fault.c 30 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256
  1. /*
  2. * Copyright (C) 1995 Linus Torvalds
  3. * Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
  4. * Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
  5. */
  6. #include <linux/magic.h> /* STACK_END_MAGIC */
  7. #include <linux/sched.h> /* test_thread_flag(), ... */
  8. #include <linux/kdebug.h> /* oops_begin/end, ... */
  9. #include <linux/module.h> /* search_exception_table */
  10. #include <linux/bootmem.h> /* max_low_pfn */
  11. #include <linux/kprobes.h> /* __kprobes, ... */
  12. #include <linux/mmiotrace.h> /* kmmio_handler, ... */
  13. #include <linux/perf_event.h> /* perf_sw_event */
  14. #include <linux/hugetlb.h> /* hstate_index_to_shift */
  15. #include <linux/prefetch.h> /* prefetchw */
  16. #include <linux/context_tracking.h> /* exception_enter(), ... */
  17. #include <asm/traps.h> /* dotraplinkage, ... */
  18. #include <asm/pgalloc.h> /* pgd_*(), ... */
  19. #include <asm/kmemcheck.h> /* kmemcheck_*(), ... */
  20. #include <asm/fixmap.h> /* VSYSCALL_START */
  21. #define CREATE_TRACE_POINTS
  22. #include <asm/trace/exceptions.h>
  23. /*
  24. * Page fault error code bits:
  25. *
  26. * bit 0 == 0: no page found 1: protection fault
  27. * bit 1 == 0: read access 1: write access
  28. * bit 2 == 0: kernel-mode access 1: user-mode access
  29. * bit 3 == 1: use of reserved bit detected
  30. * bit 4 == 1: fault was an instruction fetch
  31. */
  32. enum x86_pf_error_code {
  33. PF_PROT = 1 << 0,
  34. PF_WRITE = 1 << 1,
  35. PF_USER = 1 << 2,
  36. PF_RSVD = 1 << 3,
  37. PF_INSTR = 1 << 4,
  38. };
  39. /*
  40. * Returns 0 if mmiotrace is disabled, or if the fault is not
  41. * handled by mmiotrace:
  42. */
  43. static inline int __kprobes
  44. kmmio_fault(struct pt_regs *regs, unsigned long addr)
  45. {
  46. if (unlikely(is_kmmio_active()))
  47. if (kmmio_handler(regs, addr) == 1)
  48. return -1;
  49. return 0;
  50. }
  51. static inline int __kprobes notify_page_fault(struct pt_regs *regs)
  52. {
  53. int ret = 0;
  54. /* kprobe_running() needs smp_processor_id() */
  55. if (kprobes_built_in() && !user_mode_vm(regs)) {
  56. preempt_disable();
  57. if (kprobe_running() && kprobe_fault_handler(regs, 14))
  58. ret = 1;
  59. preempt_enable();
  60. }
  61. return ret;
  62. }
  63. /*
  64. * Prefetch quirks:
  65. *
  66. * 32-bit mode:
  67. *
  68. * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
  69. * Check that here and ignore it.
  70. *
  71. * 64-bit mode:
  72. *
  73. * Sometimes the CPU reports invalid exceptions on prefetch.
  74. * Check that here and ignore it.
  75. *
  76. * Opcode checker based on code by Richard Brunner.
  77. */
  78. static inline int
  79. check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
  80. unsigned char opcode, int *prefetch)
  81. {
  82. unsigned char instr_hi = opcode & 0xf0;
  83. unsigned char instr_lo = opcode & 0x0f;
  84. switch (instr_hi) {
  85. case 0x20:
  86. case 0x30:
  87. /*
  88. * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
  89. * In X86_64 long mode, the CPU will signal invalid
  90. * opcode if some of these prefixes are present so
  91. * X86_64 will never get here anyway
  92. */
  93. return ((instr_lo & 7) == 0x6);
  94. #ifdef CONFIG_X86_64
  95. case 0x40:
  96. /*
  97. * In AMD64 long mode 0x40..0x4F are valid REX prefixes
  98. * Need to figure out under what instruction mode the
  99. * instruction was issued. Could check the LDT for lm,
  100. * but for now it's good enough to assume that long
  101. * mode only uses well known segments or kernel.
