hw.c 82 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235
  1. /*
  2. * Copyright (c) 2008-2011 Atheros Communications Inc.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. #include <linux/io.h>
  17. #include <linux/slab.h>
  18. #include <linux/module.h>
  19. #include <asm/unaligned.h>
  20. #include "hw.h"
  21. #include "hw-ops.h"
  22. #include "rc.h"
  23. #include "ar9003_mac.h"
  24. #include "ar9003_mci.h"
  25. #include "debug.h"
  26. #include "ath9k.h"
  27. static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
  28. MODULE_AUTHOR("Atheros Communications");
  29. MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
  30. MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
  31. MODULE_LICENSE("Dual BSD/GPL");
  32. static int __init ath9k_init(void)
  33. {
  34. return 0;
  35. }
  36. module_init(ath9k_init);
  37. static void __exit ath9k_exit(void)
  38. {
  39. return;
  40. }
  41. module_exit(ath9k_exit);
  42. /* Private hardware callbacks */
  43. static void ath9k_hw_init_cal_settings(struct ath_hw *ah)
  44. {
  45. ath9k_hw_private_ops(ah)->init_cal_settings(ah);
  46. }
  47. static void ath9k_hw_init_mode_regs(struct ath_hw *ah)
  48. {
  49. ath9k_hw_private_ops(ah)->init_mode_regs(ah);
  50. }
  51. static u32 ath9k_hw_compute_pll_control(struct ath_hw *ah,
  52. struct ath9k_channel *chan)
  53. {
  54. return ath9k_hw_private_ops(ah)->compute_pll_control(ah, chan);
  55. }
  56. static void ath9k_hw_init_mode_gain_regs(struct ath_hw *ah)
  57. {
  58. if (!ath9k_hw_private_ops(ah)->init_mode_gain_regs)
  59. return;
  60. ath9k_hw_private_ops(ah)->init_mode_gain_regs(ah);
  61. }
  62. static void ath9k_hw_ani_cache_ini_regs(struct ath_hw *ah)
  63. {
  64. /* You will not have this callback if using the old ANI */
  65. if (!ath9k_hw_private_ops(ah)->ani_cache_ini_regs)
  66. return;
  67. ath9k_hw_private_ops(ah)->ani_cache_ini_regs(ah);
  68. }
  69. /********************/
  70. /* Helper Functions */
  71. /********************/
  72. #ifdef CONFIG_ATH9K_DEBUGFS
  73. void ath9k_debug_sync_cause(struct ath_common *common, u32 sync_cause)
  74. {
  75. struct ath_softc *sc = common->priv;
  76. if (sync_cause)
  77. sc->debug.stats.istats.sync_cause_all++;
  78. if (sync_cause & AR_INTR_SYNC_RTC_IRQ)
  79. sc->debug.stats.istats.sync_rtc_irq++;
  80. if (sync_cause & AR_INTR_SYNC_MAC_IRQ)
  81. sc->debug.stats.istats.sync_mac_irq++;
  82. if (sync_cause & AR_INTR_SYNC_EEPROM_ILLEGAL_ACCESS)
  83. sc->debug.stats.istats.eeprom_illegal_access++;
  84. if (sync_cause & AR_INTR_SYNC_APB_TIMEOUT)
  85. sc->debug.stats.istats.apb_timeout++;
  86. if (sync_cause & AR_INTR_SYNC_PCI_MODE_CONFLICT)
  87. sc->debug.stats.istats.pci_mode_conflict++;
  88. if (sync_cause & AR_INTR_SYNC_HOST1_FATAL)
  89. sc->debug.stats.istats.host1_fatal++;
  90. if (sync_cause & AR_INTR_SYNC_HOST1_PERR)
  91. sc->debug.stats.istats.host1_perr++;
  92. if (sync_cause & AR_INTR_SYNC_TRCV_FIFO_PERR)
  93. sc->debug.stats.istats.trcv_fifo_perr++;
  94. if (sync_cause & AR_INTR_SYNC_RADM_CPL_EP)
  95. sc->debug.stats.istats.radm_cpl_ep++;
  96. if (sync_cause & AR_INTR_SYNC_RADM_CPL_DLLP_ABORT)
  97. sc->debug.stats.istats.radm_cpl_dllp_abort++;
  98. if (sync_cause & AR_INTR_SYNC_RADM_CPL_TLP_ABORT)
  99. sc->debug.stats.istats.radm_cpl_tlp_abort++;
  100. if (sync_cause & AR_INTR_SYNC_RADM_CPL_ECRC_ERR)
  101. sc->debug.stats.istats.radm_cpl_ecrc_err++;
  102. if (sync_cause & AR_INTR_SYNC_RADM_CPL_TIMEOUT)
  103. sc->debug.stats.istats.radm_cpl_timeout++;
  104. if (sync_cause & AR_INTR_SYNC_LOCAL_TIMEOUT)
  105. sc->debug.stats.istats.local_timeout++;
  106. if (sync_cause & AR_INTR_SYNC_PM_ACCESS)
  107. sc->debug.stats.istats.pm_access++;
  108. if (sync_cause & AR_INTR_SYNC_MAC_AWAKE)
  109. sc->debug.stats.istats.mac_awake++;
  110. if (sync_cause & AR_INTR_SYNC_MAC_ASLEEP)
  111. sc->debug.stats.istats.mac_asleep++;
  112. if (sync_cause & AR_INTR_SYNC_MAC_SLEEP_ACCESS)
  113. sc->debug.stats.istats.mac_sleep_access++;
  114. }
  115. #endif
  116. static void ath9k_hw_set_clockrate(struct ath_hw *ah)
  117. {
  118. struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
  119. struct ath_common *common = ath9k_hw_common(ah);
  120. unsigned int clockrate;
  121. /* AR9287 v1.3+ uses async FIFO and runs the MAC at 117 MHz */
  122. if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah))
  123. clockrate = 117;
  124. else if (!ah->curchan) /* should really check for CCK instead */
  125. clockrate = ATH9K_CLOCK_RATE_CCK;
  126. else if (conf->channel->band == IEEE80211_BAND_2GHZ)
  127. clockrate = ATH9K_CLOCK_RATE_2GHZ_OFDM;
  128. else if (ah->caps.hw_caps & ATH9K_HW_CAP_FASTCLOCK)
  129. clockrate = ATH9K_CLOCK_FAST_RATE_5GHZ_OFDM;
  130. else
  131. clockrate = ATH9K_CLOCK_RATE_5GHZ_OFDM;
  132. if (conf_is_ht40(conf))
  133. clockrate *= 2;
  134. if (ah->curchan) {
  135. if (IS_CHAN_HALF_RATE(ah->curchan))
  136. clockrate /= 2;
  137. if (IS_CHAN_QUARTER_RATE(ah->curchan))
  138. clockrate /= 4;
  139. }
  140. common->clockrate = clockrate;
  141. }
  142. static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
  143. {
  144. struct ath_common *common = ath9k_hw_common(ah);
  145. return usecs * common->clockrate;
  146. }
  147. bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
  148. {
  149. int i;
  150. BUG_ON(timeout < AH_TIME_QUANTUM);
  151. for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
  152. if ((REG_READ(ah, reg) & mask) == val)
  153. return true;
  154. udelay(AH_TIME_QUANTUM);
  155. }
  156. ath_dbg(ath9k_hw_common(ah), ANY,
  157. "timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
  158. timeout, reg, REG_READ(ah, reg), mask, val);
  159. return false;
  160. }
  161. EXPORT_SYMBOL(ath9k_hw_wait);
  162. void ath9k_hw_synth_delay(struct ath_hw *ah, struct ath9k_channel *chan,
  163. int hw_delay)
  164. {
  165. if (IS_CHAN_B(chan))
  166. hw_delay = (4 * hw_delay) / 22;
  167. else
  168. hw_delay /= 10;
  169. if (IS_CHAN_HALF_RATE(chan))
  170. hw_delay *= 2;
  171. else if (IS_CHAN_QUARTER_RATE(chan))
  172. hw_delay *= 4;
  173. udelay(hw_delay + BASE_ACTIVATE_DELAY);
  174. }
  175. void ath9k_hw_write_array(struct ath_hw *ah, struct ar5416IniArray *array,
  176. int column, unsigned int *writecnt)
  177. {
  178. int r;
  179. ENABLE_REGWRITE_BUFFER(ah);
  180. for (r = 0; r < array->ia_rows; r++) {
  181. REG_WRITE(ah, INI_RA(array, r, 0),
  182. INI_RA(array, r, column));
  183. DO_DELAY(*writecnt);
  184. }
  185. REGWRITE_BUFFER_FLUSH(ah);
  186. }
  187. u32 ath9k_hw_reverse_bits(u32 val, u32 n)
  188. {
  189. u32 retval;
  190. int i;
  191. for (i = 0, retval = 0; i < n; i++) {
  192. retval = (retval << 1) | (val & 1);
  193. val >>= 1;
  194. }
  195. return retval;
  196. }
  197. u16 ath9k_hw_computetxtime(struct ath_hw *ah,
  198. u8 phy, int kbps,
  199. u32 frameLen, u16 rateix,
  200. bool shortPreamble)
  201. {
  202. u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
  203. if (kbps == 0)
  204. return 0;
  205. switch (phy) {
  206. case WLAN_RC_PHY_CCK:
  207. phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
  208. if (shortPreamble)
  209. phyTime >>= 1;
  210. numBits = frameLen << 3;
  211. txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
  212. break;
  213. case WLAN_RC_PHY_OFDM:
  214. if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
  215. bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
  216. numBits = OFDM_PLCP_BITS + (frameLen << 3);
  217. numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
  218. txTime = OFDM_SIFS_TIME_QUARTER
  219. + OFDM_PREAMBLE_TIME_QUARTER
  220. + (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
  221. } else if (ah->curchan &&
  222. IS_CHAN_HALF_RATE(ah->curchan)) {
  223. bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
  224. numBits = OFDM_PLCP_BITS + (frameLen << 3);
  225. numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
  226. txTime = OFDM_SIFS_TIME_HALF +
  227. OFDM_PREAMBLE_TIME_HALF
  228. + (numSymbols * OFDM_SYMBOL_TIME_HALF);
  229. } else {
  230. bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
  231. numBits = OFDM_PLCP_BITS + (frameLen << 3);
  232. numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
  233. txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
  234. + (numSymbols * OFDM_SYMBOL_TIME);
  235. }
  236. break;
  237. default:
  238. ath_err(ath9k_hw_common(ah),
  239. "Unknown phy %u (rate ix %u)\n", phy, rateix);
  240. txTime = 0;
  241. break;
  242. }
  243. return txTime;
  244. }
  245. EXPORT_SYMBOL(ath9k_hw_computetxtime);
  246. void ath9k_hw_get_channel_centers(struct ath_hw *ah,
  247. struct ath9k_channel *chan,
  248. struct chan_centers *centers)
  249. {
  250. int8_t extoff;
  251. if (!IS_CHAN_HT40(chan)) {
  252. centers->ctl_center = centers->ext_center =
  253. centers->synth_center = chan->channel;
  254. return;
  255. }
  256. if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
  257. (chan->chanmode == CHANNEL_G_HT40PLUS)) {
  258. centers->synth_center =
  259. chan->channel + HT40_CHANNEL_CENTER_SHIFT;
  260. extoff = 1;
  261. } else {
  262. centers->synth_center =
  263. chan->channel - HT40_CHANNEL_CENTER_SHIFT;
  264. extoff = -1;
  265. }
  266. centers->ctl_center =
  267. centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
  268. /* 25 MHz spacing is supported by hw but not on upper layers */
  269. centers->ext_center =
  270. centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT);
  271. }
  272. /******************/
  273. /* Chip Revisions */
  274. /******************/
  275. static void ath9k_hw_read_revisions(struct ath_hw *ah)
  276. {
  277. u32 val;
  278. switch (ah->hw_version.devid) {
  279. case AR5416_AR9100_DEVID:
  280. ah->hw_version.macVersion = AR_SREV_VERSION_9100;
  281. break;
  282. case AR9300_DEVID_AR9330:
  283. ah->hw_version.macVersion = AR_SREV_VERSION_9330;
  284. if (ah->get_mac_revision) {
  285. ah->hw_version.macRev = ah->get_mac_revision();
  286. } else {
  287. val = REG_READ(ah, AR_SREV);
  288. ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
  289. }
  290. return;
  291. case AR9300_DEVID_AR9340:
  292. ah->hw_version.macVersion = AR_SREV_VERSION_9340;
  293. val = REG_READ(ah, AR_SREV);
  294. ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
  295. return;
  296. case AR9300_DEVID_QCA955X:
  297. ah->hw_version.macVersion = AR_SREV_VERSION_9550;
  298. return;
  299. }
  300. val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
  301. if (val == 0xFF) {
  302. val = REG_READ(ah, AR_SREV);
  303. ah->hw_version.macVersion =
  304. (val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
  305. ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
  306. if (AR_SREV_9462(ah) || AR_SREV_9565(ah))
  307. ah->is_pciexpress = true;
  308. else
  309. ah->is_pciexpress = (val &
  310. AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
  311. } else {
  312. if (!AR_SREV_9100(ah))
  313. ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
  314. ah->hw_version.macRev = val & AR_SREV_REVISION;
  315. if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
  316. ah->is_pciexpress = true;
  317. }
  318. }
  319. /************************************/
  320. /* HW Attach, Detach, Init Routines */
  321. /************************************/
  322. static void ath9k_hw_disablepcie(struct ath_hw *ah)
  323. {
  324. if (!AR_SREV_5416(ah))
  325. return;
  326. REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
  327. REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
  328. REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
  329. REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
  330. REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
  331. REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
  332. REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
  333. REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
  334. REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
  335. REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
  336. }
  337. /* This should work for all families including legacy */
  338. static bool ath9k_hw_chip_test(struct ath_hw *ah)
  339. {
  340. struct ath_common *common = ath9k_hw_common(ah);
  341. u32 regAddr[2] = { AR_STA_ID0 };
  342. u32 regHold[2];
  343. static const u32 patternData[4] = {
  344. 0x55555555, 0xaaaaaaaa, 0x66666666, 0x99999999
  345. };
  346. int i, j, loop_max;
  347. if (!AR_SREV_9300_20_OR_LATER(ah)) {
  348. loop_max = 2;
  349. regAddr[1] = AR_PHY_BASE + (8 << 2);
  350. } else
  351. loop_max = 1;
  352. for (i = 0; i < loop_max; i++) {
  353. u32 addr = regAddr[i];
  354. u32 wrData, rdData;
  355. regHold[i] = REG_READ(ah, addr);
  356. for (j = 0; j < 0x100; j++) {
  357. wrData = (j << 16) | j;
  358. REG_WRITE(ah, addr, wrData);
  359. rdData = REG_READ(ah, addr);
  360. if (rdData != wrData) {
  361. ath_err(common,
  362. "address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
  363. addr, wrData, rdData);
  364. return false;
  365. }
  366. }
  367. for (j = 0; j < 4; j++) {
  368. wrData = patternData[j];
  369. REG_WRITE(ah, addr, wrData);
  370. rdData = REG_READ(ah, addr);
  371. if (wrData != rdData) {
  372. ath_err(common,
  373. "address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
  374. addr, wrData, rdData);
  375. return false;
  376. }
  377. }
  378. REG_WRITE(ah, regAddr[i], regHold[i]);
  379. }
  380. udelay(100);
  381. return true;
  382. }
  383. static void ath9k_hw_init_config(struct ath_hw *ah)
  384. {
  385. int i;
  386. ah->config.dma_beacon_response_time = 1;
  387. ah->config.sw_beacon_response_time = 6;
  388. ah->config.additional_swba_backoff = 0;
  389. ah->config.ack_6mb = 0x0;
  390. ah->config.cwm_ignore_extcca = 0;
  391. ah->config.pcie_clock_req = 0;
  392. ah->config.pcie_waen = 0;
  393. ah->config.analog_shiftreg = 1;
  394. ah->config.enable_ani = true;
  395. for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
  396. ah->config.spurchans[i][0] = AR_NO_SPUR;
  397. ah->config.spurchans[i][1] = AR_NO_SPUR;
  398. }
  399. ah->config.rx_intr_mitigation = true;
  400. ah->config.pcieSerDesWrite = true;
  401. /*
  402. * We need this for PCI devices only (Cardbus, PCI, miniPCI)
  403. * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
  404. * This means we use it for all AR5416 devices, and the few
  405. * minor PCI AR9280 devices out there.
