hw.c 82 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255
  1. /*
  2. * Copyright (c) 2008-2011 Atheros Communications Inc.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. #include <linux/io.h>
  17. #include <linux/slab.h>
  18. #include <linux/module.h>
  19. #include <asm/unaligned.h>
  20. #include "hw.h"
  21. #include "hw-ops.h"
  22. #include "rc.h"
  23. #include "ar9003_mac.h"
  24. #include "ar9003_mci.h"
  25. #include "ar9003_phy.h"
  26. #include "debug.h"
  27. #include "ath9k.h"
  28. static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
  29. MODULE_AUTHOR("Atheros Communications");
  30. MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
  31. MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
  32. MODULE_LICENSE("Dual BSD/GPL");
  33. static int __init ath9k_init(void)
  34. {
  35. return 0;
  36. }
  37. module_init(ath9k_init);
  38. static void __exit ath9k_exit(void)
  39. {
  40. return;
  41. }
  42. module_exit(ath9k_exit);
  43. /* Private hardware callbacks */
  44. static void ath9k_hw_init_cal_settings(struct ath_hw *ah)
  45. {
  46. ath9k_hw_private_ops(ah)->init_cal_settings(ah);
  47. }
  48. static u32 ath9k_hw_compute_pll_control(struct ath_hw *ah,
  49. struct ath9k_channel *chan)
  50. {
  51. return ath9k_hw_private_ops(ah)->compute_pll_control(ah, chan);
  52. }
  53. static void ath9k_hw_init_mode_gain_regs(struct ath_hw *ah)
  54. {
  55. if (!ath9k_hw_private_ops(ah)->init_mode_gain_regs)
  56. return;
  57. ath9k_hw_private_ops(ah)->init_mode_gain_regs(ah);
  58. }
  59. static void ath9k_hw_ani_cache_ini_regs(struct ath_hw *ah)
  60. {
  61. /* You will not have this callback if using the old ANI */
  62. if (!ath9k_hw_private_ops(ah)->ani_cache_ini_regs)
  63. return;
  64. ath9k_hw_private_ops(ah)->ani_cache_ini_regs(ah);
  65. }
  66. /********************/
  67. /* Helper Functions */
  68. /********************/
  69. #ifdef CONFIG_ATH9K_DEBUGFS
  70. void ath9k_debug_sync_cause(struct ath_common *common, u32 sync_cause)
  71. {
  72. struct ath_softc *sc = common->priv;
  73. if (sync_cause)
  74. sc->debug.stats.istats.sync_cause_all++;
  75. if (sync_cause & AR_INTR_SYNC_RTC_IRQ)
  76. sc->debug.stats.istats.sync_rtc_irq++;
  77. if (sync_cause & AR_INTR_SYNC_MAC_IRQ)
  78. sc->debug.stats.istats.sync_mac_irq++;
  79. if (sync_cause & AR_INTR_SYNC_EEPROM_ILLEGAL_ACCESS)
  80. sc->debug.stats.istats.eeprom_illegal_access++;
  81. if (sync_cause & AR_INTR_SYNC_APB_TIMEOUT)
  82. sc->debug.stats.istats.apb_timeout++;
  83. if (sync_cause & AR_INTR_SYNC_PCI_MODE_CONFLICT)
  84. sc->debug.stats.istats.pci_mode_conflict++;
  85. if (sync_cause & AR_INTR_SYNC_HOST1_FATAL)
  86. sc->debug.stats.istats.host1_fatal++;
  87. if (sync_cause & AR_INTR_SYNC_HOST1_PERR)
  88. sc->debug.stats.istats.host1_perr++;
  89. if (sync_cause & AR_INTR_SYNC_TRCV_FIFO_PERR)
  90. sc->debug.stats.istats.trcv_fifo_perr++;
  91. if (sync_cause & AR_INTR_SYNC_RADM_CPL_EP)
  92. sc->debug.stats.istats.radm_cpl_ep++;
  93. if (sync_cause & AR_INTR_SYNC_RADM_CPL_DLLP_ABORT)
  94. sc->debug.stats.istats.radm_cpl_dllp_abort++;
  95. if (sync_cause & AR_INTR_SYNC_RADM_CPL_TLP_ABORT)
  96. sc->debug.stats.istats.radm_cpl_tlp_abort++;
  97. if (sync_cause & AR_INTR_SYNC_RADM_CPL_ECRC_ERR)
  98. sc->debug.stats.istats.radm_cpl_ecrc_err++;
  99. if (sync_cause & AR_INTR_SYNC_RADM_CPL_TIMEOUT)
  100. sc->debug.stats.istats.radm_cpl_timeout++;
  101. if (sync_cause & AR_INTR_SYNC_LOCAL_TIMEOUT)
  102. sc->debug.stats.istats.local_timeout++;
  103. if (sync_cause & AR_INTR_SYNC_PM_ACCESS)
  104. sc->debug.stats.istats.pm_access++;
  105. if (sync_cause & AR_INTR_SYNC_MAC_AWAKE)
  106. sc->debug.stats.istats.mac_awake++;
  107. if (sync_cause & AR_INTR_SYNC_MAC_ASLEEP)
  108. sc->debug.stats.istats.mac_asleep++;
  109. if (sync_cause & AR_INTR_SYNC_MAC_SLEEP_ACCESS)
  110. sc->debug.stats.istats.mac_sleep_access++;
  111. }
  112. #endif
  113. static void ath9k_hw_set_clockrate(struct ath_hw *ah)
  114. {
  115. struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
  116. struct ath_common *common = ath9k_hw_common(ah);
  117. unsigned int clockrate;
  118. /* AR9287 v1.3+ uses async FIFO and runs the MAC at 117 MHz */
  119. if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah))
  120. clockrate = 117;
  121. else if (!ah->curchan) /* should really check for CCK instead */
  122. clockrate = ATH9K_CLOCK_RATE_CCK;
  123. else if (conf->chandef.chan->band == IEEE80211_BAND_2GHZ)
  124. clockrate = ATH9K_CLOCK_RATE_2GHZ_OFDM;
  125. else if (ah->caps.hw_caps & ATH9K_HW_CAP_FASTCLOCK)
  126. clockrate = ATH9K_CLOCK_FAST_RATE_5GHZ_OFDM;
  127. else
  128. clockrate = ATH9K_CLOCK_RATE_5GHZ_OFDM;
  129. if (conf_is_ht40(conf))
  130. clockrate *= 2;
  131. if (ah->curchan) {
  132. if (IS_CHAN_HALF_RATE(ah->curchan))
  133. clockrate /= 2;
  134. if (IS_CHAN_QUARTER_RATE(ah->curchan))
  135. clockrate /= 4;
  136. }
  137. common->clockrate = clockrate;
  138. }
  139. static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
  140. {
  141. struct ath_common *common = ath9k_hw_common(ah);
  142. return usecs * common->clockrate;
  143. }
  144. bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
  145. {
  146. int i;
  147. BUG_ON(timeout < AH_TIME_QUANTUM);
  148. for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
  149. if ((REG_READ(ah, reg) & mask) == val)
  150. return true;
  151. udelay(AH_TIME_QUANTUM);
  152. }
  153. ath_dbg(ath9k_hw_common(ah), ANY,
  154. "timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
  155. timeout, reg, REG_READ(ah, reg), mask, val);
  156. return false;
  157. }
  158. EXPORT_SYMBOL(ath9k_hw_wait);
  159. void ath9k_hw_synth_delay(struct ath_hw *ah, struct ath9k_channel *chan,
  160. int hw_delay)
  161. {
  162. if (IS_CHAN_B(chan))
  163. hw_delay = (4 * hw_delay) / 22;
  164. else
  165. hw_delay /= 10;
  166. if (IS_CHAN_HALF_RATE(chan))
  167. hw_delay *= 2;
  168. else if (IS_CHAN_QUARTER_RATE(chan))
  169. hw_delay *= 4;
  170. udelay(hw_delay + BASE_ACTIVATE_DELAY);
  171. }
  172. void ath9k_hw_write_array(struct ath_hw *ah, const struct ar5416IniArray *array,
  173. int column, unsigned int *writecnt)
  174. {
  175. int r;
  176. ENABLE_REGWRITE_BUFFER(ah);
  177. for (r = 0; r < array->ia_rows; r++) {
  178. REG_WRITE(ah, INI_RA(array, r, 0),
  179. INI_RA(array, r, column));
  180. DO_DELAY(*writecnt);
  181. }
  182. REGWRITE_BUFFER_FLUSH(ah);
  183. }
  184. u32 ath9k_hw_reverse_bits(u32 val, u32 n)
  185. {
  186. u32 retval;
  187. int i;
  188. for (i = 0, retval = 0; i < n; i++) {
  189. retval = (retval << 1) | (val & 1);
  190. val >>= 1;
  191. }
  192. return retval;
  193. }
  194. u16 ath9k_hw_computetxtime(struct ath_hw *ah,
  195. u8 phy, int kbps,
  196. u32 frameLen, u16 rateix,
  197. bool shortPreamble)
  198. {
  199. u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
  200. if (kbps == 0)
  201. return 0;
  202. switch (phy) {
  203. case WLAN_RC_PHY_CCK:
  204. phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
  205. if (shortPreamble)
  206. phyTime >>= 1;
  207. numBits = frameLen << 3;
  208. txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
  209. break;
  210. case WLAN_RC_PHY_OFDM:
  211. if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
  212. bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
  213. numBits = OFDM_PLCP_BITS + (frameLen << 3);
  214. numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
  215. txTime = OFDM_SIFS_TIME_QUARTER
  216. + OFDM_PREAMBLE_TIME_QUARTER
  217. + (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
  218. } else if (ah->curchan &&
  219. IS_CHAN_HALF_RATE(ah->curchan)) {
  220. bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
  221. numBits = OFDM_PLCP_BITS + (frameLen << 3);
  222. numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
  223. txTime = OFDM_SIFS_TIME_HALF +
  224. OFDM_PREAMBLE_TIME_HALF
  225. + (numSymbols * OFDM_SYMBOL_TIME_HALF);
  226. } else {
  227. bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
  228. numBits = OFDM_PLCP_BITS + (frameLen << 3);
  229. numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
  230. txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
  231. + (numSymbols * OFDM_SYMBOL_TIME);
  232. }
  233. break;
  234. default:
  235. ath_err(ath9k_hw_common(ah),
  236. "Unknown phy %u (rate ix %u)\n", phy, rateix);
  237. txTime = 0;
  238. break;
  239. }
  240. return txTime;
  241. }
  242. EXPORT_SYMBOL(ath9k_hw_computetxtime);
  243. void ath9k_hw_get_channel_centers(struct ath_hw *ah,
  244. struct ath9k_channel *chan,
  245. struct chan_centers *centers)
  246. {
  247. int8_t extoff;
  248. if (!IS_CHAN_HT40(chan)) {
  249. centers->ctl_center = centers->ext_center =
  250. centers->synth_center = chan->channel;
  251. return;
  252. }
  253. if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
  254. (chan->chanmode == CHANNEL_G_HT40PLUS)) {
  255. centers->synth_center =
  256. chan->channel + HT40_CHANNEL_CENTER_SHIFT;
  257. extoff = 1;
  258. } else {
  259. centers->synth_center =
  260. chan->channel - HT40_CHANNEL_CENTER_SHIFT;
  261. extoff = -1;
  262. }
  263. centers->ctl_center =
  264. centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
  265. /* 25 MHz spacing is supported by hw but not on upper layers */
  266. centers->ext_center =
  267. centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT);
  268. }
  269. /******************/
  270. /* Chip Revisions */
  271. /******************/
  272. static void ath9k_hw_read_revisions(struct ath_hw *ah)
  273. {
  274. u32 val;
  275. switch (ah->hw_version.devid) {
  276. case AR5416_AR9100_DEVID:
  277. ah->hw_version.macVersion = AR_SREV_VERSION_9100;
  278. break;
  279. case AR9300_DEVID_AR9330:
  280. ah->hw_version.macVersion = AR_SREV_VERSION_9330;
  281. if (ah->get_mac_revision) {
  282. ah->hw_version.macRev = ah->get_mac_revision();
  283. } else {
  284. val = REG_READ(ah, AR_SREV);
  285. ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
  286. }
  287. return;
  288. case AR9300_DEVID_AR9340:
  289. ah->hw_version.macVersion = AR_SREV_VERSION_9340;
  290. val = REG_READ(ah, AR_SREV);
  291. ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
  292. return;
  293. case AR9300_DEVID_QCA955X:
  294. ah->hw_version.macVersion = AR_SREV_VERSION_9550;
  295. return;
  296. }
  297. val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
  298. if (val == 0xFF) {
  299. val = REG_READ(ah, AR_SREV);
  300. ah->hw_version.macVersion =
  301. (val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
  302. ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
  303. if (AR_SREV_9462(ah) || AR_SREV_9565(ah))
  304. ah->is_pciexpress = true;
  305. else
  306. ah->is_pciexpress = (val &
  307. AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
  308. } else {
  309. if (!AR_SREV_9100(ah))
  310. ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
  311. ah->hw_version.macRev = val & AR_SREV_REVISION;
  312. if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
  313. ah->is_pciexpress = true;
  314. }
  315. }
  316. /************************************/
  317. /* HW Attach, Detach, Init Routines */
  318. /************************************/
  319. static void ath9k_hw_disablepcie(struct ath_hw *ah)
  320. {
  321. if (!AR_SREV_5416(ah))
  322. return;
  323. REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
  324. REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
  325. REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
  326. REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
  327. REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
  328. REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
  329. REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
  330. REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
  331. REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
  332. REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
  333. }
  334. /* This should work for all families including legacy */
  335. static bool ath9k_hw_chip_test(struct ath_hw *ah)
  336. {
  337. struct ath_common *common = ath9k_hw_common(ah);
  338. u32 regAddr[2] = { AR_STA_ID0 };
  339. u32 regHold[2];
  340. static const u32 patternData[4] = {
  341. 0x55555555, 0xaaaaaaaa, 0x66666666, 0x99999999
  342. };
  343. int i, j, loop_max;
  344. if (!AR_SREV_9300_20_OR_LATER(ah)) {
  345. loop_max = 2;
  346. regAddr[1] = AR_PHY_BASE + (8 << 2);
  347. } else
  348. loop_max = 1;
  349. for (i = 0; i < loop_max; i++) {
  350. u32 addr = regAddr[i];
  351. u32 wrData, rdData;
  352. regHold[i] = REG_READ(ah, addr);
  353. for (j = 0; j < 0x100; j++) {
  354. wrData = (j << 16) | j;
  355. REG_WRITE(ah, addr, wrData);
  356. rdData = REG_READ(ah, addr);
  357. if (rdData != wrData) {
  358. ath_err(common,
  359. "address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
  360. addr, wrData, rdData);
  361. return false;
  362. }
  363. }
  364. for (j = 0; j < 4; j++) {
  365. wrData = patternData[j];
  366. REG_WRITE(ah, addr, wrData);
  367. rdData = REG_READ(ah, addr);
  368. if (wrData != rdData) {
  369. ath_err(common,
  370. "address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
  371. addr, wrData, rdData);
  372. return false;
  373. }
  374. }
  375. REG_WRITE(ah, regAddr[i], regHold[i]);
  376. }
  377. udelay(100);
  378. return true;
  379. }
  380. static void ath9k_hw_init_config(struct ath_hw *ah)
  381. {
  382. int i;
  383. ah->config.dma_beacon_response_time = 1;
  384. ah->config.sw_beacon_response_time = 6;
  385. ah->config.additional_swba_backoff = 0;
  386. ah->config.ack_6mb = 0x0;
  387. ah->config.cwm_ignore_extcca = 0;
  388. ah->config.pcie_clock_req = 0;
  389. ah->config.pcie_waen = 0;
  390. ah->config.analog_shiftreg = 1;
  391. for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
  392. ah->config.spurchans[i][0] = AR_NO_SPUR;
  393. ah->config.spurchans[i][1] = AR_NO_SPUR;
  394. }
  395. ah->config.rx_intr_mitigation = true;
  396. ah->config.pcieSerDesWrite = true;
  397. /*
  398. * We need this for PCI devices only (Cardbus, PCI, miniPCI)
  399. * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
  400. * This means we use it for all AR5416 devices, and the few
  401. * minor PCI AR9280 devices out there.
