input.c 43 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778
  1. /*
  2. * The input core
  3. *
  4. * Copyright (c) 1999-2002 Vojtech Pavlik
  5. */
  6. /*
  7. * This program is free software; you can redistribute it and/or modify it
  8. * under the terms of the GNU General Public License version 2 as published by
  9. * the Free Software Foundation.
  10. */
  11. #include <linux/init.h>
  12. #include <linux/types.h>
  13. #include <linux/input.h>
  14. #include <linux/module.h>
  15. #include <linux/random.h>
  16. #include <linux/major.h>
  17. #include <linux/proc_fs.h>
  18. #include <linux/sched.h>
  19. #include <linux/seq_file.h>
  20. #include <linux/poll.h>
  21. #include <linux/device.h>
  22. #include <linux/mutex.h>
  23. #include <linux/rcupdate.h>
  24. #include <linux/smp_lock.h>
  25. MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
  26. MODULE_DESCRIPTION("Input core");
  27. MODULE_LICENSE("GPL");
  28. #define INPUT_DEVICES 256
  29. /*
  30. * EV_ABS events which should not be cached are listed here.
  31. */
  32. static unsigned int input_abs_bypass_init_data[] __initdata = {
  33. ABS_MT_TOUCH_MAJOR,
  34. ABS_MT_TOUCH_MINOR,
  35. ABS_MT_WIDTH_MAJOR,
  36. ABS_MT_WIDTH_MINOR,
  37. ABS_MT_ORIENTATION,
  38. ABS_MT_POSITION_X,
  39. ABS_MT_POSITION_Y,
  40. ABS_MT_TOOL_TYPE,
  41. ABS_MT_BLOB_ID,
  42. ABS_MT_TRACKING_ID,
  43. 0
  44. };
  45. static unsigned long input_abs_bypass[BITS_TO_LONGS(ABS_CNT)];
  46. static LIST_HEAD(input_dev_list);
  47. static LIST_HEAD(input_handler_list);
  48. /*
  49. * input_mutex protects access to both input_dev_list and input_handler_list.
  50. * This also causes input_[un]register_device and input_[un]register_handler
  51. * be mutually exclusive which simplifies locking in drivers implementing
  52. * input handlers.
  53. */
  54. static DEFINE_MUTEX(input_mutex);
  55. static struct input_handler *input_table[8];
  56. static inline int is_event_supported(unsigned int code,
  57. unsigned long *bm, unsigned int max)
  58. {
  59. return code <= max && test_bit(code, bm);
  60. }
  61. static int input_defuzz_abs_event(int value, int old_val, int fuzz)
  62. {
  63. if (fuzz) {
  64. if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2)
  65. return old_val;
  66. if (value > old_val - fuzz && value < old_val + fuzz)
  67. return (old_val * 3 + value) / 4;
  68. if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2)
  69. return (old_val + value) / 2;
  70. }
  71. return value;
  72. }
  73. /*
  74. * Pass event through all open handles. This function is called with
  75. * dev->event_lock held and interrupts disabled.
  76. */
  77. static void input_pass_event(struct input_dev *dev,
  78. unsigned int type, unsigned int code, int value)
  79. {
  80. struct input_handle *handle;
  81. rcu_read_lock();
  82. handle = rcu_dereference(dev->grab);
  83. if (handle)
  84. handle->handler->event(handle, type, code, value);
  85. else
  86. list_for_each_entry_rcu(handle, &dev->h_list, d_node)
  87. if (handle->open)
  88. handle->handler->event(handle,
  89. type, code, value);
  90. rcu_read_unlock();
  91. }
  92. /*
  93. * Generate software autorepeat event. Note that we take
  94. * dev->event_lock here to avoid racing with input_event
  95. * which may cause keys get "stuck".
  96. */
  97. static void input_repeat_key(unsigned long data)
  98. {
  99. struct input_dev *dev = (void *) data;
  100. unsigned long flags;
  101. spin_lock_irqsave(&dev->event_lock, flags);
  102. if (test_bit(dev->repeat_key, dev->key) &&
  103. is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) {
  104. input_pass_event(dev, EV_KEY, dev->repeat_key, 2);
  105. if (dev->sync) {
  106. /*
  107. * Only send SYN_REPORT if we are not in a middle
  108. * of driver parsing a new hardware packet.
  109. * Otherwise assume that the driver will send
  110. * SYN_REPORT once it's done.
  111. */
  112. input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
  113. }
  114. if (dev->rep[REP_PERIOD])
  115. mod_timer(&dev->timer, jiffies +
  116. msecs_to_jiffies(dev->rep[REP_PERIOD]));
  117. }
  118. spin_unlock_irqrestore(&dev->event_lock, flags);
  119. }
  120. static void input_start_autorepeat(struct input_dev *dev, int code)
  121. {
  122. if (test_bit(EV_REP, dev->evbit) &&
  123. dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] &&
  124. dev->timer.data) {
  125. dev->repeat_key = code;
  126. mod_timer(&dev->timer,
  127. jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
  128. }
  129. }
  130. static void input_stop_autorepeat(struct input_dev *dev)
  131. {
  132. del_timer(&dev->timer);
  133. }
  134. #define INPUT_IGNORE_EVENT 0
  135. #define INPUT_PASS_TO_HANDLERS 1
  136. #define INPUT_PASS_TO_DEVICE 2
  137. #define INPUT_PASS_TO_ALL (INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
  138. static void input_handle_event(struct input_dev *dev,
  139. unsigned int type, unsigned int code, int value)
  140. {
  141. int disposition = INPUT_IGNORE_EVENT;
  142. switch (type) {
  143. case EV_SYN:
  144. switch (code) {
  145. case SYN_CONFIG:
  146. disposition = INPUT_PASS_TO_ALL;
  147. break;
  148. case SYN_REPORT:
  149. if (!dev->sync) {
  150. dev->sync = 1;
  151. disposition = INPUT_PASS_TO_HANDLERS;
  152. }
  153. break;
  154. case SYN_MT_REPORT:
  155. dev->sync = 0;
  156. disposition = INPUT_PASS_TO_HANDLERS;
  157. break;
  158. }
  159. break;
  160. case EV_KEY:
  161. if (is_event_supported(code, dev->keybit, KEY_MAX) &&
  162. !!test_bit(code, dev->key) != value) {
  163. if (value != 2) {
  164. __change_bit(code, dev->key);
  165. if (value)
  166. input_start_autorepeat(dev, code);
  167. else
  168. input_stop_autorepeat(dev);
  169. }
  170. disposition = INPUT_PASS_TO_HANDLERS;
  171. }
  172. break;
  173. case EV_SW:
  174. if (is_event_supported(code, dev->swbit, SW_MAX) &&
  175. !!test_bit(code, dev->sw) != value) {
  176. __change_bit(code, dev->sw);
  177. disposition = INPUT_PASS_TO_HANDLERS;
  178. }
  179. break;
  180. case EV_ABS:
  181. if (is_event_supported(code, dev->absbit, ABS_MAX)) {
  182. if (test_bit(code, input_abs_bypass)) {
  183. disposition = INPUT_PASS_TO_HANDLERS;
  184. break;
  185. }
  186. value = input_defuzz_abs_event(value,
  187. dev->abs[code], dev->absfuzz[code]);
  188. if (dev->abs[code] != value) {
  189. dev->abs[code] = value;
  190. disposition = INPUT_PASS_TO_HANDLERS;
  191. }
  192. }
  193. break;
  194. case EV_REL:
  195. if (is_event_supported(code, dev->relbit, REL_MAX) && value)
  196. disposition = INPUT_PASS_TO_HANDLERS;
  197. break;
  198. case EV_MSC:
  199. if (is_event_supported(code, dev->mscbit, MSC_MAX))
