af9033.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065
  1. /*
  2. * Afatech AF9033 demodulator driver
  3. *
  4. * Copyright (C) 2009 Antti Palosaari <crope@iki.fi>
  5. * Copyright (C) 2012 Antti Palosaari <crope@iki.fi>
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License as published by
  9. * the Free Software Foundation; either version 2 of the License, or
  10. * (at your option) any later version.
  11. *
  12. * This program is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  15. * GNU General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU General Public License along
  18. * with this program; if not, write to the Free Software Foundation, Inc.,
  19. * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
  20. */
  21. #include "af9033_priv.h"
  22. struct af9033_state {
  23. struct i2c_adapter *i2c;
  24. struct dvb_frontend fe;
  25. struct af9033_config cfg;
  26. u32 bandwidth_hz;
  27. bool ts_mode_parallel;
  28. bool ts_mode_serial;
  29. u32 ber;
  30. u32 ucb;
  31. unsigned long last_stat_check;
  32. };
  33. /* write multiple registers */
  34. static int af9033_wr_regs(struct af9033_state *state, u32 reg, const u8 *val,
  35. int len)
  36. {
  37. int ret;
  38. u8 buf[3 + len];
  39. struct i2c_msg msg[1] = {
  40. {
  41. .addr = state->cfg.i2c_addr,
  42. .flags = 0,
  43. .len = sizeof(buf),
  44. .buf = buf,
  45. }
  46. };
  47. buf[0] = (reg >> 16) & 0xff;
  48. buf[1] = (reg >> 8) & 0xff;
  49. buf[2] = (reg >> 0) & 0xff;
  50. memcpy(&buf[3], val, len);
  51. ret = i2c_transfer(state->i2c, msg, 1);
  52. if (ret == 1) {
  53. ret = 0;
  54. } else {
  55. dev_warn(&state->i2c->dev, "%s: i2c wr failed=%d reg=%06x " \
  56. "len=%d\n", KBUILD_MODNAME, ret, reg, len);
  57. ret = -EREMOTEIO;
  58. }
  59. return ret;
  60. }
  61. /* read multiple registers */
  62. static int af9033_rd_regs(struct af9033_state *state, u32 reg, u8 *val, int len)
  63. {
  64. int ret;
  65. u8 buf[3] = { (reg >> 16) & 0xff, (reg >> 8) & 0xff,
  66. (reg >> 0) & 0xff };
  67. struct i2c_msg msg[2] = {
  68. {
  69. .addr = state->cfg.i2c_addr,
  70. .flags = 0,
  71. .len = sizeof(buf),
  72. .buf = buf
  73. }, {
  74. .addr = state->cfg.i2c_addr,
  75. .flags = I2C_M_RD,
  76. .len = len,
  77. .buf = val
  78. }
  79. };
  80. ret = i2c_transfer(state->i2c, msg, 2);
  81. if (ret == 2) {
  82. ret = 0;
  83. } else {
  84. dev_warn(&state->i2c->dev, "%s: i2c rd failed=%d reg=%06x " \
  85. "len=%d\n", KBUILD_MODNAME, ret, reg, len);
  86. ret = -EREMOTEIO;
  87. }
  88. return ret;
  89. }
  90. /* write single register */
  91. static int af9033_wr_reg(struct af9033_state *state, u32 reg, u8 val)
  92. {
  93. return af9033_wr_regs(state, reg, &val, 1);
  94. }
  95. /* read single register */
  96. static int af9033_rd_reg(struct af9033_state *state, u32 reg, u8 *val)
  97. {
  98. return af9033_rd_regs(state, reg, val, 1);
  99. }
  100. /* write single register with mask */
  101. static int af9033_wr_reg_mask(struct af9033_state *state, u32 reg, u8 val,
  102. u8 mask)
  103. {
  104. int ret;
  105. u8 tmp;
  106. /* no need for read if whole reg is written */
  107. if (mask != 0xff) {
  108. ret = af9033_rd_regs(state, reg, &tmp, 1);
  109. if (ret)
  110. return ret;
  111. val &= mask;
  112. tmp &= ~mask;
  113. val |= tmp;
  114. }
  115. return af9033_wr_regs(state, reg, &val, 1);
  116. }
  117. /* read single register with mask */
  118. static int af9033_rd_reg_mask(struct af9033_state *state, u32 reg, u8 *val,
  119. u8 mask)
  120. {
  121. int ret, i;
  122. u8 tmp;
  123. ret = af9033_rd_regs(state, reg, &tmp, 1);
  124. if (ret)
  125. return ret;
  126. tmp &= mask;
  127. /* find position of the first bit */
  128. for (i = 0; i < 8; i++) {
  129. if ((mask >> i) & 0x01)
  130. break;
  131. }
  132. *val = tmp >> i;