  402. *
  403. * Serialization is required because these devices do not handle
  404. * well the case of two concurrent reads/writes due to the latency
  405. * involved. During one read/write another read/write can be issued
  406. * on another CPU while the previous read/write may still be working
  407. * on our hardware, if we hit this case the hardware poops in a loop.
  408. * We prevent this by serializing reads and writes.
  409. *
  410. * This issue is not present on PCI-Express devices or pre-AR5416
  411. * devices (legacy, 802.11abg).
  412. */
  413. if (num_possible_cpus() > 1)
  414. ah->config.serialize_regmode = SER_REG_MODE_AUTO;
  415. }
  416. static void ath9k_hw_init_defaults(struct ath_hw *ah)
  417. {
  418. struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
  419. regulatory->country_code = CTRY_DEFAULT;
  420. regulatory->power_limit = MAX_RATE_POWER;
  421. ah->hw_version.magic = AR5416_MAGIC;
  422. ah->hw_version.subvendorid = 0;
  423. ah->atim_window = 0;
  424. ah->sta_id1_defaults =
  425. AR_STA_ID1_CRPT_MIC_ENABLE |
  426. AR_STA_ID1_MCAST_KSRCH;
  427. if (AR_SREV_9100(ah))
  428. ah->sta_id1_defaults |= AR_STA_ID1_AR9100_BA_FIX;
  429. ah->slottime = ATH9K_SLOT_TIME_9;
  430. ah->globaltxtimeout = (u32) -1;
  431. ah->power_mode = ATH9K_PM_UNDEFINED;
  432. ah->htc_reset_init = true;
  433. }
  434. static int ath9k_hw_init_macaddr(struct ath_hw *ah)
  435. {
  436. struct ath_common *common = ath9k_hw_common(ah);
  437. u32 sum;
  438. int i;
  439. u16 eeval;
  440. static const u32 EEP_MAC[] = { EEP_MAC_LSW, EEP_MAC_MID, EEP_MAC_MSW };
  441. sum = 0;
  442. for (i = 0; i < 3; i++) {
  443. eeval = ah->eep_ops->get_eeprom(ah, EEP_MAC[i]);
  444. sum += eeval;
  445. common->macaddr[2 * i] = eeval >> 8;
  446. common->macaddr[2 * i + 1] = eeval & 0xff;
  447. }
  448. if (sum == 0 || sum == 0xffff * 3)
  449. return -EADDRNOTAVAIL;
  450. return 0;
  451. }
  452. static int ath9k_hw_post_init(struct ath_hw *ah)
  453. {
  454. struct ath_common *common = ath9k_hw_common(ah);
  455. int ecode;
  456. if (common->bus_ops->ath_bus_type != ATH_USB) {
  457. if (!ath9k_hw_chip_test(ah))
  458. return -ENODEV;
  459. }
  460. if (!AR_SREV_9300_20_OR_LATER(ah)) {
  461. ecode = ar9002_hw_rf_claim(ah);
  462. if (ecode != 0)
  463. return ecode;
  464. }
  465. ecode = ath9k_hw_eeprom_init(ah);
  466. if (ecode != 0)
  467. return ecode;
  468. ath_dbg(ath9k_hw_common(ah), CONFIG, "Eeprom VER: %d, REV: %d\n",
  469. ah->eep_ops->get_eeprom_ver(ah),
  470. ah->eep_ops->get_eeprom_rev(ah));
  471. ath9k_hw_ani_init(ah);
  472. return 0;
  473. }
  474. static int ath9k_hw_attach_ops(struct ath_hw *ah)
  475. {
  476. if (!AR_SREV_9300_20_OR_LATER(ah))
  477. return ar9002_hw_attach_ops(ah);
  478. ar9003_hw_attach_ops(ah);
  479. return 0;
  480. }
  481. /* Called for all hardware families */
  482. static int __ath9k_hw_init(struct ath_hw *ah)
  483. {
  484. struct ath_common *common = ath9k_hw_common(ah);
  485. int r = 0;
  486. ath9k_hw_read_revisions(ah);
  487. /*
  488. * Read back AR_WA into a permanent copy and set bits 14 and 17.
  489. * We need to do this to avoid RMW of this register. We cannot
  490. * read the reg when chip is asleep.
  491. */
  492. ah->WARegVal = REG_READ(ah, AR_WA);
  493. ah->WARegVal |= (AR_WA_D3_L1_DISABLE |
  494. AR_WA_ASPM_TIMER_BASED_DISABLE);
  495. if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
  496. ath_err(common, "Couldn't reset chip\n");
  497. return -EIO;
  498. }
  499. if (AR_SREV_9462(ah))
  500. ah->WARegVal &= ~AR_WA_D3_L1_DISABLE;
  501. if (AR_SREV_9565(ah)) {
  502. ah->WARegVal |= AR_WA_BIT22;
  503. REG_WRITE(ah, AR_WA, ah->WARegVal);
  504. }
  505. ath9k_hw_init_defaults(ah);
  506. ath9k_hw_init_config(ah);
  507. r = ath9k_hw_attach_ops(ah);
  508. if (r)
  509. return r;
  510. if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
  511. ath_err(common, "Couldn't wakeup chip\n");
  512. return -EIO;
  513. }
  514. if (NR_CPUS > 1 && ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
  515. if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
  516. ((AR_SREV_9160(ah) || AR_SREV_9280(ah) || AR_SREV_9287(ah)) &&
  517. !ah->is_pciexpress)) {
  518. ah->config.serialize_regmode =
  519. SER_REG_MODE_ON;
  520. } else {
  521. ah->config.serialize_regmode =
  522. SER_REG_MODE_OFF;
  523. }
  524. }
  525. ath_dbg(common, RESET, "serialize_regmode is %d\n",
  526. ah->config.serialize_regmode);
  527. if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
  528. ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1;
  529. else
  530. ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD;
  531. switch (ah->hw_version.macVersion) {
  532. case AR_SREV_VERSION_5416_PCI:
  533. case AR_SREV_VERSION_5416_PCIE:
  534. case AR_SREV_VERSION_9160:
  535. case AR_SREV_VERSION_9100:
  536. case AR_SREV_VERSION_9280:
  537. case AR_SREV_VERSION_9285:
  538. case AR_SREV_VERSION_9287:
  539. case AR_SREV_VERSION_9271:
  540. case AR_SREV_VERSION_9300:
  541. case AR_SREV_VERSION_9330:
  542. case AR_SREV_VERSION_9485:
  543. case AR_SREV_VERSION_9340:
  544. case AR_SREV_VERSION_9462:
  545. case AR_SREV_VERSION_9550:
  546. case AR_SREV_VERSION_9565:
  547. break;
  548. default:
  549. ath_err(common,
  550. "Mac Chip Rev 0x%02x.%x is not supported by this driver\n",
  551. ah->hw_version.macVersion, ah->hw_version.macRev);
  552. return -EOPNOTSUPP;
  553. }
  554. if (AR_SREV_9271(ah) || AR_SREV_9100(ah) || AR_SREV_9340(ah) ||
  555. AR_SREV_9330(ah) || AR_SREV_9550(ah))
  556. ah->is_pciexpress = false;
  557. ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
  558. ath9k_hw_init_cal_settings(ah);
  559. ah->ani_function = ATH9K_ANI_ALL;
  560. if (AR_SREV_9280_20_OR_LATER(ah) && !AR_SREV_9300_20_OR_LATER(ah))
  561. ah->ani_function &= ~ATH9K_ANI_NOISE_IMMUNITY_LEVEL;
  562. if (!AR_SREV_9300_20_OR_LATER(ah))
  563. ah->ani_function &= ~ATH9K_ANI_MRC_CCK;
  564. if (!ah->is_pciexpress)
  565. ath9k_hw_disablepcie(ah);
  566. r = ath9k_hw_post_init(ah);
  567. if (r)
  568. return r;
  569. ath9k_hw_init_mode_gain_regs(ah);
  570. r = ath9k_hw_fill_cap_info(ah);
  571. if (r)
  572. return r;
  573. r = ath9k_hw_init_macaddr(ah);
  574. if (r) {
  575. ath_err(common, "Failed to initialize MAC address\n");
  576. return r;
  577. }
  578. if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
  579. ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
  580. else
  581. ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
  582. if (AR_SREV_9330(ah))
  583. ah->bb_watchdog_timeout_ms = 85;
  584. else
  585. ah->bb_watchdog_timeout_ms = 25;
  586. common->state = ATH_HW_INITIALIZED;
  587. return 0;
  588. }
  589. int ath9k_hw_init(struct ath_hw *ah)
  590. {
  591. int ret;
  592. struct ath_common *common = ath9k_hw_common(ah);
  593. /* These are all the AR5008/AR9001/AR9002/AR9003 hardware family of chipsets */
  594. switch (ah->hw_version.devid) {
  595. case AR5416_DEVID_PCI:
  596. case AR5416_DEVID_PCIE:
  597. case AR5416_AR9100_DEVID:
  598. case AR9160_DEVID_PCI:
  599. case AR9280_DEVID_PCI:
  600. case AR9280_DEVID_PCIE:
  601. case AR9285_DEVID_PCIE:
  602. case AR9287_DEVID_PCI:
  603. case AR9287_DEVID_PCIE:
  604. case AR2427_DEVID_PCIE:
  605. case AR9300_DEVID_PCIE:
  606. case AR9300_DEVID_AR9485_PCIE:
  607. case AR9300_DEVID_AR9330:
  608. case AR9300_DEVID_AR9340:
  609. case AR9300_DEVID_QCA955X:
  610. case AR9300_DEVID_AR9580:
  611. case AR9300_DEVID_AR9462:
  612. case AR9485_DEVID_AR1111:
  613. case AR9300_DEVID_AR9565:
  614. break;
  615. default:
  616. if (common->bus_ops->ath_bus_type == ATH_USB)
  617. break;
  618. ath_err(common, "Hardware device ID 0x%04x not supported\n",
  619. ah->hw_version.devid);
  620. return -EOPNOTSUPP;
  621. }
  622. ret = __ath9k_hw_init(ah);
  623. if (ret) {
  624. ath_err(common,
  625. "Unable to initialize hardware; initialization status: %d\n",
  626. ret);
  627. return ret;
  628. }
  629. return 0;
  630. }
  631. EXPORT_SYMBOL(ath9k_hw_init);
  632. static void ath9k_hw_init_qos(struct ath_hw *ah)
  633. {
  634. ENABLE_REGWRITE_BUFFER(ah);
  635. REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
  636. REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
  637. REG_WRITE(ah, AR_QOS_NO_ACK,
  638. SM(2, AR_QOS_NO_ACK_TWO_BIT) |
  639. SM(5, AR_QOS_NO_ACK_BIT_OFF) |
  640. SM(0, AR_QOS_NO_ACK_BYTE_OFF));
  641. REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
  642. REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
  643. REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
  644. REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
  645. REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
  646. REGWRITE_BUFFER_FLUSH(ah);
  647. }
  648. u32 ar9003_get_pll_sqsum_dvc(struct ath_hw *ah)
  649. {
  650. struct ath_common *common = ath9k_hw_common(ah);
  651. int i = 0;
  652. REG_CLR_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
  653. udelay(100);
  654. REG_SET_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
  655. while ((REG_READ(ah, PLL4) & PLL4_MEAS_DONE) == 0) {
  656. udelay(100);
  657. if (WARN_ON_ONCE(i >= 100)) {
  658. ath_err(common, "PLL4 meaurement not done\n");
  659. break;
  660. }
  661. i++;
  662. }
  663. return (REG_READ(ah, PLL3) & SQSUM_DVC_MASK) >> 3;
  664. }
  665. EXPORT_SYMBOL(ar9003_get_pll_sqsum_dvc);
  666. static void ath9k_hw_init_pll(struct ath_hw *ah,
  667. struct ath9k_channel *chan)
  668. {
  669. u32 pll;
  670. if (AR_SREV_9485(ah) || AR_SREV_9565(ah)) {
  671. /* program BB PLL ki and kd value, ki=0x4, kd=0x40 */
  672. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
  673. AR_CH0_BB_DPLL2_PLL_PWD, 0x1);
  674. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
  675. AR_CH0_DPLL2_KD, 0x40);
  676. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
  677. AR_CH0_DPLL2_KI, 0x4);
  678. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
  679. AR_CH0_BB_DPLL1_REFDIV, 0x5);
  680. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
  681. AR_CH0_BB_DPLL1_NINI, 0x58);
  682. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
  683. AR_CH0_BB_DPLL1_NFRAC, 0x0);
  684. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
  685. AR_CH0_BB_DPLL2_OUTDIV, 0x1);
  686. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
  687. AR_CH0_BB_DPLL2_LOCAL_PLL, 0x1);
  688. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
  689. AR_CH0_BB_DPLL2_EN_NEGTRIG, 0x1);
  690. /* program BB PLL phase_shift to 0x6 */
  691. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
  692. AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x6);
  693. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
  694. AR_CH0_BB_DPLL2_PLL_PWD, 0x0);
  695. udelay(1000);
  696. } else if (AR_SREV_9330(ah)) {
  697. u32 ddr_dpll2, pll_control2, kd;
  698. if (ah->is_clk_25mhz) {
  699. ddr_dpll2 = 0x18e82f01;
  700. pll_control2 = 0xe04a3d;
  701. kd = 0x1d;
  702. } else {
  703. ddr_dpll2 = 0x19e82f01;
  704. pll_control2 = 0x886666;
  705. kd = 0x3d;
  706. }
  707. /* program DDR PLL ki and kd value */
  708. REG_WRITE(ah, AR_CH0_DDR_DPLL2, ddr_dpll2);
  709. /* program DDR PLL phase_shift */
  710. REG_RMW_FIELD(ah, AR_CH0_DDR_DPLL3,
  711. AR_CH0_DPLL3_PHASE_SHIFT, 0x1);
  712. REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x1142c);
  713. udelay(1000);
