vmx.c 82 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "irq.h"
  18. #include "vmx.h"
  19. #include "mmu.h"
  20. #include <linux/kvm_host.h>
  21. #include <linux/module.h>
  22. #include <linux/kernel.h>
  23. #include <linux/mm.h>
  24. #include <linux/highmem.h>
  25. #include <linux/sched.h>
  26. #include <linux/moduleparam.h>
  27. #include <asm/io.h>
  28. #include <asm/desc.h>
  29. MODULE_AUTHOR("Qumranet");
  30. MODULE_LICENSE("GPL");
  31. static int bypass_guest_pf = 1;
  32. module_param(bypass_guest_pf, bool, 0);
  33. static int enable_vpid = 1;
  34. module_param(enable_vpid, bool, 0);
  35. static int flexpriority_enabled = 1;
  36. module_param(flexpriority_enabled, bool, 0);
  37. static int enable_ept = 1;
  38. module_param(enable_ept, bool, 0);
  39. struct vmcs {
  40. u32 revision_id;
  41. u32 abort;
  42. char data[0];
  43. };
  44. struct vcpu_vmx {
  45. struct kvm_vcpu vcpu;
  46. int launched;
  47. u8 fail;
  48. u32 idt_vectoring_info;
  49. struct kvm_msr_entry *guest_msrs;
  50. struct kvm_msr_entry *host_msrs;
  51. int nmsrs;
  52. int save_nmsrs;
  53. int msr_offset_efer;
  54. #ifdef CONFIG_X86_64
  55. int msr_offset_kernel_gs_base;
  56. #endif
  57. struct vmcs *vmcs;
  58. struct {
  59. int loaded;
  60. u16 fs_sel, gs_sel, ldt_sel;
  61. int gs_ldt_reload_needed;
  62. int fs_reload_needed;
  63. int guest_efer_loaded;
  64. } host_state;
  65. struct {
  66. struct {
  67. bool pending;
  68. u8 vector;
  69. unsigned rip;
  70. } irq;
  71. } rmode;
  72. int vpid;
  73. };
  74. static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
  75. {
  76. return container_of(vcpu, struct vcpu_vmx, vcpu);
  77. }
  78. static int init_rmode(struct kvm *kvm);
  79. static DEFINE_PER_CPU(struct vmcs *, vmxarea);
  80. static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
  81. static struct page *vmx_io_bitmap_a;
  82. static struct page *vmx_io_bitmap_b;
  83. static struct page *vmx_msr_bitmap;
  84. static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
  85. static DEFINE_SPINLOCK(vmx_vpid_lock);
  86. static struct vmcs_config {
  87. int size;
  88. int order;
  89. u32 revision_id;
  90. u32 pin_based_exec_ctrl;
  91. u32 cpu_based_exec_ctrl;
  92. u32 cpu_based_2nd_exec_ctrl;
  93. u32 vmexit_ctrl;
  94. u32 vmentry_ctrl;
  95. } vmcs_config;
  96. struct vmx_capability {
  97. u32 ept;
  98. u32 vpid;
  99. } vmx_capability;
  100. #define VMX_SEGMENT_FIELD(seg) \
  101. [VCPU_SREG_##seg] = { \
  102. .selector = GUEST_##seg##_SELECTOR, \
  103. .base = GUEST_##seg##_BASE, \
  104. .limit = GUEST_##seg##_LIMIT, \
  105. .ar_bytes = GUEST_##seg##_AR_BYTES, \
  106. }
  107. static struct kvm_vmx_segment_field {
  108. unsigned selector;
  109. unsigned base;
  110. unsigned limit;
  111. unsigned ar_bytes;
  112. } kvm_vmx_segment_fields[] = {
  113. VMX_SEGMENT_FIELD(CS),
  114. VMX_SEGMENT_FIELD(DS),
  115. VMX_SEGMENT_FIELD(ES),
  116. VMX_SEGMENT_FIELD(FS),
  117. VMX_SEGMENT_FIELD(GS),
  118. VMX_SEGMENT_FIELD(SS),
  119. VMX_SEGMENT_FIELD(TR),
  120. VMX_SEGMENT_FIELD(LDTR),
  121. };
  122. /*
  123. * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
  124. * away by decrementing the array size.
  125. */
  126. static const u32 vmx_msr_index[] = {
  127. #ifdef CONFIG_X86_64
  128. MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, MSR_KERNEL_GS_BASE,
  129. #endif
  130. MSR_EFER, MSR_K6_STAR,
  131. };
  132. #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
  133. static void load_msrs(struct kvm_msr_entry *e, int n)
  134. {
  135. int i;
  136. for (i = 0; i < n; ++i)
  137. wrmsrl(e[i].index, e[i].data);
  138. }
  139. static void save_msrs(struct kvm_msr_entry *e, int n)
  140. {
  141. int i;
  142. for (i = 0; i < n; ++i)
  143. rdmsrl(e[i].index, e[i].data);
  144. }
  145. static inline int is_page_fault(u32 intr_info)
  146. {
  147. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  148. INTR_INFO_VALID_MASK)) ==
  149. (INTR_TYPE_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
  150. }
  151. static inline int is_no_device(u32 intr_info)
  152. {
  153. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  154. INTR_INFO_VALID_MASK)) ==
  155. (INTR_TYPE_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
  156. }
  157. static inline int is_invalid_opcode(u32 intr_info)
  158. {
  159. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  160. INTR_INFO_VALID_MASK)) ==
  161. (INTR_TYPE_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
  162. }
  163. static inline int is_external_interrupt(u32 intr_info)
  164. {
  165. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
  166. == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  167. }
  168. static inline int cpu_has_vmx_msr_bitmap(void)
  169. {
  170. return (vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS);
  171. }
  172. static inline int cpu_has_vmx_tpr_shadow(void)
  173. {
  174. return (vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW);
  175. }
  176. static inline int vm_need_tpr_shadow(struct kvm *kvm)
  177. {
  178. return ((cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm)));
  179. }
  180. static inline int cpu_has_secondary_exec_ctrls(void)
  181. {
  182. return (vmcs_config.cpu_based_exec_ctrl &
  183. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS);
  184. }
  185. static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
  186. {
  187. return flexpriority_enabled
  188. && (vmcs_config.cpu_based_2nd_exec_ctrl &
  189. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
  190. }
  191. static inline int cpu_has_vmx_invept_individual_addr(void)
  192. {
  193. return (!!(vmx_capability.ept & VMX_EPT_EXTENT_INDIVIDUAL_BIT));
  194. }
  195. static inline int cpu_has_vmx_invept_context(void)
  196. {
  197. return (!!(vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT));
  198. }
  199. static inline int cpu_has_vmx_invept_global(void)
  200. {
  201. return (!!(vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT));
  202. }
  203. static inline int cpu_has_vmx_ept(void)
  204. {
  205. return (vmcs_config.cpu_based_2nd_exec_ctrl &
  206. SECONDARY_EXEC_ENABLE_EPT);
  207. }
  208. static inline int vm_need_ept(void)
  209. {
  210. return (cpu_has_vmx_ept() && enable_ept);
  211. }
  212. static inline int vm_need_virtualize_apic_accesses(struct kvm *kvm)
  213. {
  214. return ((cpu_has_vmx_virtualize_apic_accesses()) &&
  215. (irqchip_in_kernel(kvm)));
  216. }
  217. static inline int cpu_has_vmx_vpid(void)
  218. {
  219. return (vmcs_config.cpu_based_2nd_exec_ctrl &
  220. SECONDARY_EXEC_ENABLE_VPID);
  221. }
  222. static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
  223. {
  224. int i;
  225. for (i = 0; i < vmx->nmsrs; ++i)
  226. if (vmx->guest_msrs[i].index == msr)
  227. return i;
  228. return -1;
  229. }
  230. static inline void __invvpid(int ext, u16 vpid, gva_t gva)
  231. {
  232. struct {
  233. u64 vpid : 16;
  234. u64 rsvd : 48;
  235. u64 gva;
  236. } operand = { vpid, 0, gva };
  237. asm volatile (ASM_VMX_INVVPID
  238. /* CF==1 or ZF==1 --> rc = -1 */
  239. "; ja 1f ; ud2 ; 1:"
  240. : : "a"(&operand), "c"(ext) : "cc", "memory");
  241. }
  242. static inline void __invept(int ext, u64 eptp, gpa_t gpa)
  243. {
  244. struct {
  245. u64 eptp, gpa;
  246. } operand = {eptp, gpa};
  247. asm volatile (ASM_VMX_INVEPT
  248. /* CF==1 or ZF==1 --> rc = -1 */
  249. "; ja 1f ; ud2 ; 1:\n"
  250. : : "a" (&operand), "c" (ext) : "cc", "memory");
  251. }
  252. static struct kvm_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
  253. {
  254. int i;
  255. i = __find_msr_index(vmx, msr);
  256. if (i >= 0)
  257. return &vmx->guest_msrs[i];
  258. return NULL;
  259. }
  260. static void vmcs_clear(struct vmcs *vmcs)
  261. {
  262. u64 phys_addr = __pa(vmcs);
  263. u8 error;
  264. asm volatile (ASM_VMX_VMCLEAR_RAX "; setna %0"
  265. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  266. : "cc", "memory");
  267. if (error)
  268. printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
  269. vmcs, phys_addr);
  270. }
  271. static void __vcpu_clear(void *arg)
  272. {
  273. struct vcpu_vmx *vmx = arg;
  274. int cpu = raw_smp_processor_id();
  275. if (vmx->vcpu.cpu == cpu)
  276. vmcs_clear(vmx->vmcs);
  277. if (per_cpu(current_vmcs, cpu) == vmx->vmcs)
  278. per_cpu(current_vmcs, cpu) = NULL;
  279. rdtscll(vmx->vcpu.arch.host_tsc);
  280. }
  281. static void vcpu_clear(struct vcpu_vmx *vmx)
  282. {
  283. if (vmx->vcpu.cpu == -1)
  284. return;
  285. smp_call_function_single(vmx->vcpu.cpu, __vcpu_clear, vmx, 0, 1);
  286. vmx->launched = 0;
  287. }
  288. static inline void vpid_sync_vcpu_all(struct vcpu_vmx *vmx)
  289. {
  290. if (vmx->vpid == 0)
  291. return;
  292. __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
  293. }
  294. static inline void ept_sync_global(void)
  295. {
  296. if (cpu_has_vmx_invept_global())
  297. __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
  298. }
  299. static inline void ept_sync_context(u64 eptp)
  300. {
  301. if (vm_need_ept()) {
  302. if (cpu_has_vmx_invept_context())
  303. __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
  304. else
  305. ept_sync_global();
  306. }
  307. }
  308. static inline void ept_sync_individual_addr(u64 eptp, gpa_t gpa)
  309. {
  310. if (vm_need_ept()) {
  311. if (cpu_has_vmx_invept_individual_addr())
  312. __invept(VMX_EPT_EXTENT_INDIVIDUAL_ADDR,
  313. eptp, gpa);
  314. else
  315. ept_sync_context(eptp);
  316. }
  317. }
  318. static unsigned long vmcs_readl(unsigned long field)
  319. {
  320. unsigned long value;
  321. asm volatile (ASM_VMX_VMREAD_RDX_RAX
  322. : "=a"(value) : "d"(field) : "cc");
  323. return value;
  324. }
  325. static u16 vmcs_read16(unsigned long field)
  326. {
  327. return vmcs_readl(field);
  328. }
  329. static u32 vmcs_read32(unsigned long field)
  330. {
  331. return vmcs_readl(field);
  332. }
  333. static u64 vmcs_read64(unsigned long field)
  334. {
  335. #ifdef CONFIG_X86_64
  336. return vmcs_readl(field);
  337. #else
  338. return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
  339. #endif
  340. }
  341. static noinline void vmwrite_error(unsigned long field, unsigned long value)
  342. {
  343. printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
  344. field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
  345. dump_stack();
  346. }
  347. static void vmcs_writel(unsigned long field, unsigned long value)
  348. {
  349. u8 error;
  350. asm volatile (ASM_VMX_VMWRITE_RAX_RDX "; setna %0"
  351. : "=q"(error) : "a"(value), "d"(field) : "cc");
  352. if (unlikely(error))
  353. vmwrite_error(field, value);
  354. }
  355. static void vmcs_write16(unsigned long field, u16 value)
  356. {
  357. vmcs_writel(field, value);
  358. }
  359. static void vmcs_write32(unsigned long field, u32 value)
  360. {
  361. vmcs_writel(field, value);
  362. }
  363. static void vmcs_write64(unsigned long field, u64 value)
  364. {
  365. #ifdef CONFIG_X86_64
  366. vmcs_writel(field, value);
  367. #else
  368. vmcs_writel(field, value);
  369. asm volatile ("");
  370. vmcs_writel(field+1, value >> 32);
  371. #endif
  372. }
  373. static void vmcs_clear_bits(unsigned long field, u32 mask)
  374. {
  375. vmcs_writel(field, vmcs_readl(field) & ~mask);
  376. }
  377. static void vmcs_set_bits(unsigned long field, u32 mask)
  378. {
  379. vmcs_writel(field, vmcs_readl(field) | mask);
  380. }
  381. static void update_exception_bitmap(struct kvm_vcpu *vcpu)
  382. {
  383. u32 eb;
  384. eb = (1u << PF_VECTOR) | (1u << UD_VECTOR);
  385. if (!vcpu->fpu_active)
  386. eb |= 1u << NM_VECTOR;
  387. if (vcpu->guest_debug.enabled)
  388. eb |= 1u << 1;
  389. if (vcpu->arch.rmode.active)
  390. eb = ~0;
  391. if (vm_need_ept())
  392. eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
  393. vmcs_write32(EXCEPTION_BITMAP, eb);
  394. }
  395. static void reload_tss(void)
  396. {
  397. /*
  398. * VT restores TR but not its size. Useless.
