smp-bmips.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472
  1. /*
  2. * This file is subject to the terms and conditions of the GNU General Public
  3. * License. See the file "COPYING" in the main directory of this archive
  4. * for more details.
  5. *
  6. * Copyright (C) 2011 by Kevin Cernekee (cernekee@gmail.com)
  7. *
  8. * SMP support for BMIPS
  9. */
  10. #include <linux/init.h>
  11. #include <linux/sched.h>
  12. #include <linux/mm.h>
  13. #include <linux/delay.h>
  14. #include <linux/smp.h>
  15. #include <linux/interrupt.h>
  16. #include <linux/spinlock.h>
  17. #include <linux/cpu.h>
  18. #include <linux/cpumask.h>
  19. #include <linux/reboot.h>
  20. #include <linux/io.h>
  21. #include <linux/compiler.h>
  22. #include <linux/linkage.h>
  23. #include <linux/bug.h>
  24. #include <linux/kernel.h>
  25. #include <asm/time.h>
  26. #include <asm/pgtable.h>
  27. #include <asm/processor.h>
  28. #include <asm/bootinfo.h>
  29. #include <asm/pmon.h>
  30. #include <asm/cacheflush.h>
  31. #include <asm/tlbflush.h>
  32. #include <asm/mipsregs.h>
  33. #include <asm/bmips.h>
  34. #include <asm/traps.h>
  35. #include <asm/barrier.h>
  36. static int __maybe_unused max_cpus = 1;
  37. /* these may be configured by the platform code */
  38. int bmips_smp_enabled = 1;
  39. int bmips_cpu_offset;
  40. cpumask_t bmips_booted_mask;
  41. #ifdef CONFIG_SMP
  42. /* initial $sp, $gp - used by arch/mips/kernel/bmips_vec.S */
  43. unsigned long bmips_smp_boot_sp;
  44. unsigned long bmips_smp_boot_gp;
  45. static void bmips_send_ipi_single(int cpu, unsigned int action);
  46. static irqreturn_t bmips_ipi_interrupt(int irq, void *dev_id);
  47. /* SW interrupts 0,1 are used for interprocessor signaling */
  48. #define IPI0_IRQ (MIPS_CPU_IRQ_BASE + 0)
  49. #define IPI1_IRQ (MIPS_CPU_IRQ_BASE + 1)
  50. #define CPUNUM(cpu, shift) (((cpu) + bmips_cpu_offset) << (shift))
  51. #define ACTION_CLR_IPI(cpu, ipi) (0x2000 | CPUNUM(cpu, 9) | ((ipi) << 8))
  52. #define ACTION_SET_IPI(cpu, ipi) (0x3000 | CPUNUM(cpu, 9) | ((ipi) << 8))
  53. #define ACTION_BOOT_THREAD(cpu) (0x08 | CPUNUM(cpu, 0))
  54. static void __init bmips_smp_setup(void)
  55. {
  56. int i, cpu = 1, boot_cpu = 0;
  57. #if defined(CONFIG_CPU_BMIPS4350) || defined(CONFIG_CPU_BMIPS4380)
  58. /* arbitration priority */
  59. clear_c0_brcm_cmt_ctrl(0x30);
  60. /* NBK and weak order flags */
  61. set_c0_brcm_config_0(0x30000);
  62. /* Find out if we are running on TP0 or TP1 */
  63. boot_cpu = !!(read_c0_brcm_cmt_local() & (1 << 31));
  64. /*
  65. * MIPS interrupts 0,1 (SW INT 0,1) cross over to the other thread
  66. * MIPS interrupt 2 (HW INT 0) is the CPU0 L1 controller output
  67. * MIPS interrupt 3 (HW INT 1) is the CPU1 L1 controller output
  68. *
  69. * If booting from TP1, leave the existing CMT interrupt routing
  70. * such that TP0 responds to SW1 and TP1 responds to SW0.