  714. /* program refdiv, nint, frac to RTC register */
  715. REG_WRITE(ah, AR_RTC_PLL_CONTROL2, pll_control2);
  716. /* program BB PLL kd and ki value */
  717. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KD, kd);
  718. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KI, 0x06);
  719. /* program BB PLL phase_shift */
  720. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
  721. AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x1);
  722. } else if (AR_SREV_9340(ah) || AR_SREV_9550(ah)) {
  723. u32 regval, pll2_divint, pll2_divfrac, refdiv;
  724. REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x1142c);
  725. udelay(1000);
  726. REG_SET_BIT(ah, AR_PHY_PLL_MODE, 0x1 << 16);
  727. udelay(100);
  728. if (ah->is_clk_25mhz) {
  729. pll2_divint = 0x54;
  730. pll2_divfrac = 0x1eb85;
  731. refdiv = 3;
  732. } else {
  733. if (AR_SREV_9340(ah)) {
  734. pll2_divint = 88;
  735. pll2_divfrac = 0;
  736. refdiv = 5;
  737. } else {
  738. pll2_divint = 0x11;
  739. pll2_divfrac = 0x26666;
  740. refdiv = 1;
  741. }
  742. }
  743. regval = REG_READ(ah, AR_PHY_PLL_MODE);
  744. regval |= (0x1 << 16);
  745. REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
  746. udelay(100);
  747. REG_WRITE(ah, AR_PHY_PLL_CONTROL, (refdiv << 27) |
  748. (pll2_divint << 18) | pll2_divfrac);
  749. udelay(100);
  750. regval = REG_READ(ah, AR_PHY_PLL_MODE);
  751. if (AR_SREV_9340(ah))
  752. regval = (regval & 0x80071fff) | (0x1 << 30) |
  753. (0x1 << 13) | (0x4 << 26) | (0x18 << 19);
  754. else
  755. regval = (regval & 0x80071fff) | (0x3 << 30) |
  756. (0x1 << 13) | (0x4 << 26) | (0x60 << 19);
  757. REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
  758. REG_WRITE(ah, AR_PHY_PLL_MODE,
  759. REG_READ(ah, AR_PHY_PLL_MODE) & 0xfffeffff);
  760. udelay(1000);
  761. }
  762. pll = ath9k_hw_compute_pll_control(ah, chan);
  763. if (AR_SREV_9565(ah))
  764. pll |= 0x40000;
  765. REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
  766. if (AR_SREV_9485(ah) || AR_SREV_9340(ah) || AR_SREV_9330(ah) ||
  767. AR_SREV_9550(ah))
  768. udelay(1000);
  769. /* Switch the core clock for ar9271 to 117Mhz */
  770. if (AR_SREV_9271(ah)) {
  771. udelay(500);
  772. REG_WRITE(ah, 0x50040, 0x304);
  773. }
  774. udelay(RTC_PLL_SETTLE_DELAY);
  775. REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
  776. if (AR_SREV_9340(ah) || AR_SREV_9550(ah)) {
  777. if (ah->is_clk_25mhz) {
  778. REG_WRITE(ah, AR_RTC_DERIVED_CLK, 0x17c << 1);
  779. REG_WRITE(ah, AR_SLP32_MODE, 0x0010f3d7);
  780. REG_WRITE(ah, AR_SLP32_INC, 0x0001e7ae);
  781. } else {
  782. REG_WRITE(ah, AR_RTC_DERIVED_CLK, 0x261 << 1);
  783. REG_WRITE(ah, AR_SLP32_MODE, 0x0010f400);
  784. REG_WRITE(ah, AR_SLP32_INC, 0x0001e800);
  785. }
  786. udelay(100);
  787. }
  788. }
  789. static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
  790. enum nl80211_iftype opmode)
  791. {
  792. u32 sync_default = AR_INTR_SYNC_DEFAULT;
  793. u32 imr_reg = AR_IMR_TXERR |
  794. AR_IMR_TXURN |
  795. AR_IMR_RXERR |
  796. AR_IMR_RXORN |
  797. AR_IMR_BCNMISC;
  798. if (AR_SREV_9340(ah) || AR_SREV_9550(ah))
  799. sync_default &= ~AR_INTR_SYNC_HOST1_FATAL;
  800. if (AR_SREV_9300_20_OR_LATER(ah)) {
  801. imr_reg |= AR_IMR_RXOK_HP;
  802. if (ah->config.rx_intr_mitigation)
  803. imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
  804. else
  805. imr_reg |= AR_IMR_RXOK_LP;
  806. } else {
  807. if (ah->config.rx_intr_mitigation)
  808. imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
  809. else
  810. imr_reg |= AR_IMR_RXOK;
  811. }
  812. if (ah->config.tx_intr_mitigation)
  813. imr_reg |= AR_IMR_TXINTM | AR_IMR_TXMINTR;
  814. else
  815. imr_reg |= AR_IMR_TXOK;
  816. ENABLE_REGWRITE_BUFFER(ah);
  817. REG_WRITE(ah, AR_IMR, imr_reg);
  818. ah->imrs2_reg |= AR_IMR_S2_GTT;
  819. REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
  820. if (!AR_SREV_9100(ah)) {
  821. REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
  822. REG_WRITE(ah, AR_INTR_SYNC_ENABLE, sync_default);
  823. REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
  824. }
  825. REGWRITE_BUFFER_FLUSH(ah);
  826. if (AR_SREV_9300_20_OR_LATER(ah)) {
  827. REG_WRITE(ah, AR_INTR_PRIO_ASYNC_ENABLE, 0);
  828. REG_WRITE(ah, AR_INTR_PRIO_ASYNC_MASK, 0);
  829. REG_WRITE(ah, AR_INTR_PRIO_SYNC_ENABLE, 0);
  830. REG_WRITE(ah, AR_INTR_PRIO_SYNC_MASK, 0);
  831. }
  832. }
  833. static void ath9k_hw_set_sifs_time(struct ath_hw *ah, u32 us)
  834. {
  835. u32 val = ath9k_hw_mac_to_clks(ah, us - 2);
  836. val = min(val, (u32) 0xFFFF);
  837. REG_WRITE(ah, AR_D_GBL_IFS_SIFS, val);
  838. }
  839. static void ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
  840. {
  841. u32 val = ath9k_hw_mac_to_clks(ah, us);
  842. val = min(val, (u32) 0xFFFF);
  843. REG_WRITE(ah, AR_D_GBL_IFS_SLOT, val);
  844. }
  845. static void ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
  846. {
  847. u32 val = ath9k_hw_mac_to_clks(ah, us);
  848. val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_ACK));
  849. REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, val);
  850. }
  851. static void ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
  852. {
  853. u32 val = ath9k_hw_mac_to_clks(ah, us);
  854. val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_CTS));
  855. REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, val);
  856. }
  857. static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
  858. {
  859. if (tu > 0xFFFF) {
  860. ath_dbg(ath9k_hw_common(ah), XMIT, "bad global tx timeout %u\n",
  861. tu);
  862. ah->globaltxtimeout = (u32) -1;
  863. return false;
  864. } else {
  865. REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
  866. ah->globaltxtimeout = tu;
  867. return true;
  868. }
  869. }
  870. void ath9k_hw_init_global_settings(struct ath_hw *ah)
  871. {
  872. struct ath_common *common = ath9k_hw_common(ah);
  873. struct ieee80211_conf *conf = &common->hw->conf;
  874. const struct ath9k_channel *chan = ah->curchan;
  875. int acktimeout, ctstimeout, ack_offset = 0;
  876. int slottime;
  877. int sifstime;
  878. int rx_lat = 0, tx_lat = 0, eifs = 0;
  879. u32 reg;
  880. ath_dbg(ath9k_hw_common(ah), RESET, "ah->misc_mode 0x%x\n",
  881. ah->misc_mode);
  882. if (!chan)
  883. return;
  884. if (ah->misc_mode != 0)
  885. REG_SET_BIT(ah, AR_PCU_MISC, ah->misc_mode);
  886. if (IS_CHAN_A_FAST_CLOCK(ah, chan))
  887. rx_lat = 41;
  888. else
  889. rx_lat = 37;
  890. tx_lat = 54;
  891. if (IS_CHAN_5GHZ(chan))
  892. sifstime = 16;
  893. else
  894. sifstime = 10;
  895. if (IS_CHAN_HALF_RATE(chan)) {
  896. eifs = 175;
  897. rx_lat *= 2;
  898. tx_lat *= 2;
  899. if (IS_CHAN_A_FAST_CLOCK(ah, chan))
  900. tx_lat += 11;
  901. sifstime *= 2;
  902. ack_offset = 16;
  903. slottime = 13;
  904. } else if (IS_CHAN_QUARTER_RATE(chan)) {
  905. eifs = 340;
  906. rx_lat = (rx_lat * 4) - 1;
  907. tx_lat *= 4;
  908. if (IS_CHAN_A_FAST_CLOCK(ah, chan))
  909. tx_lat += 22;
  910. sifstime *= 4;
  911. ack_offset = 32;
  912. slottime = 21;
  913. } else {
  914. if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
  915. eifs = AR_D_GBL_IFS_EIFS_ASYNC_FIFO;
  916. reg = AR_USEC_ASYNC_FIFO;
  917. } else {
  918. eifs = REG_READ(ah, AR_D_GBL_IFS_EIFS)/
  919. common->clockrate;
  920. reg = REG_READ(ah, AR_USEC);
  921. }
  922. rx_lat = MS(reg, AR_USEC_RX_LAT);
  923. tx_lat = MS(reg, AR_USEC_TX_LAT);
  924. slottime = ah->slottime;
  925. }
  926. /* As defined by IEEE 802.11-2007 17.3.8.6 */
  927. slottime += 3 * ah->coverage_class;
  928. acktimeout = slottime + sifstime + ack_offset;
  929. ctstimeout = acktimeout;
  930. /*
  931. * Workaround for early ACK timeouts, add an offset to match the
  932. * initval's 64us ack timeout value. Use 48us for the CTS timeout.
  933. * This was initially only meant to work around an issue with delayed
  934. * BA frames in some implementations, but it has been found to fix ACK
  935. * timeout issues in other cases as well.
  936. */
  937. if (conf->chandef.chan &&
  938. conf->chandef.chan->band == IEEE80211_BAND_2GHZ &&
  939. !IS_CHAN_HALF_RATE(chan) && !IS_CHAN_QUARTER_RATE(chan)) {
  940. acktimeout += 64 - sifstime - ah->slottime;
  941. ctstimeout += 48 - sifstime - ah->slottime;
  942. }
  943. ath9k_hw_set_sifs_time(ah, sifstime);
  944. ath9k_hw_setslottime(ah, slottime);
  945. ath9k_hw_set_ack_timeout(ah, acktimeout);
  946. ath9k_hw_set_cts_timeout(ah, ctstimeout);
  947. if (ah->globaltxtimeout != (u32) -1)
  948. ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
  949. REG_WRITE(ah, AR_D_GBL_IFS_EIFS, ath9k_hw_mac_to_clks(ah, eifs));
  950. REG_RMW(ah, AR_USEC,
  951. (common->clockrate - 1) |
  952. SM(rx_lat, AR_USEC_RX_LAT) |
  953. SM(tx_lat, AR_USEC_TX_LAT),
  954. AR_USEC_TX_LAT | AR_USEC_RX_LAT | AR_USEC_USEC);
  955. }
  956. EXPORT_SYMBOL(ath9k_hw_init_global_settings);
  957. void ath9k_hw_deinit(struct ath_hw *ah)
  958. {
  959. struct ath_common *common = ath9k_hw_common(ah);
  960. if (common->state < ATH_HW_INITIALIZED)
  961. return;
  962. ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
  963. }
  964. EXPORT_SYMBOL(ath9k_hw_deinit);
  965. /*******/
  966. /* INI */
  967. /*******/
  968. u32 ath9k_regd_get_ctl(struct ath_regulatory *reg, struct ath9k_channel *chan)
  969. {
  970. u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
  971. if (IS_CHAN_B(chan))
  972. ctl |= CTL_11B;
  973. else if (IS_CHAN_G(chan))
  974. ctl |= CTL_11G;
  975. else
  976. ctl |= CTL_11A;
  977. return ctl;
  978. }
  979. /****************************************/
  980. /* Reset and Channel Switching Routines */
  981. /****************************************/
  982. static inline void ath9k_hw_set_dma(struct ath_hw *ah)
  983. {
  984. struct ath_common *common = ath9k_hw_common(ah);
  985. int txbuf_size;
  986. ENABLE_REGWRITE_BUFFER(ah);
  987. /*
  988. * set AHB_MODE not to do cacheline prefetches
  989. */
  990. if (!AR_SREV_9300_20_OR_LATER(ah))
  991. REG_SET_BIT(ah, AR_AHB_MODE, AR_AHB_PREFETCH_RD_EN);
  992. /*
  993. * let mac dma reads be in 128 byte chunks
  994. */
  995. REG_RMW(ah, AR_TXCFG, AR_TXCFG_DMASZ_128B, AR_TXCFG_DMASZ_MASK);
  996. REGWRITE_BUFFER_FLUSH(ah);
  997. /*
  998. * Restore TX Trigger Level to its pre-reset value.
  999. * The initial value depends on whether aggregation is enabled, and is
  1000. * adjusted whenever underruns are detected.
  1001. */
  1002. if (!AR_SREV_9300_20_OR_LATER(ah))
  1003. REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
  1004. ENABLE_REGWRITE_BUFFER(ah);
  1005. /*
  1006. * let mac dma writes be in 128 byte chunks
  1007. */
  1008. REG_RMW(ah, AR_RXCFG, AR_RXCFG_DMASZ_128B, AR_RXCFG_DMASZ_MASK);
  1009. /*
  1010. * Setup receive FIFO threshold to hold off TX activities
  1011. */
  1012. REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
  1013. if (AR_SREV_9300_20_OR_LATER(ah)) {
  1014. REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_HP, 0x1);
  1015. REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_LP, 0x1);
  1016. ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
  1017. ah->caps.rx_status_len);
  1018. }
  1019. /*
  1020. * reduce the number of usable entries in PCU TXBUF to avoid
  1021. * wrap around issues.
  1022. */
  1023. if (AR_SREV_9285(ah)) {
  1024. /* For AR9285 the number of Fifos are reduced to half.
