af_iucv.c 58 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463
  1. /*
  2. * IUCV protocol stack for Linux on zSeries
  3. *
  4. * Copyright IBM Corp. 2006, 2009
  5. *
  6. * Author(s): Jennifer Hunt <jenhunt@us.ibm.com>
  7. * Hendrik Brueckner <brueckner@linux.vnet.ibm.com>
  8. * PM functions:
  9. * Ursula Braun <ursula.braun@de.ibm.com>
  10. */
  11. #define KMSG_COMPONENT "af_iucv"
  12. #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
  13. #include <linux/module.h>
  14. #include <linux/types.h>
  15. #include <linux/list.h>
  16. #include <linux/errno.h>
  17. #include <linux/kernel.h>
  18. #include <linux/sched.h>
  19. #include <linux/slab.h>
  20. #include <linux/skbuff.h>
  21. #include <linux/init.h>
  22. #include <linux/poll.h>
  23. #include <net/sock.h>
  24. #include <asm/ebcdic.h>
  25. #include <asm/cpcmd.h>
  26. #include <linux/kmod.h>
  27. #include <net/iucv/af_iucv.h>
  28. #define VERSION "1.2"
  29. static char iucv_userid[80];
  30. static const struct proto_ops iucv_sock_ops;
  31. static struct proto iucv_proto = {
  32. .name = "AF_IUCV",
  33. .owner = THIS_MODULE,
  34. .obj_size = sizeof(struct iucv_sock),
  35. };
  36. static struct iucv_interface *pr_iucv;
  37. /* special AF_IUCV IPRM messages */
  38. static const u8 iprm_shutdown[8] =
  39. {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01};
  40. #define TRGCLS_SIZE (sizeof(((struct iucv_message *)0)->class))
  41. /* macros to set/get socket control buffer at correct offset */
  42. #define CB_TAG(skb) ((skb)->cb) /* iucv message tag */
  43. #define CB_TAG_LEN (sizeof(((struct iucv_message *) 0)->tag))
  44. #define CB_TRGCLS(skb) ((skb)->cb + CB_TAG_LEN) /* iucv msg target class */
  45. #define CB_TRGCLS_LEN (TRGCLS_SIZE)
  46. #define __iucv_sock_wait(sk, condition, timeo, ret) \
  47. do { \
  48. DEFINE_WAIT(__wait); \
  49. long __timeo = timeo; \
  50. ret = 0; \
  51. prepare_to_wait(sk_sleep(sk), &__wait, TASK_INTERRUPTIBLE); \
  52. while (!(condition)) { \
  53. if (!__timeo) { \
  54. ret = -EAGAIN; \
  55. break; \
  56. } \
  57. if (signal_pending(current)) { \
  58. ret = sock_intr_errno(__timeo); \
  59. break; \
  60. } \
  61. release_sock(sk); \
  62. __timeo = schedule_timeout(__timeo); \
  63. lock_sock(sk); \
  64. ret = sock_error(sk); \
  65. if (ret) \
  66. break; \
  67. } \
  68. finish_wait(sk_sleep(sk), &__wait); \
  69. } while (0)
  70. #define iucv_sock_wait(sk, condition, timeo) \
  71. ({ \
  72. int __ret = 0; \
  73. if (!(condition)) \
  74. __iucv_sock_wait(sk, condition, timeo, __ret); \
  75. __ret; \
  76. })
  77. static void iucv_sock_kill(struct sock *sk);
  78. static void iucv_sock_close(struct sock *sk);
  79. static void iucv_sever_path(struct sock *, int);
  80. static int afiucv_hs_rcv(struct sk_buff *skb, struct net_device *dev,
  81. struct packet_type *pt, struct net_device *orig_dev);
  82. static int afiucv_hs_send(struct iucv_message *imsg, struct sock *sock,
  83. struct sk_buff *skb, u8 flags);
  84. static void afiucv_hs_callback_txnotify(struct sk_buff *, enum iucv_tx_notify);
  85. /* Call Back functions */
  86. static void iucv_callback_rx(struct iucv_path *, struct iucv_message *);
  87. static void iucv_callback_txdone(struct iucv_path *, struct iucv_message *);
  88. static void iucv_callback_connack(struct iucv_path *, u8 ipuser[16]);
  89. static int iucv_callback_connreq(struct iucv_path *, u8 ipvmid[8],
  90. u8 ipuser[16]);
  91. static void iucv_callback_connrej(struct iucv_path *, u8 ipuser[16]);
  92. static void iucv_callback_shutdown(struct iucv_path *, u8 ipuser[16]);
  93. static struct iucv_sock_list iucv_sk_list = {
  94. .lock = __RW_LOCK_UNLOCKED(iucv_sk_list.lock),
  95. .autobind_name = ATOMIC_INIT(0)
  96. };
  97. static struct iucv_handler af_iucv_handler = {
  98. .path_pending = iucv_callback_connreq,
  99. .path_complete = iucv_callback_connack,
  100. .path_severed = iucv_callback_connrej,
  101. .message_pending = iucv_callback_rx,
  102. .message_complete = iucv_callback_txdone,
  103. .path_quiesced = iucv_callback_shutdown,
  104. };
  105. static inline void high_nmcpy(unsigned char *dst, char *src)
  106. {
  107. memcpy(dst, src, 8);
  108. }
  109. static inline void low_nmcpy(unsigned char *dst, char *src)
  110. {
  111. memcpy(&dst[8], src, 8);
  112. }
  113. static int afiucv_pm_prepare(struct device *dev)
  114. {
  115. #ifdef CONFIG_PM_DEBUG
  116. printk(KERN_WARNING "afiucv_pm_prepare\n");
  117. #endif
  118. return 0;
  119. }
  120. static void afiucv_pm_complete(struct device *dev)
  121. {
  122. #ifdef CONFIG_PM_DEBUG
  123. printk(KERN_WARNING "afiucv_pm_complete\n");
  124. #endif
  125. }
  126. /**
  127. * afiucv_pm_freeze() - Freeze PM callback
  128. * @dev: AFIUCV dummy device
  129. *
  130. * Sever all established IUCV communication pathes
  131. */
  132. static int afiucv_pm_freeze(struct device *dev)
  133. {
  134. struct iucv_sock *iucv;
  135. struct sock *sk;
  136. int err = 0;
  137. #ifdef CONFIG_PM_DEBUG
  138. printk(KERN_WARNING "afiucv_pm_freeze\n");
  139. #endif
  140. read_lock(&iucv_sk_list.lock);
  141. sk_for_each(sk, &iucv_sk_list.head) {
  142. iucv = iucv_sk(sk);
  143. switch (sk->sk_state) {
  144. case IUCV_DISCONN:
  145. case IUCV_CLOSING:
  146. case IUCV_CONNECTED:
  147. iucv_sever_path(sk, 0);
  148. break;
  149. case IUCV_OPEN:
  150. case IUCV_BOUND:
  151. case IUCV_LISTEN:
  152. case IUCV_CLOSED:
  153. default:
  154. break;
  155. }
  156. skb_queue_purge(&iucv->send_skb_q);
  157. skb_queue_purge(&iucv->backlog_skb_q);
  158. }
  159. read_unlock(&iucv_sk_list.lock);
  160. return err;
  161. }
  162. /**
  163. * afiucv_pm_restore_thaw() - Thaw and restore PM callback
  164. * @dev: AFIUCV dummy device
  165. *
  166. * socket clean up after freeze
  167. */
  168. static int afiucv_pm_restore_thaw(struct device *dev)
  169. {
  170. struct sock *sk;
  171. #ifdef CONFIG_PM_DEBUG
  172. printk(KERN_WARNING "afiucv_pm_restore_thaw\n");
  173. #endif
  174. read_lock(&iucv_sk_list.lock);
  175. sk_for_each(sk, &iucv_sk_list.head) {
  176. switch (sk->sk_state) {
  177. case IUCV_CONNECTED:
  178. sk->sk_err = EPIPE;
  179. sk->sk_state = IUCV_DISCONN;
  180. sk->sk_state_change(sk);
  181. break;
  182. case IUCV_DISCONN:
  183. case IUCV_CLOSING:
  184. case IUCV_LISTEN:
  185. case IUCV_BOUND:
  186. case IUCV_OPEN:
  187. default:
  188. break;
  189. }
  190. }
  191. read_unlock(&iucv_sk_list.lock);
  192. return 0;
  193. }
  194. static const struct dev_pm_ops afiucv_pm_ops = {
  195. .prepare = afiucv_pm_prepare,
  196. .complete = afiucv_pm_complete,
  197. .freeze = afiucv_pm_freeze,
  198. .thaw = afiucv_pm_restore_thaw,
  199. .restore = afiucv_pm_restore_thaw,
  200. };
  201. static struct device_driver af_iucv_driver = {
  202. .owner = THIS_MODULE,
  203. .name = "afiucv",
  204. .bus = NULL,
  205. .pm = &afiucv_pm_ops,
  206. };
  207. /* dummy device used as trigger for PM functions */
  208. static struct device *af_iucv_dev;
  209. /**
  210. * iucv_msg_length() - Returns the length of an iucv message.
  211. * @msg: Pointer to struct iucv_message, MUST NOT be NULL
  212. *
  213. * The function returns the length of the specified iucv message @msg of data
  214. * stored in a buffer and of data stored in the parameter list (PRMDATA).
  215. *
  216. * For IUCV_IPRMDATA, AF_IUCV uses the following convention to transport socket
  217. * data:
  218. * PRMDATA[0..6] socket data (max 7 bytes);
  219. * PRMDATA[7] socket data length value (len is 0xff - PRMDATA[7])
  220. *
  221. * The socket data length is computed by subtracting the socket data length
  222. * value from 0xFF.
  223. * If the socket data len is greater 7, then PRMDATA can be used for special
  224. * notifications (see iucv_sock_shutdown); and further,
  225. * if the socket data len is > 7, the function returns 8.
  226. *
  227. * Use this function to allocate socket buffers to store iucv message data.
  228. */
  229. static inline size_t iucv_msg_length(struct iucv_message *msg)
  230. {
  231. size_t datalen;
  232. if (msg->flags & IUCV_IPRMDATA) {
  233. datalen = 0xff - msg->rmmsg[7];
  234. return (datalen < 8) ? datalen : 8;
  235. }
  236. return msg->length;
  237. }
  238. /**
  239. * iucv_sock_in_state() - check for specific states
  240. * @sk: sock structure
  241. * @state: first iucv sk state
  242. * @state: second iucv sk state
  243. *
  244. * Returns true if the socket in either in the first or second state.
  245. */
  246. static int iucv_sock_in_state(struct sock *sk, int state, int state2)
  247. {
  248. return (sk->sk_state == state || sk->sk_state == state2);
  249. }
  250. /**
  251. * iucv_below_msglim() - function to check if messages can be sent
  252. * @sk: sock structure
  253. *
  254. * Returns true if the send queue length is lower than the message limit.
  255. * Always returns true if the socket is not connected (no iucv path for
  256. * checking the message limit).
