aio.c 44 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740
  1. /*
  2. * An async IO implementation for Linux
  3. * Written by Benjamin LaHaise <bcrl@kvack.org>
  4. *
  5. * Implements an efficient asynchronous io interface.
  6. *
  7. * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved.
  8. *
  9. * See ../COPYING for licensing terms.
  10. */
  11. #include <linux/kernel.h>
  12. #include <linux/init.h>
  13. #include <linux/errno.h>
  14. #include <linux/time.h>
  15. #include <linux/aio_abi.h>
  16. #include <linux/module.h>
  17. #include <linux/syscalls.h>
  18. #define DEBUG 0
  19. #include <linux/sched.h>
  20. #include <linux/fs.h>
  21. #include <linux/file.h>
  22. #include <linux/mm.h>
  23. #include <linux/mman.h>
  24. #include <linux/slab.h>
  25. #include <linux/timer.h>
  26. #include <linux/aio.h>
  27. #include <linux/highmem.h>
  28. #include <linux/workqueue.h>
  29. #include <linux/security.h>
  30. #include <linux/rcuref.h>
  31. #include <asm/kmap_types.h>
  32. #include <asm/uaccess.h>
  33. #include <asm/mmu_context.h>
  34. #if DEBUG > 1
  35. #define dprintk printk
  36. #else
  37. #define dprintk(x...) do { ; } while (0)
  38. #endif
  39. /*------ sysctl variables----*/
  40. atomic_t aio_nr = ATOMIC_INIT(0); /* current system wide number of aio requests */
  41. unsigned aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
  42. /*----end sysctl variables---*/
  43. static kmem_cache_t *kiocb_cachep;
  44. static kmem_cache_t *kioctx_cachep;
  45. static struct workqueue_struct *aio_wq;
  46. /* Used for rare fput completion. */
  47. static void aio_fput_routine(void *);
  48. static DECLARE_WORK(fput_work, aio_fput_routine, NULL);
  49. static DEFINE_SPINLOCK(fput_lock);
  50. static LIST_HEAD(fput_head);
  51. static void aio_kick_handler(void *);
  52. static void aio_queue_work(struct kioctx *);
  53. /* aio_setup
  54. * Creates the slab caches used by the aio routines, panic on
  55. * failure as this is done early during the boot sequence.
  56. */
  57. static int __init aio_setup(void)
  58. {
  59. kiocb_cachep = kmem_cache_create("kiocb", sizeof(struct kiocb),
  60. 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
  61. kioctx_cachep = kmem_cache_create("kioctx", sizeof(struct kioctx),
  62. 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
  63. aio_wq = create_workqueue("aio");
  64. pr_debug("aio_setup: sizeof(struct page) = %d\n", (int)sizeof(struct page));
  65. return 0;
  66. }
  67. static void aio_free_ring(struct kioctx *ctx)
  68. {
  69. struct aio_ring_info *info = &ctx->ring_info;
  70. long i;
  71. for (i=0; i<info->nr_pages; i++)
  72. put_page(info->ring_pages[i]);
  73. if (info->mmap_size) {
  74. down_write(&ctx->mm->mmap_sem);
  75. do_munmap(ctx->mm, info->mmap_base, info->mmap_size);
  76. up_write(&ctx->mm->mmap_sem);
  77. }
  78. if (info->ring_pages && info->ring_pages != info->internal_pages)
  79. kfree(info->ring_pages);
  80. info->ring_pages = NULL;
  81. info->nr = 0;
  82. }
  83. static int aio_setup_ring(struct kioctx *ctx)
  84. {
  85. struct aio_ring *ring;
  86. struct aio_ring_info *info = &ctx->ring_info;
  87. unsigned nr_events = ctx->max_reqs;
  88. unsigned long size;
  89. int nr_pages;
  90. /* Compensate for the ring buffer's head/tail overlap entry */
  91. nr_events += 2; /* 1 is required, 2 for good luck */
  92. size = sizeof(struct aio_ring);
  93. size += sizeof(struct io_event) * nr_events;
  94. nr_pages = (size + PAGE_SIZE-1) >> PAGE_SHIFT;
  95. if (nr_pages < 0)
  96. return -EINVAL;
  97. nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring)) / sizeof(struct io_event);
  98. info->nr = 0;
  99. info->ring_pages = info->internal_pages;
  100. if (nr_pages > AIO_RING_PAGES) {
  101. info->ring_pages = kmalloc(sizeof(struct page *) * nr_pages, GFP_KERNEL);
  102. if (!info->ring_pages)
  103. return -ENOMEM;
  104. memset(info->ring_pages, 0, sizeof(struct page *) * nr_pages);
  105. }
  106. info->mmap_size = nr_pages * PAGE_SIZE;
  107. dprintk("attempting mmap of %lu bytes\n", info->mmap_size);
  108. down_write(&ctx->mm->mmap_sem);
  109. info->mmap_base = do_mmap(NULL, 0, info->mmap_size,
  110. PROT_READ|PROT_WRITE, MAP_ANON|MAP_PRIVATE,
  111. 0);
  112. if (IS_ERR((void *)info->mmap_base)) {
  113. up_write(&ctx->mm->mmap_sem);
  114. printk("mmap err: %ld\n", -info->mmap_base);
  115. info->mmap_size = 0;
  116. aio_free_ring(ctx);
  117. return -EAGAIN;
  118. }
  119. dprintk("mmap address: 0x%08lx\n", info->mmap_base);
  120. info->nr_pages = get_user_pages(current, ctx->mm,
  121. info->mmap_base, nr_pages,
  122. 1, 0, info->ring_pages, NULL);
  123. up_write(&ctx->mm->mmap_sem);
  124. if (unlikely(info->nr_pages != nr_pages)) {
  125. aio_free_ring(ctx);
  126. return -EAGAIN;
  127. }
  128. ctx->user_id = info->mmap_base;
  129. info->nr = nr_events; /* trusted copy */
  130. ring = kmap_atomic(info->ring_pages[0], KM_USER0);
  131. ring->nr = nr_events; /* user copy */
  132. ring->id = ctx->user_id;
  133. ring->head = ring->tail = 0;
  134. ring->magic = AIO_RING_MAGIC;
  135. ring->compat_features = AIO_RING_COMPAT_FEATURES;
  136. ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
  137. ring->header_length = sizeof(struct aio_ring);
  138. kunmap_atomic(ring, KM_USER0);
  139. return 0;
  140. }
  141. /* aio_ring_event: returns a pointer to the event at the given index from
  142. * kmap_atomic(, km). Release the pointer with put_aio_ring_event();
  143. */
  144. #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event))
  145. #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
  146. #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
  147. #define aio_ring_event(info, nr, km) ({ \
  148. unsigned pos = (nr) + AIO_EVENTS_OFFSET; \
  149. struct io_event *__event; \
  150. __event = kmap_atomic( \
  151. (info)->ring_pages[pos / AIO_EVENTS_PER_PAGE], km); \
  152. __event += pos % AIO_EVENTS_PER_PAGE; \
  153. __event; \
  154. })
  155. #define put_aio_ring_event(event, km) do { \
  156. struct io_event *__event = (event); \
  157. (void)__event; \
  158. kunmap_atomic((void *)((unsigned long)__event & PAGE_MASK), km); \
  159. } while(0)
  160. /* ioctx_alloc
  161. * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed.