  399. */
  400. struct descriptor_table gdt;
  401. struct desc_struct *descs;
  402. get_gdt(&gdt);
  403. descs = (void *)gdt.base;
  404. descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
  405. load_TR_desc();
  406. }
  407. static void load_transition_efer(struct vcpu_vmx *vmx)
  408. {
  409. int efer_offset = vmx->msr_offset_efer;
  410. u64 host_efer = vmx->host_msrs[efer_offset].data;
  411. u64 guest_efer = vmx->guest_msrs[efer_offset].data;
  412. u64 ignore_bits;
  413. if (efer_offset < 0)
  414. return;
  415. /*
  416. * NX is emulated; LMA and LME handled by hardware; SCE meaninless
  417. * outside long mode
  418. */
  419. ignore_bits = EFER_NX | EFER_SCE;
  420. #ifdef CONFIG_X86_64
  421. ignore_bits |= EFER_LMA | EFER_LME;
  422. /* SCE is meaningful only in long mode on Intel */
  423. if (guest_efer & EFER_LMA)
  424. ignore_bits &= ~(u64)EFER_SCE;
  425. #endif
  426. if ((guest_efer & ~ignore_bits) == (host_efer & ~ignore_bits))
  427. return;
  428. vmx->host_state.guest_efer_loaded = 1;
  429. guest_efer &= ~ignore_bits;
  430. guest_efer |= host_efer & ignore_bits;
  431. wrmsrl(MSR_EFER, guest_efer);
  432. vmx->vcpu.stat.efer_reload++;
  433. }
  434. static void reload_host_efer(struct vcpu_vmx *vmx)
  435. {
  436. if (vmx->host_state.guest_efer_loaded) {
  437. vmx->host_state.guest_efer_loaded = 0;
  438. load_msrs(vmx->host_msrs + vmx->msr_offset_efer, 1);
  439. }
  440. }
  441. static void vmx_save_host_state(struct kvm_vcpu *vcpu)
  442. {
  443. struct vcpu_vmx *vmx = to_vmx(vcpu);
  444. if (vmx->host_state.loaded)
  445. return;
  446. vmx->host_state.loaded = 1;
  447. /*
  448. * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
  449. * allow segment selectors with cpl > 0 or ti == 1.
  450. */
  451. vmx->host_state.ldt_sel = read_ldt();
  452. vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
  453. vmx->host_state.fs_sel = read_fs();
  454. if (!(vmx->host_state.fs_sel & 7)) {
  455. vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
  456. vmx->host_state.fs_reload_needed = 0;
  457. } else {
  458. vmcs_write16(HOST_FS_SELECTOR, 0);
  459. vmx->host_state.fs_reload_needed = 1;
  460. }
  461. vmx->host_state.gs_sel = read_gs();
  462. if (!(vmx->host_state.gs_sel & 7))
  463. vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
  464. else {
  465. vmcs_write16(HOST_GS_SELECTOR, 0);
  466. vmx->host_state.gs_ldt_reload_needed = 1;
  467. }
  468. #ifdef CONFIG_X86_64
  469. vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
  470. vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
  471. #else
  472. vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
  473. vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
  474. #endif
  475. #ifdef CONFIG_X86_64
  476. if (is_long_mode(&vmx->vcpu))
  477. save_msrs(vmx->host_msrs +
  478. vmx->msr_offset_kernel_gs_base, 1);
  479. #endif
  480. load_msrs(vmx->guest_msrs, vmx->save_nmsrs);
  481. load_transition_efer(vmx);
  482. }
  483. static void vmx_load_host_state(struct vcpu_vmx *vmx)
  484. {
  485. unsigned long flags;
  486. if (!vmx->host_state.loaded)
  487. return;
  488. ++vmx->vcpu.stat.host_state_reload;
  489. vmx->host_state.loaded = 0;
  490. if (vmx->host_state.fs_reload_needed)
  491. load_fs(vmx->host_state.fs_sel);
  492. if (vmx->host_state.gs_ldt_reload_needed) {
  493. load_ldt(vmx->host_state.ldt_sel);
  494. /*
  495. * If we have to reload gs, we must take care to
  496. * preserve our gs base.
  497. */
  498. local_irq_save(flags);
  499. load_gs(vmx->host_state.gs_sel);
  500. #ifdef CONFIG_X86_64
  501. wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
  502. #endif
  503. local_irq_restore(flags);
  504. }
  505. reload_tss();
  506. save_msrs(vmx->guest_msrs, vmx->save_nmsrs);
  507. load_msrs(vmx->host_msrs, vmx->save_nmsrs);
  508. reload_host_efer(vmx);
  509. }
  510. /*
  511. * Switches to specified vcpu, until a matching vcpu_put(), but assumes
  512. * vcpu mutex is already taken.
  513. */
  514. static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  515. {
  516. struct vcpu_vmx *vmx = to_vmx(vcpu);
  517. u64 phys_addr = __pa(vmx->vmcs);
  518. u64 tsc_this, delta, new_offset;
  519. if (vcpu->cpu != cpu) {
  520. vcpu_clear(vmx);
  521. kvm_migrate_timers(vcpu);
  522. vpid_sync_vcpu_all(vmx);
  523. }
  524. if (per_cpu(current_vmcs, cpu) != vmx->vmcs) {
  525. u8 error;
  526. per_cpu(current_vmcs, cpu) = vmx->vmcs;
  527. asm volatile (ASM_VMX_VMPTRLD_RAX "; setna %0"
  528. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  529. : "cc");
  530. if (error)
  531. printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
  532. vmx->vmcs, phys_addr);
  533. }
  534. if (vcpu->cpu != cpu) {
  535. struct descriptor_table dt;
  536. unsigned long sysenter_esp;
  537. vcpu->cpu = cpu;
  538. /*
  539. * Linux uses per-cpu TSS and GDT, so set these when switching
  540. * processors.
  541. */
  542. vmcs_writel(HOST_TR_BASE, read_tr_base()); /* 22.2.4 */
  543. get_gdt(&dt);
  544. vmcs_writel(HOST_GDTR_BASE, dt.base); /* 22.2.4 */
  545. rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
  546. vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
  547. /*
  548. * Make sure the time stamp counter is monotonous.
  549. */
  550. rdtscll(tsc_this);
  551. if (tsc_this < vcpu->arch.host_tsc) {
  552. delta = vcpu->arch.host_tsc - tsc_this;
  553. new_offset = vmcs_read64(TSC_OFFSET) + delta;
  554. vmcs_write64(TSC_OFFSET, new_offset);
  555. }
  556. }
  557. }
  558. static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
  559. {
  560. vmx_load_host_state(to_vmx(vcpu));
  561. }
  562. static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
  563. {
  564. if (vcpu->fpu_active)
  565. return;
  566. vcpu->fpu_active = 1;
  567. vmcs_clear_bits(GUEST_CR0, X86_CR0_TS);
  568. if (vcpu->arch.cr0 & X86_CR0_TS)
  569. vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
  570. update_exception_bitmap(vcpu);
  571. }
  572. static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
  573. {
  574. if (!vcpu->fpu_active)
  575. return;
  576. vcpu->fpu_active = 0;
  577. vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
  578. update_exception_bitmap(vcpu);
  579. }
  580. static void vmx_vcpu_decache(struct kvm_vcpu *vcpu)
  581. {
  582. vcpu_clear(to_vmx(vcpu));
  583. }
  584. static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
  585. {
  586. return vmcs_readl(GUEST_RFLAGS);
  587. }
  588. static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  589. {
  590. if (vcpu->arch.rmode.active)
  591. rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  592. vmcs_writel(GUEST_RFLAGS, rflags);
  593. }
  594. static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
  595. {
  596. unsigned long rip;
  597. u32 interruptibility;
  598. rip = vmcs_readl(GUEST_RIP);
  599. rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  600. vmcs_writel(GUEST_RIP, rip);
  601. /*
  602. * We emulated an instruction, so temporary interrupt blocking
  603. * should be removed, if set.
  604. */
  605. interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  606. if (interruptibility & 3)
  607. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
  608. interruptibility & ~3);
  609. vcpu->arch.interrupt_window_open = 1;
  610. }
  611. static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
  612. bool has_error_code, u32 error_code)
  613. {
  614. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  615. nr | INTR_TYPE_EXCEPTION
  616. | (has_error_code ? INTR_INFO_DELIVER_CODE_MASK : 0)
  617. | INTR_INFO_VALID_MASK);
  618. if (has_error_code)
  619. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
  620. }
  621. static bool vmx_exception_injected(struct kvm_vcpu *vcpu)
  622. {
  623. struct vcpu_vmx *vmx = to_vmx(vcpu);
  624. return !(vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
  625. }
  626. /*
  627. * Swap MSR entry in host/guest MSR entry array.
  628. */
  629. #ifdef CONFIG_X86_64
  630. static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
  631. {
  632. struct kvm_msr_entry tmp;
  633. tmp = vmx->guest_msrs[to];
  634. vmx->guest_msrs[to] = vmx->guest_msrs[from];
  635. vmx->guest_msrs[from] = tmp;
  636. tmp = vmx->host_msrs[to];
  637. vmx->host_msrs[to] = vmx->host_msrs[from];
  638. vmx->host_msrs[from] = tmp;
  639. }
  640. #endif
  641. /*
  642. * Set up the vmcs to automatically save and restore system
  643. * msrs. Don't touch the 64-bit msrs if the guest is in legacy
  644. * mode, as fiddling with msrs is very expensive.
  645. */
  646. static void setup_msrs(struct vcpu_vmx *vmx)
  647. {
  648. int save_nmsrs;
  649. vmx_load_host_state(vmx);
  650. save_nmsrs = 0;
  651. #ifdef CONFIG_X86_64
  652. if (is_long_mode(&vmx->vcpu)) {
  653. int index;
  654. index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
  655. if (index >= 0)
  656. move_msr_up(vmx, index, save_nmsrs++);
  657. index = __find_msr_index(vmx, MSR_LSTAR);
  658. if (index >= 0)
  659. move_msr_up(vmx, index, save_nmsrs++);
  660. index = __find_msr_index(vmx, MSR_CSTAR);
  661. if (index >= 0)
  662. move_msr_up(vmx, index, save_nmsrs++);
  663. index = __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
  664. if (index >= 0)
  665. move_msr_up(vmx, index, save_nmsrs++);
  666. /*
  667. * MSR_K6_STAR is only needed on long mode guests, and only
  668. * if efer.sce is enabled.
  669. */
  670. index = __find_msr_index(vmx, MSR_K6_STAR);
  671. if ((index >= 0) && (vmx->vcpu.arch.shadow_efer & EFER_SCE))
  672. move_msr_up(vmx, index, save_nmsrs++);
  673. }
  674. #endif
  675. vmx->save_nmsrs = save_nmsrs;
  676. #ifdef CONFIG_X86_64
  677. vmx->msr_offset_kernel_gs_base =
  678. __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
  679. #endif
  680. vmx->msr_offset_efer = __find_msr_index(vmx, MSR_EFER);
  681. }
  682. /*
  683. * reads and returns guest's timestamp counter "register"
  684. * guest_tsc = host_tsc + tsc_offset -- 21.3
  685. */
  686. static u64 guest_read_tsc(void)
  687. {
  688. u64 host_tsc, tsc_offset;
  689. rdtscll(host_tsc);
  690. tsc_offset = vmcs_read64(TSC_OFFSET);
  691. return host_tsc + tsc_offset;
  692. }
  693. /*
  694. * writes 'guest_tsc' into guest's timestamp counter "register"
  695. * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
  696. */
  697. static void guest_write_tsc(u64 guest_tsc)
  698. {
  699. u64 host_tsc;
  700. rdtscll(host_tsc);
  701. vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
  702. }
  703. /*
  704. * Reads an msr value (of 'msr_index') into 'pdata'.
  705. * Returns 0 on success, non-0 otherwise.
  706. * Assumes vcpu_load() was already called.
  707. */
  708. static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  709. {
  710. u64 data;
  711. struct kvm_msr_entry *msr;
  712. if (!pdata) {
  713. printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
  714. return -EINVAL;
  715. }
  716. switch (msr_index) {
  717. #ifdef CONFIG_X86_64
  718. case MSR_FS_BASE:
  719. data = vmcs_readl(GUEST_FS_BASE);
  720. break;
  721. case MSR_GS_BASE:
  722. data = vmcs_readl(GUEST_GS_BASE);
  723. break;
  724. case MSR_EFER:
  725. return kvm_get_msr_common(vcpu, msr_index, pdata);
  726. #endif
  727. case MSR_IA32_TIME_STAMP_COUNTER:
  728. data = guest_read_tsc();
  729. break;
  730. case MSR_IA32_SYSENTER_CS:
  731. data = vmcs_read32(GUEST_SYSENTER_CS);
  732. break;
  733. case MSR_IA32_SYSENTER_EIP:
  734. data = vmcs_readl(GUEST_SYSENTER_EIP);
  735. break;
  736. case MSR_IA32_SYSENTER_ESP:
  737. data = vmcs_readl(GUEST_SYSENTER_ESP);
  738. break;
  739. default:
  740. msr = find_msr_entry(to_vmx(vcpu), msr_index);
  741. if (msr) {
  742. data = msr->data;
  743. break;
  744. }
  745. return kvm_get_msr_common(vcpu, msr_index, pdata);
  746. }
  747. *pdata = data;
  748. return 0;
  749. }
  750. /*
  751. * Writes msr value into into the appropriate "register".
  752. * Returns 0 on success, non-0 otherwise.
  753. * Assumes vcpu_load() was already called.