  406. *
  407. * Serialization is required because these devices do not handle
  408. * well the case of two concurrent reads/writes due to the latency
  409. * involved. During one read/write another read/write can be issued
  410. * on another CPU while the previous read/write may still be working
  411. * on our hardware, if we hit this case the hardware poops in a loop.
  412. * We prevent this by serializing reads and writes.
  413. *
  414. * This issue is not present on PCI-Express devices or pre-AR5416
  415. * devices (legacy, 802.11abg).
  416. */
  417. if (num_possible_cpus() > 1)
  418. ah->config.serialize_regmode = SER_REG_MODE_AUTO;
  419. }
  420. static void ath9k_hw_init_defaults(struct ath_hw *ah)
  421. {
  422. struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
  423. regulatory->country_code = CTRY_DEFAULT;
  424. regulatory->power_limit = MAX_RATE_POWER;
  425. ah->hw_version.magic = AR5416_MAGIC;
  426. ah->hw_version.subvendorid = 0;
  427. ah->atim_window = 0;
  428. ah->sta_id1_defaults =
  429. AR_STA_ID1_CRPT_MIC_ENABLE |
  430. AR_STA_ID1_MCAST_KSRCH;
  431. if (AR_SREV_9100(ah))
  432. ah->sta_id1_defaults |= AR_STA_ID1_AR9100_BA_FIX;
  433. ah->slottime = ATH9K_SLOT_TIME_9;
  434. ah->globaltxtimeout = (u32) -1;
  435. ah->power_mode = ATH9K_PM_UNDEFINED;
  436. ah->htc_reset_init = true;
  437. }
  438. static int ath9k_hw_init_macaddr(struct ath_hw *ah)
  439. {
  440. struct ath_common *common = ath9k_hw_common(ah);
  441. u32 sum;
  442. int i;
  443. u16 eeval;
  444. static const u32 EEP_MAC[] = { EEP_MAC_LSW, EEP_MAC_MID, EEP_MAC_MSW };
  445. sum = 0;
  446. for (i = 0; i < 3; i++) {
  447. eeval = ah->eep_ops->get_eeprom(ah, EEP_MAC[i]);
  448. sum += eeval;
  449. common->macaddr[2 * i] = eeval >> 8;
  450. common->macaddr[2 * i + 1] = eeval & 0xff;
  451. }
  452. if (sum == 0 || sum == 0xffff * 3)
  453. return -EADDRNOTAVAIL;
  454. return 0;
  455. }
  456. static int ath9k_hw_post_init(struct ath_hw *ah)
  457. {
  458. struct ath_common *common = ath9k_hw_common(ah);
  459. int ecode;
  460. if (common->bus_ops->ath_bus_type != ATH_USB) {
  461. if (!ath9k_hw_chip_test(ah))
  462. return -ENODEV;
  463. }
  464. if (!AR_SREV_9300_20_OR_LATER(ah)) {
  465. ecode = ar9002_hw_rf_claim(ah);
  466. if (ecode != 0)
  467. return ecode;
  468. }
  469. ecode = ath9k_hw_eeprom_init(ah);
  470. if (ecode != 0)
  471. return ecode;
  472. ath_dbg(ath9k_hw_common(ah), CONFIG, "Eeprom VER: %d, REV: %d\n",
  473. ah->eep_ops->get_eeprom_ver(ah),
  474. ah->eep_ops->get_eeprom_rev(ah));
  475. ecode = ath9k_hw_rf_alloc_ext_banks(ah);
  476. if (ecode) {
  477. ath_err(ath9k_hw_common(ah),
  478. "Failed allocating banks for external radio\n");
  479. ath9k_hw_rf_free_ext_banks(ah);
  480. return ecode;
  481. }
  482. if (ah->config.enable_ani) {
  483. ath9k_hw_ani_setup(ah);
  484. ath9k_hw_ani_init(ah);
  485. }
  486. return 0;
  487. }
  488. static void ath9k_hw_attach_ops(struct ath_hw *ah)
  489. {
  490. if (AR_SREV_9300_20_OR_LATER(ah))
  491. ar9003_hw_attach_ops(ah);
  492. else
  493. ar9002_hw_attach_ops(ah);
  494. }
  495. /* Called for all hardware families */
  496. static int __ath9k_hw_init(struct ath_hw *ah)
  497. {
  498. struct ath_common *common = ath9k_hw_common(ah);
  499. int r = 0;
  500. ath9k_hw_read_revisions(ah);
  501. /*
  502. * Read back AR_WA into a permanent copy and set bits 14 and 17.
  503. * We need to do this to avoid RMW of this register. We cannot
  504. * read the reg when chip is asleep.
  505. */
  506. ah->WARegVal = REG_READ(ah, AR_WA);
  507. ah->WARegVal |= (AR_WA_D3_L1_DISABLE |
  508. AR_WA_ASPM_TIMER_BASED_DISABLE);
  509. if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
  510. ath_err(common, "Couldn't reset chip\n");
  511. return -EIO;
  512. }
  513. if (AR_SREV_9462(ah))
  514. ah->WARegVal &= ~AR_WA_D3_L1_DISABLE;
  515. if (AR_SREV_9565(ah)) {
  516. ah->WARegVal |= AR_WA_BIT22;
  517. REG_WRITE(ah, AR_WA, ah->WARegVal);
  518. }
  519. ath9k_hw_init_defaults(ah);
  520. ath9k_hw_init_config(ah);
  521. ath9k_hw_attach_ops(ah);
  522. if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
  523. ath_err(common, "Couldn't wakeup chip\n");
  524. return -EIO;
  525. }
  526. if (NR_CPUS > 1 && ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
  527. if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
  528. ((AR_SREV_9160(ah) || AR_SREV_9280(ah) || AR_SREV_9287(ah)) &&
  529. !ah->is_pciexpress)) {
  530. ah->config.serialize_regmode =
  531. SER_REG_MODE_ON;
  532. } else {
  533. ah->config.serialize_regmode =
  534. SER_REG_MODE_OFF;
  535. }
  536. }
  537. ath_dbg(common, RESET, "serialize_regmode is %d\n",
  538. ah->config.serialize_regmode);
  539. if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
  540. ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1;
  541. else
  542. ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD;
  543. switch (ah->hw_version.macVersion) {
  544. case AR_SREV_VERSION_5416_PCI:
  545. case AR_SREV_VERSION_5416_PCIE:
  546. case AR_SREV_VERSION_9160:
  547. case AR_SREV_VERSION_9100:
  548. case AR_SREV_VERSION_9280:
  549. case AR_SREV_VERSION_9285:
  550. case AR_SREV_VERSION_9287:
  551. case AR_SREV_VERSION_9271:
  552. case AR_SREV_VERSION_9300:
  553. case AR_SREV_VERSION_9330:
  554. case AR_SREV_VERSION_9485:
  555. case AR_SREV_VERSION_9340:
  556. case AR_SREV_VERSION_9462:
  557. case AR_SREV_VERSION_9550:
  558. case AR_SREV_VERSION_9565:
  559. break;
  560. default:
  561. ath_err(common,
  562. "Mac Chip Rev 0x%02x.%x is not supported by this driver\n",
  563. ah->hw_version.macVersion, ah->hw_version.macRev);
  564. return -EOPNOTSUPP;
  565. }
  566. if (AR_SREV_9271(ah) || AR_SREV_9100(ah) || AR_SREV_9340(ah) ||
  567. AR_SREV_9330(ah) || AR_SREV_9550(ah))
  568. ah->is_pciexpress = false;
  569. ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
  570. ath9k_hw_init_cal_settings(ah);
  571. ah->ani_function = ATH9K_ANI_ALL;
  572. if (AR_SREV_9280_20_OR_LATER(ah) && !AR_SREV_9300_20_OR_LATER(ah))
  573. ah->ani_function &= ~ATH9K_ANI_NOISE_IMMUNITY_LEVEL;
  574. if (!AR_SREV_9300_20_OR_LATER(ah))
  575. ah->ani_function &= ~ATH9K_ANI_MRC_CCK;
  576. ath9k_hw_init_mode_regs(ah);
  577. if (!ah->is_pciexpress)
  578. ath9k_hw_disablepcie(ah);
  579. r = ath9k_hw_post_init(ah);
  580. if (r)
  581. return r;
  582. ath9k_hw_init_mode_gain_regs(ah);
  583. r = ath9k_hw_fill_cap_info(ah);
  584. if (r)
  585. return r;
  586. r = ath9k_hw_init_macaddr(ah);
  587. if (r) {
  588. ath_err(common, "Failed to initialize MAC address\n");
  589. return r;
  590. }
  591. if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
  592. ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
  593. else
  594. ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
  595. if (AR_SREV_9330(ah))
  596. ah->bb_watchdog_timeout_ms = 85;
  597. else
  598. ah->bb_watchdog_timeout_ms = 25;
  599. common->state = ATH_HW_INITIALIZED;
  600. return 0;
  601. }
  602. int ath9k_hw_init(struct ath_hw *ah)
  603. {
  604. int ret;
  605. struct ath_common *common = ath9k_hw_common(ah);
  606. /* These are all the AR5008/AR9001/AR9002/AR9003 hardware family of chipsets */
  607. switch (ah->hw_version.devid) {
  608. case AR5416_DEVID_PCI:
  609. case AR5416_DEVID_PCIE:
  610. case AR5416_AR9100_DEVID:
  611. case AR9160_DEVID_PCI:
  612. case AR9280_DEVID_PCI:
  613. case AR9280_DEVID_PCIE:
  614. case AR9285_DEVID_PCIE:
  615. case AR9287_DEVID_PCI:
  616. case AR9287_DEVID_PCIE:
  617. case AR2427_DEVID_PCIE:
  618. case AR9300_DEVID_PCIE:
  619. case AR9300_DEVID_AR9485_PCIE:
  620. case AR9300_DEVID_AR9330:
  621. case AR9300_DEVID_AR9340:
  622. case AR9300_DEVID_QCA955X:
  623. case AR9300_DEVID_AR9580:
  624. case AR9300_DEVID_AR9462:
  625. case AR9485_DEVID_AR1111:
  626. case AR9300_DEVID_AR9565:
  627. break;
  628. default:
  629. if (common->bus_ops->ath_bus_type == ATH_USB)
  630. break;
  631. ath_err(common, "Hardware device ID 0x%04x not supported\n",
  632. ah->hw_version.devid);
  633. return -EOPNOTSUPP;
  634. }
  635. ret = __ath9k_hw_init(ah);
  636. if (ret) {
  637. ath_err(common,
  638. "Unable to initialize hardware; initialization status: %d\n",
  639. ret);
  640. return ret;
  641. }
  642. return 0;
  643. }
  644. EXPORT_SYMBOL(ath9k_hw_init);
  645. static void ath9k_hw_init_qos(struct ath_hw *ah)
  646. {
  647. ENABLE_REGWRITE_BUFFER(ah);
  648. REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
  649. REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
  650. REG_WRITE(ah, AR_QOS_NO_ACK,
  651. SM(2, AR_QOS_NO_ACK_TWO_BIT) |
  652. SM(5, AR_QOS_NO_ACK_BIT_OFF) |
  653. SM(0, AR_QOS_NO_ACK_BYTE_OFF));
  654. REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
  655. REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
  656. REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
  657. REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
  658. REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
  659. REGWRITE_BUFFER_FLUSH(ah);
  660. }
  661. u32 ar9003_get_pll_sqsum_dvc(struct ath_hw *ah)
  662. {
  663. struct ath_common *common = ath9k_hw_common(ah);
  664. int i = 0;
  665. REG_CLR_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
  666. udelay(100);
  667. REG_SET_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
  668. while ((REG_READ(ah, PLL4) & PLL4_MEAS_DONE) == 0) {
  669. udelay(100);
  670. if (WARN_ON_ONCE(i >= 100)) {
  671. ath_err(common, "PLL4 meaurement not done\n");
  672. break;
  673. }
  674. i++;
  675. }
  676. return (REG_READ(ah, PLL3) & SQSUM_DVC_MASK) >> 3;
  677. }
  678. EXPORT_SYMBOL(ar9003_get_pll_sqsum_dvc);
  679. static void ath9k_hw_init_pll(struct ath_hw *ah,
  680. struct ath9k_channel *chan)
  681. {
  682. u32 pll;
  683. if (AR_SREV_9485(ah) || AR_SREV_9565(ah)) {
  684. /* program BB PLL ki and kd value, ki=0x4, kd=0x40 */
  685. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
  686. AR_CH0_BB_DPLL2_PLL_PWD, 0x1);
  687. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
  688. AR_CH0_DPLL2_KD, 0x40);
  689. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
  690. AR_CH0_DPLL2_KI, 0x4);
  691. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
  692. AR_CH0_BB_DPLL1_REFDIV, 0x5);
  693. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
  694. AR_CH0_BB_DPLL1_NINI, 0x58);
  695. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
  696. AR_CH0_BB_DPLL1_NFRAC, 0x0);
  697. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
  698. AR_CH0_BB_DPLL2_OUTDIV, 0x1);
  699. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
  700. AR_CH0_BB_DPLL2_LOCAL_PLL, 0x1);
  701. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
  702. AR_CH0_BB_DPLL2_EN_NEGTRIG, 0x1);
  703. /* program BB PLL phase_shift to 0x6 */
  704. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
  705. AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x6);
  706. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
  707. AR_CH0_BB_DPLL2_PLL_PWD, 0x0);
  708. udelay(1000);
  709. } else if (AR_SREV_9330(ah)) {
  710. u32 ddr_dpll2, pll_control2, kd;
  711. if (ah->is_clk_25mhz) {
  712. ddr_dpll2 = 0x18e82f01;
  713. pll_control2 = 0xe04a3d;
  714. kd = 0x1d;
  715. } else {
  716. ddr_dpll2 = 0x19e82f01;
  717. pll_control2 = 0x886666;
  718. kd = 0x3d;
  719. }
  720. /* program DDR PLL ki and kd value */
  721. REG_WRITE(ah, AR_CH0_DDR_DPLL2, ddr_dpll2);
