescing_size(adapter,
  2882. min(adapter->params.sge.max_pkt_size,
  2883. MAX_RX_COALESCING_LEN), 1);
  2884. t3_tp_set_max_rxsize(adapter,
  2885. min(adapter->params.sge.max_pkt_size, 16384U));
  2886. ulp_config(adapter, &adapter->params.tp);
  2887. if (is_pcie(adapter))
  2888. config_pcie(adapter);
  2889. else
  2890. t3_set_reg_field(adapter, A_PCIX_CFG, 0, F_CLIDECEN);
  2891. t3_write_reg(adapter, A_PM1_RX_CFG, 0xffffffff);
  2892. t3_write_reg(adapter, A_PM1_RX_MODE, 0);
  2893. t3_write_reg(adapter, A_PM1_TX_MODE, 0);
  2894. init_hw_for_avail_ports(adapter, adapter->params.nports);
  2895. t3_sge_init(adapter, &adapter->params.sge);
  2896. t3_write_reg(adapter, A_CIM_HOST_ACC_DATA, vpd->uclk | fw_params);
  2897. t3_write_reg(adapter, A_CIM_BOOT_CFG,
  2898. V_BOOTADDR(FW_FLASH_BOOT_ADDR >> 2));
  2899. t3_read_reg(adapter, A_CIM_BOOT_CFG); /* flush */
  2900. do { /* wait for uP to initialize */
  2901. msleep(20);
  2902. } while (t3_read_reg(adapter, A_CIM_HOST_ACC_DATA) && --attempts);
  2903. if (!attempts) {
  2904. CH_ERR(adapter, "uP initialization timed out\n");
  2905. goto out_err;
  2906. }
  2907. err = 0;
  2908. out_err:
  2909. return err;
  2910. }
  2911. /**
  2912. * get_pci_mode - determine a card's PCI mode
  2913. * @adapter: the adapter
  2914. * @p: where to store the PCI settings
  2915. *
  2916. * Determines a card's PCI mode and associated parameters, such as speed
  2917. * and width.
  2918. */
  2919. static void __devinit get_pci_mode(struct adapter *adapter,
  2920. struct pci_params *p)
  2921. {
  2922. static unsigned short speed_map[] = { 33, 66, 100, 133 };
  2923. u32 pci_mode, pcie_cap;
  2924. pcie_cap = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
  2925. if (pcie_cap) {
  2926. u16 val;
  2927. p->variant = PCI_VARIANT_PCIE;
  2928. p->pcie_cap_addr = pcie_cap;
  2929. pci_read_config_word(adapter->pdev, pcie_cap + PCI_EXP_LNKSTA,
  2930. &val);
  2931. p->width = (val >> 4) & 0x3f;
  2932. return;
  2933. }
  2934. pci_mode = t3_read_reg(adapter, A_PCIX_MODE);
  2935. p->speed = speed_map[G_PCLKRANGE(pci_mode)];
  2936. p->width = (pci_mode & F_64BIT) ? 64 : 32;
  2937. pci_mode = G_PCIXINITPAT(pci_mode);
  2938. if (pci_mode == 0)
  2939. p->variant = PCI_VARIANT_PCI;
  2940. else if (pci_mode < 4)
  2941. p->variant = PCI_VARIANT_PCIX_MODE1_PARITY;
  2942. else if (pci_mode < 8)
  2943. p->variant = PCI_VARIANT_PCIX_MODE1_ECC;
  2944. else
  2945. p->variant = PCI_VARIANT_PCIX_266_MODE2;
  2946. }
  2947. /**
  2948. * init_link_config - initialize a link's SW state
  2949. * @lc: structure holding the link state
  2950. * @ai: information about the current card
  2951. *
  2952. * Initializes the SW state maintained for each link, including the link's
  2953. * capabilities and default speed/duplex/flow-control/autonegotiation
  2954. * settings.
  2955. */
  2956. static void __devinit init_link_config(struct link_config *lc,
  2957. unsigned int caps)
  2958. {
  2959. lc->supported = caps;
  2960. lc->requested_speed = lc->speed = SPEED_INVALID;
  2961. lc->requested_duplex = lc->duplex = DUPLEX_INVALID;
  2962. lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
  2963. if (lc->supported & SUPPORTED_Autoneg) {
  2964. lc->advertising = lc->supported;
  2965. lc->autoneg = AUTONEG_ENABLE;
  2966. lc->requested_fc |= PAUSE_AUTONEG;
  2967. } else {
  2968. lc->advertising = 0;
  2969. lc->autoneg = AUTONEG_DISABLE;
  2970. }
  2971. }
  2972. /**
  2973. * mc7_calc_size - calculate MC7 memory size
  2974. * @cfg: the MC7 configuration
  2975. *
  2976. * Calculates the size of an MC7 memory in bytes from the value of its
  2977. * configuration register.