  162. */
  163. static struct kioctx *ioctx_alloc(unsigned nr_events)
  164. {
  165. struct mm_struct *mm;
  166. struct kioctx *ctx;
  167. /* Prevent overflows */
  168. if ((nr_events > (0x10000000U / sizeof(struct io_event))) ||
  169. (nr_events > (0x10000000U / sizeof(struct kiocb)))) {
  170. pr_debug("ENOMEM: nr_events too high\n");
  171. return ERR_PTR(-EINVAL);
  172. }
  173. if (nr_events > aio_max_nr)
  174. return ERR_PTR(-EAGAIN);
  175. ctx = kmem_cache_alloc(kioctx_cachep, GFP_KERNEL);
  176. if (!ctx)
  177. return ERR_PTR(-ENOMEM);
  178. memset(ctx, 0, sizeof(*ctx));
  179. ctx->max_reqs = nr_events;
  180. mm = ctx->mm = current->mm;
  181. atomic_inc(&mm->mm_count);
  182. atomic_set(&ctx->users, 1);
  183. spin_lock_init(&ctx->ctx_lock);
  184. spin_lock_init(&ctx->ring_info.ring_lock);
  185. init_waitqueue_head(&ctx->wait);
  186. INIT_LIST_HEAD(&ctx->active_reqs);
  187. INIT_LIST_HEAD(&ctx->run_list);
  188. INIT_WORK(&ctx->wq, aio_kick_handler, ctx);
  189. if (aio_setup_ring(ctx) < 0)
  190. goto out_freectx;
  191. /* limit the number of system wide aios */
  192. atomic_add(ctx->max_reqs, &aio_nr); /* undone by __put_ioctx */
  193. if (unlikely(atomic_read(&aio_nr) > aio_max_nr))
  194. goto out_cleanup;
  195. /* now link into global list. kludge. FIXME */
  196. write_lock(&mm->ioctx_list_lock);
  197. ctx->next = mm->ioctx_list;
  198. mm->ioctx_list = ctx;
  199. write_unlock(&mm->ioctx_list_lock);
  200. dprintk("aio: allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
  201. ctx, ctx->user_id, current->mm, ctx->ring_info.nr);
  202. return ctx;
  203. out_cleanup:
  204. atomic_sub(ctx->max_reqs, &aio_nr);
  205. ctx->max_reqs = 0; /* prevent __put_ioctx from sub'ing aio_nr */
  206. __put_ioctx(ctx);
  207. return ERR_PTR(-EAGAIN);
  208. out_freectx:
  209. mmdrop(mm);
  210. kmem_cache_free(kioctx_cachep, ctx);
  211. ctx = ERR_PTR(-ENOMEM);
  212. dprintk("aio: error allocating ioctx %p\n", ctx);
  213. return ctx;
  214. }
  215. /* aio_cancel_all
  216. * Cancels all outstanding aio requests on an aio context. Used
  217. * when the processes owning a context have all exited to encourage
  218. * the rapid destruction of the kioctx.
  219. */
  220. static void aio_cancel_all(struct kioctx *ctx)
  221. {
  222. int (*cancel)(struct kiocb *, struct io_event *);
  223. struct io_event res;
  224. spin_lock_irq(&ctx->ctx_lock);
  225. ctx->dead = 1;
  226. while (!list_empty(&ctx->active_reqs)) {
  227. struct list_head *pos = ctx->active_reqs.next;
  228. struct kiocb *iocb = list_kiocb(pos);
  229. list_del_init(&iocb->ki_list);
  230. cancel = iocb->ki_cancel;
  231. kiocbSetCancelled(iocb);
  232. if (cancel) {
  233. iocb->ki_users++;
  234. spin_unlock_irq(&ctx->ctx_lock);
  235. cancel(iocb, &res);
  236. spin_lock_irq(&ctx->ctx_lock);
  237. }
  238. }
  239. spin_unlock_irq(&ctx->ctx_lock);
  240. }
  241. static void wait_for_all_aios(struct kioctx *ctx)
  242. {
  243. struct task_struct *tsk = current;
  244. DECLARE_WAITQUEUE(wait, tsk);
  245. if (!ctx->reqs_active)
  246. return;
  247. add_wait_queue(&ctx->wait, &wait);
  248. set_task_state(tsk, TASK_UNINTERRUPTIBLE);
  249. while (ctx->reqs_active) {
  250. schedule();
  251. set_task_state(tsk, TASK_UNINTERRUPTIBLE);
  252. }
  253. __set_task_state(tsk, TASK_RUNNING);
  254. remove_wait_queue(&ctx->wait, &wait);
  255. }
  256. /* wait_on_sync_kiocb:
  257. * Waits on the given sync kiocb to complete.
  258. */
  259. ssize_t fastcall wait_on_sync_kiocb(struct kiocb *iocb)
  260. {
  261. while (iocb->ki_users) {
  262. set_current_state(TASK_UNINTERRUPTIBLE);
  263. if (!iocb->ki_users)
  264. break;
  265. schedule();
  266. }
  267. __set_current_state(TASK_RUNNING);
  268. return iocb->ki_user_data;
  269. }
  270. /* exit_aio: called when the last user of mm goes away. At this point,
  271. * there is no way for any new requests to be submited or any of the
  272. * io_* syscalls to be called on the context. However, there may be
  273. * outstanding requests which hold references to the context; as they
  274. * go away, they will call put_ioctx and release any pinned memory
  275. * associated with the request (held via struct page * references).
  276. */
  277. void fastcall exit_aio(struct mm_struct *mm)
  278. {
  279. struct kioctx *ctx = mm->ioctx_list;
  280. mm->ioctx_list = NULL;
  281. while (ctx) {
  282. struct kioctx *next = ctx->next;
  283. ctx->next = NULL;
  284. aio_cancel_all(ctx);
  285. wait_for_all_aios(ctx);
  286. /*
  287. * this is an overkill, but ensures we don't leave
  288. * the ctx on the aio_wq
  289. */
  290. flush_workqueue(aio_wq);
  291. if (1 != atomic_read(&ctx->users))
  292. printk(KERN_DEBUG
  293. "exit_aio:ioctx still alive: %d %d %d\n",
  294. atomic_read(&ctx->users), ctx->dead,
  295. ctx->reqs_active);
  296. put_ioctx(ctx);
  297. ctx = next;
  298. }
  299. }
  300. /* __put_ioctx
  301. * Called when the last user of an aio context has gone away,
  302. * and the struct needs to be freed.
  303. */
  304. void fastcall __put_ioctx(struct kioctx *ctx)
  305. {
  306. unsigned nr_events = ctx->max_reqs;
  307. if (unlikely(ctx->reqs_active))
  308. BUG();
  309. cancel_delayed_work(&ctx->wq);
  310. flush_workqueue(aio_wq);
  311. aio_free_ring(ctx);
  312. mmdrop(ctx->mm);
  313. ctx->mm = NULL;
  314. pr_debug("__put_ioctx: freeing %p\n", ctx);
  315. kmem_cache_free(kioctx_cachep, ctx);
  316. atomic_sub(nr_events, &aio_nr);
  317. }
  318. /* aio_get_req
  319. * Allocate a slot for an aio request. Increments the users count
  320. * of the kioctx so that the kioctx stays around until all requests are
  321. * complete. Returns NULL if no requests are free.
  322. *
  323. * Returns with kiocb->users set to 2. The io submit code path holds
  324. * an extra reference while submitting the i/o.
  325. * This prevents races between the aio code path referencing the
  326. * req (after submitting it) and aio_complete() freeing the req.
  327. */
  328. static struct kiocb *FASTCALL(__aio_get_req(struct kioctx *ctx));
  329. static struct kiocb fastcall *__aio_get_req(struct kioctx *ctx)
  330. {
  331. struct kiocb *req = NULL;
  332. struct aio_ring *ring;
  333. int okay = 0;
  334. req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL);
  335. if (unlikely(!req))
  336. return NULL;
  337. req->ki_flags = 1 << KIF_LOCKED;
  338. req->ki_users = 2;
  339. req->ki_key = 0;
  340. req->ki_ctx = ctx;
  341. req->ki_cancel = NULL;
  342. req->ki_retry = NULL;
  343. req->ki_dtor = NULL;
  344. req->private = NULL;
  345. INIT_LIST_HEAD(&req->ki_run_list);
  346. /* Check if the completion queue has enough free space to
  347. * accept an event from this io.