  722. /* program DDR PLL phase_shift */
  723. REG_RMW_FIELD(ah, AR_CH0_DDR_DPLL3,
  724. AR_CH0_DPLL3_PHASE_SHIFT, 0x1);
  725. REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x1142c);
  726. udelay(1000);
  727. /* program refdiv, nint, frac to RTC register */
  728. REG_WRITE(ah, AR_RTC_PLL_CONTROL2, pll_control2);
  729. /* program BB PLL kd and ki value */
  730. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KD, kd);
  731. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KI, 0x06);
  732. /* program BB PLL phase_shift */
  733. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
  734. AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x1);
  735. } else if (AR_SREV_9340(ah) || AR_SREV_9550(ah)) {
  736. u32 regval, pll2_divint, pll2_divfrac, refdiv;
  737. REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x1142c);
  738. udelay(1000);
  739. REG_SET_BIT(ah, AR_PHY_PLL_MODE, 0x1 << 16);
  740. udelay(100);
  741. if (ah->is_clk_25mhz) {
  742. pll2_divint = 0x54;
  743. pll2_divfrac = 0x1eb85;
  744. refdiv = 3;
  745. } else {
  746. if (AR_SREV_9340(ah)) {
  747. pll2_divint = 88;
  748. pll2_divfrac = 0;
  749. refdiv = 5;
  750. } else {
  751. pll2_divint = 0x11;
  752. pll2_divfrac = 0x26666;
  753. refdiv = 1;
  754. }
  755. }
  756. regval = REG_READ(ah, AR_PHY_PLL_MODE);
  757. regval |= (0x1 << 16);
  758. REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
  759. udelay(100);
  760. REG_WRITE(ah, AR_PHY_PLL_CONTROL, (refdiv << 27) |
  761. (pll2_divint << 18) | pll2_divfrac);
  762. udelay(100);
  763. regval = REG_READ(ah, AR_PHY_PLL_MODE);
  764. if (AR_SREV_9340(ah))
  765. regval = (regval & 0x80071fff) | (0x1 << 30) |
  766. (0x1 << 13) | (0x4 << 26) | (0x18 << 19);
  767. else
  768. regval = (regval & 0x80071fff) | (0x3 << 30) |
  769. (0x1 << 13) | (0x4 << 26) | (0x60 << 19);
  770. REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
  771. REG_WRITE(ah, AR_PHY_PLL_MODE,
  772. REG_READ(ah, AR_PHY_PLL_MODE) & 0xfffeffff);
  773. udelay(1000);
  774. }
  775. pll = ath9k_hw_compute_pll_control(ah, chan);
  776. REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
  777. if (AR_SREV_9485(ah) || AR_SREV_9340(ah) || AR_SREV_9330(ah) ||
  778. AR_SREV_9550(ah))
  779. udelay(1000);
  780. /* Switch the core clock for ar9271 to 117Mhz */
  781. if (AR_SREV_9271(ah)) {
  782. udelay(500);
  783. REG_WRITE(ah, 0x50040, 0x304);
  784. }
  785. udelay(RTC_PLL_SETTLE_DELAY);
  786. REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
  787. if (AR_SREV_9340(ah) || AR_SREV_9550(ah)) {
  788. if (ah->is_clk_25mhz) {
  789. REG_WRITE(ah, AR_RTC_DERIVED_CLK, 0x17c << 1);
  790. REG_WRITE(ah, AR_SLP32_MODE, 0x0010f3d7);
  791. REG_WRITE(ah, AR_SLP32_INC, 0x0001e7ae);
  792. } else {
  793. REG_WRITE(ah, AR_RTC_DERIVED_CLK, 0x261 << 1);
  794. REG_WRITE(ah, AR_SLP32_MODE, 0x0010f400);
  795. REG_WRITE(ah, AR_SLP32_INC, 0x0001e800);
  796. }
  797. udelay(100);
  798. }
  799. }
  800. static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
  801. enum nl80211_iftype opmode)
  802. {
  803. u32 sync_default = AR_INTR_SYNC_DEFAULT;
  804. u32 imr_reg = AR_IMR_TXERR |
  805. AR_IMR_TXURN |
  806. AR_IMR_RXERR |
  807. AR_IMR_RXORN |
  808. AR_IMR_BCNMISC;
  809. if (AR_SREV_9340(ah) || AR_SREV_9550(ah))
  810. sync_default &= ~AR_INTR_SYNC_HOST1_FATAL;
  811. if (AR_SREV_9300_20_OR_LATER(ah)) {
  812. imr_reg |= AR_IMR_RXOK_HP;
  813. if (ah->config.rx_intr_mitigation)
  814. imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
  815. else
  816. imr_reg |= AR_IMR_RXOK_LP;
  817. } else {
  818. if (ah->config.rx_intr_mitigation)
  819. imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
  820. else
  821. imr_reg |= AR_IMR_RXOK;
  822. }
  823. if (ah->config.tx_intr_mitigation)
  824. imr_reg |= AR_IMR_TXINTM | AR_IMR_TXMINTR;
  825. else
  826. imr_reg |= AR_IMR_TXOK;
  827. ENABLE_REGWRITE_BUFFER(ah);
  828. REG_WRITE(ah, AR_IMR, imr_reg);
  829. ah->imrs2_reg |= AR_IMR_S2_GTT;
  830. REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
  831. if (!AR_SREV_9100(ah)) {
  832. REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
  833. REG_WRITE(ah, AR_INTR_SYNC_ENABLE, sync_default);
  834. REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
  835. }
  836. REGWRITE_BUFFER_FLUSH(ah);
  837. if (AR_SREV_9300_20_OR_LATER(ah)) {
  838. REG_WRITE(ah, AR_INTR_PRIO_ASYNC_ENABLE, 0);
  839. REG_WRITE(ah, AR_INTR_PRIO_ASYNC_MASK, 0);
  840. REG_WRITE(ah, AR_INTR_PRIO_SYNC_ENABLE, 0);
  841. REG_WRITE(ah, AR_INTR_PRIO_SYNC_MASK, 0);
  842. }
  843. }
  844. static void ath9k_hw_set_sifs_time(struct ath_hw *ah, u32 us)
  845. {
  846. u32 val = ath9k_hw_mac_to_clks(ah, us - 2);
  847. val = min(val, (u32) 0xFFFF);
  848. REG_WRITE(ah, AR_D_GBL_IFS_SIFS, val);
  849. }
  850. static void ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
  851. {
  852. u32 val = ath9k_hw_mac_to_clks(ah, us);
  853. val = min(val, (u32) 0xFFFF);
  854. REG_WRITE(ah, AR_D_GBL_IFS_SLOT, val);
  855. }
  856. static void ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
  857. {
  858. u32 val = ath9k_hw_mac_to_clks(ah, us);
  859. val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_ACK));
  860. REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, val);
  861. }
  862. static void ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
  863. {
  864. u32 val = ath9k_hw_mac_to_clks(ah, us);
  865. val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_CTS));
  866. REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, val);
  867. }
  868. static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
  869. {
  870. if (tu > 0xFFFF) {
  871. ath_dbg(ath9k_hw_common(ah), XMIT, "bad global tx timeout %u\n",
  872. tu);
  873. ah->globaltxtimeout = (u32) -1;
  874. return false;
  875. } else {
  876. REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
  877. ah->globaltxtimeout = tu;
  878. return true;
  879. }
  880. }
  881. void ath9k_hw_init_global_settings(struct ath_hw *ah)
  882. {
  883. struct ath_common *common = ath9k_hw_common(ah);
  884. struct ieee80211_conf *conf = &common->hw->conf;
  885. const struct ath9k_channel *chan = ah->curchan;
  886. int acktimeout, ctstimeout, ack_offset = 0;
  887. int slottime;
  888. int sifstime;
  889. int rx_lat = 0, tx_lat = 0, eifs = 0;
  890. u32 reg;
  891. ath_dbg(ath9k_hw_common(ah), RESET, "ah->misc_mode 0x%x\n",
  892. ah->misc_mode);
  893. if (!chan)
  894. return;
  895. if (ah->misc_mode != 0)
  896. REG_SET_BIT(ah, AR_PCU_MISC, ah->misc_mode);
  897. if (IS_CHAN_A_FAST_CLOCK(ah, chan))
  898. rx_lat = 41;
  899. else
  900. rx_lat = 37;
  901. tx_lat = 54;
  902. if (IS_CHAN_5GHZ(chan))
  903. sifstime = 16;
  904. else
  905. sifstime = 10;
  906. if (IS_CHAN_HALF_RATE(chan)) {
  907. eifs = 175;
  908. rx_lat *= 2;
  909. tx_lat *= 2;
  910. if (IS_CHAN_A_FAST_CLOCK(ah, chan))
  911. tx_lat += 11;
  912. sifstime *= 2;
  913. ack_offset = 16;
  914. slottime = 13;
  915. } else if (IS_CHAN_QUARTER_RATE(chan)) {
  916. eifs = 340;
  917. rx_lat = (rx_lat * 4) - 1;
  918. tx_lat *= 4;
  919. if (IS_CHAN_A_FAST_CLOCK(ah, chan))
  920. tx_lat += 22;
  921. sifstime *= 4;
  922. ack_offset = 32;
  923. slottime = 21;
  924. } else {
  925. if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
  926. eifs = AR_D_GBL_IFS_EIFS_ASYNC_FIFO;
  927. reg = AR_USEC_ASYNC_FIFO;
  928. } else {
  929. eifs = REG_READ(ah, AR_D_GBL_IFS_EIFS)/
  930. common->clockrate;
  931. reg = REG_READ(ah, AR_USEC);
  932. }
  933. rx_lat = MS(reg, AR_USEC_RX_LAT);
  934. tx_lat = MS(reg, AR_USEC_TX_LAT);
  935. slottime = ah->slottime;
  936. }
  937. /* As defined by IEEE 802.11-2007 17.3.8.6 */
  938. acktimeout = slottime + sifstime + 3 * ah->coverage_class + ack_offset;
  939. ctstimeout = acktimeout;
  940. /*
  941. * Workaround for early ACK timeouts, add an offset to match the
  942. * initval's 64us ack timeout value. Use 48us for the CTS timeout.
  943. * This was initially only meant to work around an issue with delayed
  944. * BA frames in some implementations, but it has been found to fix ACK
  945. * timeout issues in other cases as well.
  946. */
  947. if (conf->channel && conf->channel->band == IEEE80211_BAND_2GHZ &&
  948. !IS_CHAN_HALF_RATE(chan) && !IS_CHAN_QUARTER_RATE(chan)) {
  949. acktimeout += 64 - sifstime - ah->slottime;
  950. ctstimeout += 48 - sifstime - ah->slottime;
  951. }
  952. ath9k_hw_set_sifs_time(ah, sifstime);
  953. ath9k_hw_setslottime(ah, slottime);
  954. ath9k_hw_set_ack_timeout(ah, acktimeout);
  955. ath9k_hw_set_cts_timeout(ah, ctstimeout);
  956. if (ah->globaltxtimeout != (u32) -1)
  957. ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
  958. REG_WRITE(ah, AR_D_GBL_IFS_EIFS, ath9k_hw_mac_to_clks(ah, eifs));
  959. REG_RMW(ah, AR_USEC,
  960. (common->clockrate - 1) |
  961. SM(rx_lat, AR_USEC_RX_LAT) |
  962. SM(tx_lat, AR_USEC_TX_LAT),
  963. AR_USEC_TX_LAT | AR_USEC_RX_LAT | AR_USEC_USEC);
  964. }
  965. EXPORT_SYMBOL(ath9k_hw_init_global_settings);
  966. void ath9k_hw_deinit(struct ath_hw *ah)
  967. {
  968. struct ath_common *common = ath9k_hw_common(ah);
  969. if (common->state < ATH_HW_INITIALIZED)
  970. goto free_hw;
  971. ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
  972. free_hw:
  973. ath9k_hw_rf_free_ext_banks(ah);
  974. }
  975. EXPORT_SYMBOL(ath9k_hw_deinit);
  976. /*******/
  977. /* INI */
  978. /*******/
  979. u32 ath9k_regd_get_ctl(struct ath_regulatory *reg, struct ath9k_channel *chan)
  980. {
  981. u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
  982. if (IS_CHAN_B(chan))
  983. ctl |= CTL_11B;
  984. else if (IS_CHAN_G(chan))
  985. ctl |= CTL_11G;
  986. else
  987. ctl |= CTL_11A;
  988. return ctl;
  989. }
  990. /****************************************/
  991. /* Reset and Channel Switching Routines */
  992. /****************************************/
  993. static inline void ath9k_hw_set_dma(struct ath_hw *ah)
  994. {
  995. struct ath_common *common = ath9k_hw_common(ah);
  996. ENABLE_REGWRITE_BUFFER(ah);
  997. /*
  998. * set AHB_MODE not to do cacheline prefetches
  999. */
  1000. if (!AR_SREV_9300_20_OR_LATER(ah))
  1001. REG_SET_BIT(ah, AR_AHB_MODE, AR_AHB_PREFETCH_RD_EN);
  1002. /*
  1003. * let mac dma reads be in 128 byte chunks
  1004. */
  1005. REG_RMW(ah, AR_TXCFG, AR_TXCFG_DMASZ_128B, AR_TXCFG_DMASZ_MASK);
  1006. REGWRITE_BUFFER_FLUSH(ah);
  1007. /*
  1008. * Restore TX Trigger Level to its pre-reset value.
  1009. * The initial value depends on whether aggregation is enabled, and is
  1010. * adjusted whenever underruns are detected.
  1011. */
  1012. if (!AR_SREV_9300_20_OR_LATER(ah))
  1013. REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
  1014. ENABLE_REGWRITE_BUFFER(ah);
  1015. /*
  1016. * let mac dma writes be in 128 byte chunks
  1017. */
  1018. REG_RMW(ah, AR_RXCFG, AR_RXCFG_DMASZ_128B, AR_RXCFG_DMASZ_MASK);
  1019. /*
  1020. * Setup receive FIFO threshold to hold off TX activities
  1021. */
  1022. REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
  1023. if (AR_SREV_9300_20_OR_LATER(ah)) {
  1024. REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_HP, 0x1);
  1025. REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_LP, 0x1);
  1026. ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
  1027. ah->caps.rx_status_len);
  1028. }
  1029. /*
  1030. * reduce the number of usable entries in PCU TXBUF to avoid
  1031. * wrap around issues.
