perf_event.c 44 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938
  1. /*
  2. * Performance events x86 architecture code
  3. *
  4. * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
  5. * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
  6. * Copyright (C) 2009 Jaswinder Singh Rajput
  7. * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
  8. * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  9. * Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
  10. * Copyright (C) 2009 Google, Inc., Stephane Eranian
  11. *
  12. * For licencing details see kernel-base/COPYING
  13. */
  14. #include <linux/perf_event.h>
  15. #include <linux/capability.h>
  16. #include <linux/notifier.h>
  17. #include <linux/hardirq.h>
  18. #include <linux/kprobes.h>
  19. #include <linux/module.h>
  20. #include <linux/kdebug.h>
  21. #include <linux/sched.h>
  22. #include <linux/uaccess.h>
  23. #include <linux/slab.h>
  24. #include <linux/cpu.h>
  25. #include <linux/bitops.h>
  26. #include <linux/device.h>
  27. #include <asm/apic.h>
  28. #include <asm/stacktrace.h>
  29. #include <asm/nmi.h>
  30. #include <asm/smp.h>
  31. #include <asm/alternative.h>
  32. #include <asm/timer.h>
  33. #include <asm/desc.h>
  34. #include <asm/ldt.h>
  35. #include "perf_event.h"
  36. struct x86_pmu x86_pmu __read_mostly;
  37. DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
  38. .enabled = 1,
  39. };
  40. u64 __read_mostly hw_cache_event_ids
  41. [PERF_COUNT_HW_CACHE_MAX]
  42. [PERF_COUNT_HW_CACHE_OP_MAX]
  43. [PERF_COUNT_HW_CACHE_RESULT_MAX];
  44. u64 __read_mostly hw_cache_extra_regs
  45. [PERF_COUNT_HW_CACHE_MAX]
  46. [PERF_COUNT_HW_CACHE_OP_MAX]
  47. [PERF_COUNT_HW_CACHE_RESULT_MAX];
  48. /*
  49. * Propagate event elapsed time into the generic event.
  50. * Can only be executed on the CPU where the event is active.
  51. * Returns the delta events processed.
  52. */
  53. u64 x86_perf_event_update(struct perf_event *event)
  54. {
  55. struct hw_perf_event *hwc = &event->hw;
  56. int shift = 64 - x86_pmu.cntval_bits;
  57. u64 prev_raw_count, new_raw_count;
  58. int idx = hwc->idx;
  59. s64 delta;
  60. if (idx == INTEL_PMC_IDX_FIXED_BTS)
  61. return 0;
  62. /*
  63. * Careful: an NMI might modify the previous event value.
  64. *
  65. * Our tactic to handle this is to first atomically read and
  66. * exchange a new raw count - then add that new-prev delta
  67. * count to the generic event atomically:
  68. */
  69. again:
  70. prev_raw_count = local64_read(&hwc->prev_count);
  71. rdpmcl(hwc->event_base_rdpmc, new_raw_count);
  72. if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
  73. new_raw_count) != prev_raw_count)
  74. goto again;
  75. /*
  76. * Now we have the new raw value and have updated the prev
  77. * timestamp already. We can now calculate the elapsed delta
  78. * (event-)time and add that to the generic event.
  79. *
  80. * Careful, not all hw sign-extends above the physical width
  81. * of the count.
  82. */
  83. delta = (new_raw_count << shift) - (prev_raw_count << shift);
  84. delta >>= shift;
  85. local64_add(delta, &event->count);
  86. local64_sub(delta, &hwc->period_left);
  87. return new_raw_count;
  88. }
  89. /*
  90. * Find and validate any extra registers to set up.
