slub.c 111 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741
  1. /*
  2. * SLUB: A slab allocator that limits cache line use instead of queuing
  3. * objects in per cpu and per node lists.
  4. *
  5. * The allocator synchronizes using per slab locks and only
  6. * uses a centralized lock to manage a pool of partial slabs.
  7. *
  8. * (C) 2007 SGI, Christoph Lameter
  9. */
  10. #include <linux/mm.h>
  11. #include <linux/swap.h> /* struct reclaim_state */
  12. #include <linux/module.h>
  13. #include <linux/bit_spinlock.h>
  14. #include <linux/interrupt.h>
  15. #include <linux/bitops.h>
  16. #include <linux/slab.h>
  17. #include <linux/proc_fs.h>
  18. #include <linux/seq_file.h>
  19. #include <linux/kmemcheck.h>
  20. #include <linux/cpu.h>
  21. #include <linux/cpuset.h>
  22. #include <linux/mempolicy.h>
  23. #include <linux/ctype.h>
  24. #include <linux/debugobjects.h>
  25. #include <linux/kallsyms.h>
  26. #include <linux/memory.h>
  27. #include <linux/math64.h>
  28. #include <linux/fault-inject.h>
  29. #include <trace/events/kmem.h>
  30. /*
  31. * Lock order:
  32. * 1. slab_lock(page)
  33. * 2. slab->list_lock
  34. *
  35. * The slab_lock protects operations on the object of a particular
  36. * slab and its metadata in the page struct. If the slab lock
  37. * has been taken then no allocations nor frees can be performed
  38. * on the objects in the slab nor can the slab be added or removed
  39. * from the partial or full lists since this would mean modifying
  40. * the page_struct of the slab.
  41. *
  42. * The list_lock protects the partial and full list on each node and
  43. * the partial slab counter. If taken then no new slabs may be added or
  44. * removed from the lists nor make the number of partial slabs be modified.
  45. * (Note that the total number of slabs is an atomic value that may be
  46. * modified without taking the list lock).
  47. *
  48. * The list_lock is a centralized lock and thus we avoid taking it as
  49. * much as possible. As long as SLUB does not have to handle partial
  50. * slabs, operations can continue without any centralized lock. F.e.
  51. * allocating a long series of objects that fill up slabs does not require
  52. * the list lock.
  53. *
  54. * The lock order is sometimes inverted when we are trying to get a slab
  55. * off a list. We take the list_lock and then look for a page on the list
  56. * to use. While we do that objects in the slabs may be freed. We can
  57. * only operate on the slab if we have also taken the slab_lock. So we use
  58. * a slab_trylock() on the slab. If trylock was successful then no frees
  59. * can occur anymore and we can use the slab for allocations etc. If the
  60. * slab_trylock() does not succeed then frees are in progress in the slab and
  61. * we must stay away from it for a while since we may cause a bouncing
  62. * cacheline if we try to acquire the lock. So go onto the next slab.
  63. * If all pages are busy then we may allocate a new slab instead of reusing
  64. * a partial slab. A new slab has noone operating on it and thus there is
  65. * no danger of cacheline contention.
  66. *
  67. * Interrupts are disabled during allocation and deallocation in order to
  68. * make the slab allocator safe to use in the context of an irq. In addition
  69. * interrupts are disabled to ensure that the processor does not change
  70. * while handling per_cpu slabs, due to kernel preemption.
  71. *
  72. * SLUB assigns one slab for allocation to each processor.
  73. * Allocations only occur from these slabs called cpu slabs.
  74. *
  75. * Slabs with free elements are kept on a partial list and during regular
  76. * operations no list for full slabs is used. If an object in a full slab is
  77. * freed then the slab will show up again on the partial lists.
  78. * We track full slabs for debugging purposes though because otherwise we
  79. * cannot scan all objects.
  80. *
  81. * Slabs are freed when they become empty. Teardown and setup is
  82. * minimal so we rely on the page allocators per cpu caches for
  83. * fast frees and allocs.
  84. *
  85. * Overloading of page flags that are otherwise used for LRU management.
  86. *
  87. * PageActive The slab is frozen and exempt from list processing.
  88. * This means that the slab is dedicated to a purpose
  89. * such as satisfying allocations for a specific
  90. * processor. Objects may be freed in the slab while
  91. * it is frozen but slab_free will then skip the usual
  92. * list operations. It is up to the processor holding
  93. * the slab to integrate the slab into the slab lists
  94. * when the slab is no longer needed.
  95. *
  96. * One use of this flag is to mark slabs that are
  97. * used for allocations. Then such a slab becomes a cpu
  98. * slab. The cpu slab may be equipped with an additional
  99. * freelist that allows lockless access to
  100. * free objects in addition to the regular freelist
  101. * that requires the slab lock.
  102. *
  103. * PageError Slab requires special handling due to debug
  104. * options set. This moves slab handling out of
  105. * the fast path and disables lockless freelists.
  106. */
  107. #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
  108. SLAB_TRACE | SLAB_DEBUG_FREE)
  109. static inline int kmem_cache_debug(struct kmem_cache *s)
  110. {
  111. #ifdef CONFIG_SLUB_DEBUG
  112. return unlikely(s->flags & SLAB_DEBUG_FLAGS);
  113. #else
  114. return 0;
  115. #endif
  116. }
  117. /*
  118. * Issues still to be resolved:
  119. *
  120. * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
  121. *
  122. * - Variable sizing of the per node arrays
  123. */
  124. /* Enable to test recovery from slab corruption on boot */
  125. #undef SLUB_RESILIENCY_TEST
  126. /*
  127. * Mininum number of partial slabs. These will be left on the partial
  128. * lists even if they are empty. kmem_cache_shrink may reclaim them.
  129. */
  130. #define MIN_PARTIAL 5
  131. /*
  132. * Maximum number of desirable partial slabs.
  133. * The existence of more partial slabs makes kmem_cache_shrink
  134. * sort the partial list by the number of objects in the.
  135. */
  136. #define MAX_PARTIAL 10
  137. #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
  138. SLAB_POISON | SLAB_STORE_USER)
  139. /*
  140. * Debugging flags that require metadata to be stored in the slab. These get
  141. * disabled when slub_debug=O is used and a cache's min order increases with
  142. * metadata.
  143. */
  144. #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
  145. /*
  146. * Set of flags that will prevent slab merging
  147. */
  148. #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
  149. SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
  150. SLAB_FAILSLAB)
  151. #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
  152. SLAB_CACHE_DMA | SLAB_NOTRACK)
  153. #define OO_SHIFT 16
  154. #define OO_MASK ((1 << OO_SHIFT) - 1)
  155. #define MAX_OBJS_PER_PAGE 65535 /* since page.objects is u16 */
  156. /* Internal SLUB flags */
  157. #define __OBJECT_POISON 0x80000000UL /* Poison object */
  158. static int kmem_size = sizeof(struct kmem_cache);
  159. #ifdef CONFIG_SMP
  160. static struct notifier_block slab_notifier;
  161. #endif
  162. static enum {
  163. DOWN, /* No slab functionality available */
  164. PARTIAL, /* Kmem_cache_node works */
  165. UP, /* Everything works but does not show up in sysfs */
  166. SYSFS /* Sysfs up */
  167. } slab_state = DOWN;
  168. /* A list of all slab caches on the system */
  169. static DECLARE_RWSEM(slub_lock);
  170. static LIST_HEAD(slab_caches);
  171. /*
  172. * Tracking user of a slab.
  173. */
  174. struct track {
  175. unsigned long addr; /* Called from address */
  176. int cpu; /* Was running on cpu */
  177. int pid; /* Pid context */
  178. unsigned long when; /* When did the operation occur */
  179. };
  180. enum track_item { TRACK_ALLOC, TRACK_FREE };
  181. #ifdef CONFIG_SYSFS
  182. static int sysfs_slab_add(struct kmem_cache *);
  183. static int sysfs_slab_alias(struct kmem_cache *, const char *);
  184. static void sysfs_slab_remove(struct kmem_cache *);
  185. #else
  186. static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
  187. static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
  188. { return 0; }
  189. static inline void sysfs_slab_remove(struct kmem_cache *s)
  190. {
  191. kfree(s->name);
  192. kfree(s);
  193. }
  194. #endif
  195. static inline void stat(struct kmem_cache *s, enum stat_item si)
  196. {
  197. #ifdef CONFIG_SLUB_STATS
  198. __this_cpu_inc(s->cpu_slab->stat[si]);
  199. #endif
  200. }
  201. /********************************************************************
  202. * Core slab cache functions
  203. *******************************************************************/
  204. int slab_is_available(void)
  205. {
  206. return slab_state >= UP;
  207. }
  208. static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
  209. {
  210. return s->node[node];
  211. }
  212. /* Verify that a pointer has an address that is valid within a slab page */
  213. static inline int check_valid_pointer(struct kmem_cache *s,
  214. struct page *page, const void *object)
  215. {
  216. void *base;
  217. if (!object)
  218. return 1;
  219. base = page_address(page);
  220. if (object < base || object >= base + page->objects * s->size ||
  221. (object - base) % s->size) {
  222. return 0;
  223. }
  224. return 1;
  225. }
  226. static inline void *get_freepointer(struct kmem_cache *s, void *object)
  227. {
  228. return *(void **)(object + s->offset);
  229. }
  230. static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
  231. {
  232. *(void **)(object + s->offset) = fp;
  233. }
  234. /* Loop over all objects in a slab */
  235. #define for_each_object(__p, __s, __addr, __objects) \
  236. for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
  237. __p += (__s)->size)
  238. /* Scan freelist */
  239. #define for_each_free_object(__p, __s, __free) \
  240. for (__p = (__free); __p; __p = get_freepointer((__s), __p))
  241. /* Determine object index from a given position */
  242. static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
  243. {
  244. return (p - addr) / s->size;
  245. }
  246. static inline struct kmem_cache_order_objects oo_make(int order,
  247. unsigned long size)
  248. {
  249. struct kmem_cache_order_objects x = {
  250. (order << OO_SHIFT) + (PAGE_SIZE << order) / size
  251. };
  252. return x;
  253. }
  254. static inline int oo_order(struct kmem_cache_order_objects x)
  255. {
  256. return x.x >> OO_SHIFT;
  257. }
  258. static inline int oo_objects(struct kmem_cache_order_objects x)
  259. {
  260. return x.x & OO_MASK;
  261. }
  262. #ifdef CONFIG_SLUB_DEBUG
  263. /*
  264. * Debug settings:
  265. */
  266. #ifdef CONFIG_SLUB_DEBUG_ON
  267. static int slub_debug = DEBUG_DEFAULT_FLAGS;
  268. #else
  269. static int slub_debug;
  270. #endif
  271. static char *slub_debug_slabs;
  272. static int disable_higher_order_debug;
  273. /*
  274. * Object debugging
  275. */
  276. static void print_section(char *text, u8 *addr, unsigned int length)
  277. {
  278. int i, offset;
  279. int newline = 1;
  280. char ascii[17];
  281. ascii[16] = 0;
  282. for (i = 0; i < length; i++) {
  283. if (newline) {
  284. printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
  285. newline = 0;
  286. }
  287. printk(KERN_CONT " %02x", addr[i]);
  288. offset = i % 16;
  289. ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
  290. if (offset == 15) {
  291. printk(KERN_CONT " %s\n", ascii);
  292. newline = 1;
  293. }
  294. }
  295. if (!newline) {
  296. i %= 16;
  297. while (i < 16) {
  298. printk(KERN_CONT " ");
  299. ascii[i] = ' ';
  300. i++;
  301. }
  302. printk(KERN_CONT " %s\n", ascii);
  303. }
  304. }
  305. static struct track *get_track(struct kmem_cache *s, void *object,
  306. enum track_item alloc)
  307. {
  308. struct track *p;
  309. if (s->offset)
  310. p = object + s->offset + sizeof(void *);
  311. else
  312. p = object + s->inuse;
  313. return p + alloc;
  314. }
  315. static void set_track(struct kmem_cache *s, void *object,
  316. enum track_item alloc, unsigned long addr)
  317. {
  318. struct track *p = get_track(s, object, alloc);
  319. if (addr) {
  320. p->addr = addr;
  321. p->cpu = smp_processor_id();
  322. p->pid = current->pid;
  323. p->when = jiffies;
  324. } else
  325. memset(p, 0, sizeof(struct track));
  326. }
  327. static void init_tracking(struct kmem_cache *s, void *object)
  328. {
  329. if (!(s->flags & SLAB_STORE_USER))
  330. return;
  331. set_track(s, object, TRACK_FREE, 0UL);
  332. set_track(s, object, TRACK_ALLOC, 0UL);
  333. }
  334. static void print_track(const char *s, struct track *t)
  335. {
  336. if (!t->addr)
  337. return;
  338. printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
  339. s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
  340. }
  341. static void print_tracking(struct kmem_cache *s, void *object)
  342. {
  343. if (!(s->flags & SLAB_STORE_USER))
  344. return;
  345. print_track("Allocated", get_track(s, object, TRACK_ALLOC));
  346. print_track("Freed", get_track(s, object, TRACK_FREE));
  347. }
  348. static void print_page_info(struct page *page)
  349. {
  350. printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
  351. page, page->objects, page->inuse, page->freelist, page->flags);
  352. }
  353. static void slab_bug(struct kmem_cache *s, char *fmt, ...)
  354. {
  355. va_list args;
  356. char buf[100];
  357. va_start(args, fmt);
  358. vsnprintf(buf, sizeof(buf), fmt, args);
  359. va_end(args);
  360. printk(KERN_ERR "========================================"
  361. "=====================================\n");
  362. printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
  363. printk(KERN_ERR "----------------------------------------"
  364. "-------------------------------------\n\n");
  365. }
  366. static void slab_fix(struct kmem_cache *s, char *fmt, ...)
  367. {
  368. va_list args;
  369. char buf[100];
  370. va_start(args, fmt);
  371. vsnprintf(buf, sizeof(buf), fmt, args);
  372. va_end(args);
  373. printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
  374. }
  375. static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
  376. {
  377. unsigned int off; /* Offset of last byte */
  378. u8 *addr = page_address(page);
  379. print_tracking(s, p);
  380. print_page_info(page);
  381. printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
  382. p, p - addr, get_freepointer(s, p));
  383. if (p > addr + 16)
  384. print_section("Bytes b4", p - 16, 16);
  385. print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
  386. if (s->flags & SLAB_RED_ZONE)
  387. print_section("Redzone", p + s->objsize,
  388. s->inuse - s->objsize);
  389. if (s->offset)
  390. off = s->offset + sizeof(void *);
  391. else
  392. off = s->inuse;
  393. if (s->flags & SLAB_STORE_USER)
  394. off += 2 * sizeof(struct track);
  395. if (off != s->size)
  396. /* Beginning of the filler is the free pointer */
  397. print_section("Padding", p + off, s->size - off);
  398. dump_stack();
  399. }
  400. static void object_err(struct kmem_cache *s, struct page *page,
  401. u8 *object, char *reason)
  402. {
  403. slab_bug(s, "%s", reason);
  404. print_trailer(s, page, object);
  405. }
  406. static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
  407. {
  408. va_list args;
  409. char buf[100];
  410. va_start(args, fmt);
  411. vsnprintf(buf, sizeof(buf), fmt, args);
  412. va_end(args);
  413. slab_bug(s, "%s", buf);
  414. print_page_info(page);
  415. dump_stack();
  416. }
  417. static void init_object(struct kmem_cache *s, void *object, u8 val)
  418. {
  419. u8 *p = object;
  420. if (s->flags & __OBJECT_POISON) {
  421. memset(p, POISON_FREE, s->objsize - 1);
  422. p[s->objsize - 1] = POISON_END;
  423. }
  424. if (s->flags & SLAB_RED_ZONE)
  425. memset(p + s->objsize, val, s->inuse - s->objsize);
  426. }
  427. static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
  428. {
  429. while (bytes) {
  430. if (*start != (u8)value)
  431. return start;
  432. start++;
  433. bytes--;
  434. }
  435. return NULL;
  436. }
  437. static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
  438. void *from, void *to)
  439. {
  440. slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
  441. memset(from, data, to - from);
  442. }
  443. static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
  444. u8 *object, char *what,
  445. u8 *start, unsigned int value, unsigned int bytes)
  446. {
  447. u8 *fault;
  448. u8 *end;
  449. fault = check_bytes(start, value, bytes);
  450. if (!fault)
  451. return 1;
  452. end = start + bytes;
  453. while (end > fault && end[-1] == value)
  454. end--;
  455. slab_bug(s, "%s overwritten", what);
  456. printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
  457. fault, end - 1, fault[0], value);
  458. print_trailer(s, page, object);
  459. restore_bytes(s, what, value, fault, end);
  460. return 0;
  461. }
  462. /*
  463. * Object layout:
  464. *
  465. * object address
  466. * Bytes of the object to be managed.
  467. * If the freepointer may overlay the object then the free
  468. * pointer is the first word of the object.
  469. *
  470. * Poisoning uses 0x6b (POISON_FREE) and the last byte is
  471. * 0xa5 (POISON_END)
  472. *
  473. * object + s->objsize
  474. * Padding to reach word boundary. This is also used for Redzoning.
  475. * Padding is extended by another word if Redzoning is enabled and
  476. * objsize == inuse.
  477. *
  478. * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
  479. * 0xcc (RED_ACTIVE) for objects in use.
  480. *
  481. * object + s->inuse
  482. * Meta data starts here.
  483. *
  484. * A. Free pointer (if we cannot overwrite object on free)
  485. * B. Tracking data for SLAB_STORE_USER
  486. * C. Padding to reach required alignment boundary or at mininum
  487. * one word if debugging is on to be able to detect writes
  488. * before the word boundary.
  489. *
  490. * Padding is done using 0x5a (POISON_INUSE)
  491. *
  492. * object + s->size
  493. * Nothing is used beyond s->size.
  494. *
  495. * If slabcaches are merged then the objsize and inuse boundaries are mostly
  496. * ignored. And therefore no slab options that rely on these boundaries
  497. * may be used with merged slabcaches.