  754. */
  755. static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  756. {
  757. struct vcpu_vmx *vmx = to_vmx(vcpu);
  758. struct kvm_msr_entry *msr;
  759. int ret = 0;
  760. switch (msr_index) {
  761. #ifdef CONFIG_X86_64
  762. case MSR_EFER:
  763. ret = kvm_set_msr_common(vcpu, msr_index, data);
  764. if (vmx->host_state.loaded) {
  765. reload_host_efer(vmx);
  766. load_transition_efer(vmx);
  767. }
  768. break;
  769. case MSR_FS_BASE:
  770. vmcs_writel(GUEST_FS_BASE, data);
  771. break;
  772. case MSR_GS_BASE:
  773. vmcs_writel(GUEST_GS_BASE, data);
  774. break;
  775. #endif
  776. case MSR_IA32_SYSENTER_CS:
  777. vmcs_write32(GUEST_SYSENTER_CS, data);
  778. break;
  779. case MSR_IA32_SYSENTER_EIP:
  780. vmcs_writel(GUEST_SYSENTER_EIP, data);
  781. break;
  782. case MSR_IA32_SYSENTER_ESP:
  783. vmcs_writel(GUEST_SYSENTER_ESP, data);
  784. break;
  785. case MSR_IA32_TIME_STAMP_COUNTER:
  786. guest_write_tsc(data);
  787. break;
  788. default:
  789. msr = find_msr_entry(vmx, msr_index);
  790. if (msr) {
  791. msr->data = data;
  792. if (vmx->host_state.loaded)
  793. load_msrs(vmx->guest_msrs, vmx->save_nmsrs);
  794. break;
  795. }
  796. ret = kvm_set_msr_common(vcpu, msr_index, data);
  797. }
  798. return ret;
  799. }
  800. /*
  801. * Sync the rsp and rip registers into the vcpu structure. This allows
  802. * registers to be accessed by indexing vcpu->arch.regs.
  803. */
  804. static void vcpu_load_rsp_rip(struct kvm_vcpu *vcpu)
  805. {
  806. vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
  807. vcpu->arch.rip = vmcs_readl(GUEST_RIP);
  808. }
  809. /*
  810. * Syncs rsp and rip back into the vmcs. Should be called after possible
  811. * modification.
  812. */
  813. static void vcpu_put_rsp_rip(struct kvm_vcpu *vcpu)
  814. {
  815. vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
  816. vmcs_writel(GUEST_RIP, vcpu->arch.rip);
  817. }
  818. static int set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
  819. {
  820. unsigned long dr7 = 0x400;
  821. int old_singlestep;
  822. old_singlestep = vcpu->guest_debug.singlestep;
  823. vcpu->guest_debug.enabled = dbg->enabled;
  824. if (vcpu->guest_debug.enabled) {
  825. int i;
  826. dr7 |= 0x200; /* exact */
  827. for (i = 0; i < 4; ++i) {
  828. if (!dbg->breakpoints[i].enabled)
  829. continue;
  830. vcpu->guest_debug.bp[i] = dbg->breakpoints[i].address;
  831. dr7 |= 2 << (i*2); /* global enable */
  832. dr7 |= 0 << (i*4+16); /* execution breakpoint */
  833. }
  834. vcpu->guest_debug.singlestep = dbg->singlestep;
  835. } else
  836. vcpu->guest_debug.singlestep = 0;
  837. if (old_singlestep && !vcpu->guest_debug.singlestep) {
  838. unsigned long flags;
  839. flags = vmcs_readl(GUEST_RFLAGS);
  840. flags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  841. vmcs_writel(GUEST_RFLAGS, flags);
  842. }
  843. update_exception_bitmap(vcpu);
  844. vmcs_writel(GUEST_DR7, dr7);
  845. return 0;
  846. }
  847. static int vmx_get_irq(struct kvm_vcpu *vcpu)
  848. {
  849. struct vcpu_vmx *vmx = to_vmx(vcpu);
  850. u32 idtv_info_field;
  851. idtv_info_field = vmx->idt_vectoring_info;
  852. if (idtv_info_field & INTR_INFO_VALID_MASK) {
  853. if (is_external_interrupt(idtv_info_field))
  854. return idtv_info_field & VECTORING_INFO_VECTOR_MASK;
  855. else
  856. printk(KERN_DEBUG "pending exception: not handled yet\n");
  857. }
  858. return -1;
  859. }
  860. static __init int cpu_has_kvm_support(void)
  861. {
  862. unsigned long ecx = cpuid_ecx(1);
  863. return test_bit(5, &ecx); /* CPUID.1:ECX.VMX[bit 5] -> VT */
  864. }
  865. static __init int vmx_disabled_by_bios(void)
  866. {
  867. u64 msr;
  868. rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
  869. return (msr & (MSR_IA32_FEATURE_CONTROL_LOCKED |
  870. MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED))
  871. == MSR_IA32_FEATURE_CONTROL_LOCKED;
  872. /* locked but not enabled */
  873. }
  874. static void hardware_enable(void *garbage)
  875. {
  876. int cpu = raw_smp_processor_id();
  877. u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
  878. u64 old;
  879. rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
  880. if ((old & (MSR_IA32_FEATURE_CONTROL_LOCKED |
  881. MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED))
  882. != (MSR_IA32_FEATURE_CONTROL_LOCKED |
  883. MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED))
  884. /* enable and lock */
  885. wrmsrl(MSR_IA32_FEATURE_CONTROL, old |
  886. MSR_IA32_FEATURE_CONTROL_LOCKED |
  887. MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED);
  888. write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
  889. asm volatile (ASM_VMX_VMXON_RAX : : "a"(&phys_addr), "m"(phys_addr)
  890. : "memory", "cc");
  891. }
  892. static void hardware_disable(void *garbage)
  893. {
  894. asm volatile (ASM_VMX_VMXOFF : : : "cc");
  895. write_cr4(read_cr4() & ~X86_CR4_VMXE);
  896. }
  897. static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
  898. u32 msr, u32 *result)
  899. {
  900. u32 vmx_msr_low, vmx_msr_high;
  901. u32 ctl = ctl_min | ctl_opt;
  902. rdmsr(msr, vmx_msr_low, vmx_msr_high);
  903. ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
  904. ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
  905. /* Ensure minimum (required) set of control bits are supported. */
  906. if (ctl_min & ~ctl)
  907. return -EIO;
  908. *result = ctl;
  909. return 0;
  910. }
  911. static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
  912. {
  913. u32 vmx_msr_low, vmx_msr_high;
  914. u32 min, opt, min2, opt2;
  915. u32 _pin_based_exec_control = 0;
  916. u32 _cpu_based_exec_control = 0;
  917. u32 _cpu_based_2nd_exec_control = 0;
  918. u32 _vmexit_control = 0;
  919. u32 _vmentry_control = 0;
  920. min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
  921. opt = 0;
  922. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
  923. &_pin_based_exec_control) < 0)
  924. return -EIO;
  925. min = CPU_BASED_HLT_EXITING |
  926. #ifdef CONFIG_X86_64
  927. CPU_BASED_CR8_LOAD_EXITING |
  928. CPU_BASED_CR8_STORE_EXITING |
  929. #endif
  930. CPU_BASED_CR3_LOAD_EXITING |
  931. CPU_BASED_CR3_STORE_EXITING |
  932. CPU_BASED_USE_IO_BITMAPS |
  933. CPU_BASED_MOV_DR_EXITING |
  934. CPU_BASED_USE_TSC_OFFSETING;
  935. opt = CPU_BASED_TPR_SHADOW |
  936. CPU_BASED_USE_MSR_BITMAPS |
  937. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
  938. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
  939. &_cpu_based_exec_control) < 0)
  940. return -EIO;
  941. #ifdef CONFIG_X86_64
  942. if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
  943. _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
  944. ~CPU_BASED_CR8_STORE_EXITING;
  945. #endif
  946. if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
  947. min2 = 0;
  948. opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
  949. SECONDARY_EXEC_WBINVD_EXITING |
  950. SECONDARY_EXEC_ENABLE_VPID |
  951. SECONDARY_EXEC_ENABLE_EPT;
  952. if (adjust_vmx_controls(min2, opt2,
  953. MSR_IA32_VMX_PROCBASED_CTLS2,
  954. &_cpu_based_2nd_exec_control) < 0)
  955. return -EIO;
  956. }
  957. #ifndef CONFIG_X86_64
  958. if (!(_cpu_based_2nd_exec_control &
  959. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
  960. _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
  961. #endif
  962. if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
  963. /* CR3 accesses don't need to cause VM Exits when EPT enabled */
  964. min &= ~(CPU_BASED_CR3_LOAD_EXITING |
  965. CPU_BASED_CR3_STORE_EXITING);
  966. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
  967. &_cpu_based_exec_control) < 0)
  968. return -EIO;
  969. rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
  970. vmx_capability.ept, vmx_capability.vpid);
  971. }
  972. min = 0;
  973. #ifdef CONFIG_X86_64
  974. min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
  975. #endif
  976. opt = 0;
  977. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
  978. &_vmexit_control) < 0)
  979. return -EIO;
  980. min = opt = 0;
  981. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
  982. &_vmentry_control) < 0)
  983. return -EIO;
  984. rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
  985. /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
  986. if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
  987. return -EIO;
  988. #ifdef CONFIG_X86_64
  989. /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
  990. if (vmx_msr_high & (1u<<16))
  991. return -EIO;
  992. #endif
  993. /* Require Write-Back (WB) memory type for VMCS accesses. */
  994. if (((vmx_msr_high >> 18) & 15) != 6)
  995. return -EIO;
  996. vmcs_conf->size = vmx_msr_high & 0x1fff;
  997. vmcs_conf->order = get_order(vmcs_config.size);
  998. vmcs_conf->revision_id = vmx_msr_low;
  999. vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
  1000. vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
  1001. vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
  1002. vmcs_conf->vmexit_ctrl = _vmexit_control;
  1003. vmcs_conf->vmentry_ctrl = _vmentry_control;
  1004. return 0;
  1005. }
  1006. static struct vmcs *alloc_vmcs_cpu(int cpu)
  1007. {
  1008. int node = cpu_to_node(cpu);
  1009. struct page *pages;
  1010. struct vmcs *vmcs;
  1011. pages = alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
  1012. if (!pages)
  1013. return NULL;
  1014. vmcs = page_address(pages);
  1015. memset(vmcs, 0, vmcs_config.size);
  1016. vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
  1017. return vmcs;
  1018. }
  1019. static struct vmcs *alloc_vmcs(void)
  1020. {
  1021. return alloc_vmcs_cpu(raw_smp_processor_id());
  1022. }
  1023. static void free_vmcs(struct vmcs *vmcs)
  1024. {
  1025. free_pages((unsigned long)vmcs, vmcs_config.order);
  1026. }
  1027. static void free_kvm_area(void)
  1028. {
  1029. int cpu;
  1030. for_each_online_cpu(cpu)
  1031. free_vmcs(per_cpu(vmxarea, cpu));
  1032. }
  1033. static __init int alloc_kvm_area(void)
  1034. {
  1035. int cpu;
  1036. for_each_online_cpu(cpu) {
  1037. struct vmcs *vmcs;
  1038. vmcs = alloc_vmcs_cpu(cpu);
  1039. if (!vmcs) {
  1040. free_kvm_area();
  1041. return -ENOMEM;
  1042. }
  1043. per_cpu(vmxarea, cpu) = vmcs;
  1044. }
  1045. return 0;
  1046. }
  1047. static __init int hardware_setup(void)
  1048. {
  1049. if (setup_vmcs_config(&vmcs_config) < 0)
  1050. return -EIO;
  1051. if (boot_cpu_has(X86_FEATURE_NX))
  1052. kvm_enable_efer_bits(EFER_NX);
  1053. return alloc_kvm_area();
  1054. }
  1055. static __exit void hardware_unsetup(void)
  1056. {
  1057. free_kvm_area();
  1058. }
  1059. static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
  1060. {
  1061. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1062. if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
  1063. vmcs_write16(sf->selector, save->selector);
  1064. vmcs_writel(sf->base, save->base);
  1065. vmcs_write32(sf->limit, save->limit);
  1066. vmcs_write32(sf->ar_bytes, save->ar);
  1067. } else {
  1068. u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
  1069. << AR_DPL_SHIFT;
  1070. vmcs_write32(sf->ar_bytes, 0x93 | dpl);
  1071. }
  1072. }
  1073. static void enter_pmode(struct kvm_vcpu *vcpu)
  1074. {
  1075. unsigned long flags;
  1076. vcpu->arch.rmode.active = 0;
  1077. vmcs_writel(GUEST_TR_BASE, vcpu->arch.rmode.tr.base);
  1078. vmcs_write32(GUEST_TR_LIMIT, vcpu->arch.rmode.tr.limit);
  1079. vmcs_write32(GUEST_TR_AR_BYTES, vcpu->arch.rmode.tr.ar);
  1080. flags = vmcs_readl(GUEST_RFLAGS);
  1081. flags &= ~(X86_EFLAGS_IOPL | X86_EFLAGS_VM);
  1082. flags |= (vcpu->arch.rmode.save_iopl << IOPL_SHIFT);
  1083. vmcs_writel(GUEST_RFLAGS, flags);