  200. disposition = INPUT_PASS_TO_ALL;
  201. break;
  202. case EV_LED:
  203. if (is_event_supported(code, dev->ledbit, LED_MAX) &&
  204. !!test_bit(code, dev->led) != value) {
  205. __change_bit(code, dev->led);
  206. disposition = INPUT_PASS_TO_ALL;
  207. }
  208. break;
  209. case EV_SND:
  210. if (is_event_supported(code, dev->sndbit, SND_MAX)) {
  211. if (!!test_bit(code, dev->snd) != !!value)
  212. __change_bit(code, dev->snd);
  213. disposition = INPUT_PASS_TO_ALL;
  214. }
  215. break;
  216. case EV_REP:
  217. if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
  218. dev->rep[code] = value;
  219. disposition = INPUT_PASS_TO_ALL;
  220. }
  221. break;
  222. case EV_FF:
  223. if (value >= 0)
  224. disposition = INPUT_PASS_TO_ALL;
  225. break;
  226. case EV_PWR:
  227. disposition = INPUT_PASS_TO_ALL;
  228. break;
  229. }
  230. if (disposition != INPUT_IGNORE_EVENT && type != EV_SYN)
  231. dev->sync = 0;
  232. if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
  233. dev->event(dev, type, code, value);
  234. if (disposition & INPUT_PASS_TO_HANDLERS)
  235. input_pass_event(dev, type, code, value);
  236. }
  237. /**
  238. * input_event() - report new input event
  239. * @dev: device that generated the event
  240. * @type: type of the event
  241. * @code: event code
  242. * @value: value of the event
  243. *
  244. * This function should be used by drivers implementing various input
  245. * devices. See also input_inject_event().
  246. */
  247. void input_event(struct input_dev *dev,
  248. unsigned int type, unsigned int code, int value)
  249. {
  250. unsigned long flags;
  251. if (is_event_supported(type, dev->evbit, EV_MAX)) {
  252. spin_lock_irqsave(&dev->event_lock, flags);
  253. add_input_randomness(type, code, value);
  254. input_handle_event(dev, type, code, value);
  255. spin_unlock_irqrestore(&dev->event_lock, flags);
  256. }
  257. }
  258. EXPORT_SYMBOL(input_event);
  259. /**
  260. * input_inject_event() - send input event from input handler
  261. * @handle: input handle to send event through
  262. * @type: type of the event
  263. * @code: event code
  264. * @value: value of the event
  265. *
  266. * Similar to input_event() but will ignore event if device is
  267. * "grabbed" and handle injecting event is not the one that owns
  268. * the device.
  269. */
  270. void input_inject_event(struct input_handle *handle,
  271. unsigned int type, unsigned int code, int value)
  272. {
  273. struct input_dev *dev = handle->dev;
  274. struct input_handle *grab;
  275. unsigned long flags;
  276. if (is_event_supported(type, dev->evbit, EV_MAX)) {
  277. spin_lock_irqsave(&dev->event_lock, flags);
  278. rcu_read_lock();
  279. grab = rcu_dereference(dev->grab);
  280. if (!grab || grab == handle)
  281. input_handle_event(dev, type, code, value);
  282. rcu_read_unlock();
  283. spin_unlock_irqrestore(&dev->event_lock, flags);
  284. }
  285. }
  286. EXPORT_SYMBOL(input_inject_event);
  287. /**
  288. * input_grab_device - grabs device for exclusive use
  289. * @handle: input handle that wants to own the device
  290. *
  291. * When a device is grabbed by an input handle all events generated by
  292. * the device are delivered only to this handle. Also events injected
  293. * by other input handles are ignored while device is grabbed.
  294. */
  295. int input_grab_device(struct input_handle *handle)
  296. {
  297. struct input_dev *dev = handle->dev;
  298. int retval;
  299. retval = mutex_lock_interruptible(&dev->mutex);
  300. if (retval)
  301. return retval;
  302. if (dev->grab) {
  303. retval = -EBUSY;
  304. goto out;
  305. }
  306. rcu_assign_pointer(dev->grab, handle);
  307. synchronize_rcu();
  308. out:
  309. mutex_unlock(&dev->mutex);
  310. return retval;
  311. }
  312. EXPORT_SYMBOL(input_grab_device);
  313. static void __input_release_device(struct input_handle *handle)
  314. {
  315. struct input_dev *dev = handle->dev;
  316. if (dev->grab == handle) {
  317. rcu_assign_pointer(dev->grab, NULL);
  318. /* Make sure input_pass_event() notices that grab is gone */
  319. synchronize_rcu();
  320. list_for_each_entry(handle, &dev->h_list, d_node)
  321. if (handle->open && handle->handler->start)
  322. handle->handler->start(handle);
  323. }
  324. }
  325. /**
  326. * input_release_device - release previously grabbed device
  327. * @handle: input handle that owns the device
  328. *
  329. * Releases previously grabbed device so that other input handles can
  330. * start receiving input events. Upon release all handlers attached
  331. * to the device have their start() method called so they have a change
  332. * to synchronize device state with the rest of the system.
  333. */
  334. void input_release_device(struct input_handle *handle)
  335. {
  336. struct input_dev *dev = handle->dev;
  337. mutex_lock(&dev->mutex);
  338. __input_release_device(handle);
  339. mutex_unlock(&dev->mutex);
  340. }
  341. EXPORT_SYMBOL(input_release_device);
  342. /**
  343. * input_open_device - open input device
  344. * @handle: handle through which device is being accessed
  345. *
  346. * This function should be called by input handlers when they
  347. * want to start receive events from given input device.
  348. */
  349. int input_open_device(struct input_handle *handle)
  350. {
  351. struct input_dev *dev = handle->dev;
  352. int retval;
  353. retval = mutex_lock_interruptible(&dev->mutex);
  354. if (retval)
  355. return retval;
  356. if (dev->going_away) {
  357. retval = -ENODEV;
  358. goto out;
  359. }
  360. handle->open++;
  361. if (!dev->users++ && dev->open)
  362. retval = dev->open(dev);
  363. if (retval) {
  364. dev->users--;
  365. if (!--handle->open) {
  366. /*
  367. * Make sure we are not delivering any more events
  368. * through this handle
  369. */
  370. synchronize_rcu();
  371. }
  372. }
  373. out:
  374. mutex_unlock(&dev->mutex);
  375. return retval;
  376. }
  377. EXPORT_SYMBOL(input_open_device);
  378. int input_flush_device(struct input_handle *handle, struct file *file)
  379. {
  380. struct input_dev *dev = handle->dev;
  381. int retval;
  382. retval = mutex_lock_interruptible(&dev->mutex);
  383. if (retval)
  384. return retval;
  385. if (dev->flush)
  386. retval = dev->flush(dev, file);
  387. mutex_unlock(&dev->mutex);
  388. return retval;
  389. }
  390. EXPORT_SYMBOL(input_flush_device);
  391. /**
  392. * input_close_device - close input device
  393. * @handle: handle through which device is being accessed
  394. *
  395. * This function should be called by input handlers when they
  396. * want to stop receive events from given input device.