  1025. * So set the usable tx buf size also to half to
  1026. * avoid data/delimiter underruns
  1027. */
  1028. txbuf_size = AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE;
  1029. } else if (AR_SREV_9340_13_OR_LATER(ah)) {
  1030. /* Uses fewer entries for AR934x v1.3+ to prevent rx overruns */
  1031. txbuf_size = AR_9340_PCU_TXBUF_CTRL_USABLE_SIZE;
  1032. } else {
  1033. txbuf_size = AR_PCU_TXBUF_CTRL_USABLE_SIZE;
  1034. }
  1035. if (!AR_SREV_9271(ah))
  1036. REG_WRITE(ah, AR_PCU_TXBUF_CTRL, txbuf_size);
  1037. REGWRITE_BUFFER_FLUSH(ah);
  1038. if (AR_SREV_9300_20_OR_LATER(ah))
  1039. ath9k_hw_reset_txstatus_ring(ah);
  1040. }
  1041. static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
  1042. {
  1043. u32 mask = AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC;
  1044. u32 set = AR_STA_ID1_KSRCH_MODE;
  1045. switch (opmode) {
  1046. case NL80211_IFTYPE_ADHOC:
  1047. set |= AR_STA_ID1_ADHOC;
  1048. REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
  1049. break;
  1050. case NL80211_IFTYPE_MESH_POINT:
  1051. case NL80211_IFTYPE_AP:
  1052. set |= AR_STA_ID1_STA_AP;
  1053. /* fall through */
  1054. case NL80211_IFTYPE_STATION:
  1055. REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
  1056. break;
  1057. default:
  1058. if (!ah->is_monitoring)
  1059. set = 0;
  1060. break;
  1061. }
  1062. REG_RMW(ah, AR_STA_ID1, set, mask);
  1063. }
  1064. void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah, u32 coef_scaled,
  1065. u32 *coef_mantissa, u32 *coef_exponent)
  1066. {
  1067. u32 coef_exp, coef_man;
  1068. for (coef_exp = 31; coef_exp > 0; coef_exp--)
  1069. if ((coef_scaled >> coef_exp) & 0x1)
  1070. break;
  1071. coef_exp = 14 - (coef_exp - COEF_SCALE_S);
  1072. coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
  1073. *coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
  1074. *coef_exponent = coef_exp - 16;
  1075. }
  1076. static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
  1077. {
  1078. u32 rst_flags;
  1079. u32 tmpReg;
  1080. if (AR_SREV_9100(ah)) {
  1081. REG_RMW_FIELD(ah, AR_RTC_DERIVED_CLK,
  1082. AR_RTC_DERIVED_CLK_PERIOD, 1);
  1083. (void)REG_READ(ah, AR_RTC_DERIVED_CLK);
  1084. }
  1085. ENABLE_REGWRITE_BUFFER(ah);
  1086. if (AR_SREV_9300_20_OR_LATER(ah)) {
  1087. REG_WRITE(ah, AR_WA, ah->WARegVal);
  1088. udelay(10);
  1089. }
  1090. REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
  1091. AR_RTC_FORCE_WAKE_ON_INT);
  1092. if (AR_SREV_9100(ah)) {
  1093. rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
  1094. AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
  1095. } else {
  1096. tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
  1097. if (AR_SREV_9340(ah))
  1098. tmpReg &= AR9340_INTR_SYNC_LOCAL_TIMEOUT;
  1099. else
  1100. tmpReg &= AR_INTR_SYNC_LOCAL_TIMEOUT |
  1101. AR_INTR_SYNC_RADM_CPL_TIMEOUT;
  1102. if (tmpReg) {
  1103. u32 val;
  1104. REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
  1105. val = AR_RC_HOSTIF;
  1106. if (!AR_SREV_9300_20_OR_LATER(ah))
  1107. val |= AR_RC_AHB;
  1108. REG_WRITE(ah, AR_RC, val);
  1109. } else if (!AR_SREV_9300_20_OR_LATER(ah))
  1110. REG_WRITE(ah, AR_RC, AR_RC_AHB);
  1111. rst_flags = AR_RTC_RC_MAC_WARM;
  1112. if (type == ATH9K_RESET_COLD)
  1113. rst_flags |= AR_RTC_RC_MAC_COLD;
  1114. }
  1115. if (AR_SREV_9330(ah)) {
  1116. int npend = 0;
  1117. int i;
  1118. /* AR9330 WAR:
  1119. * call external reset function to reset WMAC if:
  1120. * - doing a cold reset
  1121. * - we have pending frames in the TX queues
  1122. */
  1123. for (i = 0; i < AR_NUM_QCU; i++) {
  1124. npend = ath9k_hw_numtxpending(ah, i);
  1125. if (npend)
  1126. break;
  1127. }
  1128. if (ah->external_reset &&
  1129. (npend || type == ATH9K_RESET_COLD)) {
  1130. int reset_err = 0;
  1131. ath_dbg(ath9k_hw_common(ah), RESET,
  1132. "reset MAC via external reset\n");
  1133. reset_err = ah->external_reset();
  1134. if (reset_err) {
  1135. ath_err(ath9k_hw_common(ah),
  1136. "External reset failed, err=%d\n",
  1137. reset_err);
  1138. return false;
  1139. }
  1140. REG_WRITE(ah, AR_RTC_RESET, 1);
  1141. }
  1142. }
  1143. if (ath9k_hw_mci_is_enabled(ah))
  1144. ar9003_mci_check_gpm_offset(ah);
  1145. REG_WRITE(ah, AR_RTC_RC, rst_flags);
  1146. REGWRITE_BUFFER_FLUSH(ah);
  1147. udelay(50);
  1148. REG_WRITE(ah, AR_RTC_RC, 0);
  1149. if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
  1150. ath_dbg(ath9k_hw_common(ah), RESET, "RTC stuck in MAC reset\n");
  1151. return false;
  1152. }
  1153. if (!AR_SREV_9100(ah))
  1154. REG_WRITE(ah, AR_RC, 0);
  1155. if (AR_SREV_9100(ah))
  1156. udelay(50);
  1157. return true;
  1158. }
  1159. static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
  1160. {
  1161. ENABLE_REGWRITE_BUFFER(ah);
  1162. if (AR_SREV_9300_20_OR_LATER(ah)) {
  1163. REG_WRITE(ah, AR_WA, ah->WARegVal);
  1164. udelay(10);
  1165. }
  1166. REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
  1167. AR_RTC_FORCE_WAKE_ON_INT);
  1168. if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
  1169. REG_WRITE(ah, AR_RC, AR_RC_AHB);
  1170. REG_WRITE(ah, AR_RTC_RESET, 0);
  1171. REGWRITE_BUFFER_FLUSH(ah);
  1172. if (!AR_SREV_9300_20_OR_LATER(ah))
  1173. udelay(2);
  1174. if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
  1175. REG_WRITE(ah, AR_RC, 0);
  1176. REG_WRITE(ah, AR_RTC_RESET, 1);
  1177. if (!ath9k_hw_wait(ah,
  1178. AR_RTC_STATUS,
  1179. AR_RTC_STATUS_M,
  1180. AR_RTC_STATUS_ON,
  1181. AH_WAIT_TIMEOUT)) {
  1182. ath_dbg(ath9k_hw_common(ah), RESET, "RTC not waking up\n");
  1183. return false;
  1184. }
  1185. return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
  1186. }
  1187. static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
  1188. {
  1189. bool ret = false;
  1190. if (AR_SREV_9300_20_OR_LATER(ah)) {
  1191. REG_WRITE(ah, AR_WA, ah->WARegVal);
  1192. udelay(10);
  1193. }
  1194. REG_WRITE(ah, AR_RTC_FORCE_WAKE,
  1195. AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
  1196. if (!ah->reset_power_on)
  1197. type = ATH9K_RESET_POWER_ON;
  1198. switch (type) {
  1199. case ATH9K_RESET_POWER_ON:
  1200. ret = ath9k_hw_set_reset_power_on(ah);
  1201. if (ret)
  1202. ah->reset_power_on = true;
  1203. break;
  1204. case ATH9K_RESET_WARM:
  1205. case ATH9K_RESET_COLD:
  1206. ret = ath9k_hw_set_reset(ah, type);
  1207. break;
  1208. default:
  1209. break;
  1210. }
  1211. return ret;
  1212. }
  1213. static bool ath9k_hw_chip_reset(struct ath_hw *ah,
  1214. struct ath9k_channel *chan)
  1215. {
  1216. int reset_type = ATH9K_RESET_WARM;
  1217. if (AR_SREV_9280(ah)) {
  1218. if (ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL))
  1219. reset_type = ATH9K_RESET_POWER_ON;
  1220. else
  1221. reset_type = ATH9K_RESET_COLD;
  1222. } else if (ah->chip_fullsleep || REG_READ(ah, AR_Q_TXE) ||
  1223. (REG_READ(ah, AR_CR) & AR_CR_RXE))
  1224. reset_type = ATH9K_RESET_COLD;
  1225. if (!ath9k_hw_set_reset_reg(ah, reset_type))
  1226. return false;
  1227. if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
  1228. return false;
  1229. ah->chip_fullsleep = false;
  1230. if (AR_SREV_9330(ah))
  1231. ar9003_hw_internal_regulator_apply(ah);
  1232. ath9k_hw_init_pll(ah, chan);
  1233. ath9k_hw_set_rfmode(ah, chan);
  1234. return true;
  1235. }
  1236. static bool ath9k_hw_channel_change(struct ath_hw *ah,
  1237. struct ath9k_channel *chan)
  1238. {
  1239. struct ath_common *common = ath9k_hw_common(ah);
  1240. u32 qnum;
  1241. int r;
  1242. bool edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA);
  1243. bool band_switch, mode_diff;
  1244. u8 ini_reloaded;
  1245. band_switch = (chan->channelFlags & (CHANNEL_2GHZ | CHANNEL_5GHZ)) !=
  1246. (ah->curchan->channelFlags & (CHANNEL_2GHZ |
  1247. CHANNEL_5GHZ));
  1248. mode_diff = (chan->chanmode != ah->curchan->chanmode);
  1249. for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
  1250. if (ath9k_hw_numtxpending(ah, qnum)) {
  1251. ath_dbg(common, QUEUE,
  1252. "Transmit frames pending on queue %d\n", qnum);
  1253. return false;
  1254. }
  1255. }
  1256. if (!ath9k_hw_rfbus_req(ah)) {
  1257. ath_err(common, "Could not kill baseband RX\n");
  1258. return false;
  1259. }
  1260. if (edma && (band_switch || mode_diff)) {
  1261. ath9k_hw_mark_phy_inactive(ah);
  1262. udelay(5);
  1263. ath9k_hw_init_pll(ah, NULL);
  1264. if (ath9k_hw_fast_chan_change(ah, chan, &ini_reloaded)) {
  1265. ath_err(common, "Failed to do fast channel change\n");
  1266. return false;
  1267. }
  1268. }
  1269. ath9k_hw_set_channel_regs(ah, chan);
  1270. r = ath9k_hw_rf_set_freq(ah, chan);
  1271. if (r) {
  1272. ath_err(common, "Failed to set channel\n");
  1273. return false;
  1274. }
  1275. ath9k_hw_set_clockrate(ah);
  1276. ath9k_hw_apply_txpower(ah, chan, false);
  1277. ath9k_hw_rfbus_done(ah);
  1278. if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
  1279. ath9k_hw_set_delta_slope(ah, chan);
  1280. ath9k_hw_spur_mitigate_freq(ah, chan);
  1281. if (edma && (band_switch || mode_diff)) {
  1282. ah->ah_flags |= AH_FASTCC;
  1283. if (band_switch || ini_reloaded)
  1284. ah->eep_ops->set_board_values(ah, chan);
  1285. ath9k_hw_init_bb(ah, chan);
  1286. if (band_switch || ini_reloaded)
  1287. ath9k_hw_init_cal(ah, chan);
  1288. ah->ah_flags &= ~AH_FASTCC;
  1289. }
  1290. return true;
  1291. }
  1292. static void ath9k_hw_apply_gpio_override(struct ath_hw *ah)
  1293. {
  1294. u32 gpio_mask = ah->gpio_mask;
  1295. int i;
  1296. for (i = 0; gpio_mask; i++, gpio_mask >>= 1) {
  1297. if (!(gpio_mask & 1))
  1298. continue;
  1299. ath9k_hw_cfg_output(ah, i, AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
  1300. ath9k_hw_set_gpio(ah, i, !!(ah->gpio_val & BIT(i)));
  1301. }
  1302. }
  1303. static bool ath9k_hw_check_dcs(u32 dma_dbg, u32 num_dcu_states,
  1304. int *hang_state, int *hang_pos)
  1305. {
  1306. static u32 dcu_chain_state[] = {5, 6, 9}; /* DCU chain stuck states */
  1307. u32 chain_state, dcs_pos, i;
  1308. for (dcs_pos = 0; dcs_pos < num_dcu_states; dcs_pos++) {
  1309. chain_state = (dma_dbg >> (5 * dcs_pos)) & 0x1f;
  1310. for (i = 0; i < 3; i++) {
  1311. if (chain_state == dcu_chain_state[i]) {
  1312. *hang_state = chain_state;
  1313. *hang_pos = dcs_pos;
  1314. return true;
  1315. }
  1316. }
  1317. }
  1318. return false;
  1319. }
  1320. #define DCU_COMPLETE_STATE 1
  1321. #define DCU_COMPLETE_STATE_MASK 0x3
  1322. #define NUM_STATUS_READS 50
  1323. static bool ath9k_hw_detect_mac_hang(struct ath_hw *ah)
  1324. {
  1325. u32 chain_state, comp_state, dcs_reg = AR_DMADBG_4;
  1326. u32 i, hang_pos, hang_state, num_state = 6;
  1327. comp_state = REG_READ(ah, AR_DMADBG_6);
  1328. if ((comp_state & DCU_COMPLETE_STATE_MASK) != DCU_COMPLETE_STATE) {
  1329. ath_dbg(ath9k_hw_common(ah), RESET,
  1330. "MAC Hang signature not found at DCU complete\n");
  1331. return false;
  1332. }
  1333. chain_state = REG_READ(ah, dcs_reg);
  1334. if (ath9k_hw_check_dcs(chain_state, num_state, &hang_state, &hang_pos))
  1335. goto hang_check_iter;
  1336. dcs_reg = AR_DMADBG_5;
  1337. num_state = 4;
  1338. chain_state = REG_READ(ah, dcs_reg);
  1339. if (ath9k_hw_check_dcs(chain_state, num_state, &hang_state, &hang_pos))
  1340. goto hang_check_iter;
  1341. ath_dbg(ath9k_hw_common(ah), RESET,
  1342. "MAC Hang signature 1 not found\n");
  1343. return false;
  1344. hang_check_iter:
  1345. ath_dbg(ath9k_hw_common(ah), RESET,
  1346. "DCU registers: chain %08x complete %08x Hang: state %d pos %d\n",
  1347. chain_state, comp_state, hang_state, hang_pos);
  1348. for (i = 0; i < NUM_STATUS_READS; i++) {
  1349. chain_state = REG_READ(ah, dcs_reg);
  1350. chain_state = (chain_state >> (5 * hang_pos)) & 0x1f;
  1351. comp_state = REG_READ(ah, AR_DMADBG_6);
  1352. if (((comp_state & DCU_COMPLETE_STATE_MASK) !=
  1353. DCU_COMPLETE_STATE) ||
  1354. (chain_state != hang_state))
  1355. return false;
  1356. }
  1357. ath_dbg(ath9k_hw_common(ah), RESET, "MAC Hang signature 1 found\n");
  1358. return true;
  1359. }
  1360. bool ath9k_hw_check_alive(struct ath_hw *ah)
  1361. {
  1362. int count = 50;
  1363. u32 reg;
  1364. if (AR_SREV_9300(ah))
  1365. return !ath9k_hw_detect_mac_hang(ah);