  1084. vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
  1085. (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
  1086. update_exception_bitmap(vcpu);
  1087. fix_pmode_dataseg(VCPU_SREG_ES, &vcpu->arch.rmode.es);
  1088. fix_pmode_dataseg(VCPU_SREG_DS, &vcpu->arch.rmode.ds);
  1089. fix_pmode_dataseg(VCPU_SREG_GS, &vcpu->arch.rmode.gs);
  1090. fix_pmode_dataseg(VCPU_SREG_FS, &vcpu->arch.rmode.fs);
  1091. vmcs_write16(GUEST_SS_SELECTOR, 0);
  1092. vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
  1093. vmcs_write16(GUEST_CS_SELECTOR,
  1094. vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
  1095. vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
  1096. }
  1097. static gva_t rmode_tss_base(struct kvm *kvm)
  1098. {
  1099. if (!kvm->arch.tss_addr) {
  1100. gfn_t base_gfn = kvm->memslots[0].base_gfn +
  1101. kvm->memslots[0].npages - 3;
  1102. return base_gfn << PAGE_SHIFT;
  1103. }
  1104. return kvm->arch.tss_addr;
  1105. }
  1106. static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
  1107. {
  1108. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1109. save->selector = vmcs_read16(sf->selector);
  1110. save->base = vmcs_readl(sf->base);
  1111. save->limit = vmcs_read32(sf->limit);
  1112. save->ar = vmcs_read32(sf->ar_bytes);
  1113. vmcs_write16(sf->selector, save->base >> 4);
  1114. vmcs_write32(sf->base, save->base & 0xfffff);
  1115. vmcs_write32(sf->limit, 0xffff);
  1116. vmcs_write32(sf->ar_bytes, 0xf3);
  1117. }
  1118. static void enter_rmode(struct kvm_vcpu *vcpu)
  1119. {
  1120. unsigned long flags;
  1121. vcpu->arch.rmode.active = 1;
  1122. vcpu->arch.rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
  1123. vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
  1124. vcpu->arch.rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
  1125. vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
  1126. vcpu->arch.rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
  1127. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  1128. flags = vmcs_readl(GUEST_RFLAGS);
  1129. vcpu->arch.rmode.save_iopl
  1130. = (flags & X86_EFLAGS_IOPL) >> IOPL_SHIFT;
  1131. flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  1132. vmcs_writel(GUEST_RFLAGS, flags);
  1133. vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
  1134. update_exception_bitmap(vcpu);
  1135. vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
  1136. vmcs_write32(GUEST_SS_LIMIT, 0xffff);
  1137. vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
  1138. vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
  1139. vmcs_write32(GUEST_CS_LIMIT, 0xffff);
  1140. if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
  1141. vmcs_writel(GUEST_CS_BASE, 0xf0000);
  1142. vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
  1143. fix_rmode_seg(VCPU_SREG_ES, &vcpu->arch.rmode.es);
  1144. fix_rmode_seg(VCPU_SREG_DS, &vcpu->arch.rmode.ds);
  1145. fix_rmode_seg(VCPU_SREG_GS, &vcpu->arch.rmode.gs);
  1146. fix_rmode_seg(VCPU_SREG_FS, &vcpu->arch.rmode.fs);
  1147. kvm_mmu_reset_context(vcpu);
  1148. init_rmode(vcpu->kvm);
  1149. }
  1150. #ifdef CONFIG_X86_64
  1151. static void enter_lmode(struct kvm_vcpu *vcpu)
  1152. {
  1153. u32 guest_tr_ar;
  1154. guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
  1155. if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
  1156. printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
  1157. __func__);
  1158. vmcs_write32(GUEST_TR_AR_BYTES,
  1159. (guest_tr_ar & ~AR_TYPE_MASK)
  1160. | AR_TYPE_BUSY_64_TSS);
  1161. }
  1162. vcpu->arch.shadow_efer |= EFER_LMA;
  1163. find_msr_entry(to_vmx(vcpu), MSR_EFER)->data |= EFER_LMA | EFER_LME;
  1164. vmcs_write32(VM_ENTRY_CONTROLS,
  1165. vmcs_read32(VM_ENTRY_CONTROLS)
  1166. | VM_ENTRY_IA32E_MODE);
  1167. }
  1168. static void exit_lmode(struct kvm_vcpu *vcpu)
  1169. {
  1170. vcpu->arch.shadow_efer &= ~EFER_LMA;
  1171. vmcs_write32(VM_ENTRY_CONTROLS,
  1172. vmcs_read32(VM_ENTRY_CONTROLS)
  1173. & ~VM_ENTRY_IA32E_MODE);
  1174. }
  1175. #endif
  1176. static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
  1177. {
  1178. vpid_sync_vcpu_all(to_vmx(vcpu));
  1179. }
  1180. static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
  1181. {
  1182. vcpu->arch.cr4 &= KVM_GUEST_CR4_MASK;
  1183. vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & ~KVM_GUEST_CR4_MASK;
  1184. }
  1185. static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
  1186. {
  1187. if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
  1188. if (!load_pdptrs(vcpu, vcpu->arch.cr3)) {
  1189. printk(KERN_ERR "EPT: Fail to load pdptrs!\n");
  1190. return;
  1191. }
  1192. vmcs_write64(GUEST_PDPTR0, vcpu->arch.pdptrs[0]);
  1193. vmcs_write64(GUEST_PDPTR1, vcpu->arch.pdptrs[1]);
  1194. vmcs_write64(GUEST_PDPTR2, vcpu->arch.pdptrs[2]);
  1195. vmcs_write64(GUEST_PDPTR3, vcpu->arch.pdptrs[3]);
  1196. }
  1197. }
  1198. static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
  1199. static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
  1200. unsigned long cr0,
  1201. struct kvm_vcpu *vcpu)
  1202. {
  1203. if (!(cr0 & X86_CR0_PG)) {
  1204. /* From paging/starting to nonpaging */
  1205. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
  1206. vmcs_config.cpu_based_exec_ctrl |
  1207. (CPU_BASED_CR3_LOAD_EXITING |
  1208. CPU_BASED_CR3_STORE_EXITING));
  1209. vcpu->arch.cr0 = cr0;
  1210. vmx_set_cr4(vcpu, vcpu->arch.cr4);
  1211. *hw_cr0 |= X86_CR0_PE | X86_CR0_PG;
  1212. *hw_cr0 &= ~X86_CR0_WP;
  1213. } else if (!is_paging(vcpu)) {
  1214. /* From nonpaging to paging */
  1215. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
  1216. vmcs_config.cpu_based_exec_ctrl &
  1217. ~(CPU_BASED_CR3_LOAD_EXITING |
  1218. CPU_BASED_CR3_STORE_EXITING));
  1219. vcpu->arch.cr0 = cr0;
  1220. vmx_set_cr4(vcpu, vcpu->arch.cr4);
  1221. if (!(vcpu->arch.cr0 & X86_CR0_WP))
  1222. *hw_cr0 &= ~X86_CR0_WP;
  1223. }
  1224. }
  1225. static void ept_update_paging_mode_cr4(unsigned long *hw_cr4,
  1226. struct kvm_vcpu *vcpu)
  1227. {
  1228. if (!is_paging(vcpu)) {
  1229. *hw_cr4 &= ~X86_CR4_PAE;
  1230. *hw_cr4 |= X86_CR4_PSE;
  1231. } else if (!(vcpu->arch.cr4 & X86_CR4_PAE))
  1232. *hw_cr4 &= ~X86_CR4_PAE;
  1233. }
  1234. static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  1235. {
  1236. unsigned long hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK) |
  1237. KVM_VM_CR0_ALWAYS_ON;
  1238. vmx_fpu_deactivate(vcpu);
  1239. if (vcpu->arch.rmode.active && (cr0 & X86_CR0_PE))
  1240. enter_pmode(vcpu);
  1241. if (!vcpu->arch.rmode.active && !(cr0 & X86_CR0_PE))
  1242. enter_rmode(vcpu);
  1243. #ifdef CONFIG_X86_64
  1244. if (vcpu->arch.shadow_efer & EFER_LME) {
  1245. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
  1246. enter_lmode(vcpu);
  1247. if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
  1248. exit_lmode(vcpu);
  1249. }
  1250. #endif
  1251. if (vm_need_ept())
  1252. ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
  1253. vmcs_writel(CR0_READ_SHADOW, cr0);
  1254. vmcs_writel(GUEST_CR0, hw_cr0);
  1255. vcpu->arch.cr0 = cr0;
  1256. if (!(cr0 & X86_CR0_TS) || !(cr0 & X86_CR0_PE))
  1257. vmx_fpu_activate(vcpu);
  1258. }
  1259. static u64 construct_eptp(unsigned long root_hpa)
  1260. {
  1261. u64 eptp;
  1262. /* TODO write the value reading from MSR */
  1263. eptp = VMX_EPT_DEFAULT_MT |
  1264. VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
  1265. eptp |= (root_hpa & PAGE_MASK);
  1266. return eptp;
  1267. }
  1268. static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  1269. {
  1270. unsigned long guest_cr3;
  1271. u64 eptp;
  1272. guest_cr3 = cr3;
  1273. if (vm_need_ept()) {
  1274. eptp = construct_eptp(cr3);
  1275. vmcs_write64(EPT_POINTER, eptp);
  1276. ept_sync_context(eptp);
  1277. ept_load_pdptrs(vcpu);
  1278. guest_cr3 = is_paging(vcpu) ? vcpu->arch.cr3 :
  1279. VMX_EPT_IDENTITY_PAGETABLE_ADDR;
  1280. }
  1281. vmx_flush_tlb(vcpu);
  1282. vmcs_writel(GUEST_CR3, guest_cr3);
  1283. if (vcpu->arch.cr0 & X86_CR0_PE)
  1284. vmx_fpu_deactivate(vcpu);
  1285. }
  1286. static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  1287. {
  1288. unsigned long hw_cr4 = cr4 | (vcpu->arch.rmode.active ?
  1289. KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
  1290. vcpu->arch.cr4 = cr4;
  1291. if (vm_need_ept())
  1292. ept_update_paging_mode_cr4(&hw_cr4, vcpu);
  1293. vmcs_writel(CR4_READ_SHADOW, cr4);
  1294. vmcs_writel(GUEST_CR4, hw_cr4);
  1295. }
  1296. static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
  1297. {
  1298. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1299. struct kvm_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
  1300. vcpu->arch.shadow_efer = efer;
  1301. if (!msr)
  1302. return;
  1303. if (efer & EFER_LMA) {
  1304. vmcs_write32(VM_ENTRY_CONTROLS,
  1305. vmcs_read32(VM_ENTRY_CONTROLS) |
  1306. VM_ENTRY_IA32E_MODE);
  1307. msr->data = efer;
  1308. } else {
  1309. vmcs_write32(VM_ENTRY_CONTROLS,
  1310. vmcs_read32(VM_ENTRY_CONTROLS) &
  1311. ~VM_ENTRY_IA32E_MODE);
  1312. msr->data = efer & ~EFER_LME;
  1313. }
  1314. setup_msrs(vmx);
  1315. }
  1316. static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
  1317. {
  1318. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1319. return vmcs_readl(sf->base);
  1320. }
  1321. static void vmx_get_segment(struct kvm_vcpu *vcpu,
  1322. struct kvm_segment *var, int seg)
  1323. {
  1324. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1325. u32 ar;
  1326. var->base = vmcs_readl(sf->base);
  1327. var->limit = vmcs_read32(sf->limit);
  1328. var->selector = vmcs_read16(sf->selector);
  1329. ar = vmcs_read32(sf->ar_bytes);
  1330. if (ar & AR_UNUSABLE_MASK)
  1331. ar = 0;
  1332. var->type = ar & 15;
  1333. var->s = (ar >> 4) & 1;
  1334. var->dpl = (ar >> 5) & 3;
  1335. var->present = (ar >> 7) & 1;
  1336. var->avl = (ar >> 12) & 1;
  1337. var->l = (ar >> 13) & 1;
  1338. var->db = (ar >> 14) & 1;
  1339. var->g = (ar >> 15) & 1;
  1340. var->unusable = (ar >> 16) & 1;
  1341. }
  1342. static int vmx_get_cpl(struct kvm_vcpu *vcpu)
  1343. {
  1344. struct kvm_segment kvm_seg;
  1345. if (!(vcpu->arch.cr0 & X86_CR0_PE)) /* if real mode */
  1346. return 0;
  1347. if (vmx_get_rflags(vcpu) & X86_EFLAGS_VM) /* if virtual 8086 */
  1348. return 3;
  1349. vmx_get_segment(vcpu, &kvm_seg, VCPU_SREG_CS);
  1350. return kvm_seg.selector & 3;
  1351. }
  1352. static u32 vmx_segment_access_rights(struct kvm_segment *var)
  1353. {
  1354. u32 ar;
  1355. if (var->unusable)
  1356. ar = 1 << 16;
  1357. else {
  1358. ar = var->type & 15;
  1359. ar |= (var->s & 1) << 4;
  1360. ar |= (var->dpl & 3) << 5;
  1361. ar |= (var->present & 1) << 7;
  1362. ar |= (var->avl & 1) << 12;
  1363. ar |= (var->l & 1) << 13;
  1364. ar |= (var->db & 1) << 14;
  1365. ar |= (var->g & 1) << 15;
  1366. }
  1367. if (ar == 0) /* a 0 value means unusable */
  1368. ar = AR_UNUSABLE_MASK;
  1369. return ar;
  1370. }
  1371. static void vmx_set_segment(struct kvm_vcpu *vcpu,
  1372. struct kvm_segment *var, int seg)
  1373. {
  1374. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1375. u32 ar;
  1376. if (vcpu->arch.rmode.active && seg == VCPU_SREG_TR) {
  1377. vcpu->arch.rmode.tr.selector = var->selector;
  1378. vcpu->arch.rmode.tr.base = var->base;
  1379. vcpu->arch.rmode.tr.limit = var->limit;
  1380. vcpu->arch.rmode.tr.ar = vmx_segment_access_rights(var);
  1381. return;
  1382. }
  1383. vmcs_writel(sf->base, var->base);
  1384. vmcs_write32(sf->limit, var->limit);
  1385. vmcs_write16(sf->selector, var->selector);
  1386. if (vcpu->arch.rmode.active && var->s) {
  1387. /*
  1388. * Hack real-mode segments into vm86 compatibility.