  133. return 0;
  134. }
  135. static u32 af9033_div(struct af9033_state *state, u32 a, u32 b, u32 x)
  136. {
  137. u32 r = 0, c = 0, i;
  138. dev_dbg(&state->i2c->dev, "%s: a=%d b=%d x=%d\n", __func__, a, b, x);
  139. if (a > b) {
  140. c = a / b;
  141. a = a - c * b;
  142. }
  143. for (i = 0; i < x; i++) {
  144. if (a >= b) {
  145. r += 1;
  146. a -= b;
  147. }
  148. a <<= 1;
  149. r <<= 1;
  150. }
  151. r = (c << (u32)x) + r;
  152. dev_dbg(&state->i2c->dev, "%s: a=%d b=%d x=%d r=%d r=%x\n",
  153. __func__, a, b, x, r, r);
  154. return r;
  155. }
  156. static void af9033_release(struct dvb_frontend *fe)
  157. {
  158. struct af9033_state *state = fe->demodulator_priv;
  159. kfree(state);
  160. }
  161. static int af9033_init(struct dvb_frontend *fe)
  162. {
  163. struct af9033_state *state = fe->demodulator_priv;
  164. int ret, i, len;
  165. const struct reg_val *init;
  166. u8 buf[4];
  167. u32 adc_cw, clock_cw;
  168. struct reg_val_mask tab[] = {
  169. { 0x80fb24, 0x00, 0x08 },
  170. { 0x80004c, 0x00, 0xff },
  171. { 0x00f641, state->cfg.tuner, 0xff },
  172. { 0x80f5ca, 0x01, 0x01 },
  173. { 0x80f715, 0x01, 0x01 },
  174. { 0x00f41f, 0x04, 0x04 },
  175. { 0x00f41a, 0x01, 0x01 },
  176. { 0x80f731, 0x00, 0x01 },
  177. { 0x00d91e, 0x00, 0x01 },
  178. { 0x00d919, 0x00, 0x01 },
  179. { 0x80f732, 0x00, 0x01 },
  180. { 0x00d91f, 0x00, 0x01 },
  181. { 0x00d91a, 0x00, 0x01 },
  182. { 0x80f730, 0x00, 0x01 },
  183. { 0x80f778, 0x00, 0xff },
  184. { 0x80f73c, 0x01, 0x01 },
  185. { 0x80f776, 0x00, 0x01 },
  186. { 0x00d8fd, 0x01, 0xff },
  187. { 0x00d830, 0x01, 0xff },
  188. { 0x00d831, 0x00, 0xff },
  189. { 0x00d832, 0x00, 0xff },
  190. { 0x80f985, state->ts_mode_serial, 0x01 },
  191. { 0x80f986, state->ts_mode_parallel, 0x01 },
  192. { 0x00d827, 0x00, 0xff },
  193. { 0x00d829, 0x00, 0xff },
  194. { 0x800045, state->cfg.adc_multiplier, 0xff },
  195. };
  196. /* program clock control */
  197. clock_cw = af9033_div(state, state->cfg.clock, 1000000ul, 19ul);
  198. buf[0] = (clock_cw >> 0) & 0xff;
  199. buf[1] = (clock_cw >> 8) & 0xff;
  200. buf[2] = (clock_cw >> 16) & 0xff;
  201. buf[3] = (clock_cw >> 24) & 0xff;
  202. dev_dbg(&state->i2c->dev, "%s: clock=%d clock_cw=%08x\n",
  203. __func__, state->cfg.clock, clock_cw);
  204. ret = af9033_wr_regs(state, 0x800025, buf, 4);
  205. if (ret < 0)
  206. goto err;
  207. /* program ADC control */
  208. for (i = 0; i < ARRAY_SIZE(clock_adc_lut); i++) {
  209. if (clock_adc_lut[i].clock == state->cfg.clock)
  210. break;
  211. }
  212. adc_cw = af9033_div(state, clock_adc_lut[i].adc, 1000000ul, 19ul);
  213. buf[0] = (adc_cw >> 0) & 0xff;
  214. buf[1] = (adc_cw >> 8) & 0xff;
  215. buf[2] = (adc_cw >> 16) & 0xff;
  216. dev_dbg(&state->i2c->dev, "%s: adc=%d adc_cw=%06x\n",
  217. __func__, clock_adc_lut[i].adc, adc_cw);
  218. ret = af9033_wr_regs(state, 0x80f1cd, buf, 3);
  219. if (ret < 0)
  220. goto err;
  221. /* program register table */
  222. for (i = 0; i < ARRAY_SIZE(tab); i++) {
  223. ret = af9033_wr_reg_mask(state, tab[i].reg, tab[i].val,
  224. tab[i].mask);
  225. if (ret < 0)
  226. goto err;
  227. }
  228. /* settings for TS interface */
  229. if (state->cfg.ts_mode == AF9033_TS_MODE_USB) {
  230. ret = af9033_wr_reg_mask(state, 0x80f9a5, 0x00, 0x01);
  231. if (ret < 0)
  232. goto err;
  233. ret = af9033_wr_reg_mask(state, 0x80f9b5, 0x01, 0x01);
  234. if (ret < 0)
  235. goto err;
  236. } else {
  237. ret = af9033_wr_reg_mask(state, 0x80f990, 0x00, 0x01);
  238. if (ret < 0)
  239. goto err;
  240. ret = af9033_wr_reg_mask(state, 0x80f9b5, 0x00, 0x01);
  241. if (ret < 0)
  242. goto err;
  243. }
  244. /*
  245. * FIXME: These inits are logically property of demodulator driver
  246. * (that driver), but currently in case of IT9135 those are done by
  247. * tuner driver.
