ctree.c 108 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224
  1. /*
  2. * Copyright (C) 2007,2008 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/sched.h>
  19. #include "ctree.h"
  20. #include "disk-io.h"
  21. #include "transaction.h"
  22. #include "print-tree.h"
  23. #include "locking.h"
  24. static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
  25. *root, struct btrfs_path *path, int level);
  26. static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
  27. *root, struct btrfs_key *ins_key,
  28. struct btrfs_path *path, int data_size, int extend);
  29. static int push_node_left(struct btrfs_trans_handle *trans,
  30. struct btrfs_root *root, struct extent_buffer *dst,
  31. struct extent_buffer *src, int empty);
  32. static int balance_node_right(struct btrfs_trans_handle *trans,
  33. struct btrfs_root *root,
  34. struct extent_buffer *dst_buf,
  35. struct extent_buffer *src_buf);
  36. static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  37. struct btrfs_path *path, int level, int slot);
  38. struct btrfs_path *btrfs_alloc_path(void)
  39. {
  40. struct btrfs_path *path;
  41. path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
  42. if (path)
  43. path->reada = 1;
  44. return path;
  45. }
  46. /*
  47. * set all locked nodes in the path to blocking locks. This should
  48. * be done before scheduling
  49. */
  50. noinline void btrfs_set_path_blocking(struct btrfs_path *p)
  51. {
  52. int i;
  53. for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
  54. if (p->nodes[i] && p->locks[i])
  55. btrfs_set_lock_blocking(p->nodes[i]);
  56. }
  57. }
  58. /*
  59. * reset all the locked nodes in the patch to spinning locks.
  60. *
  61. * held is used to keep lockdep happy, when lockdep is enabled
  62. * we set held to a blocking lock before we go around and
  63. * retake all the spinlocks in the path. You can safely use NULL
  64. * for held
  65. */
  66. noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
  67. struct extent_buffer *held)
  68. {
  69. int i;
  70. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  71. /* lockdep really cares that we take all of these spinlocks
  72. * in the right order. If any of the locks in the path are not
  73. * currently blocking, it is going to complain. So, make really
  74. * really sure by forcing the path to blocking before we clear
  75. * the path blocking.
  76. */
  77. if (held)
  78. btrfs_set_lock_blocking(held);
  79. btrfs_set_path_blocking(p);
  80. #endif
  81. for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
  82. if (p->nodes[i] && p->locks[i])
  83. btrfs_clear_lock_blocking(p->nodes[i]);
  84. }
  85. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  86. if (held)
  87. btrfs_clear_lock_blocking(held);
  88. #endif
  89. }
  90. /* this also releases the path */
  91. void btrfs_free_path(struct btrfs_path *p)
  92. {
  93. btrfs_release_path(NULL, p);
  94. kmem_cache_free(btrfs_path_cachep, p);
  95. }
  96. /*
  97. * path release drops references on the extent buffers in the path
  98. * and it drops any locks held by this path
  99. *
  100. * It is safe to call this on paths that no locks or extent buffers held.
  101. */
  102. noinline void btrfs_release_path(struct btrfs_root *root, struct btrfs_path *p)
  103. {
  104. int i;
  105. for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
  106. p->slots[i] = 0;
  107. if (!p->nodes[i])
  108. continue;
  109. if (p->locks[i]) {
  110. btrfs_tree_unlock(p->nodes[i]);
  111. p->locks[i] = 0;
  112. }
  113. free_extent_buffer(p->nodes[i]);
  114. p->nodes[i] = NULL;
  115. }
  116. }
  117. /*
  118. * safely gets a reference on the root node of a tree. A lock
  119. * is not taken, so a concurrent writer may put a different node
  120. * at the root of the tree. See btrfs_lock_root_node for the
  121. * looping required.
  122. *
  123. * The extent buffer returned by this has a reference taken, so
  124. * it won't disappear. It may stop being the root of the tree
  125. * at any time because there are no locks held.
  126. */
  127. struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
  128. {
  129. struct extent_buffer *eb;
  130. spin_lock(&root->node_lock);
  131. eb = root->node;
  132. extent_buffer_get(eb);
  133. spin_unlock(&root->node_lock);
  134. return eb;
  135. }
  136. /* loop around taking references on and locking the root node of the
  137. * tree until you end up with a lock on the root. A locked buffer
  138. * is returned, with a reference held.
  139. */
  140. struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
  141. {
  142. struct extent_buffer *eb;
  143. while (1) {
  144. eb = btrfs_root_node(root);
  145. btrfs_tree_lock(eb);
  146. spin_lock(&root->node_lock);
  147. if (eb == root->node) {
  148. spin_unlock(&root->node_lock);
  149. break;
  150. }
  151. spin_unlock(&root->node_lock);
  152. btrfs_tree_unlock(eb);
  153. free_extent_buffer(eb);
  154. }
  155. return eb;
  156. }
  157. /* cowonly root (everything not a reference counted cow subvolume), just get
  158. * put onto a simple dirty list. transaction.c walks this to make sure they
  159. * get properly updated on disk.
  160. */
  161. static void add_root_to_dirty_list(struct btrfs_root *root)
  162. {
  163. if (root->track_dirty && list_empty(&root->dirty_list)) {
  164. list_add(&root->dirty_list,
  165. &root->fs_info->dirty_cowonly_roots);
  166. }
  167. }
  168. /*
  169. * used by snapshot creation to make a copy of a root for a tree with
  170. * a given objectid. The buffer with the new root node is returned in
  171. * cow_ret, and this func returns zero on success or a negative error code.
  172. */
  173. int btrfs_copy_root(struct btrfs_trans_handle *trans,
  174. struct btrfs_root *root,
  175. struct extent_buffer *buf,
  176. struct extent_buffer **cow_ret, u64 new_root_objectid)
  177. {
  178. struct extent_buffer *cow;
  179. u32 nritems;
  180. int ret = 0;
  181. int level;
  182. struct btrfs_root *new_root;
  183. new_root = kmalloc(sizeof(*new_root), GFP_NOFS);
  184. if (!new_root)
  185. return -ENOMEM;
  186. memcpy(new_root, root, sizeof(*new_root));
  187. new_root->root_key.objectid = new_root_objectid;
  188. WARN_ON(root->ref_cows && trans->transid !=
  189. root->fs_info->running_transaction->transid);
  190. WARN_ON(root->ref_cows && trans->transid != root->last_trans);
  191. level = btrfs_header_level(buf);
  192. nritems = btrfs_header_nritems(buf);
  193. cow = btrfs_alloc_free_block(trans, new_root, buf->len, 0,
  194. new_root_objectid, trans->transid,
  195. level, buf->start, 0);
  196. if (IS_ERR(cow)) {
  197. kfree(new_root);
  198. return PTR_ERR(cow);
  199. }
  200. copy_extent_buffer(cow, buf, 0, 0, cow->len);
  201. btrfs_set_header_bytenr(cow, cow->start);
  202. btrfs_set_header_generation(cow, trans->transid);
  203. btrfs_set_header_owner(cow, new_root_objectid);
  204. btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN);
  205. write_extent_buffer(cow, root->fs_info->fsid,
  206. (unsigned long)btrfs_header_fsid(cow),
  207. BTRFS_FSID_SIZE);
  208. WARN_ON(btrfs_header_generation(buf) > trans->transid);
  209. ret = btrfs_inc_ref(trans, new_root, buf, cow, NULL);
  210. kfree(new_root);
  211. if (ret)
  212. return ret;
  213. btrfs_mark_buffer_dirty(cow);
  214. *cow_ret = cow;
  215. return 0;
  216. }
  217. /*
  218. * does the dirty work in cow of a single block. The parent block (if
  219. * supplied) is updated to point to the new cow copy. The new buffer is marked
  220. * dirty and returned locked. If you modify the block it needs to be marked
  221. * dirty again.
  222. *
  223. * search_start -- an allocation hint for the new block
  224. *
  225. * empty_size -- a hint that you plan on doing more cow. This is the size in
  226. * bytes the allocator should try to find free next to the block it returns.
  227. * This is just a hint and may be ignored by the allocator.
  228. */
  229. static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
  230. struct btrfs_root *root,
  231. struct extent_buffer *buf,
  232. struct extent_buffer *parent, int parent_slot,
  233. struct extent_buffer **cow_ret,
  234. u64 search_start, u64 empty_size)
  235. {
  236. u64 parent_start;
  237. struct extent_buffer *cow;
  238. u32 nritems;
  239. int ret = 0;
  240. int level;
  241. int unlock_orig = 0;
  242. if (*cow_ret == buf)
  243. unlock_orig = 1;
  244. btrfs_assert_tree_locked(buf);
  245. if (parent)
  246. parent_start = parent->start;
  247. else
  248. parent_start = 0;
  249. WARN_ON(root->ref_cows && trans->transid !=
  250. root->fs_info->running_transaction->transid);
  251. WARN_ON(root->ref_cows && trans->transid != root->last_trans);
  252. level = btrfs_header_level(buf);
  253. nritems = btrfs_header_nritems(buf);
  254. cow = btrfs_alloc_free_block(trans, root, buf->len,
  255. parent_start, root->root_key.objectid,
  256. trans->transid, level,
  257. search_start, empty_size);
  258. if (IS_ERR(cow))
  259. return PTR_ERR(cow);
  260. /* cow is set to blocking by btrfs_init_new_buffer */
  261. copy_extent_buffer(cow, buf, 0, 0, cow->len);
  262. btrfs_set_header_bytenr(cow, cow->start);
  263. btrfs_set_header_generation(cow, trans->transid);
  264. btrfs_set_header_owner(cow, root->root_key.objectid);
  265. btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN);
  266. write_extent_buffer(cow, root->fs_info->fsid,
  267. (unsigned long)btrfs_header_fsid(cow),
  268. BTRFS_FSID_SIZE);
  269. WARN_ON(btrfs_header_generation(buf) > trans->transid);
  270. if (btrfs_header_generation(buf) != trans->transid) {
  271. u32 nr_extents;
  272. ret = btrfs_inc_ref(trans, root, buf, cow, &nr_extents);
  273. if (ret)
  274. return ret;
  275. ret = btrfs_cache_ref(trans, root, buf, nr_extents);
  276. WARN_ON(ret);
  277. } else if (btrfs_header_owner(buf) == BTRFS_TREE_RELOC_OBJECTID) {
  278. /*
  279. * There are only two places that can drop reference to
  280. * tree blocks owned by living reloc trees, one is here,
  281. * the other place is btrfs_drop_subtree. In both places,
  282. * we check reference count while tree block is locked.
  283. * Furthermore, if reference count is one, it won't get
  284. * increased by someone else.
  285. */
  286. u32 refs;
  287. ret = btrfs_lookup_extent_ref(trans, root, buf->start,
  288. buf->len, &refs);
  289. BUG_ON(ret);
  290. if (refs == 1) {
  291. ret = btrfs_update_ref(trans, root, buf, cow,
  292. 0, nritems);
  293. clean_tree_block(trans, root, buf);
  294. } else {
  295. ret = btrfs_inc_ref(trans, root, buf, cow, NULL);
  296. }
  297. BUG_ON(ret);
  298. } else {
  299. ret = btrfs_update_ref(trans, root, buf, cow, 0, nritems);
  300. if (ret)
  301. return ret;
  302. clean_tree_block(trans, root, buf);
  303. }
  304. if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
  305. ret = btrfs_reloc_tree_cache_ref(trans, root, cow, buf->start);
  306. WARN_ON(ret);
  307. }
  308. if (buf == root->node) {
  309. WARN_ON(parent && parent != buf);
  310. spin_lock(&root->node_lock);
  311. root->node = cow;
  312. extent_buffer_get(cow);
  313. spin_unlock(&root->node_lock);
  314. if (buf != root->commit_root) {
  315. btrfs_free_extent(trans, root, buf->start,
  316. buf->len, buf->start,
  317. root->root_key.objectid,
  318. btrfs_header_generation(buf),
  319. level, 1);
  320. }
  321. free_extent_buffer(buf);
  322. add_root_to_dirty_list(root);
  323. } else {
  324. btrfs_set_node_blockptr(parent, parent_slot,
  325. cow->start);
  326. WARN_ON(trans->transid == 0);
  327. btrfs_set_node_ptr_generation(parent, parent_slot,
  328. trans->transid);
  329. btrfs_mark_buffer_dirty(parent);
  330. WARN_ON(btrfs_header_generation(parent) != trans->transid);
  331. btrfs_free_extent(trans, root, buf->start, buf->len,
  332. parent_start, btrfs_header_owner(parent),
  333. btrfs_header_generation(parent), level, 1);
  334. }
  335. if (unlock_orig)
  336. btrfs_tree_unlock(buf);
  337. free_extent_buffer(buf);
  338. btrfs_mark_buffer_dirty(cow);
  339. *cow_ret = cow;
  340. return 0;
  341. }
  342. /*
  343. * cows a single block, see __btrfs_cow_block for the real work.
  344. * This version of it has extra checks so that a block isn't cow'd more than
  345. * once per transaction, as long as it hasn't been written yet
  346. */
  347. noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
  348. struct btrfs_root *root, struct extent_buffer *buf,
  349. struct extent_buffer *parent, int parent_slot,
  350. struct extent_buffer **cow_ret)
  351. {
  352. u64 search_start;
  353. int ret;
  354. if (trans->transaction != root->fs_info->running_transaction) {
  355. printk(KERN_CRIT "trans %llu running %llu\n",
  356. (unsigned long long)trans->transid,
  357. (unsigned long long)
  358. root->fs_info->running_transaction->transid);
  359. WARN_ON(1);
  360. }
  361. if (trans->transid != root->fs_info->generation) {
  362. printk(KERN_CRIT "trans %llu running %llu\n",
  363. (unsigned long long)trans->transid,
  364. (unsigned long long)root->fs_info->generation);
  365. WARN_ON(1);
  366. }
  367. if (btrfs_header_generation(buf) == trans->transid &&
  368. btrfs_header_owner(buf) == root->root_key.objectid &&
  369. !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
  370. *cow_ret = buf;
  371. return 0;
  372. }
  373. search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
  374. if (parent)
  375. btrfs_set_lock_blocking(parent);
  376. btrfs_set_lock_blocking(buf);
  377. ret = __btrfs_cow_block(trans, root, buf, parent,
  378. parent_slot, cow_ret, search_start, 0);
  379. return ret;
  380. }
  381. /*
  382. * helper function for defrag to decide if two blocks pointed to by a
  383. * node are actually close by
  384. */
  385. static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
  386. {
  387. if (blocknr < other && other - (blocknr + blocksize) < 32768)
  388. return 1;
  389. if (blocknr > other && blocknr - (other + blocksize) < 32768)
  390. return 1;
  391. return 0;
  392. }
  393. /*
  394. * compare two keys in a memcmp fashion
  395. */
  396. static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
  397. {
  398. struct btrfs_key k1;
  399. btrfs_disk_key_to_cpu(&k1, disk);
  400. if (k1.objectid > k2->objectid)
  401. return 1;
  402. if (k1.objectid < k2->objectid)
  403. return -1;
  404. if (k1.type > k2->type)
  405. return 1;
  406. if (k1.type < k2->type)
  407. return -1;
  408. if (k1.offset > k2->offset)
  409. return 1;
  410. if (k1.offset < k2->offset)
  411. return -1;
  412. return 0;
  413. }
  414. /*
  415. * same as comp_keys only with two btrfs_key's
  416. */
  417. static int comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
  418. {
  419. if (k1->objectid > k2->objectid)
  420. return 1;
  421. if (k1->objectid < k2->objectid)
  422. return -1;
  423. if (k1->type > k2->type)
  424. return 1;
  425. if (k1->type < k2->type)
  426. return -1;
  427. if (k1->offset > k2->offset)
  428. return 1;
  429. if (k1->offset < k2->offset)
  430. return -1;
  431. return 0;
  432. }
  433. /*
  434. * this is used by the defrag code to go through all the
  435. * leaves pointed to by a node and reallocate them so that
  436. * disk order is close to key order
  437. */
  438. int btrfs_realloc_node(struct btrfs_trans_handle *trans,
  439. struct btrfs_root *root, struct extent_buffer *parent,
  440. int start_slot, int cache_only, u64 *last_ret,
  441. struct btrfs_key *progress)
  442. {
  443. struct extent_buffer *cur;
  444. u64 blocknr;
  445. u64 gen;
  446. u64 search_start = *last_ret;
  447. u64 last_block = 0;
  448. u64 other;
  449. u32 parent_nritems;
  450. int end_slot;
  451. int i;
  452. int err = 0;
  453. int parent_level;
  454. int uptodate;
  455. u32 blocksize;
  456. int progress_passed = 0;
  457. struct btrfs_disk_key disk_key;
  458. parent_level = btrfs_header_level(parent);
  459. if (cache_only && parent_level != 1)
  460. return 0;
  461. if (trans->transaction != root->fs_info->running_transaction)
  462. WARN_ON(1);
  463. if (trans->transid != root->fs_info->generation)
  464. WARN_ON(1);
  465. parent_nritems = btrfs_header_nritems(parent);
  466. blocksize = btrfs_level_size(root, parent_level - 1);
  467. end_slot = parent_nritems;
  468. if (parent_nritems == 1)
  469. return 0;
  470. btrfs_set_lock_blocking(parent);
  471. for (i = start_slot; i < end_slot; i++) {
  472. int close = 1;
  473. if (!parent->map_token) {
  474. map_extent_buffer(parent,
  475. btrfs_node_key_ptr_offset(i),
  476. sizeof(struct btrfs_key_ptr),
  477. &parent->map_token, &parent->kaddr,
  478. &parent->map_start, &parent->map_len,
  479. KM_USER1);
  480. }
  481. btrfs_node_key(parent, &disk_key, i);
  482. if (!progress_passed && comp_keys(&disk_key, progress) < 0)
  483. continue;
  484. progress_passed = 1;
  485. blocknr = btrfs_node_blockptr(parent, i);
  486. gen = btrfs_node_ptr_generation(parent, i);
  487. if (last_block == 0)
  488. last_block = blocknr;
  489. if (i > 0) {
  490. other = btrfs_node_blockptr(parent, i - 1);
  491. close = close_blocks(blocknr, other, blocksize);
  492. }
  493. if (!close && i < end_slot - 2) {
  494. other = btrfs_node_blockptr(parent, i + 1);
  495. close = close_blocks(blocknr, other, blocksize);
  496. }
  497. if (close) {
  498. last_block = blocknr;
  499. continue;
  500. }
  501. if (parent->map_token) {
  502. unmap_extent_buffer(parent, parent->map_token,
  503. KM_USER1);
  504. parent->map_token = NULL;
  505. }
  506. cur = btrfs_find_tree_block(root, blocknr, blocksize);
  507. if (cur)
  508. uptodate = btrfs_buffer_uptodate(cur, gen);
  509. else
  510. uptodate = 0;
  511. if (!cur || !uptodate) {
  512. if (cache_only) {
  513. free_extent_buffer(cur);
  514. continue;
  515. }
  516. if (!cur) {
  517. cur = read_tree_block(root, blocknr,
  518. blocksize, gen);
  519. } else if (!uptodate) {
  520. btrfs_read_buffer(cur, gen);
  521. }
  522. }
  523. if (search_start == 0)
  524. search_start = last_block;
  525. btrfs_tree_lock(cur);
  526. btrfs_set_lock_blocking(cur);
  527. err = __btrfs_cow_block(trans, root, cur, parent, i,
  528. &cur, search_start,
  529. min(16 * blocksize,
  530. (end_slot - i) * blocksize));
  531. if (err) {
  532. btrfs_tree_unlock(cur);
  533. free_extent_buffer(cur);
  534. break;
  535. }
  536. search_start = cur->start;
  537. last_block = cur->start;
  538. *last_ret = search_start;
  539. btrfs_tree_unlock(cur);
  540. free_extent_buffer(cur);
  541. }
  542. if (parent->map_token) {
  543. unmap_extent_buffer(parent, parent->map_token,
  544. KM_USER1);
  545. parent->map_token = NULL;
  546. }
  547. return err;
  548. }
  549. /*
  550. * The leaf data grows from end-to-front in the node.