  1389. */
  1390. if (var->base == 0xffff0000 && var->selector == 0xf000)
  1391. vmcs_writel(sf->base, 0xf0000);
  1392. ar = 0xf3;
  1393. } else
  1394. ar = vmx_segment_access_rights(var);
  1395. vmcs_write32(sf->ar_bytes, ar);
  1396. }
  1397. static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  1398. {
  1399. u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
  1400. *db = (ar >> 14) & 1;
  1401. *l = (ar >> 13) & 1;
  1402. }
  1403. static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1404. {
  1405. dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
  1406. dt->base = vmcs_readl(GUEST_IDTR_BASE);
  1407. }
  1408. static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1409. {
  1410. vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
  1411. vmcs_writel(GUEST_IDTR_BASE, dt->base);
  1412. }
  1413. static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1414. {
  1415. dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
  1416. dt->base = vmcs_readl(GUEST_GDTR_BASE);
  1417. }
  1418. static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1419. {
  1420. vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
  1421. vmcs_writel(GUEST_GDTR_BASE, dt->base);
  1422. }
  1423. static int init_rmode_tss(struct kvm *kvm)
  1424. {
  1425. gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
  1426. u16 data = 0;
  1427. int ret = 0;
  1428. int r;
  1429. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  1430. if (r < 0)
  1431. goto out;
  1432. data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
  1433. r = kvm_write_guest_page(kvm, fn++, &data, 0x66, sizeof(u16));
  1434. if (r < 0)
  1435. goto out;
  1436. r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
  1437. if (r < 0)
  1438. goto out;
  1439. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  1440. if (r < 0)
  1441. goto out;
  1442. data = ~0;
  1443. r = kvm_write_guest_page(kvm, fn, &data,
  1444. RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
  1445. sizeof(u8));
  1446. if (r < 0)
  1447. goto out;
  1448. ret = 1;
  1449. out:
  1450. return ret;
  1451. }
  1452. static int init_rmode_identity_map(struct kvm *kvm)
  1453. {
  1454. int i, r, ret;
  1455. pfn_t identity_map_pfn;
  1456. u32 tmp;
  1457. if (!vm_need_ept())
  1458. return 1;
  1459. if (unlikely(!kvm->arch.ept_identity_pagetable)) {
  1460. printk(KERN_ERR "EPT: identity-mapping pagetable "
  1461. "haven't been allocated!\n");
  1462. return 0;
  1463. }
  1464. if (likely(kvm->arch.ept_identity_pagetable_done))
  1465. return 1;
  1466. ret = 0;
  1467. identity_map_pfn = VMX_EPT_IDENTITY_PAGETABLE_ADDR >> PAGE_SHIFT;
  1468. r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
  1469. if (r < 0)
  1470. goto out;
  1471. /* Set up identity-mapping pagetable for EPT in real mode */
  1472. for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
  1473. tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
  1474. _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
  1475. r = kvm_write_guest_page(kvm, identity_map_pfn,
  1476. &tmp, i * sizeof(tmp), sizeof(tmp));
  1477. if (r < 0)
  1478. goto out;
  1479. }
  1480. kvm->arch.ept_identity_pagetable_done = true;
  1481. ret = 1;
  1482. out:
  1483. return ret;
  1484. }
  1485. static void seg_setup(int seg)
  1486. {
  1487. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1488. vmcs_write16(sf->selector, 0);
  1489. vmcs_writel(sf->base, 0);
  1490. vmcs_write32(sf->limit, 0xffff);
  1491. vmcs_write32(sf->ar_bytes, 0x93);
  1492. }
  1493. static int alloc_apic_access_page(struct kvm *kvm)
  1494. {
  1495. struct kvm_userspace_memory_region kvm_userspace_mem;
  1496. int r = 0;
  1497. down_write(&kvm->slots_lock);
  1498. if (kvm->arch.apic_access_page)
  1499. goto out;
  1500. kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
  1501. kvm_userspace_mem.flags = 0;
  1502. kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
  1503. kvm_userspace_mem.memory_size = PAGE_SIZE;
  1504. r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
  1505. if (r)
  1506. goto out;
  1507. down_read(&current->mm->mmap_sem);
  1508. kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00);
  1509. up_read(&current->mm->mmap_sem);
  1510. out:
  1511. up_write(&kvm->slots_lock);
  1512. return r;
  1513. }
  1514. static int alloc_identity_pagetable(struct kvm *kvm)
  1515. {
  1516. struct kvm_userspace_memory_region kvm_userspace_mem;
  1517. int r = 0;
  1518. down_write(&kvm->slots_lock);
  1519. if (kvm->arch.ept_identity_pagetable)
  1520. goto out;
  1521. kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
  1522. kvm_userspace_mem.flags = 0;
  1523. kvm_userspace_mem.guest_phys_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
  1524. kvm_userspace_mem.memory_size = PAGE_SIZE;
  1525. r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
  1526. if (r)
  1527. goto out;
  1528. down_read(&current->mm->mmap_sem);
  1529. kvm->arch.ept_identity_pagetable = gfn_to_page(kvm,
  1530. VMX_EPT_IDENTITY_PAGETABLE_ADDR >> PAGE_SHIFT);
  1531. up_read(&current->mm->mmap_sem);
  1532. out:
  1533. up_write(&kvm->slots_lock);
  1534. return r;
  1535. }
  1536. static void allocate_vpid(struct vcpu_vmx *vmx)
  1537. {
  1538. int vpid;
  1539. vmx->vpid = 0;
  1540. if (!enable_vpid || !cpu_has_vmx_vpid())
  1541. return;
  1542. spin_lock(&vmx_vpid_lock);
  1543. vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
  1544. if (vpid < VMX_NR_VPIDS) {
  1545. vmx->vpid = vpid;
  1546. __set_bit(vpid, vmx_vpid_bitmap);
  1547. }
  1548. spin_unlock(&vmx_vpid_lock);
  1549. }
  1550. void vmx_disable_intercept_for_msr(struct page *msr_bitmap, u32 msr)
  1551. {
  1552. void *va;
  1553. if (!cpu_has_vmx_msr_bitmap())
  1554. return;
  1555. /*
  1556. * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
  1557. * have the write-low and read-high bitmap offsets the wrong way round.
  1558. * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
  1559. */
  1560. va = kmap(msr_bitmap);
  1561. if (msr <= 0x1fff) {
  1562. __clear_bit(msr, va + 0x000); /* read-low */
  1563. __clear_bit(msr, va + 0x800); /* write-low */
  1564. } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
  1565. msr &= 0x1fff;
  1566. __clear_bit(msr, va + 0x400); /* read-high */
  1567. __clear_bit(msr, va + 0xc00); /* write-high */
  1568. }
  1569. kunmap(msr_bitmap);
  1570. }
  1571. /*
  1572. * Sets up the vmcs for emulated real mode.
  1573. */
  1574. static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
  1575. {
  1576. u32 host_sysenter_cs;
  1577. u32 junk;
  1578. unsigned long a;
  1579. struct descriptor_table dt;
  1580. int i;
  1581. unsigned long kvm_vmx_return;
  1582. u32 exec_control;
  1583. /* I/O */
  1584. vmcs_write64(IO_BITMAP_A, page_to_phys(vmx_io_bitmap_a));
  1585. vmcs_write64(IO_BITMAP_B, page_to_phys(vmx_io_bitmap_b));
  1586. if (cpu_has_vmx_msr_bitmap())
  1587. vmcs_write64(MSR_BITMAP, page_to_phys(vmx_msr_bitmap));
  1588. vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
  1589. /* Control */
  1590. vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
  1591. vmcs_config.pin_based_exec_ctrl);
  1592. exec_control = vmcs_config.cpu_based_exec_ctrl;
  1593. if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
  1594. exec_control &= ~CPU_BASED_TPR_SHADOW;
  1595. #ifdef CONFIG_X86_64
  1596. exec_control |= CPU_BASED_CR8_STORE_EXITING |
  1597. CPU_BASED_CR8_LOAD_EXITING;
  1598. #endif
  1599. }
  1600. if (!vm_need_ept())
  1601. exec_control |= CPU_BASED_CR3_STORE_EXITING |
  1602. CPU_BASED_CR3_LOAD_EXITING;
  1603. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
  1604. if (cpu_has_secondary_exec_ctrls()) {
  1605. exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
  1606. if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  1607. exec_control &=
  1608. ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  1609. if (vmx->vpid == 0)
  1610. exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
  1611. if (!vm_need_ept())
  1612. exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
  1613. vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
  1614. }
  1615. vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, !!bypass_guest_pf);
  1616. vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, !!bypass_guest_pf);
  1617. vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
  1618. vmcs_writel(HOST_CR0, read_cr0()); /* 22.2.3 */
  1619. vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
  1620. vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
  1621. vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
  1622. vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1623. vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1624. vmcs_write16(HOST_FS_SELECTOR, read_fs()); /* 22.2.4 */
  1625. vmcs_write16(HOST_GS_SELECTOR, read_gs()); /* 22.2.4 */
  1626. vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1627. #ifdef CONFIG_X86_64
  1628. rdmsrl(MSR_FS_BASE, a);
  1629. vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
  1630. rdmsrl(MSR_GS_BASE, a);
  1631. vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
  1632. #else
  1633. vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
  1634. vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
  1635. #endif
  1636. vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
  1637. get_idt(&dt);
  1638. vmcs_writel(HOST_IDTR_BASE, dt.base); /* 22.2.4 */
  1639. asm("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
  1640. vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
  1641. vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
  1642. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
  1643. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
  1644. rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
  1645. vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
  1646. rdmsrl(MSR_IA32_SYSENTER_ESP, a);
  1647. vmcs_writel(HOST_IA32_SYSENTER_ESP, a); /* 22.2.3 */
  1648. rdmsrl(MSR_IA32_SYSENTER_EIP, a);
  1649. vmcs_writel(HOST_IA32_SYSENTER_EIP, a); /* 22.2.3 */
  1650. for (i = 0; i < NR_VMX_MSR; ++i) {
  1651. u32 index = vmx_msr_index[i];
  1652. u32 data_low, data_high;
  1653. u64 data;
  1654. int j = vmx->nmsrs;
  1655. if (rdmsr_safe(index, &data_low, &data_high) < 0)
  1656. continue;
  1657. if (wrmsr_safe(index, data_low, data_high) < 0)
  1658. continue;
  1659. data = data_low | ((u64)data_high << 32);
  1660. vmx->host_msrs[j].index = index;
  1661. vmx->host_msrs[j].reserved = 0;
  1662. vmx->host_msrs[j].data = data;
  1663. vmx->guest_msrs[j] = vmx->host_msrs[j];
  1664. ++vmx->nmsrs;
  1665. }
  1666. vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
  1667. /* 22.2.1, 20.8.1 */
  1668. vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
  1669. vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
  1670. vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK);
  1671. return 0;
  1672. }
  1673. static int init_rmode(struct kvm *kvm)
  1674. {
  1675. if (!init_rmode_tss(kvm))
  1676. return 0;
  1677. if (!init_rmode_identity_map(kvm))
  1678. return 0;
  1679. return 1;
  1680. }
  1681. static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
  1682. {
  1683. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1684. u64 msr;
  1685. int ret;
  1686. down_read(&vcpu->kvm->slots_lock);
  1687. if (!init_rmode(vmx->vcpu.kvm)) {
  1688. ret = -ENOMEM;
  1689. goto out;
  1690. }
  1691. vmx->vcpu.arch.rmode.active = 0;
  1692. vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
  1693. kvm_set_cr8(&vmx->vcpu, 0);
  1694. msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
  1695. if (vmx->vcpu.vcpu_id == 0)
  1696. msr |= MSR_IA32_APICBASE_BSP;
  1697. kvm_set_apic_base(&vmx->vcpu, msr);
  1698. fx_init(&vmx->vcpu);
  1699. /*
  1700. * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
  1701. * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
  1702. */
  1703. if (vmx->vcpu.vcpu_id == 0) {
  1704. vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
  1705. vmcs_writel(GUEST_CS_BASE, 0x000f0000);
  1706. } else {
  1707. vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
  1708. vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
  1709. }
  1710. vmcs_write32(GUEST_CS_LIMIT, 0xffff);
  1711. vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
  1712. seg_setup(VCPU_SREG_DS);
  1713. seg_setup(VCPU_SREG_ES);
  1714. seg_setup(VCPU_SREG_FS);
  1715. seg_setup(VCPU_SREG_GS);
  1716. seg_setup(VCPU_SREG_SS);
  1717. vmcs_write16(GUEST_TR_SELECTOR, 0);
  1718. vmcs_writel(GUEST_TR_BASE, 0);
  1719. vmcs_write32(GUEST_TR_LIMIT, 0xffff);
  1720. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  1721. vmcs_write16(GUEST_LDTR_SELECTOR, 0);
  1722. vmcs_writel(GUEST_LDTR_BASE, 0);
  1723. vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
  1724. vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
  1725. vmcs_write32(GUEST_SYSENTER_CS, 0);
  1726. vmcs_writel(GUEST_SYSENTER_ESP, 0);
  1727. vmcs_writel(GUEST_SYSENTER_EIP, 0);
  1728. vmcs_writel(GUEST_RFLAGS, 0x02);
  1729. if (vmx->vcpu.vcpu_id == 0)
  1730. vmcs_writel(GUEST_RIP, 0xfff0);
  1731. else
  1732. vmcs_writel(GUEST_RIP, 0);
  1733. vmcs_writel(GUEST_RSP, 0);
  1734. /* todo: dr0 = dr1 = dr2 = dr3 = 0; dr6 = 0xffff0ff0 */
  1735. vmcs_writel(GUEST_DR7, 0x400);
  1736. vmcs_writel(GUEST_GDTR_BASE, 0);
  1737. vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
  1738. vmcs_writel(GUEST_IDTR_BASE, 0);
  1739. vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
  1740. vmcs_write32(GUEST_ACTIVITY_STATE, 0);
  1741. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
  1742. vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
  1743. guest_write_tsc(0);
  1744. /* Special registers */
  1745. vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
  1746. setup_msrs(vmx);
  1747. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
  1748. if (cpu_has_vmx_tpr_shadow()) {
  1749. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
  1750. if (vm_need_tpr_shadow(vmx->vcpu.kvm))
  1751. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
  1752. page_to_phys(vmx->vcpu.arch.apic->regs_page));
  1753. vmcs_write32(TPR_THRESHOLD, 0);
  1754. }
  1755. if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  1756. vmcs_write64(APIC_ACCESS_ADDR,
  1757. page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
  1758. if (vmx->vpid != 0)
  1759. vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
  1760. vmx->vcpu.arch.cr0 = 0x60000010;
  1761. vmx_set_cr0(&vmx->vcpu, vmx->vcpu.arch.cr0); /* enter rmode */
  1762. vmx_set_cr4(&vmx->vcpu, 0);
  1763. vmx_set_efer(&vmx->vcpu, 0);
  1764. vmx_fpu_activate(&vmx->vcpu);
  1765. update_exception_bitmap(&vmx->vcpu);
  1766. vpid_sync_vcpu_all(vmx);
  1767. ret = 0;
  1768. out:
  1769. up_read(&vcpu->kvm->slots_lock);
  1770. return ret;
  1771. }
  1772. static void vmx_inject_irq(struct kvm_vcpu *vcpu, int irq)
  1773. {
  1774. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1775. KVMTRACE_1D(INJ_VIRQ, vcpu, (u32)irq, handler);
  1776. if (vcpu->arch.rmode.active) {
  1777. vmx->rmode.irq.pending = true;
  1778. vmx->rmode.irq.vector = irq;
  1779. vmx->rmode.irq.rip = vmcs_readl(GUEST_RIP);
  1780. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  1781. irq | INTR_TYPE_SOFT_INTR | INTR_INFO_VALID_MASK);
  1782. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
  1783. vmcs_writel(GUEST_RIP, vmx->rmode.irq.rip - 1);
  1784. return;
  1785. }
  1786. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  1787. irq | INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  1788. }
  1789. static void kvm_do_inject_irq(struct kvm_vcpu *vcpu)
  1790. {
  1791. int word_index = __ffs(vcpu->arch.irq_summary);
  1792. int bit_index = __ffs(vcpu->arch.irq_pending[word_index]);
  1793. int irq = word_index * BITS_PER_LONG + bit_index;
  1794. clear_bit(bit_index, &vcpu->arch.irq_pending[word_index]);
  1795. if (!vcpu->arch.irq_pending[word_index])
  1796. clear_bit(word_index, &vcpu->arch.irq_summary);
  1797. vmx_inject_irq(vcpu, irq);
  1798. }
  1799. static void do_interrupt_requests(struct kvm_vcpu *vcpu,
  1800. struct kvm_run *kvm_run)
  1801. {
  1802. u32 cpu_based_vm_exec_control;
  1803. vcpu->arch.interrupt_window_open =
  1804. ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
  1805. (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0);
  1806. if (vcpu->arch.interrupt_window_open &&
  1807. vcpu->arch.irq_summary &&
  1808. !(vmcs_read32(VM_ENTRY_INTR_INFO_FIELD) & INTR_INFO_VALID_MASK))
  1809. /*
  1810. * If interrupts enabled, and not blocked by sti or mov ss. Good.