  102. */
  103. return (!user_mode(regs) || user_64bit_mode(regs));
  104. #endif
  105. case 0x60:
  106. /* 0x64 thru 0x67 are valid prefixes in all modes. */
  107. return (instr_lo & 0xC) == 0x4;
  108. case 0xF0:
  109. /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
  110. return !instr_lo || (instr_lo>>1) == 1;
  111. case 0x00:
  112. /* Prefetch instruction is 0x0F0D or 0x0F18 */
  113. if (probe_kernel_address(instr, opcode))
  114. return 0;
  115. *prefetch = (instr_lo == 0xF) &&
  116. (opcode == 0x0D || opcode == 0x18);
  117. return 0;
  118. default:
  119. return 0;
  120. }
  121. }
  122. static int
  123. is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
  124. {
  125. unsigned char *max_instr;
  126. unsigned char *instr;
  127. int prefetch = 0;
  128. /*
  129. * If it was a exec (instruction fetch) fault on NX page, then
  130. * do not ignore the fault:
  131. */
  132. if (error_code & PF_INSTR)
  133. return 0;
  134. instr = (void *)convert_ip_to_linear(current, regs);
  135. max_instr = instr + 15;
  136. if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE)
  137. return 0;
  138. while (instr < max_instr) {
  139. unsigned char opcode;
  140. if (probe_kernel_address(instr, opcode))
  141. break;
  142. instr++;
  143. if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
  144. break;
  145. }
  146. return prefetch;
  147. }
  148. static void
  149. force_sig_info_fault(int si_signo, int si_code, unsigned long address,
  150. struct task_struct *tsk, int fault)
  151. {
  152. unsigned lsb = 0;
  153. siginfo_t info;
  154. info.si_signo = si_signo;
  155. info.si_errno = 0;
  156. info.si_code = si_code;
  157. info.si_addr = (void __user *)address;
  158. if (fault & VM_FAULT_HWPOISON_LARGE)
  159. lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
  160. if (fault & VM_FAULT_HWPOISON)
  161. lsb = PAGE_SHIFT;
  162. info.si_addr_lsb = lsb;
  163. force_sig_info(si_signo, &info, tsk);
  164. }
  165. DEFINE_SPINLOCK(pgd_lock);
  166. LIST_HEAD(pgd_list);
  167. #ifdef CONFIG_X86_32
  168. static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
  169. {
  170. unsigned index = pgd_index(address);
  171. pgd_t *pgd_k;
  172. pud_t *pud, *pud_k;
  173. pmd_t *pmd, *pmd_k;
  174. pgd += index;
  175. pgd_k = init_mm.pgd + index;
  176. if (!pgd_present(*pgd_k))
  177. return NULL;
  178. /*
  179. * set_pgd(pgd, *pgd_k); here would be useless on PAE
  180. * and redundant with the set_pmd() on non-PAE. As would
  181. * set_pud.
  182. */
  183. pud = pud_offset(pgd, address);
  184. pud_k = pud_offset(pgd_k, address);
  185. if (!pud_present(*pud_k))
  186. return NULL;
  187. pmd = pmd_offset(pud, address);
  188. pmd_k = pmd_offset(pud_k, address);
  189. if (!pmd_present(*pmd_k))
  190. return NULL;
  191. if (!pmd_present(*pmd))
  192. set_pmd(pmd, *pmd_k);
  193. else
  194. BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));
  195. return pmd_k;
  196. }
  197. void vmalloc_sync_all(void)
  198. {
  199. unsigned long address;
  200. if (SHARED_KERNEL_PMD)
  201. return;
  202. for (address = VMALLOC_START & PMD_MASK;
  203. address >= TASK_SIZE && address < FIXADDR_TOP;
  204. address += PMD_SIZE) {
  205. struct page *page;
  206. spin_lock(&pgd_lock);
  207. list_for_each_entry(page, &pgd_list, lru) {
  208. spinlock_t *pgt_lock;
  209. pmd_t *ret;
  210. /* the pgt_lock only for Xen */
  211. pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
  212. spin_lock(pgt_lock);
  213. ret = vmalloc_sync_one(page_address(page), address);
  214. spin_unlock(pgt_lock);
  215. if (!ret)
  216. break;
  217. }
  218. spin_unlock(&pgd_lock);
  219. }
  220. }
  221. /*
  222. * 32-bit:
  223. *
  224. * Handle a fault on the vmalloc or module mapping area
  225. */
  226. static noinline __kprobes int vmalloc_fault(unsigned long address)
  227. {
  228. unsigned long pgd_paddr;
  229. pmd_t *pmd_k;
  230. pte_t *pte_k;
  231. /* Make sure we are in vmalloc area: */
  232. if (!(address >= VMALLOC_START && address < VMALLOC_END))
  233. return -1;
  234. WARN_ON_ONCE(in_nmi());
  235. /*
  236. * Synchronize this task's top level page-table
  237. * with the 'reference' page table.
  238. *
  239. * Do _not_ use "current" here. We might be inside
  240. * an interrupt in the middle of a task switch..
  241. */
  242. pgd_paddr = read_cr3();
  243. pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
  244. if (!pmd_k)
  245. return -1;
  246. pte_k = pte_offset_kernel(pmd_k, address);
  247. if (!pte_present(*pte_k))
  248. return -1;
  249. return 0;
  250. }
  251. /*
  252. * Did it hit the DOS screen memory VA from vm86 mode?