  397. */
  398. void input_close_device(struct input_handle *handle)
  399. {
  400. struct input_dev *dev = handle->dev;
  401. mutex_lock(&dev->mutex);
  402. __input_release_device(handle);
  403. if (!--dev->users && dev->close)
  404. dev->close(dev);
  405. if (!--handle->open) {
  406. /*
  407. * synchronize_rcu() makes sure that input_pass_event()
  408. * completed and that no more input events are delivered
  409. * through this handle
  410. */
  411. synchronize_rcu();
  412. }
  413. mutex_unlock(&dev->mutex);
  414. }
  415. EXPORT_SYMBOL(input_close_device);
  416. /*
  417. * Prepare device for unregistering
  418. */
  419. static void input_disconnect_device(struct input_dev *dev)
  420. {
  421. struct input_handle *handle;
  422. int code;
  423. /*
  424. * Mark device as going away. Note that we take dev->mutex here
  425. * not to protect access to dev->going_away but rather to ensure
  426. * that there are no threads in the middle of input_open_device()
  427. */
  428. mutex_lock(&dev->mutex);
  429. dev->going_away = true;
  430. mutex_unlock(&dev->mutex);
  431. spin_lock_irq(&dev->event_lock);
  432. /*
  433. * Simulate keyup events for all pressed keys so that handlers
  434. * are not left with "stuck" keys. The driver may continue
  435. * generate events even after we done here but they will not
  436. * reach any handlers.
  437. */
  438. if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) {
  439. for (code = 0; code <= KEY_MAX; code++) {
  440. if (is_event_supported(code, dev->keybit, KEY_MAX) &&
  441. __test_and_clear_bit(code, dev->key)) {
  442. input_pass_event(dev, EV_KEY, code, 0);
  443. }
  444. }
  445. input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
  446. }
  447. list_for_each_entry(handle, &dev->h_list, d_node)
  448. handle->open = 0;
  449. spin_unlock_irq(&dev->event_lock);
  450. }
  451. static int input_fetch_keycode(struct input_dev *dev, int scancode)
  452. {
  453. switch (dev->keycodesize) {
  454. case 1:
  455. return ((u8 *)dev->keycode)[scancode];
  456. case 2:
  457. return ((u16 *)dev->keycode)[scancode];
  458. default:
  459. return ((u32 *)dev->keycode)[scancode];
  460. }
  461. }
  462. static int input_default_getkeycode(struct input_dev *dev,
  463. int scancode, int *keycode)
  464. {
  465. if (!dev->keycodesize)
  466. return -EINVAL;
  467. if (scancode >= dev->keycodemax)
  468. return -EINVAL;
  469. *keycode = input_fetch_keycode(dev, scancode);
  470. return 0;
  471. }
  472. static int input_default_setkeycode(struct input_dev *dev,
  473. int scancode, int keycode)
  474. {
  475. int old_keycode;
  476. int i;
  477. if (scancode >= dev->keycodemax)
  478. return -EINVAL;
  479. if (!dev->keycodesize)
  480. return -EINVAL;
  481. if (dev->keycodesize < sizeof(keycode) && (keycode >> (dev->keycodesize * 8)))
  482. return -EINVAL;
  483. switch (dev->keycodesize) {
  484. case 1: {
  485. u8 *k = (u8 *)dev->keycode;
  486. old_keycode = k[scancode];
  487. k[scancode] = keycode;
  488. break;
  489. }
  490. case 2: {
  491. u16 *k = (u16 *)dev->keycode;
  492. old_keycode = k[scancode];
  493. k[scancode] = keycode;
  494. break;
  495. }
  496. default: {
  497. u32 *k = (u32 *)dev->keycode;
  498. old_keycode = k[scancode];
  499. k[scancode] = keycode;
  500. break;
  501. }
  502. }
  503. clear_bit(old_keycode, dev->keybit);
  504. set_bit(keycode, dev->keybit);
  505. for (i = 0; i < dev->keycodemax; i++) {
  506. if (input_fetch_keycode(dev, i) == old_keycode) {
  507. set_bit(old_keycode, dev->keybit);
  508. break; /* Setting the bit twice is useless, so break */
  509. }
  510. }
  511. return 0;
  512. }
  513. /**
  514. * input_get_keycode - retrieve keycode currently mapped to a given scancode
  515. * @dev: input device which keymap is being queried
  516. * @scancode: scancode (or its equivalent for device in question) for which
  517. * keycode is needed
  518. * @keycode: result
  519. *
  520. * This function should be called by anyone interested in retrieving current
  521. * keymap. Presently keyboard and evdev handlers use it.
  522. */
  523. int input_get_keycode(struct input_dev *dev, int scancode, int *keycode)
  524. {
  525. if (scancode < 0)
  526. return -EINVAL;
  527. return dev->getkeycode(dev, scancode, keycode);
  528. }
  529. EXPORT_SYMBOL(input_get_keycode);
  530. /**
  531. * input_get_keycode - assign new keycode to a given scancode
  532. * @dev: input device which keymap is being updated
  533. * @scancode: scancode (or its equivalent for device in question)
  534. * @keycode: new keycode to be assigned to the scancode
  535. *
  536. * This function should be called by anyone needing to update current
  537. * keymap. Presently keyboard and evdev handlers use it.
