slub_def.h 8.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301
  1. #ifndef _LINUX_SLUB_DEF_H
  2. #define _LINUX_SLUB_DEF_H
  3. /*
  4. * SLUB : A Slab allocator without object queues.
  5. *
  6. * (C) 2007 SGI, Christoph Lameter
  7. */
  8. #include <linux/types.h>
  9. #include <linux/gfp.h>
  10. #include <linux/workqueue.h>
  11. #include <linux/kobject.h>
  12. #include <linux/kmemleak.h>
  13. enum stat_item {
  14. ALLOC_FASTPATH, /* Allocation from cpu slab */
  15. ALLOC_SLOWPATH, /* Allocation by getting a new cpu slab */
  16. FREE_FASTPATH, /* Free to cpu slub */
  17. FREE_SLOWPATH, /* Freeing not to cpu slab */
  18. FREE_FROZEN, /* Freeing to frozen slab */
  19. FREE_ADD_PARTIAL, /* Freeing moves slab to partial list */
  20. FREE_REMOVE_PARTIAL, /* Freeing removes last object */
  21. ALLOC_FROM_PARTIAL, /* Cpu slab acquired from partial list */
  22. ALLOC_SLAB, /* Cpu slab acquired from page allocator */
  23. ALLOC_REFILL, /* Refill cpu slab from slab freelist */
  24. FREE_SLAB, /* Slab freed to the page allocator */
  25. CPUSLAB_FLUSH, /* Abandoning of the cpu slab */
  26. DEACTIVATE_FULL, /* Cpu slab was full when deactivated */
  27. DEACTIVATE_EMPTY, /* Cpu slab was empty when deactivated */
  28. DEACTIVATE_TO_HEAD, /* Cpu slab was moved to the head of partials */
  29. DEACTIVATE_TO_TAIL, /* Cpu slab was moved to the tail of partials */
  30. DEACTIVATE_REMOTE_FREES,/* Slab contained remotely freed objects */
  31. ORDER_FALLBACK, /* Number of times fallback was necessary */
  32. NR_SLUB_STAT_ITEMS };
  33. struct kmem_cache_cpu {
  34. void **freelist; /* Pointer to first free per cpu object */
  35. struct page *page; /* The slab from which we are allocating */
  36. int node; /* The node of the page (or -1 for debug) */
  37. #ifdef CONFIG_SLUB_STATS
  38. unsigned stat[NR_SLUB_STAT_ITEMS];
  39. #endif
  40. };
  41. struct kmem_cache_node {
  42. spinlock_t list_lock; /* Protect partial list and nr_partial */
  43. unsigned long nr_partial;
  44. struct list_head partial;
  45. #ifdef CONFIG_SLUB_DEBUG
  46. atomic_long_t nr_slabs;
  47. atomic_long_t total_objects;
  48. struct list_head full;
  49. #endif
  50. };
  51. /*
  52. * Word size structure that can be atomically updated or read and that
  53. * contains both the order and the number of objects that a slab of the
  54. * given order would contain.
  55. */
  56. struct kmem_cache_order_objects {
  57. unsigned long x;
  58. };
  59. /*
  60. * Slab cache management.
  61. */
  62. struct kmem_cache {
  63. struct kmem_cache_cpu __percpu *cpu_slab;
  64. /* Used for retriving partial slabs etc */
  65. unsigned long flags;
  66. int size; /* The size of an object including meta data */
  67. int objsize; /* The size of an object without meta data */
  68. int offset; /* Free pointer offset. */
  69. struct kmem_cache_order_objects oo;
  70. /* Allocation and freeing of slabs */
  71. struct kmem_cache_order_objects max;
  72. struct kmem_cache_order_objects min;
  73. gfp_t allocflags; /* gfp flags to use on each alloc */
  74. int refcount; /* Refcount for slab cache destroy */
  75. void (*ctor)(void *);
  76. int inuse; /* Offset to metadata */
  77. int align; /* Alignment */
  78. unsigned long min_partial;
  79. const char *name; /* Name (only for display!) */
  80. struct list_head list; /* List of slab caches */
  81. #ifdef CONFIG_SYSFS
  82. struct kobject kobj; /* For sysfs */
  83. #endif
  84. #ifdef CONFIG_NUMA
  85. /*
  86. * Defragmentation by allocating from a remote node.
  87. */
  88. int remote_node_defrag_ratio;
  89. #endif
  90. struct kmem_cache_node *node[MAX_NUMNODES];
  91. };
  92. /*
  93. * Kmalloc subsystem.
  94. */
  95. #if defined(ARCH_DMA_MINALIGN) && ARCH_DMA_MINALIGN > 8
  96. #define KMALLOC_MIN_SIZE ARCH_DMA_MINALIGN
  97. #else
  98. #define KMALLOC_MIN_SIZE 8
  99. #endif
  100. #define KMALLOC_SHIFT_LOW ilog2(KMALLOC_MIN_SIZE)
  101. #ifdef ARCH_DMA_MINALIGN
  102. #define ARCH_KMALLOC_MINALIGN ARCH_DMA_MINALIGN
  103. #else
  104. #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
  105. #endif
  106. #ifndef ARCH_SLAB_MINALIGN
  107. #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
  108. #endif
  109. /*
  110. * Maximum kmalloc object size handled by SLUB. Larger object allocations
  111. * are passed through to the page allocator. The page allocator "fastpath"
  112. * is relatively slow so we need this value sufficiently high so that
  113. * performance critical objects are allocated through the SLUB fastpath.
  114. *
  115. * This should be dropped to PAGE_SIZE / 2 once the page allocator
  116. * "fastpath" becomes competitive with the slab allocator fastpaths.