  551. * this returns the address of the start of the last item,
  552. * which is the stop of the leaf data stack
  553. */
  554. static inline unsigned int leaf_data_end(struct btrfs_root *root,
  555. struct extent_buffer *leaf)
  556. {
  557. u32 nr = btrfs_header_nritems(leaf);
  558. if (nr == 0)
  559. return BTRFS_LEAF_DATA_SIZE(root);
  560. return btrfs_item_offset_nr(leaf, nr - 1);
  561. }
  562. /*
  563. * extra debugging checks to make sure all the items in a key are
  564. * well formed and in the proper order
  565. */
  566. static int check_node(struct btrfs_root *root, struct btrfs_path *path,
  567. int level)
  568. {
  569. struct extent_buffer *parent = NULL;
  570. struct extent_buffer *node = path->nodes[level];
  571. struct btrfs_disk_key parent_key;
  572. struct btrfs_disk_key node_key;
  573. int parent_slot;
  574. int slot;
  575. struct btrfs_key cpukey;
  576. u32 nritems = btrfs_header_nritems(node);
  577. if (path->nodes[level + 1])
  578. parent = path->nodes[level + 1];
  579. slot = path->slots[level];
  580. BUG_ON(nritems == 0);
  581. if (parent) {
  582. parent_slot = path->slots[level + 1];
  583. btrfs_node_key(parent, &parent_key, parent_slot);
  584. btrfs_node_key(node, &node_key, 0);
  585. BUG_ON(memcmp(&parent_key, &node_key,
  586. sizeof(struct btrfs_disk_key)));
  587. BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
  588. btrfs_header_bytenr(node));
  589. }
  590. BUG_ON(nritems > BTRFS_NODEPTRS_PER_BLOCK(root));
  591. if (slot != 0) {
  592. btrfs_node_key_to_cpu(node, &cpukey, slot - 1);
  593. btrfs_node_key(node, &node_key, slot);
  594. BUG_ON(comp_keys(&node_key, &cpukey) <= 0);
  595. }
  596. if (slot < nritems - 1) {
  597. btrfs_node_key_to_cpu(node, &cpukey, slot + 1);
  598. btrfs_node_key(node, &node_key, slot);
  599. BUG_ON(comp_keys(&node_key, &cpukey) >= 0);
  600. }
  601. return 0;
  602. }
  603. /*
  604. * extra checking to make sure all the items in a leaf are
  605. * well formed and in the proper order
  606. */
  607. static int check_leaf(struct btrfs_root *root, struct btrfs_path *path,
  608. int level)
  609. {
  610. struct extent_buffer *leaf = path->nodes[level];
  611. struct extent_buffer *parent = NULL;
  612. int parent_slot;
  613. struct btrfs_key cpukey;
  614. struct btrfs_disk_key parent_key;
  615. struct btrfs_disk_key leaf_key;
  616. int slot = path->slots[0];
  617. u32 nritems = btrfs_header_nritems(leaf);
  618. if (path->nodes[level + 1])
  619. parent = path->nodes[level + 1];
  620. if (nritems == 0)
  621. return 0;
  622. if (parent) {
  623. parent_slot = path->slots[level + 1];
  624. btrfs_node_key(parent, &parent_key, parent_slot);
  625. btrfs_item_key(leaf, &leaf_key, 0);
  626. BUG_ON(memcmp(&parent_key, &leaf_key,
  627. sizeof(struct btrfs_disk_key)));
  628. BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
  629. btrfs_header_bytenr(leaf));
  630. }
  631. if (slot != 0 && slot < nritems - 1) {
  632. btrfs_item_key(leaf, &leaf_key, slot);
  633. btrfs_item_key_to_cpu(leaf, &cpukey, slot - 1);
  634. if (comp_keys(&leaf_key, &cpukey) <= 0) {
  635. btrfs_print_leaf(root, leaf);
  636. printk(KERN_CRIT "slot %d offset bad key\n", slot);
  637. BUG_ON(1);
  638. }
  639. if (btrfs_item_offset_nr(leaf, slot - 1) !=
  640. btrfs_item_end_nr(leaf, slot)) {
  641. btrfs_print_leaf(root, leaf);
  642. printk(KERN_CRIT "slot %d offset bad\n", slot);
  643. BUG_ON(1);
  644. }
  645. }
  646. if (slot < nritems - 1) {
  647. btrfs_item_key(leaf, &leaf_key, slot);
  648. btrfs_item_key_to_cpu(leaf, &cpukey, slot + 1);
  649. BUG_ON(comp_keys(&leaf_key, &cpukey) >= 0);
  650. if (btrfs_item_offset_nr(leaf, slot) !=
  651. btrfs_item_end_nr(leaf, slot + 1)) {
  652. btrfs_print_leaf(root, leaf);
  653. printk(KERN_CRIT "slot %d offset bad\n", slot);
  654. BUG_ON(1);
  655. }
  656. }
  657. BUG_ON(btrfs_item_offset_nr(leaf, 0) +
  658. btrfs_item_size_nr(leaf, 0) != BTRFS_LEAF_DATA_SIZE(root));
  659. return 0;
  660. }
  661. static noinline int check_block(struct btrfs_root *root,
  662. struct btrfs_path *path, int level)
  663. {
  664. return 0;
  665. if (level == 0)
  666. return check_leaf(root, path, level);
  667. return check_node(root, path, level);
  668. }
  669. /*
  670. * search for key in the extent_buffer. The items start at offset p,
  671. * and they are item_size apart. There are 'max' items in p.
  672. *
  673. * the slot in the array is returned via slot, and it points to
  674. * the place where you would insert key if it is not found in
  675. * the array.
  676. *
  677. * slot may point to max if the key is bigger than all of the keys
  678. */
  679. static noinline int generic_bin_search(struct extent_buffer *eb,
  680. unsigned long p,
  681. int item_size, struct btrfs_key *key,
  682. int max, int *slot)
  683. {
  684. int low = 0;
  685. int high = max;
  686. int mid;
  687. int ret;
  688. struct btrfs_disk_key *tmp = NULL;
  689. struct btrfs_disk_key unaligned;
  690. unsigned long offset;
  691. char *map_token = NULL;
  692. char *kaddr = NULL;
  693. unsigned long map_start = 0;
  694. unsigned long map_len = 0;
  695. int err;
  696. while (low < high) {
  697. mid = (low + high) / 2;
  698. offset = p + mid * item_size;
  699. if (!map_token || offset < map_start ||
  700. (offset + sizeof(struct btrfs_disk_key)) >
  701. map_start + map_len) {
  702. if (map_token) {
  703. unmap_extent_buffer(eb, map_token, KM_USER0);
  704. map_token = NULL;
  705. }
  706. err = map_private_extent_buffer(eb, offset,
  707. sizeof(struct btrfs_disk_key),
  708. &map_token, &kaddr,
  709. &map_start, &map_len, KM_USER0);
  710. if (!err) {
  711. tmp = (struct btrfs_disk_key *)(kaddr + offset -
  712. map_start);
  713. } else {
  714. read_extent_buffer(eb, &unaligned,
  715. offset, sizeof(unaligned));
  716. tmp = &unaligned;
  717. }
  718. } else {
  719. tmp = (struct btrfs_disk_key *)(kaddr + offset -
  720. map_start);
  721. }
  722. ret = comp_keys(tmp, key);
  723. if (ret < 0)
  724. low = mid + 1;
  725. else if (ret > 0)
  726. high = mid;
  727. else {
  728. *slot = mid;
  729. if (map_token)
  730. unmap_extent_buffer(eb, map_token, KM_USER0);
  731. return 0;
  732. }
  733. }
  734. *slot = low;
  735. if (map_token)
  736. unmap_extent_buffer(eb, map_token, KM_USER0);
  737. return 1;
  738. }
  739. /*
  740. * simple bin_search frontend that does the right thing for
  741. * leaves vs nodes
  742. */
  743. static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
  744. int level, int *slot)
  745. {
  746. if (level == 0) {
  747. return generic_bin_search(eb,
  748. offsetof(struct btrfs_leaf, items),
  749. sizeof(struct btrfs_item),
  750. key, btrfs_header_nritems(eb),
  751. slot);
  752. } else {
  753. return generic_bin_search(eb,
  754. offsetof(struct btrfs_node, ptrs),
  755. sizeof(struct btrfs_key_ptr),
  756. key, btrfs_header_nritems(eb),
  757. slot);
  758. }
  759. return -1;
  760. }
  761. /* given a node and slot number, this reads the blocks it points to. The
  762. * extent buffer is returned with a reference taken (but unlocked).
  763. * NULL is returned on error.
  764. */
  765. static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
  766. struct extent_buffer *parent, int slot)
  767. {
  768. int level = btrfs_header_level(parent);
  769. if (slot < 0)
  770. return NULL;
  771. if (slot >= btrfs_header_nritems(parent))
  772. return NULL;
  773. BUG_ON(level == 0);
  774. return read_tree_block(root, btrfs_node_blockptr(parent, slot),
  775. btrfs_level_size(root, level - 1),
  776. btrfs_node_ptr_generation(parent, slot));
  777. }
  778. /*
  779. * node level balancing, used to make sure nodes are in proper order for
  780. * item deletion. We balance from the top down, so we have to make sure
  781. * that a deletion won't leave an node completely empty later on.
  782. */
  783. static noinline int balance_level(struct btrfs_trans_handle *trans,
  784. struct btrfs_root *root,
  785. struct btrfs_path *path, int level)
  786. {
  787. struct extent_buffer *right = NULL;
  788. struct extent_buffer *mid;
  789. struct extent_buffer *left = NULL;
  790. struct extent_buffer *parent = NULL;
  791. int ret = 0;
  792. int wret;
  793. int pslot;
  794. int orig_slot = path->slots[level];
  795. int err_on_enospc = 0;
  796. u64 orig_ptr;
  797. if (level == 0)
  798. return 0;
  799. mid = path->nodes[level];
  800. WARN_ON(!path->locks[level]);
  801. WARN_ON(btrfs_header_generation(mid) != trans->transid);
  802. orig_ptr = btrfs_node_blockptr(mid, orig_slot);
  803. if (level < BTRFS_MAX_LEVEL - 1)
  804. parent = path->nodes[level + 1];
  805. pslot = path->slots[level + 1];
  806. /*
  807. * deal with the case where there is only one pointer in the root
  808. * by promoting the node below to a root
  809. */
  810. if (!parent) {
  811. struct extent_buffer *child;
  812. if (btrfs_header_nritems(mid) != 1)
  813. return 0;
  814. /* promote the child to a root */
  815. child = read_node_slot(root, mid, 0);
  816. BUG_ON(!child);
  817. btrfs_tree_lock(child);
  818. btrfs_set_lock_blocking(child);
  819. ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
  820. BUG_ON(ret);
  821. spin_lock(&root->node_lock);
  822. root->node = child;
  823. spin_unlock(&root->node_lock);
  824. ret = btrfs_update_extent_ref(trans, root, child->start,
  825. child->len,
  826. mid->start, child->start,
  827. root->root_key.objectid,
  828. trans->transid, level - 1);
  829. BUG_ON(ret);
  830. add_root_to_dirty_list(root);
  831. btrfs_tree_unlock(child);
  832. path->locks[level] = 0;
  833. path->nodes[level] = NULL;
  834. clean_tree_block(trans, root, mid);
  835. btrfs_tree_unlock(mid);
  836. /* once for the path */
  837. free_extent_buffer(mid);
  838. ret = btrfs_free_extent(trans, root, mid->start, mid->len,
  839. mid->start, root->root_key.objectid,
  840. btrfs_header_generation(mid),
  841. level, 1);
  842. /* once for the root ptr */
  843. free_extent_buffer(mid);
  844. return ret;
  845. }
  846. if (btrfs_header_nritems(mid) >
  847. BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
  848. return 0;
  849. if (trans->transaction->delayed_refs.flushing &&
  850. btrfs_header_nritems(mid) > 2)
  851. return 0;
  852. if (btrfs_header_nritems(mid) < 2)
  853. err_on_enospc = 1;
  854. left = read_node_slot(root, parent, pslot - 1);
  855. if (left) {
  856. btrfs_tree_lock(left);
  857. btrfs_set_lock_blocking(left);
  858. wret = btrfs_cow_block(trans, root, left,
  859. parent, pslot - 1, &left);
  860. if (wret) {
  861. ret = wret;
  862. goto enospc;
  863. }
  864. }
  865. right = read_node_slot(root, parent, pslot + 1);
  866. if (right) {
  867. btrfs_tree_lock(right);
  868. btrfs_set_lock_blocking(right);
  869. wret = btrfs_cow_block(trans, root, right,
  870. parent, pslot + 1, &right);
  871. if (wret) {
  872. ret = wret;
  873. goto enospc;
  874. }
  875. }
  876. /* first, try to make some room in the middle buffer */
  877. if (left) {
  878. orig_slot += btrfs_header_nritems(left);
  879. wret = push_node_left(trans, root, left, mid, 1);
  880. if (wret < 0)
  881. ret = wret;
  882. if (btrfs_header_nritems(mid) < 2)
  883. err_on_enospc = 1;
  884. }
  885. /*
  886. * then try to empty the right most buffer into the middle
  887. */
  888. if (right) {
  889. wret = push_node_left(trans, root, mid, right, 1);
  890. if (wret < 0 && wret != -ENOSPC)
  891. ret = wret;
  892. if (btrfs_header_nritems(right) == 0) {
  893. u64 bytenr = right->start;
  894. u64 generation = btrfs_header_generation(parent);
  895. u32 blocksize = right->len;
  896. clean_tree_block(trans, root, right);
  897. btrfs_tree_unlock(right);
  898. free_extent_buffer(right);
  899. right = NULL;
  900. wret = del_ptr(trans, root, path, level + 1, pslot +
  901. 1);
  902. if (wret)
  903. ret = wret;
  904. wret = btrfs_free_extent(trans, root, bytenr,
  905. blocksize, parent->start,
  906. btrfs_header_owner(parent),
  907. generation, level, 1);
  908. if (wret)
  909. ret = wret;
  910. } else {
  911. struct btrfs_disk_key right_key;
  912. btrfs_node_key(right, &right_key, 0);
  913. btrfs_set_node_key(parent, &right_key, pslot + 1);
  914. btrfs_mark_buffer_dirty(parent);
  915. }
  916. }
  917. if (btrfs_header_nritems(mid) == 1) {
  918. /*
  919. * we're not allowed to leave a node with one item in the
  920. * tree during a delete. A deletion from lower in the tree
  921. * could try to delete the only pointer in this node.
  922. * So, pull some keys from the left.
  923. * There has to be a left pointer at this point because
  924. * otherwise we would have pulled some pointers from the
  925. * right
  926. */
  927. BUG_ON(!left);
  928. wret = balance_node_right(trans, root, mid, left);
  929. if (wret < 0) {
  930. ret = wret;
  931. goto enospc;
  932. }
  933. if (wret == 1) {
  934. wret = push_node_left(trans, root, left, mid, 1);
  935. if (wret < 0)
  936. ret = wret;
  937. }
  938. BUG_ON(wret == 1);
  939. }
  940. if (btrfs_header_nritems(mid) == 0) {
  941. /* we've managed to empty the middle node, drop it */
  942. u64 root_gen = btrfs_header_generation(parent);
  943. u64 bytenr = mid->start;
  944. u32 blocksize = mid->len;
  945. clean_tree_block(trans, root, mid);
  946. btrfs_tree_unlock(mid);
  947. free_extent_buffer(mid);
  948. mid = NULL;
  949. wret = del_ptr(trans, root, path, level + 1, pslot);
  950. if (wret)
  951. ret = wret;
  952. wret = btrfs_free_extent(trans, root, bytenr, blocksize,
  953. parent->start,
  954. btrfs_header_owner(parent),
  955. root_gen, level, 1);
  956. if (wret)
  957. ret = wret;
  958. } else {
  959. /* update the parent key to reflect our changes */
  960. struct btrfs_disk_key mid_key;
  961. btrfs_node_key(mid, &mid_key, 0);
  962. btrfs_set_node_key(parent, &mid_key, pslot);
  963. btrfs_mark_buffer_dirty(parent);
  964. }
  965. /* update the path */
  966. if (left) {
  967. if (btrfs_header_nritems(left) > orig_slot) {
  968. extent_buffer_get(left);
  969. /* left was locked after cow */
  970. path->nodes[level] = left;
  971. path->slots[level + 1] -= 1;
  972. path->slots[level] = orig_slot;
  973. if (mid) {
  974. btrfs_tree_unlock(mid);
  975. free_extent_buffer(mid);
  976. }
  977. } else {
  978. orig_slot -= btrfs_header_nritems(left);
  979. path->slots[level] = orig_slot;
  980. }
  981. }
  982. /* double check we haven't messed things up */
  983. check_block(root, path, level);
  984. if (orig_ptr !=
  985. btrfs_node_blockptr(path->nodes[level], path->slots[level]))
  986. BUG();
  987. enospc:
  988. if (right) {
  989. btrfs_tree_unlock(right);
  990. free_extent_buffer(right);
  991. }
  992. if (left) {
  993. if (path->nodes[level] != left)
  994. btrfs_tree_unlock(left);
  995. free_extent_buffer(left);
  996. }
  997. return ret;
  998. }
  999. /* Node balancing for insertion. Here we only split or push nodes around
  1000. * when they are completely full. This is also done top down, so we
  1001. * have to be pessimistic.