  257. */
  258. static inline int iucv_below_msglim(struct sock *sk)
  259. {
  260. struct iucv_sock *iucv = iucv_sk(sk);
  261. if (sk->sk_state != IUCV_CONNECTED)
  262. return 1;
  263. if (iucv->transport == AF_IUCV_TRANS_IUCV)
  264. return (skb_queue_len(&iucv->send_skb_q) < iucv->path->msglim);
  265. else
  266. return ((atomic_read(&iucv->msg_sent) < iucv->msglimit_peer) &&
  267. (atomic_read(&iucv->pendings) <= 0));
  268. }
  269. /**
  270. * iucv_sock_wake_msglim() - Wake up thread waiting on msg limit
  271. */
  272. static void iucv_sock_wake_msglim(struct sock *sk)
  273. {
  274. struct socket_wq *wq;
  275. rcu_read_lock();
  276. wq = rcu_dereference(sk->sk_wq);
  277. if (wq_has_sleeper(wq))
  278. wake_up_interruptible_all(&wq->wait);
  279. sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
  280. rcu_read_unlock();
  281. }
  282. /**
  283. * afiucv_hs_send() - send a message through HiperSockets transport
  284. */
  285. static int afiucv_hs_send(struct iucv_message *imsg, struct sock *sock,
  286. struct sk_buff *skb, u8 flags)
  287. {
  288. struct iucv_sock *iucv = iucv_sk(sock);
  289. struct af_iucv_trans_hdr *phs_hdr;
  290. struct sk_buff *nskb;
  291. int err, confirm_recv = 0;
  292. memset(skb->head, 0, ETH_HLEN);
  293. phs_hdr = (struct af_iucv_trans_hdr *)skb_push(skb,
  294. sizeof(struct af_iucv_trans_hdr));
  295. skb_reset_mac_header(skb);
  296. skb_reset_network_header(skb);
  297. skb_push(skb, ETH_HLEN);
  298. skb_reset_mac_header(skb);
  299. memset(phs_hdr, 0, sizeof(struct af_iucv_trans_hdr));
  300. phs_hdr->magic = ETH_P_AF_IUCV;
  301. phs_hdr->version = 1;
  302. phs_hdr->flags = flags;
  303. if (flags == AF_IUCV_FLAG_SYN)
  304. phs_hdr->window = iucv->msglimit;
  305. else if ((flags == AF_IUCV_FLAG_WIN) || !flags) {
  306. confirm_recv = atomic_read(&iucv->msg_recv);
  307. phs_hdr->window = confirm_recv;
  308. if (confirm_recv)
  309. phs_hdr->flags = phs_hdr->flags | AF_IUCV_FLAG_WIN;
  310. }
  311. memcpy(phs_hdr->destUserID, iucv->dst_user_id, 8);
  312. memcpy(phs_hdr->destAppName, iucv->dst_name, 8);
  313. memcpy(phs_hdr->srcUserID, iucv->src_user_id, 8);
  314. memcpy(phs_hdr->srcAppName, iucv->src_name, 8);
  315. ASCEBC(phs_hdr->destUserID, sizeof(phs_hdr->destUserID));
  316. ASCEBC(phs_hdr->destAppName, sizeof(phs_hdr->destAppName));
  317. ASCEBC(phs_hdr->srcUserID, sizeof(phs_hdr->srcUserID));
  318. ASCEBC(phs_hdr->srcAppName, sizeof(phs_hdr->srcAppName));
  319. if (imsg)
  320. memcpy(&phs_hdr->iucv_hdr, imsg, sizeof(struct iucv_message));
  321. skb->dev = iucv->hs_dev;
  322. if (!skb->dev)
  323. return -ENODEV;
  324. if (!(skb->dev->flags & IFF_UP) || !netif_carrier_ok(skb->dev))
  325. return -ENETDOWN;
  326. if (skb->len > skb->dev->mtu) {
  327. if (sock->sk_type == SOCK_SEQPACKET)
  328. return -EMSGSIZE;
  329. else
  330. skb_trim(skb, skb->dev->mtu);
  331. }
  332. skb->protocol = ETH_P_AF_IUCV;
  333. nskb = skb_clone(skb, GFP_ATOMIC);
  334. if (!nskb)
  335. return -ENOMEM;
  336. skb_queue_tail(&iucv->send_skb_q, nskb);
  337. err = dev_queue_xmit(skb);
  338. if (net_xmit_eval(err)) {
  339. skb_unlink(nskb, &iucv->send_skb_q);
  340. kfree_skb(nskb);
  341. } else {
  342. atomic_sub(confirm_recv, &iucv->msg_recv);
  343. WARN_ON(atomic_read(&iucv->msg_recv) < 0);
  344. }
  345. return net_xmit_eval(err);
  346. }
  347. static struct sock *__iucv_get_sock_by_name(char *nm)
  348. {
  349. struct sock *sk;
  350. sk_for_each(sk, &iucv_sk_list.head)
  351. if (!memcmp(&iucv_sk(sk)->src_name, nm, 8))
  352. return sk;
  353. return NULL;
  354. }
  355. static void iucv_sock_destruct(struct sock *sk)
  356. {
  357. skb_queue_purge(&sk->sk_receive_queue);
  358. skb_queue_purge(&sk->sk_error_queue);
  359. sk_mem_reclaim(sk);
  360. if (!sock_flag(sk, SOCK_DEAD)) {
  361. pr_err("Attempt to release alive iucv socket %p\n", sk);
  362. return;
  363. }
  364. WARN_ON(atomic_read(&sk->sk_rmem_alloc));
  365. WARN_ON(atomic_read(&sk->sk_wmem_alloc));
  366. WARN_ON(sk->sk_wmem_queued);
  367. WARN_ON(sk->sk_forward_alloc);
  368. }
  369. /* Cleanup Listen */
  370. static void iucv_sock_cleanup_listen(struct sock *parent)
  371. {
  372. struct sock *sk;
  373. /* Close non-accepted connections */
  374. while ((sk = iucv_accept_dequeue(parent, NULL))) {
  375. iucv_sock_close(sk);
  376. iucv_sock_kill(sk);
  377. }
  378. parent->sk_state = IUCV_CLOSED;
  379. }
  380. /* Kill socket (only if zapped and orphaned) */
  381. static void iucv_sock_kill(struct sock *sk)
  382. {
  383. if (!sock_flag(sk, SOCK_ZAPPED) || sk->sk_socket)
  384. return;
  385. iucv_sock_unlink(&iucv_sk_list, sk);
  386. sock_set_flag(sk, SOCK_DEAD);
  387. sock_put(sk);
  388. }
  389. /* Terminate an IUCV path */
  390. static void iucv_sever_path(struct sock *sk, int with_user_data)
  391. {
  392. unsigned char user_data[16];
  393. struct iucv_sock *iucv = iucv_sk(sk);
  394. struct iucv_path *path = iucv->path;
  395. if (iucv->path) {
  396. iucv->path = NULL;
  397. if (with_user_data) {
  398. low_nmcpy(user_data, iucv->src_name);
  399. high_nmcpy(user_data, iucv->dst_name);
  400. ASCEBC(user_data, sizeof(user_data));
  401. pr_iucv->path_sever(path, user_data);
  402. } else
  403. pr_iucv->path_sever(path, NULL);
  404. iucv_path_free(path);
  405. }
  406. }
  407. /* Send FIN through an IUCV socket for HIPER transport */
  408. static int iucv_send_ctrl(struct sock *sk, u8 flags)
  409. {
  410. int err = 0;
  411. int blen;
  412. struct sk_buff *skb;
  413. blen = sizeof(struct af_iucv_trans_hdr) + ETH_HLEN;
  414. skb = sock_alloc_send_skb(sk, blen, 1, &err);
  415. if (skb) {
  416. skb_reserve(skb, blen);
  417. err = afiucv_hs_send(NULL, sk, skb, flags);
  418. }
  419. return err;
  420. }
  421. /* Close an IUCV socket */
  422. static void iucv_sock_close(struct sock *sk)
  423. {
  424. struct iucv_sock *iucv = iucv_sk(sk);
  425. unsigned long timeo;
  426. int err = 0;
  427. lock_sock(sk);
  428. switch (sk->sk_state) {
  429. case IUCV_LISTEN:
  430. iucv_sock_cleanup_listen(sk);
  431. break;
  432. case IUCV_CONNECTED:
  433. if (iucv->transport == AF_IUCV_TRANS_HIPER) {
  434. err = iucv_send_ctrl(sk, AF_IUCV_FLAG_FIN);
  435. sk->sk_state = IUCV_DISCONN;
  436. sk->sk_state_change(sk);
  437. }
  438. case IUCV_DISCONN: /* fall through */
  439. sk->sk_state = IUCV_CLOSING;
  440. sk->sk_state_change(sk);
  441. if (!err && !skb_queue_empty(&iucv->send_skb_q)) {
  442. if (sock_flag(sk, SOCK_LINGER) && sk->sk_lingertime)
  443. timeo = sk->sk_lingertime;
  444. else
  445. timeo = IUCV_DISCONN_TIMEOUT;
  446. iucv_sock_wait(sk,
  447. iucv_sock_in_state(sk, IUCV_CLOSED, 0),
  448. timeo);
  449. }
  450. case IUCV_CLOSING: /* fall through */
  451. sk->sk_state = IUCV_CLOSED;
  452. sk->sk_state_change(sk);
  453. sk->sk_err = ECONNRESET;
  454. sk->sk_state_change(sk);
  455. skb_queue_purge(&iucv->send_skb_q);
  456. skb_queue_purge(&iucv->backlog_skb_q);
  457. default: /* fall through */
  458. iucv_sever_path(sk, 1);
  459. }
  460. if (iucv->hs_dev) {
  461. dev_put(iucv->hs_dev);
  462. iucv->hs_dev = NULL;
  463. sk->sk_bound_dev_if = 0;
  464. }
  465. /* mark socket for deletion by iucv_sock_kill() */
  466. sock_set_flag(sk, SOCK_ZAPPED);
  467. release_sock(sk);
  468. }
  469. static void iucv_sock_init(struct sock *sk, struct sock *parent)
  470. {
  471. if (parent)
  472. sk->sk_type = parent->sk_type;
  473. }
  474. static struct sock *iucv_sock_alloc(struct socket *sock, int proto, gfp_t prio)
  475. {
  476. struct sock *sk;
  477. struct iucv_sock *iucv;
  478. sk = sk_alloc(&init_net, PF_IUCV, prio, &iucv_proto);
  479. if (!sk)
  480. return NULL;
  481. iucv = iucv_sk(sk);
  482. sock_init_data(sock, sk);
  483. INIT_LIST_HEAD(&iucv->accept_q);
  484. spin_lock_init(&iucv->accept_q_lock);
  485. skb_queue_head_init(&iucv->send_skb_q);
  486. INIT_LIST_HEAD(&iucv->message_q.list);
  487. spin_lock_init(&iucv->message_q.lock);
  488. skb_queue_head_init(&iucv->backlog_skb_q);
  489. iucv->send_tag = 0;
  490. atomic_set(&iucv->pendings, 0);
  491. iucv->flags = 0;
  492. iucv->msglimit = 0;
  493. atomic_set(&iucv->msg_sent, 0);
  494. atomic_set(&iucv->msg_recv, 0);
  495. iucv->path = NULL;
  496. iucv->sk_txnotify = afiucv_hs_callback_txnotify;
  497. memset(&iucv->src_user_id , 0, 32);
  498. if (pr_iucv)
  499. iucv->transport = AF_IUCV_TRANS_IUCV;
  500. else
  501. iucv->transport = AF_IUCV_TRANS_HIPER;
  502. sk->sk_destruct = iucv_sock_destruct;
  503. sk->sk_sndtimeo = IUCV_CONN_TIMEOUT;
  504. sk->sk_allocation = GFP_DMA;
  505. sock_reset_flag(sk, SOCK_ZAPPED);
  506. sk->sk_protocol = proto;
  507. sk->sk_state = IUCV_OPEN;
  508. iucv_sock_link(&iucv_sk_list, sk);
  509. return sk;
  510. }
  511. /* Create an IUCV socket */
  512. static int iucv_sock_create(struct net *net, struct socket *sock, int protocol,
  513. int kern)
  514. {
  515. struct sock *sk;
  516. if (protocol && protocol != PF_IUCV)
  517. return -EPROTONOSUPPORT;
  518. sock->state = SS_UNCONNECTED;
  519. switch (sock->type) {
  520. case SOCK_STREAM:
  521. sock->ops = &iucv_sock_ops;
  522. break;
  523. case SOCK_SEQPACKET:
  524. /* currently, proto ops can handle both sk types */
  525. sock->ops = &iucv_sock_ops;
  526. break;
  527. default:
  528. return -ESOCKTNOSUPPORT;
  529. }
  530. sk = iucv_sock_alloc(sock, protocol, GFP_KERNEL);
  531. if (!sk)
  532. return -ENOMEM;
  533. iucv_sock_init(sk, NULL);
  534. return 0;
  535. }
  536. void iucv_sock_link(struct iucv_sock_list *l, struct sock *sk)
  537. {
  538. write_lock_bh(&l->lock);
  539. sk_add_node(sk, &l->head);
  540. write_unlock_bh(&l->lock);
  541. }
  542. void iucv_sock_unlink(struct iucv_sock_list *l, struct sock *sk)
  543. {
  544. write_lock_bh(&l->lock);
  545. sk_del_node_init(sk);
  546. write_unlock_bh(&l->lock);
  547. }
  548. void iucv_accept_enqueue(struct sock *parent, struct sock *sk)
  549. {
  550. unsigned long flags;
  551. struct iucv_sock *par = iucv_sk(parent);
  552. sock_hold(sk);