  498. */
  499. static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
  500. {
  501. unsigned long off = s->inuse; /* The end of info */
  502. if (s->offset)
  503. /* Freepointer is placed after the object. */
  504. off += sizeof(void *);
  505. if (s->flags & SLAB_STORE_USER)
  506. /* We also have user information there */
  507. off += 2 * sizeof(struct track);
  508. if (s->size == off)
  509. return 1;
  510. return check_bytes_and_report(s, page, p, "Object padding",
  511. p + off, POISON_INUSE, s->size - off);
  512. }
  513. /* Check the pad bytes at the end of a slab page */
  514. static int slab_pad_check(struct kmem_cache *s, struct page *page)
  515. {
  516. u8 *start;
  517. u8 *fault;
  518. u8 *end;
  519. int length;
  520. int remainder;
  521. if (!(s->flags & SLAB_POISON))
  522. return 1;
  523. start = page_address(page);
  524. length = (PAGE_SIZE << compound_order(page));
  525. end = start + length;
  526. remainder = length % s->size;
  527. if (!remainder)
  528. return 1;
  529. fault = check_bytes(end - remainder, POISON_INUSE, remainder);
  530. if (!fault)
  531. return 1;
  532. while (end > fault && end[-1] == POISON_INUSE)
  533. end--;
  534. slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
  535. print_section("Padding", end - remainder, remainder);
  536. restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
  537. return 0;
  538. }
  539. static int check_object(struct kmem_cache *s, struct page *page,
  540. void *object, u8 val)
  541. {
  542. u8 *p = object;
  543. u8 *endobject = object + s->objsize;
  544. if (s->flags & SLAB_RED_ZONE) {
  545. if (!check_bytes_and_report(s, page, object, "Redzone",
  546. endobject, val, s->inuse - s->objsize))
  547. return 0;
  548. } else {
  549. if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
  550. check_bytes_and_report(s, page, p, "Alignment padding",
  551. endobject, POISON_INUSE, s->inuse - s->objsize);
  552. }
  553. }
  554. if (s->flags & SLAB_POISON) {
  555. if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
  556. (!check_bytes_and_report(s, page, p, "Poison", p,
  557. POISON_FREE, s->objsize - 1) ||
  558. !check_bytes_and_report(s, page, p, "Poison",
  559. p + s->objsize - 1, POISON_END, 1)))
  560. return 0;
  561. /*
  562. * check_pad_bytes cleans up on its own.
  563. */
  564. check_pad_bytes(s, page, p);
  565. }
  566. if (!s->offset && val == SLUB_RED_ACTIVE)
  567. /*
  568. * Object and freepointer overlap. Cannot check
  569. * freepointer while object is allocated.
  570. */
  571. return 1;
  572. /* Check free pointer validity */
  573. if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
  574. object_err(s, page, p, "Freepointer corrupt");
  575. /*
  576. * No choice but to zap it and thus lose the remainder
  577. * of the free objects in this slab. May cause
  578. * another error because the object count is now wrong.
  579. */
  580. set_freepointer(s, p, NULL);
  581. return 0;
  582. }
  583. return 1;
  584. }
  585. static int check_slab(struct kmem_cache *s, struct page *page)
  586. {
  587. int maxobj;
  588. VM_BUG_ON(!irqs_disabled());
  589. if (!PageSlab(page)) {
  590. slab_err(s, page, "Not a valid slab page");
  591. return 0;
  592. }
  593. maxobj = (PAGE_SIZE << compound_order(page)) / s->size;
  594. if (page->objects > maxobj) {
  595. slab_err(s, page, "objects %u > max %u",
  596. s->name, page->objects, maxobj);
  597. return 0;
  598. }
  599. if (page->inuse > page->objects) {
  600. slab_err(s, page, "inuse %u > max %u",
  601. s->name, page->inuse, page->objects);
  602. return 0;
  603. }
  604. /* Slab_pad_check fixes things up after itself */
  605. slab_pad_check(s, page);
  606. return 1;
  607. }
  608. /*
  609. * Determine if a certain object on a page is on the freelist. Must hold the
  610. * slab lock to guarantee that the chains are in a consistent state.
  611. */
  612. static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
  613. {
  614. int nr = 0;
  615. void *fp = page->freelist;
  616. void *object = NULL;
  617. unsigned long max_objects;
  618. while (fp && nr <= page->objects) {
  619. if (fp == search)
  620. return 1;
  621. if (!check_valid_pointer(s, page, fp)) {
  622. if (object) {
  623. object_err(s, page, object,
  624. "Freechain corrupt");
  625. set_freepointer(s, object, NULL);
  626. break;
  627. } else {
  628. slab_err(s, page, "Freepointer corrupt");
  629. page->freelist = NULL;
  630. page->inuse = page->objects;
  631. slab_fix(s, "Freelist cleared");
  632. return 0;
  633. }
  634. break;
  635. }
  636. object = fp;
  637. fp = get_freepointer(s, object);
  638. nr++;
  639. }
  640. max_objects = (PAGE_SIZE << compound_order(page)) / s->size;
  641. if (max_objects > MAX_OBJS_PER_PAGE)
  642. max_objects = MAX_OBJS_PER_PAGE;
  643. if (page->objects != max_objects) {
  644. slab_err(s, page, "Wrong number of objects. Found %d but "
  645. "should be %d", page->objects, max_objects);
  646. page->objects = max_objects;
  647. slab_fix(s, "Number of objects adjusted.");
  648. }
  649. if (page->inuse != page->objects - nr) {
  650. slab_err(s, page, "Wrong object count. Counter is %d but "
  651. "counted were %d", page->inuse, page->objects - nr);
  652. page->inuse = page->objects - nr;
  653. slab_fix(s, "Object count adjusted.");
  654. }
  655. return search == NULL;
  656. }
  657. static void trace(struct kmem_cache *s, struct page *page, void *object,
  658. int alloc)
  659. {
  660. if (s->flags & SLAB_TRACE) {
  661. printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
  662. s->name,
  663. alloc ? "alloc" : "free",
  664. object, page->inuse,
  665. page->freelist);
  666. if (!alloc)
  667. print_section("Object", (void *)object, s->objsize);
  668. dump_stack();
  669. }
  670. }
  671. /*
  672. * Hooks for other subsystems that check memory allocations. In a typical
  673. * production configuration these hooks all should produce no code at all.
  674. */
  675. static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
  676. {
  677. flags &= gfp_allowed_mask;
  678. lockdep_trace_alloc(flags);
  679. might_sleep_if(flags & __GFP_WAIT);
  680. return should_failslab(s->objsize, flags, s->flags);
  681. }
  682. static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
  683. {
  684. flags &= gfp_allowed_mask;
  685. kmemcheck_slab_alloc(s, flags, object, s->objsize);
  686. kmemleak_alloc_recursive(object, s->objsize, 1, s->flags, flags);
  687. }
  688. static inline void slab_free_hook(struct kmem_cache *s, void *x)
  689. {
  690. kmemleak_free_recursive(x, s->flags);
  691. }
  692. static inline void slab_free_hook_irq(struct kmem_cache *s, void *object)
  693. {
  694. kmemcheck_slab_free(s, object, s->objsize);
  695. debug_check_no_locks_freed(object, s->objsize);
  696. if (!(s->flags & SLAB_DEBUG_OBJECTS))
  697. debug_check_no_obj_freed(object, s->objsize);
  698. }
  699. /*
  700. * Tracking of fully allocated slabs for debugging purposes.
  701. */
  702. static void add_full(struct kmem_cache_node *n, struct page *page)
  703. {
  704. spin_lock(&n->list_lock);
  705. list_add(&page->lru, &n->full);
  706. spin_unlock(&n->list_lock);
  707. }
  708. static void remove_full(struct kmem_cache *s, struct page *page)
  709. {
  710. struct kmem_cache_node *n;
  711. if (!(s->flags & SLAB_STORE_USER))
  712. return;
  713. n = get_node(s, page_to_nid(page));
  714. spin_lock(&n->list_lock);
  715. list_del(&page->lru);
  716. spin_unlock(&n->list_lock);
  717. }
  718. /* Tracking of the number of slabs for debugging purposes */
  719. static inline unsigned long slabs_node(struct kmem_cache *s, int node)
  720. {
  721. struct kmem_cache_node *n = get_node(s, node);
  722. return atomic_long_read(&n->nr_slabs);
  723. }
  724. static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
  725. {
  726. return atomic_long_read(&n->nr_slabs);
  727. }
  728. static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
  729. {
  730. struct kmem_cache_node *n = get_node(s, node);
  731. /*
  732. * May be called early in order to allocate a slab for the
  733. * kmem_cache_node structure. Solve the chicken-egg
  734. * dilemma by deferring the increment of the count during
  735. * bootstrap (see early_kmem_cache_node_alloc).
  736. */
  737. if (n) {
  738. atomic_long_inc(&n->nr_slabs);
  739. atomic_long_add(objects, &n->total_objects);
  740. }
  741. }
  742. static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
  743. {
  744. struct kmem_cache_node *n = get_node(s, node);
  745. atomic_long_dec(&n->nr_slabs);
  746. atomic_long_sub(objects, &n->total_objects);
  747. }
  748. /* Object debug checks for alloc/free paths */
  749. static void setup_object_debug(struct kmem_cache *s, struct page *page,
  750. void *object)
  751. {
  752. if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
  753. return;
  754. init_object(s, object, SLUB_RED_INACTIVE);
  755. init_tracking(s, object);
  756. }
  757. static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
  758. void *object, unsigned long addr)
  759. {
  760. if (!check_slab(s, page))
  761. goto bad;
  762. if (!on_freelist(s, page, object)) {
  763. object_err(s, page, object, "Object already allocated");
  764. goto bad;
  765. }
  766. if (!check_valid_pointer(s, page, object)) {
  767. object_err(s, page, object, "Freelist Pointer check fails");
  768. goto bad;
  769. }
  770. if (!check_object(s, page, object, SLUB_RED_INACTIVE))
  771. goto bad;
  772. /* Success perform special debug activities for allocs */
  773. if (s->flags & SLAB_STORE_USER)
  774. set_track(s, object, TRACK_ALLOC, addr);
  775. trace(s, page, object, 1);
  776. init_object(s, object, SLUB_RED_ACTIVE);
  777. return 1;
  778. bad:
  779. if (PageSlab(page)) {
  780. /*
  781. * If this is a slab page then lets do the best we can
  782. * to avoid issues in the future. Marking all objects
  783. * as used avoids touching the remaining objects.
  784. */
  785. slab_fix(s, "Marking all objects used");
  786. page->inuse = page->objects;
  787. page->freelist = NULL;
  788. }
  789. return 0;
  790. }
  791. static noinline int free_debug_processing(struct kmem_cache *s,
  792. struct page *page, void *object, unsigned long addr)
  793. {
  794. if (!check_slab(s, page))
  795. goto fail;
  796. if (!check_valid_pointer(s, page, object)) {
  797. slab_err(s, page, "Invalid object pointer 0x%p", object);
  798. goto fail;
  799. }
  800. if (on_freelist(s, page, object)) {
  801. object_err(s, page, object, "Object already free");
  802. goto fail;
  803. }
  804. if (!check_object(s, page, object, SLUB_RED_ACTIVE))
  805. return 0;
  806. if (unlikely(s != page->slab)) {
  807. if (!PageSlab(page)) {
  808. slab_err(s, page, "Attempt to free object(0x%p) "
  809. "outside of slab", object);
  810. } else if (!page->slab) {
  811. printk(KERN_ERR
  812. "SLUB <none>: no slab for object 0x%p.\n",
  813. object);
  814. dump_stack();
  815. } else
  816. object_err(s, page, object,
  817. "page slab pointer corrupt.");
  818. goto fail;
  819. }
  820. /* Special debug activities for freeing objects */
  821. if (!PageSlubFrozen(page) && !page->freelist)
  822. remove_full(s, page);
  823. if (s->flags & SLAB_STORE_USER)
  824. set_track(s, object, TRACK_FREE, addr);
  825. trace(s, page, object, 0);
  826. init_object(s, object, SLUB_RED_INACTIVE);
  827. return 1;
  828. fail:
  829. slab_fix(s, "Object at 0x%p not freed", object);
  830. return 0;
  831. }
  832. static int __init setup_slub_debug(char *str)
  833. {
  834. slub_debug = DEBUG_DEFAULT_FLAGS;
  835. if (*str++ != '=' || !*str)
  836. /*
  837. * No options specified. Switch on full debugging.
  838. */
  839. goto out;
  840. if (*str == ',')
  841. /*
  842. * No options but restriction on slabs. This means full
  843. * debugging for slabs matching a pattern.
  844. */
  845. goto check_slabs;
  846. if (tolower(*str) == 'o') {
  847. /*
  848. * Avoid enabling debugging on caches if its minimum order
  849. * would increase as a result.
  850. */
  851. disable_higher_order_debug = 1;
  852. goto out;
  853. }
  854. slub_debug = 0;
  855. if (*str == '-')
  856. /*
  857. * Switch off all debugging measures.
  858. */
  859. goto out;
  860. /*
  861. * Determine which debug features should be switched on
  862. */
  863. for (; *str && *str != ','; str++) {
  864. switch (tolower(*str)) {
  865. case 'f':
  866. slub_debug |= SLAB_DEBUG_FREE;
  867. break;
  868. case 'z':
  869. slub_debug |= SLAB_RED_ZONE;
  870. break;
  871. case 'p':
  872. slub_debug |= SLAB_POISON;
  873. break;
  874. case 'u':
  875. slub_debug |= SLAB_STORE_USER;
  876. break;
  877. case 't':
  878. slub_debug |= SLAB_TRACE;
  879. break;
  880. case 'a':
  881. slub_debug |= SLAB_FAILSLAB;
  882. break;
  883. default:
  884. printk(KERN_ERR "slub_debug option '%c' "
  885. "unknown. skipped\n", *str);
  886. }
  887. }
  888. check_slabs:
  889. if (*str == ',')
  890. slub_debug_slabs = str + 1;
  891. out:
  892. return 1;
  893. }
  894. __setup("slub_debug", setup_slub_debug);
  895. static unsigned long kmem_cache_flags(unsigned long objsize,
  896. unsigned long flags, const char *name,
  897. void (*ctor)(void *))
  898. {
  899. /*
  900. * Enable debugging if selected on the kernel commandline.
  901. */
  902. if (slub_debug && (!slub_debug_slabs ||
  903. !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
  904. flags |= slub_debug;
  905. return flags;
  906. }
  907. #else
  908. static inline void setup_object_debug(struct kmem_cache *s,
  909. struct page *page, void *object) {}
  910. static inline int alloc_debug_processing(struct kmem_cache *s,
  911. struct page *page, void *object, unsigned long addr) { return 0; }
  912. static inline int free_debug_processing(struct kmem_cache *s,
  913. struct page *page, void *object, unsigned long addr) { return 0; }
  914. static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
  915. { return 1; }
  916. static inline int check_object(struct kmem_cache *s, struct page *page,
  917. void *object, u8 val) { return 1; }
  918. static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
  919. static inline unsigned long kmem_cache_flags(unsigned long objsize,
  920. unsigned long flags, const char *name,
  921. void (*ctor)(void *))
  922. {
  923. return flags;
  924. }
  925. #define slub_debug 0
  926. #define disable_higher_order_debug 0
  927. static inline unsigned long slabs_node(struct kmem_cache *s, int node)
  928. { return 0; }
  929. static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
  930. { return 0; }
  931. static inline void inc_slabs_node(struct kmem_cache *s, int node,
  932. int objects) {}
  933. static inline void dec_slabs_node(struct kmem_cache *s, int node,
  934. int objects) {}
  935. static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
  936. { return 0; }
  937. static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
  938. void *object) {}
  939. static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
  940. static inline void slab_free_hook_irq(struct kmem_cache *s,
  941. void *object) {}
  942. #endif /* CONFIG_SLUB_DEBUG */
  943. /*
  944. * Slab allocation and freeing
  945. */
  946. static inline struct page *alloc_slab_page(gfp_t flags, int node,
  947. struct kmem_cache_order_objects oo)
  948. {
  949. int order = oo_order(oo);
  950. flags |= __GFP_NOTRACK;
  951. if (node == NUMA_NO_NODE)
  952. return alloc_pages(flags, order);
  953. else
  954. return alloc_pages_exact_node(node, flags, order);
  955. }
  956. static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
  957. {
  958. struct page *page;
  959. struct kmem_cache_order_objects oo = s->oo;
  960. gfp_t alloc_gfp;
  961. flags |= s->allocflags;
  962. /*
  963. * Let the initial higher-order allocation fail under memory pressure
  964. * so we fall-back to the minimum order allocation.
  965. */
  966. alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
  967. page = alloc_slab_page(alloc_gfp, node, oo);
  968. if (unlikely(!page)) {
  969. oo = s->min;
  970. /*
  971. * Allocation may have failed due to fragmentation.
  972. * Try a lower order alloc if possible
  973. */
  974. page = alloc_slab_page(flags, node, oo);
  975. if (!page)
  976. return NULL;
  977. stat(s, ORDER_FALLBACK);
  978. }
  979. if (kmemcheck_enabled
  980. && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
  981. int pages = 1 << oo_order(oo);
  982. kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
  983. /*
  984. * Objects from caches that have a constructor don't get
  985. * cleared when they're allocated, so we need to do it here.
  986. */
  987. if (s->ctor)
  988. kmemcheck_mark_uninitialized_pages(page, pages);
  989. else
  990. kmemcheck_mark_unallocated_pages(page, pages);
  991. }
  992. page->objects = oo_objects(oo);
  993. mod_zone_page_state(page_zone(page),
  994. (s->flags & SLAB_RECLAIM_ACCOUNT) ?
  995. NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
  996. 1 << oo_order(oo));
  997. return page;
  998. }
  999. static void setup_object(struct kmem_cache *s, struct page *page,
  1000. void *object)
  1001. {
  1002. setup_object_debug(s, page, object);
  1003. if (unlikely(s->ctor))
  1004. s->ctor(object);
  1005. }
  1006. static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
  1007. {
  1008. struct page *page;
  1009. void *start;
  1010. void *last;
  1011. void *p;
  1012. BUG_ON(flags & GFP_SLAB_BUG_MASK);
  1013. page = allocate_slab(s,
  1014. flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
  1015. if (!page)
  1016. goto out;
  1017. inc_slabs_node(s, page_to_nid(page), page->objects);
  1018. page->slab = s;
  1019. page->flags |= 1 << PG_slab;
  1020. start = page_address(page);
  1021. if (unlikely(s->flags & SLAB_POISON))
  1022. memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
  1023. last = start;
  1024. for_each_object(p, s, start, page->objects) {
  1025. setup_object(s, page, last);
  1026. set_freepointer(s, last, p);
  1027. last = p;
  1028. }
  1029. setup_object(s, page, last);
  1030. set_freepointer(s, last, NULL);
  1031. page->freelist = start;
  1032. page->inuse = 0;
  1033. out:
  1034. return page;
  1035. }
  1036. static void __free_slab(struct kmem_cache *s, struct page *page)
  1037. {
  1038. int order = compound_order(page);
  1039. int pages = 1 << order;
  1040. if (kmem_cache_debug(s)) {
  1041. void *p;
  1042. slab_pad_check(s, page);
  1043. for_each_object(p, s, page_address(page),
  1044. page->objects)
  1045. check_object(s, page, p, SLUB_RED_INACTIVE);
  1046. }
  1047. kmemcheck_free_shadow(page, compound_order(page));
  1048. mod_zone_page_state(page_zone(page),
  1049. (s->flags & SLAB_RECLAIM_ACCOUNT) ?
