output.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458
  1. /*
  2. * net/dccp/output.c
  3. *
  4. * An implementation of the DCCP protocol
  5. * Arnaldo Carvalho de Melo <acme@conectiva.com.br>
  6. *
  7. * This program is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU General Public License
  9. * as published by the Free Software Foundation; either version
  10. * 2 of the License, or (at your option) any later version.
  11. */
  12. #include <linux/config.h>
  13. #include <linux/dccp.h>
  14. #include <linux/skbuff.h>
  15. #include <net/sock.h>
  16. #include "ccid.h"
  17. #include "dccp.h"
  18. static inline void dccp_event_ack_sent(struct sock *sk)
  19. {
  20. inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
  21. }
  22. /*
  23. * All SKB's seen here are completely headerless. It is our
  24. * job to build the DCCP header, and pass the packet down to
  25. * IP so it can do the same plus pass the packet off to the
  26. * device.
  27. */
  28. int dccp_transmit_skb(struct sock *sk, struct sk_buff *skb)
  29. {
  30. if (likely(skb != NULL)) {
  31. const struct inet_sock *inet = inet_sk(sk);
  32. struct dccp_sock *dp = dccp_sk(sk);
  33. struct dccp_skb_cb *dcb = DCCP_SKB_CB(skb);
  34. struct dccp_hdr *dh;
  35. /* XXX For now we're using only 48 bits sequence numbers */
  36. const int dccp_header_size = sizeof(*dh) +
  37. sizeof(struct dccp_hdr_ext) +
  38. dccp_packet_hdr_len(dcb->dccpd_type);
  39. int err, set_ack = 1;
  40. u64 ackno = dp->dccps_gsr;
  41. dccp_inc_seqno(&dp->dccps_gss);
  42. switch (dcb->dccpd_type) {
  43. case DCCP_PKT_DATA:
  44. set_ack = 0;
  45. break;
  46. case DCCP_PKT_SYNC:
  47. case DCCP_PKT_SYNCACK:
  48. ackno = dcb->dccpd_seq;
  49. break;
  50. }
  51. dcb->dccpd_seq = dp->dccps_gss;
  52. dccp_insert_options(sk, skb);
  53. skb->h.raw = skb_push(skb, dccp_header_size);
  54. dh = dccp_hdr(skb);
  55. /*
  56. * Data packets are not cloned as they are never retransmitted
  57. */
  58. if (skb_cloned(skb))
  59. skb_set_owner_w(skb, sk);
  60. /* Build DCCP header and checksum it. */
  61. memset(dh, 0, dccp_header_size);
  62. dh->dccph_type = dcb->dccpd_type;
  63. dh->dccph_sport = inet->sport;
  64. dh->dccph_dport = inet->dport;
  65. dh->dccph_doff = (dccp_header_size + dcb->dccpd_opt_len) / 4;
  66. dh->dccph_ccval = dcb->dccpd_ccval;
  67. /* XXX For now we're using only 48 bits sequence numbers */
  68. dh->dccph_x = 1;
  69. dp->dccps_awh = dp->dccps_gss;
  70. dccp_hdr_set_seq(dh, dp->dccps_gss);
  71. if (set_ack)
  72. dccp_hdr_set_ack(dccp_hdr_ack_bits(skb), ackno);
  73. switch (dcb->dccpd_type) {
  74. case DCCP_PKT_REQUEST:
  75. dccp_hdr_request(skb)->dccph_req_service =
  76. dcb->dccpd_service;
  77. break;
  78. case DCCP_PKT_RESET:
  79. dccp_hdr_reset(skb)->dccph_reset_code =
  80. dcb->dccpd_reset_code;
  81. break;
  82. }
  83. dh->dccph_checksum = dccp_v4_checksum(skb, inet->saddr,
  84. inet->daddr);
  85. if (set_ack)
  86. dccp_event_ack_sent(sk);
  87. DCCP_INC_STATS(DCCP_MIB_OUTSEGS);
  88. err = ip_queue_xmit(skb, 0);
  89. if (err <= 0)
  90. return err;
  91. /* NET_XMIT_CN is special. It does not guarantee,
  92. * that this packet is lost. It tells that device
  93. * is about to start to drop packets or already
  94. * drops some packets of the same priority and
  95. * invokes us to send less aggressively.