  348. */
  349. spin_lock_irq(&ctx->ctx_lock);
  350. ring = kmap_atomic(ctx->ring_info.ring_pages[0], KM_USER0);
  351. if (ctx->reqs_active < aio_ring_avail(&ctx->ring_info, ring)) {
  352. list_add(&req->ki_list, &ctx->active_reqs);
  353. get_ioctx(ctx);
  354. ctx->reqs_active++;
  355. okay = 1;
  356. }
  357. kunmap_atomic(ring, KM_USER0);
  358. spin_unlock_irq(&ctx->ctx_lock);
  359. if (!okay) {
  360. kmem_cache_free(kiocb_cachep, req);
  361. req = NULL;
  362. }
  363. return req;
  364. }
  365. static inline struct kiocb *aio_get_req(struct kioctx *ctx)
  366. {
  367. struct kiocb *req;
  368. /* Handle a potential starvation case -- should be exceedingly rare as
  369. * requests will be stuck on fput_head only if the aio_fput_routine is
  370. * delayed and the requests were the last user of the struct file.
  371. */
  372. req = __aio_get_req(ctx);
  373. if (unlikely(NULL == req)) {
  374. aio_fput_routine(NULL);
  375. req = __aio_get_req(ctx);
  376. }
  377. return req;
  378. }
  379. static inline void really_put_req(struct kioctx *ctx, struct kiocb *req)
  380. {
  381. if (req->ki_dtor)
  382. req->ki_dtor(req);
  383. kmem_cache_free(kiocb_cachep, req);
  384. ctx->reqs_active--;
  385. if (unlikely(!ctx->reqs_active && ctx->dead))
  386. wake_up(&ctx->wait);
  387. }
  388. static void aio_fput_routine(void *data)
  389. {
  390. spin_lock_irq(&fput_lock);
  391. while (likely(!list_empty(&fput_head))) {
  392. struct kiocb *req = list_kiocb(fput_head.next);
  393. struct kioctx *ctx = req->ki_ctx;
  394. list_del(&req->ki_list);
  395. spin_unlock_irq(&fput_lock);
  396. /* Complete the fput */
  397. __fput(req->ki_filp);
  398. /* Link the iocb into the context's free list */
  399. spin_lock_irq(&ctx->ctx_lock);
  400. really_put_req(ctx, req);
  401. spin_unlock_irq(&ctx->ctx_lock);
  402. put_ioctx(ctx);
  403. spin_lock_irq(&fput_lock);
  404. }
  405. spin_unlock_irq(&fput_lock);
  406. }
  407. /* __aio_put_req
  408. * Returns true if this put was the last user of the request.
  409. */
  410. static int __aio_put_req(struct kioctx *ctx, struct kiocb *req)
  411. {
  412. dprintk(KERN_DEBUG "aio_put(%p): f_count=%d\n",
  413. req, atomic_read(&req->ki_filp->f_count));
  414. req->ki_users --;
  415. if (unlikely(req->ki_users < 0))
  416. BUG();
  417. if (likely(req->ki_users))
  418. return 0;
  419. list_del(&req->ki_list); /* remove from active_reqs */
  420. req->ki_cancel = NULL;
  421. req->ki_retry = NULL;
  422. /* Must be done under the lock to serialise against cancellation.
  423. * Call this aio_fput as it duplicates fput via the fput_work.
  424. */
  425. if (unlikely(rcuref_dec_and_test(&req->ki_filp->f_count))) {
  426. get_ioctx(ctx);
  427. spin_lock(&fput_lock);
  428. list_add(&req->ki_list, &fput_head);
  429. spin_unlock(&fput_lock);
  430. queue_work(aio_wq, &fput_work);
  431. } else
  432. really_put_req(ctx, req);
  433. return 1;
  434. }
  435. /* aio_put_req
  436. * Returns true if this put was the last user of the kiocb,
  437. * false if the request is still in use.
  438. */
  439. int fastcall aio_put_req(struct kiocb *req)
  440. {
  441. struct kioctx *ctx = req->ki_ctx;
  442. int ret;
  443. spin_lock_irq(&ctx->ctx_lock);
  444. ret = __aio_put_req(ctx, req);
  445. spin_unlock_irq(&ctx->ctx_lock);
  446. if (ret)
  447. put_ioctx(ctx);
  448. return ret;
  449. }
  450. /* Lookup an ioctx id. ioctx_list is lockless for reads.
  451. * FIXME: this is O(n) and is only suitable for development.
  452. */
  453. struct kioctx *lookup_ioctx(unsigned long ctx_id)
  454. {
  455. struct kioctx *ioctx;
  456. struct mm_struct *mm;
  457. mm = current->mm;
  458. read_lock(&mm->ioctx_list_lock);
  459. for (ioctx = mm->ioctx_list; ioctx; ioctx = ioctx->next)
  460. if (likely(ioctx->user_id == ctx_id && !ioctx->dead)) {
  461. get_ioctx(ioctx);
  462. break;
  463. }
  464. read_unlock(&mm->ioctx_list_lock);
  465. return ioctx;
  466. }
  467. static int lock_kiocb_action(void *param)
  468. {
  469. schedule();
  470. return 0;
  471. }
  472. static inline void lock_kiocb(struct kiocb *iocb)
  473. {
  474. wait_on_bit_lock(&iocb->ki_flags, KIF_LOCKED, lock_kiocb_action,
  475. TASK_UNINTERRUPTIBLE);
  476. }
  477. static inline void unlock_kiocb(struct kiocb *iocb)
  478. {
  479. kiocbClearLocked(iocb);
  480. smp_mb__after_clear_bit();
  481. wake_up_bit(&iocb->ki_flags, KIF_LOCKED);
  482. }
  483. /*
  484. * use_mm
  485. * Makes the calling kernel thread take on the specified
  486. * mm context.
  487. * Called by the retry thread execute retries within the
  488. * iocb issuer's mm context, so that copy_from/to_user
  489. * operations work seamlessly for aio.
  490. * (Note: this routine is intended to be called only
  491. * from a kernel thread context)
  492. */
  493. static void use_mm(struct mm_struct *mm)
  494. {
  495. struct mm_struct *active_mm;
  496. struct task_struct *tsk = current;
  497. task_lock(tsk);
  498. tsk->flags |= PF_BORROWED_MM;
  499. active_mm = tsk->active_mm;
  500. atomic_inc(&mm->mm_count);
  501. tsk->mm = mm;
  502. tsk->active_mm = mm;
  503. /*
  504. * Note that on UML this *requires* PF_BORROWED_MM to be set, otherwise
  505. * it won't work. Update it accordingly if you change it here
  506. */
  507. activate_mm(active_mm, mm);
  508. task_unlock(tsk);
  509. mmdrop(active_mm);
  510. }
  511. /*
  512. * unuse_mm
  513. * Reverses the effect of use_mm, i.e. releases the
  514. * specified mm context which was earlier taken on
  515. * by the calling kernel thread
  516. * (Note: this routine is intended to be called only
  517. * from a kernel thread context)
  518. *
  519. * Comments: Called with ctx->ctx_lock held. This nests
  520. * task_lock instead ctx_lock.
  521. */
  522. static void unuse_mm(struct mm_struct *mm)
  523. {
  524. struct task_struct *tsk = current;
  525. task_lock(tsk);
  526. tsk->flags &= ~PF_BORROWED_MM;
  527. tsk->mm = NULL;
  528. /* active_mm is still 'mm' */
  529. enter_lazy_tlb(mm, tsk);
  530. task_unlock(tsk);
  531. }
  532. /*
  533. * Queue up a kiocb to be retried. Assumes that the kiocb
  534. * has already been marked as kicked, and places it on
  535. * the retry run list for the corresponding ioctx, if it
  536. * isn't already queued. Returns 1 if it actually queued
  537. * the kiocb (to tell the caller to activate the work
  538. * queue to process it), or 0, if it found that it was
  539. * already queued.
  540. *
  541. * Should be called with the spin lock iocb->ki_ctx->ctx_lock
  542. * held
  543. */
  544. static inline int __queue_kicked_iocb(struct kiocb *iocb)
  545. {
  546. struct kioctx *ctx = iocb->ki_ctx;
  547. if (list_empty(&iocb->ki_run_list)) {
  548. list_add_tail(&iocb->ki_run_list,
  549. &ctx->run_list);
  550. return 1;
  551. }
  552. return 0;
  553. }
  554. /* aio_run_iocb
  555. * This is the core aio execution routine. It is
  556. * invoked both for initial i/o submission and
  557. * subsequent retries via the aio_kick_handler.
