smp.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680
  1. /*
  2. * linux/arch/arm/kernel/smp.c
  3. *
  4. * Copyright (C) 2002 ARM Limited, All Rights Reserved.
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2 as
  8. * published by the Free Software Foundation.
  9. */
  10. #include <linux/module.h>
  11. #include <linux/delay.h>
  12. #include <linux/init.h>
  13. #include <linux/spinlock.h>
  14. #include <linux/sched.h>
  15. #include <linux/interrupt.h>
  16. #include <linux/cache.h>
  17. #include <linux/profile.h>
  18. #include <linux/errno.h>
  19. #include <linux/mm.h>
  20. #include <linux/err.h>
  21. #include <linux/cpu.h>
  22. #include <linux/seq_file.h>
  23. #include <linux/irq.h>
  24. #include <linux/percpu.h>
  25. #include <linux/clockchips.h>
  26. #include <linux/completion.h>
  27. #include <linux/cpufreq.h>
  28. #include <linux/atomic.h>
  29. #include <asm/smp.h>
  30. #include <asm/cacheflush.h>
  31. #include <asm/cpu.h>
  32. #include <asm/cputype.h>
  33. #include <asm/exception.h>
  34. #include <asm/idmap.h>
  35. #include <asm/topology.h>
  36. #include <asm/mmu_context.h>
  37. #include <asm/pgtable.h>
  38. #include <asm/pgalloc.h>
  39. #include <asm/processor.h>
  40. #include <asm/sections.h>
  41. #include <asm/tlbflush.h>
  42. #include <asm/ptrace.h>
  43. #include <asm/smp_plat.h>
  44. #include <asm/virt.h>
  45. #include <asm/mach/arch.h>
  46. #include <asm/mpu.h>
  47. /*
  48. * as from 2.5, kernels no longer have an init_tasks structure
  49. * so we need some other way of telling a new secondary core
  50. * where to place its SVC stack
  51. */
  52. struct secondary_data secondary_data;
  53. /*
  54. * control for which core is the next to come out of the secondary
  55. * boot "holding pen"
  56. */
  57. volatile int pen_release = -1;
  58. enum ipi_msg_type {
  59. IPI_WAKEUP,
  60. IPI_TIMER,
  61. IPI_RESCHEDULE,
  62. IPI_CALL_FUNC,
  63. IPI_CALL_FUNC_SINGLE,
  64. IPI_CPU_STOP,
  65. IPI_COMPLETION,
  66. };
  67. static DECLARE_COMPLETION(cpu_running);
  68. static struct smp_operations smp_ops;
  69. void __init smp_set_ops(struct smp_operations *ops)
  70. {
  71. if (ops)
  72. smp_ops = *ops;
  73. };
  74. static unsigned long get_arch_pgd(pgd_t *pgd)
  75. {
  76. phys_addr_t pgdir = virt_to_phys(pgd);
  77. BUG_ON(pgdir & ARCH_PGD_MASK);
  78. return pgdir >> ARCH_PGD_SHIFT;
  79. }
  80. int __cpu_up(unsigned int cpu, struct task_struct *idle)
  81. {
  82. int ret;
  83. /*
  84. * We need to tell the secondary core where to find
  85. * its stack and the page tables.
  86. */
  87. secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
  88. #ifdef CONFIG_ARM_MPU
  89. secondary_data.mpu_rgn_szr = mpu_rgn_info.rgns[MPU_RAM_REGION].drsr;
  90. #endif
  91. #ifdef CONFIG_MMU
  92. secondary_data.pgdir = get_arch_pgd(idmap_pgd);
  93. secondary_data.swapper_pg_dir = get_arch_pgd(swapper_pg_dir);
  94. #endif
  95. __cpuc_flush_dcache_area(&secondary_data, sizeof(secondary_data));
  96. outer_clean_range(__pa(&secondary_data), __pa(&secondary_data + 1));
  97. /*
  98. * Now bring the CPU into our world.
  99. */
  100. ret = boot_secondary(cpu, idle);
  101. if (ret == 0) {
  102. /*
  103. * CPU was successfully started, wait for it
  104. * to come online or time out.