  248. */
  249. /* load OFSM settings */
  250. dev_dbg(&state->i2c->dev, "%s: load ofsm settings\n", __func__);
  251. switch (state->cfg.tuner) {
  252. case AF9033_TUNER_IT9135_38:
  253. case AF9033_TUNER_IT9135_51:
  254. case AF9033_TUNER_IT9135_52:
  255. len = ARRAY_SIZE(ofsm_init_it9135_v1);
  256. init = ofsm_init_it9135_v1;
  257. break;
  258. case AF9033_TUNER_IT9135_60:
  259. case AF9033_TUNER_IT9135_61:
  260. case AF9033_TUNER_IT9135_62:
  261. len = ARRAY_SIZE(ofsm_init_it9135_v2);
  262. init = ofsm_init_it9135_v2;
  263. break;
  264. default:
  265. len = ARRAY_SIZE(ofsm_init);
  266. init = ofsm_init;
  267. break;
  268. }
  269. for (i = 0; i < len; i++) {
  270. ret = af9033_wr_reg(state, init[i].reg, init[i].val);
  271. if (ret < 0)
  272. goto err;
  273. }
  274. /* load tuner specific settings */
  275. dev_dbg(&state->i2c->dev, "%s: load tuner specific settings\n",
  276. __func__);
  277. switch (state->cfg.tuner) {
  278. case AF9033_TUNER_TUA9001:
  279. len = ARRAY_SIZE(tuner_init_tua9001);
  280. init = tuner_init_tua9001;
  281. break;
  282. case AF9033_TUNER_FC0011:
  283. len = ARRAY_SIZE(tuner_init_fc0011);
  284. init = tuner_init_fc0011;
  285. break;
  286. case AF9033_TUNER_MXL5007T:
  287. len = ARRAY_SIZE(tuner_init_mxl5007t);
  288. init = tuner_init_mxl5007t;
  289. break;
  290. case AF9033_TUNER_TDA18218:
  291. len = ARRAY_SIZE(tuner_init_tda18218);
  292. init = tuner_init_tda18218;
  293. break;
  294. case AF9033_TUNER_FC2580:
  295. len = ARRAY_SIZE(tuner_init_fc2580);
  296. init = tuner_init_fc2580;
  297. break;
  298. case AF9033_TUNER_FC0012:
  299. len = ARRAY_SIZE(tuner_init_fc0012);
  300. init = tuner_init_fc0012;
  301. break;
  302. case AF9033_TUNER_IT9135_38:
  303. len = ARRAY_SIZE(tuner_init_it9135_38);
  304. init = tuner_init_it9135_38;
  305. break;
  306. case AF9033_TUNER_IT9135_51:
  307. len = ARRAY_SIZE(tuner_init_it9135_51);
  308. init = tuner_init_it9135_51;
  309. break;
  310. case AF9033_TUNER_IT9135_52:
  311. len = ARRAY_SIZE(tuner_init_it9135_52);
  312. init = tuner_init_it9135_52;
  313. break;
  314. case AF9033_TUNER_IT9135_60:
  315. len = ARRAY_SIZE(tuner_init_it9135_60);
  316. init = tuner_init_it9135_60;
  317. break;
  318. case AF9033_TUNER_IT9135_61:
  319. case AF9033_TUNER_IT9135_62:
  320. len = 0;
  321. break;
  322. default:
  323. dev_dbg(&state->i2c->dev, "%s: unsupported tuner ID=%d\n",
  324. __func__, state->cfg.tuner);
  325. ret = -ENODEV;
  326. goto err;
  327. }
  328. for (i = 0; i < len; i++) {
  329. ret = af9033_wr_reg(state, init[i].reg, init[i].val);
  330. if (ret < 0)
  331. goto err;
  332. }
  333. if (state->cfg.ts_mode == AF9033_TS_MODE_SERIAL) {
  334. ret = af9033_wr_reg_mask(state, 0x00d91c, 0x01, 0x01);
  335. if (ret < 0)
  336. goto err;
  337. ret = af9033_wr_reg_mask(state, 0x00d917, 0x00, 0x01);
  338. if (ret < 0)
  339. goto err;
  340. ret = af9033_wr_reg_mask(state, 0x00d916, 0x00, 0x01);
  341. if (ret < 0)
  342. goto err;
  343. }
  344. state->bandwidth_hz = 0; /* force to program all parameters */
  345. return 0;
  346. err:
  347. dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
  348. return ret;
  349. }
  350. static int af9033_sleep(struct dvb_frontend *fe)