  538. */
  539. int input_set_keycode(struct input_dev *dev, int scancode, int keycode)
  540. {
  541. unsigned long flags;
  542. int old_keycode;
  543. int retval;
  544. if (scancode < 0)
  545. return -EINVAL;
  546. if (keycode < 0 || keycode > KEY_MAX)
  547. return -EINVAL;
  548. spin_lock_irqsave(&dev->event_lock, flags);
  549. retval = dev->getkeycode(dev, scancode, &old_keycode);
  550. if (retval)
  551. goto out;
  552. retval = dev->setkeycode(dev, scancode, keycode);
  553. if (retval)
  554. goto out;
  555. /*
  556. * Simulate keyup event if keycode is not present
  557. * in the keymap anymore
  558. */
  559. if (test_bit(EV_KEY, dev->evbit) &&
  560. !is_event_supported(old_keycode, dev->keybit, KEY_MAX) &&
  561. __test_and_clear_bit(old_keycode, dev->key)) {
  562. input_pass_event(dev, EV_KEY, old_keycode, 0);
  563. if (dev->sync)
  564. input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
  565. }
  566. out:
  567. spin_unlock_irqrestore(&dev->event_lock, flags);
  568. return retval;
  569. }
  570. EXPORT_SYMBOL(input_set_keycode);
  571. #define MATCH_BIT(bit, max) \
  572. for (i = 0; i < BITS_TO_LONGS(max); i++) \
  573. if ((id->bit[i] & dev->bit[i]) != id->bit[i]) \
  574. break; \
  575. if (i != BITS_TO_LONGS(max)) \
  576. continue;
  577. static const struct input_device_id *input_match_device(const struct input_device_id *id,
  578. struct input_dev *dev)
  579. {
  580. int i;
  581. for (; id->flags || id->driver_info; id++) {
  582. if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
  583. if (id->bustype != dev->id.bustype)
  584. continue;
  585. if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
  586. if (id->vendor != dev->id.vendor)
  587. continue;
  588. if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
  589. if (id->product != dev->id.product)
  590. continue;
  591. if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
  592. if (id->version != dev->id.version)
  593. continue;
  594. MATCH_BIT(evbit, EV_MAX);
  595. MATCH_BIT(keybit, KEY_MAX);
  596. MATCH_BIT(relbit, REL_MAX);
  597. MATCH_BIT(absbit, ABS_MAX);
  598. MATCH_BIT(mscbit, MSC_MAX);
  599. MATCH_BIT(ledbit, LED_MAX);
  600. MATCH_BIT(sndbit, SND_MAX);
  601. MATCH_BIT(ffbit, FF_MAX);
  602. MATCH_BIT(swbit, SW_MAX);
  603. return id;
  604. }
  605. return NULL;
  606. }
  607. static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
  608. {
  609. const struct input_device_id *id;
  610. int error;
  611. if (handler->blacklist && input_match_device(handler->blacklist, dev))
  612. return -ENODEV;
  613. id = input_match_device(handler->id_table, dev);
  614. if (!id)
  615. return -ENODEV;
  616. error = handler->connect(handler, dev, id);
  617. if (error && error != -ENODEV)
  618. printk(KERN_ERR
  619. "input: failed to attach handler %s to device %s, "
  620. "error: %d\n",
  621. handler->name, kobject_name(&dev->dev.kobj), error);
  622. return error;
  623. }
  624. #ifdef CONFIG_PROC_FS
  625. static struct proc_dir_entry *proc_bus_input_dir;
  626. static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait);
  627. static int input_devices_state;
  628. static inline void input_wakeup_procfs_readers(void)
  629. {
  630. input_devices_state++;
  631. wake_up(&input_devices_poll_wait);
  632. }
  633. static unsigned int input_proc_devices_poll(struct file *file, poll_table *wait)
  634. {
  635. poll_wait(file, &input_devices_poll_wait, wait);
  636. if (file->f_version != input_devices_state) {
  637. file->f_version = input_devices_state;
  638. return POLLIN | POLLRDNORM;
  639. }
  640. return 0;
  641. }
  642. static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos)
  643. {
  644. if (mutex_lock_interruptible(&input_mutex))
  645. return NULL;
  646. return seq_list_start(&input_dev_list, *pos);
  647. }
  648. static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  649. {
  650. return seq_list_next(v, &input_dev_list, pos);
  651. }
  652. static void input_devices_seq_stop(struct seq_file *seq, void *v)
  653. {
  654. mutex_unlock(&input_mutex);
  655. }
  656. static void input_seq_print_bitmap(struct seq_file *seq, const char *name,
  657. unsigned long *bitmap, int max)
  658. {
  659. int i;
  660. for (i = BITS_TO_LONGS(max) - 1; i > 0; i--)
  661. if (bitmap[i])
  662. break;
  663. seq_printf(seq, "B: %s=", name);
  664. for (; i >= 0; i--)
  665. seq_printf(seq, "%lx%s", bitmap[i], i > 0 ? " " : "");
  666. seq_putc(seq, '\n');
  667. }
  668. static int input_devices_seq_show(struct seq_file *seq, void *v)
  669. {
  670. struct input_dev *dev = container_of(v, struct input_dev, node);
  671. const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
  672. struct input_handle *handle;
  673. seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
  674. dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);
  675. seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
  676. seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
  677. seq_printf(seq, "S: Sysfs=%s\n", path ? path : "");
  678. seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : "");
  679. seq_printf(seq, "H: Handlers=");
  680. list_for_each_entry(handle, &dev->h_list, d_node)
  681. seq_printf(seq, "%s ", handle->name);
  682. seq_putc(seq, '\n');
  683. input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
  684. if (test_bit(EV_KEY, dev->evbit))
  685. input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
  686. if (test_bit(EV_REL, dev->evbit))
  687. input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
  688. if (test_bit(EV_ABS, dev->evbit))
  689. input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
  690. if (test_bit(EV_MSC, dev->evbit))
  691. input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
  692. if (test_bit(EV_LED, dev->evbit))
  693. input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
  694. if (test_bit(EV_SND, dev->evbit))
  695. input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
  696. if (test_bit(EV_FF, dev->evbit))
  697. input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
  698. if (test_bit(EV_SW, dev->evbit))
  699. input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);
  700. seq_putc(seq, '\n');
  701. kfree(path);
  702. return 0;
  703. }
  704. static const struct seq_operations input_devices_seq_ops = {
  705. .start = input_devices_seq_start,
  706. .next = input_devices_seq_next,
  707. .stop = input_devices_seq_stop,
  708. .show = input_devices_seq_show,
  709. };
  710. static int input_proc_devices_open(struct inode *inode, struct file *file)
  711. {
  712. return seq_open(file, &input_devices_seq_ops);
  713. }
  714. static const struct file_operations input_devices_fileops = {
  715. .owner = THIS_MODULE,
  716. .open = input_proc_devices_open,
  717. .poll = input_proc_devices_poll,
  718. .read = seq_read,
  719. .llseek = seq_lseek,
  720. .release = seq_release,
  721. };
  722. static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos)
  723. {
  724. if (mutex_lock_interruptible(&input_mutex))
  725. return NULL;
  726. seq->private = (void *)(unsigned long)*pos;
  727. return seq_list_start(&input_handler_list, *pos);
  728. }
  729. static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  730. {
  731. seq->private = (void *)(unsigned long)(*pos + 1);
  732. return seq_list_next(v, &input_handler_list, pos);
  733. }
  734. static void input_handlers_seq_stop(struct seq_file *seq, void *v)
  735. {
  736. mutex_unlock(&input_mutex);
  737. }
  738. static int input_handlers_seq_show(struct seq_file *seq, void *v)
  739. {
  740. struct input_handler *handler = container_of(v, struct input_handler, node);
  741. seq_printf(seq, "N: Number=%ld Name=%s",
  742. (unsigned long)seq->private, handler->name);
  743. if (handler->fops)