  1032. */
  1033. if (AR_SREV_9285(ah)) {
  1034. /* For AR9285 the number of Fifos are reduced to half.
  1035. * So set the usable tx buf size also to half to
  1036. * avoid data/delimiter underruns
  1037. */
  1038. REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
  1039. AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE);
  1040. } else if (!AR_SREV_9271(ah)) {
  1041. REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
  1042. AR_PCU_TXBUF_CTRL_USABLE_SIZE);
  1043. }
  1044. REGWRITE_BUFFER_FLUSH(ah);
  1045. if (AR_SREV_9300_20_OR_LATER(ah))
  1046. ath9k_hw_reset_txstatus_ring(ah);
  1047. }
  1048. static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
  1049. {
  1050. u32 mask = AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC;
  1051. u32 set = AR_STA_ID1_KSRCH_MODE;
  1052. switch (opmode) {
  1053. case NL80211_IFTYPE_ADHOC:
  1054. case NL80211_IFTYPE_MESH_POINT:
  1055. set |= AR_STA_ID1_ADHOC;
  1056. REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
  1057. break;
  1058. case NL80211_IFTYPE_AP:
  1059. set |= AR_STA_ID1_STA_AP;
  1060. /* fall through */
  1061. case NL80211_IFTYPE_STATION:
  1062. REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
  1063. break;
  1064. default:
  1065. if (!ah->is_monitoring)
  1066. set = 0;
  1067. break;
  1068. }
  1069. REG_RMW(ah, AR_STA_ID1, set, mask);
  1070. }
  1071. void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah, u32 coef_scaled,
  1072. u32 *coef_mantissa, u32 *coef_exponent)
  1073. {
  1074. u32 coef_exp, coef_man;
  1075. for (coef_exp = 31; coef_exp > 0; coef_exp--)
  1076. if ((coef_scaled >> coef_exp) & 0x1)
  1077. break;
  1078. coef_exp = 14 - (coef_exp - COEF_SCALE_S);
  1079. coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
  1080. *coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
  1081. *coef_exponent = coef_exp - 16;
  1082. }
  1083. static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
  1084. {
  1085. u32 rst_flags;
  1086. u32 tmpReg;
  1087. if (AR_SREV_9100(ah)) {
  1088. REG_RMW_FIELD(ah, AR_RTC_DERIVED_CLK,
  1089. AR_RTC_DERIVED_CLK_PERIOD, 1);
  1090. (void)REG_READ(ah, AR_RTC_DERIVED_CLK);
  1091. }
  1092. ENABLE_REGWRITE_BUFFER(ah);
  1093. if (AR_SREV_9300_20_OR_LATER(ah)) {
  1094. REG_WRITE(ah, AR_WA, ah->WARegVal);
  1095. udelay(10);
  1096. }
  1097. REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
  1098. AR_RTC_FORCE_WAKE_ON_INT);
  1099. if (AR_SREV_9100(ah)) {
  1100. rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
  1101. AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
  1102. } else {
  1103. tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
  1104. if (tmpReg &
  1105. (AR_INTR_SYNC_LOCAL_TIMEOUT |
  1106. AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
  1107. u32 val;
  1108. REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
  1109. val = AR_RC_HOSTIF;
  1110. if (!AR_SREV_9300_20_OR_LATER(ah))
  1111. val |= AR_RC_AHB;
  1112. REG_WRITE(ah, AR_RC, val);
  1113. } else if (!AR_SREV_9300_20_OR_LATER(ah))
  1114. REG_WRITE(ah, AR_RC, AR_RC_AHB);
  1115. rst_flags = AR_RTC_RC_MAC_WARM;
  1116. if (type == ATH9K_RESET_COLD)
  1117. rst_flags |= AR_RTC_RC_MAC_COLD;
  1118. }
  1119. if (AR_SREV_9330(ah)) {
  1120. int npend = 0;
  1121. int i;
  1122. /* AR9330 WAR:
  1123. * call external reset function to reset WMAC if:
  1124. * - doing a cold reset
  1125. * - we have pending frames in the TX queues
  1126. */
  1127. for (i = 0; i < AR_NUM_QCU; i++) {
  1128. npend = ath9k_hw_numtxpending(ah, i);
  1129. if (npend)
  1130. break;
  1131. }
  1132. if (ah->external_reset &&
  1133. (npend || type == ATH9K_RESET_COLD)) {
  1134. int reset_err = 0;
  1135. ath_dbg(ath9k_hw_common(ah), RESET,
  1136. "reset MAC via external reset\n");
  1137. reset_err = ah->external_reset();
  1138. if (reset_err) {
  1139. ath_err(ath9k_hw_common(ah),
  1140. "External reset failed, err=%d\n",
  1141. reset_err);
  1142. return false;
  1143. }
  1144. REG_WRITE(ah, AR_RTC_RESET, 1);
  1145. }
  1146. }
  1147. if (ath9k_hw_mci_is_enabled(ah))
  1148. ar9003_mci_check_gpm_offset(ah);
  1149. REG_WRITE(ah, AR_RTC_RC, rst_flags);
  1150. REGWRITE_BUFFER_FLUSH(ah);
  1151. udelay(50);
  1152. REG_WRITE(ah, AR_RTC_RC, 0);
  1153. if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
  1154. ath_dbg(ath9k_hw_common(ah), RESET, "RTC stuck in MAC reset\n");
  1155. return false;
  1156. }
  1157. if (!AR_SREV_9100(ah))
  1158. REG_WRITE(ah, AR_RC, 0);
  1159. if (AR_SREV_9100(ah))
  1160. udelay(50);
  1161. return true;
  1162. }
  1163. static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
  1164. {
  1165. ENABLE_REGWRITE_BUFFER(ah);
  1166. if (AR_SREV_9300_20_OR_LATER(ah)) {
  1167. REG_WRITE(ah, AR_WA, ah->WARegVal);
  1168. udelay(10);
  1169. }
  1170. REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
  1171. AR_RTC_FORCE_WAKE_ON_INT);
  1172. if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
  1173. REG_WRITE(ah, AR_RC, AR_RC_AHB);
  1174. REG_WRITE(ah, AR_RTC_RESET, 0);
  1175. REGWRITE_BUFFER_FLUSH(ah);
  1176. if (!AR_SREV_9300_20_OR_LATER(ah))
  1177. udelay(2);
  1178. if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
  1179. REG_WRITE(ah, AR_RC, 0);
  1180. REG_WRITE(ah, AR_RTC_RESET, 1);
  1181. if (!ath9k_hw_wait(ah,
  1182. AR_RTC_STATUS,
  1183. AR_RTC_STATUS_M,
  1184. AR_RTC_STATUS_ON,
  1185. AH_WAIT_TIMEOUT)) {
  1186. ath_dbg(ath9k_hw_common(ah), RESET, "RTC not waking up\n");
  1187. return false;
  1188. }
  1189. return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
  1190. }
  1191. static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
  1192. {
  1193. bool ret = false;
  1194. if (AR_SREV_9300_20_OR_LATER(ah)) {
  1195. REG_WRITE(ah, AR_WA, ah->WARegVal);
  1196. udelay(10);
  1197. }
  1198. REG_WRITE(ah, AR_RTC_FORCE_WAKE,
  1199. AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
  1200. switch (type) {
  1201. case ATH9K_RESET_POWER_ON:
  1202. ret = ath9k_hw_set_reset_power_on(ah);
  1203. break;
  1204. case ATH9K_RESET_WARM:
  1205. case ATH9K_RESET_COLD:
  1206. ret = ath9k_hw_set_reset(ah, type);
  1207. break;
  1208. default:
  1209. break;
  1210. }
  1211. return ret;
  1212. }
  1213. static bool ath9k_hw_chip_reset(struct ath_hw *ah,
  1214. struct ath9k_channel *chan)
  1215. {
  1216. int reset_type = ATH9K_RESET_WARM;
  1217. if (AR_SREV_9280(ah)) {
  1218. if (ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL))
  1219. reset_type = ATH9K_RESET_POWER_ON;
  1220. else
  1221. reset_type = ATH9K_RESET_COLD;
  1222. }
  1223. if (!ath9k_hw_set_reset_reg(ah, reset_type))
  1224. return false;
  1225. if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
  1226. return false;
  1227. ah->chip_fullsleep = false;
  1228. if (AR_SREV_9330(ah))
  1229. ar9003_hw_internal_regulator_apply(ah);
  1230. ath9k_hw_init_pll(ah, chan);
  1231. ath9k_hw_set_rfmode(ah, chan);
  1232. return true;
  1233. }
  1234. static bool ath9k_hw_channel_change(struct ath_hw *ah,
  1235. struct ath9k_channel *chan)
  1236. {
  1237. struct ath_common *common = ath9k_hw_common(ah);
  1238. u32 qnum;
  1239. int r;
  1240. bool edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA);
  1241. bool band_switch, mode_diff;
  1242. u8 ini_reloaded;
  1243. band_switch = (chan->channelFlags & (CHANNEL_2GHZ | CHANNEL_5GHZ)) !=
  1244. (ah->curchan->channelFlags & (CHANNEL_2GHZ |
  1245. CHANNEL_5GHZ));
  1246. mode_diff = (chan->chanmode != ah->curchan->chanmode);
  1247. for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
  1248. if (ath9k_hw_numtxpending(ah, qnum)) {
  1249. ath_dbg(common, QUEUE,
  1250. "Transmit frames pending on queue %d\n", qnum);
  1251. return false;
  1252. }
  1253. }
  1254. if (!ath9k_hw_rfbus_req(ah)) {
  1255. ath_err(common, "Could not kill baseband RX\n");
  1256. return false;
  1257. }
  1258. if (edma && (band_switch || mode_diff)) {
  1259. ath9k_hw_mark_phy_inactive(ah);
  1260. udelay(5);
  1261. ath9k_hw_init_pll(ah, NULL);
  1262. if (ath9k_hw_fast_chan_change(ah, chan, &ini_reloaded)) {
  1263. ath_err(common, "Failed to do fast channel change\n");
  1264. return false;
  1265. }
  1266. }
  1267. ath9k_hw_set_channel_regs(ah, chan);
  1268. r = ath9k_hw_rf_set_freq(ah, chan);
  1269. if (r) {
  1270. ath_err(common, "Failed to set channel\n");
  1271. return false;
  1272. }
  1273. ath9k_hw_set_clockrate(ah);
  1274. ath9k_hw_apply_txpower(ah, chan, false);
  1275. ath9k_hw_rfbus_done(ah);
  1276. if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
  1277. ath9k_hw_set_delta_slope(ah, chan);
  1278. ath9k_hw_spur_mitigate_freq(ah, chan);
  1279. if (edma && (band_switch || mode_diff)) {
  1280. ah->ah_flags |= AH_FASTCC;
  1281. if (band_switch || ini_reloaded)
  1282. ah->eep_ops->set_board_values(ah, chan);
  1283. ath9k_hw_init_bb(ah, chan);
  1284. if (band_switch || ini_reloaded)
  1285. ath9k_hw_init_cal(ah, chan);
  1286. ah->ah_flags &= ~AH_FASTCC;
  1287. }
  1288. return true;
  1289. }
  1290. static void ath9k_hw_apply_gpio_override(struct ath_hw *ah)
  1291. {
  1292. u32 gpio_mask = ah->gpio_mask;
  1293. int i;
  1294. for (i = 0; gpio_mask; i++, gpio_mask >>= 1) {
  1295. if (!(gpio_mask & 1))
  1296. continue;
  1297. ath9k_hw_cfg_output(ah, i, AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
  1298. ath9k_hw_set_gpio(ah, i, !!(ah->gpio_val & BIT(i)));
  1299. }
  1300. }
  1301. static bool ath9k_hw_check_dcs(u32 dma_dbg, u32 num_dcu_states,
  1302. int *hang_state, int *hang_pos)
  1303. {
  1304. static u32 dcu_chain_state[] = {5, 6, 9}; /* DCU chain stuck states */
  1305. u32 chain_state, dcs_pos, i;
  1306. for (dcs_pos = 0; dcs_pos < num_dcu_states; dcs_pos++) {
  1307. chain_state = (dma_dbg >> (5 * dcs_pos)) & 0x1f;
  1308. for (i = 0; i < 3; i++) {
  1309. if (chain_state == dcu_chain_state[i]) {
  1310. *hang_state = chain_state;
  1311. *hang_pos = dcs_pos;
  1312. return true;
  1313. }
  1314. }
  1315. }
  1316. return false;
  1317. }
  1318. #define DCU_COMPLETE_STATE 1
  1319. #define DCU_COMPLETE_STATE_MASK 0x3
  1320. #define NUM_STATUS_READS 50
  1321. static bool ath9k_hw_detect_mac_hang(struct ath_hw *ah)
  1322. {
  1323. u32 chain_state, comp_state, dcs_reg = AR_DMADBG_4;
  1324. u32 i, hang_pos, hang_state, num_state = 6;
  1325. comp_state = REG_READ(ah, AR_DMADBG_6);
  1326. if ((comp_state & DCU_COMPLETE_STATE_MASK) != DCU_COMPLETE_STATE) {
  1327. ath_dbg(ath9k_hw_common(ah), RESET,
  1328. "MAC Hang signature not found at DCU complete\n");
  1329. return false;
  1330. }
  1331. chain_state = REG_READ(ah, dcs_reg);
  1332. if (ath9k_hw_check_dcs(chain_state, num_state, &hang_state, &hang_pos))
  1333. goto hang_check_iter;
  1334. dcs_reg = AR_DMADBG_5;
  1335. num_state = 4;
  1336. chain_state = REG_READ(ah, dcs_reg);
  1337. if (ath9k_hw_check_dcs(chain_state, num_state, &hang_state, &hang_pos))
  1338. goto hang_check_iter;
  1339. ath_dbg(ath9k_hw_common(ah), RESET,
  1340. "MAC Hang signature 1 not found\n");
  1341. return false;
  1342. hang_check_iter:
  1343. ath_dbg(ath9k_hw_common(ah), RESET,
  1344. "DCU registers: chain %08x complete %08x Hang: state %d pos %d\n",
  1345. chain_state, comp_state, hang_state, hang_pos);
  1346. for (i = 0; i < NUM_STATUS_READS; i++) {
  1347. chain_state = REG_READ(ah, dcs_reg);
  1348. chain_state = (chain_state >> (5 * hang_pos)) & 0x1f;
  1349. comp_state = REG_READ(ah, AR_DMADBG_6);
  1350. if (((comp_state & DCU_COMPLETE_STATE_MASK) !=
  1351. DCU_COMPLETE_STATE) ||
  1352. (chain_state != hang_state))
  1353. return false;
  1354. }
  1355. ath_dbg(ath9k_hw_common(ah), RESET, "MAC Hang signature 1 found\n");
  1356. return true;
  1357. }
  1358. bool ath9k_hw_check_alive(struct ath_hw *ah)
  1359. {
  1360. int count = 50;
  1361. u32 reg;
  1362. if (AR_SREV_9300(ah))
  1363. return !ath9k_hw_detect_mac_hang(ah);
  1364. if (AR_SREV_9285_12_OR_LATER(ah))
  1365. return true;
  1366. do {
  1367. reg = REG_READ(ah, AR_OBS_BUS_1);
  1368. if ((reg & 0x7E7FFFEF) == 0x00702400)
  1369. continue;
  1370. switch (reg & 0x7E000B00) {
  1371. case 0x1E000000:
  1372. case 0x52000B00:
  1373. case 0x18000B00:
  1374. continue;
  1375. default:
  1376. return true;
  1377. }
  1378. } while (count-- > 0);
  1379. return false;
  1380. }
  1381. EXPORT_SYMBOL(ath9k_hw_check_alive);
  1382. /*
  1383. * Fast channel change:
  1384. * (Change synthesizer based on channel freq without resetting chip)
  1385. *
  1386. * Don't do FCC when
  1387. * - Flag is not set
  1388. * - Chip is just coming out of full sleep
  1389. * - Channel to be set is same as current channel
  1390. * - Channel flags are different, (eg.,moving from 2GHz to 5GHz channel)
  1391. */
  1392. static int ath9k_hw_do_fastcc(struct ath_hw *ah, struct ath9k_channel *chan)
  1393. {
  1394. struct ath_common *common = ath9k_hw_common(ah);
  1395. int ret;
  1396. if (AR_SREV_9280(ah) && common->bus_ops->ath_bus_type == ATH_PCI)
  1397. goto fail;
  1398. if (ah->chip_fullsleep)
  1399. goto fail;
  1400. if (!ah->curchan)
  1401. goto fail;
  1402. if (chan->channel == ah->curchan->channel)
  1403. goto fail;
  1404. if ((ah->curchan->channelFlags | chan->channelFlags) &
  1405. (CHANNEL_HALF | CHANNEL_QUARTER))
  1406. goto fail;
  1407. if ((chan->channelFlags & CHANNEL_ALL) !=
  1408. (ah->curchan->channelFlags & CHANNEL_ALL))
  1409. goto fail;
  1410. if (!ath9k_hw_check_alive(ah))
  1411. goto fail;
  1412. /*
  1413. * For AR9462, make sure that calibration data for
  1414. * re-using are present.