  1811. */
  1812. kvm_do_inject_irq(vcpu);
  1813. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  1814. if (!vcpu->arch.interrupt_window_open &&
  1815. (vcpu->arch.irq_summary || kvm_run->request_interrupt_window))
  1816. /*
  1817. * Interrupts blocked. Wait for unblock.
  1818. */
  1819. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
  1820. else
  1821. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
  1822. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  1823. }
  1824. static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
  1825. {
  1826. int ret;
  1827. struct kvm_userspace_memory_region tss_mem = {
  1828. .slot = 8,
  1829. .guest_phys_addr = addr,
  1830. .memory_size = PAGE_SIZE * 3,
  1831. .flags = 0,
  1832. };
  1833. ret = kvm_set_memory_region(kvm, &tss_mem, 0);
  1834. if (ret)
  1835. return ret;
  1836. kvm->arch.tss_addr = addr;
  1837. return 0;
  1838. }
  1839. static void kvm_guest_debug_pre(struct kvm_vcpu *vcpu)
  1840. {
  1841. struct kvm_guest_debug *dbg = &vcpu->guest_debug;
  1842. set_debugreg(dbg->bp[0], 0);
  1843. set_debugreg(dbg->bp[1], 1);
  1844. set_debugreg(dbg->bp[2], 2);
  1845. set_debugreg(dbg->bp[3], 3);
  1846. if (dbg->singlestep) {
  1847. unsigned long flags;
  1848. flags = vmcs_readl(GUEST_RFLAGS);
  1849. flags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
  1850. vmcs_writel(GUEST_RFLAGS, flags);
  1851. }
  1852. }
  1853. static int handle_rmode_exception(struct kvm_vcpu *vcpu,
  1854. int vec, u32 err_code)
  1855. {
  1856. if (!vcpu->arch.rmode.active)
  1857. return 0;
  1858. /*
  1859. * Instruction with address size override prefix opcode 0x67
  1860. * Cause the #SS fault with 0 error code in VM86 mode.
  1861. */
  1862. if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
  1863. if (emulate_instruction(vcpu, NULL, 0, 0, 0) == EMULATE_DONE)
  1864. return 1;
  1865. return 0;
  1866. }
  1867. static int handle_exception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1868. {
  1869. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1870. u32 intr_info, error_code;
  1871. unsigned long cr2, rip;
  1872. u32 vect_info;
  1873. enum emulation_result er;
  1874. vect_info = vmx->idt_vectoring_info;
  1875. intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  1876. if ((vect_info & VECTORING_INFO_VALID_MASK) &&
  1877. !is_page_fault(intr_info))
  1878. printk(KERN_ERR "%s: unexpected, vectoring info 0x%x "
  1879. "intr info 0x%x\n", __func__, vect_info, intr_info);
  1880. if (!irqchip_in_kernel(vcpu->kvm) && is_external_interrupt(vect_info)) {
  1881. int irq = vect_info & VECTORING_INFO_VECTOR_MASK;
  1882. set_bit(irq, vcpu->arch.irq_pending);
  1883. set_bit(irq / BITS_PER_LONG, &vcpu->arch.irq_summary);
  1884. }
  1885. if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200) /* nmi */
  1886. return 1; /* already handled by vmx_vcpu_run() */
  1887. if (is_no_device(intr_info)) {
  1888. vmx_fpu_activate(vcpu);
  1889. return 1;
  1890. }
  1891. if (is_invalid_opcode(intr_info)) {
  1892. er = emulate_instruction(vcpu, kvm_run, 0, 0, EMULTYPE_TRAP_UD);
  1893. if (er != EMULATE_DONE)
  1894. kvm_queue_exception(vcpu, UD_VECTOR);
  1895. return 1;
  1896. }
  1897. error_code = 0;
  1898. rip = vmcs_readl(GUEST_RIP);
  1899. if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
  1900. error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
  1901. if (is_page_fault(intr_info)) {
  1902. /* EPT won't cause page fault directly */
  1903. if (vm_need_ept())
  1904. BUG();
  1905. cr2 = vmcs_readl(EXIT_QUALIFICATION);
  1906. KVMTRACE_3D(PAGE_FAULT, vcpu, error_code, (u32)cr2,
  1907. (u32)((u64)cr2 >> 32), handler);
  1908. return kvm_mmu_page_fault(vcpu, cr2, error_code);
  1909. }
  1910. if (vcpu->arch.rmode.active &&
  1911. handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
  1912. error_code)) {
  1913. if (vcpu->arch.halt_request) {
  1914. vcpu->arch.halt_request = 0;
  1915. return kvm_emulate_halt(vcpu);
  1916. }
  1917. return 1;
  1918. }
  1919. if ((intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK)) ==
  1920. (INTR_TYPE_EXCEPTION | 1)) {
  1921. kvm_run->exit_reason = KVM_EXIT_DEBUG;
  1922. return 0;
  1923. }
  1924. kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
  1925. kvm_run->ex.exception = intr_info & INTR_INFO_VECTOR_MASK;
  1926. kvm_run->ex.error_code = error_code;
  1927. return 0;
  1928. }
  1929. static int handle_external_interrupt(struct kvm_vcpu *vcpu,
  1930. struct kvm_run *kvm_run)
  1931. {
  1932. ++vcpu->stat.irq_exits;
  1933. KVMTRACE_1D(INTR, vcpu, vmcs_read32(VM_EXIT_INTR_INFO), handler);
  1934. return 1;
  1935. }
  1936. static int handle_triple_fault(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1937. {
  1938. kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
  1939. return 0;
  1940. }
  1941. static int handle_io(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1942. {
  1943. unsigned long exit_qualification;
  1944. int size, down, in, string, rep;
  1945. unsigned port;
  1946. ++vcpu->stat.io_exits;
  1947. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  1948. string = (exit_qualification & 16) != 0;
  1949. if (string) {
  1950. if (emulate_instruction(vcpu,
  1951. kvm_run, 0, 0, 0) == EMULATE_DO_MMIO)
  1952. return 0;
  1953. return 1;
  1954. }
  1955. size = (exit_qualification & 7) + 1;
  1956. in = (exit_qualification & 8) != 0;
  1957. down = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_DF) != 0;
  1958. rep = (exit_qualification & 32) != 0;
  1959. port = exit_qualification >> 16;
  1960. return kvm_emulate_pio(vcpu, kvm_run, in, size, port);
  1961. }
  1962. static void
  1963. vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
  1964. {
  1965. /*
  1966. * Patch in the VMCALL instruction:
  1967. */
  1968. hypercall[0] = 0x0f;
  1969. hypercall[1] = 0x01;
  1970. hypercall[2] = 0xc1;
  1971. }
  1972. static int handle_cr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1973. {
  1974. unsigned long exit_qualification;
  1975. int cr;
  1976. int reg;
  1977. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  1978. cr = exit_qualification & 15;
  1979. reg = (exit_qualification >> 8) & 15;
  1980. switch ((exit_qualification >> 4) & 3) {
  1981. case 0: /* mov to cr */
  1982. KVMTRACE_3D(CR_WRITE, vcpu, (u32)cr, (u32)vcpu->arch.regs[reg],
  1983. (u32)((u64)vcpu->arch.regs[reg] >> 32), handler);
  1984. switch (cr) {
  1985. case 0:
  1986. vcpu_load_rsp_rip(vcpu);
  1987. kvm_set_cr0(vcpu, vcpu->arch.regs[reg]);
  1988. skip_emulated_instruction(vcpu);
  1989. return 1;
  1990. case 3:
  1991. vcpu_load_rsp_rip(vcpu);
  1992. kvm_set_cr3(vcpu, vcpu->arch.regs[reg]);
  1993. skip_emulated_instruction(vcpu);
  1994. return 1;
  1995. case 4:
  1996. vcpu_load_rsp_rip(vcpu);
  1997. kvm_set_cr4(vcpu, vcpu->arch.regs[reg]);
  1998. skip_emulated_instruction(vcpu);
  1999. return 1;
  2000. case 8:
  2001. vcpu_load_rsp_rip(vcpu);
  2002. kvm_set_cr8(vcpu, vcpu->arch.regs[reg]);
  2003. skip_emulated_instruction(vcpu);
  2004. if (irqchip_in_kernel(vcpu->kvm))
  2005. return 1;
  2006. kvm_run->exit_reason = KVM_EXIT_SET_TPR;
  2007. return 0;
  2008. };
  2009. break;
  2010. case 2: /* clts */
  2011. vcpu_load_rsp_rip(vcpu);
  2012. vmx_fpu_deactivate(vcpu);
  2013. vcpu->arch.cr0 &= ~X86_CR0_TS;
  2014. vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
  2015. vmx_fpu_activate(vcpu);
  2016. KVMTRACE_0D(CLTS, vcpu, handler);
  2017. skip_emulated_instruction(vcpu);
  2018. return 1;
  2019. case 1: /*mov from cr*/
  2020. switch (cr) {
  2021. case 3:
  2022. vcpu_load_rsp_rip(vcpu);
  2023. vcpu->arch.regs[reg] = vcpu->arch.cr3;
  2024. vcpu_put_rsp_rip(vcpu);
  2025. KVMTRACE_3D(CR_READ, vcpu, (u32)cr,
  2026. (u32)vcpu->arch.regs[reg],
  2027. (u32)((u64)vcpu->arch.regs[reg] >> 32),
  2028. handler);
  2029. skip_emulated_instruction(vcpu);
  2030. return 1;
  2031. case 8:
  2032. vcpu_load_rsp_rip(vcpu);
  2033. vcpu->arch.regs[reg] = kvm_get_cr8(vcpu);
  2034. vcpu_put_rsp_rip(vcpu);
  2035. KVMTRACE_2D(CR_READ, vcpu, (u32)cr,
  2036. (u32)vcpu->arch.regs[reg], handler);
  2037. skip_emulated_instruction(vcpu);
  2038. return 1;
  2039. }
  2040. break;
  2041. case 3: /* lmsw */
  2042. kvm_lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
  2043. skip_emulated_instruction(vcpu);
  2044. return 1;
  2045. default:
  2046. break;
  2047. }
  2048. kvm_run->exit_reason = 0;
  2049. pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
  2050. (int)(exit_qualification >> 4) & 3, cr);
  2051. return 0;
  2052. }
  2053. static int handle_dr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2054. {
  2055. unsigned long exit_qualification;
  2056. unsigned long val;
  2057. int dr, reg;
  2058. /*
  2059. * FIXME: this code assumes the host is debugging the guest.
  2060. * need to deal with guest debugging itself too.