  91. */
  92. static int x86_pmu_extra_regs(u64 config, struct perf_event *event)
  93. {
  94. struct hw_perf_event_extra *reg;
  95. struct extra_reg *er;
  96. reg = &event->hw.extra_reg;
  97. if (!x86_pmu.extra_regs)
  98. return 0;
  99. for (er = x86_pmu.extra_regs; er->msr; er++) {
  100. if (er->event != (config & er->config_mask))
  101. continue;
  102. if (event->attr.config1 & ~er->valid_mask)
  103. return -EINVAL;
  104. reg->idx = er->idx;
  105. reg->config = event->attr.config1;
  106. reg->reg = er->msr;
  107. break;
  108. }
  109. return 0;
  110. }
  111. static atomic_t active_events;
  112. static DEFINE_MUTEX(pmc_reserve_mutex);
  113. #ifdef CONFIG_X86_LOCAL_APIC
  114. static bool reserve_pmc_hardware(void)
  115. {
  116. int i;
  117. for (i = 0; i < x86_pmu.num_counters; i++) {
  118. if (!reserve_perfctr_nmi(x86_pmu_event_addr(i)))
  119. goto perfctr_fail;
  120. }
  121. for (i = 0; i < x86_pmu.num_counters; i++) {
  122. if (!reserve_evntsel_nmi(x86_pmu_config_addr(i)))
  123. goto eventsel_fail;
  124. }
  125. return true;
  126. eventsel_fail:
  127. for (i--; i >= 0; i--)
  128. release_evntsel_nmi(x86_pmu_config_addr(i));
  129. i = x86_pmu.num_counters;
  130. perfctr_fail:
  131. for (i--; i >= 0; i--)
  132. release_perfctr_nmi(x86_pmu_event_addr(i));
  133. return false;
  134. }
  135. static void release_pmc_hardware(void)
  136. {
  137. int i;
  138. for (i = 0; i < x86_pmu.num_counters; i++) {
  139. release_perfctr_nmi(x86_pmu_event_addr(i));
  140. release_evntsel_nmi(x86_pmu_config_addr(i));
  141. }
  142. }
  143. #else
  144. static bool reserve_pmc_hardware(void) { return true; }
  145. static void release_pmc_hardware(void) {}
  146. #endif
  147. static bool check_hw_exists(void)
  148. {
  149. u64 val, val_new = ~0;
  150. int i, reg, ret = 0;
  151. /*
  152. * Check to see if the BIOS enabled any of the counters, if so
  153. * complain and bail.
  154. */
  155. for (i = 0; i < x86_pmu.num_counters; i++) {
  156. reg = x86_pmu_config_addr(i);
  157. ret = rdmsrl_safe(reg, &val);
  158. if (ret)
  159. goto msr_fail;
  160. if (val & ARCH_PERFMON_EVENTSEL_ENABLE)
  161. goto bios_fail;
  162. }
  163. if (x86_pmu.num_counters_fixed) {
  164. reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
  165. ret = rdmsrl_safe(reg, &val);
  166. if (ret)
  167. goto msr_fail;
  168. for (i = 0; i < x86_pmu.num_counters_fixed; i++) {
  169. if (val & (0x03 << i*4))
  170. goto bios_fail;
  171. }
  172. }
  173. /*
  174. * Now write a value and read it back to see if it matches,
  175. * this is needed to detect certain hardware emulators (qemu/kvm)
  176. * that don't trap on the MSR access and always return 0s.
  177. */
  178. val = 0xabcdUL;
  179. reg = x86_pmu_event_addr(0);
  180. ret = wrmsrl_safe(reg, val);
  181. ret |= rdmsrl_safe(reg, &val_new);
  182. if (ret || val != val_new)
  183. goto msr_fail;
  184. return true;
  185. bios_fail:
  186. /*
  187. * We still allow the PMU driver to operate:
  188. */
  189. printk(KERN_CONT "Broken BIOS detected, complain to your hardware vendor.\n");
  190. printk(KERN_ERR FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n", reg, val);
  191. return true;
  192. msr_fail:
  193. printk(KERN_CONT "Broken PMU hardware detected, using software events only.\n");
  194. printk(KERN_ERR "Failed to access perfctr msr (MSR %x is %Lx)\n", reg, val_new);
  195. return false;
  196. }
  197. static void hw_perf_event_destroy(struct perf_event *event)
  198. {
  199. if (atomic_dec_and_mutex_lock(&active_events, &pmc_reserve_mutex)) {
  200. release_pmc_hardware();
  201. release_ds_buffers();
  202. mutex_unlock(&pmc_reserve_mutex);
  203. }
  204. }
  205. static inline int x86_pmu_initialized(void)
  206. {
  207. return x86_pmu.handle_irq != NULL;
  208. }
  209. static inline int
  210. set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event *event)
  211. {
  212. struct perf_event_attr *attr = &event->attr;
  213. unsigned int cache_type, cache_op, cache_result;
  214. u64 config, val;
  215. config = attr->config;
  216. cache_type = (config >> 0) & 0xff;