  1050. NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
  1051. -pages);
  1052. __ClearPageSlab(page);
  1053. reset_page_mapcount(page);
  1054. if (current->reclaim_state)
  1055. current->reclaim_state->reclaimed_slab += pages;
  1056. __free_pages(page, order);
  1057. }
  1058. static void rcu_free_slab(struct rcu_head *h)
  1059. {
  1060. struct page *page;
  1061. page = container_of((struct list_head *)h, struct page, lru);
  1062. __free_slab(page->slab, page);
  1063. }
  1064. static void free_slab(struct kmem_cache *s, struct page *page)
  1065. {
  1066. if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
  1067. /*
  1068. * RCU free overloads the RCU head over the LRU
  1069. */
  1070. struct rcu_head *head = (void *)&page->lru;
  1071. call_rcu(head, rcu_free_slab);
  1072. } else
  1073. __free_slab(s, page);
  1074. }
  1075. static void discard_slab(struct kmem_cache *s, struct page *page)
  1076. {
  1077. dec_slabs_node(s, page_to_nid(page), page->objects);
  1078. free_slab(s, page);
  1079. }
  1080. /*
  1081. * Per slab locking using the pagelock
  1082. */
  1083. static __always_inline void slab_lock(struct page *page)
  1084. {
  1085. bit_spin_lock(PG_locked, &page->flags);
  1086. }
  1087. static __always_inline void slab_unlock(struct page *page)
  1088. {
  1089. __bit_spin_unlock(PG_locked, &page->flags);
  1090. }
  1091. static __always_inline int slab_trylock(struct page *page)
  1092. {
  1093. int rc = 1;
  1094. rc = bit_spin_trylock(PG_locked, &page->flags);
  1095. return rc;
  1096. }
  1097. /*
  1098. * Management of partially allocated slabs
  1099. */
  1100. static void add_partial(struct kmem_cache_node *n,
  1101. struct page *page, int tail)
  1102. {
  1103. spin_lock(&n->list_lock);
  1104. n->nr_partial++;
  1105. if (tail)
  1106. list_add_tail(&page->lru, &n->partial);
  1107. else
  1108. list_add(&page->lru, &n->partial);
  1109. spin_unlock(&n->list_lock);
  1110. }
  1111. static inline void __remove_partial(struct kmem_cache_node *n,
  1112. struct page *page)
  1113. {
  1114. list_del(&page->lru);
  1115. n->nr_partial--;
  1116. }
  1117. static void remove_partial(struct kmem_cache *s, struct page *page)
  1118. {
  1119. struct kmem_cache_node *n = get_node(s, page_to_nid(page));
  1120. spin_lock(&n->list_lock);
  1121. __remove_partial(n, page);
  1122. spin_unlock(&n->list_lock);
  1123. }
  1124. /*
  1125. * Lock slab and remove from the partial list.
  1126. *
  1127. * Must hold list_lock.
  1128. */
  1129. static inline int lock_and_freeze_slab(struct kmem_cache_node *n,
  1130. struct page *page)
  1131. {
  1132. if (slab_trylock(page)) {
  1133. __remove_partial(n, page);
  1134. __SetPageSlubFrozen(page);
  1135. return 1;
  1136. }
  1137. return 0;
  1138. }
  1139. /*
  1140. * Try to allocate a partial slab from a specific node.
  1141. */
  1142. static struct page *get_partial_node(struct kmem_cache_node *n)
  1143. {
  1144. struct page *page;
  1145. /*
  1146. * Racy check. If we mistakenly see no partial slabs then we
  1147. * just allocate an empty slab. If we mistakenly try to get a
  1148. * partial slab and there is none available then get_partials()
  1149. * will return NULL.
  1150. */
  1151. if (!n || !n->nr_partial)
  1152. return NULL;
  1153. spin_lock(&n->list_lock);
  1154. list_for_each_entry(page, &n->partial, lru)
  1155. if (lock_and_freeze_slab(n, page))
  1156. goto out;
  1157. page = NULL;
  1158. out:
  1159. spin_unlock(&n->list_lock);
  1160. return page;
  1161. }
  1162. /*
  1163. * Get a page from somewhere. Search in increasing NUMA distances.
  1164. */
  1165. static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
  1166. {
  1167. #ifdef CONFIG_NUMA
  1168. struct zonelist *zonelist;
  1169. struct zoneref *z;
  1170. struct zone *zone;
  1171. enum zone_type high_zoneidx = gfp_zone(flags);
  1172. struct page *page;
  1173. /*
  1174. * The defrag ratio allows a configuration of the tradeoffs between
  1175. * inter node defragmentation and node local allocations. A lower
  1176. * defrag_ratio increases the tendency to do local allocations
  1177. * instead of attempting to obtain partial slabs from other nodes.
  1178. *
  1179. * If the defrag_ratio is set to 0 then kmalloc() always
  1180. * returns node local objects. If the ratio is higher then kmalloc()
  1181. * may return off node objects because partial slabs are obtained
  1182. * from other nodes and filled up.
  1183. *
  1184. * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
  1185. * defrag_ratio = 1000) then every (well almost) allocation will
  1186. * first attempt to defrag slab caches on other nodes. This means
  1187. * scanning over all nodes to look for partial slabs which may be
  1188. * expensive if we do it every time we are trying to find a slab
  1189. * with available objects.
  1190. */
  1191. if (!s->remote_node_defrag_ratio ||
  1192. get_cycles() % 1024 > s->remote_node_defrag_ratio)
  1193. return NULL;
  1194. get_mems_allowed();
  1195. zonelist = node_zonelist(slab_node(current->mempolicy), flags);
  1196. for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
  1197. struct kmem_cache_node *n;
  1198. n = get_node(s, zone_to_nid(zone));
  1199. if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
  1200. n->nr_partial > s->min_partial) {
  1201. page = get_partial_node(n);
  1202. if (page) {
  1203. put_mems_allowed();
  1204. return page;
  1205. }
  1206. }
  1207. }
  1208. put_mems_allowed();
  1209. #endif
  1210. return NULL;
  1211. }
  1212. /*
  1213. * Get a partial page, lock it and return it.
  1214. */
  1215. static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
  1216. {
  1217. struct page *page;
  1218. int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
  1219. page = get_partial_node(get_node(s, searchnode));
  1220. if (page || node != -1)
  1221. return page;
  1222. return get_any_partial(s, flags);
  1223. }
  1224. /*
  1225. * Move a page back to the lists.
  1226. *
  1227. * Must be called with the slab lock held.
  1228. *
  1229. * On exit the slab lock will have been dropped.
  1230. */
  1231. static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
  1232. __releases(bitlock)
  1233. {
  1234. struct kmem_cache_node *n = get_node(s, page_to_nid(page));
  1235. __ClearPageSlubFrozen(page);
  1236. if (page->inuse) {
  1237. if (page->freelist) {
  1238. add_partial(n, page, tail);
  1239. stat(s, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
  1240. } else {
  1241. stat(s, DEACTIVATE_FULL);
  1242. if (kmem_cache_debug(s) && (s->flags & SLAB_STORE_USER))
  1243. add_full(n, page);
  1244. }
  1245. slab_unlock(page);
  1246. } else {
  1247. stat(s, DEACTIVATE_EMPTY);
  1248. if (n->nr_partial < s->min_partial) {
  1249. /*
  1250. * Adding an empty slab to the partial slabs in order
  1251. * to avoid page allocator overhead. This slab needs
  1252. * to come after the other slabs with objects in
  1253. * so that the others get filled first. That way the
  1254. * size of the partial list stays small.
  1255. *
  1256. * kmem_cache_shrink can reclaim any empty slabs from
  1257. * the partial list.
  1258. */
  1259. add_partial(n, page, 1);
  1260. slab_unlock(page);
  1261. } else {
  1262. slab_unlock(page);
  1263. stat(s, FREE_SLAB);
  1264. discard_slab(s, page);
  1265. }
  1266. }
  1267. }
  1268. /*
  1269. * Remove the cpu slab
  1270. */
  1271. static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
  1272. __releases(bitlock)
  1273. {
  1274. struct page *page = c->page;
  1275. int tail = 1;
  1276. if (page->freelist)
  1277. stat(s, DEACTIVATE_REMOTE_FREES);
  1278. /*
  1279. * Merge cpu freelist into slab freelist. Typically we get here
  1280. * because both freelists are empty. So this is unlikely
  1281. * to occur.
  1282. */
  1283. while (unlikely(c->freelist)) {
  1284. void **object;
  1285. tail = 0; /* Hot objects. Put the slab first */
  1286. /* Retrieve object from cpu_freelist */
  1287. object = c->freelist;
  1288. c->freelist = get_freepointer(s, c->freelist);
  1289. /* And put onto the regular freelist */
  1290. set_freepointer(s, object, page->freelist);
  1291. page->freelist = object;
  1292. page->inuse--;
  1293. }
  1294. c->page = NULL;
  1295. unfreeze_slab(s, page, tail);
  1296. }
  1297. static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
  1298. {
  1299. stat(s, CPUSLAB_FLUSH);
  1300. slab_lock(c->page);
  1301. deactivate_slab(s, c);
  1302. }
  1303. /*
  1304. * Flush cpu slab.
  1305. *
  1306. * Called from IPI handler with interrupts disabled.
  1307. */
  1308. static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
  1309. {
  1310. struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
  1311. if (likely(c && c->page))
  1312. flush_slab(s, c);
  1313. }
  1314. static void flush_cpu_slab(void *d)
  1315. {
  1316. struct kmem_cache *s = d;
  1317. __flush_cpu_slab(s, smp_processor_id());
  1318. }
  1319. static void flush_all(struct kmem_cache *s)
  1320. {
  1321. on_each_cpu(flush_cpu_slab, s, 1);
  1322. }
  1323. /*
  1324. * Check if the objects in a per cpu structure fit numa
  1325. * locality expectations.
  1326. */
  1327. static inline int node_match(struct kmem_cache_cpu *c, int node)
  1328. {
  1329. #ifdef CONFIG_NUMA
  1330. if (node != NUMA_NO_NODE && c->node != node)
  1331. return 0;
  1332. #endif
  1333. return 1;
  1334. }
  1335. static int count_free(struct page *page)
  1336. {
  1337. return page->objects - page->inuse;
  1338. }
  1339. static unsigned long count_partial(struct kmem_cache_node *n,
  1340. int (*get_count)(struct page *))
  1341. {
  1342. unsigned long flags;
  1343. unsigned long x = 0;
  1344. struct page *page;
  1345. spin_lock_irqsave(&n->list_lock, flags);
  1346. list_for_each_entry(page, &n->partial, lru)
  1347. x += get_count(page);
  1348. spin_unlock_irqrestore(&n->list_lock, flags);
  1349. return x;
  1350. }
  1351. static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
  1352. {
  1353. #ifdef CONFIG_SLUB_DEBUG
  1354. return atomic_long_read(&n->total_objects);
  1355. #else
  1356. return 0;
  1357. #endif
  1358. }
  1359. static noinline void
  1360. slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
  1361. {
  1362. int node;
  1363. printk(KERN_WARNING
  1364. "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
  1365. nid, gfpflags);
  1366. printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
  1367. "default order: %d, min order: %d\n", s->name, s->objsize,
  1368. s->size, oo_order(s->oo), oo_order(s->min));
  1369. if (oo_order(s->min) > get_order(s->objsize))
  1370. printk(KERN_WARNING " %s debugging increased min order, use "
  1371. "slub_debug=O to disable.\n", s->name);
  1372. for_each_online_node(node) {
  1373. struct kmem_cache_node *n = get_node(s, node);
  1374. unsigned long nr_slabs;
  1375. unsigned long nr_objs;
  1376. unsigned long nr_free;
  1377. if (!n)
  1378. continue;
  1379. nr_free = count_partial(n, count_free);
  1380. nr_slabs = node_nr_slabs(n);
  1381. nr_objs = node_nr_objs(n);
  1382. printk(KERN_WARNING
  1383. " node %d: slabs: %ld, objs: %ld, free: %ld\n",
  1384. node, nr_slabs, nr_objs, nr_free);
  1385. }
  1386. }
  1387. /*
  1388. * Slow path. The lockless freelist is empty or we need to perform
  1389. * debugging duties.
  1390. *
  1391. * Interrupts are disabled.
  1392. *
  1393. * Processing is still very fast if new objects have been freed to the
  1394. * regular freelist. In that case we simply take over the regular freelist
  1395. * as the lockless freelist and zap the regular freelist.
  1396. *
  1397. * If that is not working then we fall back to the partial lists. We take the
  1398. * first element of the freelist as the object to allocate now and move the
  1399. * rest of the freelist to the lockless freelist.
  1400. *
  1401. * And if we were unable to get a new slab from the partial slab lists then
  1402. * we need to allocate a new slab. This is the slowest path since it involves
  1403. * a call to the page allocator and the setup of a new slab.
  1404. */
  1405. static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
  1406. unsigned long addr, struct kmem_cache_cpu *c)
  1407. {
  1408. void **object;
  1409. struct page *new;
  1410. /* We handle __GFP_ZERO in the caller */
  1411. gfpflags &= ~__GFP_ZERO;
  1412. if (!c->page)
  1413. goto new_slab;
  1414. slab_lock(c->page);
  1415. if (unlikely(!node_match(c, node)))
  1416. goto another_slab;
  1417. stat(s, ALLOC_REFILL);
  1418. load_freelist:
  1419. object = c->page->freelist;
  1420. if (unlikely(!object))
  1421. goto another_slab;
  1422. if (kmem_cache_debug(s))
  1423. goto debug;
  1424. c->freelist = get_freepointer(s, object);
  1425. c->page->inuse = c->page->objects;
  1426. c->page->freelist = NULL;
  1427. c->node = page_to_nid(c->page);
  1428. unlock_out:
  1429. slab_unlock(c->page);
  1430. stat(s, ALLOC_SLOWPATH);
  1431. return object;
  1432. another_slab:
  1433. deactivate_slab(s, c);
  1434. new_slab:
  1435. new = get_partial(s, gfpflags, node);
  1436. if (new) {
  1437. c->page = new;
  1438. stat(s, ALLOC_FROM_PARTIAL);
  1439. goto load_freelist;
  1440. }
  1441. gfpflags &= gfp_allowed_mask;
  1442. if (gfpflags & __GFP_WAIT)
  1443. local_irq_enable();
  1444. new = new_slab(s, gfpflags, node);
  1445. if (gfpflags & __GFP_WAIT)
  1446. local_irq_disable();
  1447. if (new) {
  1448. c = __this_cpu_ptr(s->cpu_slab);
  1449. stat(s, ALLOC_SLAB);
  1450. if (c->page)
  1451. flush_slab(s, c);
  1452. slab_lock(new);
  1453. __SetPageSlubFrozen(new);
  1454. c->page = new;
  1455. goto load_freelist;
  1456. }
  1457. if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
  1458. slab_out_of_memory(s, gfpflags, node);
  1459. return NULL;
  1460. debug:
  1461. if (!alloc_debug_processing(s, c->page, object, addr))
  1462. goto another_slab;
  1463. c->page->inuse++;
  1464. c->page->freelist = get_freepointer(s, object);
  1465. c->node = NUMA_NO_NODE;
  1466. goto unlock_out;
  1467. }
  1468. /*
  1469. * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
  1470. * have the fastpath folded into their functions. So no function call
  1471. * overhead for requests that can be satisfied on the fastpath.
  1472. *
  1473. * The fastpath works by first checking if the lockless freelist can be used.
  1474. * If not then __slab_alloc is called for slow processing.
  1475. *
  1476. * Otherwise we can simply pick the next object from the lockless free list.
  1477. */
  1478. static __always_inline void *slab_alloc(struct kmem_cache *s,
  1479. gfp_t gfpflags, int node, unsigned long addr)
  1480. {
  1481. void **object;
  1482. struct kmem_cache_cpu *c;
  1483. unsigned long flags;
  1484. if (slab_pre_alloc_hook(s, gfpflags))
  1485. return NULL;
  1486. local_irq_save(flags);
  1487. c = __this_cpu_ptr(s->cpu_slab);
  1488. object = c->freelist;
  1489. if (unlikely(!object || !node_match(c, node)))
  1490. object = __slab_alloc(s, gfpflags, node, addr, c);
  1491. else {
  1492. c->freelist = get_freepointer(s, object);
  1493. stat(s, ALLOC_FASTPATH);
  1494. }
  1495. local_irq_restore(flags);
  1496. if (unlikely(gfpflags & __GFP_ZERO) && object)
  1497. memset(object, 0, s->objsize);
  1498. slab_post_alloc_hook(s, gfpflags, object);
  1499. return object;
  1500. }
  1501. void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
  1502. {
  1503. void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
  1504. trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
  1505. return ret;
  1506. }
  1507. EXPORT_SYMBOL(kmem_cache_alloc);
  1508. #ifdef CONFIG_TRACING
  1509. void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
  1510. {
  1511. void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
  1512. trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
  1513. return ret;
  1514. }
  1515. EXPORT_SYMBOL(kmem_cache_alloc_trace);
  1516. void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
  1517. {
  1518. void *ret = kmalloc_order(size, flags, order);
  1519. trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
  1520. return ret;
  1521. }
  1522. EXPORT_SYMBOL(kmalloc_order_trace);
  1523. #endif
  1524. #ifdef CONFIG_NUMA
  1525. void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
  1526. {
  1527. void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
  1528. trace_kmem_cache_alloc_node(_RET_IP_, ret,
  1529. s->objsize, s->size, gfpflags, node);
  1530. return ret;
  1531. }
  1532. EXPORT_SYMBOL(kmem_cache_alloc_node);
  1533. #ifdef CONFIG_TRACING
  1534. void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
  1535. gfp_t gfpflags,
  1536. int node, size_t size)
  1537. {
  1538. void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
  1539. trace_kmalloc_node(_RET_IP_, ret,
  1540. size, s->size, gfpflags, node);
  1541. return ret;
  1542. }
  1543. EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
  1544. #endif
  1545. #endif
  1546. /*
  1547. * Slow patch handling. This may still be called frequently since objects
  1548. * have a longer lifetime than the cpu slabs in most processing loads.