  96. */
  97. return err == NET_XMIT_CN ? 0 : err;
  98. }
  99. return -ENOBUFS;
  100. }
  101. unsigned int dccp_sync_mss(struct sock *sk, u32 pmtu)
  102. {
  103. struct dccp_sock *dp = dccp_sk(sk);
  104. int mss_now;
  105. /*
  106. * FIXME: we really should be using the af_specific thing to support
  107. * IPv6.
  108. * mss_now = pmtu - tp->af_specific->net_header_len -
  109. * sizeof(struct dccp_hdr) - sizeof(struct dccp_hdr_ext);
  110. */
  111. mss_now = pmtu - sizeof(struct iphdr) - sizeof(struct dccp_hdr) -
  112. sizeof(struct dccp_hdr_ext);
  113. /* Now subtract optional transport overhead */
  114. mss_now -= dp->dccps_ext_header_len;
  115. /*
  116. * FIXME: this should come from the CCID infrastructure, where, say,
  117. * TFRC will say it wants TIMESTAMPS, ELAPSED time, etc, for now lets
  118. * put a rough estimate for NDP + TIMESTAMP + TIMESTAMP_ECHO + ELAPSED
  119. * TIME + TFRC_OPT_LOSS_EVENT_RATE + TFRC_OPT_RECEIVE_RATE + padding to
  120. * make it a multiple of 4
  121. */
  122. mss_now -= ((5 + 6 + 10 + 6 + 6 + 6 + 3) / 4) * 4;
  123. /* And store cached results */
  124. dp->dccps_pmtu_cookie = pmtu;
  125. dp->dccps_mss_cache = mss_now;
  126. return mss_now;
  127. }
  128. int dccp_write_xmit(struct sock *sk, struct sk_buff *skb, const int len)
  129. {
  130. const struct dccp_sock *dp = dccp_sk(sk);
  131. int err = ccid_hc_tx_send_packet(dp->dccps_hc_tx_ccid, sk, skb, len);
  132. if (err == 0) {
  133. const struct dccp_ackpkts *ap = dp->dccps_hc_rx_ackpkts;
  134. struct dccp_skb_cb *dcb = DCCP_SKB_CB(skb);
  135. if (sk->sk_state == DCCP_PARTOPEN) {
  136. /* See 8.1.5. Handshake Completion */
  137. inet_csk_schedule_ack(sk);
  138. inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
  139. inet_csk(sk)->icsk_rto,
  140. DCCP_RTO_MAX);
  141. dcb->dccpd_type = DCCP_PKT_DATAACK;
  142. /*
  143. * FIXME: we really should have a
  144. * dccps_ack_pending or use icsk.
  145. */
  146. } else if (inet_csk_ack_scheduled(sk) ||
  147. dp->dccps_timestamp_echo != 0 ||
  148. (dp->dccps_options.dccpo_send_ack_vector &&
  149. ap->dccpap_buf_ackno != DCCP_MAX_SEQNO + 1 &&
  150. ap->dccpap_ack_seqno == DCCP_MAX_SEQNO + 1))
  151. dcb->dccpd_type = DCCP_PKT_DATAACK;
  152. else
  153. dcb->dccpd_type = DCCP_PKT_DATA;
  154. err = dccp_transmit_skb(sk, skb);
  155. ccid_hc_tx_packet_sent(dp->dccps_hc_tx_ccid, sk, 0, len);
  156. }
  157. return err;
  158. }
  159. int dccp_retransmit_skb(struct sock *sk, struct sk_buff *skb)
  160. {
  161. if (inet_sk_rebuild_header(sk) != 0)
  162. return -EHOSTUNREACH; /* Routing failure or similar. */
  163. return dccp_transmit_skb(sk, (skb_cloned(skb) ?
