lmb.c 8.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358
  1. /*
  2. * Procedures for interfacing to Open Firmware.
  3. *
  4. * Peter Bergner, IBM Corp. June 2001.
  5. * Copyright (C) 2001 Peter Bergner.
  6. *
  7. * This program is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU General Public License
  9. * as published by the Free Software Foundation; either version
  10. * 2 of the License, or (at your option) any later version.
  11. */
  12. #include <linux/config.h>
  13. #include <linux/kernel.h>
  14. #include <linux/init.h>
  15. #include <linux/bitops.h>
  16. #include <asm/types.h>
  17. #include <asm/page.h>
  18. #include <asm/prom.h>
  19. #include <asm/lmb.h>
  20. #include <asm/abs_addr.h>
  21. struct lmb lmb;
  22. #undef DEBUG
  23. void lmb_dump_all(void)
  24. {
  25. #ifdef DEBUG
  26. unsigned long i;
  27. udbg_printf("lmb_dump_all:\n");
  28. udbg_printf(" memory.cnt = 0x%lx\n",
  29. lmb.memory.cnt);
  30. udbg_printf(" memory.size = 0x%lx\n",
  31. lmb.memory.size);
  32. for (i=0; i < lmb.memory.cnt ;i++) {
  33. udbg_printf(" memory.region[0x%x].base = 0x%lx\n",
  34. i, lmb.memory.region[i].base);
  35. udbg_printf(" .physbase = 0x%lx\n",
  36. lmb.memory.region[i].physbase);
  37. udbg_printf(" .size = 0x%lx\n",
  38. lmb.memory.region[i].size);
  39. }
  40. udbg_printf("\n reserved.cnt = 0x%lx\n",
  41. lmb.reserved.cnt);
  42. udbg_printf(" reserved.size = 0x%lx\n",
  43. lmb.reserved.size);
  44. for (i=0; i < lmb.reserved.cnt ;i++) {
  45. udbg_printf(" reserved.region[0x%x].base = 0x%lx\n",
  46. i, lmb.reserved.region[i].base);
  47. udbg_printf(" .physbase = 0x%lx\n",
  48. lmb.reserved.region[i].physbase);
  49. udbg_printf(" .size = 0x%lx\n",
  50. lmb.reserved.region[i].size);
  51. }
  52. #endif /* DEBUG */
  53. }
  54. static unsigned long __init
  55. lmb_addrs_overlap(unsigned long base1, unsigned long size1,
  56. unsigned long base2, unsigned long size2)
  57. {
  58. return ((base1 < (base2+size2)) && (base2 < (base1+size1)));
  59. }
  60. static long __init
  61. lmb_addrs_adjacent(unsigned long base1, unsigned long size1,
  62. unsigned long base2, unsigned long size2)
  63. {
  64. if (base2 == base1 + size1)
  65. return 1;
  66. else if (base1 == base2 + size2)
  67. return -1;
  68. return 0;
  69. }
  70. static long __init
  71. lmb_regions_adjacent(struct lmb_region *rgn, unsigned long r1, unsigned long r2)
  72. {
  73. unsigned long base1 = rgn->region[r1].base;
  74. unsigned long size1 = rgn->region[r1].size;
  75. unsigned long base2 = rgn->region[r2].base;
  76. unsigned long size2 = rgn->region[r2].size;
  77. return lmb_addrs_adjacent(base1, size1, base2, size2);
  78. }
  79. /* Assumption: base addr of region 1 < base addr of region 2 */
  80. static void __init
  81. lmb_coalesce_regions(struct lmb_region *rgn, unsigned long r1, unsigned long r2)
  82. {
  83. unsigned long i;
  84. rgn->region[r1].size += rgn->region[r2].size;
  85. for (i=r2; i < rgn->cnt-1; i++) {
  86. rgn->region[i].base = rgn->region[i+1].base;
  87. rgn->region[i].physbase = rgn->region[i+1].physbase;
  88. rgn->region[i].size = rgn->region[i+1].size;
  89. }
  90. rgn->cnt--;
  91. }
  92. /* This routine called with relocation disabled. */
  93. void __init
  94. lmb_init(void)
  95. {
  96. /* Create a dummy zero size LMB which will get coalesced away later.