  351. {
  352. struct af9033_state *state = fe->demodulator_priv;
  353. int ret, i;
  354. u8 tmp;
  355. ret = af9033_wr_reg(state, 0x80004c, 1);
  356. if (ret < 0)
  357. goto err;
  358. ret = af9033_wr_reg(state, 0x800000, 0);
  359. if (ret < 0)
  360. goto err;
  361. for (i = 100, tmp = 1; i && tmp; i--) {
  362. ret = af9033_rd_reg(state, 0x80004c, &tmp);
  363. if (ret < 0)
  364. goto err;
  365. usleep_range(200, 10000);
  366. }
  367. dev_dbg(&state->i2c->dev, "%s: loop=%d\n", __func__, i);
  368. if (i == 0) {
  369. ret = -ETIMEDOUT;
  370. goto err;
  371. }
  372. ret = af9033_wr_reg_mask(state, 0x80fb24, 0x08, 0x08);
  373. if (ret < 0)
  374. goto err;
  375. /* prevent current leak (?) */
  376. if (state->cfg.ts_mode == AF9033_TS_MODE_SERIAL) {
  377. /* enable parallel TS */
  378. ret = af9033_wr_reg_mask(state, 0x00d917, 0x00, 0x01);
  379. if (ret < 0)
  380. goto err;
  381. ret = af9033_wr_reg_mask(state, 0x00d916, 0x01, 0x01);
  382. if (ret < 0)
  383. goto err;
  384. }
  385. return 0;
  386. err:
  387. dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
  388. return ret;
  389. }
  390. static int af9033_get_tune_settings(struct dvb_frontend *fe,
  391. struct dvb_frontend_tune_settings *fesettings)
  392. {
  393. /* 800 => 2000 because IT9135 v2 is slow to gain lock */
  394. fesettings->min_delay_ms = 2000;
  395. fesettings->step_size = 0;
  396. fesettings->max_drift = 0;
  397. return 0;
  398. }
  399. static int af9033_set_frontend(struct dvb_frontend *fe)
  400. {
  401. struct af9033_state *state = fe->demodulator_priv;
  402. struct dtv_frontend_properties *c = &fe->dtv_property_cache;
  403. int ret, i, spec_inv, sampling_freq;
  404. u8 tmp, buf[3], bandwidth_reg_val;
  405. u32 if_frequency, freq_cw, adc_freq;
  406. dev_dbg(&state->i2c->dev, "%s: frequency=%d bandwidth_hz=%d\n",
  407. __func__, c->frequency, c->bandwidth_hz);
  408. /* check bandwidth */
  409. switch (c->bandwidth_hz) {
  410. case 6000000:
  411. bandwidth_reg_val = 0x00;
  412. break;
  413. case 7000000:
  414. bandwidth_reg_val = 0x01;
  415. break;
  416. case 8000000:
  417. bandwidth_reg_val = 0x02;
  418. break;
  419. default:
  420. dev_dbg(&state->i2c->dev, "%s: invalid bandwidth_hz\n",
  421. __func__);
  422. ret = -EINVAL;
  423. goto err;
  424. }
  425. /* program tuner */
  426. if (fe->ops.tuner_ops.set_params)
  427. fe->ops.tuner_ops.set_params(fe);
  428. /* program CFOE coefficients */
  429. if (c->bandwidth_hz != state->bandwidth_hz) {
  430. for (i = 0; i < ARRAY_SIZE(coeff_lut); i++) {
  431. if (coeff_lut[i].clock == state->cfg.clock &&
  432. coeff_lut[i].bandwidth_hz == c->bandwidth_hz) {
  433. break;
  434. }
  435. }
  436. ret = af9033_wr_regs(state, 0x800001,
  437. coeff_lut[i].val, sizeof(coeff_lut[i].val));
  438. }
  439. /* program frequency control */
  440. if (c->bandwidth_hz != state->bandwidth_hz) {
  441. spec_inv = state->cfg.spec_inv ? -1 : 1;
  442. for (i = 0; i < ARRAY_SIZE(clock_adc_lut); i++) {
  443. if (clock_adc_lut[i].clock == state->cfg.clock)
  444. break;
  445. }
  446. adc_freq = clock_adc_lut[i].adc;
  447. /* get used IF frequency */
  448. if (fe->ops.tuner_ops.get_if_frequency)