  164. pskb_copy(skb, GFP_ATOMIC):
  165. skb_clone(skb, GFP_ATOMIC)));
  166. }
  167. struct sk_buff *dccp_make_response(struct sock *sk, struct dst_entry *dst,
  168. struct request_sock *req)
  169. {
  170. struct dccp_hdr *dh;
  171. const int dccp_header_size = sizeof(struct dccp_hdr) +
  172. sizeof(struct dccp_hdr_ext) +
  173. sizeof(struct dccp_hdr_response);
  174. struct sk_buff *skb = sock_wmalloc(sk, MAX_HEADER + DCCP_MAX_OPT_LEN +
  175. dccp_header_size, 1,
  176. GFP_ATOMIC);
  177. if (skb == NULL)
  178. return NULL;
  179. /* Reserve space for headers. */
  180. skb_reserve(skb, MAX_HEADER + DCCP_MAX_OPT_LEN + dccp_header_size);
  181. skb->dst = dst_clone(dst);
  182. skb->csum = 0;
  183. DCCP_SKB_CB(skb)->dccpd_type = DCCP_PKT_RESPONSE;
  184. DCCP_SKB_CB(skb)->dccpd_seq = dccp_rsk(req)->dreq_iss;
  185. dccp_insert_options(sk, skb);
  186. skb->h.raw = skb_push(skb, dccp_header_size);
  187. dh = dccp_hdr(skb);
  188. memset(dh, 0, dccp_header_size);
  189. dh->dccph_sport = inet_sk(sk)->sport;
  190. dh->dccph_dport = inet_rsk(req)->rmt_port;
  191. dh->dccph_doff = (dccp_header_size +
  192. DCCP_SKB_CB(skb)->dccpd_opt_len) / 4;
  193. dh->dccph_type = DCCP_PKT_RESPONSE;
  194. dh->dccph_x = 1;
  195. dccp_hdr_set_seq(dh, dccp_rsk(req)->dreq_iss);
  196. dccp_hdr_set_ack(dccp_hdr_ack_bits(skb), dccp_rsk(req)->dreq_isr);
  197. dh->dccph_checksum = dccp_v4_checksum(skb, inet_rsk(req)->loc_addr,
  198. inet_rsk(req)->rmt_addr);
  199. DCCP_INC_STATS(DCCP_MIB_OUTSEGS);
  200. return skb;
  201. }
  202. struct sk_buff *dccp_make_reset(struct sock *sk, struct dst_entry *dst,
  203. const enum dccp_reset_codes code)
  204. {
  205. struct dccp_hdr *dh;
  206. struct dccp_sock *dp = dccp_sk(sk);
  207. const int dccp_header_size = sizeof(struct dccp_hdr) +
  208. sizeof(struct dccp_hdr_ext) +
  209. sizeof(struct dccp_hdr_reset);
  210. struct sk_buff *skb = sock_wmalloc(sk, MAX_HEADER + DCCP_MAX_OPT_LEN +
  211. dccp_header_size, 1,
  212. GFP_ATOMIC);
  213. if (skb == NULL)
  214. return NULL;
  215. /* Reserve space for headers. */
  216. skb_reserve(skb, MAX_HEADER + DCCP_MAX_OPT_LEN + dccp_header_size);
  217. skb->dst = dst_clone(dst);
  218. skb->csum = 0;
  219. dccp_inc_seqno(&dp->dccps_gss);
  220. DCCP_SKB_CB(skb)->dccpd_reset_code = code;
  221. DCCP_SKB_CB(skb)->dccpd_type = DCCP_PKT_RESET;
  222. DCCP_SKB_CB(skb)->dccpd_seq = dp->dccps_gss;
  223. dccp_insert_options(sk, skb);
  224. skb->h.raw = skb_push(skb, dccp_header_size);
  225. dh = dccp_hdr(skb);
  226. memset(dh, 0, dccp_header_size);
  227. dh->dccph_sport = inet_sk(sk)->sport;
  228. dh->dccph_dport = inet_sk(sk)->dport;
  229. dh->dccph_doff = (dccp_header_size +
  230. DCCP_SKB_CB(skb)->dccpd_opt_len) / 4;
  231. dh->dccph_type = DCCP_PKT_RESET;
  232. dh->dccph_x = 1;
  233. dccp_hdr_set_seq(dh, dp->dccps_gss);