  1415. */
  1416. if (AR_SREV_9462(ah) && (ah->caldata &&
  1417. (!ah->caldata->done_txiqcal_once ||
  1418. !ah->caldata->done_txclcal_once ||
  1419. !ah->caldata->rtt_done)))
  1420. goto fail;
  1421. ath_dbg(common, RESET, "FastChannelChange for %d -> %d\n",
  1422. ah->curchan->channel, chan->channel);
  1423. ret = ath9k_hw_channel_change(ah, chan);
  1424. if (!ret)
  1425. goto fail;
  1426. ath9k_hw_loadnf(ah, ah->curchan);
  1427. ath9k_hw_start_nfcal(ah, true);
  1428. if (ath9k_hw_mci_is_enabled(ah))
  1429. ar9003_mci_2g5g_switch(ah, false);
  1430. if (AR_SREV_9271(ah))
  1431. ar9002_hw_load_ani_reg(ah, chan);
  1432. return 0;
  1433. fail:
  1434. return -EINVAL;
  1435. }
  1436. int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
  1437. struct ath9k_hw_cal_data *caldata, bool fastcc)
  1438. {
  1439. struct ath_common *common = ath9k_hw_common(ah);
  1440. u32 saveLedState;
  1441. u32 saveDefAntenna;
  1442. u32 macStaId1;
  1443. u64 tsf = 0;
  1444. int i, r;
  1445. bool start_mci_reset = false;
  1446. bool save_fullsleep = ah->chip_fullsleep;
  1447. if (ath9k_hw_mci_is_enabled(ah)) {
  1448. start_mci_reset = ar9003_mci_start_reset(ah, chan);
  1449. if (start_mci_reset)
  1450. return 0;
  1451. }
  1452. if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
  1453. return -EIO;
  1454. if (ah->curchan && !ah->chip_fullsleep)
  1455. ath9k_hw_getnf(ah, ah->curchan);
  1456. ah->caldata = caldata;
  1457. if (caldata &&
  1458. (chan->channel != caldata->channel ||
  1459. (chan->channelFlags & ~CHANNEL_CW_INT) !=
  1460. (caldata->channelFlags & ~CHANNEL_CW_INT))) {
  1461. /* Operating channel changed, reset channel calibration data */
  1462. memset(caldata, 0, sizeof(*caldata));
  1463. ath9k_init_nfcal_hist_buffer(ah, chan);
  1464. } else if (caldata) {
  1465. caldata->paprd_packet_sent = false;
  1466. }
  1467. ah->noise = ath9k_hw_getchan_noise(ah, chan);
  1468. if (fastcc) {
  1469. r = ath9k_hw_do_fastcc(ah, chan);
  1470. if (!r)
  1471. return r;
  1472. }
  1473. if (ath9k_hw_mci_is_enabled(ah))
  1474. ar9003_mci_stop_bt(ah, save_fullsleep);
  1475. saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
  1476. if (saveDefAntenna == 0)
  1477. saveDefAntenna = 1;
  1478. macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
  1479. /* For chips on which RTC reset is done, save TSF before it gets cleared */
  1480. if (AR_SREV_9100(ah) ||
  1481. (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)))
  1482. tsf = ath9k_hw_gettsf64(ah);
  1483. saveLedState = REG_READ(ah, AR_CFG_LED) &
  1484. (AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
  1485. AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
  1486. ath9k_hw_mark_phy_inactive(ah);
  1487. ah->paprd_table_write_done = false;
  1488. /* Only required on the first reset */
  1489. if (AR_SREV_9271(ah) && ah->htc_reset_init) {
  1490. REG_WRITE(ah,
  1491. AR9271_RESET_POWER_DOWN_CONTROL,
  1492. AR9271_RADIO_RF_RST);
  1493. udelay(50);
  1494. }
  1495. if (!ath9k_hw_chip_reset(ah, chan)) {
  1496. ath_err(common, "Chip reset failed\n");
  1497. return -EINVAL;
  1498. }
  1499. /* Only required on the first reset */
  1500. if (AR_SREV_9271(ah) && ah->htc_reset_init) {
  1501. ah->htc_reset_init = false;
  1502. REG_WRITE(ah,
  1503. AR9271_RESET_POWER_DOWN_CONTROL,
  1504. AR9271_GATE_MAC_CTL);
  1505. udelay(50);
  1506. }
  1507. /* Restore TSF */
  1508. if (tsf)
  1509. ath9k_hw_settsf64(ah, tsf);
  1510. if (AR_SREV_9280_20_OR_LATER(ah))
  1511. REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
  1512. if (!AR_SREV_9300_20_OR_LATER(ah))
  1513. ar9002_hw_enable_async_fifo(ah);
  1514. r = ath9k_hw_process_ini(ah, chan);
  1515. if (r)
  1516. return r;
  1517. if (ath9k_hw_mci_is_enabled(ah))
  1518. ar9003_mci_reset(ah, false, IS_CHAN_2GHZ(chan), save_fullsleep);
  1519. /*
  1520. * Some AR91xx SoC devices frequently fail to accept TSF writes
  1521. * right after the chip reset. When that happens, write a new
  1522. * value after the initvals have been applied, with an offset
  1523. * based on measured time difference
  1524. */
  1525. if (AR_SREV_9100(ah) && (ath9k_hw_gettsf64(ah) < tsf)) {
  1526. tsf += 1500;
  1527. ath9k_hw_settsf64(ah, tsf);
  1528. }
  1529. /* Setup MFP options for CCMP */
  1530. if (AR_SREV_9280_20_OR_LATER(ah)) {
  1531. /* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
  1532. * frames when constructing CCMP AAD. */
  1533. REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
  1534. 0xc7ff);
  1535. ah->sw_mgmt_crypto = false;
  1536. } else if (AR_SREV_9160_10_OR_LATER(ah)) {
  1537. /* Disable hardware crypto for management frames */
  1538. REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
  1539. AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
  1540. REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
  1541. AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
  1542. ah->sw_mgmt_crypto = true;
  1543. } else
  1544. ah->sw_mgmt_crypto = true;
  1545. if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
  1546. ath9k_hw_set_delta_slope(ah, chan);
  1547. ath9k_hw_spur_mitigate_freq(ah, chan);
  1548. ah->eep_ops->set_board_values(ah, chan);
  1549. ENABLE_REGWRITE_BUFFER(ah);
  1550. REG_WRITE(ah, AR_STA_ID0, get_unaligned_le32(common->macaddr));
  1551. REG_WRITE(ah, AR_STA_ID1, get_unaligned_le16(common->macaddr + 4)
  1552. | macStaId1
  1553. | AR_STA_ID1_RTS_USE_DEF
  1554. | (ah->config.
  1555. ack_6mb ? AR_STA_ID1_ACKCTS_6MB : 0)
  1556. | ah->sta_id1_defaults);
  1557. ath_hw_setbssidmask(common);
  1558. REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
  1559. ath9k_hw_write_associd(ah);
  1560. REG_WRITE(ah, AR_ISR, ~0);
  1561. REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
  1562. REGWRITE_BUFFER_FLUSH(ah);
  1563. ath9k_hw_set_operating_mode(ah, ah->opmode);
  1564. r = ath9k_hw_rf_set_freq(ah, chan);
  1565. if (r)
  1566. return r;
  1567. ath9k_hw_set_clockrate(ah);
  1568. ENABLE_REGWRITE_BUFFER(ah);
  1569. for (i = 0; i < AR_NUM_DCU; i++)
  1570. REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
  1571. REGWRITE_BUFFER_FLUSH(ah);
  1572. ah->intr_txqs = 0;
  1573. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
  1574. ath9k_hw_resettxqueue(ah, i);
  1575. ath9k_hw_init_interrupt_masks(ah, ah->opmode);
  1576. ath9k_hw_ani_cache_ini_regs(ah);
  1577. ath9k_hw_init_qos(ah);
  1578. if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
  1579. ath9k_hw_cfg_gpio_input(ah, ah->rfkill_gpio);
  1580. ath9k_hw_init_global_settings(ah);
  1581. if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
  1582. REG_SET_BIT(ah, AR_MAC_PCU_LOGIC_ANALYZER,
  1583. AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768);
  1584. REG_RMW_FIELD(ah, AR_AHB_MODE, AR_AHB_CUSTOM_BURST_EN,
  1585. AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL);
  1586. REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
  1587. AR_PCU_MISC_MODE2_ENABLE_AGGWEP);
  1588. }
  1589. REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PRESERVE_SEQNUM);
  1590. ath9k_hw_set_dma(ah);
  1591. if (!ath9k_hw_mci_is_enabled(ah))
  1592. REG_WRITE(ah, AR_OBS, 8);
  1593. if (ah->config.rx_intr_mitigation) {
  1594. REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500);
  1595. REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000);
  1596. }
  1597. if (ah->config.tx_intr_mitigation) {
  1598. REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_LAST, 300);
  1599. REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_FIRST, 750);
  1600. }
  1601. ath9k_hw_init_bb(ah, chan);
  1602. if (caldata) {
  1603. caldata->done_txiqcal_once = false;
  1604. caldata->done_txclcal_once = false;
  1605. }
  1606. if (!ath9k_hw_init_cal(ah, chan))
  1607. return -EIO;
  1608. if (ath9k_hw_mci_is_enabled(ah) && ar9003_mci_end_reset(ah, chan, caldata))
  1609. return -EIO;
  1610. ENABLE_REGWRITE_BUFFER(ah);
  1611. ath9k_hw_restore_chainmask(ah);
  1612. REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
  1613. REGWRITE_BUFFER_FLUSH(ah);
  1614. /*
  1615. * For big endian systems turn on swapping for descriptors
  1616. */
  1617. if (AR_SREV_9100(ah)) {
  1618. u32 mask;
  1619. mask = REG_READ(ah, AR_CFG);
  1620. if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
  1621. ath_dbg(common, RESET, "CFG Byte Swap Set 0x%x\n",
  1622. mask);
  1623. } else {
  1624. mask =
  1625. INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
  1626. REG_WRITE(ah, AR_CFG, mask);
  1627. ath_dbg(common, RESET, "Setting CFG 0x%x\n",
  1628. REG_READ(ah, AR_CFG));
  1629. }
  1630. } else {
  1631. if (common->bus_ops->ath_bus_type == ATH_USB) {
  1632. /* Configure AR9271 target WLAN */
  1633. if (AR_SREV_9271(ah))
  1634. REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
  1635. else
  1636. REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
  1637. }
  1638. #ifdef __BIG_ENDIAN
  1639. else if (AR_SREV_9330(ah) || AR_SREV_9340(ah) ||
  1640. AR_SREV_9550(ah))
  1641. REG_RMW(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB, 0);
  1642. else
  1643. REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
  1644. #endif
  1645. }
  1646. if (ath9k_hw_btcoex_is_enabled(ah))
  1647. ath9k_hw_btcoex_enable(ah);
  1648. if (ath9k_hw_mci_is_enabled(ah))
  1649. ar9003_mci_check_bt(ah);
  1650. ath9k_hw_loadnf(ah, chan);
  1651. ath9k_hw_start_nfcal(ah, true);
  1652. if (AR_SREV_9300_20_OR_LATER(ah)) {
  1653. ar9003_hw_bb_watchdog_config(ah);
  1654. ar9003_hw_disable_phy_restart(ah);
  1655. }
  1656. ath9k_hw_apply_gpio_override(ah);
  1657. return 0;
  1658. }
  1659. EXPORT_SYMBOL(ath9k_hw_reset);
  1660. /******************************/
  1661. /* Power Management (Chipset) */
  1662. /******************************/
  1663. /*
  1664. * Notify Power Mgt is disabled in self-generated frames.
  1665. * If requested, force chip to sleep.
  1666. */
  1667. static void ath9k_set_power_sleep(struct ath_hw *ah)
  1668. {
  1669. REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
  1670. if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
  1671. REG_CLR_BIT(ah, AR_TIMER_MODE, 0xff);
  1672. REG_CLR_BIT(ah, AR_NDP2_TIMER_MODE, 0xff);
  1673. REG_CLR_BIT(ah, AR_SLP32_INC, 0xfffff);
  1674. /* xxx Required for WLAN only case ? */
  1675. REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_EN, 0);
  1676. udelay(100);
  1677. }
  1678. /*
  1679. * Clear the RTC force wake bit to allow the
  1680. * mac to go to sleep.