  1002. */
  1003. static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
  1004. struct btrfs_root *root,
  1005. struct btrfs_path *path, int level)
  1006. {
  1007. struct extent_buffer *right = NULL;
  1008. struct extent_buffer *mid;
  1009. struct extent_buffer *left = NULL;
  1010. struct extent_buffer *parent = NULL;
  1011. int ret = 0;
  1012. int wret;
  1013. int pslot;
  1014. int orig_slot = path->slots[level];
  1015. u64 orig_ptr;
  1016. if (level == 0)
  1017. return 1;
  1018. mid = path->nodes[level];
  1019. WARN_ON(btrfs_header_generation(mid) != trans->transid);
  1020. orig_ptr = btrfs_node_blockptr(mid, orig_slot);
  1021. if (level < BTRFS_MAX_LEVEL - 1)
  1022. parent = path->nodes[level + 1];
  1023. pslot = path->slots[level + 1];
  1024. if (!parent)
  1025. return 1;
  1026. left = read_node_slot(root, parent, pslot - 1);
  1027. /* first, try to make some room in the middle buffer */
  1028. if (left) {
  1029. u32 left_nr;
  1030. btrfs_tree_lock(left);
  1031. btrfs_set_lock_blocking(left);
  1032. left_nr = btrfs_header_nritems(left);
  1033. if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
  1034. wret = 1;
  1035. } else {
  1036. ret = btrfs_cow_block(trans, root, left, parent,
  1037. pslot - 1, &left);
  1038. if (ret)
  1039. wret = 1;
  1040. else {
  1041. wret = push_node_left(trans, root,
  1042. left, mid, 0);
  1043. }
  1044. }
  1045. if (wret < 0)
  1046. ret = wret;
  1047. if (wret == 0) {
  1048. struct btrfs_disk_key disk_key;
  1049. orig_slot += left_nr;
  1050. btrfs_node_key(mid, &disk_key, 0);
  1051. btrfs_set_node_key(parent, &disk_key, pslot);
  1052. btrfs_mark_buffer_dirty(parent);
  1053. if (btrfs_header_nritems(left) > orig_slot) {
  1054. path->nodes[level] = left;
  1055. path->slots[level + 1] -= 1;
  1056. path->slots[level] = orig_slot;
  1057. btrfs_tree_unlock(mid);
  1058. free_extent_buffer(mid);
  1059. } else {
  1060. orig_slot -=
  1061. btrfs_header_nritems(left);
  1062. path->slots[level] = orig_slot;
  1063. btrfs_tree_unlock(left);
  1064. free_extent_buffer(left);
  1065. }
  1066. return 0;
  1067. }
  1068. btrfs_tree_unlock(left);
  1069. free_extent_buffer(left);
  1070. }
  1071. right = read_node_slot(root, parent, pslot + 1);
  1072. /*
  1073. * then try to empty the right most buffer into the middle
  1074. */
  1075. if (right) {
  1076. u32 right_nr;
  1077. btrfs_tree_lock(right);
  1078. btrfs_set_lock_blocking(right);
  1079. right_nr = btrfs_header_nritems(right);
  1080. if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
  1081. wret = 1;
  1082. } else {
  1083. ret = btrfs_cow_block(trans, root, right,
  1084. parent, pslot + 1,
  1085. &right);
  1086. if (ret)
  1087. wret = 1;
  1088. else {
  1089. wret = balance_node_right(trans, root,
  1090. right, mid);
  1091. }
  1092. }
  1093. if (wret < 0)
  1094. ret = wret;
  1095. if (wret == 0) {
  1096. struct btrfs_disk_key disk_key;
  1097. btrfs_node_key(right, &disk_key, 0);
  1098. btrfs_set_node_key(parent, &disk_key, pslot + 1);
  1099. btrfs_mark_buffer_dirty(parent);
  1100. if (btrfs_header_nritems(mid) <= orig_slot) {
  1101. path->nodes[level] = right;
  1102. path->slots[level + 1] += 1;
  1103. path->slots[level] = orig_slot -
  1104. btrfs_header_nritems(mid);
  1105. btrfs_tree_unlock(mid);
  1106. free_extent_buffer(mid);
  1107. } else {
  1108. btrfs_tree_unlock(right);
  1109. free_extent_buffer(right);
  1110. }
  1111. return 0;
  1112. }
  1113. btrfs_tree_unlock(right);
  1114. free_extent_buffer(right);
  1115. }
  1116. return 1;
  1117. }
  1118. /*
  1119. * readahead one full node of leaves, finding things that are close
  1120. * to the block in 'slot', and triggering ra on them.
  1121. */
  1122. static noinline void reada_for_search(struct btrfs_root *root,
  1123. struct btrfs_path *path,
  1124. int level, int slot, u64 objectid)
  1125. {
  1126. struct extent_buffer *node;
  1127. struct btrfs_disk_key disk_key;
  1128. u32 nritems;
  1129. u64 search;
  1130. u64 target;
  1131. u64 nread = 0;
  1132. int direction = path->reada;
  1133. struct extent_buffer *eb;
  1134. u32 nr;
  1135. u32 blocksize;
  1136. u32 nscan = 0;
  1137. if (level != 1)
  1138. return;
  1139. if (!path->nodes[level])
  1140. return;
  1141. node = path->nodes[level];
  1142. search = btrfs_node_blockptr(node, slot);
  1143. blocksize = btrfs_level_size(root, level - 1);
  1144. eb = btrfs_find_tree_block(root, search, blocksize);
  1145. if (eb) {
  1146. free_extent_buffer(eb);
  1147. return;
  1148. }
  1149. target = search;
  1150. nritems = btrfs_header_nritems(node);
  1151. nr = slot;
  1152. while (1) {
  1153. if (direction < 0) {
  1154. if (nr == 0)
  1155. break;
  1156. nr--;
  1157. } else if (direction > 0) {
  1158. nr++;
  1159. if (nr >= nritems)
  1160. break;
  1161. }
  1162. if (path->reada < 0 && objectid) {
  1163. btrfs_node_key(node, &disk_key, nr);
  1164. if (btrfs_disk_key_objectid(&disk_key) != objectid)
  1165. break;
  1166. }
  1167. search = btrfs_node_blockptr(node, nr);
  1168. if ((search <= target && target - search <= 65536) ||
  1169. (search > target && search - target <= 65536)) {
  1170. readahead_tree_block(root, search, blocksize,
  1171. btrfs_node_ptr_generation(node, nr));
  1172. nread += blocksize;
  1173. }
  1174. nscan++;
  1175. if ((nread > 65536 || nscan > 32))
  1176. break;
  1177. }
  1178. }
  1179. /*
  1180. * returns -EAGAIN if it had to drop the path, or zero if everything was in
  1181. * cache
  1182. */
  1183. static noinline int reada_for_balance(struct btrfs_root *root,
  1184. struct btrfs_path *path, int level)
  1185. {
  1186. int slot;
  1187. int nritems;
  1188. struct extent_buffer *parent;
  1189. struct extent_buffer *eb;
  1190. u64 gen;
  1191. u64 block1 = 0;
  1192. u64 block2 = 0;
  1193. int ret = 0;
  1194. int blocksize;
  1195. parent = path->nodes[level - 1];
  1196. if (!parent)
  1197. return 0;
  1198. nritems = btrfs_header_nritems(parent);
  1199. slot = path->slots[level];
  1200. blocksize = btrfs_level_size(root, level);
  1201. if (slot > 0) {
  1202. block1 = btrfs_node_blockptr(parent, slot - 1);
  1203. gen = btrfs_node_ptr_generation(parent, slot - 1);
  1204. eb = btrfs_find_tree_block(root, block1, blocksize);
  1205. if (eb && btrfs_buffer_uptodate(eb, gen))
  1206. block1 = 0;
  1207. free_extent_buffer(eb);
  1208. }
  1209. if (slot < nritems) {
  1210. block2 = btrfs_node_blockptr(parent, slot + 1);
  1211. gen = btrfs_node_ptr_generation(parent, slot + 1);
  1212. eb = btrfs_find_tree_block(root, block2, blocksize);
  1213. if (eb && btrfs_buffer_uptodate(eb, gen))
  1214. block2 = 0;
  1215. free_extent_buffer(eb);
  1216. }
  1217. if (block1 || block2) {
  1218. ret = -EAGAIN;
  1219. btrfs_release_path(root, path);
  1220. if (block1)
  1221. readahead_tree_block(root, block1, blocksize, 0);
  1222. if (block2)
  1223. readahead_tree_block(root, block2, blocksize, 0);
  1224. if (block1) {
  1225. eb = read_tree_block(root, block1, blocksize, 0);
  1226. free_extent_buffer(eb);
  1227. }
  1228. if (block1) {
  1229. eb = read_tree_block(root, block2, blocksize, 0);
  1230. free_extent_buffer(eb);
  1231. }
  1232. }
  1233. return ret;
  1234. }
  1235. /*
  1236. * when we walk down the tree, it is usually safe to unlock the higher layers
  1237. * in the tree. The exceptions are when our path goes through slot 0, because
  1238. * operations on the tree might require changing key pointers higher up in the
  1239. * tree.
  1240. *
  1241. * callers might also have set path->keep_locks, which tells this code to keep
  1242. * the lock if the path points to the last slot in the block. This is part of
  1243. * walking through the tree, and selecting the next slot in the higher block.
  1244. *
  1245. * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so
  1246. * if lowest_unlock is 1, level 0 won't be unlocked
  1247. */
  1248. static noinline void unlock_up(struct btrfs_path *path, int level,
  1249. int lowest_unlock)
  1250. {
  1251. int i;
  1252. int skip_level = level;
  1253. int no_skips = 0;
  1254. struct extent_buffer *t;
  1255. for (i = level; i < BTRFS_MAX_LEVEL; i++) {
  1256. if (!path->nodes[i])
  1257. break;
  1258. if (!path->locks[i])
  1259. break;
  1260. if (!no_skips && path->slots[i] == 0) {
  1261. skip_level = i + 1;
  1262. continue;
  1263. }
  1264. if (!no_skips && path->keep_locks) {
  1265. u32 nritems;
  1266. t = path->nodes[i];
  1267. nritems = btrfs_header_nritems(t);
  1268. if (nritems < 1 || path->slots[i] >= nritems - 1) {
  1269. skip_level = i + 1;
  1270. continue;
  1271. }
  1272. }
  1273. if (skip_level < i && i >= lowest_unlock)
  1274. no_skips = 1;
  1275. t = path->nodes[i];
  1276. if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
  1277. btrfs_tree_unlock(t);
  1278. path->locks[i] = 0;
  1279. }
  1280. }
  1281. }
  1282. /*
  1283. * This releases any locks held in the path starting at level and
  1284. * going all the way up to the root.
  1285. *
  1286. * btrfs_search_slot will keep the lock held on higher nodes in a few
  1287. * corner cases, such as COW of the block at slot zero in the node. This
  1288. * ignores those rules, and it should only be called when there are no
  1289. * more updates to be done higher up in the tree.
  1290. */
  1291. noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
  1292. {
  1293. int i;
  1294. if (path->keep_locks || path->lowest_level)
  1295. return;
  1296. for (i = level; i < BTRFS_MAX_LEVEL; i++) {
  1297. if (!path->nodes[i])
  1298. continue;
  1299. if (!path->locks[i])
  1300. continue;
  1301. btrfs_tree_unlock(path->nodes[i]);
  1302. path->locks[i] = 0;
  1303. }
  1304. }
  1305. /*
  1306. * look for key in the tree. path is filled in with nodes along the way
  1307. * if key is found, we return zero and you can find the item in the leaf
  1308. * level of the path (level 0)
  1309. *
  1310. * If the key isn't found, the path points to the slot where it should
  1311. * be inserted, and 1 is returned. If there are other errors during the
  1312. * search a negative error number is returned.
  1313. *
  1314. * if ins_len > 0, nodes and leaves will be split as we walk down the
  1315. * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if
  1316. * possible)
  1317. */
  1318. int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
  1319. *root, struct btrfs_key *key, struct btrfs_path *p, int
  1320. ins_len, int cow)
  1321. {
  1322. struct extent_buffer *b;
  1323. struct extent_buffer *tmp;
  1324. int slot;
  1325. int ret;
  1326. int level;
  1327. int should_reada = p->reada;
  1328. int lowest_unlock = 1;
  1329. int blocksize;
  1330. u8 lowest_level = 0;
  1331. u64 blocknr;
  1332. u64 gen;
  1333. lowest_level = p->lowest_level;
  1334. WARN_ON(lowest_level && ins_len > 0);
  1335. WARN_ON(p->nodes[0] != NULL);
  1336. if (ins_len < 0)
  1337. lowest_unlock = 2;
  1338. again:
  1339. if (p->skip_locking)
  1340. b = btrfs_root_node(root);
  1341. else
  1342. b = btrfs_lock_root_node(root);
  1343. while (b) {
  1344. level = btrfs_header_level(b);
  1345. /*
  1346. * setup the path here so we can release it under lock
  1347. * contention with the cow code
  1348. */
  1349. p->nodes[level] = b;
  1350. if (!p->skip_locking)
  1351. p->locks[level] = 1;
  1352. if (cow) {
  1353. int wret;
  1354. /* is a cow on this block not required */
  1355. if (btrfs_header_generation(b) == trans->transid &&
  1356. btrfs_header_owner(b) == root->root_key.objectid &&
  1357. !btrfs_header_flag(b, BTRFS_HEADER_FLAG_WRITTEN)) {
  1358. goto cow_done;
  1359. }
  1360. btrfs_set_path_blocking(p);
  1361. wret = btrfs_cow_block(trans, root, b,
  1362. p->nodes[level + 1],
  1363. p->slots[level + 1], &b);
  1364. if (wret) {
  1365. free_extent_buffer(b);
  1366. ret = wret;
  1367. goto done;
  1368. }
  1369. }
  1370. cow_done:
  1371. BUG_ON(!cow && ins_len);
  1372. if (level != btrfs_header_level(b))
  1373. WARN_ON(1);
  1374. level = btrfs_header_level(b);
  1375. p->nodes[level] = b;
  1376. if (!p->skip_locking)
  1377. p->locks[level] = 1;
  1378. btrfs_clear_path_blocking(p, NULL);
  1379. /*
  1380. * we have a lock on b and as long as we aren't changing
  1381. * the tree, there is no way to for the items in b to change.
  1382. * It is safe to drop the lock on our parent before we
  1383. * go through the expensive btree search on b.
  1384. *
  1385. * If cow is true, then we might be changing slot zero,
  1386. * which may require changing the parent. So, we can't
  1387. * drop the lock until after we know which slot we're
  1388. * operating on.
  1389. */
  1390. if (!cow)
  1391. btrfs_unlock_up_safe(p, level + 1);
  1392. ret = check_block(root, p, level);
  1393. if (ret) {
  1394. ret = -1;
  1395. goto done;
  1396. }
  1397. ret = bin_search(b, key, level, &slot);
  1398. if (level != 0) {
  1399. if (ret && slot > 0)
  1400. slot -= 1;
  1401. p->slots[level] = slot;
  1402. if ((p->search_for_split || ins_len > 0) &&
  1403. btrfs_header_nritems(b) >=
  1404. BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
  1405. int sret;
  1406. sret = reada_for_balance(root, p, level);
  1407. if (sret)
  1408. goto again;
  1409. btrfs_set_path_blocking(p);
  1410. sret = split_node(trans, root, p, level);
  1411. btrfs_clear_path_blocking(p, NULL);
  1412. BUG_ON(sret > 0);
  1413. if (sret) {
  1414. ret = sret;
  1415. goto done;
  1416. }
  1417. b = p->nodes[level];
  1418. slot = p->slots[level];
  1419. } else if (ins_len < 0 &&
  1420. btrfs_header_nritems(b) <
  1421. BTRFS_NODEPTRS_PER_BLOCK(root) / 4) {
  1422. int sret;
  1423. sret = reada_for_balance(root, p, level);
  1424. if (sret)
  1425. goto again;
  1426. btrfs_set_path_blocking(p);
  1427. sret = balance_level(trans, root, p, level);
  1428. btrfs_clear_path_blocking(p, NULL);
  1429. if (sret) {
  1430. ret = sret;
  1431. goto done;
  1432. }
  1433. b = p->nodes[level];
  1434. if (!b) {
  1435. btrfs_release_path(NULL, p);
  1436. goto again;
  1437. }
  1438. slot = p->slots[level];
  1439. BUG_ON(btrfs_header_nritems(b) == 1);
  1440. }
  1441. unlock_up(p, level, lowest_unlock);
  1442. /* this is only true while dropping a snapshot */
  1443. if (level == lowest_level) {
  1444. ret = 0;
  1445. goto done;
  1446. }
  1447. blocknr = btrfs_node_blockptr(b, slot);
  1448. gen = btrfs_node_ptr_generation(b, slot);
  1449. blocksize = btrfs_level_size(root, level - 1);
  1450. tmp = btrfs_find_tree_block(root, blocknr, blocksize);
  1451. if (tmp && btrfs_buffer_uptodate(tmp, gen)) {
  1452. b = tmp;
  1453. } else {
  1454. /*
  1455. * reduce lock contention at high levels
  1456. * of the btree by dropping locks before
  1457. * we read.