  234. dccp_hdr_set_ack(dccp_hdr_ack_bits(skb), dp->dccps_gsr);
  235. dccp_hdr_reset(skb)->dccph_reset_code = code;
  236. dh->dccph_checksum = dccp_v4_checksum(skb, inet_sk(sk)->saddr,
  237. inet_sk(sk)->daddr);
  238. DCCP_INC_STATS(DCCP_MIB_OUTSEGS);
  239. return skb;
  240. }
  241. /*
  242. * Do all connect socket setups that can be done AF independent.
  243. */
  244. static inline void dccp_connect_init(struct sock *sk)
  245. {
  246. struct dst_entry *dst = __sk_dst_get(sk);
  247. struct inet_connection_sock *icsk = inet_csk(sk);
  248. sk->sk_err = 0;
  249. sock_reset_flag(sk, SOCK_DONE);
  250. dccp_sync_mss(sk, dst_mtu(dst));
  251. /*
  252. * FIXME: set dp->{dccps_swh,dccps_swl}, with
  253. * something like dccp_inc_seq
  254. */
  255. icsk->icsk_retransmits = 0;
  256. }
  257. int dccp_connect(struct sock *sk)
  258. {
  259. struct sk_buff *skb;
  260. struct inet_connection_sock *icsk = inet_csk(sk);
  261. dccp_connect_init(sk);
  262. skb = alloc_skb(MAX_DCCP_HEADER + 15, sk->sk_allocation);
  263. if (unlikely(skb == NULL))
  264. return -ENOBUFS;
  265. /* Reserve space for headers. */
  266. skb_reserve(skb, MAX_DCCP_HEADER);
  267. DCCP_SKB_CB(skb)->dccpd_type = DCCP_PKT_REQUEST;
  268. /* FIXME: set service to something meaningful, coming
  269. * from userspace*/
  270. DCCP_SKB_CB(skb)->dccpd_service = 0;
  271. skb->csum = 0;
  272. skb_set_owner_w(skb, sk);
  273. BUG_TRAP(sk->sk_send_head == NULL);
  274. sk->sk_send_head = skb;
  275. dccp_transmit_skb(sk, skb_clone(skb, GFP_KERNEL));
  276. DCCP_INC_STATS(DCCP_MIB_ACTIVEOPENS);
  277. /* Timer for repeating the REQUEST until an answer. */
  278. inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
  279. icsk->icsk_rto, DCCP_RTO_MAX);
  280. return 0;
  281. }
  282. void dccp_send_ack(struct sock *sk)
  283. {
  284. /* If we have been reset, we may not send again. */
  285. if (sk->sk_state != DCCP_CLOSED) {
  286. struct sk_buff *skb = alloc_skb(MAX_DCCP_HEADER, GFP_ATOMIC);
  287. if (skb == NULL) {
  288. inet_csk_schedule_ack(sk);
  289. inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN;
  290. inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
  291. TCP_DELACK_MAX,
  292. DCCP_RTO_MAX);
  293. return;
  294. }
  295. /* Reserve space for headers */
  296. skb_reserve(skb, MAX_DCCP_HEADER);
  297. skb->csum = 0;
  298. DCCP_SKB_CB(skb)->dccpd_type = DCCP_PKT_ACK;
  299. skb_set_owner_w(skb, sk);
  300. dccp_transmit_skb(sk, skb);
  301. }
  302. }
  303. EXPORT_SYMBOL_GPL(dccp_send_ack);
  304. void dccp_send_delayed_ack(struct sock *sk)
  305. {
  306. struct inet_connection_sock *icsk = inet_csk(sk);
  307. /*
  308. * FIXME: tune this timer. elapsed time fixes the skew, so no problem
  309. * with using 2s, and active senders also piggyback the ACK into a
  310. * DATAACK packet, so this is really for quiescent senders.