  744. seq_printf(seq, " Minor=%d", handler->minor);
  745. seq_putc(seq, '\n');
  746. return 0;
  747. }
  748. static const struct seq_operations input_handlers_seq_ops = {
  749. .start = input_handlers_seq_start,
  750. .next = input_handlers_seq_next,
  751. .stop = input_handlers_seq_stop,
  752. .show = input_handlers_seq_show,
  753. };
  754. static int input_proc_handlers_open(struct inode *inode, struct file *file)
  755. {
  756. return seq_open(file, &input_handlers_seq_ops);
  757. }
  758. static const struct file_operations input_handlers_fileops = {
  759. .owner = THIS_MODULE,
  760. .open = input_proc_handlers_open,
  761. .read = seq_read,
  762. .llseek = seq_lseek,
  763. .release = seq_release,
  764. };
  765. static int __init input_proc_init(void)
  766. {
  767. struct proc_dir_entry *entry;
  768. proc_bus_input_dir = proc_mkdir("bus/input", NULL);
  769. if (!proc_bus_input_dir)
  770. return -ENOMEM;
  771. entry = proc_create("devices", 0, proc_bus_input_dir,
  772. &input_devices_fileops);
  773. if (!entry)
  774. goto fail1;
  775. entry = proc_create("handlers", 0, proc_bus_input_dir,
  776. &input_handlers_fileops);
  777. if (!entry)
  778. goto fail2;
  779. return 0;
  780. fail2: remove_proc_entry("devices", proc_bus_input_dir);
  781. fail1: remove_proc_entry("bus/input", NULL);
  782. return -ENOMEM;
  783. }
  784. static void input_proc_exit(void)
  785. {
  786. remove_proc_entry("devices", proc_bus_input_dir);
  787. remove_proc_entry("handlers", proc_bus_input_dir);
  788. remove_proc_entry("bus/input", NULL);
  789. }
  790. #else /* !CONFIG_PROC_FS */
  791. static inline void input_wakeup_procfs_readers(void) { }
  792. static inline int input_proc_init(void) { return 0; }
  793. static inline void input_proc_exit(void) { }
  794. #endif
  795. #define INPUT_DEV_STRING_ATTR_SHOW(name) \
  796. static ssize_t input_dev_show_##name(struct device *dev, \
  797. struct device_attribute *attr, \
  798. char *buf) \
  799. { \
  800. struct input_dev *input_dev = to_input_dev(dev); \
  801. \
  802. return scnprintf(buf, PAGE_SIZE, "%s\n", \
  803. input_dev->name ? input_dev->name : ""); \
  804. } \
  805. static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
  806. INPUT_DEV_STRING_ATTR_SHOW(name);
  807. INPUT_DEV_STRING_ATTR_SHOW(phys);
  808. INPUT_DEV_STRING_ATTR_SHOW(uniq);
  809. static int input_print_modalias_bits(char *buf, int size,
  810. char name, unsigned long *bm,
  811. unsigned int min_bit, unsigned int max_bit)
  812. {
  813. int len = 0, i;
  814. len += snprintf(buf, max(size, 0), "%c", name);
  815. for (i = min_bit; i < max_bit; i++)
  816. if (bm[BIT_WORD(i)] & BIT_MASK(i))
  817. len += snprintf(buf + len, max(size - len, 0), "%X,", i);
  818. return len;
  819. }
  820. static int input_print_modalias(char *buf, int size, struct input_dev *id,
  821. int add_cr)
  822. {
  823. int len;
  824. len = snprintf(buf, max(size, 0),
  825. "input:b%04Xv%04Xp%04Xe%04X-",
  826. id->id.bustype, id->id.vendor,
  827. id->id.product, id->id.version);
  828. len += input_print_modalias_bits(buf + len, size - len,
  829. 'e', id->evbit, 0, EV_MAX);
  830. len += input_print_modalias_bits(buf + len, size - len,
  831. 'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
  832. len += input_print_modalias_bits(buf + len, size - len,
  833. 'r', id->relbit, 0, REL_MAX);
  834. len += input_print_modalias_bits(buf + len, size - len,
  835. 'a', id->absbit, 0, ABS_MAX);
  836. len += input_print_modalias_bits(buf + len, size - len,
  837. 'm', id->mscbit, 0, MSC_MAX);
  838. len += input_print_modalias_bits(buf + len, size - len,
  839. 'l', id->ledbit, 0, LED_MAX);
  840. len += input_print_modalias_bits(buf + len, size - len,
  841. 's', id->sndbit, 0, SND_MAX);
  842. len += input_print_modalias_bits(buf + len, size - len,
  843. 'f', id->ffbit, 0, FF_MAX);
  844. len += input_print_modalias_bits(buf + len, size - len,
  845. 'w', id->swbit, 0, SW_MAX);
  846. if (add_cr)
  847. len += snprintf(buf + len, max(size - len, 0), "\n");
  848. return len;
  849. }
  850. static ssize_t input_dev_show_modalias(struct device *dev,
  851. struct device_attribute *attr,
  852. char *buf)
  853. {
  854. struct input_dev *id = to_input_dev(dev);
  855. ssize_t len;
  856. len = input_print_modalias(buf, PAGE_SIZE, id, 1);
  857. return min_t(int, len, PAGE_SIZE);
  858. }
  859. static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL);
  860. static struct attribute *input_dev_attrs[] = {
  861. &dev_attr_name.attr,
  862. &dev_attr_phys.attr,
  863. &dev_attr_uniq.attr,
  864. &dev_attr_modalias.attr,
  865. NULL
  866. };
  867. static struct attribute_group input_dev_attr_group = {
  868. .attrs = input_dev_attrs,
  869. };
  870. #define INPUT_DEV_ID_ATTR(name) \
  871. static ssize_t input_dev_show_id_##name(struct device *dev, \
  872. struct device_attribute *attr, \
  873. char *buf) \
  874. { \
  875. struct input_dev *input_dev = to_input_dev(dev); \
  876. return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name); \
  877. } \
  878. static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
  879. INPUT_DEV_ID_ATTR(bustype);
  880. INPUT_DEV_ID_ATTR(vendor);
  881. INPUT_DEV_ID_ATTR(product);
  882. INPUT_DEV_ID_ATTR(version);
  883. static struct attribute *input_dev_id_attrs[] = {
  884. &dev_attr_bustype.attr,
  885. &dev_attr_vendor.attr,
  886. &dev_attr_product.attr,
  887. &dev_attr_version.attr,
  888. NULL
  889. };
  890. static struct attribute_group input_dev_id_attr_group = {
  891. .name = "id",
  892. .attrs = input_dev_id_attrs,
  893. };
  894. static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
  895. int max, int add_cr)
  896. {
  897. int i;
  898. int len = 0;
  899. for (i = BITS_TO_LONGS(max) - 1; i > 0; i--)
  900. if (bitmap[i])
  901. break;
  902. for (; i >= 0; i--)
  903. len += snprintf(buf + len, max(buf_size - len, 0),
  904. "%lx%s", bitmap[i], i > 0 ? " " : "");
  905. if (add_cr)
  906. len += snprintf(buf + len, max(buf_size - len, 0), "\n");
  907. return len;
  908. }
  909. #define INPUT_DEV_CAP_ATTR(ev, bm) \
  910. static ssize_t input_dev_show_cap_##bm(struct device *dev, \
  911. struct device_attribute *attr, \
  912. char *buf) \
  913. { \
  914. struct input_dev *input_dev = to_input_dev(dev); \
  915. int len = input_print_bitmap(buf, PAGE_SIZE, \
  916. input_dev->bm##bit, ev##_MAX, 1); \
  917. return min_t(int, len, PAGE_SIZE); \
  918. } \
  919. static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
  920. INPUT_DEV_CAP_ATTR(EV, ev);
  921. INPUT_DEV_CAP_ATTR(KEY, key);
  922. INPUT_DEV_CAP_ATTR(REL, rel);
  923. INPUT_DEV_CAP_ATTR(ABS, abs);
  924. INPUT_DEV_CAP_ATTR(MSC, msc);
  925. INPUT_DEV_CAP_ATTR(LED, led);
  926. INPUT_DEV_CAP_ATTR(SND, snd);
  927. INPUT_DEV_CAP_ATTR(FF, ff);
  928. INPUT_DEV_CAP_ATTR(SW, sw);
  929. static struct attribute *input_dev_caps_attrs[] = {
  930. &dev_attr_ev.attr,
  931. &dev_attr_key.attr,
  932. &dev_attr_rel.attr,
  933. &dev_attr_abs.attr,
  934. &dev_attr_msc.attr,
  935. &dev_attr_led.attr,
  936. &dev_attr_snd.attr,
  937. &dev_attr_ff.attr,
  938. &dev_attr_sw.attr,
  939. NULL
  940. };
  941. static struct attribute_group input_dev_caps_attr_group = {
  942. .name = "capabilities",
  943. .attrs = input_dev_caps_attrs,
  944. };
  945. static const struct attribute_group *input_dev_attr_groups[] = {
  946. &input_dev_attr_group,
  947. &input_dev_id_attr_group,
  948. &input_dev_caps_attr_group,
  949. NULL
  950. };
  951. static void input_dev_release(struct device *device)
  952. {
  953. struct input_dev *dev = to_input_dev(device);
  954. input_ff_destroy(dev);
  955. kfree(dev);
  956. module_put(THIS_MODULE);
  957. }
  958. /*
  959. * Input uevent interface - loading event handlers based on
  960. * device bitfields.