  1458. */
  1459. if (level > 0) {
  1460. btrfs_release_path(NULL, p);
  1461. if (tmp)
  1462. free_extent_buffer(tmp);
  1463. if (should_reada)
  1464. reada_for_search(root, p,
  1465. level, slot,
  1466. key->objectid);
  1467. tmp = read_tree_block(root, blocknr,
  1468. blocksize, gen);
  1469. if (tmp)
  1470. free_extent_buffer(tmp);
  1471. goto again;
  1472. } else {
  1473. btrfs_set_path_blocking(p);
  1474. if (tmp)
  1475. free_extent_buffer(tmp);
  1476. if (should_reada)
  1477. reada_for_search(root, p,
  1478. level, slot,
  1479. key->objectid);
  1480. b = read_node_slot(root, b, slot);
  1481. }
  1482. }
  1483. if (!p->skip_locking) {
  1484. int lret;
  1485. btrfs_clear_path_blocking(p, NULL);
  1486. lret = btrfs_try_spin_lock(b);
  1487. if (!lret) {
  1488. btrfs_set_path_blocking(p);
  1489. btrfs_tree_lock(b);
  1490. btrfs_clear_path_blocking(p, b);
  1491. }
  1492. }
  1493. } else {
  1494. p->slots[level] = slot;
  1495. if (ins_len > 0 &&
  1496. btrfs_leaf_free_space(root, b) < ins_len) {
  1497. int sret;
  1498. btrfs_set_path_blocking(p);
  1499. sret = split_leaf(trans, root, key,
  1500. p, ins_len, ret == 0);
  1501. btrfs_clear_path_blocking(p, NULL);
  1502. BUG_ON(sret > 0);
  1503. if (sret) {
  1504. ret = sret;
  1505. goto done;
  1506. }
  1507. }
  1508. if (!p->search_for_split)
  1509. unlock_up(p, level, lowest_unlock);
  1510. goto done;
  1511. }
  1512. }
  1513. ret = 1;
  1514. done:
  1515. /*
  1516. * we don't really know what they plan on doing with the path
  1517. * from here on, so for now just mark it as blocking
  1518. */
  1519. if (!p->leave_spinning)
  1520. btrfs_set_path_blocking(p);
  1521. return ret;
  1522. }
  1523. int btrfs_merge_path(struct btrfs_trans_handle *trans,
  1524. struct btrfs_root *root,
  1525. struct btrfs_key *node_keys,
  1526. u64 *nodes, int lowest_level)
  1527. {
  1528. struct extent_buffer *eb;
  1529. struct extent_buffer *parent;
  1530. struct btrfs_key key;
  1531. u64 bytenr;
  1532. u64 generation;
  1533. u32 blocksize;
  1534. int level;
  1535. int slot;
  1536. int key_match;
  1537. int ret;
  1538. eb = btrfs_lock_root_node(root);
  1539. ret = btrfs_cow_block(trans, root, eb, NULL, 0, &eb);
  1540. BUG_ON(ret);
  1541. btrfs_set_lock_blocking(eb);
  1542. parent = eb;
  1543. while (1) {
  1544. level = btrfs_header_level(parent);
  1545. if (level == 0 || level <= lowest_level)
  1546. break;
  1547. ret = bin_search(parent, &node_keys[lowest_level], level,
  1548. &slot);
  1549. if (ret && slot > 0)
  1550. slot--;
  1551. bytenr = btrfs_node_blockptr(parent, slot);
  1552. if (nodes[level - 1] == bytenr)
  1553. break;
  1554. blocksize = btrfs_level_size(root, level - 1);
  1555. generation = btrfs_node_ptr_generation(parent, slot);
  1556. btrfs_node_key_to_cpu(eb, &key, slot);
  1557. key_match = !memcmp(&key, &node_keys[level - 1], sizeof(key));
  1558. if (generation == trans->transid) {
  1559. eb = read_tree_block(root, bytenr, blocksize,
  1560. generation);
  1561. btrfs_tree_lock(eb);
  1562. btrfs_set_lock_blocking(eb);
  1563. }
  1564. /*
  1565. * if node keys match and node pointer hasn't been modified
  1566. * in the running transaction, we can merge the path. for
  1567. * blocks owened by reloc trees, the node pointer check is
  1568. * skipped, this is because these blocks are fully controlled
  1569. * by the space balance code, no one else can modify them.
  1570. */
  1571. if (!nodes[level - 1] || !key_match ||
  1572. (generation == trans->transid &&
  1573. btrfs_header_owner(eb) != BTRFS_TREE_RELOC_OBJECTID)) {
  1574. if (level == 1 || level == lowest_level + 1) {
  1575. if (generation == trans->transid) {
  1576. btrfs_tree_unlock(eb);
  1577. free_extent_buffer(eb);
  1578. }
  1579. break;
  1580. }
  1581. if (generation != trans->transid) {
  1582. eb = read_tree_block(root, bytenr, blocksize,
  1583. generation);
  1584. btrfs_tree_lock(eb);
  1585. btrfs_set_lock_blocking(eb);
  1586. }
  1587. ret = btrfs_cow_block(trans, root, eb, parent, slot,
  1588. &eb);
  1589. BUG_ON(ret);
  1590. if (root->root_key.objectid ==
  1591. BTRFS_TREE_RELOC_OBJECTID) {
  1592. if (!nodes[level - 1]) {
  1593. nodes[level - 1] = eb->start;
  1594. memcpy(&node_keys[level - 1], &key,
  1595. sizeof(node_keys[0]));
  1596. } else {
  1597. WARN_ON(1);
  1598. }
  1599. }
  1600. btrfs_tree_unlock(parent);
  1601. free_extent_buffer(parent);
  1602. parent = eb;
  1603. continue;
  1604. }
  1605. btrfs_set_node_blockptr(parent, slot, nodes[level - 1]);
  1606. btrfs_set_node_ptr_generation(parent, slot, trans->transid);
  1607. btrfs_mark_buffer_dirty(parent);
  1608. ret = btrfs_inc_extent_ref(trans, root,
  1609. nodes[level - 1],
  1610. blocksize, parent->start,
  1611. btrfs_header_owner(parent),
  1612. btrfs_header_generation(parent),
  1613. level - 1);
  1614. BUG_ON(ret);
  1615. /*
  1616. * If the block was created in the running transaction,
  1617. * it's possible this is the last reference to it, so we
  1618. * should drop the subtree.
  1619. */
  1620. if (generation == trans->transid) {
  1621. ret = btrfs_drop_subtree(trans, root, eb, parent);
  1622. BUG_ON(ret);
  1623. btrfs_tree_unlock(eb);
  1624. free_extent_buffer(eb);
  1625. } else {
  1626. ret = btrfs_free_extent(trans, root, bytenr,
  1627. blocksize, parent->start,
  1628. btrfs_header_owner(parent),
  1629. btrfs_header_generation(parent),
  1630. level - 1, 1);
  1631. BUG_ON(ret);
  1632. }
  1633. break;
  1634. }
  1635. btrfs_tree_unlock(parent);
  1636. free_extent_buffer(parent);
  1637. return 0;
  1638. }
  1639. /*
  1640. * adjust the pointers going up the tree, starting at level
  1641. * making sure the right key of each node is points to 'key'.
  1642. * This is used after shifting pointers to the left, so it stops
  1643. * fixing up pointers when a given leaf/node is not in slot 0 of the
  1644. * higher levels
  1645. *
  1646. * If this fails to write a tree block, it returns -1, but continues
  1647. * fixing up the blocks in ram so the tree is consistent.
  1648. */
  1649. static int fixup_low_keys(struct btrfs_trans_handle *trans,
  1650. struct btrfs_root *root, struct btrfs_path *path,
  1651. struct btrfs_disk_key *key, int level)
  1652. {
  1653. int i;
  1654. int ret = 0;
  1655. struct extent_buffer *t;
  1656. for (i = level; i < BTRFS_MAX_LEVEL; i++) {
  1657. int tslot = path->slots[i];
  1658. if (!path->nodes[i])
  1659. break;
  1660. t = path->nodes[i];
  1661. btrfs_set_node_key(t, key, tslot);
  1662. btrfs_mark_buffer_dirty(path->nodes[i]);
  1663. if (tslot != 0)
  1664. break;
  1665. }
  1666. return ret;
  1667. }
  1668. /*
  1669. * update item key.
  1670. *
  1671. * This function isn't completely safe. It's the caller's responsibility
  1672. * that the new key won't break the order
  1673. */
  1674. int btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
  1675. struct btrfs_root *root, struct btrfs_path *path,
  1676. struct btrfs_key *new_key)
  1677. {
  1678. struct btrfs_disk_key disk_key;
  1679. struct extent_buffer *eb;
  1680. int slot;
  1681. eb = path->nodes[0];
  1682. slot = path->slots[0];
  1683. if (slot > 0) {
  1684. btrfs_item_key(eb, &disk_key, slot - 1);
  1685. if (comp_keys(&disk_key, new_key) >= 0)
  1686. return -1;
  1687. }
  1688. if (slot < btrfs_header_nritems(eb) - 1) {
  1689. btrfs_item_key(eb, &disk_key, slot + 1);
  1690. if (comp_keys(&disk_key, new_key) <= 0)
  1691. return -1;
  1692. }
  1693. btrfs_cpu_key_to_disk(&disk_key, new_key);
  1694. btrfs_set_item_key(eb, &disk_key, slot);
  1695. btrfs_mark_buffer_dirty(eb);
  1696. if (slot == 0)
  1697. fixup_low_keys(trans, root, path, &disk_key, 1);
  1698. return 0;
  1699. }
  1700. /*
  1701. * try to push data from one node into the next node left in the
  1702. * tree.
  1703. *
  1704. * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
  1705. * error, and > 0 if there was no room in the left hand block.
  1706. */
  1707. static int push_node_left(struct btrfs_trans_handle *trans,
  1708. struct btrfs_root *root, struct extent_buffer *dst,
  1709. struct extent_buffer *src, int empty)
  1710. {
  1711. int push_items = 0;
  1712. int src_nritems;
  1713. int dst_nritems;
  1714. int ret = 0;
  1715. src_nritems = btrfs_header_nritems(src);
  1716. dst_nritems = btrfs_header_nritems(dst);
  1717. push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
  1718. WARN_ON(btrfs_header_generation(src) != trans->transid);
  1719. WARN_ON(btrfs_header_generation(dst) != trans->transid);
  1720. if (!empty && src_nritems <= 8)
  1721. return 1;
  1722. if (push_items <= 0)
  1723. return 1;
  1724. if (empty) {
  1725. push_items = min(src_nritems, push_items);
  1726. if (push_items < src_nritems) {
  1727. /* leave at least 8 pointers in the node if
  1728. * we aren't going to empty it
  1729. */
  1730. if (src_nritems - push_items < 8) {
  1731. if (push_items <= 8)
  1732. return 1;
  1733. push_items -= 8;
  1734. }
  1735. }
  1736. } else
  1737. push_items = min(src_nritems - 8, push_items);
  1738. copy_extent_buffer(dst, src,
  1739. btrfs_node_key_ptr_offset(dst_nritems),
  1740. btrfs_node_key_ptr_offset(0),
  1741. push_items * sizeof(struct btrfs_key_ptr));
  1742. if (push_items < src_nritems) {
  1743. memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
  1744. btrfs_node_key_ptr_offset(push_items),
  1745. (src_nritems - push_items) *
  1746. sizeof(struct btrfs_key_ptr));
  1747. }
  1748. btrfs_set_header_nritems(src, src_nritems - push_items);
  1749. btrfs_set_header_nritems(dst, dst_nritems + push_items);
  1750. btrfs_mark_buffer_dirty(src);
  1751. btrfs_mark_buffer_dirty(dst);
  1752. ret = btrfs_update_ref(trans, root, src, dst, dst_nritems, push_items);
  1753. BUG_ON(ret);
  1754. return ret;
  1755. }
  1756. /*
  1757. * try to push data from one node into the next node right in the
  1758. * tree.
  1759. *
  1760. * returns 0 if some ptrs were pushed, < 0 if there was some horrible
  1761. * error, and > 0 if there was no room in the right hand block.
  1762. *
  1763. * this will only push up to 1/2 the contents of the left node over
  1764. */
  1765. static int balance_node_right(struct btrfs_trans_handle *trans,
  1766. struct btrfs_root *root,
  1767. struct extent_buffer *dst,
  1768. struct extent_buffer *src)
  1769. {
  1770. int push_items = 0;
  1771. int max_push;
  1772. int src_nritems;
  1773. int dst_nritems;
  1774. int ret = 0;
  1775. WARN_ON(btrfs_header_generation(src) != trans->transid);
  1776. WARN_ON(btrfs_header_generation(dst) != trans->transid);
  1777. src_nritems = btrfs_header_nritems(src);
  1778. dst_nritems = btrfs_header_nritems(dst);
  1779. push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
  1780. if (push_items <= 0)
  1781. return 1;
  1782. if (src_nritems < 4)
  1783. return 1;
  1784. max_push = src_nritems / 2 + 1;
  1785. /* don't try to empty the node */
  1786. if (max_push >= src_nritems)
  1787. return 1;
  1788. if (max_push < push_items)
  1789. push_items = max_push;
  1790. memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
  1791. btrfs_node_key_ptr_offset(0),
  1792. (dst_nritems) *
  1793. sizeof(struct btrfs_key_ptr));
  1794. copy_extent_buffer(dst, src,
  1795. btrfs_node_key_ptr_offset(0),
  1796. btrfs_node_key_ptr_offset(src_nritems - push_items),
  1797. push_items * sizeof(struct btrfs_key_ptr));
  1798. btrfs_set_header_nritems(src, src_nritems - push_items);
  1799. btrfs_set_header_nritems(dst, dst_nritems + push_items);
  1800. btrfs_mark_buffer_dirty(src);
  1801. btrfs_mark_buffer_dirty(dst);
  1802. ret = btrfs_update_ref(trans, root, src, dst, 0, push_items);
  1803. BUG_ON(ret);
  1804. return ret;
  1805. }
  1806. /*
  1807. * helper function to insert a new root level in the tree.
  1808. * A new node is allocated, and a single item is inserted to
  1809. * point to the existing root
  1810. *
  1811. * returns zero on success or < 0 on failure.
  1812. */
  1813. static noinline int insert_new_root(struct btrfs_trans_handle *trans,
  1814. struct btrfs_root *root,
  1815. struct btrfs_path *path, int level)
  1816. {
  1817. u64 lower_gen;
  1818. struct extent_buffer *lower;
  1819. struct extent_buffer *c;
  1820. struct extent_buffer *old;
  1821. struct btrfs_disk_key lower_key;
  1822. int ret;
  1823. BUG_ON(path->nodes[level]);
  1824. BUG_ON(path->nodes[level-1] != root->node);
  1825. lower = path->nodes[level-1];
  1826. if (level == 1)
  1827. btrfs_item_key(lower, &lower_key, 0);
  1828. else
  1829. btrfs_node_key(lower, &lower_key, 0);
  1830. c = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
  1831. root->root_key.objectid, trans->transid,
  1832. level, root->node->start, 0);
  1833. if (IS_ERR(c))
  1834. return PTR_ERR(c);
  1835. memset_extent_buffer(c, 0, 0, root->nodesize);
  1836. btrfs_set_header_nritems(c, 1);
  1837. btrfs_set_header_level(c, level);
  1838. btrfs_set_header_bytenr(c, c->start);
  1839. btrfs_set_header_generation(c, trans->transid);
  1840. btrfs_set_header_owner(c, root->root_key.objectid);
  1841. write_extent_buffer(c, root->fs_info->fsid,
  1842. (unsigned long)btrfs_header_fsid(c),
  1843. BTRFS_FSID_SIZE);
  1844. write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
  1845. (unsigned long)btrfs_header_chunk_tree_uuid(c),
  1846. BTRFS_UUID_SIZE);
  1847. btrfs_set_node_key(c, &lower_key, 0);
  1848. btrfs_set_node_blockptr(c, 0, lower->start);
  1849. lower_gen = btrfs_header_generation(lower);
  1850. WARN_ON(lower_gen != trans->transid);
  1851. btrfs_set_node_ptr_generation(c, 0, lower_gen);
  1852. btrfs_mark_buffer_dirty(c);
  1853. spin_lock(&root->node_lock);
  1854. old = root->node;
  1855. root->node = c;
  1856. spin_unlock(&root->node_lock);
  1857. ret = btrfs_update_extent_ref(trans, root, lower->start,
  1858. lower->len, lower->start, c->start,
  1859. root->root_key.objectid,
  1860. trans->transid, level - 1);
  1861. BUG_ON(ret);
  1862. /* the super has an extra ref to root->node */
  1863. free_extent_buffer(old);
  1864. add_root_to_dirty_list(root);
  1865. extent_buffer_get(c);
  1866. path->nodes[level] = c;
  1867. path->locks[level] = 1;
  1868. path->slots[level] = 0;
  1869. return 0;
  1870. }
  1871. /*
  1872. * worker function to insert a single pointer in a node.
  1873. * the node should have enough room for the pointer already
  1874. *
  1875. * slot and level indicate where you want the key to go, and
  1876. * blocknr is the block the key points to.
  1877. *
  1878. * returns zero on success and < 0 on any error
  1879. */
  1880. static int insert_ptr(struct btrfs_trans_handle *trans, struct btrfs_root
  1881. *root, struct btrfs_path *path, struct btrfs_disk_key
  1882. *key, u64 bytenr, int slot, int level)
  1883. {
  1884. struct extent_buffer *lower;
  1885. int nritems;
  1886. BUG_ON(!path->nodes[level]);
  1887. lower = path->nodes[level];
  1888. nritems = btrfs_header_nritems(lower);
  1889. if (slot > nritems)
  1890. BUG();
  1891. if (nritems == BTRFS_NODEPTRS_PER_BLOCK(root))
  1892. BUG();
  1893. if (slot != nritems) {
  1894. memmove_extent_buffer(lower,
  1895. btrfs_node_key_ptr_offset(slot + 1),
  1896. btrfs_node_key_ptr_offset(slot),
  1897. (nritems - slot) * sizeof(struct btrfs_key_ptr));
  1898. }
  1899. btrfs_set_node_key(lower, key, slot);
  1900. btrfs_set_node_blockptr(lower, slot, bytenr);
  1901. WARN_ON(trans->transid == 0);
  1902. btrfs_set_node_ptr_generation(lower, slot, trans->transid);
  1903. btrfs_set_header_nritems(lower, nritems + 1);
  1904. btrfs_mark_buffer_dirty(lower);
  1905. return 0;
  1906. }
  1907. /*
  1908. * split the node at the specified level in path in two.
  1909. * The path is corrected to point to the appropriate node after the split
  1910. *
  1911. * Before splitting this tries to make some room in the node by pushing
  1912. * left and right, if either one works, it returns right away.