  311. */
  312. unsigned long timeout = jiffies + 2 * HZ;
  313. /* Use new timeout only if there wasn't a older one earlier. */
  314. if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
  315. /* If delack timer was blocked or is about to expire,
  316. * send ACK now.
  317. *
  318. * FIXME: check the "about to expire" part
  319. */
  320. if (icsk->icsk_ack.blocked) {
  321. dccp_send_ack(sk);
  322. return;
  323. }
  324. if (!time_before(timeout, icsk->icsk_ack.timeout))
  325. timeout = icsk->icsk_ack.timeout;
  326. }
  327. icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
  328. icsk->icsk_ack.timeout = timeout;
  329. sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
  330. }
  331. void dccp_send_sync(struct sock *sk, const u64 seq,
  332. const enum dccp_pkt_type pkt_type)
  333. {
  334. /*
  335. * We are not putting this on the write queue, so
  336. * dccp_transmit_skb() will set the ownership to this
  337. * sock.
  338. */
  339. struct sk_buff *skb = alloc_skb(MAX_DCCP_HEADER, GFP_ATOMIC);
  340. if (skb == NULL)
  341. /* FIXME: how to make sure the sync is sent? */
  342. return;
  343. /* Reserve space for headers and prepare control bits. */
  344. skb_reserve(skb, MAX_DCCP_HEADER);
  345. skb->csum = 0;
  346. DCCP_SKB_CB(skb)->dccpd_type = pkt_type;
  347. DCCP_SKB_CB(skb)->dccpd_seq = seq;
  348. skb_set_owner_w(skb, sk);
  349. dccp_transmit_skb(sk, skb);
  350. }
  351. /*
  352. * Send a DCCP_PKT_CLOSE/CLOSEREQ. The caller locks the socket for us. This
  353. * cannot be allowed to fail queueing a DCCP_PKT_CLOSE/CLOSEREQ frame under
  354. * any circumstances.
  355. */
  356. void dccp_send_close(struct sock *sk, const int active)
  357. {
  358. struct dccp_sock *dp = dccp_sk(sk);
  359. struct sk_buff *skb;
  360. const unsigned int prio = active ? GFP_KERNEL : GFP_ATOMIC;
  361. skb = alloc_skb(sk->sk_prot->max_header, prio);
  362. if (skb == NULL)
  363. return;
  364. /* Reserve space for headers and prepare control bits. */
  365. skb_reserve(skb, sk->sk_prot->max_header);
  366. skb->csum = 0;
  367. DCCP_SKB_CB(skb)->dccpd_type = dp->dccps_role == DCCP_ROLE_CLIENT ?
  368. DCCP_PKT_CLOSE : DCCP_PKT_CLOSEREQ;
  369. skb_set_owner_w(skb, sk);
  370. if (active) {
  371. BUG_TRAP(sk->sk_send_head == NULL);
  372. sk->sk_send_head = skb;
  373. dccp_transmit_skb(sk, skb_clone(skb, prio));
  374. } else
  375. dccp_transmit_skb(sk, skb);
  376. ccid_hc_rx_exit(dp->dccps_hc_rx_ccid, sk);
  377. ccid_hc_tx_exit(dp->dccps_hc_tx_ccid, sk);
  378. }