  558. * Expects to be invoked with iocb->ki_ctx->lock
  559. * already held. The lock is released and reaquired
  560. * as needed during processing.
  561. *
  562. * Calls the iocb retry method (already setup for the
  563. * iocb on initial submission) for operation specific
  564. * handling, but takes care of most of common retry
  565. * execution details for a given iocb. The retry method
  566. * needs to be non-blocking as far as possible, to avoid
  567. * holding up other iocbs waiting to be serviced by the
  568. * retry kernel thread.
  569. *
  570. * The trickier parts in this code have to do with
  571. * ensuring that only one retry instance is in progress
  572. * for a given iocb at any time. Providing that guarantee
  573. * simplifies the coding of individual aio operations as
  574. * it avoids various potential races.
  575. */
  576. static ssize_t aio_run_iocb(struct kiocb *iocb)
  577. {
  578. struct kioctx *ctx = iocb->ki_ctx;
  579. ssize_t (*retry)(struct kiocb *);
  580. ssize_t ret;
  581. if (iocb->ki_retried++ > 1024*1024) {
  582. printk("Maximal retry count. Bytes done %Zd\n",
  583. iocb->ki_nbytes - iocb->ki_left);
  584. return -EAGAIN;
  585. }
  586. if (!(iocb->ki_retried & 0xff)) {
  587. pr_debug("%ld retry: %d of %d\n", iocb->ki_retried,
  588. iocb->ki_nbytes - iocb->ki_left, iocb->ki_nbytes);
  589. }
  590. if (!(retry = iocb->ki_retry)) {
  591. printk("aio_run_iocb: iocb->ki_retry = NULL\n");
  592. return 0;
  593. }
  594. /*
  595. * We don't want the next retry iteration for this
  596. * operation to start until this one has returned and
  597. * updated the iocb state. However, wait_queue functions
  598. * can trigger a kick_iocb from interrupt context in the
  599. * meantime, indicating that data is available for the next
  600. * iteration. We want to remember that and enable the
  601. * next retry iteration _after_ we are through with
  602. * this one.
  603. *
  604. * So, in order to be able to register a "kick", but
  605. * prevent it from being queued now, we clear the kick
  606. * flag, but make the kick code *think* that the iocb is
  607. * still on the run list until we are actually done.
  608. * When we are done with this iteration, we check if
  609. * the iocb was kicked in the meantime and if so, queue
  610. * it up afresh.
  611. */
  612. kiocbClearKicked(iocb);
  613. /*
  614. * This is so that aio_complete knows it doesn't need to
  615. * pull the iocb off the run list (We can't just call
  616. * INIT_LIST_HEAD because we don't want a kick_iocb to
  617. * queue this on the run list yet)
  618. */
  619. iocb->ki_run_list.next = iocb->ki_run_list.prev = NULL;
  620. spin_unlock_irq(&ctx->ctx_lock);
  621. /* Quit retrying if the i/o has been cancelled */
  622. if (kiocbIsCancelled(iocb)) {
  623. ret = -EINTR;
  624. aio_complete(iocb, ret, 0);
  625. /* must not access the iocb after this */
  626. goto out;
  627. }
  628. /*
  629. * Now we are all set to call the retry method in async
  630. * context. By setting this thread's io_wait context
  631. * to point to the wait queue entry inside the currently
  632. * running iocb for the duration of the retry, we ensure
  633. * that async notification wakeups are queued by the
  634. * operation instead of blocking waits, and when notified,
  635. * cause the iocb to be kicked for continuation (through
  636. * the aio_wake_function callback).
  637. */
  638. BUG_ON(current->io_wait != NULL);
  639. current->io_wait = &iocb->ki_wait;
  640. ret = retry(iocb);
  641. current->io_wait = NULL;
  642. if (-EIOCBRETRY != ret) {
  643. if (-EIOCBQUEUED != ret) {
  644. BUG_ON(!list_empty(&iocb->ki_wait.task_list));
  645. aio_complete(iocb, ret, 0);
  646. /* must not access the iocb after this */
  647. }
  648. } else {
  649. /*
  650. * Issue an additional retry to avoid waiting forever if
  651. * no waits were queued (e.g. in case of a short read).
  652. */
  653. if (list_empty(&iocb->ki_wait.task_list))
  654. kiocbSetKicked(iocb);
  655. }
  656. out:
  657. spin_lock_irq(&ctx->ctx_lock);
  658. if (-EIOCBRETRY == ret) {
  659. /*
  660. * OK, now that we are done with this iteration
  661. * and know that there is more left to go,
  662. * this is where we let go so that a subsequent
  663. * "kick" can start the next iteration
  664. */
  665. /* will make __queue_kicked_iocb succeed from here on */
  666. INIT_LIST_HEAD(&iocb->ki_run_list);
  667. /* we must queue the next iteration ourselves, if it
  668. * has already been kicked */
  669. if (kiocbIsKicked(iocb)) {
  670. __queue_kicked_iocb(iocb);
  671. /*
  672. * __queue_kicked_iocb will always return 1 here, because
  673. * iocb->ki_run_list is empty at this point so it should
  674. * be safe to unconditionally queue the context into the
  675. * work queue.
  676. */
  677. aio_queue_work(ctx);
  678. }
  679. }
  680. return ret;
  681. }
  682. /*
  683. * __aio_run_iocbs:
  684. * Process all pending retries queued on the ioctx
  685. * run list.
  686. * Assumes it is operating within the aio issuer's mm
  687. * context. Expects to be called with ctx->ctx_lock held
  688. */
  689. static int __aio_run_iocbs(struct kioctx *ctx)
  690. {
  691. struct kiocb *iocb;
  692. LIST_HEAD(run_list);
  693. list_splice_init(&ctx->run_list, &run_list);
  694. while (!list_empty(&run_list)) {
  695. iocb = list_entry(run_list.next, struct kiocb,
  696. ki_run_list);
  697. list_del(&iocb->ki_run_list);
  698. /*
  699. * Hold an extra reference while retrying i/o.
  700. */
  701. iocb->ki_users++; /* grab extra reference */
  702. lock_kiocb(iocb);
  703. aio_run_iocb(iocb);
  704. unlock_kiocb(iocb);
  705. if (__aio_put_req(ctx, iocb)) /* drop extra ref */
  706. put_ioctx(ctx);
  707. }
  708. if (!list_empty(&ctx->run_list))
  709. return 1;
  710. return 0;
  711. }
  712. static void aio_queue_work(struct kioctx * ctx)
  713. {
  714. unsigned long timeout;
  715. /*
  716. * if someone is waiting, get the work started right
  717. * away, otherwise, use a longer delay
  718. */
  719. smp_mb();
  720. if (waitqueue_active(&ctx->wait))
  721. timeout = 1;
  722. else
  723. timeout = HZ/10;
  724. queue_delayed_work(aio_wq, &ctx->wq, timeout);
  725. }
  726. /*
  727. * aio_run_iocbs:
  728. * Process all pending retries queued on the ioctx
  729. * run list.
  730. * Assumes it is operating within the aio issuer's mm
  731. * context.
  732. */
  733. static inline void aio_run_iocbs(struct kioctx *ctx)
  734. {
  735. int requeue;
  736. spin_lock_irq(&ctx->ctx_lock);
  737. requeue = __aio_run_iocbs(ctx);
  738. spin_unlock_irq(&ctx->ctx_lock);
  739. if (requeue)
  740. aio_queue_work(ctx);
  741. }
  742. /*
  743. * just like aio_run_iocbs, but keeps running them until
  744. * the list stays empty
  745. */
  746. static inline void aio_run_all_iocbs(struct kioctx *ctx)
  747. {
  748. spin_lock_irq(&ctx->ctx_lock);
  749. while (__aio_run_iocbs(ctx))
  750. ;
  751. spin_unlock_irq(&ctx->ctx_lock);
  752. }
  753. /*
  754. * aio_kick_handler:
  755. * Work queue handler triggered to process pending
  756. * retries on an ioctx. Takes on the aio issuer's
  757. * mm context before running the iocbs, so that
  758. * copy_xxx_user operates on the issuer's address
  759. * space.