  71. */
  72. if (boot_cpu == 0)
  73. change_c0_brcm_cmt_intr(0xf8018000,
  74. (0x02 << 27) | (0x03 << 15));
  75. else
  76. change_c0_brcm_cmt_intr(0xf8018000, (0x1d << 27));
  77. /* single core, 2 threads (2 pipelines) */
  78. max_cpus = 2;
  79. #elif defined(CONFIG_CPU_BMIPS5000)
  80. /* enable raceless SW interrupts */
  81. set_c0_brcm_config(0x03 << 22);
  82. /* route HW interrupt 0 to CPU0, HW interrupt 1 to CPU1 */
  83. change_c0_brcm_mode(0x1f << 27, 0x02 << 27);
  84. /* N cores, 2 threads per core */
  85. max_cpus = (((read_c0_brcm_config() >> 6) & 0x03) + 1) << 1;
  86. /* clear any pending SW interrupts */
  87. for (i = 0; i < max_cpus; i++) {
  88. write_c0_brcm_action(ACTION_CLR_IPI(i, 0));
  89. write_c0_brcm_action(ACTION_CLR_IPI(i, 1));
  90. }
  91. #endif
  92. if (!bmips_smp_enabled)
  93. max_cpus = 1;
  94. /* this can be overridden by the BSP */
  95. if (!board_ebase_setup)
  96. board_ebase_setup = &bmips_ebase_setup;
  97. __cpu_number_map[boot_cpu] = 0;
  98. __cpu_logical_map[0] = boot_cpu;
  99. for (i = 0; i < max_cpus; i++) {
  100. if (i != boot_cpu) {
  101. __cpu_number_map[i] = cpu;
  102. __cpu_logical_map[cpu] = i;
  103. cpu++;
  104. }
  105. set_cpu_possible(i, 1);
  106. set_cpu_present(i, 1);
  107. }
  108. }
  109. /*
  110. * IPI IRQ setup - runs on CPU0
  111. */
  112. static void bmips_prepare_cpus(unsigned int max_cpus)
  113. {
  114. if (request_irq(IPI0_IRQ, bmips_ipi_interrupt, IRQF_PERCPU,
  115. "smp_ipi0", NULL))
  116. panic("Can't request IPI0 interrupt\n");
  117. if (request_irq(IPI1_IRQ, bmips_ipi_interrupt, IRQF_PERCPU,
  118. "smp_ipi1", NULL))
  119. panic("Can't request IPI1 interrupt\n");
  120. }
  121. /*
  122. * Tell the hardware to boot CPUx - runs on CPU0
  123. */
  124. static void bmips_boot_secondary(int cpu, struct task_struct *idle)
  125. {
  126. bmips_smp_boot_sp = __KSTK_TOS(idle);
  127. bmips_smp_boot_gp = (unsigned long)task_thread_info(idle);
  128. mb();
  129. /*
  130. * Initial boot sequence for secondary CPU:
  131. * bmips_reset_nmi_vec @ a000_0000 ->
  132. * bmips_smp_entry ->
  133. * plat_wired_tlb_setup (cached function call; optional) ->
  134. * start_secondary (cached jump)
  135. *
  136. * Warm restart sequence:
  137. * play_dead WAIT loop ->
  138. * bmips_smp_int_vec @ BMIPS_WARM_RESTART_VEC ->
  139. * eret to play_dead ->
  140. * bmips_secondary_reentry ->
  141. * start_secondary
  142. */
  143. pr_info("SMP: Booting CPU%d...\n", cpu);
  144. if (cpumask_test_cpu(cpu, &bmips_booted_mask))
  145. bmips_send_ipi_single(cpu, 0);
  146. else {
  147. #if defined(CONFIG_CPU_BMIPS4350) || defined(CONFIG_CPU_BMIPS4380)
  148. /* Reset slave TP1 if booting from TP0 */
  149. if (cpu_logical_map(cpu) == 0)