  217. if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
  218. return -EINVAL;
  219. cache_op = (config >> 8) & 0xff;
  220. if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
  221. return -EINVAL;
  222. cache_result = (config >> 16) & 0xff;
  223. if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
  224. return -EINVAL;
  225. val = hw_cache_event_ids[cache_type][cache_op][cache_result];
  226. if (val == 0)
  227. return -ENOENT;
  228. if (val == -1)
  229. return -EINVAL;
  230. hwc->config |= val;
  231. attr->config1 = hw_cache_extra_regs[cache_type][cache_op][cache_result];
  232. return x86_pmu_extra_regs(val, event);
  233. }
  234. int x86_setup_perfctr(struct perf_event *event)
  235. {
  236. struct perf_event_attr *attr = &event->attr;
  237. struct hw_perf_event *hwc = &event->hw;
  238. u64 config;
  239. if (!is_sampling_event(event)) {
  240. hwc->sample_period = x86_pmu.max_period;
  241. hwc->last_period = hwc->sample_period;
  242. local64_set(&hwc->period_left, hwc->sample_period);
  243. } else {
  244. /*
  245. * If we have a PMU initialized but no APIC
  246. * interrupts, we cannot sample hardware
  247. * events (user-space has to fall back and
  248. * sample via a hrtimer based software event):
  249. */
  250. if (!x86_pmu.apic)
  251. return -EOPNOTSUPP;
  252. }
  253. if (attr->type == PERF_TYPE_RAW)
  254. return x86_pmu_extra_regs(event->attr.config, event);
  255. if (attr->type == PERF_TYPE_HW_CACHE)
  256. return set_ext_hw_attr(hwc, event);
  257. if (attr->config >= x86_pmu.max_events)
  258. return -EINVAL;
  259. /*
  260. * The generic map:
  261. */
  262. config = x86_pmu.event_map(attr->config);
  263. if (config == 0)
  264. return -ENOENT;
  265. if (config == -1LL)
  266. return -EINVAL;
  267. /*
  268. * Branch tracing:
  269. */
  270. if (attr->config == PERF_COUNT_HW_BRANCH_INSTRUCTIONS &&
  271. !attr->freq && hwc->sample_period == 1) {
  272. /* BTS is not supported by this architecture. */
  273. if (!x86_pmu.bts_active)
  274. return -EOPNOTSUPP;
  275. /* BTS is currently only allowed for user-mode. */
  276. if (!attr->exclude_kernel)
  277. return -EOPNOTSUPP;
  278. if (!attr->exclude_guest)
  279. return -EOPNOTSUPP;
  280. }
  281. hwc->config |= config;
  282. return 0;
  283. }
  284. /*
  285. * check that branch_sample_type is compatible with
  286. * settings needed for precise_ip > 1 which implies
  287. * using the LBR to capture ALL taken branches at the
  288. * priv levels of the measurement
  289. */
  290. static inline int precise_br_compat(struct perf_event *event)
  291. {
  292. u64 m = event->attr.branch_sample_type;
  293. u64 b = 0;
  294. /* must capture all branches */
  295. if (!(m & PERF_SAMPLE_BRANCH_ANY))
  296. return 0;
  297. m &= PERF_SAMPLE_BRANCH_KERNEL | PERF_SAMPLE_BRANCH_USER;
  298. if (!event->attr.exclude_user)
  299. b |= PERF_SAMPLE_BRANCH_USER;
  300. if (!event->attr.exclude_kernel)
  301. b |= PERF_SAMPLE_BRANCH_KERNEL;
  302. /*
  303. * ignore PERF_SAMPLE_BRANCH_HV, not supported on x86
  304. */
  305. return m == b;
  306. }
  307. int x86_pmu_hw_config(struct perf_event *event)
  308. {
  309. if (event->attr.precise_ip) {
  310. int precise = 0;
  311. if (!event->attr.exclude_guest)
  312. return -EOPNOTSUPP;
  313. /* Support for constant skid */
  314. if (x86_pmu.pebs_active && !x86_pmu.pebs_broken) {
  315. precise++;
  316. /* Support for IP fixup */
  317. if (x86_pmu.lbr_nr)
  318. precise++;
  319. }
  320. if (event->attr.precise_ip > precise)
  321. return -EOPNOTSUPP;
  322. /*
  323. * check that PEBS LBR correction does not conflict with
  324. * whatever the user is asking with attr->branch_sample_type
  325. */
  326. if (event->attr.precise_ip > 1) {
  327. u64 *br_type = &event->attr.branch_sample_type;
  328. if (has_branch_stack(event)) {
  329. if (!precise_br_compat(event))
  330. return -EOPNOTSUPP;
  331. /* branch_sample_type is compatible */
  332. } else {
  333. /*
  334. * user did not specify branch_sample_type
  335. *
  336. * For PEBS fixups, we capture all
  337. * the branches at the priv level of the
  338. * event.