  1681. */
  1682. REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
  1683. if (ath9k_hw_mci_is_enabled(ah))
  1684. udelay(100);
  1685. if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
  1686. REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
  1687. /* Shutdown chip. Active low */
  1688. if (!AR_SREV_5416(ah) && !AR_SREV_9271(ah)) {
  1689. REG_CLR_BIT(ah, AR_RTC_RESET, AR_RTC_RESET_EN);
  1690. udelay(2);
  1691. }
  1692. /* Clear Bit 14 of AR_WA after putting chip into Full Sleep mode. */
  1693. if (AR_SREV_9300_20_OR_LATER(ah))
  1694. REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
  1695. }
  1696. /*
  1697. * Notify Power Management is enabled in self-generating
  1698. * frames. If request, set power mode of chip to
  1699. * auto/normal. Duration in units of 128us (1/8 TU).
  1700. */
  1701. static void ath9k_set_power_network_sleep(struct ath_hw *ah)
  1702. {
  1703. struct ath9k_hw_capabilities *pCap = &ah->caps;
  1704. REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
  1705. if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
  1706. /* Set WakeOnInterrupt bit; clear ForceWake bit */
  1707. REG_WRITE(ah, AR_RTC_FORCE_WAKE,
  1708. AR_RTC_FORCE_WAKE_ON_INT);
  1709. } else {
  1710. /* When chip goes into network sleep, it could be waken
  1711. * up by MCI_INT interrupt caused by BT's HW messages
  1712. * (LNA_xxx, CONT_xxx) which chould be in a very fast
  1713. * rate (~100us). This will cause chip to leave and
  1714. * re-enter network sleep mode frequently, which in
  1715. * consequence will have WLAN MCI HW to generate lots of
  1716. * SYS_WAKING and SYS_SLEEPING messages which will make
  1717. * BT CPU to busy to process.
  1718. */
  1719. if (ath9k_hw_mci_is_enabled(ah))
  1720. REG_CLR_BIT(ah, AR_MCI_INTERRUPT_RX_MSG_EN,
  1721. AR_MCI_INTERRUPT_RX_HW_MSG_MASK);
  1722. /*
  1723. * Clear the RTC force wake bit to allow the
  1724. * mac to go to sleep.
  1725. */
  1726. REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
  1727. if (ath9k_hw_mci_is_enabled(ah))
  1728. udelay(30);
  1729. }
  1730. /* Clear Bit 14 of AR_WA after putting chip into Net Sleep mode. */
  1731. if (AR_SREV_9300_20_OR_LATER(ah))
  1732. REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
  1733. }
  1734. static bool ath9k_hw_set_power_awake(struct ath_hw *ah)
  1735. {
  1736. u32 val;
  1737. int i;
  1738. /* Set Bits 14 and 17 of AR_WA before powering on the chip. */
  1739. if (AR_SREV_9300_20_OR_LATER(ah)) {
  1740. REG_WRITE(ah, AR_WA, ah->WARegVal);
  1741. udelay(10);
  1742. }
  1743. if ((REG_READ(ah, AR_RTC_STATUS) &
  1744. AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
  1745. if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
  1746. return false;
  1747. }
  1748. if (!AR_SREV_9300_20_OR_LATER(ah))
  1749. ath9k_hw_init_pll(ah, NULL);
  1750. }
  1751. if (AR_SREV_9100(ah))
  1752. REG_SET_BIT(ah, AR_RTC_RESET,
  1753. AR_RTC_RESET_EN);
  1754. REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
  1755. AR_RTC_FORCE_WAKE_EN);
  1756. udelay(50);
  1757. if (ath9k_hw_mci_is_enabled(ah))
  1758. ar9003_mci_set_power_awake(ah);
  1759. for (i = POWER_UP_TIME / 50; i > 0; i--) {
  1760. val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
  1761. if (val == AR_RTC_STATUS_ON)
  1762. break;
  1763. udelay(50);
  1764. REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
  1765. AR_RTC_FORCE_WAKE_EN);
  1766. }
  1767. if (i == 0) {
  1768. ath_err(ath9k_hw_common(ah),
  1769. "Failed to wakeup in %uus\n",
  1770. POWER_UP_TIME / 20);
  1771. return false;
  1772. }
  1773. REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
  1774. return true;
  1775. }
  1776. bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
  1777. {
  1778. struct ath_common *common = ath9k_hw_common(ah);
  1779. int status = true;
  1780. static const char *modes[] = {
  1781. "AWAKE",
  1782. "FULL-SLEEP",
  1783. "NETWORK SLEEP",
  1784. "UNDEFINED"
  1785. };
  1786. if (ah->power_mode == mode)
  1787. return status;
  1788. ath_dbg(common, RESET, "%s -> %s\n",
  1789. modes[ah->power_mode], modes[mode]);
  1790. switch (mode) {
  1791. case ATH9K_PM_AWAKE:
  1792. status = ath9k_hw_set_power_awake(ah);
  1793. break;
  1794. case ATH9K_PM_FULL_SLEEP:
  1795. if (ath9k_hw_mci_is_enabled(ah))
  1796. ar9003_mci_set_full_sleep(ah);
  1797. ath9k_set_power_sleep(ah);
  1798. ah->chip_fullsleep = true;
  1799. break;
  1800. case ATH9K_PM_NETWORK_SLEEP:
  1801. ath9k_set_power_network_sleep(ah);
  1802. break;
  1803. default:
  1804. ath_err(common, "Unknown power mode %u\n", mode);
  1805. return false;
  1806. }
  1807. ah->power_mode = mode;
  1808. /*
  1809. * XXX: If this warning never comes up after a while then
  1810. * simply keep the ATH_DBG_WARN_ON_ONCE() but make
  1811. * ath9k_hw_setpower() return type void.
  1812. */
  1813. if (!(ah->ah_flags & AH_UNPLUGGED))
  1814. ATH_DBG_WARN_ON_ONCE(!status);
  1815. return status;
  1816. }
  1817. EXPORT_SYMBOL(ath9k_hw_setpower);
  1818. /*******************/
  1819. /* Beacon Handling */
  1820. /*******************/
  1821. void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
  1822. {
  1823. int flags = 0;
  1824. ENABLE_REGWRITE_BUFFER(ah);
  1825. switch (ah->opmode) {
  1826. case NL80211_IFTYPE_ADHOC:
  1827. case NL80211_IFTYPE_MESH_POINT:
  1828. REG_SET_BIT(ah, AR_TXCFG,
  1829. AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
  1830. REG_WRITE(ah, AR_NEXT_NDP_TIMER, next_beacon +
  1831. TU_TO_USEC(ah->atim_window ? ah->atim_window : 1));
  1832. flags |= AR_NDP_TIMER_EN;
  1833. case NL80211_IFTYPE_AP:
  1834. REG_WRITE(ah, AR_NEXT_TBTT_TIMER, next_beacon);
  1835. REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, next_beacon -
  1836. TU_TO_USEC(ah->config.dma_beacon_response_time));
  1837. REG_WRITE(ah, AR_NEXT_SWBA, next_beacon -
  1838. TU_TO_USEC(ah->config.sw_beacon_response_time));
  1839. flags |=
  1840. AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
  1841. break;
  1842. default:
  1843. ath_dbg(ath9k_hw_common(ah), BEACON,
  1844. "%s: unsupported opmode: %d\n", __func__, ah->opmode);
  1845. return;
  1846. break;
  1847. }
  1848. REG_WRITE(ah, AR_BEACON_PERIOD, beacon_period);
  1849. REG_WRITE(ah, AR_DMA_BEACON_PERIOD, beacon_period);
  1850. REG_WRITE(ah, AR_SWBA_PERIOD, beacon_period);
  1851. REG_WRITE(ah, AR_NDP_PERIOD, beacon_period);
  1852. REGWRITE_BUFFER_FLUSH(ah);
  1853. REG_SET_BIT(ah, AR_TIMER_MODE, flags);
  1854. }
  1855. EXPORT_SYMBOL(ath9k_hw_beaconinit);
  1856. void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
  1857. const struct ath9k_beacon_state *bs)
  1858. {
  1859. u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
  1860. struct ath9k_hw_capabilities *pCap = &ah->caps;
  1861. struct ath_common *common = ath9k_hw_common(ah);
  1862. ENABLE_REGWRITE_BUFFER(ah);
  1863. REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(bs->bs_nexttbtt));
  1864. REG_WRITE(ah, AR_BEACON_PERIOD,
  1865. TU_TO_USEC(bs->bs_intval));
  1866. REG_WRITE(ah, AR_DMA_BEACON_PERIOD,
  1867. TU_TO_USEC(bs->bs_intval));
  1868. REGWRITE_BUFFER_FLUSH(ah);
  1869. REG_RMW_FIELD(ah, AR_RSSI_THR,
  1870. AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
  1871. beaconintval = bs->bs_intval;
  1872. if (bs->bs_sleepduration > beaconintval)
  1873. beaconintval = bs->bs_sleepduration;
  1874. dtimperiod = bs->bs_dtimperiod;
  1875. if (bs->bs_sleepduration > dtimperiod)
  1876. dtimperiod = bs->bs_sleepduration;
  1877. if (beaconintval == dtimperiod)
  1878. nextTbtt = bs->bs_nextdtim;
  1879. else
  1880. nextTbtt = bs->bs_nexttbtt;
  1881. ath_dbg(common, BEACON, "next DTIM %d\n", bs->bs_nextdtim);
  1882. ath_dbg(common, BEACON, "next beacon %d\n", nextTbtt);
  1883. ath_dbg(common, BEACON, "beacon period %d\n", beaconintval);
  1884. ath_dbg(common, BEACON, "DTIM period %d\n", dtimperiod);
  1885. ENABLE_REGWRITE_BUFFER(ah);
  1886. REG_WRITE(ah, AR_NEXT_DTIM,
  1887. TU_TO_USEC(bs->bs_nextdtim - SLEEP_SLOP));
  1888. REG_WRITE(ah, AR_NEXT_TIM, TU_TO_USEC(nextTbtt - SLEEP_SLOP));
  1889. REG_WRITE(ah, AR_SLEEP1,
  1890. SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
  1891. | AR_SLEEP1_ASSUME_DTIM);
  1892. if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
  1893. beacontimeout = (BEACON_TIMEOUT_VAL << 3);
  1894. else
  1895. beacontimeout = MIN_BEACON_TIMEOUT_VAL;
  1896. REG_WRITE(ah, AR_SLEEP2,
  1897. SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
  1898. REG_WRITE(ah, AR_TIM_PERIOD, TU_TO_USEC(beaconintval));
  1899. REG_WRITE(ah, AR_DTIM_PERIOD, TU_TO_USEC(dtimperiod));
  1900. REGWRITE_BUFFER_FLUSH(ah);
  1901. REG_SET_BIT(ah, AR_TIMER_MODE,
  1902. AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
  1903. AR_DTIM_TIMER_EN);
  1904. /* TSF Out of Range Threshold */
  1905. REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
  1906. }
  1907. EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers);
  1908. /*******************/
  1909. /* HW Capabilities */
  1910. /*******************/
  1911. static u8 fixup_chainmask(u8 chip_chainmask, u8 eeprom_chainmask)
  1912. {
  1913. eeprom_chainmask &= chip_chainmask;
  1914. if (eeprom_chainmask)
  1915. return eeprom_chainmask;
  1916. else
  1917. return chip_chainmask;
  1918. }
  1919. /**
  1920. * ath9k_hw_dfs_tested - checks if DFS has been tested with used chipset
  1921. * @ah: the atheros hardware data structure
  1922. *
  1923. * We enable DFS support upstream on chipsets which have passed a series
  1924. * of tests. The testing requirements are going to be documented. Desired
  1925. * test requirements are documented at:
  1926. *
  1927. * http://wireless.kernel.org/en/users/Drivers/ath9k/dfs
  1928. *
  1929. * Once a new chipset gets properly tested an individual commit can be used
  1930. * to document the testing for DFS for that chipset.
  1931. */
  1932. static bool ath9k_hw_dfs_tested(struct ath_hw *ah)
  1933. {
  1934. switch (ah->hw_version.macVersion) {
  1935. /* AR9580 will likely be our first target to get testing on */
  1936. case AR_SREV_VERSION_9580:
  1937. default:
  1938. return false;
  1939. }
  1940. }
  1941. int ath9k_hw_fill_cap_info(struct ath_hw *ah)
  1942. {
  1943. struct ath9k_hw_capabilities *pCap = &ah->caps;
  1944. struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
  1945. struct ath_common *common = ath9k_hw_common(ah);
  1946. unsigned int chip_chainmask;
  1947. u16 eeval;
  1948. u8 ant_div_ctl1, tx_chainmask, rx_chainmask;
  1949. eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
  1950. regulatory->current_rd = eeval;
  1951. if (ah->opmode != NL80211_IFTYPE_AP &&
  1952. ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
  1953. if (regulatory->current_rd == 0x64 ||
  1954. regulatory->current_rd == 0x65)
  1955. regulatory->current_rd += 5;
  1956. else if (regulatory->current_rd == 0x41)
  1957. regulatory->current_rd = 0x43;
  1958. ath_dbg(common, REGULATORY, "regdomain mapped to 0x%x\n",
  1959. regulatory->current_rd);
  1960. }
  1961. eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
  1962. if ((eeval & (AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A)) == 0) {
  1963. ath_err(common,
  1964. "no band has been marked as supported in EEPROM\n");
  1965. return -EINVAL;
  1966. }
  1967. if (eeval & AR5416_OPFLAGS_11A)
  1968. pCap->hw_caps |= ATH9K_HW_CAP_5GHZ;
  1969. if (eeval & AR5416_OPFLAGS_11G)
  1970. pCap->hw_caps |= ATH9K_HW_CAP_2GHZ;
  1971. if (AR_SREV_9485(ah) || AR_SREV_9285(ah) || AR_SREV_9330(ah))
  1972. chip_chainmask = 1;
  1973. else if (AR_SREV_9462(ah))
  1974. chip_chainmask = 3;
  1975. else if (!AR_SREV_9280_20_OR_LATER(ah))
  1976. chip_chainmask = 7;
  1977. else if (!AR_SREV_9300_20_OR_LATER(ah) || AR_SREV_9340(ah))
  1978. chip_chainmask = 3;
  1979. else
  1980. chip_chainmask = 7;
  1981. pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
  1982. /*
  1983. * For AR9271 we will temporarilly uses the rx chainmax as read from
  1984. * the EEPROM.