  1549. *
  1550. * So we still attempt to reduce cache line usage. Just take the slab
  1551. * lock and free the item. If there is no additional partial page
  1552. * handling required then we can return immediately.
  1553. */
  1554. static void __slab_free(struct kmem_cache *s, struct page *page,
  1555. void *x, unsigned long addr)
  1556. {
  1557. void *prior;
  1558. void **object = (void *)x;
  1559. stat(s, FREE_SLOWPATH);
  1560. slab_lock(page);
  1561. if (kmem_cache_debug(s))
  1562. goto debug;
  1563. checks_ok:
  1564. prior = page->freelist;
  1565. set_freepointer(s, object, prior);
  1566. page->freelist = object;
  1567. page->inuse--;
  1568. if (unlikely(PageSlubFrozen(page))) {
  1569. stat(s, FREE_FROZEN);
  1570. goto out_unlock;
  1571. }
  1572. if (unlikely(!page->inuse))
  1573. goto slab_empty;
  1574. /*
  1575. * Objects left in the slab. If it was not on the partial list before
  1576. * then add it.
  1577. */
  1578. if (unlikely(!prior)) {
  1579. add_partial(get_node(s, page_to_nid(page)), page, 1);
  1580. stat(s, FREE_ADD_PARTIAL);
  1581. }
  1582. out_unlock:
  1583. slab_unlock(page);
  1584. return;
  1585. slab_empty:
  1586. if (prior) {
  1587. /*
  1588. * Slab still on the partial list.
  1589. */
  1590. remove_partial(s, page);
  1591. stat(s, FREE_REMOVE_PARTIAL);
  1592. }
  1593. slab_unlock(page);
  1594. stat(s, FREE_SLAB);
  1595. discard_slab(s, page);
  1596. return;
  1597. debug:
  1598. if (!free_debug_processing(s, page, x, addr))
  1599. goto out_unlock;
  1600. goto checks_ok;
  1601. }
  1602. /*
  1603. * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
  1604. * can perform fastpath freeing without additional function calls.
  1605. *
  1606. * The fastpath is only possible if we are freeing to the current cpu slab
  1607. * of this processor. This typically the case if we have just allocated
  1608. * the item before.
  1609. *
  1610. * If fastpath is not possible then fall back to __slab_free where we deal
  1611. * with all sorts of special processing.
  1612. */
  1613. static __always_inline void slab_free(struct kmem_cache *s,
  1614. struct page *page, void *x, unsigned long addr)
  1615. {
  1616. void **object = (void *)x;
  1617. struct kmem_cache_cpu *c;
  1618. unsigned long flags;
  1619. slab_free_hook(s, x);
  1620. local_irq_save(flags);
  1621. c = __this_cpu_ptr(s->cpu_slab);
  1622. slab_free_hook_irq(s, x);
  1623. if (likely(page == c->page && c->node != NUMA_NO_NODE)) {
  1624. set_freepointer(s, object, c->freelist);
  1625. c->freelist = object;
  1626. stat(s, FREE_FASTPATH);
  1627. } else
  1628. __slab_free(s, page, x, addr);
  1629. local_irq_restore(flags);
  1630. }
  1631. void kmem_cache_free(struct kmem_cache *s, void *x)
  1632. {
  1633. struct page *page;
  1634. page = virt_to_head_page(x);
  1635. slab_free(s, page, x, _RET_IP_);
  1636. trace_kmem_cache_free(_RET_IP_, x);
  1637. }
  1638. EXPORT_SYMBOL(kmem_cache_free);
  1639. /* Figure out on which slab page the object resides */
  1640. static struct page *get_object_page(const void *x)
  1641. {
  1642. struct page *page = virt_to_head_page(x);
  1643. if (!PageSlab(page))
  1644. return NULL;
  1645. return page;
  1646. }
  1647. /*
  1648. * Object placement in a slab is made very easy because we always start at
  1649. * offset 0. If we tune the size of the object to the alignment then we can
  1650. * get the required alignment by putting one properly sized object after
  1651. * another.
  1652. *
  1653. * Notice that the allocation order determines the sizes of the per cpu
  1654. * caches. Each processor has always one slab available for allocations.
  1655. * Increasing the allocation order reduces the number of times that slabs
  1656. * must be moved on and off the partial lists and is therefore a factor in
  1657. * locking overhead.
  1658. */
  1659. /*
  1660. * Mininum / Maximum order of slab pages. This influences locking overhead
  1661. * and slab fragmentation. A higher order reduces the number of partial slabs
  1662. * and increases the number of allocations possible without having to
  1663. * take the list_lock.
  1664. */
  1665. static int slub_min_order;
  1666. static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
  1667. static int slub_min_objects;
  1668. /*
  1669. * Merge control. If this is set then no merging of slab caches will occur.
  1670. * (Could be removed. This was introduced to pacify the merge skeptics.)
  1671. */
  1672. static int slub_nomerge;
  1673. /*
  1674. * Calculate the order of allocation given an slab object size.
  1675. *
  1676. * The order of allocation has significant impact on performance and other
  1677. * system components. Generally order 0 allocations should be preferred since
  1678. * order 0 does not cause fragmentation in the page allocator. Larger objects
  1679. * be problematic to put into order 0 slabs because there may be too much
  1680. * unused space left. We go to a higher order if more than 1/16th of the slab
  1681. * would be wasted.
  1682. *
  1683. * In order to reach satisfactory performance we must ensure that a minimum
  1684. * number of objects is in one slab. Otherwise we may generate too much
  1685. * activity on the partial lists which requires taking the list_lock. This is
  1686. * less a concern for large slabs though which are rarely used.
  1687. *
  1688. * slub_max_order specifies the order where we begin to stop considering the
  1689. * number of objects in a slab as critical. If we reach slub_max_order then
  1690. * we try to keep the page order as low as possible. So we accept more waste
  1691. * of space in favor of a small page order.
  1692. *
  1693. * Higher order allocations also allow the placement of more objects in a
  1694. * slab and thereby reduce object handling overhead. If the user has
  1695. * requested a higher mininum order then we start with that one instead of
  1696. * the smallest order which will fit the object.
  1697. */
  1698. static inline int slab_order(int size, int min_objects,
  1699. int max_order, int fract_leftover)
  1700. {
  1701. int order;
  1702. int rem;
  1703. int min_order = slub_min_order;
  1704. if ((PAGE_SIZE << min_order) / size > MAX_OBJS_PER_PAGE)
  1705. return get_order(size * MAX_OBJS_PER_PAGE) - 1;
  1706. for (order = max(min_order,
  1707. fls(min_objects * size - 1) - PAGE_SHIFT);
  1708. order <= max_order; order++) {
  1709. unsigned long slab_size = PAGE_SIZE << order;
  1710. if (slab_size < min_objects * size)
  1711. continue;
  1712. rem = slab_size % size;
  1713. if (rem <= slab_size / fract_leftover)
  1714. break;
  1715. }
  1716. return order;
  1717. }
  1718. static inline int calculate_order(int size)
  1719. {
  1720. int order;
  1721. int min_objects;
  1722. int fraction;
  1723. int max_objects;
  1724. /*
  1725. * Attempt to find best configuration for a slab. This
  1726. * works by first attempting to generate a layout with
  1727. * the best configuration and backing off gradually.
  1728. *
  1729. * First we reduce the acceptable waste in a slab. Then
  1730. * we reduce the minimum objects required in a slab.
  1731. */
  1732. min_objects = slub_min_objects;
  1733. if (!min_objects)
  1734. min_objects = 4 * (fls(nr_cpu_ids) + 1);
  1735. max_objects = (PAGE_SIZE << slub_max_order)/size;
  1736. min_objects = min(min_objects, max_objects);
  1737. while (min_objects > 1) {
  1738. fraction = 16;
  1739. while (fraction >= 4) {
  1740. order = slab_order(size, min_objects,
  1741. slub_max_order, fraction);
  1742. if (order <= slub_max_order)
  1743. return order;
  1744. fraction /= 2;
  1745. }
  1746. min_objects--;
  1747. }
  1748. /*
  1749. * We were unable to place multiple objects in a slab. Now
  1750. * lets see if we can place a single object there.
  1751. */
  1752. order = slab_order(size, 1, slub_max_order, 1);
  1753. if (order <= slub_max_order)
  1754. return order;
  1755. /*
  1756. * Doh this slab cannot be placed using slub_max_order.
  1757. */
  1758. order = slab_order(size, 1, MAX_ORDER, 1);
  1759. if (order < MAX_ORDER)
  1760. return order;
  1761. return -ENOSYS;
  1762. }
  1763. /*
  1764. * Figure out what the alignment of the objects will be.
  1765. */
  1766. static unsigned long calculate_alignment(unsigned long flags,
  1767. unsigned long align, unsigned long size)
  1768. {
  1769. /*
  1770. * If the user wants hardware cache aligned objects then follow that
  1771. * suggestion if the object is sufficiently large.
  1772. *
  1773. * The hardware cache alignment cannot override the specified
  1774. * alignment though. If that is greater then use it.
  1775. */
  1776. if (flags & SLAB_HWCACHE_ALIGN) {
  1777. unsigned long ralign = cache_line_size();
  1778. while (size <= ralign / 2)
  1779. ralign /= 2;
  1780. align = max(align, ralign);
  1781. }
  1782. if (align < ARCH_SLAB_MINALIGN)
  1783. align = ARCH_SLAB_MINALIGN;
  1784. return ALIGN(align, sizeof(void *));
  1785. }
  1786. static void
  1787. init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
  1788. {
  1789. n->nr_partial = 0;
  1790. spin_lock_init(&n->list_lock);
  1791. INIT_LIST_HEAD(&n->partial);
  1792. #ifdef CONFIG_SLUB_DEBUG
  1793. atomic_long_set(&n->nr_slabs, 0);
  1794. atomic_long_set(&n->total_objects, 0);
  1795. INIT_LIST_HEAD(&n->full);
  1796. #endif
  1797. }
  1798. static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
  1799. {
  1800. BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
  1801. SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu));
  1802. s->cpu_slab = alloc_percpu(struct kmem_cache_cpu);
  1803. return s->cpu_slab != NULL;
  1804. }
  1805. static struct kmem_cache *kmem_cache_node;
  1806. /*
  1807. * No kmalloc_node yet so do it by hand. We know that this is the first
  1808. * slab on the node for this slabcache. There are no concurrent accesses
  1809. * possible.
  1810. *
  1811. * Note that this function only works on the kmalloc_node_cache
  1812. * when allocating for the kmalloc_node_cache. This is used for bootstrapping
  1813. * memory on a fresh node that has no slab structures yet.
  1814. */
  1815. static void early_kmem_cache_node_alloc(int node)
  1816. {
  1817. struct page *page;
  1818. struct kmem_cache_node *n;
  1819. unsigned long flags;
  1820. BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
  1821. page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
  1822. BUG_ON(!page);
  1823. if (page_to_nid(page) != node) {
  1824. printk(KERN_ERR "SLUB: Unable to allocate memory from "
  1825. "node %d\n", node);
  1826. printk(KERN_ERR "SLUB: Allocating a useless per node structure "
  1827. "in order to be able to continue\n");
  1828. }
  1829. n = page->freelist;
  1830. BUG_ON(!n);
  1831. page->freelist = get_freepointer(kmem_cache_node, n);
  1832. page->inuse++;
  1833. kmem_cache_node->node[node] = n;
  1834. #ifdef CONFIG_SLUB_DEBUG
  1835. init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
  1836. init_tracking(kmem_cache_node, n);
  1837. #endif
  1838. init_kmem_cache_node(n, kmem_cache_node);
  1839. inc_slabs_node(kmem_cache_node, node, page->objects);
  1840. /*
  1841. * lockdep requires consistent irq usage for each lock
  1842. * so even though there cannot be a race this early in
  1843. * the boot sequence, we still disable irqs.
  1844. */
  1845. local_irq_save(flags);
  1846. add_partial(n, page, 0);
  1847. local_irq_restore(flags);
  1848. }
  1849. static void free_kmem_cache_nodes(struct kmem_cache *s)
  1850. {
  1851. int node;
  1852. for_each_node_state(node, N_NORMAL_MEMORY) {
  1853. struct kmem_cache_node *n = s->node[node];
  1854. if (n)
  1855. kmem_cache_free(kmem_cache_node, n);
  1856. s->node[node] = NULL;
  1857. }
  1858. }
  1859. static int init_kmem_cache_nodes(struct kmem_cache *s)
  1860. {
  1861. int node;
  1862. for_each_node_state(node, N_NORMAL_MEMORY) {
  1863. struct kmem_cache_node *n;
  1864. if (slab_state == DOWN) {
  1865. early_kmem_cache_node_alloc(node);
  1866. continue;
  1867. }
  1868. n = kmem_cache_alloc_node(kmem_cache_node,
  1869. GFP_KERNEL, node);
  1870. if (!n) {
  1871. free_kmem_cache_nodes(s);
  1872. return 0;
  1873. }
  1874. s->node[node] = n;
  1875. init_kmem_cache_node(n, s);
  1876. }
  1877. return 1;
  1878. }
  1879. static void set_min_partial(struct kmem_cache *s, unsigned long min)
  1880. {
  1881. if (min < MIN_PARTIAL)
  1882. min = MIN_PARTIAL;
  1883. else if (min > MAX_PARTIAL)
  1884. min = MAX_PARTIAL;
  1885. s->min_partial = min;
  1886. }
  1887. /*
  1888. * calculate_sizes() determines the order and the distribution of data within
  1889. * a slab object.
  1890. */
  1891. static int calculate_sizes(struct kmem_cache *s, int forced_order)
  1892. {
  1893. unsigned long flags = s->flags;
  1894. unsigned long size = s->objsize;
  1895. unsigned long align = s->align;
  1896. int order;
  1897. /*
  1898. * Round up object size to the next word boundary. We can only
  1899. * place the free pointer at word boundaries and this determines
  1900. * the possible location of the free pointer.
  1901. */
  1902. size = ALIGN(size, sizeof(void *));
  1903. #ifdef CONFIG_SLUB_DEBUG
  1904. /*
  1905. * Determine if we can poison the object itself. If the user of
  1906. * the slab may touch the object after free or before allocation
  1907. * then we should never poison the object itself.
  1908. */
  1909. if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
  1910. !s->ctor)
  1911. s->flags |= __OBJECT_POISON;
  1912. else
  1913. s->flags &= ~__OBJECT_POISON;
  1914. /*
  1915. * If we are Redzoning then check if there is some space between the
  1916. * end of the object and the free pointer. If not then add an
  1917. * additional word to have some bytes to store Redzone information.
  1918. */
  1919. if ((flags & SLAB_RED_ZONE) && size == s->objsize)
  1920. size += sizeof(void *);
  1921. #endif
  1922. /*
  1923. * With that we have determined the number of bytes in actual use
  1924. * by the object. This is the potential offset to the free pointer.
  1925. */
  1926. s->inuse = size;
  1927. if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
  1928. s->ctor)) {
  1929. /*
  1930. * Relocate free pointer after the object if it is not
  1931. * permitted to overwrite the first word of the object on
  1932. * kmem_cache_free.
  1933. *
  1934. * This is the case if we do RCU, have a constructor or
  1935. * destructor or are poisoning the objects.
  1936. */
  1937. s->offset = size;
  1938. size += sizeof(void *);
  1939. }
  1940. #ifdef CONFIG_SLUB_DEBUG
  1941. if (flags & SLAB_STORE_USER)
  1942. /*
  1943. * Need to store information about allocs and frees after
  1944. * the object.
  1945. */
  1946. size += 2 * sizeof(struct track);
  1947. if (flags & SLAB_RED_ZONE)
  1948. /*
  1949. * Add some empty padding so that we can catch
  1950. * overwrites from earlier objects rather than let
  1951. * tracking information or the free pointer be
  1952. * corrupted if a user writes before the start
  1953. * of the object.
  1954. */
  1955. size += sizeof(void *);
  1956. #endif
  1957. /*
  1958. * Determine the alignment based on various parameters that the
  1959. * user specified and the dynamic determination of cache line size
  1960. * on bootup.
  1961. */
  1962. align = calculate_alignment(flags, align, s->objsize);
  1963. s->align = align;
  1964. /*
  1965. * SLUB stores one object immediately after another beginning from
  1966. * offset 0. In order to align the objects we have to simply size
  1967. * each object to conform to the alignment.
  1968. */
  1969. size = ALIGN(size, align);
  1970. s->size = size;
  1971. if (forced_order >= 0)
  1972. order = forced_order;
  1973. else
  1974. order = calculate_order(size);
  1975. if (order < 0)
  1976. return 0;
  1977. s->allocflags = 0;
  1978. if (order)
  1979. s->allocflags |= __GFP_COMP;
  1980. if (s->flags & SLAB_CACHE_DMA)
  1981. s->allocflags |= SLUB_DMA;
  1982. if (s->flags & SLAB_RECLAIM_ACCOUNT)
  1983. s->allocflags |= __GFP_RECLAIMABLE;
  1984. /*
  1985. * Determine the number of objects per slab
  1986. */
  1987. s->oo = oo_make(order, size);
  1988. s->min = oo_make(get_order(size), size);
  1989. if (oo_objects(s->oo) > oo_objects(s->max))
  1990. s->max = s->oo;
  1991. return !!oo_objects(s->oo);
  1992. }
  1993. static int kmem_cache_open(struct kmem_cache *s,
  1994. const char *name, size_t size,
  1995. size_t align, unsigned long flags,
  1996. void (*ctor)(void *))
  1997. {
  1998. memset(s, 0, kmem_size);
  1999. s->name = name;
  2000. s->ctor = ctor;
  2001. s->objsize = size;
  2002. s->align = align;
  2003. s->flags = kmem_cache_flags(size, flags, name, ctor);
  2004. if (!calculate_sizes(s, -1))
  2005. goto error;
  2006. if (disable_higher_order_debug) {
  2007. /*
  2008. * Disable debugging flags that store metadata if the min slab
  2009. * order increased.
  2010. */
  2011. if (get_order(s->size) > get_order(s->objsize)) {
  2012. s->flags &= ~DEBUG_METADATA_FLAGS;
  2013. s->offset = 0;
  2014. if (!calculate_sizes(s, -1))
  2015. goto error;
  2016. }
  2017. }
  2018. /*
  2019. * The larger the object size is, the more pages we want on the partial
  2020. * list to avoid pounding the page allocator excessively.