  1913. *
  1914. * returns 0 on success and < 0 on failure
  1915. */
  1916. static noinline int split_node(struct btrfs_trans_handle *trans,
  1917. struct btrfs_root *root,
  1918. struct btrfs_path *path, int level)
  1919. {
  1920. struct extent_buffer *c;
  1921. struct extent_buffer *split;
  1922. struct btrfs_disk_key disk_key;
  1923. int mid;
  1924. int ret;
  1925. int wret;
  1926. u32 c_nritems;
  1927. c = path->nodes[level];
  1928. WARN_ON(btrfs_header_generation(c) != trans->transid);
  1929. if (c == root->node) {
  1930. /* trying to split the root, lets make a new one */
  1931. ret = insert_new_root(trans, root, path, level + 1);
  1932. if (ret)
  1933. return ret;
  1934. } else if (!trans->transaction->delayed_refs.flushing) {
  1935. ret = push_nodes_for_insert(trans, root, path, level);
  1936. c = path->nodes[level];
  1937. if (!ret && btrfs_header_nritems(c) <
  1938. BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
  1939. return 0;
  1940. if (ret < 0)
  1941. return ret;
  1942. }
  1943. c_nritems = btrfs_header_nritems(c);
  1944. split = btrfs_alloc_free_block(trans, root, root->nodesize,
  1945. path->nodes[level + 1]->start,
  1946. root->root_key.objectid,
  1947. trans->transid, level, c->start, 0);
  1948. if (IS_ERR(split))
  1949. return PTR_ERR(split);
  1950. btrfs_set_header_flags(split, btrfs_header_flags(c));
  1951. btrfs_set_header_level(split, btrfs_header_level(c));
  1952. btrfs_set_header_bytenr(split, split->start);
  1953. btrfs_set_header_generation(split, trans->transid);
  1954. btrfs_set_header_owner(split, root->root_key.objectid);
  1955. btrfs_set_header_flags(split, 0);
  1956. write_extent_buffer(split, root->fs_info->fsid,
  1957. (unsigned long)btrfs_header_fsid(split),
  1958. BTRFS_FSID_SIZE);
  1959. write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
  1960. (unsigned long)btrfs_header_chunk_tree_uuid(split),
  1961. BTRFS_UUID_SIZE);
  1962. mid = (c_nritems + 1) / 2;
  1963. copy_extent_buffer(split, c,
  1964. btrfs_node_key_ptr_offset(0),
  1965. btrfs_node_key_ptr_offset(mid),
  1966. (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
  1967. btrfs_set_header_nritems(split, c_nritems - mid);
  1968. btrfs_set_header_nritems(c, mid);
  1969. ret = 0;
  1970. btrfs_mark_buffer_dirty(c);
  1971. btrfs_mark_buffer_dirty(split);
  1972. btrfs_node_key(split, &disk_key, 0);
  1973. wret = insert_ptr(trans, root, path, &disk_key, split->start,
  1974. path->slots[level + 1] + 1,
  1975. level + 1);
  1976. if (wret)
  1977. ret = wret;
  1978. ret = btrfs_update_ref(trans, root, c, split, 0, c_nritems - mid);
  1979. BUG_ON(ret);
  1980. if (path->slots[level] >= mid) {
  1981. path->slots[level] -= mid;
  1982. btrfs_tree_unlock(c);
  1983. free_extent_buffer(c);
  1984. path->nodes[level] = split;
  1985. path->slots[level + 1] += 1;
  1986. } else {
  1987. btrfs_tree_unlock(split);
  1988. free_extent_buffer(split);
  1989. }
  1990. return ret;
  1991. }
  1992. /*
  1993. * how many bytes are required to store the items in a leaf. start
  1994. * and nr indicate which items in the leaf to check. This totals up the
  1995. * space used both by the item structs and the item data
  1996. */
  1997. static int leaf_space_used(struct extent_buffer *l, int start, int nr)
  1998. {
  1999. int data_len;
  2000. int nritems = btrfs_header_nritems(l);
  2001. int end = min(nritems, start + nr) - 1;
  2002. if (!nr)
  2003. return 0;
  2004. data_len = btrfs_item_end_nr(l, start);
  2005. data_len = data_len - btrfs_item_offset_nr(l, end);
  2006. data_len += sizeof(struct btrfs_item) * nr;
  2007. WARN_ON(data_len < 0);
  2008. return data_len;
  2009. }
  2010. /*
  2011. * The space between the end of the leaf items and
  2012. * the start of the leaf data. IOW, how much room
  2013. * the leaf has left for both items and data
  2014. */
  2015. noinline int btrfs_leaf_free_space(struct btrfs_root *root,
  2016. struct extent_buffer *leaf)
  2017. {
  2018. int nritems = btrfs_header_nritems(leaf);
  2019. int ret;
  2020. ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
  2021. if (ret < 0) {
  2022. printk(KERN_CRIT "leaf free space ret %d, leaf data size %lu, "
  2023. "used %d nritems %d\n",
  2024. ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
  2025. leaf_space_used(leaf, 0, nritems), nritems);
  2026. }
  2027. return ret;
  2028. }
  2029. static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
  2030. struct btrfs_root *root,
  2031. struct btrfs_path *path,
  2032. int data_size, int empty,
  2033. struct extent_buffer *right,
  2034. int free_space, u32 left_nritems)
  2035. {
  2036. struct extent_buffer *left = path->nodes[0];
  2037. struct extent_buffer *upper = path->nodes[1];
  2038. struct btrfs_disk_key disk_key;
  2039. int slot;
  2040. u32 i;
  2041. int push_space = 0;
  2042. int push_items = 0;
  2043. struct btrfs_item *item;
  2044. u32 nr;
  2045. u32 right_nritems;
  2046. u32 data_end;
  2047. u32 this_item_size;
  2048. int ret;
  2049. if (empty)
  2050. nr = 0;
  2051. else
  2052. nr = 1;
  2053. if (path->slots[0] >= left_nritems)
  2054. push_space += data_size;
  2055. slot = path->slots[1];
  2056. i = left_nritems - 1;
  2057. while (i >= nr) {
  2058. item = btrfs_item_nr(left, i);
  2059. if (!empty && push_items > 0) {
  2060. if (path->slots[0] > i)
  2061. break;
  2062. if (path->slots[0] == i) {
  2063. int space = btrfs_leaf_free_space(root, left);
  2064. if (space + push_space * 2 > free_space)
  2065. break;
  2066. }
  2067. }
  2068. if (path->slots[0] == i)
  2069. push_space += data_size;
  2070. if (!left->map_token) {
  2071. map_extent_buffer(left, (unsigned long)item,
  2072. sizeof(struct btrfs_item),
  2073. &left->map_token, &left->kaddr,
  2074. &left->map_start, &left->map_len,
  2075. KM_USER1);
  2076. }
  2077. this_item_size = btrfs_item_size(left, item);
  2078. if (this_item_size + sizeof(*item) + push_space > free_space)
  2079. break;
  2080. push_items++;
  2081. push_space += this_item_size + sizeof(*item);
  2082. if (i == 0)
  2083. break;
  2084. i--;
  2085. }
  2086. if (left->map_token) {
  2087. unmap_extent_buffer(left, left->map_token, KM_USER1);
  2088. left->map_token = NULL;
  2089. }
  2090. if (push_items == 0)
  2091. goto out_unlock;
  2092. if (!empty && push_items == left_nritems)
  2093. WARN_ON(1);
  2094. /* push left to right */
  2095. right_nritems = btrfs_header_nritems(right);
  2096. push_space = btrfs_item_end_nr(left, left_nritems - push_items);
  2097. push_space -= leaf_data_end(root, left);
  2098. /* make room in the right data area */
  2099. data_end = leaf_data_end(root, right);
  2100. memmove_extent_buffer(right,
  2101. btrfs_leaf_data(right) + data_end - push_space,
  2102. btrfs_leaf_data(right) + data_end,
  2103. BTRFS_LEAF_DATA_SIZE(root) - data_end);
  2104. /* copy from the left data area */
  2105. copy_extent_buffer(right, left, btrfs_leaf_data(right) +
  2106. BTRFS_LEAF_DATA_SIZE(root) - push_space,
  2107. btrfs_leaf_data(left) + leaf_data_end(root, left),
  2108. push_space);
  2109. memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
  2110. btrfs_item_nr_offset(0),
  2111. right_nritems * sizeof(struct btrfs_item));
  2112. /* copy the items from left to right */
  2113. copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
  2114. btrfs_item_nr_offset(left_nritems - push_items),
  2115. push_items * sizeof(struct btrfs_item));
  2116. /* update the item pointers */
  2117. right_nritems += push_items;
  2118. btrfs_set_header_nritems(right, right_nritems);
  2119. push_space = BTRFS_LEAF_DATA_SIZE(root);
  2120. for (i = 0; i < right_nritems; i++) {
  2121. item = btrfs_item_nr(right, i);
  2122. if (!right->map_token) {
  2123. map_extent_buffer(right, (unsigned long)item,
  2124. sizeof(struct btrfs_item),
  2125. &right->map_token, &right->kaddr,
  2126. &right->map_start, &right->map_len,
  2127. KM_USER1);
  2128. }
  2129. push_space -= btrfs_item_size(right, item);
  2130. btrfs_set_item_offset(right, item, push_space);
  2131. }
  2132. if (right->map_token) {
  2133. unmap_extent_buffer(right, right->map_token, KM_USER1);
  2134. right->map_token = NULL;
  2135. }
  2136. left_nritems -= push_items;
  2137. btrfs_set_header_nritems(left, left_nritems);
  2138. if (left_nritems)
  2139. btrfs_mark_buffer_dirty(left);
  2140. btrfs_mark_buffer_dirty(right);
  2141. ret = btrfs_update_ref(trans, root, left, right, 0, push_items);
  2142. BUG_ON(ret);
  2143. btrfs_item_key(right, &disk_key, 0);
  2144. btrfs_set_node_key(upper, &disk_key, slot + 1);
  2145. btrfs_mark_buffer_dirty(upper);
  2146. /* then fixup the leaf pointer in the path */
  2147. if (path->slots[0] >= left_nritems) {
  2148. path->slots[0] -= left_nritems;
  2149. if (btrfs_header_nritems(path->nodes[0]) == 0)
  2150. clean_tree_block(trans, root, path->nodes[0]);
  2151. btrfs_tree_unlock(path->nodes[0]);
  2152. free_extent_buffer(path->nodes[0]);
  2153. path->nodes[0] = right;
  2154. path->slots[1] += 1;
  2155. } else {
  2156. btrfs_tree_unlock(right);
  2157. free_extent_buffer(right);
  2158. }
  2159. return 0;
  2160. out_unlock:
  2161. btrfs_tree_unlock(right);
  2162. free_extent_buffer(right);
  2163. return 1;
  2164. }
  2165. /*
  2166. * push some data in the path leaf to the right, trying to free up at
  2167. * least data_size bytes. returns zero if the push worked, nonzero otherwise
  2168. *
  2169. * returns 1 if the push failed because the other node didn't have enough
  2170. * room, 0 if everything worked out and < 0 if there were major errors.
  2171. */
  2172. static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
  2173. *root, struct btrfs_path *path, int data_size,
  2174. int empty)
  2175. {
  2176. struct extent_buffer *left = path->nodes[0];
  2177. struct extent_buffer *right;
  2178. struct extent_buffer *upper;
  2179. int slot;
  2180. int free_space;
  2181. u32 left_nritems;
  2182. int ret;
  2183. if (!path->nodes[1])
  2184. return 1;
  2185. slot = path->slots[1];
  2186. upper = path->nodes[1];
  2187. if (slot >= btrfs_header_nritems(upper) - 1)
  2188. return 1;
  2189. btrfs_assert_tree_locked(path->nodes[1]);
  2190. right = read_node_slot(root, upper, slot + 1);
  2191. btrfs_tree_lock(right);
  2192. btrfs_set_lock_blocking(right);
  2193. free_space = btrfs_leaf_free_space(root, right);
  2194. if (free_space < data_size)
  2195. goto out_unlock;
  2196. /* cow and double check */
  2197. ret = btrfs_cow_block(trans, root, right, upper,
  2198. slot + 1, &right);
  2199. if (ret)
  2200. goto out_unlock;
  2201. free_space = btrfs_leaf_free_space(root, right);
  2202. if (free_space < data_size)
  2203. goto out_unlock;
  2204. left_nritems = btrfs_header_nritems(left);
  2205. if (left_nritems == 0)
  2206. goto out_unlock;
  2207. return __push_leaf_right(trans, root, path, data_size, empty,
  2208. right, free_space, left_nritems);
  2209. out_unlock:
  2210. btrfs_tree_unlock(right);
  2211. free_extent_buffer(right);
  2212. return 1;
  2213. }
  2214. /*
  2215. * push some data in the path leaf to the left, trying to free up at
  2216. * least data_size bytes. returns zero if the push worked, nonzero otherwise
  2217. */
  2218. static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
  2219. struct btrfs_root *root,
  2220. struct btrfs_path *path, int data_size,
  2221. int empty, struct extent_buffer *left,
  2222. int free_space, int right_nritems)
  2223. {
  2224. struct btrfs_disk_key disk_key;
  2225. struct extent_buffer *right = path->nodes[0];
  2226. int slot;
  2227. int i;
  2228. int push_space = 0;
  2229. int push_items = 0;
  2230. struct btrfs_item *item;
  2231. u32 old_left_nritems;
  2232. u32 nr;
  2233. int ret = 0;
  2234. int wret;
  2235. u32 this_item_size;
  2236. u32 old_left_item_size;
  2237. slot = path->slots[1];
  2238. if (empty)
  2239. nr = right_nritems;
  2240. else
  2241. nr = right_nritems - 1;
  2242. for (i = 0; i < nr; i++) {
  2243. item = btrfs_item_nr(right, i);
  2244. if (!right->map_token) {
  2245. map_extent_buffer(right, (unsigned long)item,
  2246. sizeof(struct btrfs_item),
  2247. &right->map_token, &right->kaddr,
  2248. &right->map_start, &right->map_len,
  2249. KM_USER1);
  2250. }
  2251. if (!empty && push_items > 0) {
  2252. if (path->slots[0] < i)
  2253. break;
  2254. if (path->slots[0] == i) {
  2255. int space = btrfs_leaf_free_space(root, right);
  2256. if (space + push_space * 2 > free_space)
  2257. break;
  2258. }
  2259. }
  2260. if (path->slots[0] == i)
  2261. push_space += data_size;
  2262. this_item_size = btrfs_item_size(right, item);
  2263. if (this_item_size + sizeof(*item) + push_space > free_space)
  2264. break;
  2265. push_items++;
  2266. push_space += this_item_size + sizeof(*item);
  2267. }
  2268. if (right->map_token) {
  2269. unmap_extent_buffer(right, right->map_token, KM_USER1);
  2270. right->map_token = NULL;
  2271. }
  2272. if (push_items == 0) {
  2273. ret = 1;
  2274. goto out;
  2275. }
  2276. if (!empty && push_items == btrfs_header_nritems(right))
  2277. WARN_ON(1);
  2278. /* push data from right to left */
  2279. copy_extent_buffer(left, right,
  2280. btrfs_item_nr_offset(btrfs_header_nritems(left)),
  2281. btrfs_item_nr_offset(0),
  2282. push_items * sizeof(struct btrfs_item));
  2283. push_space = BTRFS_LEAF_DATA_SIZE(root) -
  2284. btrfs_item_offset_nr(right, push_items - 1);
  2285. copy_extent_buffer(left, right, btrfs_leaf_data(left) +
  2286. leaf_data_end(root, left) - push_space,
  2287. btrfs_leaf_data(right) +
  2288. btrfs_item_offset_nr(right, push_items - 1),
  2289. push_space);
  2290. old_left_nritems = btrfs_header_nritems(left);
  2291. BUG_ON(old_left_nritems <= 0);
  2292. old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
  2293. for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
  2294. u32 ioff;
  2295. item = btrfs_item_nr(left, i);
  2296. if (!left->map_token) {
  2297. map_extent_buffer(left, (unsigned long)item,
  2298. sizeof(struct btrfs_item),
  2299. &left->map_token, &left->kaddr,
  2300. &left->map_start, &left->map_len,
  2301. KM_USER1);
  2302. }
  2303. ioff = btrfs_item_offset(left, item);
  2304. btrfs_set_item_offset(left, item,
  2305. ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size));
  2306. }
  2307. btrfs_set_header_nritems(left, old_left_nritems + push_items);
  2308. if (left->map_token) {
  2309. unmap_extent_buffer(left, left->map_token, KM_USER1);
  2310. left->map_token = NULL;
  2311. }
  2312. /* fixup right node */
  2313. if (push_items > right_nritems) {
  2314. printk(KERN_CRIT "push items %d nr %u\n", push_items,
  2315. right_nritems);
  2316. WARN_ON(1);
  2317. }
  2318. if (push_items < right_nritems) {
  2319. push_space = btrfs_item_offset_nr(right, push_items - 1) -
  2320. leaf_data_end(root, right);
  2321. memmove_extent_buffer(right, btrfs_leaf_data(right) +
  2322. BTRFS_LEAF_DATA_SIZE(root) - push_space,
  2323. btrfs_leaf_data(right) +
  2324. leaf_data_end(root, right), push_space);
  2325. memmove_extent_buffer(right, btrfs_item_nr_offset(0),
  2326. btrfs_item_nr_offset(push_items),
  2327. (btrfs_header_nritems(right) - push_items) *
  2328. sizeof(struct btrfs_item));
  2329. }
  2330. right_nritems -= push_items;
  2331. btrfs_set_header_nritems(right, right_nritems);
  2332. push_space = BTRFS_LEAF_DATA_SIZE(root);
  2333. for (i = 0; i < right_nritems; i++) {
  2334. item = btrfs_item_nr(right, i);
  2335. if (!right->map_token) {
  2336. map_extent_buffer(right, (unsigned long)item,
  2337. sizeof(struct btrfs_item),
  2338. &right->map_token, &right->kaddr,
  2339. &right->map_start, &right->map_len,
  2340. KM_USER1);
  2341. }
  2342. push_space = push_space - btrfs_item_size(right, item);
  2343. btrfs_set_item_offset(right, item, push_space);
  2344. }
  2345. if (right->map_token) {
  2346. unmap_extent_buffer(right, right->map_token, KM_USER1);
  2347. right->map_token = NULL;
  2348. }
  2349. btrfs_mark_buffer_dirty(left);
  2350. if (right_nritems)
  2351. btrfs_mark_buffer_dirty(right);
  2352. ret = btrfs_update_ref(trans, root, right, left,
  2353. old_left_nritems, push_items);
  2354. BUG_ON(ret);
  2355. btrfs_item_key(right, &disk_key, 0);
  2356. wret = fixup_low_keys(trans, root, path, &disk_key, 1);
  2357. if (wret)
  2358. ret = wret;
  2359. /* then fixup the leaf pointer in the path */
  2360. if (path->slots[0] < push_items) {
  2361. path->slots[0] += old_left_nritems;
  2362. if (btrfs_header_nritems(path->nodes[0]) == 0)
  2363. clean_tree_block(trans, root, path->nodes[0]);
  2364. btrfs_tree_unlock(path->nodes[0]);
  2365. free_extent_buffer(path->nodes[0]);
  2366. path->nodes[0] = left;
  2367. path->slots[1] -= 1;
  2368. } else {
  2369. btrfs_tree_unlock(left);
  2370. free_extent_buffer(left);
  2371. path->slots[0] -= push_items;
  2372. }
  2373. BUG_ON(path->slots[0] < 0);
  2374. return ret;
  2375. out:
  2376. btrfs_tree_unlock(left);
  2377. free_extent_buffer(left);
  2378. return ret;
  2379. }
  2380. /*
  2381. * push some data in the path leaf to the left, trying to free up at
  2382. * least data_size bytes. returns zero if the push worked, nonzero otherwise
  2383. */
  2384. static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
  2385. *root, struct btrfs_path *path, int data_size,
  2386. int empty)
  2387. {
  2388. struct extent_buffer *right = path->nodes[0];
  2389. struct extent_buffer *left;
  2390. int slot;
  2391. int free_space;
  2392. u32 right_nritems;
  2393. int ret = 0;
  2394. slot = path->slots[1];
  2395. if (slot == 0)
  2396. return 1;
  2397. if (!path->nodes[1])
  2398. return 1;
  2399. right_nritems = btrfs_header_nritems(right);
  2400. if (right_nritems == 0)
  2401. return 1;
  2402. btrfs_assert_tree_locked(path->nodes[1]);
  2403. left = read_node_slot(root, path->nodes[1], slot - 1);
  2404. btrfs_tree_lock(left);
  2405. btrfs_set_lock_blocking(left);
  2406. free_space = btrfs_leaf_free_space(root, left);
  2407. if (free_space < data_size) {
  2408. ret = 1;
  2409. goto out;
  2410. }
  2411. /* cow and double check */
  2412. ret = btrfs_cow_block(trans, root, left,
  2413. path->nodes[1], slot - 1, &left);
  2414. if (ret) {
  2415. /* we hit -ENOSPC, but it isn't fatal here */
  2416. ret = 1;
  2417. goto out;
  2418. }
  2419. free_space = btrfs_leaf_free_space(root, left);
  2420. if (free_space < data_size) {
  2421. ret = 1;
  2422. goto out;
  2423. }
  2424. return __push_leaf_left(trans, root, path, data_size,
  2425. empty, left, free_space, right_nritems);
  2426. out:
  2427. btrfs_tree_unlock(left);
  2428. free_extent_buffer(left);
  2429. return ret;
  2430. }
  2431. /*
  2432. * split the path's leaf in two, making sure there is at least data_size
  2433. * available for the resulting leaf level of the path.