  117. */
  118. #define SLUB_MAX_SIZE (2 * PAGE_SIZE)
  119. #define SLUB_PAGE_SHIFT (PAGE_SHIFT + 2)
  120. #ifdef CONFIG_ZONE_DMA
  121. #define SLUB_DMA __GFP_DMA
  122. #else
  123. /* Disable DMA functionality */
  124. #define SLUB_DMA (__force gfp_t)0
  125. #endif
  126. /*
  127. * We keep the general caches in an array of slab caches that are used for
  128. * 2^x bytes of allocations.
  129. */
  130. extern struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
  131. /*
  132. * Sorry that the following has to be that ugly but some versions of GCC
  133. * have trouble with constant propagation and loops.
  134. */
  135. static __always_inline int kmalloc_index(size_t size)
  136. {
  137. if (!size)
  138. return 0;
  139. if (size <= KMALLOC_MIN_SIZE)
  140. return KMALLOC_SHIFT_LOW;
  141. if (KMALLOC_MIN_SIZE <= 32 && size > 64 && size <= 96)
  142. return 1;
  143. if (KMALLOC_MIN_SIZE <= 64 && size > 128 && size <= 192)
  144. return 2;
  145. if (size <= 8) return 3;
  146. if (size <= 16) return 4;
  147. if (size <= 32) return 5;
  148. if (size <= 64) return 6;
  149. if (size <= 128) return 7;
  150. if (size <= 256) return 8;
  151. if (size <= 512) return 9;
  152. if (size <= 1024) return 10;
  153. if (size <= 2 * 1024) return 11;
  154. if (size <= 4 * 1024) return 12;
  155. /*
  156. * The following is only needed to support architectures with a larger page
  157. * size than 4k.
  158. */
  159. if (size <= 8 * 1024) return 13;
  160. if (size <= 16 * 1024) return 14;
  161. if (size <= 32 * 1024) return 15;
  162. if (size <= 64 * 1024) return 16;
  163. if (size <= 128 * 1024) return 17;
  164. if (size <= 256 * 1024) return 18;
  165. if (size <= 512 * 1024) return 19;
  166. if (size <= 1024 * 1024) return 20;
  167. if (size <= 2 * 1024 * 1024) return 21;
  168. return -1;
  169. /*
  170. * What we really wanted to do and cannot do because of compiler issues is:
  171. * int i;
  172. * for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++)
  173. * if (size <= (1 << i))
  174. * return i;
  175. */
  176. }
  177. /*
  178. * Find the slab cache for a given combination of allocation flags and size.
  179. *
  180. * This ought to end up with a global pointer to the right cache
  181. * in kmalloc_caches.
  182. */
  183. static __always_inline struct kmem_cache *kmalloc_slab(size_t size)
  184. {
  185. int index = kmalloc_index(size);
  186. if (index == 0)
  187. return NULL;
  188. return kmalloc_caches[index];
  189. }
  190. void *kmem_cache_alloc(struct kmem_cache *, gfp_t);
  191. void *__kmalloc(size_t size, gfp_t flags);
  192. static __always_inline void *
  193. kmalloc_order(size_t size, gfp_t flags, unsigned int order)
  194. {
  195. void *ret = (void *) __get_free_pages(flags | __GFP_COMP, order);
  196. kmemleak_alloc(ret, size, 1, flags);
  197. return ret;
  198. }
  199. #ifdef CONFIG_TRACING
  200. extern void *
  201. kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size);
  202. extern void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order);
  203. #else
  204. static __always_inline void *
  205. kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
  206. {
  207. return kmem_cache_alloc(s, gfpflags);
  208. }
  209. static __always_inline void *
  210. kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
  211. {
  212. return kmalloc_order(size, flags, order);
  213. }
  214. #endif
  215. static __always_inline void *kmalloc_large(size_t size, gfp_t flags)
  216. {
  217. unsigned int order = get_order(size);
  218. return kmalloc_order_trace(size, flags, order);
  219. }
  220. static __always_inline void *kmalloc(size_t size, gfp_t flags)
  221. {
  222. if (__builtin_constant_p(size)) {
  223. if (size > SLUB_MAX_SIZE)
  224. return kmalloc_large(size, flags);
  225. if (!(flags & SLUB_DMA)) {
  226. struct kmem_cache *s = kmalloc_slab(size);
  227. if (!s)
  228. return ZERO_SIZE_PTR;
  229. return kmem_cache_alloc_trace(s, flags, size);
  230. }
  231. }
  232. return __kmalloc(size, flags);
  233. }
  234. #ifdef CONFIG_NUMA
  235. void *__kmalloc_node(size_t size, gfp_t flags, int node);
  236. void *kmem_cache_alloc_node(struct kmem_cache *, gfp_t flags, int node);
  237. #ifdef CONFIG_TRACING
  238. extern void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
  239. gfp_t gfpflags,
  240. int node, size_t size);
  241. #else
  242. static __always_inline void *
  243. kmem_cache_alloc_node_trace(struct kmem_cache *s,
  244. gfp_t gfpflags,
  245. int node, size_t size)
  246. {
  247. return kmem_cache_alloc_node(s, gfpflags, node);
  248. }
  249. #endif
  250. static __always_inline void *kmalloc_node(size_t size, gfp_t flags, int node)
  251. {
  252. if (__builtin_constant_p(size) &&
  253. size <= SLUB_MAX_SIZE && !(flags & SLUB_DMA)) {
  254. struct kmem_cache *s = kmalloc_slab(size);
  255. if (!s)
  256. return ZERO_SIZE_PTR;
  257. return kmem_cache_alloc_node_trace(s, flags, node, size);
  258. }
  259. return __kmalloc_node(size, flags, node);
  260. }
  261. #endif
  262. #endif /* _LINUX_SLUB_DEF_H */