  2021. */
  2022. set_min_partial(s, ilog2(s->size));
  2023. s->refcount = 1;
  2024. #ifdef CONFIG_NUMA
  2025. s->remote_node_defrag_ratio = 1000;
  2026. #endif
  2027. if (!init_kmem_cache_nodes(s))
  2028. goto error;
  2029. if (alloc_kmem_cache_cpus(s))
  2030. return 1;
  2031. free_kmem_cache_nodes(s);
  2032. error:
  2033. if (flags & SLAB_PANIC)
  2034. panic("Cannot create slab %s size=%lu realsize=%u "
  2035. "order=%u offset=%u flags=%lx\n",
  2036. s->name, (unsigned long)size, s->size, oo_order(s->oo),
  2037. s->offset, flags);
  2038. return 0;
  2039. }
  2040. /*
  2041. * Check if a given pointer is valid
  2042. */
  2043. int kmem_ptr_validate(struct kmem_cache *s, const void *object)
  2044. {
  2045. struct page *page;
  2046. if (!kern_ptr_validate(object, s->size))
  2047. return 0;
  2048. page = get_object_page(object);
  2049. if (!page || s != page->slab)
  2050. /* No slab or wrong slab */
  2051. return 0;
  2052. if (!check_valid_pointer(s, page, object))
  2053. return 0;
  2054. /*
  2055. * We could also check if the object is on the slabs freelist.
  2056. * But this would be too expensive and it seems that the main
  2057. * purpose of kmem_ptr_valid() is to check if the object belongs
  2058. * to a certain slab.
  2059. */
  2060. return 1;
  2061. }
  2062. EXPORT_SYMBOL(kmem_ptr_validate);
  2063. /*
  2064. * Determine the size of a slab object
  2065. */
  2066. unsigned int kmem_cache_size(struct kmem_cache *s)
  2067. {
  2068. return s->objsize;
  2069. }
  2070. EXPORT_SYMBOL(kmem_cache_size);
  2071. const char *kmem_cache_name(struct kmem_cache *s)
  2072. {
  2073. return s->name;
  2074. }
  2075. EXPORT_SYMBOL(kmem_cache_name);
  2076. static void list_slab_objects(struct kmem_cache *s, struct page *page,
  2077. const char *text)
  2078. {
  2079. #ifdef CONFIG_SLUB_DEBUG
  2080. void *addr = page_address(page);
  2081. void *p;
  2082. unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
  2083. sizeof(long), GFP_ATOMIC);
  2084. if (!map)
  2085. return;
  2086. slab_err(s, page, "%s", text);
  2087. slab_lock(page);
  2088. for_each_free_object(p, s, page->freelist)
  2089. set_bit(slab_index(p, s, addr), map);
  2090. for_each_object(p, s, addr, page->objects) {
  2091. if (!test_bit(slab_index(p, s, addr), map)) {
  2092. printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
  2093. p, p - addr);
  2094. print_tracking(s, p);
  2095. }
  2096. }
  2097. slab_unlock(page);
  2098. kfree(map);
  2099. #endif
  2100. }
  2101. /*
  2102. * Attempt to free all partial slabs on a node.
  2103. */
  2104. static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
  2105. {
  2106. unsigned long flags;
  2107. struct page *page, *h;
  2108. spin_lock_irqsave(&n->list_lock, flags);
  2109. list_for_each_entry_safe(page, h, &n->partial, lru) {
  2110. if (!page->inuse) {
  2111. __remove_partial(n, page);
  2112. discard_slab(s, page);
  2113. } else {
  2114. list_slab_objects(s, page,
  2115. "Objects remaining on kmem_cache_close()");
  2116. }
  2117. }
  2118. spin_unlock_irqrestore(&n->list_lock, flags);
  2119. }
  2120. /*
  2121. * Release all resources used by a slab cache.
  2122. */
  2123. static inline int kmem_cache_close(struct kmem_cache *s)
  2124. {
  2125. int node;
  2126. flush_all(s);
  2127. free_percpu(s->cpu_slab);
  2128. /* Attempt to free all objects */
  2129. for_each_node_state(node, N_NORMAL_MEMORY) {
  2130. struct kmem_cache_node *n = get_node(s, node);
  2131. free_partial(s, n);
  2132. if (n->nr_partial || slabs_node(s, node))
  2133. return 1;
  2134. }
  2135. free_kmem_cache_nodes(s);
  2136. return 0;
  2137. }
  2138. /*
  2139. * Close a cache and release the kmem_cache structure
  2140. * (must be used for caches created using kmem_cache_create)
  2141. */
  2142. void kmem_cache_destroy(struct kmem_cache *s)
  2143. {
  2144. down_write(&slub_lock);
  2145. s->refcount--;
  2146. if (!s->refcount) {
  2147. list_del(&s->list);
  2148. if (kmem_cache_close(s)) {
  2149. printk(KERN_ERR "SLUB %s: %s called for cache that "
  2150. "still has objects.\n", s->name, __func__);
  2151. dump_stack();
  2152. }
  2153. if (s->flags & SLAB_DESTROY_BY_RCU)
  2154. rcu_barrier();
  2155. sysfs_slab_remove(s);
  2156. }
  2157. up_write(&slub_lock);
  2158. }
  2159. EXPORT_SYMBOL(kmem_cache_destroy);
  2160. /********************************************************************
  2161. * Kmalloc subsystem
  2162. *******************************************************************/
  2163. struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
  2164. EXPORT_SYMBOL(kmalloc_caches);
  2165. static struct kmem_cache *kmem_cache;
  2166. #ifdef CONFIG_ZONE_DMA
  2167. static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT];
  2168. #endif
  2169. static int __init setup_slub_min_order(char *str)
  2170. {
  2171. get_option(&str, &slub_min_order);
  2172. return 1;
  2173. }
  2174. __setup("slub_min_order=", setup_slub_min_order);
  2175. static int __init setup_slub_max_order(char *str)
  2176. {
  2177. get_option(&str, &slub_max_order);
  2178. slub_max_order = min(slub_max_order, MAX_ORDER - 1);
  2179. return 1;
  2180. }
  2181. __setup("slub_max_order=", setup_slub_max_order);
  2182. static int __init setup_slub_min_objects(char *str)
  2183. {
  2184. get_option(&str, &slub_min_objects);
  2185. return 1;
  2186. }
  2187. __setup("slub_min_objects=", setup_slub_min_objects);
  2188. static int __init setup_slub_nomerge(char *str)
  2189. {
  2190. slub_nomerge = 1;
  2191. return 1;
  2192. }
  2193. __setup("slub_nomerge", setup_slub_nomerge);
  2194. static struct kmem_cache *__init create_kmalloc_cache(const char *name,
  2195. int size, unsigned int flags)
  2196. {
  2197. struct kmem_cache *s;
  2198. s = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
  2199. /*
  2200. * This function is called with IRQs disabled during early-boot on
  2201. * single CPU so there's no need to take slub_lock here.
  2202. */
  2203. if (!kmem_cache_open(s, name, size, ARCH_KMALLOC_MINALIGN,
  2204. flags, NULL))
  2205. goto panic;
  2206. list_add(&s->list, &slab_caches);
  2207. return s;
  2208. panic:
  2209. panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
  2210. return NULL;
  2211. }
  2212. /*
  2213. * Conversion table for small slabs sizes / 8 to the index in the
  2214. * kmalloc array. This is necessary for slabs < 192 since we have non power
  2215. * of two cache sizes there. The size of larger slabs can be determined using
  2216. * fls.
  2217. */
  2218. static s8 size_index[24] = {
  2219. 3, /* 8 */
  2220. 4, /* 16 */
  2221. 5, /* 24 */
  2222. 5, /* 32 */
  2223. 6, /* 40 */
  2224. 6, /* 48 */
  2225. 6, /* 56 */
  2226. 6, /* 64 */
  2227. 1, /* 72 */
  2228. 1, /* 80 */
  2229. 1, /* 88 */
  2230. 1, /* 96 */
  2231. 7, /* 104 */
  2232. 7, /* 112 */
  2233. 7, /* 120 */
  2234. 7, /* 128 */
  2235. 2, /* 136 */
  2236. 2, /* 144 */
  2237. 2, /* 152 */
  2238. 2, /* 160 */
  2239. 2, /* 168 */
  2240. 2, /* 176 */
  2241. 2, /* 184 */
  2242. 2 /* 192 */
  2243. };
  2244. static inline int size_index_elem(size_t bytes)
  2245. {
  2246. return (bytes - 1) / 8;
  2247. }
  2248. static struct kmem_cache *get_slab(size_t size, gfp_t flags)
  2249. {
  2250. int index;
  2251. if (size <= 192) {
  2252. if (!size)
  2253. return ZERO_SIZE_PTR;
  2254. index = size_index[size_index_elem(size)];
  2255. } else
  2256. index = fls(size - 1);
  2257. #ifdef CONFIG_ZONE_DMA
  2258. if (unlikely((flags & SLUB_DMA)))
  2259. return kmalloc_dma_caches[index];
  2260. #endif
  2261. return kmalloc_caches[index];
  2262. }
  2263. void *__kmalloc(size_t size, gfp_t flags)
  2264. {
  2265. struct kmem_cache *s;
  2266. void *ret;
  2267. if (unlikely(size > SLUB_MAX_SIZE))
  2268. return kmalloc_large(size, flags);
  2269. s = get_slab(size, flags);
  2270. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2271. return s;
  2272. ret = slab_alloc(s, flags, NUMA_NO_NODE, _RET_IP_);
  2273. trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
  2274. return ret;
  2275. }
  2276. EXPORT_SYMBOL(__kmalloc);
  2277. #ifdef CONFIG_NUMA
  2278. static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
  2279. {
  2280. struct page *page;
  2281. void *ptr = NULL;
  2282. flags |= __GFP_COMP | __GFP_NOTRACK;
  2283. page = alloc_pages_node(node, flags, get_order(size));
  2284. if (page)
  2285. ptr = page_address(page);
  2286. kmemleak_alloc(ptr, size, 1, flags);
  2287. return ptr;
  2288. }
  2289. void *__kmalloc_node(size_t size, gfp_t flags, int node)
  2290. {
  2291. struct kmem_cache *s;
  2292. void *ret;
  2293. if (unlikely(size > SLUB_MAX_SIZE)) {
  2294. ret = kmalloc_large_node(size, flags, node);
  2295. trace_kmalloc_node(_RET_IP_, ret,
  2296. size, PAGE_SIZE << get_order(size),
  2297. flags, node);
  2298. return ret;
  2299. }
  2300. s = get_slab(size, flags);
  2301. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2302. return s;
  2303. ret = slab_alloc(s, flags, node, _RET_IP_);
  2304. trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
  2305. return ret;
  2306. }
  2307. EXPORT_SYMBOL(__kmalloc_node);
  2308. #endif
  2309. size_t ksize(const void *object)
  2310. {
  2311. struct page *page;
  2312. struct kmem_cache *s;
  2313. if (unlikely(object == ZERO_SIZE_PTR))
  2314. return 0;
  2315. page = virt_to_head_page(object);
  2316. if (unlikely(!PageSlab(page))) {
  2317. WARN_ON(!PageCompound(page));
  2318. return PAGE_SIZE << compound_order(page);
  2319. }
  2320. s = page->slab;
  2321. #ifdef CONFIG_SLUB_DEBUG
  2322. /*
  2323. * Debugging requires use of the padding between object
  2324. * and whatever may come after it.
  2325. */
  2326. if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
  2327. return s->objsize;
  2328. #endif
  2329. /*
  2330. * If we have the need to store the freelist pointer
  2331. * back there or track user information then we can
  2332. * only use the space before that information.
  2333. */
  2334. if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
  2335. return s->inuse;
  2336. /*
  2337. * Else we can use all the padding etc for the allocation
  2338. */
  2339. return s->size;
  2340. }
  2341. EXPORT_SYMBOL(ksize);
  2342. void kfree(const void *x)
  2343. {
  2344. struct page *page;
  2345. void *object = (void *)x;
  2346. trace_kfree(_RET_IP_, x);
  2347. if (unlikely(ZERO_OR_NULL_PTR(x)))
  2348. return;
  2349. page = virt_to_head_page(x);
  2350. if (unlikely(!PageSlab(page))) {
  2351. BUG_ON(!PageCompound(page));
  2352. kmemleak_free(x);
  2353. put_page(page);
  2354. return;
  2355. }
  2356. slab_free(page->slab, page, object, _RET_IP_);
  2357. }
  2358. EXPORT_SYMBOL(kfree);
  2359. /*
  2360. * kmem_cache_shrink removes empty slabs from the partial lists and sorts
  2361. * the remaining slabs by the number of items in use. The slabs with the
  2362. * most items in use come first. New allocations will then fill those up
  2363. * and thus they can be removed from the partial lists.
  2364. *
  2365. * The slabs with the least items are placed last. This results in them
  2366. * being allocated from last increasing the chance that the last objects
  2367. * are freed in them.
  2368. */
  2369. int kmem_cache_shrink(struct kmem_cache *s)
  2370. {
  2371. int node;
  2372. int i;
  2373. struct kmem_cache_node *n;
  2374. struct page *page;
  2375. struct page *t;
  2376. int objects = oo_objects(s->max);
  2377. struct list_head *slabs_by_inuse =
  2378. kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
  2379. unsigned long flags;
  2380. if (!slabs_by_inuse)
  2381. return -ENOMEM;
  2382. flush_all(s);
  2383. for_each_node_state(node, N_NORMAL_MEMORY) {
  2384. n = get_node(s, node);
  2385. if (!n->nr_partial)
  2386. continue;
  2387. for (i = 0; i < objects; i++)
  2388. INIT_LIST_HEAD(slabs_by_inuse + i);
  2389. spin_lock_irqsave(&n->list_lock, flags);
  2390. /*
  2391. * Build lists indexed by the items in use in each slab.
  2392. *
  2393. * Note that concurrent frees may occur while we hold the
  2394. * list_lock. page->inuse here is the upper limit.
  2395. */
  2396. list_for_each_entry_safe(page, t, &n->partial, lru) {
  2397. if (!page->inuse && slab_trylock(page)) {
  2398. /*
  2399. * Must hold slab lock here because slab_free
  2400. * may have freed the last object and be
  2401. * waiting to release the slab.
  2402. */
  2403. __remove_partial(n, page);
  2404. slab_unlock(page);
  2405. discard_slab(s, page);
  2406. } else {
  2407. list_move(&page->lru,
  2408. slabs_by_inuse + page->inuse);
  2409. }
  2410. }
  2411. /*
  2412. * Rebuild the partial list with the slabs filled up most
  2413. * first and the least used slabs at the end.
  2414. */
  2415. for (i = objects - 1; i >= 0; i--)
  2416. list_splice(slabs_by_inuse + i, n->partial.prev);
  2417. spin_unlock_irqrestore(&n->list_lock, flags);
  2418. }
  2419. kfree(slabs_by_inuse);
  2420. return 0;
  2421. }
  2422. EXPORT_SYMBOL(kmem_cache_shrink);
  2423. #if defined(CONFIG_MEMORY_HOTPLUG)
  2424. static int slab_mem_going_offline_callback(void *arg)
  2425. {
  2426. struct kmem_cache *s;
  2427. down_read(&slub_lock);
  2428. list_for_each_entry(s, &slab_caches, list)
  2429. kmem_cache_shrink(s);
  2430. up_read(&slub_lock);
  2431. return 0;
  2432. }
  2433. static void slab_mem_offline_callback(void *arg)
  2434. {
  2435. struct kmem_cache_node *n;
  2436. struct kmem_cache *s;
  2437. struct memory_notify *marg = arg;
  2438. int offline_node;
  2439. offline_node = marg->status_change_nid;
  2440. /*
  2441. * If the node still has available memory. we need kmem_cache_node
  2442. * for it yet.
  2443. */
  2444. if (offline_node < 0)
  2445. return;
  2446. down_read(&slub_lock);
  2447. list_for_each_entry(s, &slab_caches, list) {
  2448. n = get_node(s, offline_node);
  2449. if (n) {
  2450. /*
  2451. * if n->nr_slabs > 0, slabs still exist on the node
  2452. * that is going down. We were unable to free them,
  2453. * and offline_pages() function shouldn't call this
  2454. * callback. So, we must fail.
  2455. */
  2456. BUG_ON(slabs_node(s, offline_node));
  2457. s->node[offline_node] = NULL;
  2458. kmem_cache_free(kmem_cache_node, n);
  2459. }
  2460. }
  2461. up_read(&slub_lock);
  2462. }
  2463. static int slab_mem_going_online_callback(void *arg)
  2464. {
  2465. struct kmem_cache_node *n;
  2466. struct kmem_cache *s;
  2467. struct memory_notify *marg = arg;
  2468. int nid = marg->status_change_nid;
  2469. int ret = 0;
  2470. /*
  2471. * If the node's memory is already available, then kmem_cache_node is
  2472. * already created. Nothing to do.
  2473. */
  2474. if (nid < 0)
  2475. return 0;
  2476. /*
  2477. * We are bringing a node online. No memory is available yet. We must
  2478. * allocate a kmem_cache_node structure in order to bring the node
  2479. * online.
  2480. */
  2481. down_read(&slub_lock);
  2482. list_for_each_entry(s, &slab_caches, list) {
  2483. /*
  2484. * XXX: kmem_cache_alloc_node will fallback to other nodes
  2485. * since memory is not yet available from the node that
  2486. * is brought up.