  2434. *
  2435. * returns 0 if all went well and < 0 on failure.
  2436. */
  2437. static noinline int copy_for_split(struct btrfs_trans_handle *trans,
  2438. struct btrfs_root *root,
  2439. struct btrfs_path *path,
  2440. struct extent_buffer *l,
  2441. struct extent_buffer *right,
  2442. int slot, int mid, int nritems)
  2443. {
  2444. int data_copy_size;
  2445. int rt_data_off;
  2446. int i;
  2447. int ret = 0;
  2448. int wret;
  2449. struct btrfs_disk_key disk_key;
  2450. nritems = nritems - mid;
  2451. btrfs_set_header_nritems(right, nritems);
  2452. data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
  2453. copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
  2454. btrfs_item_nr_offset(mid),
  2455. nritems * sizeof(struct btrfs_item));
  2456. copy_extent_buffer(right, l,
  2457. btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
  2458. data_copy_size, btrfs_leaf_data(l) +
  2459. leaf_data_end(root, l), data_copy_size);
  2460. rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
  2461. btrfs_item_end_nr(l, mid);
  2462. for (i = 0; i < nritems; i++) {
  2463. struct btrfs_item *item = btrfs_item_nr(right, i);
  2464. u32 ioff;
  2465. if (!right->map_token) {
  2466. map_extent_buffer(right, (unsigned long)item,
  2467. sizeof(struct btrfs_item),
  2468. &right->map_token, &right->kaddr,
  2469. &right->map_start, &right->map_len,
  2470. KM_USER1);
  2471. }
  2472. ioff = btrfs_item_offset(right, item);
  2473. btrfs_set_item_offset(right, item, ioff + rt_data_off);
  2474. }
  2475. if (right->map_token) {
  2476. unmap_extent_buffer(right, right->map_token, KM_USER1);
  2477. right->map_token = NULL;
  2478. }
  2479. btrfs_set_header_nritems(l, mid);
  2480. ret = 0;
  2481. btrfs_item_key(right, &disk_key, 0);
  2482. wret = insert_ptr(trans, root, path, &disk_key, right->start,
  2483. path->slots[1] + 1, 1);
  2484. if (wret)
  2485. ret = wret;
  2486. btrfs_mark_buffer_dirty(right);
  2487. btrfs_mark_buffer_dirty(l);
  2488. BUG_ON(path->slots[0] != slot);
  2489. ret = btrfs_update_ref(trans, root, l, right, 0, nritems);
  2490. BUG_ON(ret);
  2491. if (mid <= slot) {
  2492. btrfs_tree_unlock(path->nodes[0]);
  2493. free_extent_buffer(path->nodes[0]);
  2494. path->nodes[0] = right;
  2495. path->slots[0] -= mid;
  2496. path->slots[1] += 1;
  2497. } else {
  2498. btrfs_tree_unlock(right);
  2499. free_extent_buffer(right);
  2500. }
  2501. BUG_ON(path->slots[0] < 0);
  2502. return ret;
  2503. }
  2504. /*
  2505. * split the path's leaf in two, making sure there is at least data_size
  2506. * available for the resulting leaf level of the path.
  2507. *
  2508. * returns 0 if all went well and < 0 on failure.
  2509. */
  2510. static noinline int split_leaf(struct btrfs_trans_handle *trans,
  2511. struct btrfs_root *root,
  2512. struct btrfs_key *ins_key,
  2513. struct btrfs_path *path, int data_size,
  2514. int extend)
  2515. {
  2516. struct extent_buffer *l;
  2517. u32 nritems;
  2518. int mid;
  2519. int slot;
  2520. struct extent_buffer *right;
  2521. int ret = 0;
  2522. int wret;
  2523. int double_split;
  2524. int num_doubles = 0;
  2525. /* first try to make some room by pushing left and right */
  2526. if (data_size && ins_key->type != BTRFS_DIR_ITEM_KEY &&
  2527. !trans->transaction->delayed_refs.flushing) {
  2528. wret = push_leaf_right(trans, root, path, data_size, 0);
  2529. if (wret < 0)
  2530. return wret;
  2531. if (wret) {
  2532. wret = push_leaf_left(trans, root, path, data_size, 0);
  2533. if (wret < 0)
  2534. return wret;
  2535. }
  2536. l = path->nodes[0];
  2537. /* did the pushes work? */
  2538. if (btrfs_leaf_free_space(root, l) >= data_size)
  2539. return 0;
  2540. }
  2541. if (!path->nodes[1]) {
  2542. ret = insert_new_root(trans, root, path, 1);
  2543. if (ret)
  2544. return ret;
  2545. }
  2546. again:
  2547. double_split = 0;
  2548. l = path->nodes[0];
  2549. slot = path->slots[0];
  2550. nritems = btrfs_header_nritems(l);
  2551. mid = (nritems + 1) / 2;
  2552. right = btrfs_alloc_free_block(trans, root, root->leafsize,
  2553. path->nodes[1]->start,
  2554. root->root_key.objectid,
  2555. trans->transid, 0, l->start, 0);
  2556. if (IS_ERR(right)) {
  2557. BUG_ON(1);
  2558. return PTR_ERR(right);
  2559. }
  2560. memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
  2561. btrfs_set_header_bytenr(right, right->start);
  2562. btrfs_set_header_generation(right, trans->transid);
  2563. btrfs_set_header_owner(right, root->root_key.objectid);
  2564. btrfs_set_header_level(right, 0);
  2565. write_extent_buffer(right, root->fs_info->fsid,
  2566. (unsigned long)btrfs_header_fsid(right),
  2567. BTRFS_FSID_SIZE);
  2568. write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
  2569. (unsigned long)btrfs_header_chunk_tree_uuid(right),
  2570. BTRFS_UUID_SIZE);
  2571. if (mid <= slot) {
  2572. if (nritems == 1 ||
  2573. leaf_space_used(l, mid, nritems - mid) + data_size >
  2574. BTRFS_LEAF_DATA_SIZE(root)) {
  2575. if (slot >= nritems) {
  2576. struct btrfs_disk_key disk_key;
  2577. btrfs_cpu_key_to_disk(&disk_key, ins_key);
  2578. btrfs_set_header_nritems(right, 0);
  2579. wret = insert_ptr(trans, root, path,
  2580. &disk_key, right->start,
  2581. path->slots[1] + 1, 1);
  2582. if (wret)
  2583. ret = wret;
  2584. btrfs_tree_unlock(path->nodes[0]);
  2585. free_extent_buffer(path->nodes[0]);
  2586. path->nodes[0] = right;
  2587. path->slots[0] = 0;
  2588. path->slots[1] += 1;
  2589. btrfs_mark_buffer_dirty(right);
  2590. return ret;
  2591. }
  2592. mid = slot;
  2593. if (mid != nritems &&
  2594. leaf_space_used(l, mid, nritems - mid) +
  2595. data_size > BTRFS_LEAF_DATA_SIZE(root)) {
  2596. double_split = 1;
  2597. }
  2598. }
  2599. } else {
  2600. if (leaf_space_used(l, 0, mid) + data_size >
  2601. BTRFS_LEAF_DATA_SIZE(root)) {
  2602. if (!extend && data_size && slot == 0) {
  2603. struct btrfs_disk_key disk_key;
  2604. btrfs_cpu_key_to_disk(&disk_key, ins_key);
  2605. btrfs_set_header_nritems(right, 0);
  2606. wret = insert_ptr(trans, root, path,
  2607. &disk_key,
  2608. right->start,
  2609. path->slots[1], 1);
  2610. if (wret)
  2611. ret = wret;
  2612. btrfs_tree_unlock(path->nodes[0]);
  2613. free_extent_buffer(path->nodes[0]);
  2614. path->nodes[0] = right;
  2615. path->slots[0] = 0;
  2616. if (path->slots[1] == 0) {
  2617. wret = fixup_low_keys(trans, root,
  2618. path, &disk_key, 1);
  2619. if (wret)
  2620. ret = wret;
  2621. }
  2622. btrfs_mark_buffer_dirty(right);
  2623. return ret;
  2624. } else if ((extend || !data_size) && slot == 0) {
  2625. mid = 1;
  2626. } else {
  2627. mid = slot;
  2628. if (mid != nritems &&
  2629. leaf_space_used(l, mid, nritems - mid) +
  2630. data_size > BTRFS_LEAF_DATA_SIZE(root)) {
  2631. double_split = 1;
  2632. }
  2633. }
  2634. }
  2635. }
  2636. ret = copy_for_split(trans, root, path, l, right, slot, mid, nritems);
  2637. BUG_ON(ret);
  2638. if (double_split) {
  2639. BUG_ON(num_doubles != 0);
  2640. num_doubles++;
  2641. goto again;
  2642. }
  2643. return ret;
  2644. }
  2645. /*
  2646. * This function splits a single item into two items,
  2647. * giving 'new_key' to the new item and splitting the
  2648. * old one at split_offset (from the start of the item).
  2649. *
  2650. * The path may be released by this operation. After
  2651. * the split, the path is pointing to the old item. The
  2652. * new item is going to be in the same node as the old one.
  2653. *
  2654. * Note, the item being split must be smaller enough to live alone on
  2655. * a tree block with room for one extra struct btrfs_item
  2656. *
  2657. * This allows us to split the item in place, keeping a lock on the
  2658. * leaf the entire time.
  2659. */
  2660. int btrfs_split_item(struct btrfs_trans_handle *trans,
  2661. struct btrfs_root *root,
  2662. struct btrfs_path *path,
  2663. struct btrfs_key *new_key,
  2664. unsigned long split_offset)
  2665. {
  2666. u32 item_size;
  2667. struct extent_buffer *leaf;
  2668. struct btrfs_key orig_key;
  2669. struct btrfs_item *item;
  2670. struct btrfs_item *new_item;
  2671. int ret = 0;
  2672. int slot;
  2673. u32 nritems;
  2674. u32 orig_offset;
  2675. struct btrfs_disk_key disk_key;
  2676. char *buf;
  2677. leaf = path->nodes[0];
  2678. btrfs_item_key_to_cpu(leaf, &orig_key, path->slots[0]);
  2679. if (btrfs_leaf_free_space(root, leaf) >= sizeof(struct btrfs_item))
  2680. goto split;
  2681. item_size = btrfs_item_size_nr(leaf, path->slots[0]);
  2682. btrfs_release_path(root, path);
  2683. path->search_for_split = 1;
  2684. path->keep_locks = 1;
  2685. ret = btrfs_search_slot(trans, root, &orig_key, path, 0, 1);
  2686. path->search_for_split = 0;
  2687. /* if our item isn't there or got smaller, return now */
  2688. if (ret != 0 || item_size != btrfs_item_size_nr(path->nodes[0],
  2689. path->slots[0])) {
  2690. path->keep_locks = 0;
  2691. return -EAGAIN;
  2692. }
  2693. btrfs_set_path_blocking(path);
  2694. ret = split_leaf(trans, root, &orig_key, path,
  2695. sizeof(struct btrfs_item), 1);
  2696. path->keep_locks = 0;
  2697. BUG_ON(ret);
  2698. btrfs_unlock_up_safe(path, 1);
  2699. leaf = path->nodes[0];
  2700. BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
  2701. split:
  2702. /*
  2703. * make sure any changes to the path from split_leaf leave it
  2704. * in a blocking state
  2705. */
  2706. btrfs_set_path_blocking(path);
  2707. item = btrfs_item_nr(leaf, path->slots[0]);
  2708. orig_offset = btrfs_item_offset(leaf, item);
  2709. item_size = btrfs_item_size(leaf, item);
  2710. buf = kmalloc(item_size, GFP_NOFS);
  2711. read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
  2712. path->slots[0]), item_size);
  2713. slot = path->slots[0] + 1;
  2714. leaf = path->nodes[0];
  2715. nritems = btrfs_header_nritems(leaf);
  2716. if (slot != nritems) {
  2717. /* shift the items */
  2718. memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
  2719. btrfs_item_nr_offset(slot),
  2720. (nritems - slot) * sizeof(struct btrfs_item));
  2721. }
  2722. btrfs_cpu_key_to_disk(&disk_key, new_key);
  2723. btrfs_set_item_key(leaf, &disk_key, slot);
  2724. new_item = btrfs_item_nr(leaf, slot);
  2725. btrfs_set_item_offset(leaf, new_item, orig_offset);
  2726. btrfs_set_item_size(leaf, new_item, item_size - split_offset);
  2727. btrfs_set_item_offset(leaf, item,
  2728. orig_offset + item_size - split_offset);
  2729. btrfs_set_item_size(leaf, item, split_offset);
  2730. btrfs_set_header_nritems(leaf, nritems + 1);
  2731. /* write the data for the start of the original item */
  2732. write_extent_buffer(leaf, buf,
  2733. btrfs_item_ptr_offset(leaf, path->slots[0]),
  2734. split_offset);
  2735. /* write the data for the new item */
  2736. write_extent_buffer(leaf, buf + split_offset,
  2737. btrfs_item_ptr_offset(leaf, slot),
  2738. item_size - split_offset);
  2739. btrfs_mark_buffer_dirty(leaf);
  2740. ret = 0;
  2741. if (btrfs_leaf_free_space(root, leaf) < 0) {
  2742. btrfs_print_leaf(root, leaf);
  2743. BUG();
  2744. }
  2745. kfree(buf);
  2746. return ret;
  2747. }
  2748. /*
  2749. * make the item pointed to by the path smaller. new_size indicates
  2750. * how small to make it, and from_end tells us if we just chop bytes
  2751. * off the end of the item or if we shift the item to chop bytes off
  2752. * the front.