  2061. */
  2062. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2063. dr = exit_qualification & 7;
  2064. reg = (exit_qualification >> 8) & 15;
  2065. vcpu_load_rsp_rip(vcpu);
  2066. if (exit_qualification & 16) {
  2067. /* mov from dr */
  2068. switch (dr) {
  2069. case 6:
  2070. val = 0xffff0ff0;
  2071. break;
  2072. case 7:
  2073. val = 0x400;
  2074. break;
  2075. default:
  2076. val = 0;
  2077. }
  2078. vcpu->arch.regs[reg] = val;
  2079. KVMTRACE_2D(DR_READ, vcpu, (u32)dr, (u32)val, handler);
  2080. } else {
  2081. /* mov to dr */
  2082. }
  2083. vcpu_put_rsp_rip(vcpu);
  2084. skip_emulated_instruction(vcpu);
  2085. return 1;
  2086. }
  2087. static int handle_cpuid(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2088. {
  2089. kvm_emulate_cpuid(vcpu);
  2090. return 1;
  2091. }
  2092. static int handle_rdmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2093. {
  2094. u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  2095. u64 data;
  2096. if (vmx_get_msr(vcpu, ecx, &data)) {
  2097. kvm_inject_gp(vcpu, 0);
  2098. return 1;
  2099. }
  2100. KVMTRACE_3D(MSR_READ, vcpu, ecx, (u32)data, (u32)(data >> 32),
  2101. handler);
  2102. /* FIXME: handling of bits 32:63 of rax, rdx */
  2103. vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
  2104. vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
  2105. skip_emulated_instruction(vcpu);
  2106. return 1;
  2107. }
  2108. static int handle_wrmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2109. {
  2110. u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  2111. u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
  2112. | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
  2113. KVMTRACE_3D(MSR_WRITE, vcpu, ecx, (u32)data, (u32)(data >> 32),
  2114. handler);
  2115. if (vmx_set_msr(vcpu, ecx, data) != 0) {
  2116. kvm_inject_gp(vcpu, 0);
  2117. return 1;
  2118. }
  2119. skip_emulated_instruction(vcpu);
  2120. return 1;
  2121. }
  2122. static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu,
  2123. struct kvm_run *kvm_run)
  2124. {
  2125. return 1;
  2126. }
  2127. static int handle_interrupt_window(struct kvm_vcpu *vcpu,
  2128. struct kvm_run *kvm_run)
  2129. {
  2130. u32 cpu_based_vm_exec_control;
  2131. /* clear pending irq */
  2132. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2133. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
  2134. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2135. KVMTRACE_0D(PEND_INTR, vcpu, handler);
  2136. /*
  2137. * If the user space waits to inject interrupts, exit as soon as
  2138. * possible
  2139. */
  2140. if (kvm_run->request_interrupt_window &&
  2141. !vcpu->arch.irq_summary) {
  2142. kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
  2143. ++vcpu->stat.irq_window_exits;
  2144. return 0;
  2145. }
  2146. return 1;
  2147. }
  2148. static int handle_halt(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2149. {
  2150. skip_emulated_instruction(vcpu);
  2151. return kvm_emulate_halt(vcpu);
  2152. }
  2153. static int handle_vmcall(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2154. {
  2155. skip_emulated_instruction(vcpu);
  2156. kvm_emulate_hypercall(vcpu);
  2157. return 1;
  2158. }
  2159. static int handle_wbinvd(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2160. {
  2161. skip_emulated_instruction(vcpu);
  2162. /* TODO: Add support for VT-d/pass-through device */
  2163. return 1;
  2164. }
  2165. static int handle_apic_access(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2166. {
  2167. u64 exit_qualification;
  2168. enum emulation_result er;
  2169. unsigned long offset;
  2170. exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
  2171. offset = exit_qualification & 0xffful;
  2172. KVMTRACE_1D(APIC_ACCESS, vcpu, (u32)offset, handler);
  2173. er = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
  2174. if (er != EMULATE_DONE) {
  2175. printk(KERN_ERR
  2176. "Fail to handle apic access vmexit! Offset is 0x%lx\n",
  2177. offset);
  2178. return -ENOTSUPP;
  2179. }
  2180. return 1;
  2181. }
  2182. static int handle_task_switch(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2183. {
  2184. unsigned long exit_qualification;
  2185. u16 tss_selector;
  2186. int reason;
  2187. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2188. reason = (u32)exit_qualification >> 30;
  2189. tss_selector = exit_qualification;
  2190. return kvm_task_switch(vcpu, tss_selector, reason);
  2191. }
  2192. static int handle_ept_violation(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2193. {
  2194. u64 exit_qualification;
  2195. enum emulation_result er;
  2196. gpa_t gpa;
  2197. unsigned long hva;
  2198. int gla_validity;
  2199. int r;
  2200. exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
  2201. if (exit_qualification & (1 << 6)) {
  2202. printk(KERN_ERR "EPT: GPA exceeds GAW!\n");
  2203. return -ENOTSUPP;
  2204. }
  2205. gla_validity = (exit_qualification >> 7) & 0x3;
  2206. if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
  2207. printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
  2208. printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
  2209. (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
  2210. (long unsigned int)vmcs_read64(GUEST_LINEAR_ADDRESS));
  2211. printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
  2212. (long unsigned int)exit_qualification);
  2213. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  2214. kvm_run->hw.hardware_exit_reason = 0;
  2215. return -ENOTSUPP;
  2216. }
  2217. gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
  2218. hva = gfn_to_hva(vcpu->kvm, gpa >> PAGE_SHIFT);
  2219. if (!kvm_is_error_hva(hva)) {
  2220. r = kvm_mmu_page_fault(vcpu, gpa & PAGE_MASK, 0);
  2221. if (r < 0) {
  2222. printk(KERN_ERR "EPT: Not enough memory!\n");
  2223. return -ENOMEM;
  2224. }
  2225. return 1;
  2226. } else {
  2227. /* must be MMIO */
  2228. er = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
  2229. if (er == EMULATE_FAIL) {
  2230. printk(KERN_ERR
  2231. "EPT: Fail to handle EPT violation vmexit!er is %d\n",
  2232. er);
  2233. printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
  2234. (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
  2235. (long unsigned int)vmcs_read64(GUEST_LINEAR_ADDRESS));
  2236. printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
  2237. (long unsigned int)exit_qualification);
  2238. return -ENOTSUPP;
  2239. } else if (er == EMULATE_DO_MMIO)
  2240. return 0;
  2241. }
  2242. return 1;
  2243. }
  2244. /*
  2245. * The exit handlers return 1 if the exit was handled fully and guest execution
  2246. * may resume. Otherwise they set the kvm_run parameter to indicate what needs
  2247. * to be done to userspace and return 0.
  2248. */
  2249. static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu,
  2250. struct kvm_run *kvm_run) = {
  2251. [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
  2252. [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
  2253. [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
  2254. [EXIT_REASON_IO_INSTRUCTION] = handle_io,
  2255. [EXIT_REASON_CR_ACCESS] = handle_cr,
  2256. [EXIT_REASON_DR_ACCESS] = handle_dr,
  2257. [EXIT_REASON_CPUID] = handle_cpuid,
  2258. [EXIT_REASON_MSR_READ] = handle_rdmsr,
  2259. [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
  2260. [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
  2261. [EXIT_REASON_HLT] = handle_halt,
  2262. [EXIT_REASON_VMCALL] = handle_vmcall,
  2263. [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
  2264. [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
  2265. [EXIT_REASON_WBINVD] = handle_wbinvd,
  2266. [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
  2267. [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
  2268. };
  2269. static const int kvm_vmx_max_exit_handlers =
  2270. ARRAY_SIZE(kvm_vmx_exit_handlers);
  2271. /*
  2272. * The guest has exited. See if we can fix it or if we need userspace
  2273. * assistance.
  2274. */
  2275. static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
  2276. {
  2277. u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
  2278. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2279. u32 vectoring_info = vmx->idt_vectoring_info;
  2280. KVMTRACE_3D(VMEXIT, vcpu, exit_reason, (u32)vmcs_readl(GUEST_RIP),
  2281. (u32)((u64)vmcs_readl(GUEST_RIP) >> 32), entryexit);
  2282. /* Access CR3 don't cause VMExit in paging mode, so we need
  2283. * to sync with guest real CR3. */
  2284. if (vm_need_ept() && is_paging(vcpu)) {
  2285. vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
  2286. ept_load_pdptrs(vcpu);
  2287. }
  2288. if (unlikely(vmx->fail)) {
  2289. kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  2290. kvm_run->fail_entry.hardware_entry_failure_reason
  2291. = vmcs_read32(VM_INSTRUCTION_ERROR);
  2292. return 0;
  2293. }
  2294. if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
  2295. (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
  2296. exit_reason != EXIT_REASON_EPT_VIOLATION))
  2297. printk(KERN_WARNING "%s: unexpected, valid vectoring info and "
  2298. "exit reason is 0x%x\n", __func__, exit_reason);
  2299. if (exit_reason < kvm_vmx_max_exit_handlers
  2300. && kvm_vmx_exit_handlers[exit_reason])
  2301. return kvm_vmx_exit_handlers[exit_reason](vcpu, kvm_run);
  2302. else {
  2303. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  2304. kvm_run->hw.hardware_exit_reason = exit_reason;
  2305. }
  2306. return 0;
  2307. }
  2308. static void update_tpr_threshold(struct kvm_vcpu *vcpu)
  2309. {
  2310. int max_irr, tpr;
  2311. if (!vm_need_tpr_shadow(vcpu->kvm))
  2312. return;
  2313. if (!kvm_lapic_enabled(vcpu) ||
  2314. ((max_irr = kvm_lapic_find_highest_irr(vcpu)) == -1)) {
  2315. vmcs_write32(TPR_THRESHOLD, 0);
  2316. return;
  2317. }
  2318. tpr = (kvm_lapic_get_cr8(vcpu) & 0x0f) << 4;
  2319. vmcs_write32(TPR_THRESHOLD, (max_irr > tpr) ? tpr >> 4 : max_irr >> 4);
  2320. }
  2321. static void enable_irq_window(struct kvm_vcpu *vcpu)
  2322. {
  2323. u32 cpu_based_vm_exec_control;
  2324. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2325. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
  2326. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2327. }
  2328. static void vmx_intr_assist(struct kvm_vcpu *vcpu)
  2329. {
  2330. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2331. u32 idtv_info_field, intr_info_field;
  2332. int has_ext_irq, interrupt_window_open;
  2333. int vector;
  2334. update_tpr_threshold(vcpu);
  2335. has_ext_irq = kvm_cpu_has_interrupt(vcpu);
  2336. intr_info_field = vmcs_read32(VM_ENTRY_INTR_INFO_FIELD);
  2337. idtv_info_field = vmx->idt_vectoring_info;
  2338. if (intr_info_field & INTR_INFO_VALID_MASK) {
  2339. if (idtv_info_field & INTR_INFO_VALID_MASK) {
  2340. /* TODO: fault when IDT_Vectoring */
  2341. if (printk_ratelimit())
  2342. printk(KERN_ERR "Fault when IDT_Vectoring\n");
  2343. }
  2344. if (has_ext_irq)
  2345. enable_irq_window(vcpu);
  2346. return;
  2347. }
  2348. if (unlikely(idtv_info_field & INTR_INFO_VALID_MASK)) {
  2349. if ((idtv_info_field & VECTORING_INFO_TYPE_MASK)
  2350. == INTR_TYPE_EXT_INTR
  2351. && vcpu->arch.rmode.active) {
  2352. u8 vect = idtv_info_field & VECTORING_INFO_VECTOR_MASK;
  2353. vmx_inject_irq(vcpu, vect);
  2354. if (unlikely(has_ext_irq))
  2355. enable_irq_window(vcpu);
  2356. return;
  2357. }
  2358. KVMTRACE_1D(REDELIVER_EVT, vcpu, idtv_info_field, handler);
  2359. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, idtv_info_field);
  2360. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
  2361. vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
  2362. if (unlikely(idtv_info_field & INTR_INFO_DELIVER_CODE_MASK))
  2363. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
  2364. vmcs_read32(IDT_VECTORING_ERROR_CODE));
  2365. if (unlikely(has_ext_irq))
  2366. enable_irq_window(vcpu);
  2367. return;
  2368. }
  2369. if (!has_ext_irq)
  2370. return;
  2371. interrupt_window_open =
  2372. ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
  2373. (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0);
  2374. if (interrupt_window_open) {
  2375. vector = kvm_cpu_get_interrupt(vcpu);
  2376. vmx_inject_irq(vcpu, vector);
  2377. kvm_timer_intr_post(vcpu, vector);
  2378. } else
  2379. enable_irq_window(vcpu);
  2380. }
  2381. /*
  2382. * Failure to inject an interrupt should give us the information
  2383. * in IDT_VECTORING_INFO_FIELD. However, if the failure occurs
  2384. * when fetching the interrupt redirection bitmap in the real-mode
  2385. * tss, this doesn't happen. So we do it ourselves.