  253. */
  254. static inline void
  255. check_v8086_mode(struct pt_regs *regs, unsigned long address,
  256. struct task_struct *tsk)
  257. {
  258. unsigned long bit;
  259. if (!v8086_mode(regs))
  260. return;
  261. bit = (address - 0xA0000) >> PAGE_SHIFT;
  262. if (bit < 32)
  263. tsk->thread.screen_bitmap |= 1 << bit;
  264. }
  265. static bool low_pfn(unsigned long pfn)
  266. {
  267. return pfn < max_low_pfn;
  268. }
  269. static void dump_pagetable(unsigned long address)
  270. {
  271. pgd_t *base = __va(read_cr3());
  272. pgd_t *pgd = &base[pgd_index(address)];
  273. pmd_t *pmd;
  274. pte_t *pte;
  275. #ifdef CONFIG_X86_PAE
  276. printk("*pdpt = %016Lx ", pgd_val(*pgd));
  277. if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
  278. goto out;
  279. #endif
  280. pmd = pmd_offset(pud_offset(pgd, address), address);
  281. printk(KERN_CONT "*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
  282. /*
  283. * We must not directly access the pte in the highpte
  284. * case if the page table is located in highmem.
  285. * And let's rather not kmap-atomic the pte, just in case
  286. * it's allocated already:
  287. */
  288. if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd))
  289. goto out;
  290. pte = pte_offset_kernel(pmd, address);
  291. printk("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
  292. out:
  293. printk("\n");
  294. }
  295. #else /* CONFIG_X86_64: */
  296. void vmalloc_sync_all(void)
  297. {
  298. sync_global_pgds(VMALLOC_START & PGDIR_MASK, VMALLOC_END);
  299. }
  300. /*
  301. * 64-bit:
  302. *
  303. * Handle a fault on the vmalloc area
  304. *
  305. * This assumes no large pages in there.
  306. */
  307. static noinline __kprobes int vmalloc_fault(unsigned long address)
  308. {
  309. pgd_t *pgd, *pgd_ref;
  310. pud_t *pud, *pud_ref;
  311. pmd_t *pmd, *pmd_ref;
  312. pte_t *pte, *pte_ref;
  313. /* Make sure we are in vmalloc area: */
  314. if (!(address >= VMALLOC_START && address < VMALLOC_END))
  315. return -1;
  316. WARN_ON_ONCE(in_nmi());
  317. /*
  318. * Copy kernel mappings over when needed. This can also
  319. * happen within a race in page table update. In the later
  320. * case just flush:
  321. */
  322. pgd = pgd_offset(current->active_mm, address);
  323. pgd_ref = pgd_offset_k(address);
  324. if (pgd_none(*pgd_ref))
  325. return -1;
  326. if (pgd_none(*pgd)) {
  327. set_pgd(pgd, *pgd_ref);
  328. arch_flush_lazy_mmu_mode();
  329. } else {
  330. BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
  331. }
  332. /*
  333. * Below here mismatches are bugs because these lower tables
  334. * are shared:
  335. */
  336. pud = pud_offset(pgd, address);
  337. pud_ref = pud_offset(pgd_ref, address);
  338. if (pud_none(*pud_ref))
  339. return -1;
  340. if (pud_none(*pud) || pud_page_vaddr(*pud) != pud_page_vaddr(*pud_ref))
  341. BUG();
  342. pmd = pmd_offset(pud, address);
  343. pmd_ref = pmd_offset(pud_ref, address);
  344. if (pmd_none(*pmd_ref))
  345. return -1;
  346. if (pmd_none(*pmd) || pmd_page(*pmd) != pmd_page(*pmd_ref))
  347. BUG();
  348. pte_ref = pte_offset_kernel(pmd_ref, address);
  349. if (!pte_present(*pte_ref))
  350. return -1;
  351. pte = pte_offset_kernel(pmd, address);
  352. /*
  353. * Don't use pte_page here, because the mappings can point
  354. * outside mem_map, and the NUMA hash lookup cannot handle
  355. * that:
  356. */
  357. if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref))
  358. BUG();
  359. return 0;
  360. }
  361. #ifdef CONFIG_CPU_SUP_AMD
  362. static const char errata93_warning[] =
  363. KERN_ERR
  364. "******* Your BIOS seems to not contain a fix for K8 errata #93\n"
  365. "******* Working around it, but it may cause SEGVs or burn power.\n"
  366. "******* Please consider a BIOS update.\n"
  367. "******* Disabling USB legacy in the BIOS may also help.\n";
  368. #endif
  369. /*
  370. * No vm86 mode in 64-bit mode:
  371. */
  372. static inline void
  373. check_v8086_mode(struct pt_regs *regs, unsigned long address,
  374. struct task_struct *tsk)
  375. {
  376. }
  377. static int bad_address(void *p)
  378. {
  379. unsigned long dummy;
  380. return probe_kernel_address((unsigned long *)p, dummy);
  381. }
  382. static void dump_pagetable(unsigned long address)
  383. {
  384. pgd_t *base = __va(read_cr3() & PHYSICAL_PAGE_MASK);
  385. pgd_t *pgd = base + pgd_index(address);
  386. pud_t *pud;
  387. pmd_t *pmd;
  388. pte_t *pte;
  389. if (bad_address(pgd))
  390. goto bad;
  391. printk("PGD %lx ", pgd_val(*pgd));
  392. if (!pgd_present(*pgd))
  393. goto out;
  394. pud = pud_offset(pgd, address);
  395. if (bad_address(pud))
  396. goto bad;
  397. printk("PUD %lx ", pud_val(*pud));
  398. if (!pud_present(*pud) || pud_large(*pud))
  399. goto out;
  400. pmd = pmd_offset(pud, address);
  401. if (bad_address(pmd))
  402. goto bad;
  403. printk("PMD %lx ", pmd_val(*pmd));
  404. if (!pmd_present(*pmd) || pmd_large(*pmd))
  405. goto out;
  406. pte = pte_offset_kernel(pmd, address);
  407. if (bad_address(pte))
  408. goto bad;
  409. printk("PTE %lx", pte_val(*pte));
  410. out:
  411. printk("\n");
  412. return;
  413. bad:
  414. printk("BAD\n");
  415. }
  416. #endif /* CONFIG_X86_64 */
  417. /*
  418. * Workaround for K8 erratum #93 & buggy BIOS.