  2753. */
  2754. int btrfs_truncate_item(struct btrfs_trans_handle *trans,
  2755. struct btrfs_root *root,
  2756. struct btrfs_path *path,
  2757. u32 new_size, int from_end)
  2758. {
  2759. int ret = 0;
  2760. int slot;
  2761. int slot_orig;
  2762. struct extent_buffer *leaf;
  2763. struct btrfs_item *item;
  2764. u32 nritems;
  2765. unsigned int data_end;
  2766. unsigned int old_data_start;
  2767. unsigned int old_size;
  2768. unsigned int size_diff;
  2769. int i;
  2770. slot_orig = path->slots[0];
  2771. leaf = path->nodes[0];
  2772. slot = path->slots[0];
  2773. old_size = btrfs_item_size_nr(leaf, slot);
  2774. if (old_size == new_size)
  2775. return 0;
  2776. nritems = btrfs_header_nritems(leaf);
  2777. data_end = leaf_data_end(root, leaf);
  2778. old_data_start = btrfs_item_offset_nr(leaf, slot);
  2779. size_diff = old_size - new_size;
  2780. BUG_ON(slot < 0);
  2781. BUG_ON(slot >= nritems);
  2782. /*
  2783. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  2784. */
  2785. /* first correct the data pointers */
  2786. for (i = slot; i < nritems; i++) {
  2787. u32 ioff;
  2788. item = btrfs_item_nr(leaf, i);
  2789. if (!leaf->map_token) {
  2790. map_extent_buffer(leaf, (unsigned long)item,
  2791. sizeof(struct btrfs_item),
  2792. &leaf->map_token, &leaf->kaddr,
  2793. &leaf->map_start, &leaf->map_len,
  2794. KM_USER1);
  2795. }
  2796. ioff = btrfs_item_offset(leaf, item);
  2797. btrfs_set_item_offset(leaf, item, ioff + size_diff);
  2798. }
  2799. if (leaf->map_token) {
  2800. unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
  2801. leaf->map_token = NULL;
  2802. }
  2803. /* shift the data */
  2804. if (from_end) {
  2805. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  2806. data_end + size_diff, btrfs_leaf_data(leaf) +
  2807. data_end, old_data_start + new_size - data_end);
  2808. } else {
  2809. struct btrfs_disk_key disk_key;
  2810. u64 offset;
  2811. btrfs_item_key(leaf, &disk_key, slot);
  2812. if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
  2813. unsigned long ptr;
  2814. struct btrfs_file_extent_item *fi;
  2815. fi = btrfs_item_ptr(leaf, slot,
  2816. struct btrfs_file_extent_item);
  2817. fi = (struct btrfs_file_extent_item *)(
  2818. (unsigned long)fi - size_diff);
  2819. if (btrfs_file_extent_type(leaf, fi) ==
  2820. BTRFS_FILE_EXTENT_INLINE) {
  2821. ptr = btrfs_item_ptr_offset(leaf, slot);
  2822. memmove_extent_buffer(leaf, ptr,
  2823. (unsigned long)fi,
  2824. offsetof(struct btrfs_file_extent_item,
  2825. disk_bytenr));
  2826. }
  2827. }
  2828. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  2829. data_end + size_diff, btrfs_leaf_data(leaf) +
  2830. data_end, old_data_start - data_end);
  2831. offset = btrfs_disk_key_offset(&disk_key);
  2832. btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
  2833. btrfs_set_item_key(leaf, &disk_key, slot);
  2834. if (slot == 0)
  2835. fixup_low_keys(trans, root, path, &disk_key, 1);
  2836. }
  2837. item = btrfs_item_nr(leaf, slot);
  2838. btrfs_set_item_size(leaf, item, new_size);
  2839. btrfs_mark_buffer_dirty(leaf);
  2840. ret = 0;
  2841. if (btrfs_leaf_free_space(root, leaf) < 0) {
  2842. btrfs_print_leaf(root, leaf);
  2843. BUG();
  2844. }
  2845. return ret;
  2846. }
  2847. /*
  2848. * make the item pointed to by the path bigger, data_size is the new size.
  2849. */
  2850. int btrfs_extend_item(struct btrfs_trans_handle *trans,
  2851. struct btrfs_root *root, struct btrfs_path *path,
  2852. u32 data_size)
  2853. {
  2854. int ret = 0;
  2855. int slot;
  2856. int slot_orig;
  2857. struct extent_buffer *leaf;
  2858. struct btrfs_item *item;
  2859. u32 nritems;
  2860. unsigned int data_end;
  2861. unsigned int old_data;
  2862. unsigned int old_size;
  2863. int i;
  2864. slot_orig = path->slots[0];
  2865. leaf = path->nodes[0];
  2866. nritems = btrfs_header_nritems(leaf);
  2867. data_end = leaf_data_end(root, leaf);
  2868. if (btrfs_leaf_free_space(root, leaf) < data_size) {
  2869. btrfs_print_leaf(root, leaf);
  2870. BUG();
  2871. }
  2872. slot = path->slots[0];
  2873. old_data = btrfs_item_end_nr(leaf, slot);
  2874. BUG_ON(slot < 0);
  2875. if (slot >= nritems) {
  2876. btrfs_print_leaf(root, leaf);
  2877. printk(KERN_CRIT "slot %d too large, nritems %d\n",
  2878. slot, nritems);
  2879. BUG_ON(1);
  2880. }
  2881. /*
  2882. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  2883. */
  2884. /* first correct the data pointers */
  2885. for (i = slot; i < nritems; i++) {
  2886. u32 ioff;
  2887. item = btrfs_item_nr(leaf, i);
  2888. if (!leaf->map_token) {
  2889. map_extent_buffer(leaf, (unsigned long)item,
  2890. sizeof(struct btrfs_item),
  2891. &leaf->map_token, &leaf->kaddr,
  2892. &leaf->map_start, &leaf->map_len,
  2893. KM_USER1);
  2894. }
  2895. ioff = btrfs_item_offset(leaf, item);
  2896. btrfs_set_item_offset(leaf, item, ioff - data_size);
  2897. }
  2898. if (leaf->map_token) {
  2899. unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
  2900. leaf->map_token = NULL;
  2901. }
  2902. /* shift the data */
  2903. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  2904. data_end - data_size, btrfs_leaf_data(leaf) +
  2905. data_end, old_data - data_end);
  2906. data_end = old_data;
  2907. old_size = btrfs_item_size_nr(leaf, slot);
  2908. item = btrfs_item_nr(leaf, slot);
  2909. btrfs_set_item_size(leaf, item, old_size + data_size);
  2910. btrfs_mark_buffer_dirty(leaf);
  2911. ret = 0;
  2912. if (btrfs_leaf_free_space(root, leaf) < 0) {
  2913. btrfs_print_leaf(root, leaf);
  2914. BUG();
  2915. }
  2916. return ret;
  2917. }
  2918. /*
  2919. * Given a key and some data, insert items into the tree.
  2920. * This does all the path init required, making room in the tree if needed.
  2921. * Returns the number of keys that were inserted.
  2922. */
  2923. int btrfs_insert_some_items(struct btrfs_trans_handle *trans,
  2924. struct btrfs_root *root,
  2925. struct btrfs_path *path,
  2926. struct btrfs_key *cpu_key, u32 *data_size,
  2927. int nr)
  2928. {
  2929. struct extent_buffer *leaf;
  2930. struct btrfs_item *item;
  2931. int ret = 0;
  2932. int slot;
  2933. int i;
  2934. u32 nritems;
  2935. u32 total_data = 0;
  2936. u32 total_size = 0;
  2937. unsigned int data_end;
  2938. struct btrfs_disk_key disk_key;
  2939. struct btrfs_key found_key;
  2940. for (i = 0; i < nr; i++) {
  2941. if (total_size + data_size[i] + sizeof(struct btrfs_item) >
  2942. BTRFS_LEAF_DATA_SIZE(root)) {
  2943. break;
  2944. nr = i;
  2945. }
  2946. total_data += data_size[i];
  2947. total_size += data_size[i] + sizeof(struct btrfs_item);
  2948. }
  2949. BUG_ON(nr == 0);
  2950. ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
  2951. if (ret == 0)
  2952. return -EEXIST;
  2953. if (ret < 0)
  2954. goto out;
  2955. leaf = path->nodes[0];
  2956. nritems = btrfs_header_nritems(leaf);
  2957. data_end = leaf_data_end(root, leaf);
  2958. if (btrfs_leaf_free_space(root, leaf) < total_size) {
  2959. for (i = nr; i >= 0; i--) {
  2960. total_data -= data_size[i];
  2961. total_size -= data_size[i] + sizeof(struct btrfs_item);
  2962. if (total_size < btrfs_leaf_free_space(root, leaf))
  2963. break;
  2964. }
  2965. nr = i;
  2966. }
  2967. slot = path->slots[0];
  2968. BUG_ON(slot < 0);
  2969. if (slot != nritems) {
  2970. unsigned int old_data = btrfs_item_end_nr(leaf, slot);
  2971. item = btrfs_item_nr(leaf, slot);
  2972. btrfs_item_key_to_cpu(leaf, &found_key, slot);
  2973. /* figure out how many keys we can insert in here */
  2974. total_data = data_size[0];
  2975. for (i = 1; i < nr; i++) {
  2976. if (comp_cpu_keys(&found_key, cpu_key + i) <= 0)
  2977. break;
  2978. total_data += data_size[i];
  2979. }
  2980. nr = i;
  2981. if (old_data < data_end) {
  2982. btrfs_print_leaf(root, leaf);
  2983. printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
  2984. slot, old_data, data_end);
  2985. BUG_ON(1);
  2986. }
  2987. /*
  2988. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  2989. */
  2990. /* first correct the data pointers */
  2991. WARN_ON(leaf->map_token);
  2992. for (i = slot; i < nritems; i++) {
  2993. u32 ioff;
  2994. item = btrfs_item_nr(leaf, i);
  2995. if (!leaf->map_token) {
  2996. map_extent_buffer(leaf, (unsigned long)item,
  2997. sizeof(struct btrfs_item),
  2998. &leaf->map_token, &leaf->kaddr,
  2999. &leaf->map_start, &leaf->map_len,
  3000. KM_USER1);
  3001. }
  3002. ioff = btrfs_item_offset(leaf, item);
  3003. btrfs_set_item_offset(leaf, item, ioff - total_data);
  3004. }
  3005. if (leaf->map_token) {
  3006. unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
  3007. leaf->map_token = NULL;
  3008. }
  3009. /* shift the items */
  3010. memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
  3011. btrfs_item_nr_offset(slot),
  3012. (nritems - slot) * sizeof(struct btrfs_item));
  3013. /* shift the data */
  3014. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  3015. data_end - total_data, btrfs_leaf_data(leaf) +
  3016. data_end, old_data - data_end);
  3017. data_end = old_data;
  3018. } else {
  3019. /*
  3020. * this sucks but it has to be done, if we are inserting at
  3021. * the end of the leaf only insert 1 of the items, since we
  3022. * have no way of knowing whats on the next leaf and we'd have
  3023. * to drop our current locks to figure it out
  3024. */
  3025. nr = 1;
  3026. }
  3027. /* setup the item for the new data */
  3028. for (i = 0; i < nr; i++) {
  3029. btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
  3030. btrfs_set_item_key(leaf, &disk_key, slot + i);
  3031. item = btrfs_item_nr(leaf, slot + i);
  3032. btrfs_set_item_offset(leaf, item, data_end - data_size[i]);
  3033. data_end -= data_size[i];
  3034. btrfs_set_item_size(leaf, item, data_size[i]);
  3035. }
  3036. btrfs_set_header_nritems(leaf, nritems + nr);
  3037. btrfs_mark_buffer_dirty(leaf);
  3038. ret = 0;
  3039. if (slot == 0) {
  3040. btrfs_cpu_key_to_disk(&disk_key, cpu_key);
  3041. ret = fixup_low_keys(trans, root, path, &disk_key, 1);
  3042. }
  3043. if (btrfs_leaf_free_space(root, leaf) < 0) {
  3044. btrfs_print_leaf(root, leaf);
  3045. BUG();
  3046. }
  3047. out:
  3048. if (!ret)
  3049. ret = nr;
  3050. return ret;
  3051. }
  3052. /*
  3053. * this is a helper for btrfs_insert_empty_items, the main goal here is
  3054. * to save stack depth by doing the bulk of the work in a function
  3055. * that doesn't call btrfs_search_slot
  3056. */
  3057. static noinline_for_stack int
  3058. setup_items_for_insert(struct btrfs_trans_handle *trans,
  3059. struct btrfs_root *root, struct btrfs_path *path,
  3060. struct btrfs_key *cpu_key, u32 *data_size,
  3061. u32 total_data, u32 total_size, int nr)
  3062. {
  3063. struct btrfs_item *item;
  3064. int i;
  3065. u32 nritems;
  3066. unsigned int data_end;
  3067. struct btrfs_disk_key disk_key;
  3068. int ret;
  3069. struct extent_buffer *leaf;
  3070. int slot;
  3071. leaf = path->nodes[0];
  3072. slot = path->slots[0];
  3073. nritems = btrfs_header_nritems(leaf);
  3074. data_end = leaf_data_end(root, leaf);
  3075. if (btrfs_leaf_free_space(root, leaf) < total_size) {
  3076. btrfs_print_leaf(root, leaf);
  3077. printk(KERN_CRIT "not enough freespace need %u have %d\n",
  3078. total_size, btrfs_leaf_free_space(root, leaf));
  3079. BUG();
  3080. }
  3081. if (slot != nritems) {
  3082. unsigned int old_data = btrfs_item_end_nr(leaf, slot);
  3083. if (old_data < data_end) {
  3084. btrfs_print_leaf(root, leaf);
  3085. printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
  3086. slot, old_data, data_end);
  3087. BUG_ON(1);
  3088. }
  3089. /*
  3090. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  3091. */
  3092. /* first correct the data pointers */
  3093. WARN_ON(leaf->map_token);
  3094. for (i = slot; i < nritems; i++) {
  3095. u32 ioff;
  3096. item = btrfs_item_nr(leaf, i);
  3097. if (!leaf->map_token) {
  3098. map_extent_buffer(leaf, (unsigned long)item,
  3099. sizeof(struct btrfs_item),
  3100. &leaf->map_token, &leaf->kaddr,
  3101. &leaf->map_start, &leaf->map_len,
  3102. KM_USER1);
  3103. }
  3104. ioff = btrfs_item_offset(leaf, item);
  3105. btrfs_set_item_offset(leaf, item, ioff - total_data);
  3106. }
  3107. if (leaf->map_token) {
  3108. unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
  3109. leaf->map_token = NULL;
  3110. }
  3111. /* shift the items */
  3112. memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
  3113. btrfs_item_nr_offset(slot),
  3114. (nritems - slot) * sizeof(struct btrfs_item));
  3115. /* shift the data */
  3116. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  3117. data_end - total_data, btrfs_leaf_data(leaf) +
  3118. data_end, old_data - data_end);
  3119. data_end = old_data;
  3120. }
  3121. /* setup the item for the new data */
  3122. for (i = 0; i < nr; i++) {
  3123. btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
  3124. btrfs_set_item_key(leaf, &disk_key, slot + i);
  3125. item = btrfs_item_nr(leaf, slot + i);
  3126. btrfs_set_item_offset(leaf, item, data_end - data_size[i]);
  3127. data_end -= data_size[i];
  3128. btrfs_set_item_size(leaf, item, data_size[i]);
  3129. }
  3130. btrfs_set_header_nritems(leaf, nritems + nr);
  3131. ret = 0;
  3132. if (slot == 0) {
  3133. struct btrfs_disk_key disk_key;
  3134. btrfs_cpu_key_to_disk(&disk_key, cpu_key);
  3135. ret = fixup_low_keys(trans, root, path, &disk_key, 1);
  3136. }
  3137. btrfs_unlock_up_safe(path, 1);
  3138. btrfs_mark_buffer_dirty(leaf);
  3139. if (btrfs_leaf_free_space(root, leaf) < 0) {
  3140. btrfs_print_leaf(root, leaf);
  3141. BUG();
  3142. }
  3143. return ret;
  3144. }
  3145. /*
  3146. * Given a key and some data, insert items into the tree.
  3147. * This does all the path init required, making room in the tree if needed.
  3148. */
  3149. int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
  3150. struct btrfs_root *root,
  3151. struct btrfs_path *path,
  3152. struct btrfs_key *cpu_key, u32 *data_size,
  3153. int nr)
  3154. {
  3155. struct extent_buffer *leaf;
  3156. int ret = 0;
  3157. int slot;
  3158. int i;
  3159. u32 total_size = 0;
  3160. u32 total_data = 0;
  3161. for (i = 0; i < nr; i++)
  3162. total_data += data_size[i];
  3163. total_size = total_data + (nr * sizeof(struct btrfs_item));
  3164. ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
  3165. if (ret == 0)
  3166. return -EEXIST;
  3167. if (ret < 0)
  3168. goto out;
  3169. leaf = path->nodes[0];
  3170. slot = path->slots[0];
  3171. BUG_ON(slot < 0);
  3172. ret = setup_items_for_insert(trans, root, path, cpu_key, data_size,
  3173. total_data, total_size, nr);
  3174. out:
  3175. return ret;
  3176. }
  3177. /*
  3178. * Given a key and some data, insert an item into the tree.
  3179. * This does all the path init required, making room in the tree if needed.
  3180. */
  3181. int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
  3182. *root, struct btrfs_key *cpu_key, void *data, u32
  3183. data_size)
  3184. {
  3185. int ret = 0;
  3186. struct btrfs_path *path;
  3187. struct extent_buffer *leaf;
  3188. unsigned long ptr;
  3189. path = btrfs_alloc_path();
  3190. BUG_ON(!path);
  3191. ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
  3192. if (!ret) {
  3193. leaf = path->nodes[0];
  3194. ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
  3195. write_extent_buffer(leaf, data, ptr, data_size);
  3196. btrfs_mark_buffer_dirty(leaf);
  3197. }
  3198. btrfs_free_path(path);
  3199. return ret;
  3200. }
  3201. /*
  3202. * delete the pointer from a given node.
  3203. *
  3204. * the tree should have been previously balanced so the deletion does not
  3205. * empty a node.
  3206. */
  3207. static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  3208. struct btrfs_path *path, int level, int slot)
  3209. {
  3210. struct extent_buffer *parent = path->nodes[level];
  3211. u32 nritems;
  3212. int ret = 0;
  3213. int wret;
  3214. nritems = btrfs_header_nritems(parent);
  3215. if (slot != nritems - 1) {
  3216. memmove_extent_buffer(parent,
  3217. btrfs_node_key_ptr_offset(slot),
  3218. btrfs_node_key_ptr_offset(slot + 1),
  3219. sizeof(struct btrfs_key_ptr) *
  3220. (nritems - slot - 1));
  3221. }
  3222. nritems--;
  3223. btrfs_set_header_nritems(parent, nritems);
  3224. if (nritems == 0 && parent == root->node) {
  3225. BUG_ON(btrfs_header_level(root->node) != 1);
  3226. /* just turn the root into a leaf and break */
  3227. btrfs_set_header_level(root->node, 0);
  3228. } else if (slot == 0) {
  3229. struct btrfs_disk_key disk_key;
  3230. btrfs_node_key(parent, &disk_key, 0);
  3231. wret = fixup_low_keys(trans, root, path, &disk_key, level + 1);
  3232. if (wret)
  3233. ret = wret;
  3234. }
  3235. btrfs_mark_buffer_dirty(parent);
  3236. return ret;
  3237. }
  3238. /*
  3239. * a helper function to delete the leaf pointed to by path->slots[1] and
  3240. * path->nodes[1]. bytenr is the node block pointer, but since the callers
  3241. * already know it, it is faster to have them pass it down than to
  3242. * read it out of the node again.
  3243. *
  3244. * This deletes the pointer in path->nodes[1] and frees the leaf
  3245. * block extent. zero is returned if it all worked out, < 0 otherwise.