  1366. if (AR_SREV_9285_12_OR_LATER(ah))
  1367. return true;
  1368. do {
  1369. reg = REG_READ(ah, AR_OBS_BUS_1);
  1370. if ((reg & 0x7E7FFFEF) == 0x00702400)
  1371. continue;
  1372. switch (reg & 0x7E000B00) {
  1373. case 0x1E000000:
  1374. case 0x52000B00:
  1375. case 0x18000B00:
  1376. continue;
  1377. default:
  1378. return true;
  1379. }
  1380. } while (count-- > 0);
  1381. return false;
  1382. }
  1383. EXPORT_SYMBOL(ath9k_hw_check_alive);
  1384. static void ath9k_hw_init_mfp(struct ath_hw *ah)
  1385. {
  1386. /* Setup MFP options for CCMP */
  1387. if (AR_SREV_9280_20_OR_LATER(ah)) {
  1388. /* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
  1389. * frames when constructing CCMP AAD. */
  1390. REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
  1391. 0xc7ff);
  1392. ah->sw_mgmt_crypto = false;
  1393. } else if (AR_SREV_9160_10_OR_LATER(ah)) {
  1394. /* Disable hardware crypto for management frames */
  1395. REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
  1396. AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
  1397. REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
  1398. AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
  1399. ah->sw_mgmt_crypto = true;
  1400. } else {
  1401. ah->sw_mgmt_crypto = true;
  1402. }
  1403. }
  1404. static void ath9k_hw_reset_opmode(struct ath_hw *ah,
  1405. u32 macStaId1, u32 saveDefAntenna)
  1406. {
  1407. struct ath_common *common = ath9k_hw_common(ah);
  1408. ENABLE_REGWRITE_BUFFER(ah);
  1409. REG_RMW(ah, AR_STA_ID1, macStaId1
  1410. | AR_STA_ID1_RTS_USE_DEF
  1411. | (ah->config.ack_6mb ? AR_STA_ID1_ACKCTS_6MB : 0)
  1412. | ah->sta_id1_defaults,
  1413. ~AR_STA_ID1_SADH_MASK);
  1414. ath_hw_setbssidmask(common);
  1415. REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
  1416. ath9k_hw_write_associd(ah);
  1417. REG_WRITE(ah, AR_ISR, ~0);
  1418. REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
  1419. REGWRITE_BUFFER_FLUSH(ah);
  1420. ath9k_hw_set_operating_mode(ah, ah->opmode);
  1421. }
  1422. static void ath9k_hw_init_queues(struct ath_hw *ah)
  1423. {
  1424. int i;
  1425. ENABLE_REGWRITE_BUFFER(ah);
  1426. for (i = 0; i < AR_NUM_DCU; i++)
  1427. REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
  1428. REGWRITE_BUFFER_FLUSH(ah);
  1429. ah->intr_txqs = 0;
  1430. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
  1431. ath9k_hw_resettxqueue(ah, i);
  1432. }
  1433. /*
  1434. * For big endian systems turn on swapping for descriptors
  1435. */
  1436. static void ath9k_hw_init_desc(struct ath_hw *ah)
  1437. {
  1438. struct ath_common *common = ath9k_hw_common(ah);
  1439. if (AR_SREV_9100(ah)) {
  1440. u32 mask;
  1441. mask = REG_READ(ah, AR_CFG);
  1442. if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
  1443. ath_dbg(common, RESET, "CFG Byte Swap Set 0x%x\n",
  1444. mask);
  1445. } else {
  1446. mask = INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
  1447. REG_WRITE(ah, AR_CFG, mask);
  1448. ath_dbg(common, RESET, "Setting CFG 0x%x\n",
  1449. REG_READ(ah, AR_CFG));
  1450. }
  1451. } else {
  1452. if (common->bus_ops->ath_bus_type == ATH_USB) {
  1453. /* Configure AR9271 target WLAN */
  1454. if (AR_SREV_9271(ah))
  1455. REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
  1456. else
  1457. REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
  1458. }
  1459. #ifdef __BIG_ENDIAN
  1460. else if (AR_SREV_9330(ah) || AR_SREV_9340(ah) ||
  1461. AR_SREV_9550(ah))
  1462. REG_RMW(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB, 0);
  1463. else
  1464. REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
  1465. #endif
  1466. }
  1467. }
  1468. /*
  1469. * Fast channel change:
  1470. * (Change synthesizer based on channel freq without resetting chip)
  1471. *
  1472. * Don't do FCC when
  1473. * - Flag is not set
  1474. * - Chip is just coming out of full sleep
  1475. * - Channel to be set is same as current channel
  1476. * - Channel flags are different, (eg.,moving from 2GHz to 5GHz channel)
  1477. */
  1478. static int ath9k_hw_do_fastcc(struct ath_hw *ah, struct ath9k_channel *chan)
  1479. {
  1480. struct ath_common *common = ath9k_hw_common(ah);
  1481. int ret;
  1482. if (AR_SREV_9280(ah) && common->bus_ops->ath_bus_type == ATH_PCI)
  1483. goto fail;
  1484. if (ah->chip_fullsleep)
  1485. goto fail;
  1486. if (!ah->curchan)
  1487. goto fail;
  1488. if (chan->channel == ah->curchan->channel)
  1489. goto fail;
  1490. if ((ah->curchan->channelFlags | chan->channelFlags) &
  1491. (CHANNEL_HALF | CHANNEL_QUARTER))
  1492. goto fail;
  1493. if ((chan->channelFlags & CHANNEL_ALL) !=
  1494. (ah->curchan->channelFlags & CHANNEL_ALL))
  1495. goto fail;
  1496. if (!ath9k_hw_check_alive(ah))
  1497. goto fail;
  1498. /*
  1499. * For AR9462, make sure that calibration data for
  1500. * re-using are present.
  1501. */
  1502. if (AR_SREV_9462(ah) && (ah->caldata &&
  1503. (!ah->caldata->done_txiqcal_once ||
  1504. !ah->caldata->done_txclcal_once ||
  1505. !ah->caldata->rtt_done)))
  1506. goto fail;
  1507. ath_dbg(common, RESET, "FastChannelChange for %d -> %d\n",
  1508. ah->curchan->channel, chan->channel);
  1509. ret = ath9k_hw_channel_change(ah, chan);
  1510. if (!ret)
  1511. goto fail;
  1512. if (ath9k_hw_mci_is_enabled(ah))
  1513. ar9003_mci_2g5g_switch(ah, false);
  1514. ath9k_hw_loadnf(ah, ah->curchan);
  1515. ath9k_hw_start_nfcal(ah, true);
  1516. if (AR_SREV_9271(ah))
  1517. ar9002_hw_load_ani_reg(ah, chan);
  1518. return 0;
  1519. fail:
  1520. return -EINVAL;
  1521. }
  1522. int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
  1523. struct ath9k_hw_cal_data *caldata, bool fastcc)
  1524. {
  1525. struct ath_common *common = ath9k_hw_common(ah);
  1526. u32 saveLedState;
  1527. u32 saveDefAntenna;
  1528. u32 macStaId1;
  1529. u64 tsf = 0;
  1530. int r;
  1531. bool start_mci_reset = false;
  1532. bool save_fullsleep = ah->chip_fullsleep;
  1533. if (ath9k_hw_mci_is_enabled(ah)) {
  1534. start_mci_reset = ar9003_mci_start_reset(ah, chan);
  1535. if (start_mci_reset)
  1536. return 0;
  1537. }
  1538. if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
  1539. return -EIO;
  1540. if (ah->curchan && !ah->chip_fullsleep)
  1541. ath9k_hw_getnf(ah, ah->curchan);
  1542. ah->caldata = caldata;
  1543. if (caldata && (chan->channel != caldata->channel ||
  1544. chan->channelFlags != caldata->channelFlags ||
  1545. chan->chanmode != caldata->chanmode)) {
  1546. /* Operating channel changed, reset channel calibration data */
  1547. memset(caldata, 0, sizeof(*caldata));
  1548. ath9k_init_nfcal_hist_buffer(ah, chan);
  1549. } else if (caldata) {
  1550. caldata->paprd_packet_sent = false;
  1551. }
  1552. ah->noise = ath9k_hw_getchan_noise(ah, chan);
  1553. if (fastcc) {
  1554. r = ath9k_hw_do_fastcc(ah, chan);
  1555. if (!r)
  1556. return r;
  1557. }
  1558. if (ath9k_hw_mci_is_enabled(ah))
  1559. ar9003_mci_stop_bt(ah, save_fullsleep);
  1560. saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
  1561. if (saveDefAntenna == 0)
  1562. saveDefAntenna = 1;
  1563. macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
  1564. /* For chips on which RTC reset is done, save TSF before it gets cleared */
  1565. if (AR_SREV_9100(ah) ||
  1566. (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)))
  1567. tsf = ath9k_hw_gettsf64(ah);
  1568. saveLedState = REG_READ(ah, AR_CFG_LED) &
  1569. (AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
  1570. AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
  1571. ath9k_hw_mark_phy_inactive(ah);
  1572. ah->paprd_table_write_done = false;
  1573. /* Only required on the first reset */
  1574. if (AR_SREV_9271(ah) && ah->htc_reset_init) {
  1575. REG_WRITE(ah,
  1576. AR9271_RESET_POWER_DOWN_CONTROL,
  1577. AR9271_RADIO_RF_RST);
  1578. udelay(50);
  1579. }
  1580. if (!ath9k_hw_chip_reset(ah, chan)) {
  1581. ath_err(common, "Chip reset failed\n");
  1582. return -EINVAL;
  1583. }
  1584. /* Only required on the first reset */
  1585. if (AR_SREV_9271(ah) && ah->htc_reset_init) {
  1586. ah->htc_reset_init = false;
  1587. REG_WRITE(ah,
  1588. AR9271_RESET_POWER_DOWN_CONTROL,
  1589. AR9271_GATE_MAC_CTL);
  1590. udelay(50);
  1591. }
  1592. /* Restore TSF */
  1593. if (tsf)
  1594. ath9k_hw_settsf64(ah, tsf);
  1595. if (AR_SREV_9280_20_OR_LATER(ah))
  1596. REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
  1597. if (!AR_SREV_9300_20_OR_LATER(ah))
  1598. ar9002_hw_enable_async_fifo(ah);
  1599. r = ath9k_hw_process_ini(ah, chan);
  1600. if (r)
  1601. return r;
  1602. if (ath9k_hw_mci_is_enabled(ah))
  1603. ar9003_mci_reset(ah, false, IS_CHAN_2GHZ(chan), save_fullsleep);
  1604. /*
  1605. * Some AR91xx SoC devices frequently fail to accept TSF writes
  1606. * right after the chip reset. When that happens, write a new
  1607. * value after the initvals have been applied, with an offset
  1608. * based on measured time difference
  1609. */
  1610. if (AR_SREV_9100(ah) && (ath9k_hw_gettsf64(ah) < tsf)) {
  1611. tsf += 1500;
  1612. ath9k_hw_settsf64(ah, tsf);
  1613. }
  1614. ath9k_hw_init_mfp(ah);
  1615. if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
  1616. ath9k_hw_set_delta_slope(ah, chan);
  1617. ath9k_hw_spur_mitigate_freq(ah, chan);
  1618. ah->eep_ops->set_board_values(ah, chan);
  1619. ath9k_hw_reset_opmode(ah, macStaId1, saveDefAntenna);
  1620. r = ath9k_hw_rf_set_freq(ah, chan);
  1621. if (r)
  1622. return r;
  1623. ath9k_hw_set_clockrate(ah);
  1624. ath9k_hw_init_queues(ah);
  1625. ath9k_hw_init_interrupt_masks(ah, ah->opmode);
  1626. ath9k_hw_ani_cache_ini_regs(ah);
  1627. ath9k_hw_init_qos(ah);
  1628. if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
  1629. ath9k_hw_cfg_gpio_input(ah, ah->rfkill_gpio);
  1630. ath9k_hw_init_global_settings(ah);
  1631. if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
  1632. REG_SET_BIT(ah, AR_MAC_PCU_LOGIC_ANALYZER,
  1633. AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768);
  1634. REG_RMW_FIELD(ah, AR_AHB_MODE, AR_AHB_CUSTOM_BURST_EN,
  1635. AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL);
  1636. REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
  1637. AR_PCU_MISC_MODE2_ENABLE_AGGWEP);
  1638. }
  1639. REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PRESERVE_SEQNUM);
  1640. ath9k_hw_set_dma(ah);
  1641. if (!ath9k_hw_mci_is_enabled(ah))
  1642. REG_WRITE(ah, AR_OBS, 8);
  1643. if (ah->config.rx_intr_mitigation) {
  1644. REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500);
  1645. REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000);
  1646. }
  1647. if (ah->config.tx_intr_mitigation) {
  1648. REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_LAST, 300);
  1649. REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_FIRST, 750);
  1650. }
  1651. ath9k_hw_init_bb(ah, chan);
  1652. if (caldata) {
  1653. caldata->done_txiqcal_once = false;
  1654. caldata->done_txclcal_once = false;
  1655. }
  1656. if (!ath9k_hw_init_cal(ah, chan))
  1657. return -EIO;
  1658. if (ath9k_hw_mci_is_enabled(ah) && ar9003_mci_end_reset(ah, chan, caldata))
  1659. return -EIO;
  1660. ENABLE_REGWRITE_BUFFER(ah);
  1661. ath9k_hw_restore_chainmask(ah);
  1662. REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
  1663. REGWRITE_BUFFER_FLUSH(ah);
  1664. ath9k_hw_init_desc(ah);
  1665. if (ath9k_hw_btcoex_is_enabled(ah))
  1666. ath9k_hw_btcoex_enable(ah);
  1667. if (ath9k_hw_mci_is_enabled(ah))
  1668. ar9003_mci_check_bt(ah);
  1669. ath9k_hw_loadnf(ah, chan);
  1670. ath9k_hw_start_nfcal(ah, true);
  1671. if (AR_SREV_9300_20_OR_LATER(ah)) {
  1672. ar9003_hw_bb_watchdog_config(ah);
  1673. ar9003_hw_disable_phy_restart(ah);
  1674. }
  1675. ath9k_hw_apply_gpio_override(ah);
  1676. if (AR_SREV_9565(ah) && ah->shared_chain_lnadiv)
  1677. REG_SET_BIT(ah, AR_BTCOEX_WL_LNADIV, AR_BTCOEX_WL_LNADIV_FORCE_ON);
  1678. return 0;
  1679. }
  1680. EXPORT_SYMBOL(ath9k_hw_reset);
  1681. /******************************/
  1682. /* Power Management (Chipset) */
  1683. /******************************/
  1684. /*
  1685. * Notify Power Mgt is disabled in self-generated frames.
  1686. * If requested, force chip to sleep.