  553. spin_lock_irqsave(&par->accept_q_lock, flags);
  554. list_add_tail(&iucv_sk(sk)->accept_q, &par->accept_q);
  555. spin_unlock_irqrestore(&par->accept_q_lock, flags);
  556. iucv_sk(sk)->parent = parent;
  557. sk_acceptq_added(parent);
  558. }
  559. void iucv_accept_unlink(struct sock *sk)
  560. {
  561. unsigned long flags;
  562. struct iucv_sock *par = iucv_sk(iucv_sk(sk)->parent);
  563. spin_lock_irqsave(&par->accept_q_lock, flags);
  564. list_del_init(&iucv_sk(sk)->accept_q);
  565. spin_unlock_irqrestore(&par->accept_q_lock, flags);
  566. sk_acceptq_removed(iucv_sk(sk)->parent);
  567. iucv_sk(sk)->parent = NULL;
  568. sock_put(sk);
  569. }
  570. struct sock *iucv_accept_dequeue(struct sock *parent, struct socket *newsock)
  571. {
  572. struct iucv_sock *isk, *n;
  573. struct sock *sk;
  574. list_for_each_entry_safe(isk, n, &iucv_sk(parent)->accept_q, accept_q) {
  575. sk = (struct sock *) isk;
  576. lock_sock(sk);
  577. if (sk->sk_state == IUCV_CLOSED) {
  578. iucv_accept_unlink(sk);
  579. release_sock(sk);
  580. continue;
  581. }
  582. if (sk->sk_state == IUCV_CONNECTED ||
  583. sk->sk_state == IUCV_DISCONN ||
  584. !newsock) {
  585. iucv_accept_unlink(sk);
  586. if (newsock)
  587. sock_graft(sk, newsock);
  588. release_sock(sk);
  589. return sk;
  590. }
  591. release_sock(sk);
  592. }
  593. return NULL;
  594. }
  595. /* Bind an unbound socket */
  596. static int iucv_sock_bind(struct socket *sock, struct sockaddr *addr,
  597. int addr_len)
  598. {
  599. struct sockaddr_iucv *sa = (struct sockaddr_iucv *) addr;
  600. struct sock *sk = sock->sk;
  601. struct iucv_sock *iucv;
  602. int err = 0;
  603. struct net_device *dev;
  604. char uid[9];
  605. /* Verify the input sockaddr */
  606. if (!addr || addr->sa_family != AF_IUCV)
  607. return -EINVAL;
  608. lock_sock(sk);
  609. if (sk->sk_state != IUCV_OPEN) {
  610. err = -EBADFD;
  611. goto done;
  612. }
  613. write_lock_bh(&iucv_sk_list.lock);
  614. iucv = iucv_sk(sk);
  615. if (__iucv_get_sock_by_name(sa->siucv_name)) {
  616. err = -EADDRINUSE;
  617. goto done_unlock;
  618. }
  619. if (iucv->path)
  620. goto done_unlock;
  621. /* Bind the socket */
  622. if (pr_iucv)
  623. if (!memcmp(sa->siucv_user_id, iucv_userid, 8))
  624. goto vm_bind; /* VM IUCV transport */
  625. /* try hiper transport */
  626. memcpy(uid, sa->siucv_user_id, sizeof(uid));
  627. ASCEBC(uid, 8);
  628. rcu_read_lock();
  629. for_each_netdev_rcu(&init_net, dev) {
  630. if (!memcmp(dev->perm_addr, uid, 8)) {
  631. memcpy(iucv->src_name, sa->siucv_name, 8);
  632. memcpy(iucv->src_user_id, sa->siucv_user_id, 8);
  633. sk->sk_bound_dev_if = dev->ifindex;
  634. iucv->hs_dev = dev;
  635. dev_hold(dev);
  636. sk->sk_state = IUCV_BOUND;
  637. iucv->transport = AF_IUCV_TRANS_HIPER;
  638. if (!iucv->msglimit)
  639. iucv->msglimit = IUCV_HIPER_MSGLIM_DEFAULT;
  640. rcu_read_unlock();
  641. goto done_unlock;
  642. }
  643. }
  644. rcu_read_unlock();
  645. vm_bind:
  646. if (pr_iucv) {
  647. /* use local userid for backward compat */
  648. memcpy(iucv->src_name, sa->siucv_name, 8);
  649. memcpy(iucv->src_user_id, iucv_userid, 8);
  650. sk->sk_state = IUCV_BOUND;
  651. iucv->transport = AF_IUCV_TRANS_IUCV;
  652. if (!iucv->msglimit)
  653. iucv->msglimit = IUCV_QUEUELEN_DEFAULT;
  654. goto done_unlock;
  655. }
  656. /* found no dev to bind */
  657. err = -ENODEV;
  658. done_unlock:
  659. /* Release the socket list lock */
  660. write_unlock_bh(&iucv_sk_list.lock);
  661. done:
  662. release_sock(sk);
  663. return err;
  664. }
  665. /* Automatically bind an unbound socket */
  666. static int iucv_sock_autobind(struct sock *sk)
  667. {
  668. struct iucv_sock *iucv = iucv_sk(sk);
  669. char name[12];
  670. int err = 0;
  671. if (unlikely(!pr_iucv))
  672. return -EPROTO;
  673. memcpy(iucv->src_user_id, iucv_userid, 8);
  674. write_lock_bh(&iucv_sk_list.lock);
  675. sprintf(name, "%08x", atomic_inc_return(&iucv_sk_list.autobind_name));
  676. while (__iucv_get_sock_by_name(name)) {
  677. sprintf(name, "%08x",
  678. atomic_inc_return(&iucv_sk_list.autobind_name));
  679. }
  680. write_unlock_bh(&iucv_sk_list.lock);
  681. memcpy(&iucv->src_name, name, 8);
  682. if (!iucv->msglimit)
  683. iucv->msglimit = IUCV_QUEUELEN_DEFAULT;
  684. return err;
  685. }
  686. static int afiucv_path_connect(struct socket *sock, struct sockaddr *addr)
  687. {
  688. struct sockaddr_iucv *sa = (struct sockaddr_iucv *) addr;
  689. struct sock *sk = sock->sk;
  690. struct iucv_sock *iucv = iucv_sk(sk);
  691. unsigned char user_data[16];
  692. int err;
  693. high_nmcpy(user_data, sa->siucv_name);
  694. low_nmcpy(user_data, iucv->src_name);
  695. ASCEBC(user_data, sizeof(user_data));
  696. /* Create path. */
  697. iucv->path = iucv_path_alloc(iucv->msglimit,
  698. IUCV_IPRMDATA, GFP_KERNEL);
  699. if (!iucv->path) {
  700. err = -ENOMEM;
  701. goto done;
  702. }
  703. err = pr_iucv->path_connect(iucv->path, &af_iucv_handler,
  704. sa->siucv_user_id, NULL, user_data,
  705. sk);
  706. if (err) {
  707. iucv_path_free(iucv->path);
  708. iucv->path = NULL;
  709. switch (err) {
  710. case 0x0b: /* Target communicator is not logged on */
  711. err = -ENETUNREACH;
  712. break;
  713. case 0x0d: /* Max connections for this guest exceeded */
  714. case 0x0e: /* Max connections for target guest exceeded */
  715. err = -EAGAIN;
  716. break;
  717. case 0x0f: /* Missing IUCV authorization */
  718. err = -EACCES;
  719. break;
  720. default:
  721. err = -ECONNREFUSED;
  722. break;
  723. }
  724. }
  725. done:
  726. return err;
  727. }
  728. /* Connect an unconnected socket */
  729. static int iucv_sock_connect(struct socket *sock, struct sockaddr *addr,
  730. int alen, int flags)
  731. {
  732. struct sockaddr_iucv *sa = (struct sockaddr_iucv *) addr;
  733. struct sock *sk = sock->sk;
  734. struct iucv_sock *iucv = iucv_sk(sk);
  735. int err;
  736. if (addr->sa_family != AF_IUCV || alen < sizeof(struct sockaddr_iucv))
  737. return -EINVAL;
  738. if (sk->sk_state != IUCV_OPEN && sk->sk_state != IUCV_BOUND)
  739. return -EBADFD;
  740. if (sk->sk_state == IUCV_OPEN &&
  741. iucv->transport == AF_IUCV_TRANS_HIPER)
  742. return -EBADFD; /* explicit bind required */
  743. if (sk->sk_type != SOCK_STREAM && sk->sk_type != SOCK_SEQPACKET)
  744. return -EINVAL;
  745. if (sk->sk_state == IUCV_OPEN) {
  746. err = iucv_sock_autobind(sk);
  747. if (unlikely(err))
  748. return err;
  749. }
  750. lock_sock(sk);
  751. /* Set the destination information */
  752. memcpy(iucv->dst_user_id, sa->siucv_user_id, 8);
  753. memcpy(iucv->dst_name, sa->siucv_name, 8);
  754. if (iucv->transport == AF_IUCV_TRANS_HIPER)
  755. err = iucv_send_ctrl(sock->sk, AF_IUCV_FLAG_SYN);
  756. else
  757. err = afiucv_path_connect(sock, addr);
  758. if (err)
  759. goto done;
  760. if (sk->sk_state != IUCV_CONNECTED)
  761. err = iucv_sock_wait(sk, iucv_sock_in_state(sk, IUCV_CONNECTED,
  762. IUCV_DISCONN),
  763. sock_sndtimeo(sk, flags & O_NONBLOCK));
  764. if (sk->sk_state == IUCV_DISCONN || sk->sk_state == IUCV_CLOSED)
  765. err = -ECONNREFUSED;
  766. if (err && iucv->transport == AF_IUCV_TRANS_IUCV)
  767. iucv_sever_path(sk, 0);
  768. done:
  769. release_sock(sk);
  770. return err;
  771. }
  772. /* Move a socket into listening state. */
  773. static int iucv_sock_listen(struct socket *sock, int backlog)
  774. {
  775. struct sock *sk = sock->sk;
  776. int err;
  777. lock_sock(sk);
  778. err = -EINVAL;
  779. if (sk->sk_state != IUCV_BOUND)
  780. goto done;
  781. if (sock->type != SOCK_STREAM && sock->type != SOCK_SEQPACKET)
  782. goto done;
  783. sk->sk_max_ack_backlog = backlog;
  784. sk->sk_ack_backlog = 0;
  785. sk->sk_state = IUCV_LISTEN;
  786. err = 0;
  787. done:
  788. release_sock(sk);
  789. return err;
  790. }
  791. /* Accept a pending connection */
  792. static int iucv_sock_accept(struct socket *sock, struct socket *newsock,
  793. int flags)
  794. {
  795. DECLARE_WAITQUEUE(wait, current);
  796. struct sock *sk = sock->sk, *nsk;
  797. long timeo;
  798. int err = 0;
  799. lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
  800. if (sk->sk_state != IUCV_LISTEN) {
  801. err = -EBADFD;
  802. goto done;
  803. }
  804. timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
  805. /* Wait for an incoming connection */
  806. add_wait_queue_exclusive(sk_sleep(sk), &wait);
  807. while (!(nsk = iucv_accept_dequeue(sk, newsock))) {
  808. set_current_state(TASK_INTERRUPTIBLE);
  809. if (!timeo) {
  810. err = -EAGAIN;
  811. break;
  812. }
  813. release_sock(sk);
  814. timeo = schedule_timeout(timeo);
  815. lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
  816. if (sk->sk_state != IUCV_LISTEN) {
  817. err = -EBADFD;
  818. break;
  819. }
  820. if (signal_pending(current)) {
  821. err = sock_intr_errno(timeo);
  822. break;
  823. }
  824. }
  825. set_current_state(TASK_RUNNING);
  826. remove_wait_queue(sk_sleep(sk), &wait);
  827. if (err)
  828. goto done;
  829. newsock->state = SS_CONNECTED;
  830. done:
  831. release_sock(sk);
  832. return err;
  833. }
  834. static int iucv_sock_getname(struct socket *sock, struct sockaddr *addr,
  835. int *len, int peer)
  836. {
  837. struct sockaddr_iucv *siucv = (struct sockaddr_iucv *) addr;
  838. struct sock *sk = sock->sk;
  839. struct iucv_sock *iucv = iucv_sk(sk);
  840. addr->sa_family = AF_IUCV;
  841. *len = sizeof(struct sockaddr_iucv);
  842. if (peer) {
  843. memcpy(siucv->siucv_user_id, iucv->dst_user_id, 8);
  844. memcpy(siucv->siucv_name, iucv->dst_name, 8);
  845. } else {
  846. memcpy(siucv->siucv_user_id, iucv->src_user_id, 8);
  847. memcpy(siucv->siucv_name, iucv->src_name, 8);
  848. }
  849. memset(&siucv->siucv_port, 0, sizeof(siucv->siucv_port));
  850. memset(&siucv->siucv_addr, 0, sizeof(siucv->siucv_addr));
  851. memset(&siucv->siucv_nodeid, 0, sizeof(siucv->siucv_nodeid));
  852. return 0;
  853. }
  854. /**
  855. * iucv_send_iprm() - Send socket data in parameter list of an iucv message.