  760. * Run on aiod's context.
  761. */
  762. static void aio_kick_handler(void *data)
  763. {
  764. struct kioctx *ctx = data;
  765. mm_segment_t oldfs = get_fs();
  766. int requeue;
  767. set_fs(USER_DS);
  768. use_mm(ctx->mm);
  769. spin_lock_irq(&ctx->ctx_lock);
  770. requeue =__aio_run_iocbs(ctx);
  771. unuse_mm(ctx->mm);
  772. spin_unlock_irq(&ctx->ctx_lock);
  773. set_fs(oldfs);
  774. /*
  775. * we're in a worker thread already, don't use queue_delayed_work,
  776. */
  777. if (requeue)
  778. queue_work(aio_wq, &ctx->wq);
  779. }
  780. /*
  781. * Called by kick_iocb to queue the kiocb for retry
  782. * and if required activate the aio work queue to process
  783. * it
  784. */
  785. static void queue_kicked_iocb(struct kiocb *iocb)
  786. {
  787. struct kioctx *ctx = iocb->ki_ctx;
  788. unsigned long flags;
  789. int run = 0;
  790. WARN_ON((!list_empty(&iocb->ki_wait.task_list)));
  791. spin_lock_irqsave(&ctx->ctx_lock, flags);
  792. run = __queue_kicked_iocb(iocb);
  793. spin_unlock_irqrestore(&ctx->ctx_lock, flags);
  794. if (run)
  795. aio_queue_work(ctx);
  796. }
  797. /*
  798. * kick_iocb:
  799. * Called typically from a wait queue callback context
  800. * (aio_wake_function) to trigger a retry of the iocb.
  801. * The retry is usually executed by aio workqueue
  802. * threads (See aio_kick_handler).
  803. */
  804. void fastcall kick_iocb(struct kiocb *iocb)
  805. {
  806. /* sync iocbs are easy: they can only ever be executing from a
  807. * single context. */
  808. if (is_sync_kiocb(iocb)) {
  809. kiocbSetKicked(iocb);
  810. wake_up_process(iocb->ki_obj.tsk);
  811. return;
  812. }
  813. /* If its already kicked we shouldn't queue it again */
  814. if (!kiocbTryKick(iocb)) {
  815. queue_kicked_iocb(iocb);
  816. }
  817. }
  818. EXPORT_SYMBOL(kick_iocb);
  819. /* aio_complete
  820. * Called when the io request on the given iocb is complete.
  821. * Returns true if this is the last user of the request. The
  822. * only other user of the request can be the cancellation code.
  823. */
  824. int fastcall aio_complete(struct kiocb *iocb, long res, long res2)
  825. {
  826. struct kioctx *ctx = iocb->ki_ctx;
  827. struct aio_ring_info *info;
  828. struct aio_ring *ring;
  829. struct io_event *event;
  830. unsigned long flags;
  831. unsigned long tail;
  832. int ret;
  833. /* Special case handling for sync iocbs: events go directly
  834. * into the iocb for fast handling. Note that this will not
  835. * work if we allow sync kiocbs to be cancelled. in which
  836. * case the usage count checks will have to move under ctx_lock
  837. * for all cases.
  838. */
  839. if (is_sync_kiocb(iocb)) {
  840. int ret;
  841. iocb->ki_user_data = res;
  842. if (iocb->ki_users == 1) {
  843. iocb->ki_users = 0;
  844. ret = 1;
  845. } else {
  846. spin_lock_irq(&ctx->ctx_lock);
  847. iocb->ki_users--;
  848. ret = (0 == iocb->ki_users);
  849. spin_unlock_irq(&ctx->ctx_lock);
  850. }
  851. /* sync iocbs put the task here for us */
  852. wake_up_process(iocb->ki_obj.tsk);
  853. return ret;
  854. }
  855. info = &ctx->ring_info;
  856. /* add a completion event to the ring buffer.
  857. * must be done holding ctx->ctx_lock to prevent
  858. * other code from messing with the tail
  859. * pointer since we might be called from irq
  860. * context.
  861. */
  862. spin_lock_irqsave(&ctx->ctx_lock, flags);
  863. if (iocb->ki_run_list.prev && !list_empty(&iocb->ki_run_list))
  864. list_del_init(&iocb->ki_run_list);
  865. /*
  866. * cancelled requests don't get events, userland was given one
  867. * when the event got cancelled.
  868. */
  869. if (kiocbIsCancelled(iocb))
  870. goto put_rq;
  871. ring = kmap_atomic(info->ring_pages[0], KM_IRQ1);
  872. tail = info->tail;
  873. event = aio_ring_event(info, tail, KM_IRQ0);
  874. if (++tail >= info->nr)
  875. tail = 0;
  876. event->obj = (u64)(unsigned long)iocb->ki_obj.user;
  877. event->data = iocb->ki_user_data;
  878. event->res = res;
  879. event->res2 = res2;
  880. dprintk("aio_complete: %p[%lu]: %p: %p %Lx %lx %lx\n",
  881. ctx, tail, iocb, iocb->ki_obj.user, iocb->ki_user_data,
  882. res, res2);
  883. /* after flagging the request as done, we
  884. * must never even look at it again
  885. */
  886. smp_wmb(); /* make event visible before updating tail */
  887. info->tail = tail;
  888. ring->tail = tail;
  889. put_aio_ring_event(event, KM_IRQ0);
  890. kunmap_atomic(ring, KM_IRQ1);
  891. pr_debug("added to ring %p at [%lu]\n", iocb, tail);
  892. pr_debug("%ld retries: %d of %d\n", iocb->ki_retried,
  893. iocb->ki_nbytes - iocb->ki_left, iocb->ki_nbytes);
  894. put_rq:
  895. /* everything turned out well, dispose of the aiocb. */
  896. ret = __aio_put_req(ctx, iocb);
  897. spin_unlock_irqrestore(&ctx->ctx_lock, flags);
  898. if (waitqueue_active(&ctx->wait))
  899. wake_up(&ctx->wait);
  900. if (ret)
  901. put_ioctx(ctx);
  902. return ret;
  903. }
  904. /* aio_read_evt
  905. * Pull an event off of the ioctx's event ring. Returns the number of
  906. * events fetched (0 or 1 ;-)
  907. * FIXME: make this use cmpxchg.
  908. * TODO: make the ringbuffer user mmap()able (requires FIXME).