  961. */
  962. static int input_add_uevent_bm_var(struct kobj_uevent_env *env,
  963. const char *name, unsigned long *bitmap, int max)
  964. {
  965. int len;
  966. if (add_uevent_var(env, "%s=", name))
  967. return -ENOMEM;
  968. len = input_print_bitmap(&env->buf[env->buflen - 1],
  969. sizeof(env->buf) - env->buflen,
  970. bitmap, max, 0);
  971. if (len >= (sizeof(env->buf) - env->buflen))
  972. return -ENOMEM;
  973. env->buflen += len;
  974. return 0;
  975. }
  976. static int input_add_uevent_modalias_var(struct kobj_uevent_env *env,
  977. struct input_dev *dev)
  978. {
  979. int len;
  980. if (add_uevent_var(env, "MODALIAS="))
  981. return -ENOMEM;
  982. len = input_print_modalias(&env->buf[env->buflen - 1],
  983. sizeof(env->buf) - env->buflen,
  984. dev, 0);
  985. if (len >= (sizeof(env->buf) - env->buflen))
  986. return -ENOMEM;
  987. env->buflen += len;
  988. return 0;
  989. }
  990. #define INPUT_ADD_HOTPLUG_VAR(fmt, val...) \
  991. do { \
  992. int err = add_uevent_var(env, fmt, val); \
  993. if (err) \
  994. return err; \
  995. } while (0)
  996. #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max) \
  997. do { \
  998. int err = input_add_uevent_bm_var(env, name, bm, max); \
  999. if (err) \
  1000. return err; \
  1001. } while (0)
  1002. #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev) \
  1003. do { \
  1004. int err = input_add_uevent_modalias_var(env, dev); \
  1005. if (err) \
  1006. return err; \
  1007. } while (0)
  1008. static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env)
  1009. {
  1010. struct input_dev *dev = to_input_dev(device);
  1011. INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
  1012. dev->id.bustype, dev->id.vendor,
  1013. dev->id.product, dev->id.version);
  1014. if (dev->name)
  1015. INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
  1016. if (dev->phys)
  1017. INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
  1018. if (dev->uniq)
  1019. INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);
  1020. INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
  1021. if (test_bit(EV_KEY, dev->evbit))
  1022. INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
  1023. if (test_bit(EV_REL, dev->evbit))
  1024. INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
  1025. if (test_bit(EV_ABS, dev->evbit))
  1026. INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
  1027. if (test_bit(EV_MSC, dev->evbit))
  1028. INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
  1029. if (test_bit(EV_LED, dev->evbit))
  1030. INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
  1031. if (test_bit(EV_SND, dev->evbit))
  1032. INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
  1033. if (test_bit(EV_FF, dev->evbit))
  1034. INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
  1035. if (test_bit(EV_SW, dev->evbit))
  1036. INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);
  1037. INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev);
  1038. return 0;
  1039. }
  1040. #define INPUT_DO_TOGGLE(dev, type, bits, on) \
  1041. do { \
  1042. int i; \
  1043. if (!test_bit(EV_##type, dev->evbit)) \
  1044. break; \
  1045. for (i = 0; i < type##_MAX; i++) { \
  1046. if (!test_bit(i, dev->bits##bit) || \
  1047. !test_bit(i, dev->bits)) \
  1048. continue; \
  1049. dev->event(dev, EV_##type, i, on); \
  1050. } \
  1051. } while (0)
  1052. #ifdef CONFIG_PM
  1053. static void input_dev_reset(struct input_dev *dev, bool activate)
  1054. {
  1055. if (!dev->event)
  1056. return;
  1057. INPUT_DO_TOGGLE(dev, LED, led, activate);
  1058. INPUT_DO_TOGGLE(dev, SND, snd, activate);
  1059. if (activate && test_bit(EV_REP, dev->evbit)) {
  1060. dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]);
  1061. dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]);
  1062. }
  1063. }
  1064. static int input_dev_suspend(struct device *dev)
  1065. {
  1066. struct input_dev *input_dev = to_input_dev(dev);
  1067. mutex_lock(&input_dev->mutex);
  1068. input_dev_reset(input_dev, false);
  1069. mutex_unlock(&input_dev->mutex);
  1070. return 0;
  1071. }
  1072. static int input_dev_resume(struct device *dev)
  1073. {
  1074. struct input_dev *input_dev = to_input_dev(dev);
  1075. mutex_lock(&input_dev->mutex);
  1076. input_dev_reset(input_dev, true);
  1077. mutex_unlock(&input_dev->mutex);
  1078. return 0;
  1079. }
  1080. static const struct dev_pm_ops input_dev_pm_ops = {
  1081. .suspend = input_dev_suspend,
  1082. .resume = input_dev_resume,
  1083. .poweroff = input_dev_suspend,
  1084. .restore = input_dev_resume,
  1085. };
  1086. #endif /* CONFIG_PM */
  1087. static struct device_type input_dev_type = {
  1088. .groups = input_dev_attr_groups,
  1089. .release = input_dev_release,
  1090. .uevent = input_dev_uevent,
  1091. #ifdef CONFIG_PM
  1092. .pm = &input_dev_pm_ops,
  1093. #endif
  1094. };
  1095. static char *input_devnode(struct device *dev, mode_t *mode)
  1096. {
  1097. return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev));
  1098. }
  1099. struct class input_class = {
  1100. .name = "input",
  1101. .devnode = input_devnode,
  1102. };
  1103. EXPORT_SYMBOL_GPL(input_class);
  1104. /**
  1105. * input_allocate_device - allocate memory for new input device
  1106. *
  1107. * Returns prepared struct input_dev or NULL.