  449. fe->ops.tuner_ops.get_if_frequency(fe, &if_frequency);
  450. else
  451. if_frequency = 0;
  452. sampling_freq = if_frequency;
  453. while (sampling_freq > (adc_freq / 2))
  454. sampling_freq -= adc_freq;
  455. if (sampling_freq >= 0)
  456. spec_inv *= -1;
  457. else
  458. sampling_freq *= -1;
  459. freq_cw = af9033_div(state, sampling_freq, adc_freq, 23ul);
  460. if (spec_inv == -1)
  461. freq_cw = 0x800000 - freq_cw;
  462. if (state->cfg.adc_multiplier == AF9033_ADC_MULTIPLIER_2X)
  463. freq_cw /= 2;
  464. buf[0] = (freq_cw >> 0) & 0xff;
  465. buf[1] = (freq_cw >> 8) & 0xff;
  466. buf[2] = (freq_cw >> 16) & 0x7f;
  467. /* FIXME: there seems to be calculation error here... */
  468. if (if_frequency == 0)
  469. buf[2] = 0;
  470. ret = af9033_wr_regs(state, 0x800029, buf, 3);
  471. if (ret < 0)
  472. goto err;
  473. state->bandwidth_hz = c->bandwidth_hz;
  474. }
  475. ret = af9033_wr_reg_mask(state, 0x80f904, bandwidth_reg_val, 0x03);
  476. if (ret < 0)
  477. goto err;
  478. ret = af9033_wr_reg(state, 0x800040, 0x00);
  479. if (ret < 0)
  480. goto err;
  481. ret = af9033_wr_reg(state, 0x800047, 0x00);
  482. if (ret < 0)
  483. goto err;
  484. ret = af9033_wr_reg_mask(state, 0x80f999, 0x00, 0x01);
  485. if (ret < 0)
  486. goto err;
  487. if (c->frequency <= 230000000)
  488. tmp = 0x00; /* VHF */
  489. else
  490. tmp = 0x01; /* UHF */
  491. ret = af9033_wr_reg(state, 0x80004b, tmp);
  492. if (ret < 0)
  493. goto err;
  494. ret = af9033_wr_reg(state, 0x800000, 0x00);
  495. if (ret < 0)
  496. goto err;
  497. return 0;
  498. err:
  499. dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
  500. return ret;
  501. }
  502. static int af9033_get_frontend(struct dvb_frontend *fe)
  503. {
  504. struct af9033_state *state = fe->demodulator_priv;
  505. struct dtv_frontend_properties *c = &fe->dtv_property_cache;
  506. int ret;
  507. u8 buf[8];
  508. dev_dbg(&state->i2c->dev, "%s:\n", __func__);
  509. /* read all needed registers */
  510. ret = af9033_rd_regs(state, 0x80f900, buf, sizeof(buf));
  511. if (ret < 0)
  512. goto err;
  513. switch ((buf[0] >> 0) & 3) {
  514. case 0:
  515. c->transmission_mode = TRANSMISSION_MODE_2K;
  516. break;
  517. case 1:
  518. c->transmission_mode = TRANSMISSION_MODE_8K;
  519. break;
  520. }
  521. switch ((buf[1] >> 0) & 3) {
  522. case 0:
  523. c->guard_interval = GUARD_INTERVAL_1_32;
  524. break;
  525. case 1:
  526. c->guard_interval = GUARD_INTERVAL_1_16;
  527. break;
  528. case 2:
  529. c->guard_interval = GUARD_INTERVAL_1_8;
  530. break;
  531. case 3:
  532. c->guard_interval = GUARD_INTERVAL_1_4;
  533. break;
  534. }
  535. switch ((buf[2] >> 0) & 7) {
  536. case 0:
  537. c->hierarchy = HIERARCHY_NONE;
  538. break;
  539. case 1:
  540. c->hierarchy = HIERARCHY_1;
  541. break;
  542. case 2:
  543. c->hierarchy = HIERARCHY_2;
  544. break;
  545. case 3:
  546. c->hierarchy = HIERARCHY_4;
  547. break;
  548. }
  549. switch ((buf[3] >> 0) & 3) {
  550. case 0:
  551. c->modulation = QPSK;
  552. break;
  553. case 1:
  554. c->modulation = QAM_16;
  555. break;
  556. case 2:
  557. c->modulation = QAM_64;
  558. break;
  559. }
  560. switch ((buf[4] >> 0) & 3) {
  561. case 0:
  562. c->bandwidth_hz = 6000000;