  909. */
  910. static int aio_read_evt(struct kioctx *ioctx, struct io_event *ent)
  911. {
  912. struct aio_ring_info *info = &ioctx->ring_info;
  913. struct aio_ring *ring;
  914. unsigned long head;
  915. int ret = 0;
  916. ring = kmap_atomic(info->ring_pages[0], KM_USER0);
  917. dprintk("in aio_read_evt h%lu t%lu m%lu\n",
  918. (unsigned long)ring->head, (unsigned long)ring->tail,
  919. (unsigned long)ring->nr);
  920. if (ring->head == ring->tail)
  921. goto out;
  922. spin_lock(&info->ring_lock);
  923. head = ring->head % info->nr;
  924. if (head != ring->tail) {
  925. struct io_event *evp = aio_ring_event(info, head, KM_USER1);
  926. *ent = *evp;
  927. head = (head + 1) % info->nr;
  928. smp_mb(); /* finish reading the event before updatng the head */
  929. ring->head = head;
  930. ret = 1;
  931. put_aio_ring_event(evp, KM_USER1);
  932. }
  933. spin_unlock(&info->ring_lock);
  934. out:
  935. kunmap_atomic(ring, KM_USER0);
  936. dprintk("leaving aio_read_evt: %d h%lu t%lu\n", ret,
  937. (unsigned long)ring->head, (unsigned long)ring->tail);
  938. return ret;
  939. }
  940. struct aio_timeout {
  941. struct timer_list timer;
  942. int timed_out;
  943. struct task_struct *p;
  944. };
  945. static void timeout_func(unsigned long data)
  946. {
  947. struct aio_timeout *to = (struct aio_timeout *)data;
  948. to->timed_out = 1;
  949. wake_up_process(to->p);
  950. }
  951. static inline void init_timeout(struct aio_timeout *to)
  952. {
  953. init_timer(&to->timer);
  954. to->timer.data = (unsigned long)to;
  955. to->timer.function = timeout_func;
  956. to->timed_out = 0;
  957. to->p = current;
  958. }
  959. static inline void set_timeout(long start_jiffies, struct aio_timeout *to,
  960. const struct timespec *ts)
  961. {
  962. to->timer.expires = start_jiffies + timespec_to_jiffies(ts);
  963. if (time_after(to->timer.expires, jiffies))
  964. add_timer(&to->timer);
  965. else
  966. to->timed_out = 1;
  967. }
  968. static inline void clear_timeout(struct aio_timeout *to)
  969. {
  970. del_singleshot_timer_sync(&to->timer);
  971. }
  972. static int read_events(struct kioctx *ctx,
  973. long min_nr, long nr,
  974. struct io_event __user *event,
  975. struct timespec __user *timeout)
  976. {
  977. long start_jiffies = jiffies;
  978. struct task_struct *tsk = current;
  979. DECLARE_WAITQUEUE(wait, tsk);
  980. int ret;
  981. int i = 0;
  982. struct io_event ent;
  983. struct aio_timeout to;
  984. int retry = 0;
  985. /* needed to zero any padding within an entry (there shouldn't be
  986. * any, but C is fun!
  987. */
  988. memset(&ent, 0, sizeof(ent));
  989. retry:
  990. ret = 0;
  991. while (likely(i < nr)) {
  992. ret = aio_read_evt(ctx, &ent);
  993. if (unlikely(ret <= 0))
  994. break;
  995. dprintk("read event: %Lx %Lx %Lx %Lx\n",
  996. ent.data, ent.obj, ent.res, ent.res2);
  997. /* Could we split the check in two? */
  998. ret = -EFAULT;
  999. if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) {
  1000. dprintk("aio: lost an event due to EFAULT.\n");
  1001. break;
  1002. }
  1003. ret = 0;
  1004. /* Good, event copied to userland, update counts. */
  1005. event ++;
  1006. i ++;
  1007. }
  1008. if (min_nr <= i)
  1009. return i;
  1010. if (ret)
  1011. return ret;
  1012. /* End fast path */
  1013. /* racey check, but it gets redone */
  1014. if (!retry && unlikely(!list_empty(&ctx->run_list))) {
  1015. retry = 1;
  1016. aio_run_all_iocbs(ctx);
  1017. goto retry;
  1018. }
  1019. init_timeout(&to);
  1020. if (timeout) {
  1021. struct timespec ts;
  1022. ret = -EFAULT;
  1023. if (unlikely(copy_from_user(&ts, timeout, sizeof(ts))))
  1024. goto out;
  1025. set_timeout(start_jiffies, &to, &ts);
  1026. }
  1027. while (likely(i < nr)) {
  1028. add_wait_queue_exclusive(&ctx->wait, &wait);
  1029. do {
  1030. set_task_state(tsk, TASK_INTERRUPTIBLE);
  1031. ret = aio_read_evt(ctx, &ent);
  1032. if (ret)
  1033. break;
  1034. if (min_nr <= i)
  1035. break;
  1036. ret = 0;
  1037. if (to.timed_out) /* Only check after read evt */
  1038. break;
  1039. schedule();
  1040. if (signal_pending(tsk)) {
  1041. ret = -EINTR;
  1042. break;
  1043. }
  1044. /*ret = aio_read_evt(ctx, &ent);*/
  1045. } while (1) ;
  1046. set_task_state(tsk, TASK_RUNNING);
  1047. remove_wait_queue(&ctx->wait, &wait);
  1048. if (unlikely(ret <= 0))
  1049. break;
  1050. ret = -EFAULT;
  1051. if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) {
  1052. dprintk("aio: lost an event due to EFAULT.\n");
  1053. break;
  1054. }
  1055. /* Good, event copied to userland, update counts. */
  1056. event ++;
  1057. i ++;
  1058. }
  1059. if (timeout)
  1060. clear_timeout(&to);
  1061. out:
  1062. return i ? i : ret;
  1063. }
  1064. /* Take an ioctx and remove it from the list of ioctx's. Protects
  1065. * against races with itself via ->dead.
  1066. */
  1067. static void io_destroy(struct kioctx *ioctx)
  1068. {
  1069. struct mm_struct *mm = current->mm;
  1070. struct kioctx **tmp;
  1071. int was_dead;
  1072. /* delete the entry from the list is someone else hasn't already */
  1073. write_lock(&mm->ioctx_list_lock);
  1074. was_dead = ioctx->dead;
  1075. ioctx->dead = 1;
  1076. for (tmp = &mm->ioctx_list; *tmp && *tmp != ioctx;
  1077. tmp = &(*tmp)->next)
  1078. ;
  1079. if (*tmp)
  1080. *tmp = ioctx->next;
  1081. write_unlock(&mm->ioctx_list_lock);
  1082. dprintk("aio_release(%p)\n", ioctx);
  1083. if (likely(!was_dead))
  1084. put_ioctx(ioctx); /* twice for the list */
  1085. aio_cancel_all(ioctx);
  1086. wait_for_all_aios(ioctx);
  1087. put_ioctx(ioctx); /* once for the lookup */
  1088. }
  1089. /* sys_io_setup:
  1090. * Create an aio_context capable of receiving at least nr_events.
  1091. * ctxp must not point to an aio_context that already exists, and
  1092. * must be initialized to 0 prior to the call. On successful
  1093. * creation of the aio_context, *ctxp is filled in with the resulting
  1094. * handle. May fail with -EINVAL if *ctxp is not initialized,
  1095. * if the specified nr_events exceeds internal limits. May fail
  1096. * with -EAGAIN if the specified nr_events exceeds the user's limit
  1097. * of available events. May fail with -ENOMEM if insufficient kernel
  1098. * resources are available. May fail with -EFAULT if an invalid
  1099. * pointer is passed for ctxp. Will fail with -ENOSYS if not
  1100. * implemented.
  1101. */
  1102. asmlinkage long sys_io_setup(unsigned nr_events, aio_context_t __user *ctxp)
  1103. {
  1104. struct kioctx *ioctx = NULL;
  1105. unsigned long ctx;
  1106. long ret;
  1107. ret = get_user(ctx, ctxp);
  1108. if (unlikely(ret))
  1109. goto out;
  1110. ret = -EINVAL;
  1111. if (unlikely(ctx || (int)nr_events <= 0)) {
  1112. pr_debug("EINVAL: io_setup: ctx or nr_events > max\n");
  1113. goto out;
  1114. }
  1115. ioctx = ioctx_alloc(nr_events);
  1116. ret = PTR_ERR(ioctx);
  1117. if (!IS_ERR(ioctx)) {
  1118. ret = put_user(ioctx->user_id, ctxp);
  1119. if (!ret)
  1120. return 0;
  1121. get_ioctx(ioctx); /* io_destroy() expects us to hold a ref */
  1122. io_destroy(ioctx);
  1123. }
  1124. out:
  1125. return ret;
  1126. }
  1127. /* sys_io_destroy:
  1128. * Destroy the aio_context specified. May cancel any outstanding
  1129. * AIOs and block on completion. Will fail with -ENOSYS if not
  1130. * implemented. May fail with -EFAULT if the context pointed to
  1131. * is invalid.