  105. */
  106. wait_for_completion_timeout(&cpu_running,
  107. msecs_to_jiffies(1000));
  108. if (!cpu_online(cpu)) {
  109. pr_crit("CPU%u: failed to come online\n", cpu);
  110. ret = -EIO;
  111. }
  112. } else {
  113. pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
  114. }
  115. memset(&secondary_data, 0, sizeof(secondary_data));
  116. return ret;
  117. }
  118. /* platform specific SMP operations */
  119. void __init smp_init_cpus(void)
  120. {
  121. if (smp_ops.smp_init_cpus)
  122. smp_ops.smp_init_cpus();
  123. }
  124. int boot_secondary(unsigned int cpu, struct task_struct *idle)
  125. {
  126. if (smp_ops.smp_boot_secondary)
  127. return smp_ops.smp_boot_secondary(cpu, idle);
  128. return -ENOSYS;
  129. }
  130. int platform_can_cpu_hotplug(void)
  131. {
  132. #ifdef CONFIG_HOTPLUG_CPU
  133. if (smp_ops.cpu_kill)
  134. return 1;
  135. #endif
  136. return 0;
  137. }
  138. #ifdef CONFIG_HOTPLUG_CPU
  139. static int platform_cpu_kill(unsigned int cpu)
  140. {
  141. if (smp_ops.cpu_kill)
  142. return smp_ops.cpu_kill(cpu);
  143. return 1;
  144. }
  145. static int platform_cpu_disable(unsigned int cpu)
  146. {
  147. if (smp_ops.cpu_disable)
  148. return smp_ops.cpu_disable(cpu);
  149. /*
  150. * By default, allow disabling all CPUs except the first one,
  151. * since this is special on a lot of platforms, e.g. because
  152. * of clock tick interrupts.
  153. */
  154. return cpu == 0 ? -EPERM : 0;
  155. }
  156. /*
  157. * __cpu_disable runs on the processor to be shutdown.
  158. */
  159. int __cpu_disable(void)
  160. {
  161. unsigned int cpu = smp_processor_id();
  162. int ret;
  163. ret = platform_cpu_disable(cpu);
  164. if (ret)
  165. return ret;
  166. /*
  167. * Take this CPU offline. Once we clear this, we can't return,
  168. * and we must not schedule until we're ready to give up the cpu.
  169. */
  170. set_cpu_online(cpu, false);
  171. /*
  172. * OK - migrate IRQs away from this CPU
  173. */
  174. migrate_irqs();
  175. /*
  176. * Flush user cache and TLB mappings, and then remove this CPU
  177. * from the vm mask set of all processes.
  178. *
  179. * Caches are flushed to the Level of Unification Inner Shareable
  180. * to write-back dirty lines to unified caches shared by all CPUs.
  181. */
  182. flush_cache_louis();
  183. local_flush_tlb_all();
  184. clear_tasks_mm_cpumask(cpu);
  185. return 0;
  186. }
  187. static DECLARE_COMPLETION(cpu_died);
  188. /*
  189. * called on the thread which is asking for a CPU to be shutdown -
  190. * waits until shutdown has completed, or it is timed out.
  191. */
  192. void __cpu_die(unsigned int cpu)
  193. {
  194. if (!wait_for_completion_timeout(&cpu_died, msecs_to_jiffies(5000))) {
  195. pr_err("CPU%u: cpu didn't die\n", cpu);
  196. return;
  197. }
  198. printk(KERN_NOTICE "CPU%u: shutdown\n", cpu);
  199. /*
  200. * platform_cpu_kill() is generally expected to do the powering off
  201. * and/or cutting of clocks to the dying CPU. Optionally, this may
  202. * be done by the CPU which is dying in preference to supporting
  203. * this call, but that means there is _no_ synchronisation between
  204. * the requesting CPU and the dying CPU actually losing power.
  205. */
  206. if (!platform_cpu_kill(cpu))
  207. printk("CPU%u: unable to kill\n", cpu);
  208. }
  209. /*
  210. * Called from the idle thread for the CPU which has been shutdown.
  211. *
  212. * Note that we disable IRQs here, but do not re-enable them
  213. * before returning to the caller. This is also the behaviour
  214. * of the other hotplug-cpu capable cores, so presumably coming
  215. * out of idle fixes this.
  216. */
  217. void __ref cpu_die(void)
  218. {
  219. unsigned int cpu = smp_processor_id();
  220. idle_task_exit();
  221. local_irq_disable();
  222. /*
  223. * Flush the data out of the L1 cache for this CPU. This must be
  224. * before the completion to ensure that data is safely written out
  225. * before platform_cpu_kill() gets called - which may disable
  226. * *this* CPU and power down its cache.
  227. */
  228. flush_cache_louis();
  229. /*
  230. * Tell __cpu_die() that this CPU is now safe to dispose of. Once
  231. * this returns, power and/or clocks can be removed at any point
  232. * from this CPU and its cache by platform_cpu_kill().