  2487. */
  2488. n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
  2489. if (!n) {
  2490. ret = -ENOMEM;
  2491. goto out;
  2492. }
  2493. init_kmem_cache_node(n, s);
  2494. s->node[nid] = n;
  2495. }
  2496. out:
  2497. up_read(&slub_lock);
  2498. return ret;
  2499. }
  2500. static int slab_memory_callback(struct notifier_block *self,
  2501. unsigned long action, void *arg)
  2502. {
  2503. int ret = 0;
  2504. switch (action) {
  2505. case MEM_GOING_ONLINE:
  2506. ret = slab_mem_going_online_callback(arg);
  2507. break;
  2508. case MEM_GOING_OFFLINE:
  2509. ret = slab_mem_going_offline_callback(arg);
  2510. break;
  2511. case MEM_OFFLINE:
  2512. case MEM_CANCEL_ONLINE:
  2513. slab_mem_offline_callback(arg);
  2514. break;
  2515. case MEM_ONLINE:
  2516. case MEM_CANCEL_OFFLINE:
  2517. break;
  2518. }
  2519. if (ret)
  2520. ret = notifier_from_errno(ret);
  2521. else
  2522. ret = NOTIFY_OK;
  2523. return ret;
  2524. }
  2525. #endif /* CONFIG_MEMORY_HOTPLUG */
  2526. /********************************************************************
  2527. * Basic setup of slabs
  2528. *******************************************************************/
  2529. /*
  2530. * Used for early kmem_cache structures that were allocated using
  2531. * the page allocator
  2532. */
  2533. static void __init kmem_cache_bootstrap_fixup(struct kmem_cache *s)
  2534. {
  2535. int node;
  2536. list_add(&s->list, &slab_caches);
  2537. s->refcount = -1;
  2538. for_each_node_state(node, N_NORMAL_MEMORY) {
  2539. struct kmem_cache_node *n = get_node(s, node);
  2540. struct page *p;
  2541. if (n) {
  2542. list_for_each_entry(p, &n->partial, lru)
  2543. p->slab = s;
  2544. #ifdef CONFIG_SLAB_DEBUG
  2545. list_for_each_entry(p, &n->full, lru)
  2546. p->slab = s;
  2547. #endif
  2548. }
  2549. }
  2550. }
  2551. void __init kmem_cache_init(void)
  2552. {
  2553. int i;
  2554. int caches = 0;
  2555. struct kmem_cache *temp_kmem_cache;
  2556. int order;
  2557. struct kmem_cache *temp_kmem_cache_node;
  2558. unsigned long kmalloc_size;
  2559. kmem_size = offsetof(struct kmem_cache, node) +
  2560. nr_node_ids * sizeof(struct kmem_cache_node *);
  2561. /* Allocate two kmem_caches from the page allocator */
  2562. kmalloc_size = ALIGN(kmem_size, cache_line_size());
  2563. order = get_order(2 * kmalloc_size);
  2564. kmem_cache = (void *)__get_free_pages(GFP_NOWAIT, order);
  2565. /*
  2566. * Must first have the slab cache available for the allocations of the
  2567. * struct kmem_cache_node's. There is special bootstrap code in
  2568. * kmem_cache_open for slab_state == DOWN.
  2569. */
  2570. kmem_cache_node = (void *)kmem_cache + kmalloc_size;
  2571. kmem_cache_open(kmem_cache_node, "kmem_cache_node",
  2572. sizeof(struct kmem_cache_node),
  2573. 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
  2574. hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
  2575. /* Able to allocate the per node structures */
  2576. slab_state = PARTIAL;
  2577. temp_kmem_cache = kmem_cache;
  2578. kmem_cache_open(kmem_cache, "kmem_cache", kmem_size,
  2579. 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
  2580. kmem_cache = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
  2581. memcpy(kmem_cache, temp_kmem_cache, kmem_size);
  2582. /*
  2583. * Allocate kmem_cache_node properly from the kmem_cache slab.
  2584. * kmem_cache_node is separately allocated so no need to
  2585. * update any list pointers.
  2586. */
  2587. temp_kmem_cache_node = kmem_cache_node;
  2588. kmem_cache_node = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
  2589. memcpy(kmem_cache_node, temp_kmem_cache_node, kmem_size);
  2590. kmem_cache_bootstrap_fixup(kmem_cache_node);
  2591. caches++;
  2592. kmem_cache_bootstrap_fixup(kmem_cache);
  2593. caches++;
  2594. /* Free temporary boot structure */
  2595. free_pages((unsigned long)temp_kmem_cache, order);
  2596. /* Now we can use the kmem_cache to allocate kmalloc slabs */
  2597. /*
  2598. * Patch up the size_index table if we have strange large alignment
  2599. * requirements for the kmalloc array. This is only the case for
  2600. * MIPS it seems. The standard arches will not generate any code here.
  2601. *
  2602. * Largest permitted alignment is 256 bytes due to the way we
  2603. * handle the index determination for the smaller caches.
  2604. *
  2605. * Make sure that nothing crazy happens if someone starts tinkering
  2606. * around with ARCH_KMALLOC_MINALIGN
  2607. */
  2608. BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
  2609. (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
  2610. for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
  2611. int elem = size_index_elem(i);
  2612. if (elem >= ARRAY_SIZE(size_index))
  2613. break;
  2614. size_index[elem] = KMALLOC_SHIFT_LOW;
  2615. }
  2616. if (KMALLOC_MIN_SIZE == 64) {
  2617. /*
  2618. * The 96 byte size cache is not used if the alignment
  2619. * is 64 byte.
  2620. */
  2621. for (i = 64 + 8; i <= 96; i += 8)
  2622. size_index[size_index_elem(i)] = 7;
  2623. } else if (KMALLOC_MIN_SIZE == 128) {
  2624. /*
  2625. * The 192 byte sized cache is not used if the alignment
  2626. * is 128 byte. Redirect kmalloc to use the 256 byte cache
  2627. * instead.
  2628. */
  2629. for (i = 128 + 8; i <= 192; i += 8)
  2630. size_index[size_index_elem(i)] = 8;
  2631. }
  2632. /* Caches that are not of the two-to-the-power-of size */
  2633. if (KMALLOC_MIN_SIZE <= 32) {
  2634. kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0);
  2635. caches++;
  2636. }
  2637. if (KMALLOC_MIN_SIZE <= 64) {
  2638. kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0);
  2639. caches++;
  2640. }
  2641. for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
  2642. kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0);
  2643. caches++;
  2644. }
  2645. slab_state = UP;
  2646. /* Provide the correct kmalloc names now that the caches are up */
  2647. if (KMALLOC_MIN_SIZE <= 32) {
  2648. kmalloc_caches[1]->name = kstrdup(kmalloc_caches[1]->name, GFP_NOWAIT);
  2649. BUG_ON(!kmalloc_caches[1]->name);
  2650. }
  2651. if (KMALLOC_MIN_SIZE <= 64) {
  2652. kmalloc_caches[2]->name = kstrdup(kmalloc_caches[2]->name, GFP_NOWAIT);
  2653. BUG_ON(!kmalloc_caches[2]->name);
  2654. }
  2655. for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
  2656. char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
  2657. BUG_ON(!s);
  2658. kmalloc_caches[i]->name = s;
  2659. }
  2660. #ifdef CONFIG_SMP
  2661. register_cpu_notifier(&slab_notifier);
  2662. #endif
  2663. #ifdef CONFIG_ZONE_DMA
  2664. for (i = 0; i < SLUB_PAGE_SHIFT; i++) {
  2665. struct kmem_cache *s = kmalloc_caches[i];
  2666. if (s && s->size) {
  2667. char *name = kasprintf(GFP_NOWAIT,
  2668. "dma-kmalloc-%d", s->objsize);
  2669. BUG_ON(!name);
  2670. kmalloc_dma_caches[i] = create_kmalloc_cache(name,
  2671. s->objsize, SLAB_CACHE_DMA);
  2672. }
  2673. }
  2674. #endif
  2675. printk(KERN_INFO
  2676. "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
  2677. " CPUs=%d, Nodes=%d\n",
  2678. caches, cache_line_size(),
  2679. slub_min_order, slub_max_order, slub_min_objects,
  2680. nr_cpu_ids, nr_node_ids);
  2681. }
  2682. void __init kmem_cache_init_late(void)
  2683. {
  2684. }
  2685. /*
  2686. * Find a mergeable slab cache
  2687. */
  2688. static int slab_unmergeable(struct kmem_cache *s)
  2689. {
  2690. if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
  2691. return 1;
  2692. if (s->ctor)
  2693. return 1;
  2694. /*
  2695. * We may have set a slab to be unmergeable during bootstrap.
  2696. */
  2697. if (s->refcount < 0)
  2698. return 1;
  2699. return 0;
  2700. }
  2701. static struct kmem_cache *find_mergeable(size_t size,
  2702. size_t align, unsigned long flags, const char *name,
  2703. void (*ctor)(void *))
  2704. {
  2705. struct kmem_cache *s;
  2706. if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
  2707. return NULL;
  2708. if (ctor)
  2709. return NULL;
  2710. size = ALIGN(size, sizeof(void *));
  2711. align = calculate_alignment(flags, align, size);
  2712. size = ALIGN(size, align);
  2713. flags = kmem_cache_flags(size, flags, name, NULL);
  2714. list_for_each_entry(s, &slab_caches, list) {
  2715. if (slab_unmergeable(s))
  2716. continue;
  2717. if (size > s->size)
  2718. continue;
  2719. if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
  2720. continue;
  2721. /*
  2722. * Check if alignment is compatible.
  2723. * Courtesy of Adrian Drzewiecki
  2724. */
  2725. if ((s->size & ~(align - 1)) != s->size)
  2726. continue;
  2727. if (s->size - size >= sizeof(void *))
  2728. continue;
  2729. return s;
  2730. }
  2731. return NULL;
  2732. }
  2733. struct kmem_cache *kmem_cache_create(const char *name, size_t size,
  2734. size_t align, unsigned long flags, void (*ctor)(void *))
  2735. {
  2736. struct kmem_cache *s;
  2737. char *n;
  2738. if (WARN_ON(!name))
  2739. return NULL;
  2740. down_write(&slub_lock);
  2741. s = find_mergeable(size, align, flags, name, ctor);
  2742. if (s) {
  2743. s->refcount++;
  2744. /*
  2745. * Adjust the object sizes so that we clear
  2746. * the complete object on kzalloc.
  2747. */
  2748. s->objsize = max(s->objsize, (int)size);
  2749. s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
  2750. if (sysfs_slab_alias(s, name)) {
  2751. s->refcount--;
  2752. goto err;
  2753. }
  2754. up_write(&slub_lock);
  2755. return s;
  2756. }
  2757. n = kstrdup(name, GFP_KERNEL);
  2758. if (!n)
  2759. goto err;
  2760. s = kmalloc(kmem_size, GFP_KERNEL);
  2761. if (s) {
  2762. if (kmem_cache_open(s, n,
  2763. size, align, flags, ctor)) {
  2764. list_add(&s->list, &slab_caches);
  2765. if (sysfs_slab_add(s)) {
  2766. list_del(&s->list);
  2767. kfree(n);
  2768. kfree(s);
  2769. goto err;
  2770. }
  2771. up_write(&slub_lock);
  2772. return s;
  2773. }
  2774. kfree(n);
  2775. kfree(s);
  2776. }
  2777. err:
  2778. up_write(&slub_lock);
  2779. if (flags & SLAB_PANIC)
  2780. panic("Cannot create slabcache %s\n", name);
  2781. else
  2782. s = NULL;
  2783. return s;
  2784. }
  2785. EXPORT_SYMBOL(kmem_cache_create);
  2786. #ifdef CONFIG_SMP
  2787. /*
  2788. * Use the cpu notifier to insure that the cpu slabs are flushed when
  2789. * necessary.
  2790. */
  2791. static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
  2792. unsigned long action, void *hcpu)
  2793. {
  2794. long cpu = (long)hcpu;
  2795. struct kmem_cache *s;
  2796. unsigned long flags;
  2797. switch (action) {
  2798. case CPU_UP_CANCELED:
  2799. case CPU_UP_CANCELED_FROZEN:
  2800. case CPU_DEAD:
  2801. case CPU_DEAD_FROZEN:
  2802. down_read(&slub_lock);
  2803. list_for_each_entry(s, &slab_caches, list) {
  2804. local_irq_save(flags);
  2805. __flush_cpu_slab(s, cpu);
  2806. local_irq_restore(flags);
  2807. }
  2808. up_read(&slub_lock);
  2809. break;
  2810. default:
  2811. break;
  2812. }
  2813. return NOTIFY_OK;
  2814. }
  2815. static struct notifier_block __cpuinitdata slab_notifier = {
  2816. .notifier_call = slab_cpuup_callback
  2817. };
  2818. #endif
  2819. void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
  2820. {
  2821. struct kmem_cache *s;
  2822. void *ret;
  2823. if (unlikely(size > SLUB_MAX_SIZE))
  2824. return kmalloc_large(size, gfpflags);
  2825. s = get_slab(size, gfpflags);
  2826. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2827. return s;
  2828. ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, caller);
  2829. /* Honor the call site pointer we recieved. */
  2830. trace_kmalloc(caller, ret, size, s->size, gfpflags);
  2831. return ret;
  2832. }
  2833. #ifdef CONFIG_NUMA
  2834. void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
  2835. int node, unsigned long caller)
  2836. {
  2837. struct kmem_cache *s;
  2838. void *ret;
  2839. if (unlikely(size > SLUB_MAX_SIZE)) {
  2840. ret = kmalloc_large_node(size, gfpflags, node);
  2841. trace_kmalloc_node(caller, ret,
  2842. size, PAGE_SIZE << get_order(size),
  2843. gfpflags, node);
  2844. return ret;
  2845. }
  2846. s = get_slab(size, gfpflags);
  2847. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2848. return s;
  2849. ret = slab_alloc(s, gfpflags, node, caller);
  2850. /* Honor the call site pointer we recieved. */
  2851. trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
  2852. return ret;
  2853. }
  2854. #endif
  2855. #ifdef CONFIG_SYSFS
  2856. static int count_inuse(struct page *page)
  2857. {
  2858. return page->inuse;
  2859. }
  2860. static int count_total(struct page *page)
  2861. {
  2862. return page->objects;
  2863. }
  2864. #endif
  2865. #ifdef CONFIG_SLUB_DEBUG
  2866. static int validate_slab(struct kmem_cache *s, struct page *page,
  2867. unsigned long *map)
  2868. {
  2869. void *p;
  2870. void *addr = page_address(page);
  2871. if (!check_slab(s, page) ||
  2872. !on_freelist(s, page, NULL))
  2873. return 0;
  2874. /* Now we know that a valid freelist exists */
  2875. bitmap_zero(map, page->objects);
  2876. for_each_free_object(p, s, page->freelist) {
  2877. set_bit(slab_index(p, s, addr), map);
  2878. if (!check_object(s, page, p, SLUB_RED_INACTIVE))
  2879. return 0;
  2880. }
  2881. for_each_object(p, s, addr, page->objects)
  2882. if (!test_bit(slab_index(p, s, addr), map))
  2883. if (!check_object(s, page, p, SLUB_RED_ACTIVE))
  2884. return 0;
  2885. return 1;
  2886. }
  2887. static void validate_slab_slab(struct kmem_cache *s, struct page *page,
  2888. unsigned long *map)
  2889. {
  2890. if (slab_trylock(page)) {
  2891. validate_slab(s, page, map);
  2892. slab_unlock(page);
  2893. } else
  2894. printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
  2895. s->name, page);
  2896. }
  2897. static int validate_slab_node(struct kmem_cache *s,
  2898. struct kmem_cache_node *n, unsigned long *map)
  2899. {
  2900. unsigned long count = 0;
  2901. struct page *page;
  2902. unsigned long flags;
  2903. spin_lock_irqsave(&n->list_lock, flags);
  2904. list_for_each_entry(page, &n->partial, lru) {
  2905. validate_slab_slab(s, page, map);
  2906. count++;
  2907. }
  2908. if (count != n->nr_partial)
  2909. printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
  2910. "counter=%ld\n", s->name, count, n->nr_partial);
  2911. if (!(s->flags & SLAB_STORE_USER))
  2912. goto out;
  2913. list_for_each_entry(page, &n->full, lru) {
  2914. validate_slab_slab(s, page, map);
  2915. count++;
  2916. }
  2917. if (count != atomic_long_read(&n->nr_slabs))
  2918. printk(KERN_ERR "SLUB: %s %ld slabs counted but "
  2919. "counter=%ld\n", s->name, count,
  2920. atomic_long_read(&n->nr_slabs));
  2921. out:
  2922. spin_unlock_irqrestore(&n->list_lock, flags);
  2923. return count;
  2924. }
  2925. static long validate_slab_cache(struct kmem_cache *s)
  2926. {
  2927. int node;
  2928. unsigned long count = 0;
  2929. unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
  2930. sizeof(unsigned long), GFP_KERNEL);
  2931. if (!map)
  2932. return -ENOMEM;
  2933. flush_all(s);
  2934. for_each_node_state(node, N_NORMAL_MEMORY) {
  2935. struct kmem_cache_node *n = get_node(s, node);
  2936. count += validate_slab_node(s, n, map);
  2937. }
  2938. kfree(map);
  2939. return count;
  2940. }
  2941. /*
  2942. * Generate lists of code addresses where slabcache objects are allocated
  2943. * and freed.
  2944. */
  2945. struct location {
  2946. unsigned long count;
  2947. unsigned long addr;
  2948. long long sum_time;
  2949. long min_time;
  2950. long max_time;
  2951. long min_pid;
  2952. long max_pid;
  2953. DECLARE_BITMAP(cpus, NR_CPUS);
  2954. nodemask_t nodes;
  2955. };
  2956. struct loc_track {
  2957. unsigned long max;
  2958. unsigned long count;
  2959. struct location *loc;
  2960. };
  2961. static void free_loc_track(struct loc_track *t)
  2962. {
  2963. if (t->max)
  2964. free_pages((unsigned long)t->loc,
  2965. get_order(sizeof(struct location) * t->max));
  2966. }
  2967. static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
  2968. {
  2969. struct location *l;
  2970. int order;
  2971. order = get_order(sizeof(struct location) * max);
  2972. l = (void *)__get_free_pages(flags, order);
  2973. if (!l)
  2974. return 0;
  2975. if (t->count) {
  2976. memcpy(l, t->loc, sizeof(struct location) * t->count);
  2977. free_loc_track(t);
  2978. }
  2979. t->max = max;
  2980. t->loc = l;
  2981. return 1;
  2982. }
  2983. static int add_location(struct loc_track *t, struct kmem_cache *s,
  2984. const struct track *track)
  2985. {
  2986. long start, end, pos;
  2987. struct location *l;
  2988. unsigned long caddr;
  2989. unsigned long age = jiffies - track->when;
  2990. start = -1;
  2991. end = t->count;
  2992. for ( ; ; ) {
  2993. pos = start + (end - start + 1) / 2;
  2994. /*
  2995. * There is nothing at "end". If we end up there
  2996. * we need to add something to before end.