  1132. */
  1133. asmlinkage long sys_io_destroy(aio_context_t ctx)
  1134. {
  1135. struct kioctx *ioctx = lookup_ioctx(ctx);
  1136. if (likely(NULL != ioctx)) {
  1137. io_destroy(ioctx);
  1138. return 0;
  1139. }
  1140. pr_debug("EINVAL: io_destroy: invalid context id\n");
  1141. return -EINVAL;
  1142. }
  1143. /*
  1144. * Default retry method for aio_read (also used for first time submit)
  1145. * Responsible for updating iocb state as retries progress
  1146. */
  1147. static ssize_t aio_pread(struct kiocb *iocb)
  1148. {
  1149. struct file *file = iocb->ki_filp;
  1150. struct address_space *mapping = file->f_mapping;
  1151. struct inode *inode = mapping->host;
  1152. ssize_t ret = 0;
  1153. ret = file->f_op->aio_read(iocb, iocb->ki_buf,
  1154. iocb->ki_left, iocb->ki_pos);
  1155. /*
  1156. * Can't just depend on iocb->ki_left to determine
  1157. * whether we are done. This may have been a short read.
  1158. */
  1159. if (ret > 0) {
  1160. iocb->ki_buf += ret;
  1161. iocb->ki_left -= ret;
  1162. /*
  1163. * For pipes and sockets we return once we have
  1164. * some data; for regular files we retry till we
  1165. * complete the entire read or find that we can't
  1166. * read any more data (e.g short reads).
  1167. */
  1168. if (!S_ISFIFO(inode->i_mode) && !S_ISSOCK(inode->i_mode))
  1169. ret = -EIOCBRETRY;
  1170. }
  1171. /* This means we must have transferred all that we could */
  1172. /* No need to retry anymore */
  1173. if ((ret == 0) || (iocb->ki_left == 0))
  1174. ret = iocb->ki_nbytes - iocb->ki_left;
  1175. return ret;
  1176. }
  1177. /*
  1178. * Default retry method for aio_write (also used for first time submit)
  1179. * Responsible for updating iocb state as retries progress
  1180. */
  1181. static ssize_t aio_pwrite(struct kiocb *iocb)
  1182. {
  1183. struct file *file = iocb->ki_filp;
  1184. ssize_t ret = 0;
  1185. ret = file->f_op->aio_write(iocb, iocb->ki_buf,
  1186. iocb->ki_left, iocb->ki_pos);
  1187. if (ret > 0) {
  1188. iocb->ki_buf += ret;
  1189. iocb->ki_left -= ret;
  1190. ret = -EIOCBRETRY;
  1191. }
  1192. /* This means we must have transferred all that we could */
  1193. /* No need to retry anymore */
  1194. if ((ret == 0) || (iocb->ki_left == 0))
  1195. ret = iocb->ki_nbytes - iocb->ki_left;
  1196. return ret;
  1197. }
  1198. static ssize_t aio_fdsync(struct kiocb *iocb)
  1199. {
  1200. struct file *file = iocb->ki_filp;
  1201. ssize_t ret = -EINVAL;
  1202. if (file->f_op->aio_fsync)
  1203. ret = file->f_op->aio_fsync(iocb, 1);
  1204. return ret;
  1205. }
  1206. static ssize_t aio_fsync(struct kiocb *iocb)
  1207. {
  1208. struct file *file = iocb->ki_filp;
  1209. ssize_t ret = -EINVAL;
  1210. if (file->f_op->aio_fsync)
  1211. ret = file->f_op->aio_fsync(iocb, 0);
  1212. return ret;
  1213. }
  1214. /*
  1215. * aio_setup_iocb:
  1216. * Performs the initial checks and aio retry method
  1217. * setup for the kiocb at the time of io submission.
  1218. */
  1219. static ssize_t aio_setup_iocb(struct kiocb *kiocb)
  1220. {
  1221. struct file *file = kiocb->ki_filp;
  1222. ssize_t ret = 0;
  1223. switch (kiocb->ki_opcode) {
  1224. case IOCB_CMD_PREAD:
  1225. ret = -EBADF;
  1226. if (unlikely(!(file->f_mode & FMODE_READ)))
  1227. break;
  1228. ret = -EFAULT;
  1229. if (unlikely(!access_ok(VERIFY_WRITE, kiocb->ki_buf,
  1230. kiocb->ki_left)))
  1231. break;
  1232. ret = -EINVAL;
  1233. if (file->f_op->aio_read)
  1234. kiocb->ki_retry = aio_pread;
  1235. break;
  1236. case IOCB_CMD_PWRITE:
  1237. ret = -EBADF;
  1238. if (unlikely(!(file->f_mode & FMODE_WRITE)))
  1239. break;
  1240. ret = -EFAULT;
  1241. if (unlikely(!access_ok(VERIFY_READ, kiocb->ki_buf,
  1242. kiocb->ki_left)))
  1243. break;
  1244. ret = -EINVAL;
  1245. if (file->f_op->aio_write)
  1246. kiocb->ki_retry = aio_pwrite;
  1247. break;
  1248. case IOCB_CMD_FDSYNC:
  1249. ret = -EINVAL;
  1250. if (file->f_op->aio_fsync)
  1251. kiocb->ki_retry = aio_fdsync;
  1252. break;
  1253. case IOCB_CMD_FSYNC:
  1254. ret = -EINVAL;
  1255. if (file->f_op->aio_fsync)
  1256. kiocb->ki_retry = aio_fsync;
  1257. break;
  1258. default:
  1259. dprintk("EINVAL: io_submit: no operation provided\n");
  1260. ret = -EINVAL;
  1261. }
  1262. if (!kiocb->ki_retry)
  1263. return ret;
  1264. return 0;
  1265. }
  1266. /*
  1267. * aio_wake_function:
  1268. * wait queue callback function for aio notification,
  1269. * Simply triggers a retry of the operation via kick_iocb.
  1270. *
  1271. * This callback is specified in the wait queue entry in
  1272. * a kiocb (current->io_wait points to this wait queue
  1273. * entry when an aio operation executes; it is used
  1274. * instead of a synchronous wait when an i/o blocking
  1275. * condition is encountered during aio).
  1276. *
  1277. * Note:
  1278. * This routine is executed with the wait queue lock held.
  1279. * Since kick_iocb acquires iocb->ctx->ctx_lock, it nests
  1280. * the ioctx lock inside the wait queue lock. This is safe
  1281. * because this callback isn't used for wait queues which
  1282. * are nested inside ioctx lock (i.e. ctx->wait)
  1283. */
  1284. static int aio_wake_function(wait_queue_t *wait, unsigned mode,
  1285. int sync, void *key)
  1286. {
  1287. struct kiocb *iocb = container_of(wait, struct kiocb, ki_wait);
  1288. list_del_init(&wait->task_list);
  1289. kick_iocb(iocb);
  1290. return 1;
  1291. }
  1292. int fastcall io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
  1293. struct iocb *iocb)
  1294. {
  1295. struct kiocb *req;
  1296. struct file *file;
  1297. ssize_t ret;
  1298. /* enforce forwards compatibility on users */
  1299. if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2 ||
  1300. iocb->aio_reserved3)) {
  1301. pr_debug("EINVAL: io_submit: reserve field set\n");
  1302. return -EINVAL;
  1303. }
  1304. /* prevent overflows */
  1305. if (unlikely(
  1306. (iocb->aio_buf != (unsigned long)iocb->aio_buf) ||
  1307. (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) ||
  1308. ((ssize_t)iocb->aio_nbytes < 0)
  1309. )) {
  1310. pr_debug("EINVAL: io_submit: overflow check\n");
  1311. return -EINVAL;
  1312. }
  1313. file = fget(iocb->aio_fildes);
  1314. if (unlikely(!file))
  1315. return -EBADF;
  1316. req = aio_get_req(ctx); /* returns with 2 references to req */
  1317. if (unlikely(!req)) {
  1318. fput(file);
  1319. return -EAGAIN;
  1320. }
  1321. req->ki_filp = file;
  1322. ret = put_user(req->ki_key, &user_iocb->aio_key);
  1323. if (unlikely(ret)) {
  1324. dprintk("EFAULT: aio_key\n");
  1325. goto out_put_req;
  1326. }
  1327. req->ki_obj.user = user_iocb;
  1328. req->ki_user_data = iocb->aio_data;
  1329. req->ki_pos = iocb->aio_offset;
  1330. req->ki_buf = (char __user *)(unsigned long)iocb->aio_buf;
  1331. req->ki_left = req->ki_nbytes = iocb->aio_nbytes;
  1332. req->ki_opcode = iocb->aio_lio_opcode;
  1333. init_waitqueue_func_entry(&req->ki_wait, aio_wake_function);
  1334. INIT_LIST_HEAD(&req->ki_wait.task_list);
  1335. req->ki_retried = 0;
  1336. ret = aio_setup_iocb(req);
  1337. if (ret)
  1338. goto out_put_req;
  1339. spin_lock_irq(&ctx->ctx_lock);
  1340. aio_run_iocb(req);
  1341. unlock_kiocb(req);
  1342. if (!list_empty(&ctx->run_list)) {
  1343. /* drain the run list */
  1344. while (__aio_run_iocbs(ctx))
  1345. ;
  1346. }
  1347. spin_unlock_irq(&ctx->ctx_lock);
  1348. aio_put_req(req); /* drop extra ref to req */
  1349. return 0;
  1350. out_put_req:
  1351. aio_put_req(req); /* drop extra ref to req */
  1352. aio_put_req(req); /* drop i/o ref to req */
  1353. return ret;
  1354. }
  1355. /* sys_io_submit:
  1356. * Queue the nr iocbs pointed to by iocbpp for processing. Returns
  1357. * the number of iocbs queued. May return -EINVAL if the aio_context
  1358. * specified by ctx_id is invalid, if nr is < 0, if the iocb at
  1359. * *iocbpp[0] is not properly initialized, if the operation specified
  1360. * is invalid for the file descriptor in the iocb. May fail with
  1361. * -EFAULT if any of the data structures point to invalid data. May
  1362. * fail with -EBADF if the file descriptor specified in the first
  1363. * iocb is invalid. May fail with -EAGAIN if insufficient resources
  1364. * are available to queue any iocbs. Will return 0 if nr is 0. Will
  1365. * fail with -ENOSYS if not implemented.