  2978. */
  2979. static unsigned int __devinit mc7_calc_size(u32 cfg)
  2980. {
  2981. unsigned int width = G_WIDTH(cfg);
  2982. unsigned int banks = !!(cfg & F_BKS) + 1;
  2983. unsigned int org = !!(cfg & F_ORG) + 1;
  2984. unsigned int density = G_DEN(cfg);
  2985. unsigned int MBs = ((256 << density) * banks) / (org << width);
  2986. return MBs << 20;
  2987. }
  2988. static void __devinit mc7_prep(struct adapter *adapter, struct mc7 *mc7,
  2989. unsigned int base_addr, const char *name)
  2990. {
  2991. u32 cfg;
  2992. mc7->adapter = adapter;
  2993. mc7->name = name;
  2994. mc7->offset = base_addr - MC7_PMRX_BASE_ADDR;
  2995. cfg = t3_read_reg(adapter, mc7->offset + A_MC7_CFG);
  2996. mc7->size = mc7->size = G_DEN(cfg) == M_DEN ? 0 : mc7_calc_size(cfg);
  2997. mc7->width = G_WIDTH(cfg);
  2998. }
  2999. void mac_prep(struct cmac *mac, struct adapter *adapter, int index)
  3000. {
  3001. mac->adapter = adapter;
  3002. mac->offset = (XGMAC0_1_BASE_ADDR - XGMAC0_0_BASE_ADDR) * index;
  3003. mac->nucast = 1;
  3004. if (adapter->params.rev == 0 && uses_xaui(adapter)) {
  3005. t3_write_reg(adapter, A_XGM_SERDES_CTRL + mac->offset,
  3006. is_10G(adapter) ? 0x2901c04 : 0x2301c04);
  3007. t3_set_reg_field(adapter, A_XGM_PORT_CFG + mac->offset,
  3008. F_ENRGMII, 0);
  3009. }
  3010. }
  3011. void early_hw_init(struct adapter *adapter, const struct adapter_info *ai)
  3012. {
  3013. u32 val = V_PORTSPEED(is_10G(adapter) ? 3 : 2);
  3014. mi1_init(adapter, ai);
  3015. t3_write_reg(adapter, A_I2C_CFG, /* set for 80KHz */
  3016. V_I2C_CLKDIV(adapter->params.vpd.cclk / 80 - 1));
  3017. t3_write_reg(adapter, A_T3DBG_GPIO_EN,
  3018. ai->gpio_out | F_GPIO0_OEN | F_GPIO0_OUT_VAL);
  3019. t3_write_reg(adapter, A_MC5_DB_SERVER_INDEX, 0);
  3020. if (adapter->params.rev == 0 || !uses_xaui(adapter))
  3021. val |= F_ENRGMII;
  3022. /* Enable MAC clocks so we can access the registers */
  3023. t3_write_reg(adapter, A_XGM_PORT_CFG, val);
  3024. t3_read_reg(adapter, A_XGM_PORT_CFG);
  3025. val |= F_CLKDIVRESET_;
  3026. t3_write_reg(adapter, A_XGM_PORT_CFG, val);
  3027. t3_read_reg(adapter, A_XGM_PORT_CFG);
  3028. t3_write_reg(adapter, XGM_REG(A_XGM_PORT_CFG, 1), val);
  3029. t3_read_reg(adapter, A_XGM_PORT_CFG);
  3030. }
  3031. /*
  3032. * Reset the adapter.
  3033. * Older PCIe cards lose their config space during reset, PCI-X
  3034. * ones don't.
  3035. */
  3036. int t3_reset_adapter(struct adapter *adapter)
  3037. {
  3038. int i, save_and_restore_pcie =
  3039. adapter->params.rev < T3_REV_B2 && is_pcie(adapter);
  3040. uint16_t devid = 0;
  3041. if (save_and_restore_pcie)
  3042. pci_save_state(adapter->pdev);
  3043. t3_write_reg(adapter, A_PL_RST, F_CRSTWRM | F_CRSTWRMMODE);
  3044. /*
  3045. * Delay. Give Some time to device to reset fully.
  3046. * XXX The delay time should be modified.
  3047. */
  3048. for (i = 0; i < 10; i++) {
  3049. msleep(50);
  3050. pci_read_config_word(adapter->pdev, 0x00, &devid);
  3051. if (devid == 0x1425)
  3052. break;
  3053. }
  3054. if (devid != 0x1425)
  3055. return -1;
  3056. if (save_and_restore_pcie)
  3057. pci_restore_state(adapter->pdev);
  3058. return 0;
  3059. }
  3060. /*
  3061. * Initialize adapter SW state for the various HW modules, set initial values
  3062. * for some adapter tunables, take PHYs out of reset, and initialize the MDIO
  3063. * interface.