  2997. */
  2998. if (pos == end)
  2999. break;
  3000. caddr = t->loc[pos].addr;
  3001. if (track->addr == caddr) {
  3002. l = &t->loc[pos];
  3003. l->count++;
  3004. if (track->when) {
  3005. l->sum_time += age;
  3006. if (age < l->min_time)
  3007. l->min_time = age;
  3008. if (age > l->max_time)
  3009. l->max_time = age;
  3010. if (track->pid < l->min_pid)
  3011. l->min_pid = track->pid;
  3012. if (track->pid > l->max_pid)
  3013. l->max_pid = track->pid;
  3014. cpumask_set_cpu(track->cpu,
  3015. to_cpumask(l->cpus));
  3016. }
  3017. node_set(page_to_nid(virt_to_page(track)), l->nodes);
  3018. return 1;
  3019. }
  3020. if (track->addr < caddr)
  3021. end = pos;
  3022. else
  3023. start = pos;
  3024. }
  3025. /*
  3026. * Not found. Insert new tracking element.
  3027. */
  3028. if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
  3029. return 0;
  3030. l = t->loc + pos;
  3031. if (pos < t->count)
  3032. memmove(l + 1, l,
  3033. (t->count - pos) * sizeof(struct location));
  3034. t->count++;
  3035. l->count = 1;
  3036. l->addr = track->addr;
  3037. l->sum_time = age;
  3038. l->min_time = age;
  3039. l->max_time = age;
  3040. l->min_pid = track->pid;
  3041. l->max_pid = track->pid;
  3042. cpumask_clear(to_cpumask(l->cpus));
  3043. cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
  3044. nodes_clear(l->nodes);
  3045. node_set(page_to_nid(virt_to_page(track)), l->nodes);
  3046. return 1;
  3047. }
  3048. static void process_slab(struct loc_track *t, struct kmem_cache *s,
  3049. struct page *page, enum track_item alloc,
  3050. unsigned long *map)
  3051. {
  3052. void *addr = page_address(page);
  3053. void *p;
  3054. bitmap_zero(map, page->objects);
  3055. for_each_free_object(p, s, page->freelist)
  3056. set_bit(slab_index(p, s, addr), map);
  3057. for_each_object(p, s, addr, page->objects)
  3058. if (!test_bit(slab_index(p, s, addr), map))
  3059. add_location(t, s, get_track(s, p, alloc));
  3060. }
  3061. static int list_locations(struct kmem_cache *s, char *buf,
  3062. enum track_item alloc)
  3063. {
  3064. int len = 0;
  3065. unsigned long i;
  3066. struct loc_track t = { 0, 0, NULL };
  3067. int node;
  3068. unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
  3069. sizeof(unsigned long), GFP_KERNEL);
  3070. if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
  3071. GFP_TEMPORARY)) {
  3072. kfree(map);
  3073. return sprintf(buf, "Out of memory\n");
  3074. }
  3075. /* Push back cpu slabs */
  3076. flush_all(s);
  3077. for_each_node_state(node, N_NORMAL_MEMORY) {
  3078. struct kmem_cache_node *n = get_node(s, node);
  3079. unsigned long flags;
  3080. struct page *page;
  3081. if (!atomic_long_read(&n->nr_slabs))
  3082. continue;
  3083. spin_lock_irqsave(&n->list_lock, flags);
  3084. list_for_each_entry(page, &n->partial, lru)
  3085. process_slab(&t, s, page, alloc, map);
  3086. list_for_each_entry(page, &n->full, lru)
  3087. process_slab(&t, s, page, alloc, map);
  3088. spin_unlock_irqrestore(&n->list_lock, flags);
  3089. }
  3090. for (i = 0; i < t.count; i++) {
  3091. struct location *l = &t.loc[i];
  3092. if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
  3093. break;
  3094. len += sprintf(buf + len, "%7ld ", l->count);
  3095. if (l->addr)
  3096. len += sprint_symbol(buf + len, (unsigned long)l->addr);
  3097. else
  3098. len += sprintf(buf + len, "<not-available>");
  3099. if (l->sum_time != l->min_time) {
  3100. len += sprintf(buf + len, " age=%ld/%ld/%ld",
  3101. l->min_time,
  3102. (long)div_u64(l->sum_time, l->count),
  3103. l->max_time);
  3104. } else
  3105. len += sprintf(buf + len, " age=%ld",
  3106. l->min_time);
  3107. if (l->min_pid != l->max_pid)
  3108. len += sprintf(buf + len, " pid=%ld-%ld",
  3109. l->min_pid, l->max_pid);
  3110. else
  3111. len += sprintf(buf + len, " pid=%ld",
  3112. l->min_pid);
  3113. if (num_online_cpus() > 1 &&
  3114. !cpumask_empty(to_cpumask(l->cpus)) &&
  3115. len < PAGE_SIZE - 60) {
  3116. len += sprintf(buf + len, " cpus=");
  3117. len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
  3118. to_cpumask(l->cpus));
  3119. }
  3120. if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
  3121. len < PAGE_SIZE - 60) {
  3122. len += sprintf(buf + len, " nodes=");
  3123. len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
  3124. l->nodes);
  3125. }
  3126. len += sprintf(buf + len, "\n");
  3127. }
  3128. free_loc_track(&t);
  3129. kfree(map);
  3130. if (!t.count)
  3131. len += sprintf(buf, "No data\n");
  3132. return len;
  3133. }
  3134. #endif
  3135. #ifdef SLUB_RESILIENCY_TEST
  3136. static void resiliency_test(void)
  3137. {
  3138. u8 *p;
  3139. BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || SLUB_PAGE_SHIFT < 10);
  3140. printk(KERN_ERR "SLUB resiliency testing\n");
  3141. printk(KERN_ERR "-----------------------\n");
  3142. printk(KERN_ERR "A. Corruption after allocation\n");
  3143. p = kzalloc(16, GFP_KERNEL);
  3144. p[16] = 0x12;
  3145. printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
  3146. " 0x12->0x%p\n\n", p + 16);
  3147. validate_slab_cache(kmalloc_caches[4]);
  3148. /* Hmmm... The next two are dangerous */
  3149. p = kzalloc(32, GFP_KERNEL);
  3150. p[32 + sizeof(void *)] = 0x34;
  3151. printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
  3152. " 0x34 -> -0x%p\n", p);
  3153. printk(KERN_ERR
  3154. "If allocated object is overwritten then not detectable\n\n");
  3155. validate_slab_cache(kmalloc_caches[5]);
  3156. p = kzalloc(64, GFP_KERNEL);
  3157. p += 64 + (get_cycles() & 0xff) * sizeof(void *);
  3158. *p = 0x56;
  3159. printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
  3160. p);
  3161. printk(KERN_ERR
  3162. "If allocated object is overwritten then not detectable\n\n");
  3163. validate_slab_cache(kmalloc_caches[6]);
  3164. printk(KERN_ERR "\nB. Corruption after free\n");
  3165. p = kzalloc(128, GFP_KERNEL);
  3166. kfree(p);
  3167. *p = 0x78;
  3168. printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
  3169. validate_slab_cache(kmalloc_caches[7]);
  3170. p = kzalloc(256, GFP_KERNEL);
  3171. kfree(p);
  3172. p[50] = 0x9a;
  3173. printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
  3174. p);
  3175. validate_slab_cache(kmalloc_caches[8]);
  3176. p = kzalloc(512, GFP_KERNEL);
  3177. kfree(p);
  3178. p[512] = 0xab;
  3179. printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
  3180. validate_slab_cache(kmalloc_caches[9]);
  3181. }
  3182. #else
  3183. #ifdef CONFIG_SYSFS
  3184. static void resiliency_test(void) {};
  3185. #endif
  3186. #endif
  3187. #ifdef CONFIG_SYSFS
  3188. enum slab_stat_type {
  3189. SL_ALL, /* All slabs */
  3190. SL_PARTIAL, /* Only partially allocated slabs */
  3191. SL_CPU, /* Only slabs used for cpu caches */
  3192. SL_OBJECTS, /* Determine allocated objects not slabs */
  3193. SL_TOTAL /* Determine object capacity not slabs */
  3194. };
  3195. #define SO_ALL (1 << SL_ALL)
  3196. #define SO_PARTIAL (1 << SL_PARTIAL)
  3197. #define SO_CPU (1 << SL_CPU)
  3198. #define SO_OBJECTS (1 << SL_OBJECTS)
  3199. #define SO_TOTAL (1 << SL_TOTAL)
  3200. static ssize_t show_slab_objects(struct kmem_cache *s,
  3201. char *buf, unsigned long flags)
  3202. {
  3203. unsigned long total = 0;
  3204. int node;
  3205. int x;
  3206. unsigned long *nodes;
  3207. unsigned long *per_cpu;
  3208. nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
  3209. if (!nodes)
  3210. return -ENOMEM;
  3211. per_cpu = nodes + nr_node_ids;
  3212. if (flags & SO_CPU) {
  3213. int cpu;
  3214. for_each_possible_cpu(cpu) {
  3215. struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
  3216. if (!c || c->node < 0)
  3217. continue;
  3218. if (c->page) {
  3219. if (flags & SO_TOTAL)
  3220. x = c->page->objects;
  3221. else if (flags & SO_OBJECTS)
  3222. x = c->page->inuse;
  3223. else
  3224. x = 1;
  3225. total += x;
  3226. nodes[c->node] += x;
  3227. }
  3228. per_cpu[c->node]++;
  3229. }
  3230. }
  3231. down_read(&slub_lock);
  3232. #ifdef CONFIG_SLUB_DEBUG
  3233. if (flags & SO_ALL) {
  3234. for_each_node_state(node, N_NORMAL_MEMORY) {
  3235. struct kmem_cache_node *n = get_node(s, node);
  3236. if (flags & SO_TOTAL)
  3237. x = atomic_long_read(&n->total_objects);
  3238. else if (flags & SO_OBJECTS)
  3239. x = atomic_long_read(&n->total_objects) -
  3240. count_partial(n, count_free);
  3241. else
  3242. x = atomic_long_read(&n->nr_slabs);
  3243. total += x;
  3244. nodes[node] += x;
  3245. }
  3246. } else
  3247. #endif
  3248. if (flags & SO_PARTIAL) {
  3249. for_each_node_state(node, N_NORMAL_MEMORY) {
  3250. struct kmem_cache_node *n = get_node(s, node);
  3251. if (flags & SO_TOTAL)
  3252. x = count_partial(n, count_total);
  3253. else if (flags & SO_OBJECTS)
  3254. x = count_partial(n, count_inuse);
  3255. else
  3256. x = n->nr_partial;
  3257. total += x;
  3258. nodes[node] += x;
  3259. }
  3260. }
  3261. x = sprintf(buf, "%lu", total);
  3262. #ifdef CONFIG_NUMA
  3263. for_each_node_state(node, N_NORMAL_MEMORY)
  3264. if (nodes[node])
  3265. x += sprintf(buf + x, " N%d=%lu",
  3266. node, nodes[node]);
  3267. #endif
  3268. up_read(&slub_lock);
  3269. kfree(nodes);
  3270. return x + sprintf(buf + x, "\n");
  3271. }
  3272. #ifdef CONFIG_SLUB_DEBUG
  3273. static int any_slab_objects(struct kmem_cache *s)
  3274. {
  3275. int node;
  3276. for_each_online_node(node) {
  3277. struct kmem_cache_node *n = get_node(s, node);
  3278. if (!n)
  3279. continue;
  3280. if (atomic_long_read(&n->total_objects))
  3281. return 1;
  3282. }
  3283. return 0;
  3284. }
  3285. #endif
  3286. #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
  3287. #define to_slab(n) container_of(n, struct kmem_cache, kobj);
  3288. struct slab_attribute {
  3289. struct attribute attr;
  3290. ssize_t (*show)(struct kmem_cache *s, char *buf);
  3291. ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
  3292. };
  3293. #define SLAB_ATTR_RO(_name) \
  3294. static struct slab_attribute _name##_attr = __ATTR_RO(_name)
  3295. #define SLAB_ATTR(_name) \
  3296. static struct slab_attribute _name##_attr = \
  3297. __ATTR(_name, 0644, _name##_show, _name##_store)
  3298. static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
  3299. {
  3300. return sprintf(buf, "%d\n", s->size);
  3301. }
  3302. SLAB_ATTR_RO(slab_size);
  3303. static ssize_t align_show(struct kmem_cache *s, char *buf)
  3304. {
  3305. return sprintf(buf, "%d\n", s->align);
  3306. }
  3307. SLAB_ATTR_RO(align);
  3308. static ssize_t object_size_show(struct kmem_cache *s, char *buf)
  3309. {
  3310. return sprintf(buf, "%d\n", s->objsize);
  3311. }
  3312. SLAB_ATTR_RO(object_size);
  3313. static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
  3314. {
  3315. return sprintf(buf, "%d\n", oo_objects(s->oo));
  3316. }
  3317. SLAB_ATTR_RO(objs_per_slab);
  3318. static ssize_t order_store(struct kmem_cache *s,
  3319. const char *buf, size_t length)
  3320. {
  3321. unsigned long order;
  3322. int err;
  3323. err = strict_strtoul(buf, 10, &order);
  3324. if (err)
  3325. return err;
  3326. if (order > slub_max_order || order < slub_min_order)
  3327. return -EINVAL;
  3328. calculate_sizes(s, order);
  3329. return length;
  3330. }
  3331. static ssize_t order_show(struct kmem_cache *s, char *buf)
  3332. {
  3333. return sprintf(buf, "%d\n", oo_order(s->oo));
  3334. }
  3335. SLAB_ATTR(order);
  3336. static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
  3337. {
  3338. return sprintf(buf, "%lu\n", s->min_partial);
  3339. }
  3340. static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
  3341. size_t length)
  3342. {
  3343. unsigned long min;
  3344. int err;
  3345. err = strict_strtoul(buf, 10, &min);
  3346. if (err)
  3347. return err;
  3348. set_min_partial(s, min);
  3349. return length;
  3350. }
  3351. SLAB_ATTR(min_partial);
  3352. static ssize_t ctor_show(struct kmem_cache *s, char *buf)
  3353. {
  3354. if (s->ctor) {
  3355. int n = sprint_symbol(buf, (unsigned long)s->ctor);
  3356. return n + sprintf(buf + n, "\n");
  3357. }
  3358. return 0;
  3359. }
  3360. SLAB_ATTR_RO(ctor);
  3361. static ssize_t aliases_show(struct kmem_cache *s, char *buf)
  3362. {
  3363. return sprintf(buf, "%d\n", s->refcount - 1);
  3364. }
  3365. SLAB_ATTR_RO(aliases);
  3366. static ssize_t partial_show(struct kmem_cache *s, char *buf)
  3367. {
  3368. return show_slab_objects(s, buf, SO_PARTIAL);
  3369. }
  3370. SLAB_ATTR_RO(partial);
  3371. static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
  3372. {
  3373. return show_slab_objects(s, buf, SO_CPU);
  3374. }
  3375. SLAB_ATTR_RO(cpu_slabs);
  3376. static ssize_t objects_show(struct kmem_cache *s, char *buf)
  3377. {
  3378. return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
  3379. }
  3380. SLAB_ATTR_RO(objects);
  3381. static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
  3382. {
  3383. return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
  3384. }
  3385. SLAB_ATTR_RO(objects_partial);
  3386. static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
  3387. {
  3388. return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
  3389. }
  3390. static ssize_t reclaim_account_store(struct kmem_cache *s,
  3391. const char *buf, size_t length)
  3392. {
  3393. s->flags &= ~SLAB_RECLAIM_ACCOUNT;
  3394. if (buf[0] == '1')
  3395. s->flags |= SLAB_RECLAIM_ACCOUNT;
  3396. return length;
  3397. }
  3398. SLAB_ATTR(reclaim_account);
  3399. static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
  3400. {
  3401. return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
  3402. }
  3403. SLAB_ATTR_RO(hwcache_align);
  3404. #ifdef CONFIG_ZONE_DMA
  3405. static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
  3406. {
  3407. return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
  3408. }
  3409. SLAB_ATTR_RO(cache_dma);
  3410. #endif
  3411. static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
  3412. {
  3413. return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
  3414. }
  3415. SLAB_ATTR_RO(destroy_by_rcu);
  3416. #ifdef CONFIG_SLUB_DEBUG
  3417. static ssize_t slabs_show(struct kmem_cache *s, char *buf)
  3418. {
  3419. return show_slab_objects(s, buf, SO_ALL);
  3420. }
  3421. SLAB_ATTR_RO(slabs);
  3422. static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
  3423. {
  3424. return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
  3425. }
  3426. SLAB_ATTR_RO(total_objects);
  3427. static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
  3428. {
  3429. return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
  3430. }
  3431. static ssize_t sanity_checks_store(struct kmem_cache *s,
  3432. const char *buf, size_t length)
  3433. {
  3434. s->flags &= ~SLAB_DEBUG_FREE;
  3435. if (buf[0] == '1')
  3436. s->flags |= SLAB_DEBUG_FREE;
  3437. return length;
  3438. }
  3439. SLAB_ATTR(sanity_checks);
  3440. static ssize_t trace_show(struct kmem_cache *s, char *buf)
  3441. {
  3442. return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
  3443. }
  3444. static ssize_t trace_store(struct kmem_cache *s, const char *buf,
  3445. size_t length)
  3446. {
  3447. s->flags &= ~SLAB_TRACE;
  3448. if (buf[0] == '1')
  3449. s->flags |= SLAB_TRACE;
  3450. return length;
  3451. }
  3452. SLAB_ATTR(trace);
  3453. static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
  3454. {
  3455. return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
  3456. }
  3457. static ssize_t red_zone_store(struct kmem_cache *s,
  3458. const char *buf, size_t length)
  3459. {
  3460. if (any_slab_objects(s))
  3461. return -EBUSY;
  3462. s->flags &= ~SLAB_RED_ZONE;
  3463. if (buf[0] == '1')
  3464. s->flags |= SLAB_RED_ZONE;
  3465. calculate_sizes(s, -1);
  3466. return length;
  3467. }
  3468. SLAB_ATTR(red_zone);
  3469. static ssize_t poison_show(struct kmem_cache *s, char *buf)
  3470. {
  3471. return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
  3472. }
  3473. static ssize_t poison_store(struct kmem_cache *s,
  3474. const char *buf, size_t length)
  3475. {
  3476. if (any_slab_objects(s))
  3477. return -EBUSY;
  3478. s->flags &= ~SLAB_POISON;
  3479. if (buf[0] == '1')
  3480. s->flags |= SLAB_POISON;