  856. * @path: IUCV path
  857. * @msg: Pointer to a struct iucv_message
  858. * @skb: The socket data to send, skb->len MUST BE <= 7
  859. *
  860. * Send the socket data in the parameter list in the iucv message
  861. * (IUCV_IPRMDATA). The socket data is stored at index 0 to 6 in the parameter
  862. * list and the socket data len at index 7 (last byte).
  863. * See also iucv_msg_length().
  864. *
  865. * Returns the error code from the iucv_message_send() call.
  866. */
  867. static int iucv_send_iprm(struct iucv_path *path, struct iucv_message *msg,
  868. struct sk_buff *skb)
  869. {
  870. u8 prmdata[8];
  871. memcpy(prmdata, (void *) skb->data, skb->len);
  872. prmdata[7] = 0xff - (u8) skb->len;
  873. return pr_iucv->message_send(path, msg, IUCV_IPRMDATA, 0,
  874. (void *) prmdata, 8);
  875. }
  876. static int iucv_sock_sendmsg(struct kiocb *iocb, struct socket *sock,
  877. struct msghdr *msg, size_t len)
  878. {
  879. struct sock *sk = sock->sk;
  880. struct iucv_sock *iucv = iucv_sk(sk);
  881. struct sk_buff *skb;
  882. struct iucv_message txmsg;
  883. struct cmsghdr *cmsg;
  884. int cmsg_done;
  885. long timeo;
  886. char user_id[9];
  887. char appl_id[9];
  888. int err;
  889. int noblock = msg->msg_flags & MSG_DONTWAIT;
  890. err = sock_error(sk);
  891. if (err)
  892. return err;
  893. if (msg->msg_flags & MSG_OOB)
  894. return -EOPNOTSUPP;
  895. /* SOCK_SEQPACKET: we do not support segmented records */
  896. if (sk->sk_type == SOCK_SEQPACKET && !(msg->msg_flags & MSG_EOR))
  897. return -EOPNOTSUPP;
  898. lock_sock(sk);
  899. if (sk->sk_shutdown & SEND_SHUTDOWN) {
  900. err = -EPIPE;
  901. goto out;
  902. }
  903. /* Return if the socket is not in connected state */
  904. if (sk->sk_state != IUCV_CONNECTED) {
  905. err = -ENOTCONN;
  906. goto out;
  907. }
  908. /* initialize defaults */
  909. cmsg_done = 0; /* check for duplicate headers */
  910. txmsg.class = 0;
  911. /* iterate over control messages */
  912. for (cmsg = CMSG_FIRSTHDR(msg); cmsg;
  913. cmsg = CMSG_NXTHDR(msg, cmsg)) {
  914. if (!CMSG_OK(msg, cmsg)) {
  915. err = -EINVAL;
  916. goto out;
  917. }
  918. if (cmsg->cmsg_level != SOL_IUCV)
  919. continue;
  920. if (cmsg->cmsg_type & cmsg_done) {
  921. err = -EINVAL;
  922. goto out;
  923. }
  924. cmsg_done |= cmsg->cmsg_type;
  925. switch (cmsg->cmsg_type) {
  926. case SCM_IUCV_TRGCLS:
  927. if (cmsg->cmsg_len != CMSG_LEN(TRGCLS_SIZE)) {
  928. err = -EINVAL;
  929. goto out;
  930. }
  931. /* set iucv message target class */
  932. memcpy(&txmsg.class,
  933. (void *) CMSG_DATA(cmsg), TRGCLS_SIZE);
  934. break;
  935. default:
  936. err = -EINVAL;
  937. goto out;
  938. break;
  939. }
  940. }
  941. /* allocate one skb for each iucv message:
  942. * this is fine for SOCK_SEQPACKET (unless we want to support
  943. * segmented records using the MSG_EOR flag), but
  944. * for SOCK_STREAM we might want to improve it in future */
  945. if (iucv->transport == AF_IUCV_TRANS_HIPER)
  946. skb = sock_alloc_send_skb(sk,
  947. len + sizeof(struct af_iucv_trans_hdr) + ETH_HLEN,
  948. noblock, &err);
  949. else
  950. skb = sock_alloc_send_skb(sk, len, noblock, &err);
  951. if (!skb) {
  952. err = -ENOMEM;
  953. goto out;
  954. }
  955. if (iucv->transport == AF_IUCV_TRANS_HIPER)
  956. skb_reserve(skb, sizeof(struct af_iucv_trans_hdr) + ETH_HLEN);
  957. if (memcpy_fromiovec(skb_put(skb, len), msg->msg_iov, len)) {
  958. err = -EFAULT;
  959. goto fail;
  960. }
  961. /* wait if outstanding messages for iucv path has reached */
  962. timeo = sock_sndtimeo(sk, noblock);
  963. err = iucv_sock_wait(sk, iucv_below_msglim(sk), timeo);
  964. if (err)
  965. goto fail;
  966. /* return -ECONNRESET if the socket is no longer connected */
  967. if (sk->sk_state != IUCV_CONNECTED) {
  968. err = -ECONNRESET;
  969. goto fail;
  970. }
  971. /* increment and save iucv message tag for msg_completion cbk */
  972. txmsg.tag = iucv->send_tag++;
  973. memcpy(CB_TAG(skb), &txmsg.tag, CB_TAG_LEN);
  974. if (iucv->transport == AF_IUCV_TRANS_HIPER) {
  975. atomic_inc(&iucv->msg_sent);
  976. err = afiucv_hs_send(&txmsg, sk, skb, 0);
  977. if (err) {
  978. atomic_dec(&iucv->msg_sent);
  979. goto fail;
  980. }
  981. goto release;
  982. }
  983. skb_queue_tail(&iucv->send_skb_q, skb);
  984. if (((iucv->path->flags & IUCV_IPRMDATA) & iucv->flags)
  985. && skb->len <= 7) {
  986. err = iucv_send_iprm(iucv->path, &txmsg, skb);
  987. /* on success: there is no message_complete callback
  988. * for an IPRMDATA msg; remove skb from send queue */
  989. if (err == 0) {
  990. skb_unlink(skb, &iucv->send_skb_q);
  991. kfree_skb(skb);
  992. }
  993. /* this error should never happen since the
  994. * IUCV_IPRMDATA path flag is set... sever path */
  995. if (err == 0x15) {
  996. pr_iucv->path_sever(iucv->path, NULL);
  997. skb_unlink(skb, &iucv->send_skb_q);
  998. err = -EPIPE;
  999. goto fail;
  1000. }
  1001. } else
  1002. err = pr_iucv->message_send(iucv->path, &txmsg, 0, 0,
  1003. (void *) skb->data, skb->len);
  1004. if (err) {
  1005. if (err == 3) {
  1006. user_id[8] = 0;
  1007. memcpy(user_id, iucv->dst_user_id, 8);
  1008. appl_id[8] = 0;
  1009. memcpy(appl_id, iucv->dst_name, 8);
  1010. pr_err("Application %s on z/VM guest %s"
  1011. " exceeds message limit\n",
  1012. appl_id, user_id);
  1013. err = -EAGAIN;
  1014. } else
  1015. err = -EPIPE;
  1016. skb_unlink(skb, &iucv->send_skb_q);
  1017. goto fail;
  1018. }
  1019. release:
  1020. release_sock(sk);
  1021. return len;
  1022. fail:
  1023. kfree_skb(skb);
  1024. out:
  1025. release_sock(sk);
  1026. return err;
  1027. }
  1028. /* iucv_fragment_skb() - Fragment a single IUCV message into multiple skb's
  1029. *
  1030. * Locking: must be called with message_q.lock held
  1031. */
  1032. static int iucv_fragment_skb(struct sock *sk, struct sk_buff *skb, int len)
  1033. {
  1034. int dataleft, size, copied = 0;
  1035. struct sk_buff *nskb;
  1036. dataleft = len;
  1037. while (dataleft) {
  1038. if (dataleft >= sk->sk_rcvbuf / 4)
  1039. size = sk->sk_rcvbuf / 4;
  1040. else
  1041. size = dataleft;
  1042. nskb = alloc_skb(size, GFP_ATOMIC | GFP_DMA);
  1043. if (!nskb)
  1044. return -ENOMEM;
  1045. /* copy target class to control buffer of new skb */
  1046. memcpy(CB_TRGCLS(nskb), CB_TRGCLS(skb), CB_TRGCLS_LEN);
  1047. /* copy data fragment */
  1048. memcpy(nskb->data, skb->data + copied, size);
  1049. copied += size;
  1050. dataleft -= size;
  1051. skb_reset_transport_header(nskb);
  1052. skb_reset_network_header(nskb);
  1053. nskb->len = size;
  1054. skb_queue_tail(&iucv_sk(sk)->backlog_skb_q, nskb);
  1055. }
  1056. return 0;
  1057. }
  1058. /* iucv_process_message() - Receive a single outstanding IUCV message
  1059. *
  1060. * Locking: must be called with message_q.lock held
  1061. */
  1062. static void iucv_process_message(struct sock *sk, struct sk_buff *skb,
  1063. struct iucv_path *path,
  1064. struct iucv_message *msg)
  1065. {
  1066. int rc;
  1067. unsigned int len;
  1068. len = iucv_msg_length(msg);
  1069. /* store msg target class in the second 4 bytes of skb ctrl buffer */
  1070. /* Note: the first 4 bytes are reserved for msg tag */
  1071. memcpy(CB_TRGCLS(skb), &msg->class, CB_TRGCLS_LEN);
  1072. /* check for special IPRM messages (e.g. iucv_sock_shutdown) */
  1073. if ((msg->flags & IUCV_IPRMDATA) && len > 7) {
  1074. if (memcmp(msg->rmmsg, iprm_shutdown, 8) == 0) {
  1075. skb->data = NULL;
  1076. skb->len = 0;
  1077. }
  1078. } else {
  1079. rc = pr_iucv->message_receive(path, msg,
  1080. msg->flags & IUCV_IPRMDATA,
  1081. skb->data, len, NULL);
  1082. if (rc) {
  1083. kfree_skb(skb);
  1084. return;
  1085. }
  1086. /* we need to fragment iucv messages for SOCK_STREAM only;
  1087. * for SOCK_SEQPACKET, it is only relevant if we support
  1088. * record segmentation using MSG_EOR (see also recvmsg()) */
  1089. if (sk->sk_type == SOCK_STREAM &&
  1090. skb->truesize >= sk->sk_rcvbuf / 4) {
  1091. rc = iucv_fragment_skb(sk, skb, len);
  1092. kfree_skb(skb);
  1093. skb = NULL;
  1094. if (rc) {