  1108. *
  1109. * NOTE: Use input_free_device() to free devices that have not been
  1110. * registered; input_unregister_device() should be used for already
  1111. * registered devices.
  1112. */
  1113. struct input_dev *input_allocate_device(void)
  1114. {
  1115. struct input_dev *dev;
  1116. dev = kzalloc(sizeof(struct input_dev), GFP_KERNEL);
  1117. if (dev) {
  1118. dev->dev.type = &input_dev_type;
  1119. dev->dev.class = &input_class;
  1120. device_initialize(&dev->dev);
  1121. mutex_init(&dev->mutex);
  1122. spin_lock_init(&dev->event_lock);
  1123. INIT_LIST_HEAD(&dev->h_list);
  1124. INIT_LIST_HEAD(&dev->node);
  1125. __module_get(THIS_MODULE);
  1126. }
  1127. return dev;
  1128. }
  1129. EXPORT_SYMBOL(input_allocate_device);
  1130. /**
  1131. * input_free_device - free memory occupied by input_dev structure
  1132. * @dev: input device to free
  1133. *
  1134. * This function should only be used if input_register_device()
  1135. * was not called yet or if it failed. Once device was registered
  1136. * use input_unregister_device() and memory will be freed once last
  1137. * reference to the device is dropped.
  1138. *
  1139. * Device should be allocated by input_allocate_device().
  1140. *
  1141. * NOTE: If there are references to the input device then memory
  1142. * will not be freed until last reference is dropped.
  1143. */
  1144. void input_free_device(struct input_dev *dev)
  1145. {
  1146. if (dev)
  1147. input_put_device(dev);
  1148. }
  1149. EXPORT_SYMBOL(input_free_device);
  1150. /**
  1151. * input_set_capability - mark device as capable of a certain event
  1152. * @dev: device that is capable of emitting or accepting event
  1153. * @type: type of the event (EV_KEY, EV_REL, etc...)
  1154. * @code: event code
  1155. *
  1156. * In addition to setting up corresponding bit in appropriate capability
  1157. * bitmap the function also adjusts dev->evbit.
  1158. */
  1159. void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code)
  1160. {
  1161. switch (type) {
  1162. case EV_KEY:
  1163. __set_bit(code, dev->keybit);
  1164. break;
  1165. case EV_REL:
  1166. __set_bit(code, dev->relbit);
  1167. break;
  1168. case EV_ABS:
  1169. __set_bit(code, dev->absbit);
  1170. break;
  1171. case EV_MSC:
  1172. __set_bit(code, dev->mscbit);
  1173. break;
  1174. case EV_SW:
  1175. __set_bit(code, dev->swbit);
  1176. break;
  1177. case EV_LED:
  1178. __set_bit(code, dev->ledbit);
  1179. break;
  1180. case EV_SND:
  1181. __set_bit(code, dev->sndbit);
  1182. break;
  1183. case EV_FF:
  1184. __set_bit(code, dev->ffbit);
  1185. break;
  1186. case EV_PWR:
  1187. /* do nothing */
  1188. break;
  1189. default:
  1190. printk(KERN_ERR
  1191. "input_set_capability: unknown type %u (code %u)\n",
  1192. type, code);
  1193. dump_stack();
  1194. return;
  1195. }
  1196. __set_bit(type, dev->evbit);
  1197. }
  1198. EXPORT_SYMBOL(input_set_capability);
  1199. /**
  1200. * input_register_device - register device with input core
  1201. * @dev: device to be registered
  1202. *
  1203. * This function registers device with input core. The device must be
  1204. * allocated with input_allocate_device() and all it's capabilities
  1205. * set up before registering.
  1206. * If function fails the device must be freed with input_free_device().
  1207. * Once device has been successfully registered it can be unregistered
  1208. * with input_unregister_device(); input_free_device() should not be
  1209. * called in this case.
  1210. */
  1211. int input_register_device(struct input_dev *dev)
  1212. {
  1213. static atomic_t input_no = ATOMIC_INIT(0);
  1214. struct input_handler *handler;
  1215. const char *path;
  1216. int error;
  1217. __set_bit(EV_SYN, dev->evbit);
  1218. /*
  1219. * If delay and period are pre-set by the driver, then autorepeating
  1220. * is handled by the driver itself and we don't do it in input.c.
  1221. */
  1222. init_timer(&dev->timer);
  1223. if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD]) {
  1224. dev->timer.data = (long) dev;
  1225. dev->timer.function = input_repeat_key;
  1226. dev->rep[REP_DELAY] = 250;
  1227. dev->rep[REP_PERIOD] = 33;
  1228. }
  1229. if (!dev->getkeycode)
  1230. dev->getkeycode = input_default_getkeycode;
  1231. if (!dev->setkeycode)
  1232. dev->setkeycode = input_default_setkeycode;
  1233. dev_set_name(&dev->dev, "input%ld",
  1234. (unsigned long) atomic_inc_return(&input_no) - 1);
  1235. error = device_add(&dev->dev);
  1236. if (error)
  1237. return error;
  1238. path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
  1239. printk(KERN_INFO "input: %s as %s\n",
  1240. dev->name ? dev->name : "Unspecified device", path ? path : "N/A");
  1241. kfree(path);
  1242. error = mutex_lock_interruptible(&input_mutex);
  1243. if (error) {
  1244. device_del(&dev->dev);
  1245. return error;
  1246. }
  1247. list_add_tail(&dev->node, &input_dev_list);
  1248. list_for_each_entry(handler, &input_handler_list, node)
  1249. input_attach_handler(dev, handler);
  1250. input_wakeup_procfs_readers();
  1251. mutex_unlock(&input_mutex);
  1252. return 0;
  1253. }
  1254. EXPORT_SYMBOL(input_register_device);
  1255. /**
  1256. * input_unregister_device - unregister previously registered device
  1257. * @dev: device to be unregistered
  1258. *
  1259. * This function unregisters an input device. Once device is unregistered
  1260. * the caller should not try to access it as it may get freed at any moment.
  1261. */
  1262. void input_unregister_device(struct input_dev *dev)
  1263. {
  1264. struct input_handle *handle, *next;
  1265. input_disconnect_device(dev);
  1266. mutex_lock(&input_mutex);
  1267. list_for_each_entry_safe(handle, next, &dev->h_list, d_node)
  1268. handle->handler->disconnect(handle);
  1269. WARN_ON(!list_empty(&dev->h_list));
  1270. del_timer_sync(&dev->timer);
  1271. list_del_init(&dev->node);
  1272. input_wakeup_procfs_readers();
  1273. mutex_unlock(&input_mutex);
  1274. device_unregister(&dev->dev);
  1275. }
  1276. EXPORT_SYMBOL(input_unregister_device);
  1277. /**
  1278. * input_register_handler - register a new input handler
  1279. * @handler: handler to be registered
  1280. *
  1281. * This function registers a new input handler (interface) for input
  1282. * devices in the system and attaches it to all input devices that
  1283. * are compatible with the handler.