  233. */
  234. complete(&cpu_died);
  235. /*
  236. * Ensure that the cache lines associated with that completion are
  237. * written out. This covers the case where _this_ CPU is doing the
  238. * powering down, to ensure that the completion is visible to the
  239. * CPU waiting for this one.
  240. */
  241. flush_cache_louis();
  242. /*
  243. * The actual CPU shutdown procedure is at least platform (if not
  244. * CPU) specific. This may remove power, or it may simply spin.
  245. *
  246. * Platforms are generally expected *NOT* to return from this call,
  247. * although there are some which do because they have no way to
  248. * power down the CPU. These platforms are the _only_ reason we
  249. * have a return path which uses the fragment of assembly below.
  250. *
  251. * The return path should not be used for platforms which can
  252. * power off the CPU.
  253. */
  254. if (smp_ops.cpu_die)
  255. smp_ops.cpu_die(cpu);
  256. /*
  257. * Do not return to the idle loop - jump back to the secondary
  258. * cpu initialisation. There's some initialisation which needs
  259. * to be repeated to undo the effects of taking the CPU offline.
  260. */
  261. __asm__("mov sp, %0\n"
  262. " mov fp, #0\n"
  263. " b secondary_start_kernel"
  264. :
  265. : "r" (task_stack_page(current) + THREAD_SIZE - 8));
  266. }
  267. #endif /* CONFIG_HOTPLUG_CPU */
  268. /*
  269. * Called by both boot and secondaries to move global data into
  270. * per-processor storage.
  271. */
  272. static void smp_store_cpu_info(unsigned int cpuid)
  273. {
  274. struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
  275. cpu_info->loops_per_jiffy = loops_per_jiffy;
  276. cpu_info->cpuid = read_cpuid_id();
  277. store_cpu_topology(cpuid);
  278. }
  279. /*
  280. * This is the secondary CPU boot entry. We're using this CPUs
  281. * idle thread stack, but a set of temporary page tables.
  282. */
  283. asmlinkage void secondary_start_kernel(void)
  284. {
  285. struct mm_struct *mm = &init_mm;
  286. unsigned int cpu;
  287. /*
  288. * The identity mapping is uncached (strongly ordered), so
  289. * switch away from it before attempting any exclusive accesses.
  290. */
  291. cpu_switch_mm(mm->pgd, mm);
  292. local_flush_bp_all();
  293. enter_lazy_tlb(mm, current);
  294. local_flush_tlb_all();
  295. /*
  296. * All kernel threads share the same mm context; grab a
  297. * reference and switch to it.
  298. */
  299. cpu = smp_processor_id();
  300. atomic_inc(&mm->mm_count);
  301. current->active_mm = mm;
  302. cpumask_set_cpu(cpu, mm_cpumask(mm));
  303. cpu_init();
  304. printk("CPU%u: Booted secondary processor\n", cpu);
  305. preempt_disable();
  306. trace_hardirqs_off();
  307. /*
  308. * Give the platform a chance to do its own initialisation.
  309. */
  310. if (smp_ops.smp_secondary_init)
  311. smp_ops.smp_secondary_init(cpu);
  312. notify_cpu_starting(cpu);
  313. calibrate_delay();
  314. smp_store_cpu_info(cpu);
  315. /*
  316. * OK, now it's safe to let the boot CPU continue. Wait for
  317. * the CPU migration code to notice that the CPU is online
  318. * before we continue - which happens after __cpu_up returns.
  319. */
  320. set_cpu_online(cpu, true);
  321. complete(&cpu_running);
  322. local_irq_enable();
  323. local_fiq_enable();
  324. /*
  325. * OK, it's off to the idle thread for us
  326. */
  327. cpu_startup_entry(CPUHP_ONLINE);
  328. }
  329. void __init smp_cpus_done(unsigned int max_cpus)
  330. {
  331. printk(KERN_INFO "SMP: Total of %d processors activated.\n",
  332. num_online_cpus());
  333. hyp_mode_check();
  334. }
  335. void __init smp_prepare_boot_cpu(void)
  336. {
  337. set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
  338. }
  339. void __init smp_prepare_cpus(unsigned int max_cpus)
  340. {
  341. unsigned int ncores = num_possible_cpus();
  342. init_cpu_topology();
  343. smp_store_cpu_info(smp_processor_id());
  344. /*
  345. * are we trying to boot more cores than exist?