  563. break;
  564. case 1:
  565. c->bandwidth_hz = 7000000;
  566. break;
  567. case 2:
  568. c->bandwidth_hz = 8000000;
  569. break;
  570. }
  571. switch ((buf[6] >> 0) & 7) {
  572. case 0:
  573. c->code_rate_HP = FEC_1_2;
  574. break;
  575. case 1:
  576. c->code_rate_HP = FEC_2_3;
  577. break;
  578. case 2:
  579. c->code_rate_HP = FEC_3_4;
  580. break;
  581. case 3:
  582. c->code_rate_HP = FEC_5_6;
  583. break;
  584. case 4:
  585. c->code_rate_HP = FEC_7_8;
  586. break;
  587. case 5:
  588. c->code_rate_HP = FEC_NONE;
  589. break;
  590. }
  591. switch ((buf[7] >> 0) & 7) {
  592. case 0:
  593. c->code_rate_LP = FEC_1_2;
  594. break;
  595. case 1:
  596. c->code_rate_LP = FEC_2_3;
  597. break;
  598. case 2:
  599. c->code_rate_LP = FEC_3_4;
  600. break;
  601. case 3:
  602. c->code_rate_LP = FEC_5_6;
  603. break;
  604. case 4:
  605. c->code_rate_LP = FEC_7_8;
  606. break;
  607. case 5:
  608. c->code_rate_LP = FEC_NONE;
  609. break;
  610. }
  611. return 0;
  612. err:
  613. dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
  614. return ret;
  615. }
  616. static int af9033_read_status(struct dvb_frontend *fe, fe_status_t *status)
  617. {
  618. struct af9033_state *state = fe->demodulator_priv;
  619. int ret;
  620. u8 tmp;
  621. *status = 0;
  622. /* radio channel status, 0=no result, 1=has signal, 2=no signal */
  623. ret = af9033_rd_reg(state, 0x800047, &tmp);
  624. if (ret < 0)
  625. goto err;
  626. /* has signal */
  627. if (tmp == 0x01)
  628. *status |= FE_HAS_SIGNAL;
  629. if (tmp != 0x02) {
  630. /* TPS lock */
  631. ret = af9033_rd_reg_mask(state, 0x80f5a9, &tmp, 0x01);
  632. if (ret < 0)
  633. goto err;
  634. if (tmp)
  635. *status |= FE_HAS_SIGNAL | FE_HAS_CARRIER |
  636. FE_HAS_VITERBI;
  637. /* full lock */
  638. ret = af9033_rd_reg_mask(state, 0x80f999, &tmp, 0x01);
  639. if (ret < 0)
  640. goto err;
  641. if (tmp)
  642. *status |= FE_HAS_SIGNAL | FE_HAS_CARRIER |
  643. FE_HAS_VITERBI | FE_HAS_SYNC |
  644. FE_HAS_LOCK;
  645. }
  646. return 0;
  647. err:
  648. dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
  649. return ret;
  650. }
  651. static int af9033_read_snr(struct dvb_frontend *fe, u16 *snr)
  652. {
  653. struct af9033_state *state = fe->demodulator_priv;
  654. int ret, i, len;
  655. u8 buf[3], tmp;
  656. u32 snr_val;
  657. const struct val_snr *uninitialized_var(snr_lut);
  658. /* read value */
  659. ret = af9033_rd_regs(state, 0x80002c, buf, 3);
  660. if (ret < 0)
  661. goto err;
  662. snr_val = (buf[2] << 16) | (buf[1] << 8) | buf[0];
  663. /* read current modulation */
  664. ret = af9033_rd_reg(state, 0x80f903, &tmp);
  665. if (ret < 0)
  666. goto err;
  667. switch ((tmp >> 0) & 3) {
  668. case 0:
  669. len = ARRAY_SIZE(qpsk_snr_lut);
  670. snr_lut = qpsk_snr_lut;
  671. break;
  672. case 1:
  673. len = ARRAY_SIZE(qam16_snr_lut);
  674. snr_lut = qam16_snr_lut;
  675. break;
  676. case 2:
  677. len = ARRAY_SIZE(qam64_snr_lut);
  678. snr_lut = qam64_snr_lut;
  679. break;
  680. default:
  681. goto err;
  682. }
  683. for (i = 0; i < len; i++) {
  684. tmp = snr_lut[i].snr;
  685. if (snr_val < snr_lut[i].val)
  686. break;
  687. }
  688. *snr = tmp * 10; /* dB/10 */