  1687. */
  1688. static void ath9k_set_power_sleep(struct ath_hw *ah)
  1689. {
  1690. REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
  1691. if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
  1692. REG_CLR_BIT(ah, AR_TIMER_MODE, 0xff);
  1693. REG_CLR_BIT(ah, AR_NDP2_TIMER_MODE, 0xff);
  1694. REG_CLR_BIT(ah, AR_SLP32_INC, 0xfffff);
  1695. /* xxx Required for WLAN only case ? */
  1696. REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_EN, 0);
  1697. udelay(100);
  1698. }
  1699. /*
  1700. * Clear the RTC force wake bit to allow the
  1701. * mac to go to sleep.
  1702. */
  1703. REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
  1704. if (ath9k_hw_mci_is_enabled(ah))
  1705. udelay(100);
  1706. if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
  1707. REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
  1708. /* Shutdown chip. Active low */
  1709. if (!AR_SREV_5416(ah) && !AR_SREV_9271(ah)) {
  1710. REG_CLR_BIT(ah, AR_RTC_RESET, AR_RTC_RESET_EN);
  1711. udelay(2);
  1712. }
  1713. /* Clear Bit 14 of AR_WA after putting chip into Full Sleep mode. */
  1714. if (AR_SREV_9300_20_OR_LATER(ah))
  1715. REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
  1716. }
  1717. /*
  1718. * Notify Power Management is enabled in self-generating
  1719. * frames. If request, set power mode of chip to
  1720. * auto/normal. Duration in units of 128us (1/8 TU).
  1721. */
  1722. static void ath9k_set_power_network_sleep(struct ath_hw *ah)
  1723. {
  1724. struct ath9k_hw_capabilities *pCap = &ah->caps;
  1725. REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
  1726. if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
  1727. /* Set WakeOnInterrupt bit; clear ForceWake bit */
  1728. REG_WRITE(ah, AR_RTC_FORCE_WAKE,
  1729. AR_RTC_FORCE_WAKE_ON_INT);
  1730. } else {
  1731. /* When chip goes into network sleep, it could be waken
  1732. * up by MCI_INT interrupt caused by BT's HW messages
  1733. * (LNA_xxx, CONT_xxx) which chould be in a very fast
  1734. * rate (~100us). This will cause chip to leave and
  1735. * re-enter network sleep mode frequently, which in
  1736. * consequence will have WLAN MCI HW to generate lots of
  1737. * SYS_WAKING and SYS_SLEEPING messages which will make
  1738. * BT CPU to busy to process.
  1739. */
  1740. if (ath9k_hw_mci_is_enabled(ah))
  1741. REG_CLR_BIT(ah, AR_MCI_INTERRUPT_RX_MSG_EN,
  1742. AR_MCI_INTERRUPT_RX_HW_MSG_MASK);
  1743. /*
  1744. * Clear the RTC force wake bit to allow the
  1745. * mac to go to sleep.
  1746. */
  1747. REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
  1748. if (ath9k_hw_mci_is_enabled(ah))
  1749. udelay(30);
  1750. }
  1751. /* Clear Bit 14 of AR_WA after putting chip into Net Sleep mode. */
  1752. if (AR_SREV_9300_20_OR_LATER(ah))
  1753. REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
  1754. }
  1755. static bool ath9k_hw_set_power_awake(struct ath_hw *ah)
  1756. {
  1757. u32 val;
  1758. int i;
  1759. /* Set Bits 14 and 17 of AR_WA before powering on the chip. */
  1760. if (AR_SREV_9300_20_OR_LATER(ah)) {
  1761. REG_WRITE(ah, AR_WA, ah->WARegVal);
  1762. udelay(10);
  1763. }
  1764. if ((REG_READ(ah, AR_RTC_STATUS) &
  1765. AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
  1766. if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
  1767. return false;
  1768. }
  1769. if (!AR_SREV_9300_20_OR_LATER(ah))
  1770. ath9k_hw_init_pll(ah, NULL);
  1771. }
  1772. if (AR_SREV_9100(ah))
  1773. REG_SET_BIT(ah, AR_RTC_RESET,
  1774. AR_RTC_RESET_EN);
  1775. REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
  1776. AR_RTC_FORCE_WAKE_EN);
  1777. udelay(50);
  1778. for (i = POWER_UP_TIME / 50; i > 0; i--) {
  1779. val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
  1780. if (val == AR_RTC_STATUS_ON)
  1781. break;
  1782. udelay(50);
  1783. REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
  1784. AR_RTC_FORCE_WAKE_EN);
  1785. }
  1786. if (i == 0) {
  1787. ath_err(ath9k_hw_common(ah),
  1788. "Failed to wakeup in %uus\n",
  1789. POWER_UP_TIME / 20);
  1790. return false;
  1791. }
  1792. if (ath9k_hw_mci_is_enabled(ah))
  1793. ar9003_mci_set_power_awake(ah);
  1794. REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
  1795. return true;
  1796. }
  1797. bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
  1798. {
  1799. struct ath_common *common = ath9k_hw_common(ah);
  1800. int status = true;
  1801. static const char *modes[] = {
  1802. "AWAKE",
  1803. "FULL-SLEEP",
  1804. "NETWORK SLEEP",
  1805. "UNDEFINED"
  1806. };
  1807. if (ah->power_mode == mode)
  1808. return status;
  1809. ath_dbg(common, RESET, "%s -> %s\n",
  1810. modes[ah->power_mode], modes[mode]);
  1811. switch (mode) {
  1812. case ATH9K_PM_AWAKE:
  1813. status = ath9k_hw_set_power_awake(ah);
  1814. break;
  1815. case ATH9K_PM_FULL_SLEEP:
  1816. if (ath9k_hw_mci_is_enabled(ah))
  1817. ar9003_mci_set_full_sleep(ah);
  1818. ath9k_set_power_sleep(ah);
  1819. ah->chip_fullsleep = true;
  1820. break;
  1821. case ATH9K_PM_NETWORK_SLEEP:
  1822. ath9k_set_power_network_sleep(ah);
  1823. break;
  1824. default:
  1825. ath_err(common, "Unknown power mode %u\n", mode);
  1826. return false;
  1827. }
  1828. ah->power_mode = mode;
  1829. /*
  1830. * XXX: If this warning never comes up after a while then
  1831. * simply keep the ATH_DBG_WARN_ON_ONCE() but make
  1832. * ath9k_hw_setpower() return type void.
  1833. */
  1834. if (!(ah->ah_flags & AH_UNPLUGGED))
  1835. ATH_DBG_WARN_ON_ONCE(!status);
  1836. return status;
  1837. }
  1838. EXPORT_SYMBOL(ath9k_hw_setpower);
  1839. /*******************/
  1840. /* Beacon Handling */
  1841. /*******************/
  1842. void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
  1843. {
  1844. int flags = 0;
  1845. ENABLE_REGWRITE_BUFFER(ah);
  1846. switch (ah->opmode) {
  1847. case NL80211_IFTYPE_ADHOC:
  1848. REG_SET_BIT(ah, AR_TXCFG,
  1849. AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
  1850. REG_WRITE(ah, AR_NEXT_NDP_TIMER, next_beacon +
  1851. TU_TO_USEC(ah->atim_window ? ah->atim_window : 1));
  1852. flags |= AR_NDP_TIMER_EN;
  1853. case NL80211_IFTYPE_MESH_POINT:
  1854. case NL80211_IFTYPE_AP:
  1855. REG_WRITE(ah, AR_NEXT_TBTT_TIMER, next_beacon);
  1856. REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, next_beacon -
  1857. TU_TO_USEC(ah->config.dma_beacon_response_time));
  1858. REG_WRITE(ah, AR_NEXT_SWBA, next_beacon -
  1859. TU_TO_USEC(ah->config.sw_beacon_response_time));
  1860. flags |=
  1861. AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
  1862. break;
  1863. default:
  1864. ath_dbg(ath9k_hw_common(ah), BEACON,
  1865. "%s: unsupported opmode: %d\n", __func__, ah->opmode);
  1866. return;
  1867. break;
  1868. }
  1869. REG_WRITE(ah, AR_BEACON_PERIOD, beacon_period);
  1870. REG_WRITE(ah, AR_DMA_BEACON_PERIOD, beacon_period);
  1871. REG_WRITE(ah, AR_SWBA_PERIOD, beacon_period);
  1872. REG_WRITE(ah, AR_NDP_PERIOD, beacon_period);
  1873. REGWRITE_BUFFER_FLUSH(ah);
  1874. REG_SET_BIT(ah, AR_TIMER_MODE, flags);
  1875. }
  1876. EXPORT_SYMBOL(ath9k_hw_beaconinit);
  1877. void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
  1878. const struct ath9k_beacon_state *bs)
  1879. {
  1880. u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
  1881. struct ath9k_hw_capabilities *pCap = &ah->caps;
  1882. struct ath_common *common = ath9k_hw_common(ah);
  1883. ENABLE_REGWRITE_BUFFER(ah);
  1884. REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(bs->bs_nexttbtt));
  1885. REG_WRITE(ah, AR_BEACON_PERIOD,
  1886. TU_TO_USEC(bs->bs_intval));
  1887. REG_WRITE(ah, AR_DMA_BEACON_PERIOD,
  1888. TU_TO_USEC(bs->bs_intval));
  1889. REGWRITE_BUFFER_FLUSH(ah);
  1890. REG_RMW_FIELD(ah, AR_RSSI_THR,
  1891. AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
  1892. beaconintval = bs->bs_intval;
  1893. if (bs->bs_sleepduration > beaconintval)
  1894. beaconintval = bs->bs_sleepduration;
  1895. dtimperiod = bs->bs_dtimperiod;
  1896. if (bs->bs_sleepduration > dtimperiod)
  1897. dtimperiod = bs->bs_sleepduration;
  1898. if (beaconintval == dtimperiod)
  1899. nextTbtt = bs->bs_nextdtim;
  1900. else
  1901. nextTbtt = bs->bs_nexttbtt;
  1902. ath_dbg(common, BEACON, "next DTIM %d\n", bs->bs_nextdtim);
  1903. ath_dbg(common, BEACON, "next beacon %d\n", nextTbtt);
  1904. ath_dbg(common, BEACON, "beacon period %d\n", beaconintval);
  1905. ath_dbg(common, BEACON, "DTIM period %d\n", dtimperiod);
  1906. ENABLE_REGWRITE_BUFFER(ah);
  1907. REG_WRITE(ah, AR_NEXT_DTIM,
  1908. TU_TO_USEC(bs->bs_nextdtim - SLEEP_SLOP));
  1909. REG_WRITE(ah, AR_NEXT_TIM, TU_TO_USEC(nextTbtt - SLEEP_SLOP));
  1910. REG_WRITE(ah, AR_SLEEP1,
  1911. SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
  1912. | AR_SLEEP1_ASSUME_DTIM);
  1913. if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
  1914. beacontimeout = (BEACON_TIMEOUT_VAL << 3);
  1915. else
  1916. beacontimeout = MIN_BEACON_TIMEOUT_VAL;
  1917. REG_WRITE(ah, AR_SLEEP2,
  1918. SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
  1919. REG_WRITE(ah, AR_TIM_PERIOD, TU_TO_USEC(beaconintval));
  1920. REG_WRITE(ah, AR_DTIM_PERIOD, TU_TO_USEC(dtimperiod));
  1921. REGWRITE_BUFFER_FLUSH(ah);
  1922. REG_SET_BIT(ah, AR_TIMER_MODE,
  1923. AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
  1924. AR_DTIM_TIMER_EN);
  1925. /* TSF Out of Range Threshold */
  1926. REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
  1927. }
  1928. EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers);
  1929. /*******************/
  1930. /* HW Capabilities */
  1931. /*******************/
  1932. static u8 fixup_chainmask(u8 chip_chainmask, u8 eeprom_chainmask)
  1933. {
  1934. eeprom_chainmask &= chip_chainmask;
  1935. if (eeprom_chainmask)
  1936. return eeprom_chainmask;
  1937. else
  1938. return chip_chainmask;
  1939. }
  1940. /**
  1941. * ath9k_hw_dfs_tested - checks if DFS has been tested with used chipset
  1942. * @ah: the atheros hardware data structure
  1943. *
  1944. * We enable DFS support upstream on chipsets which have passed a series
  1945. * of tests. The testing requirements are going to be documented. Desired
  1946. * test requirements are documented at:
  1947. *
  1948. * http://wireless.kernel.org/en/users/Drivers/ath9k/dfs
  1949. *
  1950. * Once a new chipset gets properly tested an individual commit can be used
  1951. * to document the testing for DFS for that chipset.
  1952. */
  1953. static bool ath9k_hw_dfs_tested(struct ath_hw *ah)
  1954. {
  1955. switch (ah->hw_version.macVersion) {
  1956. /* for temporary testing DFS with 9280 */
  1957. case AR_SREV_VERSION_9280:
  1958. /* AR9580 will likely be our first target to get testing on */
  1959. case AR_SREV_VERSION_9580:
  1960. return true;
  1961. default:
  1962. return false;
  1963. }
  1964. }
  1965. int ath9k_hw_fill_cap_info(struct ath_hw *ah)
  1966. {
  1967. struct ath9k_hw_capabilities *pCap = &ah->caps;
  1968. struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
  1969. struct ath_common *common = ath9k_hw_common(ah);
  1970. unsigned int chip_chainmask;
  1971. u16 eeval;
  1972. u8 ant_div_ctl1, tx_chainmask, rx_chainmask;
  1973. eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
  1974. regulatory->current_rd = eeval;
  1975. if (ah->opmode != NL80211_IFTYPE_AP &&
  1976. ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
  1977. if (regulatory->current_rd == 0x64 ||
  1978. regulatory->current_rd == 0x65)
  1979. regulatory->current_rd += 5;
  1980. else if (regulatory->current_rd == 0x41)
  1981. regulatory->current_rd = 0x43;
  1982. ath_dbg(common, REGULATORY, "regdomain mapped to 0x%x\n",
  1983. regulatory->current_rd);
  1984. }
  1985. eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
  1986. if ((eeval & (AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A)) == 0) {
  1987. ath_err(common,
  1988. "no band has been marked as supported in EEPROM\n");
  1989. return -EINVAL;
  1990. }
  1991. if (eeval & AR5416_OPFLAGS_11A)
  1992. pCap->hw_caps |= ATH9K_HW_CAP_5GHZ;
  1993. if (eeval & AR5416_OPFLAGS_11G)
  1994. pCap->hw_caps |= ATH9K_HW_CAP_2GHZ;
  1995. if (AR_SREV_9485(ah) ||
  1996. AR_SREV_9285(ah) ||
  1997. AR_SREV_9330(ah) ||
  1998. AR_SREV_9565(ah))
  1999. chip_chainmask = 1;
  2000. else if (AR_SREV_9462(ah))
  2001. chip_chainmask = 3;
  2002. else if (!AR_SREV_9280_20_OR_LATER(ah))
  2003. chip_chainmask = 7;
  2004. else if (!AR_SREV_9300_20_OR_LATER(ah) || AR_SREV_9340(ah))
  2005. chip_chainmask = 3;
  2006. else
  2007. chip_chainmask = 7;
  2008. pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
  2009. /*
  2010. * For AR9271 we will temporarilly uses the rx chainmax as read from
  2011. * the EEPROM.