  346. */
  347. if (max_cpus > ncores)
  348. max_cpus = ncores;
  349. if (ncores > 1 && max_cpus) {
  350. /*
  351. * Initialise the present map, which describes the set of CPUs
  352. * actually populated at the present time. A platform should
  353. * re-initialize the map in the platforms smp_prepare_cpus()
  354. * if present != possible (e.g. physical hotplug).
  355. */
  356. init_cpu_present(cpu_possible_mask);
  357. /*
  358. * Initialise the SCU if there are more than one CPU
  359. * and let them know where to start.
  360. */
  361. if (smp_ops.smp_prepare_cpus)
  362. smp_ops.smp_prepare_cpus(max_cpus);
  363. }
  364. }
  365. static void (*smp_cross_call)(const struct cpumask *, unsigned int);
  366. void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int))
  367. {
  368. if (!smp_cross_call)
  369. smp_cross_call = fn;
  370. }
  371. void arch_send_call_function_ipi_mask(const struct cpumask *mask)
  372. {
  373. smp_cross_call(mask, IPI_CALL_FUNC);
  374. }
  375. void arch_send_wakeup_ipi_mask(const struct cpumask *mask)
  376. {
  377. smp_cross_call(mask, IPI_WAKEUP);
  378. }
  379. void arch_send_call_function_single_ipi(int cpu)
  380. {
  381. smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC_SINGLE);
  382. }
  383. static const char *ipi_types[NR_IPI] = {
  384. #define S(x,s) [x] = s
  385. S(IPI_WAKEUP, "CPU wakeup interrupts"),
  386. S(IPI_TIMER, "Timer broadcast interrupts"),
  387. S(IPI_RESCHEDULE, "Rescheduling interrupts"),
  388. S(IPI_CALL_FUNC, "Function call interrupts"),
  389. S(IPI_CALL_FUNC_SINGLE, "Single function call interrupts"),
  390. S(IPI_CPU_STOP, "CPU stop interrupts"),
  391. S(IPI_COMPLETION, "completion interrupts"),
  392. };
  393. void show_ipi_list(struct seq_file *p, int prec)
  394. {
  395. unsigned int cpu, i;
  396. for (i = 0; i < NR_IPI; i++) {
  397. seq_printf(p, "%*s%u: ", prec - 1, "IPI", i);
  398. for_each_online_cpu(cpu)
  399. seq_printf(p, "%10u ",
  400. __get_irq_stat(cpu, ipi_irqs[i]));
  401. seq_printf(p, " %s\n", ipi_types[i]);
  402. }
  403. }
  404. u64 smp_irq_stat_cpu(unsigned int cpu)
  405. {
  406. u64 sum = 0;
  407. int i;
  408. for (i = 0; i < NR_IPI; i++)
  409. sum += __get_irq_stat(cpu, ipi_irqs[i]);
  410. return sum;
  411. }
  412. #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
  413. void tick_broadcast(const struct cpumask *mask)
  414. {
  415. smp_cross_call(mask, IPI_TIMER);
  416. }
  417. #endif
  418. static DEFINE_RAW_SPINLOCK(stop_lock);
  419. /*
  420. * ipi_cpu_stop - handle IPI from smp_send_stop()
  421. */
  422. static void ipi_cpu_stop(unsigned int cpu)
  423. {
  424. if (system_state == SYSTEM_BOOTING ||
  425. system_state == SYSTEM_RUNNING) {
  426. raw_spin_lock(&stop_lock);
  427. printk(KERN_CRIT "CPU%u: stopping\n", cpu);
  428. dump_stack();
  429. raw_spin_unlock(&stop_lock);
  430. }
  431. set_cpu_online(cpu, false);
  432. local_fiq_disable();
  433. local_irq_disable();
  434. while (1)
  435. cpu_relax();
  436. }
  437. static DEFINE_PER_CPU(struct completion *, cpu_completion);
  438. int register_ipi_completion(struct completion *completion, int cpu)
  439. {
  440. per_cpu(cpu_completion, cpu) = completion;
  441. return IPI_COMPLETION;
  442. }
  443. static void ipi_complete(unsigned int cpu)
  444. {
  445. complete(per_cpu(cpu_completion, cpu));
  446. }
  447. /*
  448. * Main handler for inter-processor interrupts
  449. */
  450. asmlinkage void __exception_irq_entry do_IPI(int ipinr, struct pt_regs *regs)
  451. {
  452. handle_IPI(ipinr, regs);
  453. }