  2386. */
  2387. static void fixup_rmode_irq(struct vcpu_vmx *vmx)
  2388. {
  2389. vmx->rmode.irq.pending = 0;
  2390. if (vmcs_readl(GUEST_RIP) + 1 != vmx->rmode.irq.rip)
  2391. return;
  2392. vmcs_writel(GUEST_RIP, vmx->rmode.irq.rip);
  2393. if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) {
  2394. vmx->idt_vectoring_info &= ~VECTORING_INFO_TYPE_MASK;
  2395. vmx->idt_vectoring_info |= INTR_TYPE_EXT_INTR;
  2396. return;
  2397. }
  2398. vmx->idt_vectoring_info =
  2399. VECTORING_INFO_VALID_MASK
  2400. | INTR_TYPE_EXT_INTR
  2401. | vmx->rmode.irq.vector;
  2402. }
  2403. static void vmx_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2404. {
  2405. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2406. u32 intr_info;
  2407. /*
  2408. * Loading guest fpu may have cleared host cr0.ts
  2409. */
  2410. vmcs_writel(HOST_CR0, read_cr0());
  2411. asm(
  2412. /* Store host registers */
  2413. #ifdef CONFIG_X86_64
  2414. "push %%rdx; push %%rbp;"
  2415. "push %%rcx \n\t"
  2416. #else
  2417. "push %%edx; push %%ebp;"
  2418. "push %%ecx \n\t"
  2419. #endif
  2420. ASM_VMX_VMWRITE_RSP_RDX "\n\t"
  2421. /* Check if vmlaunch of vmresume is needed */
  2422. "cmpl $0, %c[launched](%0) \n\t"
  2423. /* Load guest registers. Don't clobber flags. */
  2424. #ifdef CONFIG_X86_64
  2425. "mov %c[cr2](%0), %%rax \n\t"
  2426. "mov %%rax, %%cr2 \n\t"
  2427. "mov %c[rax](%0), %%rax \n\t"
  2428. "mov %c[rbx](%0), %%rbx \n\t"
  2429. "mov %c[rdx](%0), %%rdx \n\t"
  2430. "mov %c[rsi](%0), %%rsi \n\t"
  2431. "mov %c[rdi](%0), %%rdi \n\t"
  2432. "mov %c[rbp](%0), %%rbp \n\t"
  2433. "mov %c[r8](%0), %%r8 \n\t"
  2434. "mov %c[r9](%0), %%r9 \n\t"
  2435. "mov %c[r10](%0), %%r10 \n\t"
  2436. "mov %c[r11](%0), %%r11 \n\t"
  2437. "mov %c[r12](%0), %%r12 \n\t"
  2438. "mov %c[r13](%0), %%r13 \n\t"
  2439. "mov %c[r14](%0), %%r14 \n\t"
  2440. "mov %c[r15](%0), %%r15 \n\t"
  2441. "mov %c[rcx](%0), %%rcx \n\t" /* kills %0 (rcx) */
  2442. #else
  2443. "mov %c[cr2](%0), %%eax \n\t"
  2444. "mov %%eax, %%cr2 \n\t"
  2445. "mov %c[rax](%0), %%eax \n\t"
  2446. "mov %c[rbx](%0), %%ebx \n\t"
  2447. "mov %c[rdx](%0), %%edx \n\t"
  2448. "mov %c[rsi](%0), %%esi \n\t"
  2449. "mov %c[rdi](%0), %%edi \n\t"
  2450. "mov %c[rbp](%0), %%ebp \n\t"
  2451. "mov %c[rcx](%0), %%ecx \n\t" /* kills %0 (ecx) */
  2452. #endif
  2453. /* Enter guest mode */
  2454. "jne .Llaunched \n\t"
  2455. ASM_VMX_VMLAUNCH "\n\t"
  2456. "jmp .Lkvm_vmx_return \n\t"
  2457. ".Llaunched: " ASM_VMX_VMRESUME "\n\t"
  2458. ".Lkvm_vmx_return: "
  2459. /* Save guest registers, load host registers, keep flags */
  2460. #ifdef CONFIG_X86_64
  2461. "xchg %0, (%%rsp) \n\t"
  2462. "mov %%rax, %c[rax](%0) \n\t"
  2463. "mov %%rbx, %c[rbx](%0) \n\t"
  2464. "pushq (%%rsp); popq %c[rcx](%0) \n\t"
  2465. "mov %%rdx, %c[rdx](%0) \n\t"
  2466. "mov %%rsi, %c[rsi](%0) \n\t"
  2467. "mov %%rdi, %c[rdi](%0) \n\t"
  2468. "mov %%rbp, %c[rbp](%0) \n\t"
  2469. "mov %%r8, %c[r8](%0) \n\t"
  2470. "mov %%r9, %c[r9](%0) \n\t"
  2471. "mov %%r10, %c[r10](%0) \n\t"
  2472. "mov %%r11, %c[r11](%0) \n\t"
  2473. "mov %%r12, %c[r12](%0) \n\t"
  2474. "mov %%r13, %c[r13](%0) \n\t"
  2475. "mov %%r14, %c[r14](%0) \n\t"
  2476. "mov %%r15, %c[r15](%0) \n\t"
  2477. "mov %%cr2, %%rax \n\t"
  2478. "mov %%rax, %c[cr2](%0) \n\t"
  2479. "pop %%rbp; pop %%rbp; pop %%rdx \n\t"
  2480. #else
  2481. "xchg %0, (%%esp) \n\t"
  2482. "mov %%eax, %c[rax](%0) \n\t"
  2483. "mov %%ebx, %c[rbx](%0) \n\t"
  2484. "pushl (%%esp); popl %c[rcx](%0) \n\t"
  2485. "mov %%edx, %c[rdx](%0) \n\t"
  2486. "mov %%esi, %c[rsi](%0) \n\t"
  2487. "mov %%edi, %c[rdi](%0) \n\t"
  2488. "mov %%ebp, %c[rbp](%0) \n\t"
  2489. "mov %%cr2, %%eax \n\t"
  2490. "mov %%eax, %c[cr2](%0) \n\t"
  2491. "pop %%ebp; pop %%ebp; pop %%edx \n\t"
  2492. #endif
  2493. "setbe %c[fail](%0) \n\t"
  2494. : : "c"(vmx), "d"((unsigned long)HOST_RSP),
  2495. [launched]"i"(offsetof(struct vcpu_vmx, launched)),
  2496. [fail]"i"(offsetof(struct vcpu_vmx, fail)),
  2497. [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
  2498. [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
  2499. [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
  2500. [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
  2501. [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
  2502. [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
  2503. [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
  2504. #ifdef CONFIG_X86_64
  2505. [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
  2506. [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
  2507. [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
  2508. [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
  2509. [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
  2510. [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
  2511. [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
  2512. [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
  2513. #endif
  2514. [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2))
  2515. : "cc", "memory"
  2516. #ifdef CONFIG_X86_64
  2517. , "rbx", "rdi", "rsi"
  2518. , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
  2519. #else
  2520. , "ebx", "edi", "rsi"
  2521. #endif
  2522. );
  2523. vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  2524. if (vmx->rmode.irq.pending)
  2525. fixup_rmode_irq(vmx);
  2526. vcpu->arch.interrupt_window_open =
  2527. (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0;
  2528. asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
  2529. vmx->launched = 1;
  2530. intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  2531. /* We need to handle NMIs before interrupts are enabled */
  2532. if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200) { /* nmi */
  2533. KVMTRACE_0D(NMI, vcpu, handler);
  2534. asm("int $2");
  2535. }
  2536. }
  2537. static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
  2538. {
  2539. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2540. if (vmx->vmcs) {
  2541. on_each_cpu(__vcpu_clear, vmx, 0, 1);
  2542. free_vmcs(vmx->vmcs);
  2543. vmx->vmcs = NULL;
  2544. }
  2545. }
  2546. static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
  2547. {
  2548. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2549. spin_lock(&vmx_vpid_lock);
  2550. if (vmx->vpid != 0)
  2551. __clear_bit(vmx->vpid, vmx_vpid_bitmap);
  2552. spin_unlock(&vmx_vpid_lock);
  2553. vmx_free_vmcs(vcpu);
  2554. kfree(vmx->host_msrs);
  2555. kfree(vmx->guest_msrs);
  2556. kvm_vcpu_uninit(vcpu);
  2557. kmem_cache_free(kvm_vcpu_cache, vmx);
  2558. }
  2559. static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
  2560. {
  2561. int err;
  2562. struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
  2563. int cpu;
  2564. if (!vmx)
  2565. return ERR_PTR(-ENOMEM);
  2566. allocate_vpid(vmx);
  2567. if (id == 0 && vm_need_ept()) {
  2568. kvm_mmu_set_base_ptes(VMX_EPT_READABLE_MASK |
  2569. VMX_EPT_WRITABLE_MASK |
  2570. VMX_EPT_DEFAULT_MT << VMX_EPT_MT_EPTE_SHIFT);
  2571. kvm_mmu_set_mask_ptes(0ull, VMX_EPT_FAKE_ACCESSED_MASK,
  2572. VMX_EPT_FAKE_DIRTY_MASK, 0ull,
  2573. VMX_EPT_EXECUTABLE_MASK);
  2574. kvm_enable_tdp();
  2575. }
  2576. err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
  2577. if (err)
  2578. goto free_vcpu;
  2579. vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  2580. if (!vmx->guest_msrs) {
  2581. err = -ENOMEM;
  2582. goto uninit_vcpu;
  2583. }
  2584. vmx->host_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  2585. if (!vmx->host_msrs)
  2586. goto free_guest_msrs;
  2587. vmx->vmcs = alloc_vmcs();
  2588. if (!vmx->vmcs)
  2589. goto free_msrs;
  2590. vmcs_clear(vmx->vmcs);
  2591. cpu = get_cpu();
  2592. vmx_vcpu_load(&vmx->vcpu, cpu);
  2593. err = vmx_vcpu_setup(vmx);
  2594. vmx_vcpu_put(&vmx->vcpu);
  2595. put_cpu();
  2596. if (err)
  2597. goto free_vmcs;
  2598. if (vm_need_virtualize_apic_accesses(kvm))
  2599. if (alloc_apic_access_page(kvm) != 0)
  2600. goto free_vmcs;
  2601. if (vm_need_ept())
  2602. if (alloc_identity_pagetable(kvm) != 0)
  2603. goto free_vmcs;
  2604. return &vmx->vcpu;
  2605. free_vmcs:
  2606. free_vmcs(vmx->vmcs);
  2607. free_msrs:
  2608. kfree(vmx->host_msrs);
  2609. free_guest_msrs:
  2610. kfree(vmx->guest_msrs);
  2611. uninit_vcpu:
  2612. kvm_vcpu_uninit(&vmx->vcpu);
  2613. free_vcpu:
  2614. kmem_cache_free(kvm_vcpu_cache, vmx);
  2615. return ERR_PTR(err);
  2616. }
  2617. static void __init vmx_check_processor_compat(void *rtn)
  2618. {
  2619. struct vmcs_config vmcs_conf;
  2620. *(int *)rtn = 0;
  2621. if (setup_vmcs_config(&vmcs_conf) < 0)
  2622. *(int *)rtn = -EIO;
  2623. if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
  2624. printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
  2625. smp_processor_id());
  2626. *(int *)rtn = -EIO;
  2627. }
  2628. }
  2629. static int get_ept_level(void)
  2630. {
  2631. return VMX_EPT_DEFAULT_GAW + 1;
  2632. }
  2633. static struct kvm_x86_ops vmx_x86_ops = {
  2634. .cpu_has_kvm_support = cpu_has_kvm_support,
  2635. .disabled_by_bios = vmx_disabled_by_bios,
  2636. .hardware_setup = hardware_setup,
  2637. .hardware_unsetup = hardware_unsetup,
  2638. .check_processor_compatibility = vmx_check_processor_compat,
  2639. .hardware_enable = hardware_enable,
  2640. .hardware_disable = hardware_disable,
  2641. .cpu_has_accelerated_tpr = cpu_has_vmx_virtualize_apic_accesses,
  2642. .vcpu_create = vmx_create_vcpu,
  2643. .vcpu_free = vmx_free_vcpu,
  2644. .vcpu_reset = vmx_vcpu_reset,
  2645. .prepare_guest_switch = vmx_save_host_state,
  2646. .vcpu_load = vmx_vcpu_load,
  2647. .vcpu_put = vmx_vcpu_put,
  2648. .vcpu_decache = vmx_vcpu_decache,
  2649. .set_guest_debug = set_guest_debug,
  2650. .guest_debug_pre = kvm_guest_debug_pre,
  2651. .get_msr = vmx_get_msr,
  2652. .set_msr = vmx_set_msr,
  2653. .get_segment_base = vmx_get_segment_base,
  2654. .get_segment = vmx_get_segment,
  2655. .set_segment = vmx_set_segment,
  2656. .get_cpl = vmx_get_cpl,
  2657. .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
  2658. .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
  2659. .set_cr0 = vmx_set_cr0,
  2660. .set_cr3 = vmx_set_cr3,
  2661. .set_cr4 = vmx_set_cr4,
  2662. .set_efer = vmx_set_efer,
  2663. .get_idt = vmx_get_idt,
  2664. .set_idt = vmx_set_idt,
  2665. .get_gdt = vmx_get_gdt,
  2666. .set_gdt = vmx_set_gdt,
  2667. .cache_regs = vcpu_load_rsp_rip,
  2668. .decache_regs = vcpu_put_rsp_rip,
  2669. .get_rflags = vmx_get_rflags,
  2670. .set_rflags = vmx_set_rflags,
  2671. .tlb_flush = vmx_flush_tlb,
  2672. .run = vmx_vcpu_run,
  2673. .handle_exit = kvm_handle_exit,
  2674. .skip_emulated_instruction = skip_emulated_instruction,
  2675. .patch_hypercall = vmx_patch_hypercall,
  2676. .get_irq = vmx_get_irq,
  2677. .set_irq = vmx_inject_irq,
  2678. .queue_exception = vmx_queue_exception,
  2679. .exception_injected = vmx_exception_injected,
  2680. .inject_pending_irq = vmx_intr_assist,
  2681. .inject_pending_vectors = do_interrupt_requests,
  2682. .set_tss_addr = vmx_set_tss_addr,
  2683. .get_tdp_level = get_ept_level,
  2684. };
  2685. static int __init vmx_init(void)
  2686. {
  2687. void *va;
  2688. int r;
  2689. vmx_io_bitmap_a = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
  2690. if (!vmx_io_bitmap_a)
  2691. return -ENOMEM;
  2692. vmx_io_bitmap_b = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
  2693. if (!vmx_io_bitmap_b) {
  2694. r = -ENOMEM;
  2695. goto out;
  2696. }
  2697. vmx_msr_bitmap = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
  2698. if (!vmx_msr_bitmap) {
  2699. r = -ENOMEM;
  2700. goto out1;
  2701. }
  2702. /*
  2703. * Allow direct access to the PC debug port (it is often used for I/O
  2704. * delays, but the vmexits simply slow things down).
  2705. */
  2706. va = kmap(vmx_io_bitmap_a);
  2707. memset(va, 0xff, PAGE_SIZE);
  2708. clear_bit(0x80, va);
  2709. kunmap(vmx_io_bitmap_a);
  2710. va = kmap(vmx_io_bitmap_b);
  2711. memset(va, 0xff, PAGE_SIZE);
  2712. kunmap(vmx_io_bitmap_b);
  2713. va = kmap(vmx_msr_bitmap);
  2714. memset(va, 0xff, PAGE_SIZE);
  2715. kunmap(vmx_msr_bitmap);
  2716. set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
  2717. r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx), THIS_MODULE);
  2718. if (r)
  2719. goto out2;
  2720. vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_FS_BASE);
  2721. vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_GS_BASE);
  2722. vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_IA32_SYSENTER_CS);
  2723. vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_IA32_SYSENTER_ESP);
  2724. vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_IA32_SYSENTER_EIP);
  2725. if (cpu_has_vmx_ept())
  2726. bypass_guest_pf = 0;
  2727. if (bypass_guest_pf)
  2728. kvm_mmu_set_nonpresent_ptes(~0xffeull, 0ull);
  2729. ept_sync_global();
  2730. return 0;
  2731. out2:
  2732. __free_page(vmx_msr_bitmap);
  2733. out1:
  2734. __free_page(vmx_io_bitmap_b);
  2735. out:
  2736. __free_page(vmx_io_bitmap_a);
  2737. return r;
  2738. }
  2739. static void __exit vmx_exit(void)
  2740. {
  2741. __free_page(vmx_msr_bitmap);
  2742. __free_page(vmx_io_bitmap_b);
  2743. __free_page(vmx_io_bitmap_a);
  2744. kvm_exit();
  2745. }
  2746. module_init(vmx_init)
  2747. module_exit(vmx_exit)