  689. return 0;
  690. err:
  691. dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
  692. return ret;
  693. }
  694. static int af9033_read_signal_strength(struct dvb_frontend *fe, u16 *strength)
  695. {
  696. struct af9033_state *state = fe->demodulator_priv;
  697. int ret;
  698. u8 strength2;
  699. /* read signal strength of 0-100 scale */
  700. ret = af9033_rd_reg(state, 0x800048, &strength2);
  701. if (ret < 0)
  702. goto err;
  703. /* scale value to 0x0000-0xffff */
  704. *strength = strength2 * 0xffff / 100;
  705. return 0;
  706. err:
  707. dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
  708. return ret;
  709. }
  710. static int af9033_update_ch_stat(struct af9033_state *state)
  711. {
  712. int ret = 0;
  713. u32 err_cnt, bit_cnt;
  714. u16 abort_cnt;
  715. u8 buf[7];
  716. /* only update data every half second */
  717. if (time_after(jiffies, state->last_stat_check + msecs_to_jiffies(500))) {
  718. ret = af9033_rd_regs(state, 0x800032, buf, sizeof(buf));
  719. if (ret < 0)
  720. goto err;
  721. /* in 8 byte packets? */
  722. abort_cnt = (buf[1] << 8) + buf[0];
  723. /* in bits */
  724. err_cnt = (buf[4] << 16) + (buf[3] << 8) + buf[2];
  725. /* in 8 byte packets? always(?) 0x2710 = 10000 */
  726. bit_cnt = (buf[6] << 8) + buf[5];
  727. if (bit_cnt < abort_cnt) {
  728. abort_cnt = 1000;
  729. state->ber = 0xffffffff;
  730. } else {
  731. /* 8 byte packets, that have not been rejected already */
  732. bit_cnt -= (u32)abort_cnt;
  733. if (bit_cnt == 0) {
  734. state->ber = 0xffffffff;
  735. } else {
  736. err_cnt -= (u32)abort_cnt * 8 * 8;
  737. bit_cnt *= 8 * 8;
  738. state->ber = err_cnt * (0xffffffff / bit_cnt);
  739. }
  740. }
  741. state->ucb += abort_cnt;
  742. state->last_stat_check = jiffies;
  743. }
  744. return 0;
  745. err:
  746. dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
  747. return ret;
  748. }
  749. static int af9033_read_ber(struct dvb_frontend *fe, u32 *ber)
  750. {
  751. struct af9033_state *state = fe->demodulator_priv;
  752. int ret;
  753. ret = af9033_update_ch_stat(state);
  754. if (ret < 0)
  755. return ret;
  756. *ber = state->ber;
  757. return 0;
  758. }
  759. static int af9033_read_ucblocks(struct dvb_frontend *fe, u32 *ucblocks)
  760. {
  761. struct af9033_state *state = fe->demodulator_priv;
  762. int ret;
  763. ret = af9033_update_ch_stat(state);
  764. if (ret < 0)
  765. return ret;
  766. *ucblocks = state->ucb;
  767. return 0;
  768. }
  769. static int af9033_i2c_gate_ctrl(struct dvb_frontend *fe, int enable)
  770. {
  771. struct af9033_state *state = fe->demodulator_priv;
  772. int ret;
  773. dev_dbg(&state->i2c->dev, "%s: enable=%d\n", __func__, enable);
  774. ret = af9033_wr_reg_mask(state, 0x00fa04, enable, 0x01);
  775. if (ret < 0)
  776. goto err;
  777. return 0;
  778. err:
  779. dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
  780. return ret;
  781. }
  782. static struct dvb_frontend_ops af9033_ops;
  783. struct dvb_frontend *af9033_attach(const struct af9033_config *config,
  784. struct i2c_adapter *i2c)
  785. {
  786. int ret;
  787. struct af9033_state *state;
  788. u8 buf[8];
  789. dev_dbg(&i2c->dev, "%s:\n", __func__);