  1095. pr_iucv->path_sever(path, NULL);
  1096. return;
  1097. }
  1098. skb = skb_dequeue(&iucv_sk(sk)->backlog_skb_q);
  1099. } else {
  1100. skb_reset_transport_header(skb);
  1101. skb_reset_network_header(skb);
  1102. skb->len = len;
  1103. }
  1104. }
  1105. if (sock_queue_rcv_skb(sk, skb))
  1106. skb_queue_head(&iucv_sk(sk)->backlog_skb_q, skb);
  1107. }
  1108. /* iucv_process_message_q() - Process outstanding IUCV messages
  1109. *
  1110. * Locking: must be called with message_q.lock held
  1111. */
  1112. static void iucv_process_message_q(struct sock *sk)
  1113. {
  1114. struct iucv_sock *iucv = iucv_sk(sk);
  1115. struct sk_buff *skb;
  1116. struct sock_msg_q *p, *n;
  1117. list_for_each_entry_safe(p, n, &iucv->message_q.list, list) {
  1118. skb = alloc_skb(iucv_msg_length(&p->msg), GFP_ATOMIC | GFP_DMA);
  1119. if (!skb)
  1120. break;
  1121. iucv_process_message(sk, skb, p->path, &p->msg);
  1122. list_del(&p->list);
  1123. kfree(p);
  1124. if (!skb_queue_empty(&iucv->backlog_skb_q))
  1125. break;
  1126. }
  1127. }
  1128. static int iucv_sock_recvmsg(struct kiocb *iocb, struct socket *sock,
  1129. struct msghdr *msg, size_t len, int flags)
  1130. {
  1131. int noblock = flags & MSG_DONTWAIT;
  1132. struct sock *sk = sock->sk;
  1133. struct iucv_sock *iucv = iucv_sk(sk);
  1134. unsigned int copied, rlen;
  1135. struct sk_buff *skb, *rskb, *cskb;
  1136. int err = 0;
  1137. msg->msg_namelen = 0;
  1138. if ((sk->sk_state == IUCV_DISCONN) &&
  1139. skb_queue_empty(&iucv->backlog_skb_q) &&
  1140. skb_queue_empty(&sk->sk_receive_queue) &&
  1141. list_empty(&iucv->message_q.list))
  1142. return 0;
  1143. if (flags & (MSG_OOB))
  1144. return -EOPNOTSUPP;
  1145. /* receive/dequeue next skb:
  1146. * the function understands MSG_PEEK and, thus, does not dequeue skb */
  1147. skb = skb_recv_datagram(sk, flags, noblock, &err);
  1148. if (!skb) {
  1149. if (sk->sk_shutdown & RCV_SHUTDOWN)
  1150. return 0;
  1151. return err;
  1152. }
  1153. rlen = skb->len; /* real length of skb */
  1154. copied = min_t(unsigned int, rlen, len);
  1155. if (!rlen)
  1156. sk->sk_shutdown = sk->sk_shutdown | RCV_SHUTDOWN;
  1157. cskb = skb;
  1158. if (skb_copy_datagram_iovec(cskb, 0, msg->msg_iov, copied)) {
  1159. if (!(flags & MSG_PEEK))
  1160. skb_queue_head(&sk->sk_receive_queue, skb);
  1161. return -EFAULT;
  1162. }
  1163. /* SOCK_SEQPACKET: set MSG_TRUNC if recv buf size is too small */
  1164. if (sk->sk_type == SOCK_SEQPACKET) {
  1165. if (copied < rlen)
  1166. msg->msg_flags |= MSG_TRUNC;
  1167. /* each iucv message contains a complete record */
  1168. msg->msg_flags |= MSG_EOR;
  1169. }
  1170. /* create control message to store iucv msg target class:
  1171. * get the trgcls from the control buffer of the skb due to
  1172. * fragmentation of original iucv message. */
  1173. err = put_cmsg(msg, SOL_IUCV, SCM_IUCV_TRGCLS,
  1174. CB_TRGCLS_LEN, CB_TRGCLS(skb));
  1175. if (err) {
  1176. if (!(flags & MSG_PEEK))
  1177. skb_queue_head(&sk->sk_receive_queue, skb);
  1178. return err;
  1179. }
  1180. /* Mark read part of skb as used */
  1181. if (!(flags & MSG_PEEK)) {
  1182. /* SOCK_STREAM: re-queue skb if it contains unreceived data */
  1183. if (sk->sk_type == SOCK_STREAM) {
  1184. skb_pull(skb, copied);
  1185. if (skb->len) {
  1186. skb_queue_head(&sk->sk_receive_queue, skb);
  1187. goto done;
  1188. }
  1189. }
  1190. kfree_skb(skb);
  1191. if (iucv->transport == AF_IUCV_TRANS_HIPER) {
  1192. atomic_inc(&iucv->msg_recv);
  1193. if (atomic_read(&iucv->msg_recv) > iucv->msglimit) {
  1194. WARN_ON(1);
  1195. iucv_sock_close(sk);
  1196. return -EFAULT;
  1197. }
  1198. }
  1199. /* Queue backlog skbs */
  1200. spin_lock_bh(&iucv->message_q.lock);
  1201. rskb = skb_dequeue(&iucv->backlog_skb_q);
  1202. while (rskb) {
  1203. if (sock_queue_rcv_skb(sk, rskb)) {
  1204. skb_queue_head(&iucv->backlog_skb_q,
  1205. rskb);
  1206. break;
  1207. } else {
  1208. rskb = skb_dequeue(&iucv->backlog_skb_q);
  1209. }
  1210. }
  1211. if (skb_queue_empty(&iucv->backlog_skb_q)) {
  1212. if (!list_empty(&iucv->message_q.list))
  1213. iucv_process_message_q(sk);
  1214. if (atomic_read(&iucv->msg_recv) >=
  1215. iucv->msglimit / 2) {
  1216. err = iucv_send_ctrl(sk, AF_IUCV_FLAG_WIN);
  1217. if (err) {
  1218. sk->sk_state = IUCV_DISCONN;
  1219. sk->sk_state_change(sk);
  1220. }
  1221. }
  1222. }
  1223. spin_unlock_bh(&iucv->message_q.lock);
  1224. }
  1225. done:
  1226. /* SOCK_SEQPACKET: return real length if MSG_TRUNC is set */
  1227. if (sk->sk_type == SOCK_SEQPACKET && (flags & MSG_TRUNC))
  1228. copied = rlen;
  1229. return copied;
  1230. }
  1231. static inline unsigned int iucv_accept_poll(struct sock *parent)
  1232. {
  1233. struct iucv_sock *isk, *n;
  1234. struct sock *sk;
  1235. list_for_each_entry_safe(isk, n, &iucv_sk(parent)->accept_q, accept_q) {
  1236. sk = (struct sock *) isk;
  1237. if (sk->sk_state == IUCV_CONNECTED)
  1238. return POLLIN | POLLRDNORM;
  1239. }
  1240. return 0;
  1241. }
  1242. unsigned int iucv_sock_poll(struct file *file, struct socket *sock,
  1243. poll_table *wait)
  1244. {
  1245. struct sock *sk = sock->sk;
  1246. unsigned int mask = 0;
  1247. sock_poll_wait(file, sk_sleep(sk), wait);
  1248. if (sk->sk_state == IUCV_LISTEN)
  1249. return iucv_accept_poll(sk);
  1250. if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
  1251. mask |= POLLERR;
  1252. if (sk->sk_shutdown & RCV_SHUTDOWN)
  1253. mask |= POLLRDHUP;
  1254. if (sk->sk_shutdown == SHUTDOWN_MASK)
  1255. mask |= POLLHUP;
  1256. if (!skb_queue_empty(&sk->sk_receive_queue) ||
  1257. (sk->sk_shutdown & RCV_SHUTDOWN))
  1258. mask |= POLLIN | POLLRDNORM;
  1259. if (sk->sk_state == IUCV_CLOSED)
  1260. mask |= POLLHUP;
  1261. if (sk->sk_state == IUCV_DISCONN)
  1262. mask |= POLLIN;
  1263. if (sock_writeable(sk) && iucv_below_msglim(sk))
  1264. mask |= POLLOUT | POLLWRNORM | POLLWRBAND;
  1265. else
  1266. set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
  1267. return mask;
  1268. }
  1269. static int iucv_sock_shutdown(struct socket *sock, int how)
  1270. {
  1271. struct sock *sk = sock->sk;
  1272. struct iucv_sock *iucv = iucv_sk(sk);
  1273. struct iucv_message txmsg;
  1274. int err = 0;
  1275. how++;
  1276. if ((how & ~SHUTDOWN_MASK) || !how)
  1277. return -EINVAL;
  1278. lock_sock(sk);
  1279. switch (sk->sk_state) {
  1280. case IUCV_LISTEN:
  1281. case IUCV_DISCONN:
  1282. case IUCV_CLOSING:
  1283. case IUCV_CLOSED:
  1284. err = -ENOTCONN;
  1285. goto fail;
  1286. default:
  1287. break;
  1288. }
  1289. if (how == SEND_SHUTDOWN || how == SHUTDOWN_MASK) {
  1290. if (iucv->transport == AF_IUCV_TRANS_IUCV) {
  1291. txmsg.class = 0;
  1292. txmsg.tag = 0;
  1293. err = pr_iucv->message_send(iucv->path, &txmsg,
  1294. IUCV_IPRMDATA, 0, (void *) iprm_shutdown, 8);
  1295. if (err) {
  1296. switch (err) {
  1297. case 1:
  1298. err = -ENOTCONN;
  1299. break;
  1300. case 2:
  1301. err = -ECONNRESET;
  1302. break;
  1303. default:
  1304. err = -ENOTCONN;
  1305. break;
  1306. }
  1307. }
  1308. } else
  1309. iucv_send_ctrl(sk, AF_IUCV_FLAG_SHT);
  1310. }
  1311. sk->sk_shutdown |= how;
  1312. if (how == RCV_SHUTDOWN || how == SHUTDOWN_MASK) {
  1313. if (iucv->transport == AF_IUCV_TRANS_IUCV) {
  1314. err = pr_iucv->path_quiesce(iucv->path, NULL);
  1315. if (err)
  1316. err = -ENOTCONN;
  1317. /* skb_queue_purge(&sk->sk_receive_queue); */
  1318. }
  1319. skb_queue_purge(&sk->sk_receive_queue);
  1320. }
  1321. /* Wake up anyone sleeping in poll */
  1322. sk->sk_state_change(sk);
  1323. fail:
  1324. release_sock(sk);
  1325. return err;
  1326. }
  1327. static int iucv_sock_release(struct socket *sock)
  1328. {
  1329. struct sock *sk = sock->sk;
  1330. int err = 0;
  1331. if (!sk)
  1332. return 0;
  1333. iucv_sock_close(sk);
  1334. sock_orphan(sk);
  1335. iucv_sock_kill(sk);
  1336. return err;
  1337. }
  1338. /* getsockopt and setsockopt */
  1339. static int iucv_sock_setsockopt(struct socket *sock, int level, int optname,
  1340. char __user *optval, unsigned int optlen)
  1341. {