  419. *
  420. * BIOS SMM functions are required to use a specific workaround
  421. * to avoid corruption of the 64bit RIP register on C stepping K8.
  422. *
  423. * A lot of BIOS that didn't get tested properly miss this.
  424. *
  425. * The OS sees this as a page fault with the upper 32bits of RIP cleared.
  426. * Try to work around it here.
  427. *
  428. * Note we only handle faults in kernel here.
  429. * Does nothing on 32-bit.
  430. */
  431. static int is_errata93(struct pt_regs *regs, unsigned long address)
  432. {
  433. #if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD)
  434. if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD
  435. || boot_cpu_data.x86 != 0xf)
  436. return 0;
  437. if (address != regs->ip)
  438. return 0;
  439. if ((address >> 32) != 0)
  440. return 0;
  441. address |= 0xffffffffUL << 32;
  442. if ((address >= (u64)_stext && address <= (u64)_etext) ||
  443. (address >= MODULES_VADDR && address <= MODULES_END)) {
  444. printk_once(errata93_warning);
  445. regs->ip = address;
  446. return 1;
  447. }
  448. #endif
  449. return 0;
  450. }
  451. /*
  452. * Work around K8 erratum #100 K8 in compat mode occasionally jumps
  453. * to illegal addresses >4GB.
  454. *
  455. * We catch this in the page fault handler because these addresses
  456. * are not reachable. Just detect this case and return. Any code
  457. * segment in LDT is compatibility mode.
  458. */
  459. static int is_errata100(struct pt_regs *regs, unsigned long address)
  460. {
  461. #ifdef CONFIG_X86_64
  462. if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
  463. return 1;
  464. #endif
  465. return 0;
  466. }
  467. static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
  468. {
  469. #ifdef CONFIG_X86_F00F_BUG
  470. unsigned long nr;
  471. /*
  472. * Pentium F0 0F C7 C8 bug workaround:
  473. */
  474. if (boot_cpu_has_bug(X86_BUG_F00F)) {
  475. nr = (address - idt_descr.address) >> 3;
  476. if (nr == 6) {
  477. do_invalid_op(regs, 0);
  478. return 1;
  479. }
  480. }
  481. #endif
  482. return 0;
  483. }
  484. static const char nx_warning[] = KERN_CRIT
  485. "kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n";
  486. static void
  487. show_fault_oops(struct pt_regs *regs, unsigned long error_code,
  488. unsigned long address)
  489. {
  490. if (!oops_may_print())
  491. return;
  492. if (error_code & PF_INSTR) {
  493. unsigned int level;
  494. pte_t *pte = lookup_address(address, &level);
  495. if (pte && pte_present(*pte) && !pte_exec(*pte))
  496. printk(nx_warning, from_kuid(&init_user_ns, current_uid()));
  497. }
  498. printk(KERN_ALERT "BUG: unable to handle kernel ");
  499. if (address < PAGE_SIZE)
  500. printk(KERN_CONT "NULL pointer dereference");
  501. else
  502. printk(KERN_CONT "paging request");
  503. printk(KERN_CONT " at %p\n", (void *) address);
  504. printk(KERN_ALERT "IP:");
  505. printk_address(regs->ip, 1);
  506. dump_pagetable(address);
  507. }
  508. static noinline void
  509. pgtable_bad(struct pt_regs *regs, unsigned long error_code,
  510. unsigned long address)
  511. {
  512. struct task_struct *tsk;
  513. unsigned long flags;
  514. int sig;
  515. flags = oops_begin();
  516. tsk = current;
  517. sig = SIGKILL;
  518. printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
  519. tsk->comm, address);
  520. dump_pagetable(address);
  521. tsk->thread.cr2 = address;
  522. tsk->thread.trap_nr = X86_TRAP_PF;
  523. tsk->thread.error_code = error_code;
  524. if (__die("Bad pagetable", regs, error_code))
  525. sig = 0;
  526. oops_end(flags, regs, sig);
  527. }
  528. static noinline void
  529. no_context(struct pt_regs *regs, unsigned long error_code,
  530. unsigned long address, int signal, int si_code)
  531. {
  532. struct task_struct *tsk = current;
  533. unsigned long *stackend;
  534. unsigned long flags;
  535. int sig;
  536. /* Are we prepared to handle this kernel fault? */
  537. if (fixup_exception(regs)) {
  538. if (current_thread_info()->sig_on_uaccess_error && signal) {
  539. tsk->thread.trap_nr = X86_TRAP_PF;
  540. tsk->thread.error_code = error_code | PF_USER;
  541. tsk->thread.cr2 = address;
  542. /* XXX: hwpoison faults will set the wrong code. */
  543. force_sig_info_fault(signal, si_code, address, tsk, 0);
  544. }
  545. return;
  546. }
  547. /*
  548. * 32-bit:
  549. *
  550. * Valid to do another page fault here, because if this fault
  551. * had been triggered by is_prefetch fixup_exception would have
  552. * handled it.