  2012. */
  2013. if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
  2014. !(eeval & AR5416_OPFLAGS_11A) &&
  2015. !(AR_SREV_9271(ah)))
  2016. /* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
  2017. pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
  2018. else if (AR_SREV_9100(ah))
  2019. pCap->rx_chainmask = 0x7;
  2020. else
  2021. /* Use rx_chainmask from EEPROM. */
  2022. pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
  2023. pCap->tx_chainmask = fixup_chainmask(chip_chainmask, pCap->tx_chainmask);
  2024. pCap->rx_chainmask = fixup_chainmask(chip_chainmask, pCap->rx_chainmask);
  2025. ah->txchainmask = pCap->tx_chainmask;
  2026. ah->rxchainmask = pCap->rx_chainmask;
  2027. ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
  2028. /* enable key search for every frame in an aggregate */
  2029. if (AR_SREV_9300_20_OR_LATER(ah))
  2030. ah->misc_mode |= AR_PCU_ALWAYS_PERFORM_KEYSEARCH;
  2031. common->crypt_caps |= ATH_CRYPT_CAP_CIPHER_AESCCM;
  2032. if (ah->hw_version.devid != AR2427_DEVID_PCIE)
  2033. pCap->hw_caps |= ATH9K_HW_CAP_HT;
  2034. else
  2035. pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
  2036. if (AR_SREV_9271(ah))
  2037. pCap->num_gpio_pins = AR9271_NUM_GPIO;
  2038. else if (AR_DEVID_7010(ah))
  2039. pCap->num_gpio_pins = AR7010_NUM_GPIO;
  2040. else if (AR_SREV_9300_20_OR_LATER(ah))
  2041. pCap->num_gpio_pins = AR9300_NUM_GPIO;
  2042. else if (AR_SREV_9287_11_OR_LATER(ah))
  2043. pCap->num_gpio_pins = AR9287_NUM_GPIO;
  2044. else if (AR_SREV_9285_12_OR_LATER(ah))
  2045. pCap->num_gpio_pins = AR9285_NUM_GPIO;
  2046. else if (AR_SREV_9280_20_OR_LATER(ah))
  2047. pCap->num_gpio_pins = AR928X_NUM_GPIO;
  2048. else
  2049. pCap->num_gpio_pins = AR_NUM_GPIO;
  2050. if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah))
  2051. pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
  2052. else
  2053. pCap->rts_aggr_limit = (8 * 1024);
  2054. #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
  2055. ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
  2056. if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
  2057. ah->rfkill_gpio =
  2058. MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
  2059. ah->rfkill_polarity =
  2060. MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
  2061. pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
  2062. }
  2063. #endif
  2064. if (AR_SREV_9271(ah) || AR_SREV_9300_20_OR_LATER(ah))
  2065. pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP;
  2066. else
  2067. pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
  2068. if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
  2069. pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
  2070. else
  2071. pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
  2072. if (AR_SREV_9300_20_OR_LATER(ah)) {
  2073. pCap->hw_caps |= ATH9K_HW_CAP_EDMA | ATH9K_HW_CAP_FASTCLOCK;
  2074. if (!AR_SREV_9330(ah) && !AR_SREV_9485(ah) && !AR_SREV_9565(ah))
  2075. pCap->hw_caps |= ATH9K_HW_CAP_LDPC;
  2076. pCap->rx_hp_qdepth = ATH9K_HW_RX_HP_QDEPTH;
  2077. pCap->rx_lp_qdepth = ATH9K_HW_RX_LP_QDEPTH;
  2078. pCap->rx_status_len = sizeof(struct ar9003_rxs);
  2079. pCap->tx_desc_len = sizeof(struct ar9003_txc);
  2080. pCap->txs_len = sizeof(struct ar9003_txs);
  2081. } else {
  2082. pCap->tx_desc_len = sizeof(struct ath_desc);
  2083. if (AR_SREV_9280_20(ah))
  2084. pCap->hw_caps |= ATH9K_HW_CAP_FASTCLOCK;
  2085. }
  2086. if (AR_SREV_9300_20_OR_LATER(ah))
  2087. pCap->hw_caps |= ATH9K_HW_CAP_RAC_SUPPORTED;
  2088. if (AR_SREV_9300_20_OR_LATER(ah))
  2089. ah->ent_mode = REG_READ(ah, AR_ENT_OTP);
  2090. if (AR_SREV_9287_11_OR_LATER(ah) || AR_SREV_9271(ah))
  2091. pCap->hw_caps |= ATH9K_HW_CAP_SGI_20;
  2092. if (AR_SREV_9285(ah))
  2093. if (ah->eep_ops->get_eeprom(ah, EEP_MODAL_VER) >= 3) {
  2094. ant_div_ctl1 =
  2095. ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
  2096. if ((ant_div_ctl1 & 0x1) && ((ant_div_ctl1 >> 3) & 0x1))
  2097. pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
  2098. }
  2099. if (AR_SREV_9300_20_OR_LATER(ah)) {
  2100. if (ah->eep_ops->get_eeprom(ah, EEP_CHAIN_MASK_REDUCE))
  2101. pCap->hw_caps |= ATH9K_HW_CAP_APM;
  2102. }
  2103. if (AR_SREV_9330(ah) || AR_SREV_9485(ah) || AR_SREV_9565(ah)) {
  2104. ant_div_ctl1 = ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
  2105. /*
  2106. * enable the diversity-combining algorithm only when
  2107. * both enable_lna_div and enable_fast_div are set
  2108. * Table for Diversity
  2109. * ant_div_alt_lnaconf bit 0-1
  2110. * ant_div_main_lnaconf bit 2-3
  2111. * ant_div_alt_gaintb bit 4
  2112. * ant_div_main_gaintb bit 5
  2113. * enable_ant_div_lnadiv bit 6
  2114. * enable_ant_fast_div bit 7
  2115. */
  2116. if ((ant_div_ctl1 >> 0x6) == 0x3)
  2117. pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
  2118. }
  2119. if (ath9k_hw_dfs_tested(ah))
  2120. pCap->hw_caps |= ATH9K_HW_CAP_DFS;
  2121. tx_chainmask = pCap->tx_chainmask;
  2122. rx_chainmask = pCap->rx_chainmask;
  2123. while (tx_chainmask || rx_chainmask) {
  2124. if (tx_chainmask & BIT(0))
  2125. pCap->max_txchains++;
  2126. if (rx_chainmask & BIT(0))
  2127. pCap->max_rxchains++;
  2128. tx_chainmask >>= 1;
  2129. rx_chainmask >>= 1;
  2130. }
  2131. if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
  2132. if (!(ah->ent_mode & AR_ENT_OTP_49GHZ_DISABLE))
  2133. pCap->hw_caps |= ATH9K_HW_CAP_MCI;
  2134. if (AR_SREV_9462_20_OR_LATER(ah))
  2135. pCap->hw_caps |= ATH9K_HW_CAP_RTT;
  2136. }
  2137. if (AR_SREV_9462(ah))
  2138. pCap->hw_caps |= ATH9K_HW_WOW_DEVICE_CAPABLE;
  2139. if (AR_SREV_9300_20_OR_LATER(ah) &&
  2140. ah->eep_ops->get_eeprom(ah, EEP_PAPRD))
  2141. pCap->hw_caps |= ATH9K_HW_CAP_PAPRD;
  2142. return 0;
  2143. }
  2144. /****************************/
  2145. /* GPIO / RFKILL / Antennae */
  2146. /****************************/
  2147. static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah,
  2148. u32 gpio, u32 type)
  2149. {
  2150. int addr;
  2151. u32 gpio_shift, tmp;
  2152. if (gpio > 11)
  2153. addr = AR_GPIO_OUTPUT_MUX3;
  2154. else if (gpio > 5)
  2155. addr = AR_GPIO_OUTPUT_MUX2;
  2156. else
  2157. addr = AR_GPIO_OUTPUT_MUX1;
  2158. gpio_shift = (gpio % 6) * 5;
  2159. if (AR_SREV_9280_20_OR_LATER(ah)
  2160. || (addr != AR_GPIO_OUTPUT_MUX1)) {
  2161. REG_RMW(ah, addr, (type << gpio_shift),
  2162. (0x1f << gpio_shift));
  2163. } else {
  2164. tmp = REG_READ(ah, addr);
  2165. tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
  2166. tmp &= ~(0x1f << gpio_shift);
  2167. tmp |= (type << gpio_shift);
  2168. REG_WRITE(ah, addr, tmp);
  2169. }
  2170. }
  2171. void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio)
  2172. {
  2173. u32 gpio_shift;
  2174. BUG_ON(gpio >= ah->caps.num_gpio_pins);
  2175. if (AR_DEVID_7010(ah)) {
  2176. gpio_shift = gpio;
  2177. REG_RMW(ah, AR7010_GPIO_OE,
  2178. (AR7010_GPIO_OE_AS_INPUT << gpio_shift),
  2179. (AR7010_GPIO_OE_MASK << gpio_shift));
  2180. return;
  2181. }
  2182. gpio_shift = gpio << 1;
  2183. REG_RMW(ah,
  2184. AR_GPIO_OE_OUT,
  2185. (AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
  2186. (AR_GPIO_OE_OUT_DRV << gpio_shift));
  2187. }
  2188. EXPORT_SYMBOL(ath9k_hw_cfg_gpio_input);
  2189. u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
  2190. {
  2191. #define MS_REG_READ(x, y) \
  2192. (MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
  2193. if (gpio >= ah->caps.num_gpio_pins)
  2194. return 0xffffffff;
  2195. if (AR_DEVID_7010(ah)) {
  2196. u32 val;
  2197. val = REG_READ(ah, AR7010_GPIO_IN);
  2198. return (MS(val, AR7010_GPIO_IN_VAL) & AR_GPIO_BIT(gpio)) == 0;
  2199. } else if (AR_SREV_9300_20_OR_LATER(ah))
  2200. return (MS(REG_READ(ah, AR_GPIO_IN), AR9300_GPIO_IN_VAL) &
  2201. AR_GPIO_BIT(gpio)) != 0;
  2202. else if (AR_SREV_9271(ah))
  2203. return MS_REG_READ(AR9271, gpio) != 0;
  2204. else if (AR_SREV_9287_11_OR_LATER(ah))
  2205. return MS_REG_READ(AR9287, gpio) != 0;
  2206. else if (AR_SREV_9285_12_OR_LATER(ah))
  2207. return MS_REG_READ(AR9285, gpio) != 0;
  2208. else if (AR_SREV_9280_20_OR_LATER(ah))
  2209. return MS_REG_READ(AR928X, gpio) != 0;
  2210. else
  2211. return MS_REG_READ(AR, gpio) != 0;
  2212. }
  2213. EXPORT_SYMBOL(ath9k_hw_gpio_get);
  2214. void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio,
  2215. u32 ah_signal_type)
  2216. {
  2217. u32 gpio_shift;
  2218. if (AR_DEVID_7010(ah)) {
  2219. gpio_shift = gpio;
  2220. REG_RMW(ah, AR7010_GPIO_OE,
  2221. (AR7010_GPIO_OE_AS_OUTPUT << gpio_shift),
  2222. (AR7010_GPIO_OE_MASK << gpio_shift));
  2223. return;
  2224. }
  2225. ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
  2226. gpio_shift = 2 * gpio;
  2227. REG_RMW(ah,
  2228. AR_GPIO_OE_OUT,
  2229. (AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
  2230. (AR_GPIO_OE_OUT_DRV << gpio_shift));
  2231. }
  2232. EXPORT_SYMBOL(ath9k_hw_cfg_output);
  2233. void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
  2234. {
  2235. if (AR_DEVID_7010(ah)) {
  2236. val = val ? 0 : 1;
  2237. REG_RMW(ah, AR7010_GPIO_OUT, ((val&1) << gpio),
  2238. AR_GPIO_BIT(gpio));
  2239. return;
  2240. }
  2241. if (AR_SREV_9271(ah))
  2242. val = ~val;
  2243. REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
  2244. AR_GPIO_BIT(gpio));
  2245. }
  2246. EXPORT_SYMBOL(ath9k_hw_set_gpio);
  2247. void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
  2248. {
  2249. REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
  2250. }
  2251. EXPORT_SYMBOL(ath9k_hw_setantenna);
  2252. /*********************/
  2253. /* General Operation */
  2254. /*********************/
  2255. u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
  2256. {
  2257. u32 bits = REG_READ(ah, AR_RX_FILTER);
  2258. u32 phybits = REG_READ(ah, AR_PHY_ERR);
  2259. if (phybits & AR_PHY_ERR_RADAR)
  2260. bits |= ATH9K_RX_FILTER_PHYRADAR;
  2261. if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
  2262. bits |= ATH9K_RX_FILTER_PHYERR;
  2263. return bits;
  2264. }
  2265. EXPORT_SYMBOL(ath9k_hw_getrxfilter);
  2266. void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
  2267. {
  2268. u32 phybits;
  2269. ENABLE_REGWRITE_BUFFER(ah);
  2270. if (AR_SREV_9462(ah) || AR_SREV_9565(ah))
  2271. bits |= ATH9K_RX_FILTER_CONTROL_WRAPPER;
  2272. REG_WRITE(ah, AR_RX_FILTER, bits);
  2273. phybits = 0;
  2274. if (bits & ATH9K_RX_FILTER_PHYRADAR)
  2275. phybits |= AR_PHY_ERR_RADAR;
  2276. if (bits & ATH9K_RX_FILTER_PHYERR)
  2277. phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
  2278. REG_WRITE(ah, AR_PHY_ERR, phybits);
  2279. if (phybits)
  2280. REG_SET_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
  2281. else
  2282. REG_CLR_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
  2283. REGWRITE_BUFFER_FLUSH(ah);
  2284. }
  2285. EXPORT_SYMBOL(ath9k_hw_setrxfilter);
  2286. bool ath9k_hw_phy_disable(struct ath_hw *ah)
  2287. {
  2288. if (ath9k_hw_mci_is_enabled(ah))
  2289. ar9003_mci_bt_gain_ctrl(ah);
  2290. if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
  2291. return false;
  2292. ath9k_hw_init_pll(ah, NULL);
  2293. ah->htc_reset_init = true;
  2294. return true;
  2295. }
  2296. EXPORT_SYMBOL(ath9k_hw_phy_disable);
  2297. bool ath9k_hw_disable(struct ath_hw *ah)
  2298. {
  2299. if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
  2300. return false;
  2301. if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD))
  2302. return false;
  2303. ath9k_hw_init_pll(ah, NULL);
  2304. return true;
  2305. }
  2306. EXPORT_SYMBOL(ath9k_hw_disable);
  2307. static int get_antenna_gain(struct ath_hw *ah, struct ath9k_channel *chan)
  2308. {
  2309. enum eeprom_param gain_param;
  2310. if (IS_CHAN_2GHZ(chan))
  2311. gain_param = EEP_ANTENNA_GAIN_2G;
  2312. else
  2313. gain_param = EEP_ANTENNA_GAIN_5G;
  2314. return ah->eep_ops->get_eeprom(ah, gain_param);
  2315. }
  2316. void ath9k_hw_apply_txpower(struct ath_hw *ah, struct ath9k_channel *chan,
  2317. bool test)
  2318. {
  2319. struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
  2320. struct ieee80211_channel *channel;
  2321. int chan_pwr, new_pwr, max_gain;
  2322. int ant_gain, ant_reduction = 0;
  2323. if (!chan)
  2324. return;
  2325. channel = chan->chan;
  2326. chan_pwr = min_t(int, channel->max_power * 2, MAX_RATE_POWER);
  2327. new_pwr = min_t(int, chan_pwr, reg->power_limit);
  2328. max_gain = chan_pwr - new_pwr + channel->max_antenna_gain * 2;
  2329. ant_gain = get_antenna_gain(ah, chan);
  2330. if (ant_gain > max_gain)
  2331. ant_reduction = ant_gain - max_gain;
  2332. ah->eep_ops->set_txpower(ah, chan,
  2333. ath9k_regd_get_ctl(reg, chan),
  2334. ant_reduction, new_pwr, test);
  2335. }
  2336. void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit, bool test)
  2337. {
  2338. struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