  3246. *
  3247. * The path must have already been setup for deleting the leaf, including
  3248. * all the proper balancing. path->nodes[1] must be locked.
  3249. */
  3250. noinline int btrfs_del_leaf(struct btrfs_trans_handle *trans,
  3251. struct btrfs_root *root,
  3252. struct btrfs_path *path, u64 bytenr)
  3253. {
  3254. int ret;
  3255. u64 root_gen = btrfs_header_generation(path->nodes[1]);
  3256. u64 parent_start = path->nodes[1]->start;
  3257. u64 parent_owner = btrfs_header_owner(path->nodes[1]);
  3258. ret = del_ptr(trans, root, path, 1, path->slots[1]);
  3259. if (ret)
  3260. return ret;
  3261. /*
  3262. * btrfs_free_extent is expensive, we want to make sure we
  3263. * aren't holding any locks when we call it
  3264. */
  3265. btrfs_unlock_up_safe(path, 0);
  3266. ret = btrfs_free_extent(trans, root, bytenr,
  3267. btrfs_level_size(root, 0),
  3268. parent_start, parent_owner,
  3269. root_gen, 0, 1);
  3270. return ret;
  3271. }
  3272. /*
  3273. * delete the item at the leaf level in path. If that empties
  3274. * the leaf, remove it from the tree
  3275. */
  3276. int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  3277. struct btrfs_path *path, int slot, int nr)
  3278. {
  3279. struct extent_buffer *leaf;
  3280. struct btrfs_item *item;
  3281. int last_off;
  3282. int dsize = 0;
  3283. int ret = 0;
  3284. int wret;
  3285. int i;
  3286. u32 nritems;
  3287. leaf = path->nodes[0];
  3288. last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
  3289. for (i = 0; i < nr; i++)
  3290. dsize += btrfs_item_size_nr(leaf, slot + i);
  3291. nritems = btrfs_header_nritems(leaf);
  3292. if (slot + nr != nritems) {
  3293. int data_end = leaf_data_end(root, leaf);
  3294. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  3295. data_end + dsize,
  3296. btrfs_leaf_data(leaf) + data_end,
  3297. last_off - data_end);
  3298. for (i = slot + nr; i < nritems; i++) {
  3299. u32 ioff;
  3300. item = btrfs_item_nr(leaf, i);
  3301. if (!leaf->map_token) {
  3302. map_extent_buffer(leaf, (unsigned long)item,
  3303. sizeof(struct btrfs_item),
  3304. &leaf->map_token, &leaf->kaddr,
  3305. &leaf->map_start, &leaf->map_len,
  3306. KM_USER1);
  3307. }
  3308. ioff = btrfs_item_offset(leaf, item);
  3309. btrfs_set_item_offset(leaf, item, ioff + dsize);
  3310. }
  3311. if (leaf->map_token) {
  3312. unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
  3313. leaf->map_token = NULL;
  3314. }
  3315. memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
  3316. btrfs_item_nr_offset(slot + nr),
  3317. sizeof(struct btrfs_item) *
  3318. (nritems - slot - nr));
  3319. }
  3320. btrfs_set_header_nritems(leaf, nritems - nr);
  3321. nritems -= nr;
  3322. /* delete the leaf if we've emptied it */
  3323. if (nritems == 0) {
  3324. if (leaf == root->node) {
  3325. btrfs_set_header_level(leaf, 0);
  3326. } else {
  3327. ret = btrfs_del_leaf(trans, root, path, leaf->start);
  3328. BUG_ON(ret);
  3329. }
  3330. } else {
  3331. int used = leaf_space_used(leaf, 0, nritems);
  3332. if (slot == 0) {
  3333. struct btrfs_disk_key disk_key;
  3334. btrfs_item_key(leaf, &disk_key, 0);
  3335. wret = fixup_low_keys(trans, root, path,
  3336. &disk_key, 1);
  3337. if (wret)
  3338. ret = wret;
  3339. }
  3340. /* delete the leaf if it is mostly empty */
  3341. if (used < BTRFS_LEAF_DATA_SIZE(root) / 4 &&
  3342. !trans->transaction->delayed_refs.flushing) {
  3343. /* push_leaf_left fixes the path.
  3344. * make sure the path still points to our leaf
  3345. * for possible call to del_ptr below
  3346. */
  3347. slot = path->slots[1];
  3348. extent_buffer_get(leaf);
  3349. btrfs_set_path_blocking(path);
  3350. wret = push_leaf_left(trans, root, path, 1, 1);
  3351. if (wret < 0 && wret != -ENOSPC)
  3352. ret = wret;
  3353. if (path->nodes[0] == leaf &&
  3354. btrfs_header_nritems(leaf)) {
  3355. wret = push_leaf_right(trans, root, path, 1, 1);
  3356. if (wret < 0 && wret != -ENOSPC)
  3357. ret = wret;
  3358. }
  3359. if (btrfs_header_nritems(leaf) == 0) {
  3360. path->slots[1] = slot;
  3361. ret = btrfs_del_leaf(trans, root, path,
  3362. leaf->start);
  3363. BUG_ON(ret);
  3364. free_extent_buffer(leaf);
  3365. } else {
  3366. /* if we're still in the path, make sure
  3367. * we're dirty. Otherwise, one of the
  3368. * push_leaf functions must have already
  3369. * dirtied this buffer
  3370. */
  3371. if (path->nodes[0] == leaf)
  3372. btrfs_mark_buffer_dirty(leaf);
  3373. free_extent_buffer(leaf);
  3374. }
  3375. } else {
  3376. btrfs_mark_buffer_dirty(leaf);
  3377. }
  3378. }
  3379. return ret;
  3380. }
  3381. /*
  3382. * search the tree again to find a leaf with lesser keys
  3383. * returns 0 if it found something or 1 if there are no lesser leaves.
  3384. * returns < 0 on io errors.
  3385. *
  3386. * This may release the path, and so you may lose any locks held at the
  3387. * time you call it.
  3388. */
  3389. int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
  3390. {
  3391. struct btrfs_key key;
  3392. struct btrfs_disk_key found_key;
  3393. int ret;
  3394. btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
  3395. if (key.offset > 0)
  3396. key.offset--;
  3397. else if (key.type > 0)
  3398. key.type--;
  3399. else if (key.objectid > 0)
  3400. key.objectid--;
  3401. else
  3402. return 1;
  3403. btrfs_release_path(root, path);
  3404. ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  3405. if (ret < 0)
  3406. return ret;
  3407. btrfs_item_key(path->nodes[0], &found_key, 0);
  3408. ret = comp_keys(&found_key, &key);
  3409. if (ret < 0)
  3410. return 0;
  3411. return 1;
  3412. }
  3413. /*
  3414. * A helper function to walk down the tree starting at min_key, and looking
  3415. * for nodes or leaves that are either in cache or have a minimum
  3416. * transaction id. This is used by the btree defrag code, and tree logging
  3417. *
  3418. * This does not cow, but it does stuff the starting key it finds back
  3419. * into min_key, so you can call btrfs_search_slot with cow=1 on the
  3420. * key and get a writable path.
  3421. *
  3422. * This does lock as it descends, and path->keep_locks should be set
  3423. * to 1 by the caller.
  3424. *
  3425. * This honors path->lowest_level to prevent descent past a given level
  3426. * of the tree.
  3427. *
  3428. * min_trans indicates the oldest transaction that you are interested
  3429. * in walking through. Any nodes or leaves older than min_trans are
  3430. * skipped over (without reading them).
  3431. *
  3432. * returns zero if something useful was found, < 0 on error and 1 if there
  3433. * was nothing in the tree that matched the search criteria.
  3434. */
  3435. int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
  3436. struct btrfs_key *max_key,
  3437. struct btrfs_path *path, int cache_only,
  3438. u64 min_trans)
  3439. {
  3440. struct extent_buffer *cur;
  3441. struct btrfs_key found_key;
  3442. int slot;
  3443. int sret;
  3444. u32 nritems;
  3445. int level;
  3446. int ret = 1;
  3447. WARN_ON(!path->keep_locks);
  3448. again:
  3449. cur = btrfs_lock_root_node(root);
  3450. level = btrfs_header_level(cur);
  3451. WARN_ON(path->nodes[level]);
  3452. path->nodes[level] = cur;
  3453. path->locks[level] = 1;
  3454. if (btrfs_header_generation(cur) < min_trans) {
  3455. ret = 1;
  3456. goto out;
  3457. }
  3458. while (1) {
  3459. nritems = btrfs_header_nritems(cur);
  3460. level = btrfs_header_level(cur);
  3461. sret = bin_search(cur, min_key, level, &slot);
  3462. /* at the lowest level, we're done, setup the path and exit */
  3463. if (level == path->lowest_level) {
  3464. if (slot >= nritems)
  3465. goto find_next_key;
  3466. ret = 0;
  3467. path->slots[level] = slot;
  3468. btrfs_item_key_to_cpu(cur, &found_key, slot);
  3469. goto out;
  3470. }
  3471. if (sret && slot > 0)
  3472. slot--;
  3473. /*
  3474. * check this node pointer against the cache_only and
  3475. * min_trans parameters. If it isn't in cache or is too
  3476. * old, skip to the next one.
  3477. */
  3478. while (slot < nritems) {
  3479. u64 blockptr;
  3480. u64 gen;
  3481. struct extent_buffer *tmp;
  3482. struct btrfs_disk_key disk_key;
  3483. blockptr = btrfs_node_blockptr(cur, slot);
  3484. gen = btrfs_node_ptr_generation(cur, slot);
  3485. if (gen < min_trans) {
  3486. slot++;
  3487. continue;
  3488. }
  3489. if (!cache_only)
  3490. break;
  3491. if (max_key) {
  3492. btrfs_node_key(cur, &disk_key, slot);
  3493. if (comp_keys(&disk_key, max_key) >= 0) {
  3494. ret = 1;
  3495. goto out;
  3496. }
  3497. }
  3498. tmp = btrfs_find_tree_block(root, blockptr,
  3499. btrfs_level_size(root, level - 1));
  3500. if (tmp && btrfs_buffer_uptodate(tmp, gen)) {
  3501. free_extent_buffer(tmp);
  3502. break;
  3503. }
  3504. if (tmp)
  3505. free_extent_buffer(tmp);
  3506. slot++;
  3507. }
  3508. find_next_key:
  3509. /*
  3510. * we didn't find a candidate key in this node, walk forward
  3511. * and find another one
  3512. */
  3513. if (slot >= nritems) {
  3514. path->slots[level] = slot;
  3515. btrfs_set_path_blocking(path);
  3516. sret = btrfs_find_next_key(root, path, min_key, level,
  3517. cache_only, min_trans);
  3518. if (sret == 0) {
  3519. btrfs_release_path(root, path);
  3520. goto again;
  3521. } else {
  3522. goto out;
  3523. }
  3524. }
  3525. /* save our key for returning back */
  3526. btrfs_node_key_to_cpu(cur, &found_key, slot);
  3527. path->slots[level] = slot;
  3528. if (level == path->lowest_level) {
  3529. ret = 0;
  3530. unlock_up(path, level, 1);
  3531. goto out;
  3532. }
  3533. btrfs_set_path_blocking(path);
  3534. cur = read_node_slot(root, cur, slot);
  3535. btrfs_tree_lock(cur);
  3536. path->locks[level - 1] = 1;
  3537. path->nodes[level - 1] = cur;
  3538. unlock_up(path, level, 1);
  3539. btrfs_clear_path_blocking(path, NULL);
  3540. }
  3541. out:
  3542. if (ret == 0)
  3543. memcpy(min_key, &found_key, sizeof(found_key));
  3544. btrfs_set_path_blocking(path);
  3545. return ret;
  3546. }
  3547. /*
  3548. * this is similar to btrfs_next_leaf, but does not try to preserve
  3549. * and fixup the path. It looks for and returns the next key in the
  3550. * tree based on the current path and the cache_only and min_trans
  3551. * parameters.
  3552. *
  3553. * 0 is returned if another key is found, < 0 if there are any errors
  3554. * and 1 is returned if there are no higher keys in the tree
  3555. *
  3556. * path->keep_locks should be set to 1 on the search made before
  3557. * calling this function.
  3558. */
  3559. int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
  3560. struct btrfs_key *key, int lowest_level,
  3561. int cache_only, u64 min_trans)
  3562. {
  3563. int level = lowest_level;
  3564. int slot;
  3565. struct extent_buffer *c;
  3566. WARN_ON(!path->keep_locks);
  3567. while (level < BTRFS_MAX_LEVEL) {
  3568. if (!path->nodes[level])
  3569. return 1;
  3570. slot = path->slots[level] + 1;
  3571. c = path->nodes[level];
  3572. next:
  3573. if (slot >= btrfs_header_nritems(c)) {
  3574. level++;
  3575. if (level == BTRFS_MAX_LEVEL)
  3576. return 1;
  3577. continue;
  3578. }
  3579. if (level == 0)
  3580. btrfs_item_key_to_cpu(c, key, slot);
  3581. else {
  3582. u64 blockptr = btrfs_node_blockptr(c, slot);
  3583. u64 gen = btrfs_node_ptr_generation(c, slot);
  3584. if (cache_only) {
  3585. struct extent_buffer *cur;
  3586. cur = btrfs_find_tree_block(root, blockptr,
  3587. btrfs_level_size(root, level - 1));
  3588. if (!cur || !btrfs_buffer_uptodate(cur, gen)) {
  3589. slot++;
  3590. if (cur)
  3591. free_extent_buffer(cur);
  3592. goto next;
  3593. }
  3594. free_extent_buffer(cur);
  3595. }
  3596. if (gen < min_trans) {
  3597. slot++;
  3598. goto next;
  3599. }
  3600. btrfs_node_key_to_cpu(c, key, slot);
  3601. }
  3602. return 0;
  3603. }
  3604. return 1;
  3605. }
  3606. /*
  3607. * search the tree again to find a leaf with greater keys
  3608. * returns 0 if it found something or 1 if there are no greater leaves.
  3609. * returns < 0 on io errors.
  3610. */
  3611. int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
  3612. {
  3613. int slot;
  3614. int level = 1;
  3615. struct extent_buffer *c;
  3616. struct extent_buffer *next = NULL;
  3617. struct btrfs_key key;
  3618. u32 nritems;
  3619. int ret;
  3620. nritems = btrfs_header_nritems(path->nodes[0]);
  3621. if (nritems == 0)
  3622. return 1;
  3623. btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
  3624. btrfs_release_path(root, path);
  3625. path->keep_locks = 1;
  3626. ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  3627. path->keep_locks = 0;
  3628. if (ret < 0)
  3629. return ret;
  3630. btrfs_set_path_blocking(path);
  3631. nritems = btrfs_header_nritems(path->nodes[0]);
  3632. /*
  3633. * by releasing the path above we dropped all our locks. A balance
  3634. * could have added more items next to the key that used to be
  3635. * at the very end of the block. So, check again here and
  3636. * advance the path if there are now more items available.
  3637. */
  3638. if (nritems > 0 && path->slots[0] < nritems - 1) {
  3639. path->slots[0]++;
  3640. goto done;
  3641. }
  3642. while (level < BTRFS_MAX_LEVEL) {
  3643. if (!path->nodes[level])
  3644. return 1;
  3645. slot = path->slots[level] + 1;
  3646. c = path->nodes[level];
  3647. if (slot >= btrfs_header_nritems(c)) {
  3648. level++;
  3649. if (level == BTRFS_MAX_LEVEL)
  3650. return 1;
  3651. continue;
  3652. }
  3653. if (next) {
  3654. btrfs_tree_unlock(next);
  3655. free_extent_buffer(next);
  3656. }
  3657. /* the path was set to blocking above */
  3658. if (level == 1 && (path->locks[1] || path->skip_locking) &&
  3659. path->reada)
  3660. reada_for_search(root, path, level, slot, 0);
  3661. next = read_node_slot(root, c, slot);
  3662. if (!path->skip_locking) {
  3663. btrfs_assert_tree_locked(c);
  3664. btrfs_tree_lock(next);
  3665. btrfs_set_lock_blocking(next);
  3666. }
  3667. break;
  3668. }
  3669. path->slots[level] = slot;
  3670. while (1) {
  3671. level--;
  3672. c = path->nodes[level];
  3673. if (path->locks[level])
  3674. btrfs_tree_unlock(c);
  3675. free_extent_buffer(c);
  3676. path->nodes[level] = next;
  3677. path->slots[level] = 0;
  3678. if (!path->skip_locking)
  3679. path->locks[level] = 1;
  3680. if (!level)
  3681. break;
  3682. btrfs_set_path_blocking(path);
  3683. if (level == 1 && path->locks[1] && path->reada)
  3684. reada_for_search(root, path, level, slot, 0);
  3685. next = read_node_slot(root, next, 0);
  3686. if (!path->skip_locking) {
  3687. btrfs_assert_tree_locked(path->nodes[level]);
  3688. btrfs_tree_lock(next);
  3689. btrfs_set_lock_blocking(next);
  3690. }
  3691. }
  3692. done:
  3693. unlock_up(path, 0, 1);
  3694. return 0;
  3695. }
  3696. /*
  3697. * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
  3698. * searching until it gets past min_objectid or finds an item of 'type'
  3699. *
  3700. * returns 0 if something is found, 1 if nothing was found and < 0 on error
  3701. */
  3702. int btrfs_previous_item(struct btrfs_root *root,
  3703. struct btrfs_path *path, u64 min_objectid,
  3704. int type)
  3705. {
  3706. struct btrfs_key found_key;
  3707. struct extent_buffer *leaf;
  3708. u32 nritems;
  3709. int ret;
  3710. while (1) {
  3711. if (path->slots[0] == 0) {
  3712. btrfs_set_path_blocking(path);
  3713. ret = btrfs_prev_leaf(root, path);
  3714. if (ret != 0)
  3715. return ret;
  3716. } else {
  3717. path->slots[0]--;
  3718. }
  3719. leaf = path->nodes[0];
  3720. nritems = btrfs_header_nritems(leaf);
  3721. if (nritems == 0)
  3722. return 1;
  3723. if (path->slots[0] == nritems)
  3724. path->slots[0]--;
  3725. btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
  3726. if (found_key.type == type)
  3727. return 0;
  3728. if (found_key.objectid < min_objectid)
  3729. break;
  3730. if (found_key.objectid == min_objectid &&
  3731. found_key.type < type)
  3732. break;
  3733. }
  3734. return 1;
  3735. }