  1366. */
  1367. asmlinkage long sys_io_submit(aio_context_t ctx_id, long nr,
  1368. struct iocb __user * __user *iocbpp)
  1369. {
  1370. struct kioctx *ctx;
  1371. long ret = 0;
  1372. int i;
  1373. if (unlikely(nr < 0))
  1374. return -EINVAL;
  1375. if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp)))))
  1376. return -EFAULT;
  1377. ctx = lookup_ioctx(ctx_id);
  1378. if (unlikely(!ctx)) {
  1379. pr_debug("EINVAL: io_submit: invalid context id\n");
  1380. return -EINVAL;
  1381. }
  1382. /*
  1383. * AKPM: should this return a partial result if some of the IOs were
  1384. * successfully submitted?
  1385. */
  1386. for (i=0; i<nr; i++) {
  1387. struct iocb __user *user_iocb;
  1388. struct iocb tmp;
  1389. if (unlikely(__get_user(user_iocb, iocbpp + i))) {
  1390. ret = -EFAULT;
  1391. break;
  1392. }
  1393. if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) {
  1394. ret = -EFAULT;
  1395. break;
  1396. }
  1397. ret = io_submit_one(ctx, user_iocb, &tmp);
  1398. if (ret)
  1399. break;
  1400. }
  1401. put_ioctx(ctx);
  1402. return i ? i : ret;
  1403. }
  1404. /* lookup_kiocb
  1405. * Finds a given iocb for cancellation.
  1406. * MUST be called with ctx->ctx_lock held.
  1407. */
  1408. static struct kiocb *lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb,
  1409. u32 key)
  1410. {
  1411. struct list_head *pos;
  1412. /* TODO: use a hash or array, this sucks. */
  1413. list_for_each(pos, &ctx->active_reqs) {
  1414. struct kiocb *kiocb = list_kiocb(pos);
  1415. if (kiocb->ki_obj.user == iocb && kiocb->ki_key == key)
  1416. return kiocb;
  1417. }
  1418. return NULL;
  1419. }
  1420. /* sys_io_cancel:
  1421. * Attempts to cancel an iocb previously passed to io_submit. If
  1422. * the operation is successfully cancelled, the resulting event is
  1423. * copied into the memory pointed to by result without being placed
  1424. * into the completion queue and 0 is returned. May fail with
  1425. * -EFAULT if any of the data structures pointed to are invalid.
  1426. * May fail with -EINVAL if aio_context specified by ctx_id is
  1427. * invalid. May fail with -EAGAIN if the iocb specified was not
  1428. * cancelled. Will fail with -ENOSYS if not implemented.
  1429. */
  1430. asmlinkage long sys_io_cancel(aio_context_t ctx_id, struct iocb __user *iocb,
  1431. struct io_event __user *result)
  1432. {
  1433. int (*cancel)(struct kiocb *iocb, struct io_event *res);
  1434. struct kioctx *ctx;
  1435. struct kiocb *kiocb;
  1436. u32 key;
  1437. int ret;
  1438. ret = get_user(key, &iocb->aio_key);
  1439. if (unlikely(ret))
  1440. return -EFAULT;
  1441. ctx = lookup_ioctx(ctx_id);
  1442. if (unlikely(!ctx))
  1443. return -EINVAL;
  1444. spin_lock_irq(&ctx->ctx_lock);
  1445. ret = -EAGAIN;
  1446. kiocb = lookup_kiocb(ctx, iocb, key);
  1447. if (kiocb && kiocb->ki_cancel) {
  1448. cancel = kiocb->ki_cancel;
  1449. kiocb->ki_users ++;
  1450. kiocbSetCancelled(kiocb);
  1451. } else
  1452. cancel = NULL;
  1453. spin_unlock_irq(&ctx->ctx_lock);
  1454. if (NULL != cancel) {
  1455. struct io_event tmp;
  1456. pr_debug("calling cancel\n");
  1457. lock_kiocb(kiocb);
  1458. memset(&tmp, 0, sizeof(tmp));
  1459. tmp.obj = (u64)(unsigned long)kiocb->ki_obj.user;
  1460. tmp.data = kiocb->ki_user_data;
  1461. ret = cancel(kiocb, &tmp);
  1462. if (!ret) {
  1463. /* Cancellation succeeded -- copy the result
  1464. * into the user's buffer.
  1465. */
  1466. if (copy_to_user(result, &tmp, sizeof(tmp)))
  1467. ret = -EFAULT;
  1468. }
  1469. unlock_kiocb(kiocb);
  1470. } else
  1471. ret = -EINVAL;
  1472. put_ioctx(ctx);
  1473. return ret;
  1474. }
  1475. /* io_getevents:
  1476. * Attempts to read at least min_nr events and up to nr events from
  1477. * the completion queue for the aio_context specified by ctx_id. May
  1478. * fail with -EINVAL if ctx_id is invalid, if min_nr is out of range,
  1479. * if nr is out of range, if when is out of range. May fail with
  1480. * -EFAULT if any of the memory specified to is invalid. May return
  1481. * 0 or < min_nr if no events are available and the timeout specified
  1482. * by when has elapsed, where when == NULL specifies an infinite
  1483. * timeout. Note that the timeout pointed to by when is relative and
  1484. * will be updated if not NULL and the operation blocks. Will fail
  1485. * with -ENOSYS if not implemented.
  1486. */
  1487. asmlinkage long sys_io_getevents(aio_context_t ctx_id,
  1488. long min_nr,
  1489. long nr,
  1490. struct io_event __user *events,
  1491. struct timespec __user *timeout)
  1492. {
  1493. struct kioctx *ioctx = lookup_ioctx(ctx_id);
  1494. long ret = -EINVAL;
  1495. if (likely(ioctx)) {
  1496. if (likely(min_nr <= nr && min_nr >= 0 && nr >= 0))
  1497. ret = read_events(ioctx, min_nr, nr, events, timeout);
  1498. put_ioctx(ioctx);
  1499. }
  1500. return ret;
  1501. }
  1502. __initcall(aio_setup);
  1503. EXPORT_SYMBOL(aio_complete);
  1504. EXPORT_SYMBOL(aio_put_req);
  1505. EXPORT_SYMBOL(wait_on_sync_kiocb);