  1985. */
  1986. if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
  1987. !(eeval & AR5416_OPFLAGS_11A) &&
  1988. !(AR_SREV_9271(ah)))
  1989. /* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
  1990. pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
  1991. else if (AR_SREV_9100(ah))
  1992. pCap->rx_chainmask = 0x7;
  1993. else
  1994. /* Use rx_chainmask from EEPROM. */
  1995. pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
  1996. pCap->tx_chainmask = fixup_chainmask(chip_chainmask, pCap->tx_chainmask);
  1997. pCap->rx_chainmask = fixup_chainmask(chip_chainmask, pCap->rx_chainmask);
  1998. ah->txchainmask = pCap->tx_chainmask;
  1999. ah->rxchainmask = pCap->rx_chainmask;
  2000. ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
  2001. /* enable key search for every frame in an aggregate */
  2002. if (AR_SREV_9300_20_OR_LATER(ah))
  2003. ah->misc_mode |= AR_PCU_ALWAYS_PERFORM_KEYSEARCH;
  2004. common->crypt_caps |= ATH_CRYPT_CAP_CIPHER_AESCCM;
  2005. if (ah->hw_version.devid != AR2427_DEVID_PCIE)
  2006. pCap->hw_caps |= ATH9K_HW_CAP_HT;
  2007. else
  2008. pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
  2009. if (AR_SREV_9271(ah))
  2010. pCap->num_gpio_pins = AR9271_NUM_GPIO;
  2011. else if (AR_DEVID_7010(ah))
  2012. pCap->num_gpio_pins = AR7010_NUM_GPIO;
  2013. else if (AR_SREV_9300_20_OR_LATER(ah))
  2014. pCap->num_gpio_pins = AR9300_NUM_GPIO;
  2015. else if (AR_SREV_9287_11_OR_LATER(ah))
  2016. pCap->num_gpio_pins = AR9287_NUM_GPIO;
  2017. else if (AR_SREV_9285_12_OR_LATER(ah))
  2018. pCap->num_gpio_pins = AR9285_NUM_GPIO;
  2019. else if (AR_SREV_9280_20_OR_LATER(ah))
  2020. pCap->num_gpio_pins = AR928X_NUM_GPIO;
  2021. else
  2022. pCap->num_gpio_pins = AR_NUM_GPIO;
  2023. if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah))
  2024. pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
  2025. else
  2026. pCap->rts_aggr_limit = (8 * 1024);
  2027. #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
  2028. ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
  2029. if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
  2030. ah->rfkill_gpio =
  2031. MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
  2032. ah->rfkill_polarity =
  2033. MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
  2034. pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
  2035. }
  2036. #endif
  2037. if (AR_SREV_9271(ah) || AR_SREV_9300_20_OR_LATER(ah))
  2038. pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP;
  2039. else
  2040. pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
  2041. if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
  2042. pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
  2043. else
  2044. pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
  2045. if (AR_SREV_9300_20_OR_LATER(ah)) {
  2046. pCap->hw_caps |= ATH9K_HW_CAP_EDMA | ATH9K_HW_CAP_FASTCLOCK;
  2047. if (!AR_SREV_9330(ah) && !AR_SREV_9485(ah) && !AR_SREV_9565(ah))
  2048. pCap->hw_caps |= ATH9K_HW_CAP_LDPC;
  2049. pCap->rx_hp_qdepth = ATH9K_HW_RX_HP_QDEPTH;
  2050. pCap->rx_lp_qdepth = ATH9K_HW_RX_LP_QDEPTH;
  2051. pCap->rx_status_len = sizeof(struct ar9003_rxs);
  2052. pCap->tx_desc_len = sizeof(struct ar9003_txc);
  2053. pCap->txs_len = sizeof(struct ar9003_txs);
  2054. if (!ah->config.paprd_disable &&
  2055. ah->eep_ops->get_eeprom(ah, EEP_PAPRD) &&
  2056. !AR_SREV_9462(ah))
  2057. pCap->hw_caps |= ATH9K_HW_CAP_PAPRD;
  2058. } else {
  2059. pCap->tx_desc_len = sizeof(struct ath_desc);
  2060. if (AR_SREV_9280_20(ah))
  2061. pCap->hw_caps |= ATH9K_HW_CAP_FASTCLOCK;
  2062. }
  2063. if (AR_SREV_9300_20_OR_LATER(ah))
  2064. pCap->hw_caps |= ATH9K_HW_CAP_RAC_SUPPORTED;
  2065. if (AR_SREV_9300_20_OR_LATER(ah))
  2066. ah->ent_mode = REG_READ(ah, AR_ENT_OTP);
  2067. if (AR_SREV_9287_11_OR_LATER(ah) || AR_SREV_9271(ah))
  2068. pCap->hw_caps |= ATH9K_HW_CAP_SGI_20;
  2069. if (AR_SREV_9285(ah))
  2070. if (ah->eep_ops->get_eeprom(ah, EEP_MODAL_VER) >= 3) {
  2071. ant_div_ctl1 =
  2072. ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
  2073. if ((ant_div_ctl1 & 0x1) && ((ant_div_ctl1 >> 3) & 0x1))
  2074. pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
  2075. }
  2076. if (AR_SREV_9300_20_OR_LATER(ah)) {
  2077. if (ah->eep_ops->get_eeprom(ah, EEP_CHAIN_MASK_REDUCE))
  2078. pCap->hw_caps |= ATH9K_HW_CAP_APM;
  2079. }
  2080. if (AR_SREV_9330(ah) || AR_SREV_9485(ah)) {
  2081. ant_div_ctl1 = ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
  2082. /*
  2083. * enable the diversity-combining algorithm only when
  2084. * both enable_lna_div and enable_fast_div are set
  2085. * Table for Diversity
  2086. * ant_div_alt_lnaconf bit 0-1
  2087. * ant_div_main_lnaconf bit 2-3
  2088. * ant_div_alt_gaintb bit 4
  2089. * ant_div_main_gaintb bit 5
  2090. * enable_ant_div_lnadiv bit 6
  2091. * enable_ant_fast_div bit 7
  2092. */
  2093. if ((ant_div_ctl1 >> 0x6) == 0x3)
  2094. pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
  2095. }
  2096. if (AR_SREV_9485_10(ah)) {
  2097. pCap->pcie_lcr_extsync_en = true;
  2098. pCap->pcie_lcr_offset = 0x80;
  2099. }
  2100. if (ath9k_hw_dfs_tested(ah))
  2101. pCap->hw_caps |= ATH9K_HW_CAP_DFS;
  2102. tx_chainmask = pCap->tx_chainmask;
  2103. rx_chainmask = pCap->rx_chainmask;
  2104. while (tx_chainmask || rx_chainmask) {
  2105. if (tx_chainmask & BIT(0))
  2106. pCap->max_txchains++;
  2107. if (rx_chainmask & BIT(0))
  2108. pCap->max_rxchains++;
  2109. tx_chainmask >>= 1;
  2110. rx_chainmask >>= 1;
  2111. }
  2112. if (AR_SREV_9300_20_OR_LATER(ah)) {
  2113. ah->enabled_cals |= TX_IQ_CAL;
  2114. if (AR_SREV_9485_OR_LATER(ah))
  2115. ah->enabled_cals |= TX_IQ_ON_AGC_CAL;
  2116. }
  2117. if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
  2118. if (!(ah->ent_mode & AR_ENT_OTP_49GHZ_DISABLE))
  2119. pCap->hw_caps |= ATH9K_HW_CAP_MCI;
  2120. if (AR_SREV_9462_20(ah))
  2121. pCap->hw_caps |= ATH9K_HW_CAP_RTT;
  2122. }
  2123. if (AR_SREV_9280_20_OR_LATER(ah)) {
  2124. pCap->hw_caps |= ATH9K_HW_WOW_DEVICE_CAPABLE |
  2125. ATH9K_HW_WOW_PATTERN_MATCH_EXACT;
  2126. if (AR_SREV_9280(ah))
  2127. pCap->hw_caps |= ATH9K_HW_WOW_PATTERN_MATCH_DWORD;
  2128. }
  2129. return 0;
  2130. }
  2131. /****************************/
  2132. /* GPIO / RFKILL / Antennae */
  2133. /****************************/
  2134. static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah,
  2135. u32 gpio, u32 type)
  2136. {
  2137. int addr;
  2138. u32 gpio_shift, tmp;
  2139. if (gpio > 11)
  2140. addr = AR_GPIO_OUTPUT_MUX3;
  2141. else if (gpio > 5)
  2142. addr = AR_GPIO_OUTPUT_MUX2;
  2143. else
  2144. addr = AR_GPIO_OUTPUT_MUX1;
  2145. gpio_shift = (gpio % 6) * 5;
  2146. if (AR_SREV_9280_20_OR_LATER(ah)
  2147. || (addr != AR_GPIO_OUTPUT_MUX1)) {
  2148. REG_RMW(ah, addr, (type << gpio_shift),
  2149. (0x1f << gpio_shift));
  2150. } else {
  2151. tmp = REG_READ(ah, addr);
  2152. tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
  2153. tmp &= ~(0x1f << gpio_shift);
  2154. tmp |= (type << gpio_shift);
  2155. REG_WRITE(ah, addr, tmp);
  2156. }
  2157. }
  2158. void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio)
  2159. {
  2160. u32 gpio_shift;
  2161. BUG_ON(gpio >= ah->caps.num_gpio_pins);
  2162. if (AR_DEVID_7010(ah)) {
  2163. gpio_shift = gpio;
  2164. REG_RMW(ah, AR7010_GPIO_OE,
  2165. (AR7010_GPIO_OE_AS_INPUT << gpio_shift),
  2166. (AR7010_GPIO_OE_MASK << gpio_shift));
  2167. return;
  2168. }
  2169. gpio_shift = gpio << 1;
  2170. REG_RMW(ah,
  2171. AR_GPIO_OE_OUT,
  2172. (AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
  2173. (AR_GPIO_OE_OUT_DRV << gpio_shift));
  2174. }
  2175. EXPORT_SYMBOL(ath9k_hw_cfg_gpio_input);
  2176. u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
  2177. {
  2178. #define MS_REG_READ(x, y) \
  2179. (MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
  2180. if (gpio >= ah->caps.num_gpio_pins)
  2181. return 0xffffffff;
  2182. if (AR_DEVID_7010(ah)) {
  2183. u32 val;
  2184. val = REG_READ(ah, AR7010_GPIO_IN);
  2185. return (MS(val, AR7010_GPIO_IN_VAL) & AR_GPIO_BIT(gpio)) == 0;
  2186. } else if (AR_SREV_9300_20_OR_LATER(ah))
  2187. return (MS(REG_READ(ah, AR_GPIO_IN), AR9300_GPIO_IN_VAL) &
  2188. AR_GPIO_BIT(gpio)) != 0;
  2189. else if (AR_SREV_9271(ah))
  2190. return MS_REG_READ(AR9271, gpio) != 0;
  2191. else if (AR_SREV_9287_11_OR_LATER(ah))
  2192. return MS_REG_READ(AR9287, gpio) != 0;
  2193. else if (AR_SREV_9285_12_OR_LATER(ah))
  2194. return MS_REG_READ(AR9285, gpio) != 0;
  2195. else if (AR_SREV_9280_20_OR_LATER(ah))
  2196. return MS_REG_READ(AR928X, gpio) != 0;
  2197. else
  2198. return MS_REG_READ(AR, gpio) != 0;
  2199. }
  2200. EXPORT_SYMBOL(ath9k_hw_gpio_get);
  2201. void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio,
  2202. u32 ah_signal_type)
  2203. {
  2204. u32 gpio_shift;
  2205. if (AR_DEVID_7010(ah)) {
  2206. gpio_shift = gpio;
  2207. REG_RMW(ah, AR7010_GPIO_OE,
  2208. (AR7010_GPIO_OE_AS_OUTPUT << gpio_shift),
  2209. (AR7010_GPIO_OE_MASK << gpio_shift));
  2210. return;
  2211. }
  2212. ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
  2213. gpio_shift = 2 * gpio;
  2214. REG_RMW(ah,
  2215. AR_GPIO_OE_OUT,
  2216. (AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
  2217. (AR_GPIO_OE_OUT_DRV << gpio_shift));
  2218. }
  2219. EXPORT_SYMBOL(ath9k_hw_cfg_output);
  2220. void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
  2221. {
  2222. if (AR_DEVID_7010(ah)) {
  2223. val = val ? 0 : 1;
  2224. REG_RMW(ah, AR7010_GPIO_OUT, ((val&1) << gpio),
  2225. AR_GPIO_BIT(gpio));
  2226. return;
  2227. }
  2228. if (AR_SREV_9271(ah))
  2229. val = ~val;
  2230. REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
  2231. AR_GPIO_BIT(gpio));
  2232. }
  2233. EXPORT_SYMBOL(ath9k_hw_set_gpio);
  2234. void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
  2235. {
  2236. REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
  2237. }
  2238. EXPORT_SYMBOL(ath9k_hw_setantenna);
  2239. /*********************/
  2240. /* General Operation */
  2241. /*********************/
  2242. u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
  2243. {
  2244. u32 bits = REG_READ(ah, AR_RX_FILTER);
  2245. u32 phybits = REG_READ(ah, AR_PHY_ERR);
  2246. if (phybits & AR_PHY_ERR_RADAR)
  2247. bits |= ATH9K_RX_FILTER_PHYRADAR;
  2248. if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
  2249. bits |= ATH9K_RX_FILTER_PHYERR;
  2250. return bits;
  2251. }
  2252. EXPORT_SYMBOL(ath9k_hw_getrxfilter);
  2253. void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
  2254. {
  2255. u32 phybits;
  2256. ENABLE_REGWRITE_BUFFER(ah);
  2257. if (AR_SREV_9462(ah) || AR_SREV_9565(ah))
  2258. bits |= ATH9K_RX_FILTER_CONTROL_WRAPPER;
  2259. REG_WRITE(ah, AR_RX_FILTER, bits);
  2260. phybits = 0;
  2261. if (bits & ATH9K_RX_FILTER_PHYRADAR)
  2262. phybits |= AR_PHY_ERR_RADAR;
  2263. if (bits & ATH9K_RX_FILTER_PHYERR)
  2264. phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
  2265. REG_WRITE(ah, AR_PHY_ERR, phybits);
  2266. if (phybits)
  2267. REG_SET_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
  2268. else
  2269. REG_CLR_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
  2270. REGWRITE_BUFFER_FLUSH(ah);
  2271. }
  2272. EXPORT_SYMBOL(ath9k_hw_setrxfilter);
  2273. bool ath9k_hw_phy_disable(struct ath_hw *ah)
  2274. {
  2275. if (ath9k_hw_mci_is_enabled(ah))
  2276. ar9003_mci_bt_gain_ctrl(ah);
  2277. if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
  2278. return false;
  2279. ath9k_hw_init_pll(ah, NULL);
  2280. ah->htc_reset_init = true;
  2281. return true;
  2282. }
  2283. EXPORT_SYMBOL(ath9k_hw_phy_disable);
  2284. bool ath9k_hw_disable(struct ath_hw *ah)
  2285. {
  2286. if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
  2287. return false;
  2288. if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD))
  2289. return false;
  2290. ath9k_hw_init_pll(ah, NULL);
  2291. return true;
  2292. }
  2293. EXPORT_SYMBOL(ath9k_hw_disable);
  2294. static int get_antenna_gain(struct ath_hw *ah, struct ath9k_channel *chan)
  2295. {
  2296. enum eeprom_param gain_param;
  2297. if (IS_CHAN_2GHZ(chan))
  2298. gain_param = EEP_ANTENNA_GAIN_2G;
  2299. else
  2300. gain_param = EEP_ANTENNA_GAIN_5G;
  2301. return ah->eep_ops->get_eeprom(ah, gain_param);
  2302. }
  2303. void ath9k_hw_apply_txpower(struct ath_hw *ah, struct ath9k_channel *chan,
  2304. bool test)
  2305. {
  2306. struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
  2307. struct ieee80211_channel *channel;
  2308. int chan_pwr, new_pwr, max_gain;
  2309. int ant_gain, ant_reduction = 0;
  2310. if (!chan)
  2311. return;
  2312. channel = chan->chan;
  2313. chan_pwr = min_t(int, channel->max_power * 2, MAX_RATE_POWER);
  2314. new_pwr = min_t(int, chan_pwr, reg->power_limit);
  2315. max_gain = chan_pwr - new_pwr + channel->max_antenna_gain * 2;
  2316. ant_gain = get_antenna_gain(ah, chan);
  2317. if (ant_gain > max_gain)