  2339. struct ath9k_channel *chan = ah->curchan;
  2340. struct ieee80211_channel *channel = chan->chan;
  2341. reg->power_limit = min_t(u32, limit, MAX_RATE_POWER);
  2342. if (test)
  2343. channel->max_power = MAX_RATE_POWER / 2;
  2344. ath9k_hw_apply_txpower(ah, chan, test);
  2345. if (test)
  2346. channel->max_power = DIV_ROUND_UP(reg->max_power_level, 2);
  2347. }
  2348. EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit);
  2349. void ath9k_hw_setopmode(struct ath_hw *ah)
  2350. {
  2351. ath9k_hw_set_operating_mode(ah, ah->opmode);
  2352. }
  2353. EXPORT_SYMBOL(ath9k_hw_setopmode);
  2354. void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
  2355. {
  2356. REG_WRITE(ah, AR_MCAST_FIL0, filter0);
  2357. REG_WRITE(ah, AR_MCAST_FIL1, filter1);
  2358. }
  2359. EXPORT_SYMBOL(ath9k_hw_setmcastfilter);
  2360. void ath9k_hw_write_associd(struct ath_hw *ah)
  2361. {
  2362. struct ath_common *common = ath9k_hw_common(ah);
  2363. REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid));
  2364. REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) |
  2365. ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
  2366. }
  2367. EXPORT_SYMBOL(ath9k_hw_write_associd);
  2368. #define ATH9K_MAX_TSF_READ 10
  2369. u64 ath9k_hw_gettsf64(struct ath_hw *ah)
  2370. {
  2371. u32 tsf_lower, tsf_upper1, tsf_upper2;
  2372. int i;
  2373. tsf_upper1 = REG_READ(ah, AR_TSF_U32);
  2374. for (i = 0; i < ATH9K_MAX_TSF_READ; i++) {
  2375. tsf_lower = REG_READ(ah, AR_TSF_L32);
  2376. tsf_upper2 = REG_READ(ah, AR_TSF_U32);
  2377. if (tsf_upper2 == tsf_upper1)
  2378. break;
  2379. tsf_upper1 = tsf_upper2;
  2380. }
  2381. WARN_ON( i == ATH9K_MAX_TSF_READ );
  2382. return (((u64)tsf_upper1 << 32) | tsf_lower);
  2383. }
  2384. EXPORT_SYMBOL(ath9k_hw_gettsf64);
  2385. void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
  2386. {
  2387. REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
  2388. REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
  2389. }
  2390. EXPORT_SYMBOL(ath9k_hw_settsf64);
  2391. void ath9k_hw_reset_tsf(struct ath_hw *ah)
  2392. {
  2393. if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
  2394. AH_TSF_WRITE_TIMEOUT))
  2395. ath_dbg(ath9k_hw_common(ah), RESET,
  2396. "AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
  2397. REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
  2398. }
  2399. EXPORT_SYMBOL(ath9k_hw_reset_tsf);
  2400. void ath9k_hw_set_tsfadjust(struct ath_hw *ah, bool set)
  2401. {
  2402. if (set)
  2403. ah->misc_mode |= AR_PCU_TX_ADD_TSF;
  2404. else
  2405. ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
  2406. }
  2407. EXPORT_SYMBOL(ath9k_hw_set_tsfadjust);
  2408. void ath9k_hw_set11nmac2040(struct ath_hw *ah)
  2409. {
  2410. struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
  2411. u32 macmode;
  2412. if (conf_is_ht40(conf) && !ah->config.cwm_ignore_extcca)
  2413. macmode = AR_2040_JOINED_RX_CLEAR;
  2414. else
  2415. macmode = 0;
  2416. REG_WRITE(ah, AR_2040_MODE, macmode);
  2417. }
  2418. /* HW Generic timers configuration */
  2419. static const struct ath_gen_timer_configuration gen_tmr_configuration[] =
  2420. {
  2421. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2422. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2423. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2424. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2425. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2426. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2427. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2428. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2429. {AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001},
  2430. {AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4,
  2431. AR_NDP2_TIMER_MODE, 0x0002},
  2432. {AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4,
  2433. AR_NDP2_TIMER_MODE, 0x0004},
  2434. {AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4,
  2435. AR_NDP2_TIMER_MODE, 0x0008},
  2436. {AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4,
  2437. AR_NDP2_TIMER_MODE, 0x0010},
  2438. {AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4,
  2439. AR_NDP2_TIMER_MODE, 0x0020},
  2440. {AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4,
  2441. AR_NDP2_TIMER_MODE, 0x0040},
  2442. {AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4,
  2443. AR_NDP2_TIMER_MODE, 0x0080}
  2444. };
  2445. /* HW generic timer primitives */
  2446. /* compute and clear index of rightmost 1 */
  2447. static u32 rightmost_index(struct ath_gen_timer_table *timer_table, u32 *mask)
  2448. {
  2449. u32 b;
  2450. b = *mask;
  2451. b &= (0-b);
  2452. *mask &= ~b;
  2453. b *= debruijn32;
  2454. b >>= 27;
  2455. return timer_table->gen_timer_index[b];
  2456. }
  2457. u32 ath9k_hw_gettsf32(struct ath_hw *ah)
  2458. {
  2459. return REG_READ(ah, AR_TSF_L32);
  2460. }
  2461. EXPORT_SYMBOL(ath9k_hw_gettsf32);
  2462. struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah,
  2463. void (*trigger)(void *),
  2464. void (*overflow)(void *),
  2465. void *arg,
  2466. u8 timer_index)
  2467. {
  2468. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  2469. struct ath_gen_timer *timer;
  2470. timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL);
  2471. if (timer == NULL)
  2472. return NULL;
  2473. /* allocate a hardware generic timer slot */
  2474. timer_table->timers[timer_index] = timer;
  2475. timer->index = timer_index;
  2476. timer->trigger = trigger;
  2477. timer->overflow = overflow;
  2478. timer->arg = arg;
  2479. return timer;
  2480. }
  2481. EXPORT_SYMBOL(ath_gen_timer_alloc);
  2482. void ath9k_hw_gen_timer_start(struct ath_hw *ah,
  2483. struct ath_gen_timer *timer,
  2484. u32 trig_timeout,
  2485. u32 timer_period)
  2486. {
  2487. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  2488. u32 tsf, timer_next;
  2489. BUG_ON(!timer_period);
  2490. set_bit(timer->index, &timer_table->timer_mask.timer_bits);
  2491. tsf = ath9k_hw_gettsf32(ah);
  2492. timer_next = tsf + trig_timeout;
  2493. ath_dbg(ath9k_hw_common(ah), BTCOEX,
  2494. "current tsf %x period %x timer_next %x\n",
  2495. tsf, timer_period, timer_next);
  2496. /*
  2497. * Program generic timer registers
  2498. */
  2499. REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr,
  2500. timer_next);
  2501. REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr,
  2502. timer_period);
  2503. REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
  2504. gen_tmr_configuration[timer->index].mode_mask);
  2505. if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
  2506. /*
  2507. * Starting from AR9462, each generic timer can select which tsf
  2508. * to use. But we still follow the old rule, 0 - 7 use tsf and
  2509. * 8 - 15 use tsf2.
  2510. */
  2511. if ((timer->index < AR_GEN_TIMER_BANK_1_LEN))
  2512. REG_CLR_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
  2513. (1 << timer->index));
  2514. else
  2515. REG_SET_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
  2516. (1 << timer->index));
  2517. }
  2518. /* Enable both trigger and thresh interrupt masks */
  2519. REG_SET_BIT(ah, AR_IMR_S5,
  2520. (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
  2521. SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
  2522. }
  2523. EXPORT_SYMBOL(ath9k_hw_gen_timer_start);
  2524. void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
  2525. {
  2526. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  2527. if ((timer->index < AR_FIRST_NDP_TIMER) ||
  2528. (timer->index >= ATH_MAX_GEN_TIMER)) {
  2529. return;
  2530. }
  2531. /* Clear generic timer enable bits. */
  2532. REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
  2533. gen_tmr_configuration[timer->index].mode_mask);
  2534. if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
  2535. /*
  2536. * Need to switch back to TSF if it was using TSF2.
  2537. */
  2538. if ((timer->index >= AR_GEN_TIMER_BANK_1_LEN)) {
  2539. REG_CLR_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
  2540. (1 << timer->index));
  2541. }
  2542. }
  2543. /* Disable both trigger and thresh interrupt masks */
  2544. REG_CLR_BIT(ah, AR_IMR_S5,
  2545. (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
  2546. SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
  2547. clear_bit(timer->index, &timer_table->timer_mask.timer_bits);
  2548. }
  2549. EXPORT_SYMBOL(ath9k_hw_gen_timer_stop);
  2550. void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer)
  2551. {
  2552. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  2553. /* free the hardware generic timer slot */
  2554. timer_table->timers[timer->index] = NULL;
  2555. kfree(timer);
  2556. }
  2557. EXPORT_SYMBOL(ath_gen_timer_free);
  2558. /*
  2559. * Generic Timer Interrupts handling
  2560. */
  2561. void ath_gen_timer_isr(struct ath_hw *ah)
  2562. {
  2563. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  2564. struct ath_gen_timer *timer;
  2565. struct ath_common *common = ath9k_hw_common(ah);
  2566. u32 trigger_mask, thresh_mask, index;
  2567. /* get hardware generic timer interrupt status */
  2568. trigger_mask = ah->intr_gen_timer_trigger;
  2569. thresh_mask = ah->intr_gen_timer_thresh;
  2570. trigger_mask &= timer_table->timer_mask.val;
  2571. thresh_mask &= timer_table->timer_mask.val;
  2572. trigger_mask &= ~thresh_mask;
  2573. while (thresh_mask) {
  2574. index = rightmost_index(timer_table, &thresh_mask);
  2575. timer = timer_table->timers[index];
  2576. BUG_ON(!timer);
  2577. ath_dbg(common, BTCOEX, "TSF overflow for Gen timer %d\n",
  2578. index);
  2579. timer->overflow(timer->arg);
  2580. }
  2581. while (trigger_mask) {
  2582. index = rightmost_index(timer_table, &trigger_mask);
  2583. timer = timer_table->timers[index];
  2584. BUG_ON(!timer);
  2585. ath_dbg(common, BTCOEX,
  2586. "Gen timer[%d] trigger\n", index);
  2587. timer->trigger(timer->arg);
  2588. }
  2589. }
  2590. EXPORT_SYMBOL(ath_gen_timer_isr);
  2591. /********/
  2592. /* HTC */
  2593. /********/
  2594. static struct {
  2595. u32 version;
  2596. const char * name;
  2597. } ath_mac_bb_names[] = {
  2598. /* Devices with external radios */
  2599. { AR_SREV_VERSION_5416_PCI, "5416" },
  2600. { AR_SREV_VERSION_5416_PCIE, "5418" },
  2601. { AR_SREV_VERSION_9100, "9100" },
  2602. { AR_SREV_VERSION_9160, "9160" },
  2603. /* Single-chip solutions */
  2604. { AR_SREV_VERSION_9280, "9280" },
  2605. { AR_SREV_VERSION_9285, "9285" },
  2606. { AR_SREV_VERSION_9287, "9287" },
  2607. { AR_SREV_VERSION_9271, "9271" },
  2608. { AR_SREV_VERSION_9300, "9300" },
  2609. { AR_SREV_VERSION_9330, "9330" },
  2610. { AR_SREV_VERSION_9340, "9340" },
  2611. { AR_SREV_VERSION_9485, "9485" },
  2612. { AR_SREV_VERSION_9462, "9462" },
  2613. { AR_SREV_VERSION_9550, "9550" },
  2614. { AR_SREV_VERSION_9565, "9565" },
  2615. };
  2616. /* For devices with external radios */
  2617. static struct {
  2618. u16 version;
  2619. const char * name;
  2620. } ath_rf_names[] = {
  2621. { 0, "5133" },
  2622. { AR_RAD5133_SREV_MAJOR, "5133" },
  2623. { AR_RAD5122_SREV_MAJOR, "5122" },
  2624. { AR_RAD2133_SREV_MAJOR, "2133" },
  2625. { AR_RAD2122_SREV_MAJOR, "2122" }
  2626. };
  2627. /*
  2628. * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
  2629. */
  2630. static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version)
  2631. {
  2632. int i;
  2633. for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
  2634. if (ath_mac_bb_names[i].version == mac_bb_version) {
  2635. return ath_mac_bb_names[i].name;
  2636. }
  2637. }
  2638. return "????";
  2639. }
  2640. /*
  2641. * Return the RF name. "????" is returned if the RF is unknown.
  2642. * Used for devices with external radios.
  2643. */
  2644. static const char *ath9k_hw_rf_name(u16 rf_version)
  2645. {
  2646. int i;
  2647. for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
  2648. if (ath_rf_names[i].version == rf_version) {
  2649. return ath_rf_names[i].name;
  2650. }
  2651. }
  2652. return "????";
  2653. }
  2654. void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len)
  2655. {
  2656. int used;
  2657. /* chipsets >= AR9280 are single-chip */
  2658. if (AR_SREV_9280_20_OR_LATER(ah)) {
  2659. used = snprintf(hw_name, len,
  2660. "Atheros AR%s Rev:%x",
  2661. ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
  2662. ah->hw_version.macRev);
  2663. }
  2664. else {
  2665. used = snprintf(hw_name, len,
  2666. "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
  2667. ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
  2668. ah->hw_version.macRev,
  2669. ath9k_hw_rf_name((ah->hw_version.analog5GhzRev &
  2670. AR_RADIO_SREV_MAJOR)),
  2671. ah->hw_version.phyRev);
  2672. }
  2673. hw_name[used] = '\0';
  2674. }
  2675. EXPORT_SYMBOL(ath9k_hw_name);