  3064. */
  3065. int __devinit t3_prep_adapter(struct adapter *adapter,
  3066. const struct adapter_info *ai, int reset)
  3067. {
  3068. int ret;
  3069. unsigned int i, j = 0;
  3070. get_pci_mode(adapter, &adapter->params.pci);
  3071. adapter->params.info = ai;
  3072. adapter->params.nports = ai->nports;
  3073. adapter->params.rev = t3_read_reg(adapter, A_PL_REV);
  3074. adapter->params.linkpoll_period = 0;
  3075. adapter->params.stats_update_period = is_10G(adapter) ?
  3076. MAC_STATS_ACCUM_SECS : (MAC_STATS_ACCUM_SECS * 10);
  3077. adapter->params.pci.vpd_cap_addr =
  3078. pci_find_capability(adapter->pdev, PCI_CAP_ID_VPD);
  3079. ret = get_vpd_params(adapter, &adapter->params.vpd);
  3080. if (ret < 0)
  3081. return ret;
  3082. if (reset && t3_reset_adapter(adapter))
  3083. return -1;
  3084. t3_sge_prep(adapter, &adapter->params.sge);
  3085. if (adapter->params.vpd.mclk) {
  3086. struct tp_params *p = &adapter->params.tp;
  3087. mc7_prep(adapter, &adapter->pmrx, MC7_PMRX_BASE_ADDR, "PMRX");
  3088. mc7_prep(adapter, &adapter->pmtx, MC7_PMTX_BASE_ADDR, "PMTX");
  3089. mc7_prep(adapter, &adapter->cm, MC7_CM_BASE_ADDR, "CM");
  3090. p->nchan = ai->nports;
  3091. p->pmrx_size = t3_mc7_size(&adapter->pmrx);
  3092. p->pmtx_size = t3_mc7_size(&adapter->pmtx);
  3093. p->cm_size = t3_mc7_size(&adapter->cm);
  3094. p->chan_rx_size = p->pmrx_size / 2; /* only 1 Rx channel */
  3095. p->chan_tx_size = p->pmtx_size / p->nchan;
  3096. p->rx_pg_size = 64 * 1024;
  3097. p->tx_pg_size = is_10G(adapter) ? 64 * 1024 : 16 * 1024;
  3098. p->rx_num_pgs = pm_num_pages(p->chan_rx_size, p->rx_pg_size);
  3099. p->tx_num_pgs = pm_num_pages(p->chan_tx_size, p->tx_pg_size);
  3100. p->ntimer_qs = p->cm_size >= (128 << 20) ||
  3101. adapter->params.rev > 0 ? 12 : 6;
  3102. }
  3103. adapter->params.offload = t3_mc7_size(&adapter->pmrx) &&
  3104. t3_mc7_size(&adapter->pmtx) &&
  3105. t3_mc7_size(&adapter->cm);
  3106. if (is_offload(adapter)) {
  3107. adapter->params.mc5.nservers = DEFAULT_NSERVERS;
  3108. adapter->params.mc5.nfilters = adapter->params.rev > 0 ?
  3109. DEFAULT_NFILTERS : 0;
  3110. adapter->params.mc5.nroutes = 0;
  3111. t3_mc5_prep(adapter, &adapter->mc5, MC5_MODE_144_BIT);
  3112. init_mtus(adapter->params.mtus);
  3113. init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
  3114. }
  3115. early_hw_init(adapter, ai);
  3116. for_each_port(adapter, i) {
  3117. u8 hw_addr[6];
  3118. struct port_info *p = adap2pinfo(adapter, i);
  3119. while (!adapter->params.vpd.port_type[j])
  3120. ++j;
  3121. p->port_type = &port_types[adapter->params.vpd.port_type[j]];
  3122. p->port_type->phy_prep(&p->phy, adapter, ai->phy_base_addr + j,
  3123. ai->mdio_ops);
  3124. mac_prep(&p->mac, adapter, j);
  3125. ++j;
  3126. /*
  3127. * The VPD EEPROM stores the base Ethernet address for the
  3128. * card. A port's address is derived from the base by adding
  3129. * the port's index to the base's low octet.
  3130. */
  3131. memcpy(hw_addr, adapter->params.vpd.eth_base, 5);
  3132. hw_addr[5] = adapter->params.vpd.eth_base[5] + i;
  3133. memcpy(adapter->port[i]->dev_addr, hw_addr,
  3134. ETH_ALEN);
  3135. memcpy(adapter->port[i]->perm_addr, hw_addr,
  3136. ETH_ALEN);
  3137. init_link_config(&p->link_config, p->port_type->caps);
  3138. p->phy.ops->power_down(&p->phy, 1);
  3139. if (!(p->port_type->caps & SUPPORTED_IRQ))
  3140. adapter->params.linkpoll_period = 10;
  3141. }
  3142. return 0;
  3143. }
  3144. void t3_led_ready(struct adapter *adapter)
  3145. {
  3146. t3_set_reg_field(adapter, A_T3DBG_GPIO_EN, F_GPIO0_OUT_VAL,
  3147. F_GPIO0_OUT_VAL);
  3148. }