  1284. */
  1285. int input_register_handler(struct input_handler *handler)
  1286. {
  1287. struct input_dev *dev;
  1288. int retval;
  1289. retval = mutex_lock_interruptible(&input_mutex);
  1290. if (retval)
  1291. return retval;
  1292. INIT_LIST_HEAD(&handler->h_list);
  1293. if (handler->fops != NULL) {
  1294. if (input_table[handler->minor >> 5]) {
  1295. retval = -EBUSY;
  1296. goto out;
  1297. }
  1298. input_table[handler->minor >> 5] = handler;
  1299. }
  1300. list_add_tail(&handler->node, &input_handler_list);
  1301. list_for_each_entry(dev, &input_dev_list, node)
  1302. input_attach_handler(dev, handler);
  1303. input_wakeup_procfs_readers();
  1304. out:
  1305. mutex_unlock(&input_mutex);
  1306. return retval;
  1307. }
  1308. EXPORT_SYMBOL(input_register_handler);
  1309. /**
  1310. * input_unregister_handler - unregisters an input handler
  1311. * @handler: handler to be unregistered
  1312. *
  1313. * This function disconnects a handler from its input devices and
  1314. * removes it from lists of known handlers.
  1315. */
  1316. void input_unregister_handler(struct input_handler *handler)
  1317. {
  1318. struct input_handle *handle, *next;
  1319. mutex_lock(&input_mutex);
  1320. list_for_each_entry_safe(handle, next, &handler->h_list, h_node)
  1321. handler->disconnect(handle);
  1322. WARN_ON(!list_empty(&handler->h_list));
  1323. list_del_init(&handler->node);
  1324. if (handler->fops != NULL)
  1325. input_table[handler->minor >> 5] = NULL;
  1326. input_wakeup_procfs_readers();
  1327. mutex_unlock(&input_mutex);
  1328. }
  1329. EXPORT_SYMBOL(input_unregister_handler);
  1330. /**
  1331. * input_register_handle - register a new input handle
  1332. * @handle: handle to register
  1333. *
  1334. * This function puts a new input handle onto device's
  1335. * and handler's lists so that events can flow through
  1336. * it once it is opened using input_open_device().
  1337. *
  1338. * This function is supposed to be called from handler's
  1339. * connect() method.
  1340. */
  1341. int input_register_handle(struct input_handle *handle)
  1342. {
  1343. struct input_handler *handler = handle->handler;
  1344. struct input_dev *dev = handle->dev;
  1345. int error;
  1346. /*
  1347. * We take dev->mutex here to prevent race with
  1348. * input_release_device().
  1349. */
  1350. error = mutex_lock_interruptible(&dev->mutex);
  1351. if (error)
  1352. return error;
  1353. list_add_tail_rcu(&handle->d_node, &dev->h_list);
  1354. mutex_unlock(&dev->mutex);
  1355. /*
  1356. * Since we are supposed to be called from ->connect()
  1357. * which is mutually exclusive with ->disconnect()
  1358. * we can't be racing with input_unregister_handle()
  1359. * and so separate lock is not needed here.
  1360. */
  1361. list_add_tail(&handle->h_node, &handler->h_list);
  1362. if (handler->start)
  1363. handler->start(handle);
  1364. return 0;
  1365. }
  1366. EXPORT_SYMBOL(input_register_handle);
  1367. /**
  1368. * input_unregister_handle - unregister an input handle
  1369. * @handle: handle to unregister
  1370. *
  1371. * This function removes input handle from device's
  1372. * and handler's lists.
  1373. *
  1374. * This function is supposed to be called from handler's
  1375. * disconnect() method.
  1376. */
  1377. void input_unregister_handle(struct input_handle *handle)
  1378. {
  1379. struct input_dev *dev = handle->dev;
  1380. list_del_init(&handle->h_node);
  1381. /*
  1382. * Take dev->mutex to prevent race with input_release_device().
  1383. */
  1384. mutex_lock(&dev->mutex);
  1385. list_del_rcu(&handle->d_node);
  1386. mutex_unlock(&dev->mutex);
  1387. synchronize_rcu();
  1388. }
  1389. EXPORT_SYMBOL(input_unregister_handle);
  1390. static int input_open_file(struct inode *inode, struct file *file)
  1391. {
  1392. struct input_handler *handler;
  1393. const struct file_operations *old_fops, *new_fops = NULL;
  1394. int err;
  1395. lock_kernel();
  1396. /* No load-on-demand here? */
  1397. handler = input_table[iminor(inode) >> 5];
  1398. if (!handler || !(new_fops = fops_get(handler->fops))) {
  1399. err = -ENODEV;
  1400. goto out;
  1401. }
  1402. /*
  1403. * That's _really_ odd. Usually NULL ->open means "nothing special",
  1404. * not "no device". Oh, well...
  1405. */
  1406. if (!new_fops->open) {
  1407. fops_put(new_fops);
  1408. err = -ENODEV;
  1409. goto out;
  1410. }
  1411. old_fops = file->f_op;
  1412. file->f_op = new_fops;
  1413. err = new_fops->open(inode, file);
  1414. if (err) {
  1415. fops_put(file->f_op);
  1416. file->f_op = fops_get(old_fops);
  1417. }
  1418. fops_put(old_fops);
  1419. out:
  1420. unlock_kernel();
  1421. return err;
  1422. }
  1423. static const struct file_operations input_fops = {
  1424. .owner = THIS_MODULE,
  1425. .open = input_open_file,
  1426. };
  1427. static void __init input_init_abs_bypass(void)
  1428. {
  1429. const unsigned int *p;
  1430. for (p = input_abs_bypass_init_data; *p; p++)
  1431. input_abs_bypass[BIT_WORD(*p)] |= BIT_MASK(*p);
  1432. }
  1433. static int __init input_init(void)
  1434. {
  1435. int err;
  1436. input_init_abs_bypass();
  1437. err = class_register(&input_class);
  1438. if (err) {
  1439. printk(KERN_ERR "input: unable to register input_dev class\n");
  1440. return err;
  1441. }
  1442. err = input_proc_init();
  1443. if (err)
  1444. goto fail1;
  1445. err = register_chrdev(INPUT_MAJOR, "input", &input_fops);
  1446. if (err) {
  1447. printk(KERN_ERR "input: unable to register char major %d", INPUT_MAJOR);
  1448. goto fail2;
  1449. }
  1450. return 0;
  1451. fail2: input_proc_exit();
  1452. fail1: class_unregister(&input_class);
  1453. return err;
  1454. }
  1455. static void __exit input_exit(void)
  1456. {
  1457. input_proc_exit();
  1458. unregister_chrdev(INPUT_MAJOR, "input");
  1459. class_unregister(&input_class);
  1460. }
  1461. subsys_initcall(input_init);
  1462. module_exit(input_exit);