  454. void handle_IPI(int ipinr, struct pt_regs *regs)
  455. {
  456. unsigned int cpu = smp_processor_id();
  457. struct pt_regs *old_regs = set_irq_regs(regs);
  458. if (ipinr < NR_IPI)
  459. __inc_irq_stat(cpu, ipi_irqs[ipinr]);
  460. switch (ipinr) {
  461. case IPI_WAKEUP:
  462. break;
  463. #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
  464. case IPI_TIMER:
  465. irq_enter();
  466. tick_receive_broadcast();
  467. irq_exit();
  468. break;
  469. #endif
  470. case IPI_RESCHEDULE:
  471. scheduler_ipi();
  472. break;
  473. case IPI_CALL_FUNC:
  474. irq_enter();
  475. generic_smp_call_function_interrupt();
  476. irq_exit();
  477. break;
  478. case IPI_CALL_FUNC_SINGLE:
  479. irq_enter();
  480. generic_smp_call_function_single_interrupt();
  481. irq_exit();
  482. break;
  483. case IPI_CPU_STOP:
  484. irq_enter();
  485. ipi_cpu_stop(cpu);
  486. irq_exit();
  487. break;
  488. case IPI_COMPLETION:
  489. irq_enter();
  490. ipi_complete(cpu);
  491. irq_exit();
  492. break;
  493. default:
  494. printk(KERN_CRIT "CPU%u: Unknown IPI message 0x%x\n",
  495. cpu, ipinr);
  496. break;
  497. }
  498. set_irq_regs(old_regs);
  499. }
  500. void smp_send_reschedule(int cpu)
  501. {
  502. smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
  503. }
  504. void smp_send_stop(void)
  505. {
  506. unsigned long timeout;
  507. struct cpumask mask;
  508. cpumask_copy(&mask, cpu_online_mask);
  509. cpumask_clear_cpu(smp_processor_id(), &mask);
  510. if (!cpumask_empty(&mask))
  511. smp_cross_call(&mask, IPI_CPU_STOP);
  512. /* Wait up to one second for other CPUs to stop */
  513. timeout = USEC_PER_SEC;
  514. while (num_online_cpus() > 1 && timeout--)
  515. udelay(1);
  516. if (num_online_cpus() > 1)
  517. pr_warning("SMP: failed to stop secondary CPUs\n");
  518. }
  519. /*
  520. * not supported here
  521. */
  522. int setup_profiling_timer(unsigned int multiplier)
  523. {
  524. return -EINVAL;
  525. }
  526. #ifdef CONFIG_CPU_FREQ
  527. static DEFINE_PER_CPU(unsigned long, l_p_j_ref);
  528. static DEFINE_PER_CPU(unsigned long, l_p_j_ref_freq);
  529. static unsigned long global_l_p_j_ref;
  530. static unsigned long global_l_p_j_ref_freq;
  531. static int cpufreq_callback(struct notifier_block *nb,
  532. unsigned long val, void *data)
  533. {
  534. struct cpufreq_freqs *freq = data;
  535. int cpu = freq->cpu;
  536. if (freq->flags & CPUFREQ_CONST_LOOPS)
  537. return NOTIFY_OK;
  538. if (!per_cpu(l_p_j_ref, cpu)) {
  539. per_cpu(l_p_j_ref, cpu) =
  540. per_cpu(cpu_data, cpu).loops_per_jiffy;
  541. per_cpu(l_p_j_ref_freq, cpu) = freq->old;
  542. if (!global_l_p_j_ref) {
  543. global_l_p_j_ref = loops_per_jiffy;
  544. global_l_p_j_ref_freq = freq->old;
  545. }
  546. }
  547. if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
  548. (val == CPUFREQ_POSTCHANGE && freq->old > freq->new) ||
  549. (val == CPUFREQ_RESUMECHANGE || val == CPUFREQ_SUSPENDCHANGE)) {
  550. loops_per_jiffy = cpufreq_scale(global_l_p_j_ref,
  551. global_l_p_j_ref_freq,
  552. freq->new);
  553. per_cpu(cpu_data, cpu).loops_per_jiffy =
  554. cpufreq_scale(per_cpu(l_p_j_ref, cpu),
  555. per_cpu(l_p_j_ref_freq, cpu),
  556. freq->new);
  557. }
  558. return NOTIFY_OK;
  559. }
  560. static struct notifier_block cpufreq_notifier = {
  561. .notifier_call = cpufreq_callback,
  562. };
  563. static int __init register_cpufreq_notifier(void)
  564. {
  565. return cpufreq_register_notifier(&cpufreq_notifier,
  566. CPUFREQ_TRANSITION_NOTIFIER);
  567. }
  568. core_initcall(register_cpufreq_notifier);
  569. #endif