  553. *
  554. * 64-bit:
  555. *
  556. * Hall of shame of CPU/BIOS bugs.
  557. */
  558. if (is_prefetch(regs, error_code, address))
  559. return;
  560. if (is_errata93(regs, address))
  561. return;
  562. /*
  563. * Oops. The kernel tried to access some bad page. We'll have to
  564. * terminate things with extreme prejudice:
  565. */
  566. flags = oops_begin();
  567. show_fault_oops(regs, error_code, address);
  568. stackend = end_of_stack(tsk);
  569. if (tsk != &init_task && *stackend != STACK_END_MAGIC)
  570. printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
  571. tsk->thread.cr2 = address;
  572. tsk->thread.trap_nr = X86_TRAP_PF;
  573. tsk->thread.error_code = error_code;
  574. sig = SIGKILL;
  575. if (__die("Oops", regs, error_code))
  576. sig = 0;
  577. /* Executive summary in case the body of the oops scrolled away */
  578. printk(KERN_DEFAULT "CR2: %016lx\n", address);
  579. oops_end(flags, regs, sig);
  580. }
  581. /*
  582. * Print out info about fatal segfaults, if the show_unhandled_signals
  583. * sysctl is set:
  584. */
  585. static inline void
  586. show_signal_msg(struct pt_regs *regs, unsigned long error_code,
  587. unsigned long address, struct task_struct *tsk)
  588. {
  589. if (!unhandled_signal(tsk, SIGSEGV))
  590. return;
  591. if (!printk_ratelimit())
  592. return;
  593. printk("%s%s[%d]: segfault at %lx ip %p sp %p error %lx",
  594. task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
  595. tsk->comm, task_pid_nr(tsk), address,
  596. (void *)regs->ip, (void *)regs->sp, error_code);
  597. print_vma_addr(KERN_CONT " in ", regs->ip);
  598. printk(KERN_CONT "\n");
  599. }
  600. static void
  601. __bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
  602. unsigned long address, int si_code)
  603. {
  604. struct task_struct *tsk = current;
  605. /* User mode accesses just cause a SIGSEGV */
  606. if (error_code & PF_USER) {
  607. /*
  608. * It's possible to have interrupts off here:
  609. */
  610. local_irq_enable();
  611. /*
  612. * Valid to do another page fault here because this one came
  613. * from user space:
  614. */
  615. if (is_prefetch(regs, error_code, address))
  616. return;
  617. if (is_errata100(regs, address))
  618. return;
  619. #ifdef CONFIG_X86_64
  620. /*
  621. * Instruction fetch faults in the vsyscall page might need
  622. * emulation.
  623. */
  624. if (unlikely((error_code & PF_INSTR) &&
  625. ((address & ~0xfff) == VSYSCALL_START))) {
  626. if (emulate_vsyscall(regs, address))
  627. return;
  628. }
  629. #endif
  630. /* Kernel addresses are always protection faults: */
  631. if (address >= TASK_SIZE)
  632. error_code |= PF_PROT;
  633. if (likely(show_unhandled_signals))
  634. show_signal_msg(regs, error_code, address, tsk);
  635. tsk->thread.cr2 = address;
  636. tsk->thread.error_code = error_code;
  637. tsk->thread.trap_nr = X86_TRAP_PF;
  638. force_sig_info_fault(SIGSEGV, si_code, address, tsk, 0);
  639. return;
  640. }
  641. if (is_f00f_bug(regs, address))
  642. return;
  643. no_context(regs, error_code, address, SIGSEGV, si_code);
  644. }
  645. static noinline void
  646. bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
  647. unsigned long address)
  648. {
  649. __bad_area_nosemaphore(regs, error_code, address, SEGV_MAPERR);
  650. }
  651. static void
  652. __bad_area(struct pt_regs *regs, unsigned long error_code,
  653. unsigned long address, int si_code)
  654. {
  655. struct mm_struct *mm = current->mm;
  656. /*
  657. * Something tried to access memory that isn't in our memory map..