  1342. struct sock *sk = sock->sk;
  1343. struct iucv_sock *iucv = iucv_sk(sk);
  1344. int val;
  1345. int rc;
  1346. if (level != SOL_IUCV)
  1347. return -ENOPROTOOPT;
  1348. if (optlen < sizeof(int))
  1349. return -EINVAL;
  1350. if (get_user(val, (int __user *) optval))
  1351. return -EFAULT;
  1352. rc = 0;
  1353. lock_sock(sk);
  1354. switch (optname) {
  1355. case SO_IPRMDATA_MSG:
  1356. if (val)
  1357. iucv->flags |= IUCV_IPRMDATA;
  1358. else
  1359. iucv->flags &= ~IUCV_IPRMDATA;
  1360. break;
  1361. case SO_MSGLIMIT:
  1362. switch (sk->sk_state) {
  1363. case IUCV_OPEN:
  1364. case IUCV_BOUND:
  1365. if (val < 1 || val > (u16)(~0))
  1366. rc = -EINVAL;
  1367. else
  1368. iucv->msglimit = val;
  1369. break;
  1370. default:
  1371. rc = -EINVAL;
  1372. break;
  1373. }
  1374. break;
  1375. default:
  1376. rc = -ENOPROTOOPT;
  1377. break;
  1378. }
  1379. release_sock(sk);
  1380. return rc;
  1381. }
  1382. static int iucv_sock_getsockopt(struct socket *sock, int level, int optname,
  1383. char __user *optval, int __user *optlen)
  1384. {
  1385. struct sock *sk = sock->sk;
  1386. struct iucv_sock *iucv = iucv_sk(sk);
  1387. unsigned int val;
  1388. int len;
  1389. if (level != SOL_IUCV)
  1390. return -ENOPROTOOPT;
  1391. if (get_user(len, optlen))
  1392. return -EFAULT;
  1393. if (len < 0)
  1394. return -EINVAL;
  1395. len = min_t(unsigned int, len, sizeof(int));
  1396. switch (optname) {
  1397. case SO_IPRMDATA_MSG:
  1398. val = (iucv->flags & IUCV_IPRMDATA) ? 1 : 0;
  1399. break;
  1400. case SO_MSGLIMIT:
  1401. lock_sock(sk);
  1402. val = (iucv->path != NULL) ? iucv->path->msglim /* connected */
  1403. : iucv->msglimit; /* default */
  1404. release_sock(sk);
  1405. break;
  1406. case SO_MSGSIZE:
  1407. if (sk->sk_state == IUCV_OPEN)
  1408. return -EBADFD;
  1409. val = (iucv->hs_dev) ? iucv->hs_dev->mtu -
  1410. sizeof(struct af_iucv_trans_hdr) - ETH_HLEN :
  1411. 0x7fffffff;
  1412. break;
  1413. default:
  1414. return -ENOPROTOOPT;
  1415. }
  1416. if (put_user(len, optlen))
  1417. return -EFAULT;
  1418. if (copy_to_user(optval, &val, len))
  1419. return -EFAULT;
  1420. return 0;
  1421. }
  1422. /* Callback wrappers - called from iucv base support */
  1423. static int iucv_callback_connreq(struct iucv_path *path,
  1424. u8 ipvmid[8], u8 ipuser[16])
  1425. {
  1426. unsigned char user_data[16];
  1427. unsigned char nuser_data[16];
  1428. unsigned char src_name[8];
  1429. struct sock *sk, *nsk;
  1430. struct iucv_sock *iucv, *niucv;
  1431. int err;
  1432. memcpy(src_name, ipuser, 8);
  1433. EBCASC(src_name, 8);
  1434. /* Find out if this path belongs to af_iucv. */
  1435. read_lock(&iucv_sk_list.lock);
  1436. iucv = NULL;
  1437. sk = NULL;
  1438. sk_for_each(sk, &iucv_sk_list.head)
  1439. if (sk->sk_state == IUCV_LISTEN &&
  1440. !memcmp(&iucv_sk(sk)->src_name, src_name, 8)) {
  1441. /*
  1442. * Found a listening socket with
  1443. * src_name == ipuser[0-7].
  1444. */
  1445. iucv = iucv_sk(sk);
  1446. break;
  1447. }
  1448. read_unlock(&iucv_sk_list.lock);
  1449. if (!iucv)
  1450. /* No socket found, not one of our paths. */
  1451. return -EINVAL;
  1452. bh_lock_sock(sk);
  1453. /* Check if parent socket is listening */
  1454. low_nmcpy(user_data, iucv->src_name);
  1455. high_nmcpy(user_data, iucv->dst_name);
  1456. ASCEBC(user_data, sizeof(user_data));
  1457. if (sk->sk_state != IUCV_LISTEN) {
  1458. err = pr_iucv->path_sever(path, user_data);
  1459. iucv_path_free(path);
  1460. goto fail;
  1461. }
  1462. /* Check for backlog size */
  1463. if (sk_acceptq_is_full(sk)) {
  1464. err = pr_iucv->path_sever(path, user_data);
  1465. iucv_path_free(path);
  1466. goto fail;
  1467. }
  1468. /* Create the new socket */
  1469. nsk = iucv_sock_alloc(NULL, sk->sk_type, GFP_ATOMIC);
  1470. if (!nsk) {
  1471. err = pr_iucv->path_sever(path, user_data);
  1472. iucv_path_free(path);
  1473. goto fail;
  1474. }
  1475. niucv = iucv_sk(nsk);
  1476. iucv_sock_init(nsk, sk);
  1477. /* Set the new iucv_sock */
  1478. memcpy(niucv->dst_name, ipuser + 8, 8);
  1479. EBCASC(niucv->dst_name, 8);
  1480. memcpy(niucv->dst_user_id, ipvmid, 8);
  1481. memcpy(niucv->src_name, iucv->src_name, 8);
  1482. memcpy(niucv->src_user_id, iucv->src_user_id, 8);
  1483. niucv->path = path;
  1484. /* Call iucv_accept */
  1485. high_nmcpy(nuser_data, ipuser + 8);
  1486. memcpy(nuser_data + 8, niucv->src_name, 8);
  1487. ASCEBC(nuser_data + 8, 8);
  1488. /* set message limit for path based on msglimit of accepting socket */
  1489. niucv->msglimit = iucv->msglimit;
  1490. path->msglim = iucv->msglimit;
  1491. err = pr_iucv->path_accept(path, &af_iucv_handler, nuser_data, nsk);
  1492. if (err) {
  1493. iucv_sever_path(nsk, 1);
  1494. iucv_sock_kill(nsk);
  1495. goto fail;
  1496. }
  1497. iucv_accept_enqueue(sk, nsk);
  1498. /* Wake up accept */
  1499. nsk->sk_state = IUCV_CONNECTED;
  1500. sk->sk_data_ready(sk, 1);
  1501. err = 0;
  1502. fail:
  1503. bh_unlock_sock(sk);
  1504. return 0;
  1505. }
  1506. static void iucv_callback_connack(struct iucv_path *path, u8 ipuser[16])
  1507. {
  1508. struct sock *sk = path->private;
  1509. sk->sk_state = IUCV_CONNECTED;
  1510. sk->sk_state_change(sk);
  1511. }
  1512. static void iucv_callback_rx(struct iucv_path *path, struct iucv_message *msg)
  1513. {
  1514. struct sock *sk = path->private;
  1515. struct iucv_sock *iucv = iucv_sk(sk);
  1516. struct sk_buff *skb;
  1517. struct sock_msg_q *save_msg;
  1518. int len;
  1519. if (sk->sk_shutdown & RCV_SHUTDOWN) {
  1520. pr_iucv->message_reject(path, msg);
  1521. return;
  1522. }
  1523. spin_lock(&iucv->message_q.lock);
  1524. if (!list_empty(&iucv->message_q.list) ||
  1525. !skb_queue_empty(&iucv->backlog_skb_q))
  1526. goto save_message;
  1527. len = atomic_read(&sk->sk_rmem_alloc);
  1528. len += SKB_TRUESIZE(iucv_msg_length(msg));
  1529. if (len > sk->sk_rcvbuf)
  1530. goto save_message;
  1531. skb = alloc_skb(iucv_msg_length(msg), GFP_ATOMIC | GFP_DMA);
  1532. if (!skb)
  1533. goto save_message;
  1534. iucv_process_message(sk, skb, path, msg);
  1535. goto out_unlock;
  1536. save_message:
  1537. save_msg = kzalloc(sizeof(struct sock_msg_q), GFP_ATOMIC | GFP_DMA);
  1538. if (!save_msg)
  1539. goto out_unlock;
  1540. save_msg->path = path;
  1541. save_msg->msg = *msg;
  1542. list_add_tail(&save_msg->list, &iucv->message_q.list);
  1543. out_unlock:
  1544. spin_unlock(&iucv->message_q.lock);
  1545. }
  1546. static void iucv_callback_txdone(struct iucv_path *path,
  1547. struct iucv_message *msg)
  1548. {
  1549. struct sock *sk = path->private;
  1550. struct sk_buff *this = NULL;
  1551. struct sk_buff_head *list = &iucv_sk(sk)->send_skb_q;
  1552. struct sk_buff *list_skb = list->next;
  1553. unsigned long flags;
  1554. bh_lock_sock(sk);
  1555. if (!skb_queue_empty(list)) {
  1556. spin_lock_irqsave(&list->lock, flags);
  1557. while (list_skb != (struct sk_buff *)list) {
  1558. if (!memcmp(&msg->tag, CB_TAG(list_skb), CB_TAG_LEN)) {
  1559. this = list_skb;
  1560. break;
  1561. }
  1562. list_skb = list_skb->next;
  1563. }
  1564. if (this)
  1565. __skb_unlink(this, list);
  1566. spin_unlock_irqrestore(&list->lock, flags);
  1567. if (this) {
  1568. kfree_skb(this);
  1569. /* wake up any process waiting for sending */
  1570. iucv_sock_wake_msglim(sk);
  1571. }
  1572. }
  1573. if (sk->sk_state == IUCV_CLOSING) {
  1574. if (skb_queue_empty(&iucv_sk(sk)->send_skb_q)) {
  1575. sk->sk_state = IUCV_CLOSED;
  1576. sk->sk_state_change(sk);
  1577. }
  1578. }
  1579. bh_unlock_sock(sk);
  1580. }
  1581. static void iucv_callback_connrej(struct iucv_path *path, u8 ipuser[16])
  1582. {
  1583. struct sock *sk = path->private;
  1584. if (sk->sk_state == IUCV_CLOSED)
  1585. return;
  1586. bh_lock_sock(sk);
  1587. iucv_sever_path(sk, 1);
  1588. sk->sk_state = IUCV_DISCONN;
  1589. sk->sk_state_change(sk);
  1590. bh_unlock_sock(sk);
  1591. }
  1592. /* called if the other communication side shuts down its RECV direction;
  1593. * in turn, the callback sets SEND_SHUTDOWN to disable sending of data.