  150. set_c0_brcm_cmt_ctrl(0x01);
  151. #elif defined(CONFIG_CPU_BMIPS5000)
  152. if (cpu & 0x01)
  153. write_c0_brcm_action(ACTION_BOOT_THREAD(cpu));
  154. else {
  155. /*
  156. * core N thread 0 was already booted; just
  157. * pulse the NMI line
  158. */
  159. bmips_write_zscm_reg(0x210, 0xc0000000);
  160. udelay(10);
  161. bmips_write_zscm_reg(0x210, 0x00);
  162. }
  163. #endif
  164. cpumask_set_cpu(cpu, &bmips_booted_mask);
  165. }
  166. }
  167. /*
  168. * Early setup - runs on secondary CPU after cache probe
  169. */
  170. static void bmips_init_secondary(void)
  171. {
  172. /* move NMI vector to kseg0, in case XKS01 is enabled */
  173. #if defined(CONFIG_CPU_BMIPS4350) || defined(CONFIG_CPU_BMIPS4380)
  174. void __iomem *cbr = BMIPS_GET_CBR();
  175. unsigned long old_vec;
  176. old_vec = __raw_readl(cbr + BMIPS_RELO_VECTOR_CONTROL_1);
  177. __raw_writel(old_vec & ~0x20000000, cbr + BMIPS_RELO_VECTOR_CONTROL_1);
  178. clear_c0_cause(smp_processor_id() ? C_SW1 : C_SW0);
  179. #elif defined(CONFIG_CPU_BMIPS5000)
  180. write_c0_brcm_bootvec(read_c0_brcm_bootvec() &
  181. (smp_processor_id() & 0x01 ? ~0x20000000 : ~0x2000));
  182. write_c0_brcm_action(ACTION_CLR_IPI(smp_processor_id(), 0));
  183. #endif
  184. }
  185. /*
  186. * Late setup - runs on secondary CPU before entering the idle loop
  187. */
  188. static void bmips_smp_finish(void)
  189. {
  190. pr_info("SMP: CPU%d is running\n", smp_processor_id());
  191. /* make sure there won't be a timer interrupt for a little while */
  192. write_c0_compare(read_c0_count() + mips_hpt_frequency / HZ);
  193. irq_enable_hazard();
  194. set_c0_status(IE_SW0 | IE_SW1 | IE_IRQ1 | IE_IRQ5 | ST0_IE);
  195. irq_enable_hazard();
  196. }
  197. /*
  198. * Runs on CPU0 after all CPUs have been booted
  199. */
  200. static void bmips_cpus_done(void)
  201. {
  202. }
  203. #if defined(CONFIG_CPU_BMIPS5000)
  204. /*
  205. * BMIPS5000 raceless IPIs
  206. *
  207. * Each CPU has two inbound SW IRQs which are independent of all other CPUs.
  208. * IPI0 is used for SMP_RESCHEDULE_YOURSELF
  209. * IPI1 is used for SMP_CALL_FUNCTION
  210. */
  211. static void bmips_send_ipi_single(int cpu, unsigned int action)
  212. {
  213. write_c0_brcm_action(ACTION_SET_IPI(cpu, action == SMP_CALL_FUNCTION));
  214. }
  215. static irqreturn_t bmips_ipi_interrupt(int irq, void *dev_id)
  216. {
  217. int action = irq - IPI0_IRQ;
  218. write_c0_brcm_action(ACTION_CLR_IPI(smp_processor_id(), action));
  219. if (action == 0)
  220. scheduler_ipi();
  221. else
  222. smp_call_function_interrupt();
  223. return IRQ_HANDLED;
  224. }
  225. #else
  226. /*
  227. * BMIPS43xx racey IPIs
  228. *
  229. * We use one inbound SW IRQ for each CPU.