  97. * This simplifies the lmb_add() code below...
  98. */
  99. lmb.memory.region[0].base = 0;
  100. lmb.memory.region[0].size = 0;
  101. lmb.memory.cnt = 1;
  102. /* Ditto. */
  103. lmb.reserved.region[0].base = 0;
  104. lmb.reserved.region[0].size = 0;
  105. lmb.reserved.cnt = 1;
  106. }
  107. /* This routine called with relocation disabled. */
  108. void __init
  109. lmb_analyze(void)
  110. {
  111. unsigned long i;
  112. unsigned long mem_size = 0;
  113. unsigned long size_mask = 0;
  114. #ifdef CONFIG_MSCHUNKS
  115. unsigned long physbase = 0;
  116. #endif
  117. for (i=0; i < lmb.memory.cnt; i++) {
  118. unsigned long lmb_size;
  119. lmb_size = lmb.memory.region[i].size;
  120. #ifdef CONFIG_MSCHUNKS
  121. lmb.memory.region[i].physbase = physbase;
  122. physbase += lmb_size;
  123. #else
  124. lmb.memory.region[i].physbase = lmb.memory.region[i].base;
  125. #endif
  126. mem_size += lmb_size;
  127. size_mask |= lmb_size;
  128. }
  129. lmb.memory.size = mem_size;
  130. }
  131. /* This routine called with relocation disabled. */
  132. static long __init
  133. lmb_add_region(struct lmb_region *rgn, unsigned long base, unsigned long size)
  134. {
  135. unsigned long i, coalesced = 0;
  136. long adjacent;
  137. /* First try and coalesce this LMB with another. */
  138. for (i=0; i < rgn->cnt; i++) {
  139. unsigned long rgnbase = rgn->region[i].base;
  140. unsigned long rgnsize = rgn->region[i].size;
  141. adjacent = lmb_addrs_adjacent(base,size,rgnbase,rgnsize);
  142. if ( adjacent > 0 ) {
  143. rgn->region[i].base -= size;
  144. rgn->region[i].physbase -= size;
  145. rgn->region[i].size += size;
  146. coalesced++;
  147. break;
  148. }
  149. else if ( adjacent < 0 ) {
  150. rgn->region[i].size += size;
  151. coalesced++;
  152. break;
  153. }
  154. }
  155. if ((i < rgn->cnt-1) && lmb_regions_adjacent(rgn, i, i+1) ) {
  156. lmb_coalesce_regions(rgn, i, i+1);
  157. coalesced++;
  158. }
  159. if ( coalesced ) {
  160. return coalesced;
  161. } else if ( rgn->cnt >= MAX_LMB_REGIONS ) {
  162. return -1;
  163. }
  164. /* Couldn't coalesce the LMB, so add it to the sorted table. */
  165. for (i=rgn->cnt-1; i >= 0; i--) {
  166. if (base < rgn->region[i].base) {
  167. rgn->region[i+1].base = rgn->region[i].base;
  168. rgn->region[i+1].physbase = rgn->region[i].physbase;
  169. rgn->region[i+1].size = rgn->region[i].size;
  170. } else {
  171. rgn->region[i+1].base = base;
  172. rgn->region[i+1].physbase = lmb_abs_to_phys(base);
  173. rgn->region[i+1].size = size;
  174. break;
  175. }
  176. }
  177. rgn->cnt++;
  178. return 0;
  179. }
  180. /* This routine called with relocation disabled. */
  181. long __init
  182. lmb_add(unsigned long base, unsigned long size)
  183. {
  184. struct lmb_region *_rgn = &(lmb.memory);
  185. /* On pSeries LPAR systems, the first LMB is our RMO region. */
  186. if ( base == 0 )
  187. lmb.rmo_size = size;
  188. return lmb_add_region(_rgn, base, size);
  189. }
  190. long __init
  191. lmb_reserve(unsigned long base, unsigned long size)
  192. {
  193. struct lmb_region *_rgn = &(lmb.reserved);
  194. return lmb_add_region(_rgn, base, size);
  195. }
  196. long __init
  197. lmb_overlaps_region(struct lmb_region *rgn, unsigned long base, unsigned long size)