  3481. calculate_sizes(s, -1);
  3482. return length;
  3483. }
  3484. SLAB_ATTR(poison);
  3485. static ssize_t store_user_show(struct kmem_cache *s, char *buf)
  3486. {
  3487. return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
  3488. }
  3489. static ssize_t store_user_store(struct kmem_cache *s,
  3490. const char *buf, size_t length)
  3491. {
  3492. if (any_slab_objects(s))
  3493. return -EBUSY;
  3494. s->flags &= ~SLAB_STORE_USER;
  3495. if (buf[0] == '1')
  3496. s->flags |= SLAB_STORE_USER;
  3497. calculate_sizes(s, -1);
  3498. return length;
  3499. }
  3500. SLAB_ATTR(store_user);
  3501. static ssize_t validate_show(struct kmem_cache *s, char *buf)
  3502. {
  3503. return 0;
  3504. }
  3505. static ssize_t validate_store(struct kmem_cache *s,
  3506. const char *buf, size_t length)
  3507. {
  3508. int ret = -EINVAL;
  3509. if (buf[0] == '1') {
  3510. ret = validate_slab_cache(s);
  3511. if (ret >= 0)
  3512. ret = length;
  3513. }
  3514. return ret;
  3515. }
  3516. SLAB_ATTR(validate);
  3517. static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
  3518. {
  3519. if (!(s->flags & SLAB_STORE_USER))
  3520. return -ENOSYS;
  3521. return list_locations(s, buf, TRACK_ALLOC);
  3522. }
  3523. SLAB_ATTR_RO(alloc_calls);
  3524. static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
  3525. {
  3526. if (!(s->flags & SLAB_STORE_USER))
  3527. return -ENOSYS;
  3528. return list_locations(s, buf, TRACK_FREE);
  3529. }
  3530. SLAB_ATTR_RO(free_calls);
  3531. #endif /* CONFIG_SLUB_DEBUG */
  3532. #ifdef CONFIG_FAILSLAB
  3533. static ssize_t failslab_show(struct kmem_cache *s, char *buf)
  3534. {
  3535. return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
  3536. }
  3537. static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
  3538. size_t length)
  3539. {
  3540. s->flags &= ~SLAB_FAILSLAB;
  3541. if (buf[0] == '1')
  3542. s->flags |= SLAB_FAILSLAB;
  3543. return length;
  3544. }
  3545. SLAB_ATTR(failslab);
  3546. #endif
  3547. static ssize_t shrink_show(struct kmem_cache *s, char *buf)
  3548. {
  3549. return 0;
  3550. }
  3551. static ssize_t shrink_store(struct kmem_cache *s,
  3552. const char *buf, size_t length)
  3553. {
  3554. if (buf[0] == '1') {
  3555. int rc = kmem_cache_shrink(s);
  3556. if (rc)
  3557. return rc;
  3558. } else
  3559. return -EINVAL;
  3560. return length;
  3561. }
  3562. SLAB_ATTR(shrink);
  3563. #ifdef CONFIG_NUMA
  3564. static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
  3565. {
  3566. return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
  3567. }
  3568. static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
  3569. const char *buf, size_t length)
  3570. {
  3571. unsigned long ratio;
  3572. int err;
  3573. err = strict_strtoul(buf, 10, &ratio);
  3574. if (err)
  3575. return err;
  3576. if (ratio <= 100)
  3577. s->remote_node_defrag_ratio = ratio * 10;
  3578. return length;
  3579. }
  3580. SLAB_ATTR(remote_node_defrag_ratio);
  3581. #endif
  3582. #ifdef CONFIG_SLUB_STATS
  3583. static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
  3584. {
  3585. unsigned long sum = 0;
  3586. int cpu;
  3587. int len;
  3588. int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
  3589. if (!data)
  3590. return -ENOMEM;
  3591. for_each_online_cpu(cpu) {
  3592. unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
  3593. data[cpu] = x;
  3594. sum += x;
  3595. }
  3596. len = sprintf(buf, "%lu", sum);
  3597. #ifdef CONFIG_SMP
  3598. for_each_online_cpu(cpu) {
  3599. if (data[cpu] && len < PAGE_SIZE - 20)
  3600. len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
  3601. }
  3602. #endif
  3603. kfree(data);
  3604. return len + sprintf(buf + len, "\n");
  3605. }
  3606. static void clear_stat(struct kmem_cache *s, enum stat_item si)
  3607. {
  3608. int cpu;
  3609. for_each_online_cpu(cpu)
  3610. per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
  3611. }
  3612. #define STAT_ATTR(si, text) \
  3613. static ssize_t text##_show(struct kmem_cache *s, char *buf) \
  3614. { \
  3615. return show_stat(s, buf, si); \
  3616. } \
  3617. static ssize_t text##_store(struct kmem_cache *s, \
  3618. const char *buf, size_t length) \
  3619. { \
  3620. if (buf[0] != '0') \
  3621. return -EINVAL; \
  3622. clear_stat(s, si); \
  3623. return length; \
  3624. } \
  3625. SLAB_ATTR(text); \
  3626. STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
  3627. STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
  3628. STAT_ATTR(FREE_FASTPATH, free_fastpath);
  3629. STAT_ATTR(FREE_SLOWPATH, free_slowpath);
  3630. STAT_ATTR(FREE_FROZEN, free_frozen);
  3631. STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
  3632. STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
  3633. STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
  3634. STAT_ATTR(ALLOC_SLAB, alloc_slab);
  3635. STAT_ATTR(ALLOC_REFILL, alloc_refill);
  3636. STAT_ATTR(FREE_SLAB, free_slab);
  3637. STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
  3638. STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
  3639. STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
  3640. STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
  3641. STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
  3642. STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
  3643. STAT_ATTR(ORDER_FALLBACK, order_fallback);
  3644. #endif
  3645. static struct attribute *slab_attrs[] = {
  3646. &slab_size_attr.attr,
  3647. &object_size_attr.attr,
  3648. &objs_per_slab_attr.attr,
  3649. &order_attr.attr,
  3650. &min_partial_attr.attr,
  3651. &objects_attr.attr,
  3652. &objects_partial_attr.attr,
  3653. &partial_attr.attr,
  3654. &cpu_slabs_attr.attr,
  3655. &ctor_attr.attr,
  3656. &aliases_attr.attr,
  3657. &align_attr.attr,
  3658. &hwcache_align_attr.attr,
  3659. &reclaim_account_attr.attr,
  3660. &destroy_by_rcu_attr.attr,
  3661. &shrink_attr.attr,
  3662. #ifdef CONFIG_SLUB_DEBUG
  3663. &total_objects_attr.attr,
  3664. &slabs_attr.attr,
  3665. &sanity_checks_attr.attr,
  3666. &trace_attr.attr,
  3667. &red_zone_attr.attr,
  3668. &poison_attr.attr,
  3669. &store_user_attr.attr,
  3670. &validate_attr.attr,
  3671. &alloc_calls_attr.attr,
  3672. &free_calls_attr.attr,
  3673. #endif
  3674. #ifdef CONFIG_ZONE_DMA
  3675. &cache_dma_attr.attr,
  3676. #endif
  3677. #ifdef CONFIG_NUMA
  3678. &remote_node_defrag_ratio_attr.attr,
  3679. #endif
  3680. #ifdef CONFIG_SLUB_STATS
  3681. &alloc_fastpath_attr.attr,
  3682. &alloc_slowpath_attr.attr,
  3683. &free_fastpath_attr.attr,
  3684. &free_slowpath_attr.attr,
  3685. &free_frozen_attr.attr,
  3686. &free_add_partial_attr.attr,
  3687. &free_remove_partial_attr.attr,
  3688. &alloc_from_partial_attr.attr,
  3689. &alloc_slab_attr.attr,
  3690. &alloc_refill_attr.attr,
  3691. &free_slab_attr.attr,
  3692. &cpuslab_flush_attr.attr,
  3693. &deactivate_full_attr.attr,
  3694. &deactivate_empty_attr.attr,
  3695. &deactivate_to_head_attr.attr,
  3696. &deactivate_to_tail_attr.attr,
  3697. &deactivate_remote_frees_attr.attr,
  3698. &order_fallback_attr.attr,
  3699. #endif
  3700. #ifdef CONFIG_FAILSLAB
  3701. &failslab_attr.attr,
  3702. #endif
  3703. NULL
  3704. };
  3705. static struct attribute_group slab_attr_group = {
  3706. .attrs = slab_attrs,
  3707. };
  3708. static ssize_t slab_attr_show(struct kobject *kobj,
  3709. struct attribute *attr,
  3710. char *buf)
  3711. {
  3712. struct slab_attribute *attribute;
  3713. struct kmem_cache *s;
  3714. int err;
  3715. attribute = to_slab_attr(attr);
  3716. s = to_slab(kobj);
  3717. if (!attribute->show)
  3718. return -EIO;
  3719. err = attribute->show(s, buf);
  3720. return err;
  3721. }
  3722. static ssize_t slab_attr_store(struct kobject *kobj,
  3723. struct attribute *attr,
  3724. const char *buf, size_t len)
  3725. {
  3726. struct slab_attribute *attribute;
  3727. struct kmem_cache *s;
  3728. int err;
  3729. attribute = to_slab_attr(attr);
  3730. s = to_slab(kobj);
  3731. if (!attribute->store)
  3732. return -EIO;
  3733. err = attribute->store(s, buf, len);
  3734. return err;
  3735. }
  3736. static void kmem_cache_release(struct kobject *kobj)
  3737. {
  3738. struct kmem_cache *s = to_slab(kobj);
  3739. kfree(s->name);
  3740. kfree(s);
  3741. }
  3742. static const struct sysfs_ops slab_sysfs_ops = {
  3743. .show = slab_attr_show,
  3744. .store = slab_attr_store,
  3745. };
  3746. static struct kobj_type slab_ktype = {
  3747. .sysfs_ops = &slab_sysfs_ops,
  3748. .release = kmem_cache_release
  3749. };
  3750. static int uevent_filter(struct kset *kset, struct kobject *kobj)
  3751. {
  3752. struct kobj_type *ktype = get_ktype(kobj);
  3753. if (ktype == &slab_ktype)
  3754. return 1;
  3755. return 0;
  3756. }
  3757. static const struct kset_uevent_ops slab_uevent_ops = {
  3758. .filter = uevent_filter,
  3759. };
  3760. static struct kset *slab_kset;
  3761. #define ID_STR_LENGTH 64
  3762. /* Create a unique string id for a slab cache:
  3763. *
  3764. * Format :[flags-]size
  3765. */
  3766. static char *create_unique_id(struct kmem_cache *s)
  3767. {
  3768. char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
  3769. char *p = name;
  3770. BUG_ON(!name);
  3771. *p++ = ':';
  3772. /*
  3773. * First flags affecting slabcache operations. We will only
  3774. * get here for aliasable slabs so we do not need to support
  3775. * too many flags. The flags here must cover all flags that
  3776. * are matched during merging to guarantee that the id is
  3777. * unique.
  3778. */
  3779. if (s->flags & SLAB_CACHE_DMA)
  3780. *p++ = 'd';
  3781. if (s->flags & SLAB_RECLAIM_ACCOUNT)
  3782. *p++ = 'a';
  3783. if (s->flags & SLAB_DEBUG_FREE)
  3784. *p++ = 'F';
  3785. if (!(s->flags & SLAB_NOTRACK))
  3786. *p++ = 't';
  3787. if (p != name + 1)
  3788. *p++ = '-';
  3789. p += sprintf(p, "%07d", s->size);
  3790. BUG_ON(p > name + ID_STR_LENGTH - 1);
  3791. return name;
  3792. }
  3793. static int sysfs_slab_add(struct kmem_cache *s)
  3794. {
  3795. int err;
  3796. const char *name;
  3797. int unmergeable;
  3798. if (slab_state < SYSFS)
  3799. /* Defer until later */
  3800. return 0;
  3801. unmergeable = slab_unmergeable(s);
  3802. if (unmergeable) {
  3803. /*
  3804. * Slabcache can never be merged so we can use the name proper.
  3805. * This is typically the case for debug situations. In that
  3806. * case we can catch duplicate names easily.
  3807. */
  3808. sysfs_remove_link(&slab_kset->kobj, s->name);
  3809. name = s->name;
  3810. } else {
  3811. /*
  3812. * Create a unique name for the slab as a target
  3813. * for the symlinks.
  3814. */
  3815. name = create_unique_id(s);
  3816. }
  3817. s->kobj.kset = slab_kset;
  3818. err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
  3819. if (err) {
  3820. kobject_put(&s->kobj);
  3821. return err;
  3822. }
  3823. err = sysfs_create_group(&s->kobj, &slab_attr_group);
  3824. if (err) {
  3825. kobject_del(&s->kobj);
  3826. kobject_put(&s->kobj);
  3827. return err;
  3828. }
  3829. kobject_uevent(&s->kobj, KOBJ_ADD);
  3830. if (!unmergeable) {
  3831. /* Setup first alias */
  3832. sysfs_slab_alias(s, s->name);
  3833. kfree(name);
  3834. }
  3835. return 0;
  3836. }
  3837. static void sysfs_slab_remove(struct kmem_cache *s)
  3838. {
  3839. if (slab_state < SYSFS)
  3840. /*
  3841. * Sysfs has not been setup yet so no need to remove the
  3842. * cache from sysfs.
  3843. */
  3844. return;
  3845. kobject_uevent(&s->kobj, KOBJ_REMOVE);
  3846. kobject_del(&s->kobj);
  3847. kobject_put(&s->kobj);
  3848. }
  3849. /*
  3850. * Need to buffer aliases during bootup until sysfs becomes
  3851. * available lest we lose that information.
  3852. */
  3853. struct saved_alias {
  3854. struct kmem_cache *s;
  3855. const char *name;
  3856. struct saved_alias *next;
  3857. };
  3858. static struct saved_alias *alias_list;
  3859. static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
  3860. {
  3861. struct saved_alias *al;
  3862. if (slab_state == SYSFS) {
  3863. /*
  3864. * If we have a leftover link then remove it.
  3865. */
  3866. sysfs_remove_link(&slab_kset->kobj, name);
  3867. return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
  3868. }
  3869. al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
  3870. if (!al)
  3871. return -ENOMEM;
  3872. al->s = s;
  3873. al->name = name;
  3874. al->next = alias_list;
  3875. alias_list = al;
  3876. return 0;
  3877. }
  3878. static int __init slab_sysfs_init(void)
  3879. {
  3880. struct kmem_cache *s;
  3881. int err;
  3882. down_write(&slub_lock);
  3883. slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
  3884. if (!slab_kset) {
  3885. up_write(&slub_lock);
  3886. printk(KERN_ERR "Cannot register slab subsystem.\n");
  3887. return -ENOSYS;
  3888. }
  3889. slab_state = SYSFS;
  3890. list_for_each_entry(s, &slab_caches, list) {
  3891. err = sysfs_slab_add(s);
  3892. if (err)
  3893. printk(KERN_ERR "SLUB: Unable to add boot slab %s"
  3894. " to sysfs\n", s->name);
  3895. }
  3896. while (alias_list) {
  3897. struct saved_alias *al = alias_list;
  3898. alias_list = alias_list->next;
  3899. err = sysfs_slab_alias(al->s, al->name);
  3900. if (err)
  3901. printk(KERN_ERR "SLUB: Unable to add boot slab alias"
  3902. " %s to sysfs\n", s->name);
  3903. kfree(al);
  3904. }
  3905. up_write(&slub_lock);
  3906. resiliency_test();
  3907. return 0;
  3908. }
  3909. __initcall(slab_sysfs_init);
  3910. #endif /* CONFIG_SYSFS */
  3911. /*
  3912. * The /proc/slabinfo ABI
  3913. */
  3914. #ifdef CONFIG_SLABINFO
  3915. static void print_slabinfo_header(struct seq_file *m)
  3916. {
  3917. seq_puts(m, "slabinfo - version: 2.1\n");
  3918. seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
  3919. "<objperslab> <pagesperslab>");
  3920. seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
  3921. seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
  3922. seq_putc(m, '\n');
  3923. }
  3924. static void *s_start(struct seq_file *m, loff_t *pos)
  3925. {
  3926. loff_t n = *pos;
  3927. down_read(&slub_lock);
  3928. if (!n)
  3929. print_slabinfo_header(m);
  3930. return seq_list_start(&slab_caches, *pos);
  3931. }
  3932. static void *s_next(struct seq_file *m, void *p, loff_t *pos)
  3933. {
  3934. return seq_list_next(p, &slab_caches, pos);
  3935. }
  3936. static void s_stop(struct seq_file *m, void *p)
  3937. {
  3938. up_read(&slub_lock);
  3939. }
  3940. static int s_show(struct seq_file *m, void *p)
  3941. {
  3942. unsigned long nr_partials = 0;
  3943. unsigned long nr_slabs = 0;
  3944. unsigned long nr_inuse = 0;
  3945. unsigned long nr_objs = 0;
  3946. unsigned long nr_free = 0;
  3947. struct kmem_cache *s;
  3948. int node;
  3949. s = list_entry(p, struct kmem_cache, list);
  3950. for_each_online_node(node) {
  3951. struct kmem_cache_node *n = get_node(s, node);
  3952. if (!n)
  3953. continue;
  3954. nr_partials += n->nr_partial;
  3955. nr_slabs += atomic_long_read(&n->nr_slabs);
  3956. nr_objs += atomic_long_read(&n->total_objects);
  3957. nr_free += count_partial(n, count_free);
  3958. }
  3959. nr_inuse = nr_objs - nr_free;
  3960. seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
  3961. nr_objs, s->size, oo_objects(s->oo),
  3962. (1 << oo_order(s->oo)));
  3963. seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
  3964. seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
  3965. 0UL);
  3966. seq_putc(m, '\n');
  3967. return 0;
  3968. }
  3969. static const struct seq_operations slabinfo_op = {
  3970. .start = s_start,
  3971. .next = s_next,
  3972. .stop = s_stop,
  3973. .show = s_show,
  3974. };
  3975. static int slabinfo_open(struct inode *inode, struct file *file)
  3976. {
  3977. return seq_open(file, &slabinfo_op);
  3978. }
  3979. static const struct file_operations proc_slabinfo_operations = {
  3980. .open = slabinfo_open,
  3981. .read = seq_read,
  3982. .llseek = seq_lseek,
  3983. .release = seq_release,
  3984. };
  3985. static int __init slab_proc_init(void)
  3986. {
  3987. proc_create("slabinfo", S_IRUGO, NULL, &proc_slabinfo_operations);
  3988. return 0;
  3989. }
  3990. module_init(slab_proc_init);
  3991. #endif /* CONFIG_SLABINFO */