  230. *
  231. * A spinlock must be held in order to keep CPUx from accidentally clearing
  232. * an incoming IPI when it writes CP0 CAUSE to raise an IPI on CPUy. The
  233. * same spinlock is used to protect the action masks.
  234. */
  235. static DEFINE_SPINLOCK(ipi_lock);
  236. static DEFINE_PER_CPU(int, ipi_action_mask);
  237. static void bmips_send_ipi_single(int cpu, unsigned int action)
  238. {
  239. unsigned long flags;
  240. spin_lock_irqsave(&ipi_lock, flags);
  241. set_c0_cause(cpu ? C_SW1 : C_SW0);
  242. per_cpu(ipi_action_mask, cpu) |= action;
  243. irq_enable_hazard();
  244. spin_unlock_irqrestore(&ipi_lock, flags);
  245. }
  246. static irqreturn_t bmips_ipi_interrupt(int irq, void *dev_id)
  247. {
  248. unsigned long flags;
  249. int action, cpu = irq - IPI0_IRQ;
  250. spin_lock_irqsave(&ipi_lock, flags);
  251. action = __get_cpu_var(ipi_action_mask);
  252. per_cpu(ipi_action_mask, cpu) = 0;
  253. clear_c0_cause(cpu ? C_SW1 : C_SW0);
  254. spin_unlock_irqrestore(&ipi_lock, flags);
  255. if (action & SMP_RESCHEDULE_YOURSELF)
  256. scheduler_ipi();
  257. if (action & SMP_CALL_FUNCTION)
  258. smp_call_function_interrupt();
  259. return IRQ_HANDLED;
  260. }
  261. #endif /* BMIPS type */
  262. static void bmips_send_ipi_mask(const struct cpumask *mask,
  263. unsigned int action)
  264. {
  265. unsigned int i;
  266. for_each_cpu(i, mask)
  267. bmips_send_ipi_single(i, action);
  268. }
  269. #ifdef CONFIG_HOTPLUG_CPU
  270. static int bmips_cpu_disable(void)
  271. {
  272. unsigned int cpu = smp_processor_id();
  273. if (cpu == 0)
  274. return -EBUSY;
  275. pr_info("SMP: CPU%d is offline\n", cpu);
  276. set_cpu_online(cpu, false);
  277. cpu_clear(cpu, cpu_callin_map);
  278. local_flush_tlb_all();
  279. local_flush_icache_range(0, ~0);
  280. return 0;
  281. }
  282. static void bmips_cpu_die(unsigned int cpu)
  283. {
  284. }
  285. void __ref play_dead(void)
  286. {
  287. idle_task_exit();
  288. /* flush data cache */
  289. _dma_cache_wback_inv(0, ~0);
  290. /*
  291. * Wakeup is on SW0 or SW1; disable everything else
  292. * Use BEV !IV (BMIPS_WARM_RESTART_VEC) to avoid the regular Linux
  293. * IRQ handlers; this clears ST0_IE and returns immediately.
  294. */
  295. clear_c0_cause(CAUSEF_IV | C_SW0 | C_SW1);
  296. change_c0_status(IE_IRQ5 | IE_IRQ1 | IE_SW0 | IE_SW1 | ST0_IE | ST0_BEV,
  297. IE_SW0 | IE_SW1 | ST0_IE | ST0_BEV);
  298. irq_disable_hazard();
  299. /*
  300. * wait for SW interrupt from bmips_boot_secondary(), then jump
  301. * back to start_secondary()
  302. */
  303. __asm__ __volatile__(
  304. " wait\n"
  305. " j bmips_secondary_reentry\n"
  306. : : : "memory");
  307. }
  308. #endif /* CONFIG_HOTPLUG_CPU */
  309. struct plat_smp_ops bmips_smp_ops = {
  310. .smp_setup = bmips_smp_setup,
  311. .prepare_cpus = bmips_prepare_cpus,
  312. .boot_secondary = bmips_boot_secondary,
  313. .smp_finish = bmips_smp_finish,
  314. .init_secondary = bmips_init_secondary,
  315. .cpus_done = bmips_cpus_done,
  316. .send_ipi_single = bmips_send_ipi_single,
  317. .send_ipi_mask = bmips_send_ipi_mask,
  318. #ifdef CONFIG_HOTPLUG_CPU
  319. .cpu_disable = bmips_cpu_disable,
  320. .cpu_die = bmips_cpu_die,
  321. #endif
  322. };
  323. #endif /* CONFIG_SMP */
  324. /***********************************************************************
  325. * BMIPS vector relocation
  326. * This is primarily used for SMP boot, but it is applicable to some
  327. * UP BMIPS systems as well.