  198. {
  199. unsigned long i;
  200. for (i=0; i < rgn->cnt; i++) {
  201. unsigned long rgnbase = rgn->region[i].base;
  202. unsigned long rgnsize = rgn->region[i].size;
  203. if ( lmb_addrs_overlap(base,size,rgnbase,rgnsize) ) {
  204. break;
  205. }
  206. }
  207. return (i < rgn->cnt) ? i : -1;
  208. }
  209. unsigned long __init
  210. lmb_alloc(unsigned long size, unsigned long align)
  211. {
  212. return lmb_alloc_base(size, align, LMB_ALLOC_ANYWHERE);
  213. }
  214. unsigned long __init
  215. lmb_alloc_base(unsigned long size, unsigned long align, unsigned long max_addr)
  216. {
  217. long i, j;
  218. unsigned long base = 0;
  219. for (i=lmb.memory.cnt-1; i >= 0; i--) {
  220. unsigned long lmbbase = lmb.memory.region[i].base;
  221. unsigned long lmbsize = lmb.memory.region[i].size;
  222. if ( max_addr == LMB_ALLOC_ANYWHERE )
  223. base = _ALIGN_DOWN(lmbbase+lmbsize-size, align);
  224. else if ( lmbbase < max_addr )
  225. base = _ALIGN_DOWN(min(lmbbase+lmbsize,max_addr)-size, align);
  226. else
  227. continue;
  228. while ( (lmbbase <= base) &&
  229. ((j = lmb_overlaps_region(&lmb.reserved,base,size)) >= 0) ) {
  230. base = _ALIGN_DOWN(lmb.reserved.region[j].base-size, align);
  231. }
  232. if ( (base != 0) && (lmbbase <= base) )
  233. break;
  234. }
  235. if ( i < 0 )
  236. return 0;
  237. lmb_add_region(&lmb.reserved, base, size);
  238. return base;
  239. }
  240. unsigned long __init
  241. lmb_phys_mem_size(void)
  242. {
  243. #ifdef CONFIG_MSCHUNKS
  244. return lmb.memory.size;
  245. #else
  246. unsigned long total = 0;
  247. int i;
  248. /* add all physical memory to the bootmem map */
  249. for (i=0; i < lmb.memory.cnt; i++)
  250. total += lmb.memory.region[i].size;
  251. return total;
  252. #endif /* CONFIG_MSCHUNKS */
  253. }
  254. unsigned long __init
  255. lmb_end_of_DRAM(void)
  256. {
  257. int idx = lmb.memory.cnt - 1;
  258. #ifdef CONFIG_MSCHUNKS
  259. return (lmb.memory.region[idx].physbase + lmb.memory.region[idx].size);
  260. #else
  261. return (lmb.memory.region[idx].base + lmb.memory.region[idx].size);
  262. #endif /* CONFIG_MSCHUNKS */
  263. return 0;
  264. }
  265. unsigned long __init
  266. lmb_abs_to_phys(unsigned long aa)
  267. {
  268. unsigned long i, pa = aa;
  269. struct lmb *_lmb = &lmb;
  270. struct lmb_region *_mem = &(_lmb->memory);
  271. for (i=0; i < _mem->cnt; i++) {
  272. unsigned long lmbbase = _mem->region[i].base;
  273. unsigned long lmbsize = _mem->region[i].size;
  274. if ( lmb_addrs_overlap(aa,1,lmbbase,lmbsize) ) {
  275. pa = _mem->region[i].physbase + (aa - lmbbase);
  276. break;
  277. }
  278. }
  279. return pa;
  280. }
  281. /*
  282. * Truncate the lmb list to memory_limit if it's set
  283. * You must call lmb_analyze() after this.
  284. */
  285. void __init lmb_enforce_memory_limit(void)
  286. {
  287. extern unsigned long memory_limit;
  288. unsigned long i, limit;
  289. if (! memory_limit)
  290. return;
  291. limit = memory_limit;
  292. for (i = 0; i < lmb.memory.cnt; i++) {
  293. if (limit > lmb.memory.region[i].size) {
  294. limit -= lmb.memory.region[i].size;
  295. continue;
  296. }
  297. lmb.memory.region[i].size = limit;
  298. lmb.memory.cnt = i + 1;
  299. break;
  300. }
  301. }