  790. /* allocate memory for the internal state */
  791. state = kzalloc(sizeof(struct af9033_state), GFP_KERNEL);
  792. if (state == NULL)
  793. goto err;
  794. /* setup the state */
  795. state->i2c = i2c;
  796. memcpy(&state->cfg, config, sizeof(struct af9033_config));
  797. if (state->cfg.clock != 12000000) {
  798. dev_err(&state->i2c->dev, "%s: af9033: unsupported clock=%d, " \
  799. "only 12000000 Hz is supported currently\n",
  800. KBUILD_MODNAME, state->cfg.clock);
  801. goto err;
  802. }
  803. /* firmware version */
  804. ret = af9033_rd_regs(state, 0x0083e9, &buf[0], 4);
  805. if (ret < 0)
  806. goto err;
  807. ret = af9033_rd_regs(state, 0x804191, &buf[4], 4);
  808. if (ret < 0)
  809. goto err;
  810. dev_info(&state->i2c->dev, "%s: firmware version: LINK=%d.%d.%d.%d " \
  811. "OFDM=%d.%d.%d.%d\n", KBUILD_MODNAME, buf[0], buf[1],
  812. buf[2], buf[3], buf[4], buf[5], buf[6], buf[7]);
  813. /* FIXME: Do not abuse adc_multiplier for detecting IT9135 */
  814. if (state->cfg.adc_multiplier != AF9033_ADC_MULTIPLIER_2X) {
  815. /* sleep */
  816. ret = af9033_wr_reg(state, 0x80004c, 1);
  817. if (ret < 0)
  818. goto err;
  819. ret = af9033_wr_reg(state, 0x800000, 0);
  820. if (ret < 0)
  821. goto err;
  822. }
  823. /* configure internal TS mode */
  824. switch (state->cfg.ts_mode) {
  825. case AF9033_TS_MODE_PARALLEL:
  826. state->ts_mode_parallel = true;
  827. break;
  828. case AF9033_TS_MODE_SERIAL:
  829. state->ts_mode_serial = true;
  830. break;
  831. case AF9033_TS_MODE_USB:
  832. /* usb mode for AF9035 */
  833. default:
  834. break;
  835. }
  836. /* create dvb_frontend */
  837. memcpy(&state->fe.ops, &af9033_ops, sizeof(struct dvb_frontend_ops));
  838. state->fe.demodulator_priv = state;
  839. return &state->fe;
  840. err:
  841. kfree(state);
  842. return NULL;
  843. }
  844. EXPORT_SYMBOL(af9033_attach);
  845. static struct dvb_frontend_ops af9033_ops = {
  846. .delsys = { SYS_DVBT },
  847. .info = {
  848. .name = "Afatech AF9033 (DVB-T)",
  849. .frequency_min = 174000000,
  850. .frequency_max = 862000000,
  851. .frequency_stepsize = 250000,
  852. .frequency_tolerance = 0,
  853. .caps = FE_CAN_FEC_1_2 |
  854. FE_CAN_FEC_2_3 |
  855. FE_CAN_FEC_3_4 |
  856. FE_CAN_FEC_5_6 |
  857. FE_CAN_FEC_7_8 |
  858. FE_CAN_FEC_AUTO |
  859. FE_CAN_QPSK |
  860. FE_CAN_QAM_16 |
  861. FE_CAN_QAM_64 |
  862. FE_CAN_QAM_AUTO |
  863. FE_CAN_TRANSMISSION_MODE_AUTO |
  864. FE_CAN_GUARD_INTERVAL_AUTO |
  865. FE_CAN_HIERARCHY_AUTO |
  866. FE_CAN_RECOVER |
  867. FE_CAN_MUTE_TS
  868. },
  869. .release = af9033_release,
  870. .init = af9033_init,
  871. .sleep = af9033_sleep,
  872. .get_tune_settings = af9033_get_tune_settings,
  873. .set_frontend = af9033_set_frontend,
  874. .get_frontend = af9033_get_frontend,
  875. .read_status = af9033_read_status,
  876. .read_snr = af9033_read_snr,
  877. .read_signal_strength = af9033_read_signal_strength,
  878. .read_ber = af9033_read_ber,
  879. .read_ucblocks = af9033_read_ucblocks,
  880. .i2c_gate_ctrl = af9033_i2c_gate_ctrl,
  881. };
  882. MODULE_AUTHOR("Antti Palosaari <crope@iki.fi>");
  883. MODULE_DESCRIPTION("Afatech AF9033 DVB-T demodulator driver");
  884. MODULE_LICENSE("GPL");