  328. ***********************************************************************/
  329. static void __cpuinit bmips_wr_vec(unsigned long dst, char *start, char *end)
  330. {
  331. memcpy((void *)dst, start, end - start);
  332. dma_cache_wback((unsigned long)start, end - start);
  333. local_flush_icache_range(dst, dst + (end - start));
  334. instruction_hazard();
  335. }
  336. static inline void __cpuinit bmips_nmi_handler_setup(void)
  337. {
  338. bmips_wr_vec(BMIPS_NMI_RESET_VEC, &bmips_reset_nmi_vec,
  339. &bmips_reset_nmi_vec_end);
  340. bmips_wr_vec(BMIPS_WARM_RESTART_VEC, &bmips_smp_int_vec,
  341. &bmips_smp_int_vec_end);
  342. }
  343. void __cpuinit bmips_ebase_setup(void)
  344. {
  345. unsigned long new_ebase = ebase;
  346. void __iomem __maybe_unused *cbr;
  347. BUG_ON(ebase != CKSEG0);
  348. #if defined(CONFIG_CPU_BMIPS4350)
  349. /*
  350. * BMIPS4350 cannot relocate the normal vectors, but it
  351. * can relocate the BEV=1 vectors. So CPU1 starts up at
  352. * the relocated BEV=1, IV=0 general exception vector @
  353. * 0xa000_0380.
  354. *
  355. * set_uncached_handler() is used here because:
  356. * - CPU1 will run this from uncached space
  357. * - None of the cacheflush functions are set up yet
  358. */
  359. set_uncached_handler(BMIPS_WARM_RESTART_VEC - CKSEG0,
  360. &bmips_smp_int_vec, 0x80);
  361. __sync();
  362. return;
  363. #elif defined(CONFIG_CPU_BMIPS4380)
  364. /*
  365. * 0x8000_0000: reset/NMI (initially in kseg1)
  366. * 0x8000_0400: normal vectors
  367. */
  368. new_ebase = 0x80000400;
  369. cbr = BMIPS_GET_CBR();
  370. __raw_writel(0x80080800, cbr + BMIPS_RELO_VECTOR_CONTROL_0);
  371. __raw_writel(0xa0080800, cbr + BMIPS_RELO_VECTOR_CONTROL_1);
  372. #elif defined(CONFIG_CPU_BMIPS5000)
  373. /*
  374. * 0x8000_0000: reset/NMI (initially in kseg1)
  375. * 0x8000_1000: normal vectors
  376. */
  377. new_ebase = 0x80001000;
  378. write_c0_brcm_bootvec(0xa0088008);
  379. write_c0_ebase(new_ebase);
  380. if (max_cpus > 2)
  381. bmips_write_zscm_reg(0xa0, 0xa008a008);
  382. #else
  383. return;
  384. #endif
  385. board_nmi_handler_setup = &bmips_nmi_handler_setup;
  386. ebase = new_ebase;
  387. }
  388. asmlinkage void __weak plat_wired_tlb_setup(void)
  389. {
  390. /*
  391. * Called when starting/restarting a secondary CPU.
  392. * Kernel stacks and other important data might only be accessible
  393. * once the wired entries are present.
  394. */
  395. }