  658. * Fix it, but check if it's kernel or user first..
  659. */
  660. up_read(&mm->mmap_sem);
  661. __bad_area_nosemaphore(regs, error_code, address, si_code);
  662. }
  663. static noinline void
  664. bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address)
  665. {
  666. __bad_area(regs, error_code, address, SEGV_MAPERR);
  667. }
  668. static noinline void
  669. bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
  670. unsigned long address)
  671. {
  672. __bad_area(regs, error_code, address, SEGV_ACCERR);
  673. }
  674. static void
  675. do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
  676. unsigned int fault)
  677. {
  678. struct task_struct *tsk = current;
  679. struct mm_struct *mm = tsk->mm;
  680. int code = BUS_ADRERR;
  681. up_read(&mm->mmap_sem);
  682. /* Kernel mode? Handle exceptions or die: */
  683. if (!(error_code & PF_USER)) {
  684. no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
  685. return;
  686. }
  687. /* User-space => ok to do another page fault: */
  688. if (is_prefetch(regs, error_code, address))
  689. return;
  690. tsk->thread.cr2 = address;
  691. tsk->thread.error_code = error_code;
  692. tsk->thread.trap_nr = X86_TRAP_PF;
  693. #ifdef CONFIG_MEMORY_FAILURE
  694. if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
  695. printk(KERN_ERR
  696. "MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
  697. tsk->comm, tsk->pid, address);
  698. code = BUS_MCEERR_AR;
  699. }
  700. #endif
  701. force_sig_info_fault(SIGBUS, code, address, tsk, fault);
  702. }
  703. static noinline void
  704. mm_fault_error(struct pt_regs *regs, unsigned long error_code,
  705. unsigned long address, unsigned int fault)
  706. {
  707. if (fatal_signal_pending(current) && !(error_code & PF_USER)) {
  708. up_read(&current->mm->mmap_sem);
  709. no_context(regs, error_code, address, 0, 0);
  710. return;
  711. }
  712. if (fault & VM_FAULT_OOM) {
  713. /* Kernel mode? Handle exceptions or die: */
  714. if (!(error_code & PF_USER)) {
  715. up_read(&current->mm->mmap_sem);
  716. no_context(regs, error_code, address,
  717. SIGSEGV, SEGV_MAPERR);
  718. return;
  719. }
  720. up_read(&current->mm->mmap_sem);
  721. /*
  722. * We ran out of memory, call the OOM killer, and return the
  723. * userspace (which will retry the fault, or kill us if we got
  724. * oom-killed):
  725. */
  726. pagefault_out_of_memory();
  727. } else {
  728. if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
  729. VM_FAULT_HWPOISON_LARGE))
  730. do_sigbus(regs, error_code, address, fault);
  731. else
  732. BUG();
  733. }
  734. }
  735. static int spurious_fault_check(unsigned long error_code, pte_t *pte)
  736. {
  737. if ((error_code & PF_WRITE) && !pte_write(*pte))
  738. return 0;
  739. if ((error_code & PF_INSTR) && !pte_exec(*pte))
  740. return 0;
  741. return 1;
  742. }
  743. /*
  744. * Handle a spurious fault caused by a stale TLB entry.
  745. *
  746. * This allows us to lazily refresh the TLB when increasing the
  747. * permissions of a kernel page (RO -> RW or NX -> X). Doing it
  748. * eagerly is very expensive since that implies doing a full
  749. * cross-processor TLB flush, even if no stale TLB entries exist
  750. * on other processors.
  751. *
  752. * There are no security implications to leaving a stale TLB when
  753. * increasing the permissions on a page.
  754. */
  755. static noinline __kprobes int
  756. spurious_fault(unsigned long error_code, unsigned long address)
  757. {
  758. pgd_t *pgd;
  759. pud_t *pud;
  760. pmd_t *pmd;
  761. pte_t *pte;
  762. int ret;
  763. /* Reserved-bit violation or user access to kernel space? */
  764. if (error_code & (PF_USER | PF_RSVD))
  765. return 0;
  766. pgd = init_mm.pgd + pgd_index(address);
  767. if (!pgd_present(*pgd))
  768. return 0;
  769. pud = pud_offset(pgd, address);
  770. if (!pud_present(*pud))
  771. return 0;
  772. if (pud_large(*pud))
  773. return spurious_fault_check(error_code, (pte_t *) pud);
  774. pmd = pmd_offset(pud, address);
  775. if (!pmd_present(*pmd))
  776. return 0;
  777. if (pmd_large(*pmd))
  778. return spurious_fault_check(error_code, (pte_t *) pmd);
  779. pte = pte_offset_kernel(pmd, address);
  780. if (!pte_present(*pte))
  781. return 0;
  782. ret = spurious_fault_check(error_code, pte);
  783. if (!ret)
  784. return 0;
  785. /*
  786. * Make sure we have permissions in PMD.