  1594. */
  1595. static void iucv_callback_shutdown(struct iucv_path *path, u8 ipuser[16])
  1596. {
  1597. struct sock *sk = path->private;
  1598. bh_lock_sock(sk);
  1599. if (sk->sk_state != IUCV_CLOSED) {
  1600. sk->sk_shutdown |= SEND_SHUTDOWN;
  1601. sk->sk_state_change(sk);
  1602. }
  1603. bh_unlock_sock(sk);
  1604. }
  1605. /***************** HiperSockets transport callbacks ********************/
  1606. static void afiucv_swap_src_dest(struct sk_buff *skb)
  1607. {
  1608. struct af_iucv_trans_hdr *trans_hdr =
  1609. (struct af_iucv_trans_hdr *)skb->data;
  1610. char tmpID[8];
  1611. char tmpName[8];
  1612. ASCEBC(trans_hdr->destUserID, sizeof(trans_hdr->destUserID));
  1613. ASCEBC(trans_hdr->destAppName, sizeof(trans_hdr->destAppName));
  1614. ASCEBC(trans_hdr->srcUserID, sizeof(trans_hdr->srcUserID));
  1615. ASCEBC(trans_hdr->srcAppName, sizeof(trans_hdr->srcAppName));
  1616. memcpy(tmpID, trans_hdr->srcUserID, 8);
  1617. memcpy(tmpName, trans_hdr->srcAppName, 8);
  1618. memcpy(trans_hdr->srcUserID, trans_hdr->destUserID, 8);
  1619. memcpy(trans_hdr->srcAppName, trans_hdr->destAppName, 8);
  1620. memcpy(trans_hdr->destUserID, tmpID, 8);
  1621. memcpy(trans_hdr->destAppName, tmpName, 8);
  1622. skb_push(skb, ETH_HLEN);
  1623. memset(skb->data, 0, ETH_HLEN);
  1624. }
  1625. /**
  1626. * afiucv_hs_callback_syn - react on received SYN
  1627. **/
  1628. static int afiucv_hs_callback_syn(struct sock *sk, struct sk_buff *skb)
  1629. {
  1630. struct sock *nsk;
  1631. struct iucv_sock *iucv, *niucv;
  1632. struct af_iucv_trans_hdr *trans_hdr;
  1633. int err;
  1634. iucv = iucv_sk(sk);
  1635. trans_hdr = (struct af_iucv_trans_hdr *)skb->data;
  1636. if (!iucv) {
  1637. /* no sock - connection refused */
  1638. afiucv_swap_src_dest(skb);
  1639. trans_hdr->flags = AF_IUCV_FLAG_SYN | AF_IUCV_FLAG_FIN;
  1640. err = dev_queue_xmit(skb);
  1641. goto out;
  1642. }
  1643. nsk = iucv_sock_alloc(NULL, sk->sk_type, GFP_ATOMIC);
  1644. bh_lock_sock(sk);
  1645. if ((sk->sk_state != IUCV_LISTEN) ||
  1646. sk_acceptq_is_full(sk) ||
  1647. !nsk) {
  1648. /* error on server socket - connection refused */
  1649. if (nsk)
  1650. sk_free(nsk);
  1651. afiucv_swap_src_dest(skb);
  1652. trans_hdr->flags = AF_IUCV_FLAG_SYN | AF_IUCV_FLAG_FIN;
  1653. err = dev_queue_xmit(skb);
  1654. bh_unlock_sock(sk);
  1655. goto out;
  1656. }
  1657. niucv = iucv_sk(nsk);
  1658. iucv_sock_init(nsk, sk);
  1659. niucv->transport = AF_IUCV_TRANS_HIPER;
  1660. niucv->msglimit = iucv->msglimit;
  1661. if (!trans_hdr->window)
  1662. niucv->msglimit_peer = IUCV_HIPER_MSGLIM_DEFAULT;
  1663. else
  1664. niucv->msglimit_peer = trans_hdr->window;
  1665. memcpy(niucv->dst_name, trans_hdr->srcAppName, 8);
  1666. memcpy(niucv->dst_user_id, trans_hdr->srcUserID, 8);
  1667. memcpy(niucv->src_name, iucv->src_name, 8);
  1668. memcpy(niucv->src_user_id, iucv->src_user_id, 8);
  1669. nsk->sk_bound_dev_if = sk->sk_bound_dev_if;
  1670. niucv->hs_dev = iucv->hs_dev;
  1671. dev_hold(niucv->hs_dev);
  1672. afiucv_swap_src_dest(skb);
  1673. trans_hdr->flags = AF_IUCV_FLAG_SYN | AF_IUCV_FLAG_ACK;
  1674. trans_hdr->window = niucv->msglimit;
  1675. /* if receiver acks the xmit connection is established */
  1676. err = dev_queue_xmit(skb);
  1677. if (!err) {
  1678. iucv_accept_enqueue(sk, nsk);
  1679. nsk->sk_state = IUCV_CONNECTED;
  1680. sk->sk_data_ready(sk, 1);
  1681. } else
  1682. iucv_sock_kill(nsk);
  1683. bh_unlock_sock(sk);
  1684. out:
  1685. return NET_RX_SUCCESS;
  1686. }
  1687. /**
  1688. * afiucv_hs_callback_synack() - react on received SYN-ACK
  1689. **/
  1690. static int afiucv_hs_callback_synack(struct sock *sk, struct sk_buff *skb)
  1691. {
  1692. struct iucv_sock *iucv = iucv_sk(sk);
  1693. struct af_iucv_trans_hdr *trans_hdr =
  1694. (struct af_iucv_trans_hdr *)skb->data;
  1695. if (!iucv)
  1696. goto out;
  1697. if (sk->sk_state != IUCV_BOUND)
  1698. goto out;
  1699. bh_lock_sock(sk);
  1700. iucv->msglimit_peer = trans_hdr->window;
  1701. sk->sk_state = IUCV_CONNECTED;
  1702. sk->sk_state_change(sk);
  1703. bh_unlock_sock(sk);
  1704. out:
  1705. kfree_skb(skb);
  1706. return NET_RX_SUCCESS;
  1707. }
  1708. /**
  1709. * afiucv_hs_callback_synfin() - react on received SYN_FIN
  1710. **/
  1711. static int afiucv_hs_callback_synfin(struct sock *sk, struct sk_buff *skb)
  1712. {
  1713. struct iucv_sock *iucv = iucv_sk(sk);
  1714. if (!iucv)
  1715. goto out;
  1716. if (sk->sk_state != IUCV_BOUND)
  1717. goto out;
  1718. bh_lock_sock(sk);
  1719. sk->sk_state = IUCV_DISCONN;
  1720. sk->sk_state_change(sk);
  1721. bh_unlock_sock(sk);
  1722. out:
  1723. kfree_skb(skb);
  1724. return NET_RX_SUCCESS;
  1725. }
  1726. /**
  1727. * afiucv_hs_callback_fin() - react on received FIN
  1728. **/
  1729. static int afiucv_hs_callback_fin(struct sock *sk, struct sk_buff *skb)
  1730. {
  1731. struct iucv_sock *iucv = iucv_sk(sk);
  1732. /* other end of connection closed */
  1733. if (!iucv)
  1734. goto out;
  1735. bh_lock_sock(sk);
  1736. if (sk->sk_state == IUCV_CONNECTED) {
  1737. sk->sk_state = IUCV_DISCONN;
  1738. sk->sk_state_change(sk);
  1739. }
  1740. bh_unlock_sock(sk);
  1741. out:
  1742. kfree_skb(skb);
  1743. return NET_RX_SUCCESS;
  1744. }
  1745. /**
  1746. * afiucv_hs_callback_win() - react on received WIN
  1747. **/
  1748. static int afiucv_hs_callback_win(struct sock *sk, struct sk_buff *skb)
  1749. {
  1750. struct iucv_sock *iucv = iucv_sk(sk);
  1751. struct af_iucv_trans_hdr *trans_hdr =
  1752. (struct af_iucv_trans_hdr *)skb->data;
  1753. if (!iucv)
  1754. return NET_RX_SUCCESS;
  1755. if (sk->sk_state != IUCV_CONNECTED)
  1756. return NET_RX_SUCCESS;
  1757. atomic_sub(trans_hdr->window, &iucv->msg_sent);
  1758. iucv_sock_wake_msglim(sk);
  1759. return NET_RX_SUCCESS;
  1760. }
  1761. /**
  1762. * afiucv_hs_callback_rx() - react on received data
  1763. **/
  1764. static int afiucv_hs_callback_rx(struct sock *sk, struct sk_buff *skb)
  1765. {
  1766. struct iucv_sock *iucv = iucv_sk(sk);
  1767. if (!iucv) {
  1768. kfree_skb(skb);
  1769. return NET_RX_SUCCESS;
  1770. }
  1771. if (sk->sk_state != IUCV_CONNECTED) {
  1772. kfree_skb(skb);
  1773. return NET_RX_SUCCESS;
  1774. }
  1775. if (sk->sk_shutdown & RCV_SHUTDOWN) {
  1776. kfree_skb(skb);
  1777. return NET_RX_SUCCESS;
  1778. }
  1779. /* write stuff from iucv_msg to skb cb */
  1780. if (skb->len < sizeof(struct af_iucv_trans_hdr)) {
  1781. kfree_skb(skb);
  1782. return NET_RX_SUCCESS;
  1783. }
  1784. skb_pull(skb, sizeof(struct af_iucv_trans_hdr));
  1785. skb_reset_transport_header(skb);
  1786. skb_reset_network_header(skb);
  1787. spin_lock(&iucv->message_q.lock);
  1788. if (skb_queue_empty(&iucv->backlog_skb_q)) {
  1789. if (sock_queue_rcv_skb(sk, skb)) {
  1790. /* handle rcv queue full */
  1791. skb_queue_tail(&iucv->backlog_skb_q, skb);
  1792. }
  1793. } else
  1794. skb_queue_tail(&iucv_sk(sk)->backlog_skb_q, skb);
  1795. spin_unlock(&iucv->message_q.lock);
  1796. return NET_RX_SUCCESS;
  1797. }
  1798. /**
  1799. * afiucv_hs_rcv() - base function for arriving data through HiperSockets
  1800. * transport
  1801. * called from netif RX softirq
  1802. **/
  1803. static int afiucv_hs_rcv(struct sk_buff *skb, struct net_device *dev,
  1804. struct packet_type *pt, struct net_device *orig_dev)
  1805. {
  1806. struct sock *sk;
  1807. struct iucv_sock *iucv;
  1808. struct af_iucv_trans_hdr *trans_hdr;
  1809. char nullstring[8];
  1810. int err = 0;
  1811. skb_pull(skb, ETH_HLEN);
  1812. trans_hdr = (struct af_iucv_trans_hdr *)skb->data;
  1813. EBCASC(trans_hdr->destAppName, sizeof(trans_hdr->destAppName));
  1814. EBCASC(trans_hdr->destUserID, sizeof(trans_hdr->destUserID));
  1815. EBCASC(trans_hdr->srcAppName, sizeof(trans_hdr->srcAppName));
  1816. EBCASC(trans_hdr->srcUserID, sizeof(trans_hdr->srcUserID));
  1817. memset(nullstring, 0, sizeof(nullstring));
  1818. iucv = NULL;
  1819. sk = NULL;
  1820. read_lock(&iucv_sk_list.lock);
  1821. sk_for_each(sk, &iucv_sk_list.head) {
  1822. if (trans_hdr->flags == AF_IUCV_FLAG_SYN) {
  1823. if ((!memcmp(&iucv_sk(sk)->src_name,
  1824. trans_hdr->destAppName, 8)) &&
  1825. (!memcmp(&iucv_sk(sk)->src_user_id,
  1826. trans_hdr->destUserID, 8)) &&
  1827. (!memcmp(&iucv_sk(sk)->dst_name, nullstring, 8)) &&
  1828. (!memcmp(&iucv_sk(sk)->dst_user_id,
  1829. nullstring, 8))) {
  1830. iucv = iucv_sk(sk);
  1831. break;
  1832. }
  1833. } else {
  1834. if ((!memcmp(&iucv_sk(sk)->src_name,
  1835. trans_hdr->destAppName, 8)) &&
  1836. (!memcmp(&iucv_sk(sk)->src_user_id,
  1837. trans_hdr->destUserID, 8)) &&
  1838. (!memcmp(&iucv_sk(sk)->dst_name,
  1839. trans_hdr->srcAppName, 8)) &&
  1840. (!memcmp(&iucv_sk(sk)->dst_user_id,
  1841. trans_hdr->srcUserID, 8))) {
  1842. iucv = iucv_sk(sk);
  1843. break;
  1844. }
  1845. }
  1846. }
  1847. read_unlock(&iucv_sk_list.lock);
  1848. if (!iucv)
  1849. sk = NULL;
  1850. /* no sock
  1851. how should we send with no sock
  1852. 1) send without sock no send rc checking?