  2318. ant_reduction = ant_gain - max_gain;
  2319. ah->eep_ops->set_txpower(ah, chan,
  2320. ath9k_regd_get_ctl(reg, chan),
  2321. ant_reduction, new_pwr, test);
  2322. }
  2323. void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit, bool test)
  2324. {
  2325. struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
  2326. struct ath9k_channel *chan = ah->curchan;
  2327. struct ieee80211_channel *channel = chan->chan;
  2328. reg->power_limit = min_t(u32, limit, MAX_RATE_POWER);
  2329. if (test)
  2330. channel->max_power = MAX_RATE_POWER / 2;
  2331. ath9k_hw_apply_txpower(ah, chan, test);
  2332. if (test)
  2333. channel->max_power = DIV_ROUND_UP(reg->max_power_level, 2);
  2334. }
  2335. EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit);
  2336. void ath9k_hw_setopmode(struct ath_hw *ah)
  2337. {
  2338. ath9k_hw_set_operating_mode(ah, ah->opmode);
  2339. }
  2340. EXPORT_SYMBOL(ath9k_hw_setopmode);
  2341. void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
  2342. {
  2343. REG_WRITE(ah, AR_MCAST_FIL0, filter0);
  2344. REG_WRITE(ah, AR_MCAST_FIL1, filter1);
  2345. }
  2346. EXPORT_SYMBOL(ath9k_hw_setmcastfilter);
  2347. void ath9k_hw_write_associd(struct ath_hw *ah)
  2348. {
  2349. struct ath_common *common = ath9k_hw_common(ah);
  2350. REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid));
  2351. REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) |
  2352. ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
  2353. }
  2354. EXPORT_SYMBOL(ath9k_hw_write_associd);
  2355. #define ATH9K_MAX_TSF_READ 10
  2356. u64 ath9k_hw_gettsf64(struct ath_hw *ah)
  2357. {
  2358. u32 tsf_lower, tsf_upper1, tsf_upper2;
  2359. int i;
  2360. tsf_upper1 = REG_READ(ah, AR_TSF_U32);
  2361. for (i = 0; i < ATH9K_MAX_TSF_READ; i++) {
  2362. tsf_lower = REG_READ(ah, AR_TSF_L32);
  2363. tsf_upper2 = REG_READ(ah, AR_TSF_U32);
  2364. if (tsf_upper2 == tsf_upper1)
  2365. break;
  2366. tsf_upper1 = tsf_upper2;
  2367. }
  2368. WARN_ON( i == ATH9K_MAX_TSF_READ );
  2369. return (((u64)tsf_upper1 << 32) | tsf_lower);
  2370. }
  2371. EXPORT_SYMBOL(ath9k_hw_gettsf64);
  2372. void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
  2373. {
  2374. REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
  2375. REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
  2376. }
  2377. EXPORT_SYMBOL(ath9k_hw_settsf64);
  2378. void ath9k_hw_reset_tsf(struct ath_hw *ah)
  2379. {
  2380. if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
  2381. AH_TSF_WRITE_TIMEOUT))
  2382. ath_dbg(ath9k_hw_common(ah), RESET,
  2383. "AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
  2384. REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
  2385. }
  2386. EXPORT_SYMBOL(ath9k_hw_reset_tsf);
  2387. void ath9k_hw_set_tsfadjust(struct ath_hw *ah, bool set)
  2388. {
  2389. if (set)
  2390. ah->misc_mode |= AR_PCU_TX_ADD_TSF;
  2391. else
  2392. ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
  2393. }
  2394. EXPORT_SYMBOL(ath9k_hw_set_tsfadjust);
  2395. void ath9k_hw_set11nmac2040(struct ath_hw *ah)
  2396. {
  2397. struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
  2398. u32 macmode;
  2399. if (conf_is_ht40(conf) && !ah->config.cwm_ignore_extcca)
  2400. macmode = AR_2040_JOINED_RX_CLEAR;
  2401. else
  2402. macmode = 0;
  2403. REG_WRITE(ah, AR_2040_MODE, macmode);
  2404. }
  2405. /* HW Generic timers configuration */
  2406. static const struct ath_gen_timer_configuration gen_tmr_configuration[] =
  2407. {
  2408. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2409. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2410. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2411. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2412. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2413. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2414. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2415. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2416. {AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001},
  2417. {AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4,
  2418. AR_NDP2_TIMER_MODE, 0x0002},
  2419. {AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4,
  2420. AR_NDP2_TIMER_MODE, 0x0004},
  2421. {AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4,
  2422. AR_NDP2_TIMER_MODE, 0x0008},
  2423. {AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4,
  2424. AR_NDP2_TIMER_MODE, 0x0010},
  2425. {AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4,
  2426. AR_NDP2_TIMER_MODE, 0x0020},
  2427. {AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4,
  2428. AR_NDP2_TIMER_MODE, 0x0040},
  2429. {AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4,
  2430. AR_NDP2_TIMER_MODE, 0x0080}
  2431. };
  2432. /* HW generic timer primitives */
  2433. /* compute and clear index of rightmost 1 */
  2434. static u32 rightmost_index(struct ath_gen_timer_table *timer_table, u32 *mask)
  2435. {
  2436. u32 b;
  2437. b = *mask;
  2438. b &= (0-b);
  2439. *mask &= ~b;
  2440. b *= debruijn32;
  2441. b >>= 27;
  2442. return timer_table->gen_timer_index[b];
  2443. }
  2444. u32 ath9k_hw_gettsf32(struct ath_hw *ah)
  2445. {
  2446. return REG_READ(ah, AR_TSF_L32);
  2447. }
  2448. EXPORT_SYMBOL(ath9k_hw_gettsf32);
  2449. struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah,
  2450. void (*trigger)(void *),
  2451. void (*overflow)(void *),
  2452. void *arg,
  2453. u8 timer_index)
  2454. {
  2455. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  2456. struct ath_gen_timer *timer;
  2457. timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL);
  2458. if (timer == NULL) {
  2459. ath_err(ath9k_hw_common(ah),
  2460. "Failed to allocate memory for hw timer[%d]\n",
  2461. timer_index);
  2462. return NULL;
  2463. }
  2464. /* allocate a hardware generic timer slot */
  2465. timer_table->timers[timer_index] = timer;
  2466. timer->index = timer_index;
  2467. timer->trigger = trigger;
  2468. timer->overflow = overflow;
  2469. timer->arg = arg;
  2470. return timer;
  2471. }
  2472. EXPORT_SYMBOL(ath_gen_timer_alloc);
  2473. void ath9k_hw_gen_timer_start(struct ath_hw *ah,
  2474. struct ath_gen_timer *timer,
  2475. u32 trig_timeout,
  2476. u32 timer_period)
  2477. {
  2478. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  2479. u32 tsf, timer_next;
  2480. BUG_ON(!timer_period);
  2481. set_bit(timer->index, &timer_table->timer_mask.timer_bits);
  2482. tsf = ath9k_hw_gettsf32(ah);
  2483. timer_next = tsf + trig_timeout;
  2484. ath_dbg(ath9k_hw_common(ah), HWTIMER,
  2485. "current tsf %x period %x timer_next %x\n",
  2486. tsf, timer_period, timer_next);
  2487. /*
  2488. * Program generic timer registers
  2489. */
  2490. REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr,
  2491. timer_next);
  2492. REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr,
  2493. timer_period);
  2494. REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
  2495. gen_tmr_configuration[timer->index].mode_mask);
  2496. if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
  2497. /*
  2498. * Starting from AR9462, each generic timer can select which tsf
  2499. * to use. But we still follow the old rule, 0 - 7 use tsf and
  2500. * 8 - 15 use tsf2.
  2501. */
  2502. if ((timer->index < AR_GEN_TIMER_BANK_1_LEN))
  2503. REG_CLR_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
  2504. (1 << timer->index));
  2505. else
  2506. REG_SET_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
  2507. (1 << timer->index));
  2508. }
  2509. /* Enable both trigger and thresh interrupt masks */
  2510. REG_SET_BIT(ah, AR_IMR_S5,
  2511. (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
  2512. SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
  2513. }
  2514. EXPORT_SYMBOL(ath9k_hw_gen_timer_start);
  2515. void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
  2516. {
  2517. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  2518. if ((timer->index < AR_FIRST_NDP_TIMER) ||
  2519. (timer->index >= ATH_MAX_GEN_TIMER)) {
  2520. return;
  2521. }
  2522. /* Clear generic timer enable bits. */
  2523. REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
  2524. gen_tmr_configuration[timer->index].mode_mask);
  2525. /* Disable both trigger and thresh interrupt masks */
  2526. REG_CLR_BIT(ah, AR_IMR_S5,
  2527. (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
  2528. SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
  2529. clear_bit(timer->index, &timer_table->timer_mask.timer_bits);
  2530. }
  2531. EXPORT_SYMBOL(ath9k_hw_gen_timer_stop);
  2532. void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer)
  2533. {
  2534. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  2535. /* free the hardware generic timer slot */
  2536. timer_table->timers[timer->index] = NULL;
  2537. kfree(timer);
  2538. }
  2539. EXPORT_SYMBOL(ath_gen_timer_free);
  2540. /*
  2541. * Generic Timer Interrupts handling
  2542. */
  2543. void ath_gen_timer_isr(struct ath_hw *ah)
  2544. {
  2545. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  2546. struct ath_gen_timer *timer;
  2547. struct ath_common *common = ath9k_hw_common(ah);
  2548. u32 trigger_mask, thresh_mask, index;
  2549. /* get hardware generic timer interrupt status */
  2550. trigger_mask = ah->intr_gen_timer_trigger;
  2551. thresh_mask = ah->intr_gen_timer_thresh;
  2552. trigger_mask &= timer_table->timer_mask.val;
  2553. thresh_mask &= timer_table->timer_mask.val;
  2554. trigger_mask &= ~thresh_mask;
  2555. while (thresh_mask) {
  2556. index = rightmost_index(timer_table, &thresh_mask);
  2557. timer = timer_table->timers[index];
  2558. BUG_ON(!timer);
  2559. ath_dbg(common, HWTIMER, "TSF overflow for Gen timer %d\n",
  2560. index);
  2561. timer->overflow(timer->arg);
  2562. }
  2563. while (trigger_mask) {
  2564. index = rightmost_index(timer_table, &trigger_mask);
  2565. timer = timer_table->timers[index];
  2566. BUG_ON(!timer);
  2567. ath_dbg(common, HWTIMER,
  2568. "Gen timer[%d] trigger\n", index);
  2569. timer->trigger(timer->arg);
  2570. }
  2571. }
  2572. EXPORT_SYMBOL(ath_gen_timer_isr);
  2573. /********/
  2574. /* HTC */
  2575. /********/
  2576. static struct {
  2577. u32 version;
  2578. const char * name;
  2579. } ath_mac_bb_names[] = {
  2580. /* Devices with external radios */
  2581. { AR_SREV_VERSION_5416_PCI, "5416" },
  2582. { AR_SREV_VERSION_5416_PCIE, "5418" },
  2583. { AR_SREV_VERSION_9100, "9100" },
  2584. { AR_SREV_VERSION_9160, "9160" },
  2585. /* Single-chip solutions */
  2586. { AR_SREV_VERSION_9280, "9280" },
  2587. { AR_SREV_VERSION_9285, "9285" },
  2588. { AR_SREV_VERSION_9287, "9287" },
  2589. { AR_SREV_VERSION_9271, "9271" },
  2590. { AR_SREV_VERSION_9300, "9300" },
  2591. { AR_SREV_VERSION_9330, "9330" },
  2592. { AR_SREV_VERSION_9340, "9340" },
  2593. { AR_SREV_VERSION_9485, "9485" },
  2594. { AR_SREV_VERSION_9462, "9462" },
  2595. { AR_SREV_VERSION_9550, "9550" },
  2596. { AR_SREV_VERSION_9565, "9565" },
  2597. };
  2598. /* For devices with external radios */
  2599. static struct {
  2600. u16 version;
  2601. const char * name;
  2602. } ath_rf_names[] = {
  2603. { 0, "5133" },
  2604. { AR_RAD5133_SREV_MAJOR, "5133" },
  2605. { AR_RAD5122_SREV_MAJOR, "5122" },
  2606. { AR_RAD2133_SREV_MAJOR, "2133" },
  2607. { AR_RAD2122_SREV_MAJOR, "2122" }
  2608. };
  2609. /*
  2610. * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
  2611. */
  2612. static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version)
  2613. {
  2614. int i;
  2615. for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
  2616. if (ath_mac_bb_names[i].version == mac_bb_version) {
  2617. return ath_mac_bb_names[i].name;
  2618. }
  2619. }
  2620. return "????";
  2621. }
  2622. /*
  2623. * Return the RF name. "????" is returned if the RF is unknown.
  2624. * Used for devices with external radios.
  2625. */
  2626. static const char *ath9k_hw_rf_name(u16 rf_version)
  2627. {
  2628. int i;
  2629. for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
  2630. if (ath_rf_names[i].version == rf_version) {
  2631. return ath_rf_names[i].name;
  2632. }
  2633. }
  2634. return "????";
  2635. }
  2636. void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len)
  2637. {
  2638. int used;
  2639. /* chipsets >= AR9280 are single-chip */
  2640. if (AR_SREV_9280_20_OR_LATER(ah)) {
  2641. used = snprintf(hw_name, len,
  2642. "Atheros AR%s Rev:%x",
  2643. ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
  2644. ah->hw_version.macRev);
  2645. }
  2646. else {
  2647. used = snprintf(hw_name, len,
  2648. "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
  2649. ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
  2650. ah->hw_version.macRev,
  2651. ath9k_hw_rf_name((ah->hw_version.analog5GhzRev &
  2652. AR_RADIO_SREV_MAJOR)),
  2653. ah->hw_version.phyRev);
  2654. }
  2655. hw_name[used] = '\0';
  2656. }
  2657. EXPORT_SYMBOL(ath9k_hw_name);