  787. * If not, then there's a bug in the page tables:
  788. */
  789. ret = spurious_fault_check(error_code, (pte_t *) pmd);
  790. WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
  791. return ret;
  792. }
  793. int show_unhandled_signals = 1;
  794. static inline int
  795. access_error(unsigned long error_code, struct vm_area_struct *vma)
  796. {
  797. if (error_code & PF_WRITE) {
  798. /* write, present and write, not present: */
  799. if (unlikely(!(vma->vm_flags & VM_WRITE)))
  800. return 1;
  801. return 0;
  802. }
  803. /* read, present: */
  804. if (unlikely(error_code & PF_PROT))
  805. return 1;
  806. /* read, not present: */
  807. if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
  808. return 1;
  809. return 0;
  810. }
  811. static int fault_in_kernel_space(unsigned long address)
  812. {
  813. return address >= TASK_SIZE_MAX;
  814. }
  815. static inline bool smap_violation(int error_code, struct pt_regs *regs)
  816. {
  817. if (error_code & PF_USER)
  818. return false;
  819. if (!user_mode_vm(regs) && (regs->flags & X86_EFLAGS_AC))
  820. return false;
  821. return true;
  822. }
  823. /*
  824. * This routine handles page faults. It determines the address,
  825. * and the problem, and then passes it off to one of the appropriate
  826. * routines.
  827. */
  828. static void __kprobes
  829. __do_page_fault(struct pt_regs *regs, unsigned long error_code)
  830. {
  831. struct vm_area_struct *vma;
  832. struct task_struct *tsk;
  833. unsigned long address;
  834. struct mm_struct *mm;
  835. int fault;
  836. unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
  837. tsk = current;
  838. mm = tsk->mm;
  839. /* Get the faulting address: */
  840. address = read_cr2();
  841. /*
  842. * Detect and handle instructions that would cause a page fault for
  843. * both a tracked kernel page and a userspace page.
  844. */
  845. if (kmemcheck_active(regs))
  846. kmemcheck_hide(regs);
  847. prefetchw(&mm->mmap_sem);
  848. if (unlikely(kmmio_fault(regs, address)))
  849. return;
  850. /*
  851. * We fault-in kernel-space virtual memory on-demand. The
  852. * 'reference' page table is init_mm.pgd.
  853. *
  854. * NOTE! We MUST NOT take any locks for this case. We may
  855. * be in an interrupt or a critical region, and should
  856. * only copy the information from the master page table,
  857. * nothing more.
  858. *
  859. * This verifies that the fault happens in kernel space
  860. * (error_code & 4) == 0, and that the fault was not a
  861. * protection error (error_code & 9) == 0.
  862. */
  863. if (unlikely(fault_in_kernel_space(address))) {
  864. if (!(error_code & (PF_RSVD | PF_USER | PF_PROT))) {
  865. if (vmalloc_fault(address) >= 0)
  866. return;
  867. if (kmemcheck_fault(regs, address, error_code))
  868. return;
  869. }
  870. /* Can handle a stale RO->RW TLB: */
  871. if (spurious_fault(error_code, address))
  872. return;
  873. /* kprobes don't want to hook the spurious faults: */
  874. if (notify_page_fault(regs))
  875. return;
  876. /*
  877. * Don't take the mm semaphore here. If we fixup a prefetch
  878. * fault we could otherwise deadlock:
  879. */
  880. bad_area_nosemaphore(regs, error_code, address);
  881. return;
  882. }
  883. /* kprobes don't want to hook the spurious faults: */
  884. if (unlikely(notify_page_fault(regs)))
  885. return;
  886. /*
  887. * It's safe to allow irq's after cr2 has been saved and the
  888. * vmalloc fault has been handled.
  889. *
  890. * User-mode registers count as a user access even for any
  891. * potential system fault or CPU buglet:
  892. */
  893. if (user_mode_vm(regs)) {
  894. local_irq_enable();
  895. error_code |= PF_USER;
  896. flags |= FAULT_FLAG_USER;
  897. } else {
  898. if (regs->flags & X86_EFLAGS_IF)
  899. local_irq_enable();
  900. }
  901. if (unlikely(error_code & PF_RSVD))
  902. pgtable_bad(regs, error_code, address);
  903. if (static_cpu_has(X86_FEATURE_SMAP)) {
  904. if (unlikely(smap_violation(error_code, regs))) {
  905. bad_area_nosemaphore(regs, error_code, address);
  906. return;
  907. }
  908. }
  909. perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
  910. /*
  911. * If we're in an interrupt, have no user context or are running
  912. * in an atomic region then we must not take the fault:
  913. */
  914. if (unlikely(in_atomic() || !mm)) {
  915. bad_area_nosemaphore(regs, error_code, address);
  916. return;
  917. }
  918. if (error_code & PF_WRITE)
  919. flags |= FAULT_FLAG_WRITE;
  920. /*
  921. * When running in the kernel we expect faults to occur only to
  922. * addresses in user space. All other faults represent errors in
  923. * the kernel and should generate an OOPS. Unfortunately, in the
  924. * case of an erroneous fault occurring in a code path which already
  925. * holds mmap_sem we will deadlock attempting to validate the fault
  926. * against the address space. Luckily the kernel only validly
  927. * references user space from well defined areas of code, which are
  928. * listed in the exceptions table.