  1853. 2) introduce default sock to handle this cases
  1854. SYN -> send SYN|ACK in good case, send SYN|FIN in bad case
  1855. data -> send FIN
  1856. SYN|ACK, SYN|FIN, FIN -> no action? */
  1857. switch (trans_hdr->flags) {
  1858. case AF_IUCV_FLAG_SYN:
  1859. /* connect request */
  1860. err = afiucv_hs_callback_syn(sk, skb);
  1861. break;
  1862. case (AF_IUCV_FLAG_SYN | AF_IUCV_FLAG_ACK):
  1863. /* connect request confirmed */
  1864. err = afiucv_hs_callback_synack(sk, skb);
  1865. break;
  1866. case (AF_IUCV_FLAG_SYN | AF_IUCV_FLAG_FIN):
  1867. /* connect request refused */
  1868. err = afiucv_hs_callback_synfin(sk, skb);
  1869. break;
  1870. case (AF_IUCV_FLAG_FIN):
  1871. /* close request */
  1872. err = afiucv_hs_callback_fin(sk, skb);
  1873. break;
  1874. case (AF_IUCV_FLAG_WIN):
  1875. err = afiucv_hs_callback_win(sk, skb);
  1876. if (skb->len == sizeof(struct af_iucv_trans_hdr)) {
  1877. kfree_skb(skb);
  1878. break;
  1879. }
  1880. /* fall through and receive non-zero length data */
  1881. case (AF_IUCV_FLAG_SHT):
  1882. /* shutdown request */
  1883. /* fall through and receive zero length data */
  1884. case 0:
  1885. /* plain data frame */
  1886. memcpy(CB_TRGCLS(skb), &trans_hdr->iucv_hdr.class,
  1887. CB_TRGCLS_LEN);
  1888. err = afiucv_hs_callback_rx(sk, skb);
  1889. break;
  1890. default:
  1891. ;
  1892. }
  1893. return err;
  1894. }
  1895. /**
  1896. * afiucv_hs_callback_txnotify() - handle send notifcations from HiperSockets
  1897. * transport
  1898. **/
  1899. static void afiucv_hs_callback_txnotify(struct sk_buff *skb,
  1900. enum iucv_tx_notify n)
  1901. {
  1902. struct sock *isk = skb->sk;
  1903. struct sock *sk = NULL;
  1904. struct iucv_sock *iucv = NULL;
  1905. struct sk_buff_head *list;
  1906. struct sk_buff *list_skb;
  1907. struct sk_buff *nskb;
  1908. unsigned long flags;
  1909. read_lock_irqsave(&iucv_sk_list.lock, flags);
  1910. sk_for_each(sk, &iucv_sk_list.head)
  1911. if (sk == isk) {
  1912. iucv = iucv_sk(sk);
  1913. break;
  1914. }
  1915. read_unlock_irqrestore(&iucv_sk_list.lock, flags);
  1916. if (!iucv || sock_flag(sk, SOCK_ZAPPED))
  1917. return;
  1918. list = &iucv->send_skb_q;
  1919. spin_lock_irqsave(&list->lock, flags);
  1920. if (skb_queue_empty(list))
  1921. goto out_unlock;
  1922. list_skb = list->next;
  1923. nskb = list_skb->next;
  1924. while (list_skb != (struct sk_buff *)list) {
  1925. if (skb_shinfo(list_skb) == skb_shinfo(skb)) {
  1926. switch (n) {
  1927. case TX_NOTIFY_OK:
  1928. __skb_unlink(list_skb, list);
  1929. kfree_skb(list_skb);
  1930. iucv_sock_wake_msglim(sk);
  1931. break;
  1932. case TX_NOTIFY_PENDING:
  1933. atomic_inc(&iucv->pendings);
  1934. break;
  1935. case TX_NOTIFY_DELAYED_OK:
  1936. __skb_unlink(list_skb, list);
  1937. atomic_dec(&iucv->pendings);
  1938. if (atomic_read(&iucv->pendings) <= 0)
  1939. iucv_sock_wake_msglim(sk);
  1940. kfree_skb(list_skb);
  1941. break;
  1942. case TX_NOTIFY_UNREACHABLE:
  1943. case TX_NOTIFY_DELAYED_UNREACHABLE:
  1944. case TX_NOTIFY_TPQFULL: /* not yet used */
  1945. case TX_NOTIFY_GENERALERROR:
  1946. case TX_NOTIFY_DELAYED_GENERALERROR:
  1947. __skb_unlink(list_skb, list);
  1948. kfree_skb(list_skb);
  1949. if (sk->sk_state == IUCV_CONNECTED) {
  1950. sk->sk_state = IUCV_DISCONN;
  1951. sk->sk_state_change(sk);
  1952. }
  1953. break;
  1954. }
  1955. break;
  1956. }
  1957. list_skb = nskb;
  1958. nskb = nskb->next;
  1959. }
  1960. out_unlock:
  1961. spin_unlock_irqrestore(&list->lock, flags);
  1962. if (sk->sk_state == IUCV_CLOSING) {
  1963. if (skb_queue_empty(&iucv_sk(sk)->send_skb_q)) {
  1964. sk->sk_state = IUCV_CLOSED;
  1965. sk->sk_state_change(sk);
  1966. }
  1967. }
  1968. }
  1969. /*
  1970. * afiucv_netdev_event: handle netdev notifier chain events
  1971. */
  1972. static int afiucv_netdev_event(struct notifier_block *this,
  1973. unsigned long event, void *ptr)
  1974. {
  1975. struct net_device *event_dev = (struct net_device *)ptr;
  1976. struct sock *sk;
  1977. struct iucv_sock *iucv;
  1978. switch (event) {
  1979. case NETDEV_REBOOT:
  1980. case NETDEV_GOING_DOWN:
  1981. sk_for_each(sk, &iucv_sk_list.head) {
  1982. iucv = iucv_sk(sk);
  1983. if ((iucv->hs_dev == event_dev) &&
  1984. (sk->sk_state == IUCV_CONNECTED)) {
  1985. if (event == NETDEV_GOING_DOWN)
  1986. iucv_send_ctrl(sk, AF_IUCV_FLAG_FIN);
  1987. sk->sk_state = IUCV_DISCONN;
  1988. sk->sk_state_change(sk);
  1989. }
  1990. }
  1991. break;
  1992. case NETDEV_DOWN:
  1993. case NETDEV_UNREGISTER:
  1994. default:
  1995. break;
  1996. }
  1997. return NOTIFY_DONE;
  1998. }
  1999. static struct notifier_block afiucv_netdev_notifier = {
  2000. .notifier_call = afiucv_netdev_event,
  2001. };
  2002. static const struct proto_ops iucv_sock_ops = {
  2003. .family = PF_IUCV,
  2004. .owner = THIS_MODULE,
  2005. .release = iucv_sock_release,
  2006. .bind = iucv_sock_bind,
  2007. .connect = iucv_sock_connect,
  2008. .listen = iucv_sock_listen,
  2009. .accept = iucv_sock_accept,
  2010. .getname = iucv_sock_getname,
  2011. .sendmsg = iucv_sock_sendmsg,
  2012. .recvmsg = iucv_sock_recvmsg,
  2013. .poll = iucv_sock_poll,
  2014. .ioctl = sock_no_ioctl,
  2015. .mmap = sock_no_mmap,
  2016. .socketpair = sock_no_socketpair,
  2017. .shutdown = iucv_sock_shutdown,
  2018. .setsockopt = iucv_sock_setsockopt,
  2019. .getsockopt = iucv_sock_getsockopt,
  2020. };
  2021. static const struct net_proto_family iucv_sock_family_ops = {
  2022. .family = AF_IUCV,
  2023. .owner = THIS_MODULE,
  2024. .create = iucv_sock_create,
  2025. };
  2026. static struct packet_type iucv_packet_type = {
  2027. .type = cpu_to_be16(ETH_P_AF_IUCV),
  2028. .func = afiucv_hs_rcv,
  2029. };
  2030. static int afiucv_iucv_init(void)
  2031. {
  2032. int err;
  2033. err = pr_iucv->iucv_register(&af_iucv_handler, 0);
  2034. if (err)
  2035. goto out;
  2036. /* establish dummy device */
  2037. af_iucv_driver.bus = pr_iucv->bus;
  2038. err = driver_register(&af_iucv_driver);
  2039. if (err)
  2040. goto out_iucv;
  2041. af_iucv_dev = kzalloc(sizeof(struct device), GFP_KERNEL);
  2042. if (!af_iucv_dev) {
  2043. err = -ENOMEM;
  2044. goto out_driver;
  2045. }
  2046. dev_set_name(af_iucv_dev, "af_iucv");
  2047. af_iucv_dev->bus = pr_iucv->bus;
  2048. af_iucv_dev->parent = pr_iucv->root;
  2049. af_iucv_dev->release = (void (*)(struct device *))kfree;
  2050. af_iucv_dev->driver = &af_iucv_driver;
  2051. err = device_register(af_iucv_dev);
  2052. if (err)
  2053. goto out_driver;
  2054. return 0;
  2055. out_driver:
  2056. driver_unregister(&af_iucv_driver);
  2057. out_iucv:
  2058. pr_iucv->iucv_unregister(&af_iucv_handler, 0);
  2059. out:
  2060. return err;
  2061. }
  2062. static int __init afiucv_init(void)
  2063. {
  2064. int err;
  2065. if (MACHINE_IS_VM) {
  2066. cpcmd("QUERY USERID", iucv_userid, sizeof(iucv_userid), &err);
  2067. if (unlikely(err)) {
  2068. WARN_ON(err);
  2069. err = -EPROTONOSUPPORT;
  2070. goto out;
  2071. }
  2072. pr_iucv = try_then_request_module(symbol_get(iucv_if), "iucv");
  2073. if (!pr_iucv) {
  2074. printk(KERN_WARNING "iucv_if lookup failed\n");
  2075. memset(&iucv_userid, 0, sizeof(iucv_userid));
  2076. }
  2077. } else {
  2078. memset(&iucv_userid, 0, sizeof(iucv_userid));
  2079. pr_iucv = NULL;
  2080. }
  2081. err = proto_register(&iucv_proto, 0);
  2082. if (err)
  2083. goto out;
  2084. err = sock_register(&iucv_sock_family_ops);
  2085. if (err)
  2086. goto out_proto;
  2087. if (pr_iucv) {
  2088. err = afiucv_iucv_init();
  2089. if (err)
  2090. goto out_sock;
  2091. } else
  2092. register_netdevice_notifier(&afiucv_netdev_notifier);
  2093. dev_add_pack(&iucv_packet_type);
  2094. return 0;
  2095. out_sock:
  2096. sock_unregister(PF_IUCV);
  2097. out_proto:
  2098. proto_unregister(&iucv_proto);
  2099. out:
  2100. if (pr_iucv)
  2101. symbol_put(iucv_if);
  2102. return err;
  2103. }
  2104. static void __exit afiucv_exit(void)
  2105. {
  2106. if (pr_iucv) {
  2107. device_unregister(af_iucv_dev);
  2108. driver_unregister(&af_iucv_driver);
  2109. pr_iucv->iucv_unregister(&af_iucv_handler, 0);
  2110. symbol_put(iucv_if);
  2111. } else
  2112. unregister_netdevice_notifier(&afiucv_netdev_notifier);
  2113. dev_remove_pack(&iucv_packet_type);
  2114. sock_unregister(PF_IUCV);
  2115. proto_unregister(&iucv_proto);
  2116. }
  2117. module_init(afiucv_init);
  2118. module_exit(afiucv_exit);
  2119. MODULE_AUTHOR("Jennifer Hunt <jenhunt@us.ibm.com>");
  2120. MODULE_DESCRIPTION("IUCV Sockets ver " VERSION);
  2121. MODULE_VERSION(VERSION);
  2122. MODULE_LICENSE("GPL");
  2123. MODULE_ALIAS_NETPROTO(PF_IUCV);