  929. *
  930. * As the vast majority of faults will be valid we will only perform
  931. * the source reference check when there is a possibility of a
  932. * deadlock. Attempt to lock the address space, if we cannot we then
  933. * validate the source. If this is invalid we can skip the address
  934. * space check, thus avoiding the deadlock:
  935. */
  936. if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
  937. if ((error_code & PF_USER) == 0 &&
  938. !search_exception_tables(regs->ip)) {
  939. bad_area_nosemaphore(regs, error_code, address);
  940. return;
  941. }
  942. retry:
  943. down_read(&mm->mmap_sem);
  944. } else {
  945. /*
  946. * The above down_read_trylock() might have succeeded in
  947. * which case we'll have missed the might_sleep() from
  948. * down_read():
  949. */
  950. might_sleep();
  951. }
  952. vma = find_vma(mm, address);
  953. if (unlikely(!vma)) {
  954. bad_area(regs, error_code, address);
  955. return;
  956. }
  957. if (likely(vma->vm_start <= address))
  958. goto good_area;
  959. if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
  960. bad_area(regs, error_code, address);
  961. return;
  962. }
  963. if (error_code & PF_USER) {
  964. /*
  965. * Accessing the stack below %sp is always a bug.
  966. * The large cushion allows instructions like enter
  967. * and pusha to work. ("enter $65535, $31" pushes
  968. * 32 pointers and then decrements %sp by 65535.)
  969. */
  970. if (unlikely(address + 65536 + 32 * sizeof(unsigned long) < regs->sp)) {
  971. bad_area(regs, error_code, address);
  972. return;
  973. }
  974. }
  975. if (unlikely(expand_stack(vma, address))) {
  976. bad_area(regs, error_code, address);
  977. return;
  978. }
  979. /*
  980. * Ok, we have a good vm_area for this memory access, so
  981. * we can handle it..
  982. */
  983. good_area:
  984. if (unlikely(access_error(error_code, vma))) {
  985. bad_area_access_error(regs, error_code, address);
  986. return;
  987. }
  988. /*
  989. * If for any reason at all we couldn't handle the fault,
  990. * make sure we exit gracefully rather than endlessly redo
  991. * the fault:
  992. */
  993. fault = handle_mm_fault(mm, vma, address, flags);
  994. /*
  995. * If we need to retry but a fatal signal is pending, handle the
  996. * signal first. We do not need to release the mmap_sem because it
  997. * would already be released in __lock_page_or_retry in mm/filemap.c.
  998. */
  999. if (unlikely((fault & VM_FAULT_RETRY) && fatal_signal_pending(current)))
  1000. return;
  1001. if (unlikely(fault & VM_FAULT_ERROR)) {
  1002. mm_fault_error(regs, error_code, address, fault);
  1003. return;
  1004. }
  1005. /*
  1006. * Major/minor page fault accounting is only done on the
  1007. * initial attempt. If we go through a retry, it is extremely
  1008. * likely that the page will be found in page cache at that point.
  1009. */
  1010. if (flags & FAULT_FLAG_ALLOW_RETRY) {
  1011. if (fault & VM_FAULT_MAJOR) {
  1012. tsk->maj_flt++;
  1013. perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1,
  1014. regs, address);
  1015. } else {
  1016. tsk->min_flt++;
  1017. perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1,
  1018. regs, address);
  1019. }
  1020. if (fault & VM_FAULT_RETRY) {
  1021. /* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
  1022. * of starvation. */
  1023. flags &= ~FAULT_FLAG_ALLOW_RETRY;
  1024. flags |= FAULT_FLAG_TRIED;
  1025. goto retry;
  1026. }
  1027. }
  1028. check_v8086_mode(regs, address, tsk);
  1029. up_read(&mm->mmap_sem);
  1030. }
  1031. dotraplinkage void __kprobes
  1032. do_page_fault(struct pt_regs *regs, unsigned long error_code)
  1033. {
  1034. enum ctx_state prev_state;
  1035. prev_state = exception_enter();
  1036. __do_page_fault(regs, error_code);
  1037. exception_exit(prev_state);
  1038. }
  1039. static void trace_page_fault_entries(struct pt_regs *regs,
  1040. unsigned long error_code)
  1041. {
  1042. if (user_mode(regs))
  1043. trace_page_fault_user(read_cr2(), regs, error_code);
  1044. else
  1045. trace_page_fault_kernel(read_cr2(), regs, error_code);
  1046. }
  1047. dotraplinkage void __kprobes
  1048. trace_do_page_fault(struct pt_regs *regs, unsigned long error_code)
  1049. {
  1050. enum ctx_state prev_state;
  1051. prev_state = exception_enter();
  1052. trace_page_fault_entries(regs, error_code);
  1053. __do_page_fault(regs, error_code);
  1054. exception_exit(prev_state);
  1055. }