  339. */
  340. *br_type = PERF_SAMPLE_BRANCH_ANY;
  341. if (!event->attr.exclude_user)
  342. *br_type |= PERF_SAMPLE_BRANCH_USER;
  343. if (!event->attr.exclude_kernel)
  344. *br_type |= PERF_SAMPLE_BRANCH_KERNEL;
  345. }
  346. }
  347. }
  348. /*
  349. * Generate PMC IRQs:
  350. * (keep 'enabled' bit clear for now)
  351. */
  352. event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
  353. /*
  354. * Count user and OS events unless requested not to
  355. */
  356. if (!event->attr.exclude_user)
  357. event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
  358. if (!event->attr.exclude_kernel)
  359. event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
  360. if (event->attr.type == PERF_TYPE_RAW)
  361. event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK;
  362. return x86_setup_perfctr(event);
  363. }
  364. /*
  365. * Setup the hardware configuration for a given attr_type
  366. */
  367. static int __x86_pmu_event_init(struct perf_event *event)
  368. {
  369. int err;
  370. if (!x86_pmu_initialized())
  371. return -ENODEV;
  372. err = 0;
  373. if (!atomic_inc_not_zero(&active_events)) {
  374. mutex_lock(&pmc_reserve_mutex);
  375. if (atomic_read(&active_events) == 0) {
  376. if (!reserve_pmc_hardware())
  377. err = -EBUSY;
  378. else
  379. reserve_ds_buffers();
  380. }
  381. if (!err)
  382. atomic_inc(&active_events);
  383. mutex_unlock(&pmc_reserve_mutex);
  384. }
  385. if (err)
  386. return err;
  387. event->destroy = hw_perf_event_destroy;
  388. event->hw.idx = -1;
  389. event->hw.last_cpu = -1;
  390. event->hw.last_tag = ~0ULL;
  391. /* mark unused */
  392. event->hw.extra_reg.idx = EXTRA_REG_NONE;
  393. event->hw.branch_reg.idx = EXTRA_REG_NONE;
  394. return x86_pmu.hw_config(event);
  395. }
  396. void x86_pmu_disable_all(void)
  397. {
  398. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  399. int idx;
  400. for (idx = 0; idx < x86_pmu.num_counters; idx++) {
  401. u64 val;
  402. if (!test_bit(idx, cpuc->active_mask))
  403. continue;
  404. rdmsrl(x86_pmu_config_addr(idx), val);
  405. if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
  406. continue;
  407. val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
  408. wrmsrl(x86_pmu_config_addr(idx), val);
  409. }
  410. }
  411. static void x86_pmu_disable(struct pmu *pmu)
  412. {
  413. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  414. if (!x86_pmu_initialized())
  415. return;
  416. if (!cpuc->enabled)
  417. return;
  418. cpuc->n_added = 0;
  419. cpuc->enabled = 0;
  420. barrier();
  421. x86_pmu.disable_all();
  422. }
  423. void x86_pmu_enable_all(int added)
  424. {
  425. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  426. int idx;
  427. for (idx = 0; idx < x86_pmu.num_counters; idx++) {
  428. struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
  429. if (!test_bit(idx, cpuc->active_mask))
  430. continue;
  431. __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
  432. }
  433. }
  434. static struct pmu pmu;
  435. static inline int is_x86_event(struct perf_event *event)
  436. {
  437. return event->pmu == &pmu;
  438. }
  439. /*
  440. * Event scheduler state:
  441. *
  442. * Assign events iterating over all events and counters, beginning
  443. * with events with least weights first. Keep the current iterator
  444. * state in struct sched_state.
  445. */
  446. struct sched_state {
  447. int weight;
  448. int event; /* event index */
  449. int counter; /* counter index */
  450. int unassigned; /* number of events to be assigned left */
  451. unsigned long used[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
  452. };
  453. /* Total max is X86_PMC_IDX_MAX, but we are O(n!) limited */
  454. #define SCHED_STATES_MAX 2
  455. struct perf_sched {
  456. int max_weight;
  457. int max_events;
  458. struct event_constraint **constraints;
  459. struct sched_state state;
  460. int saved_states;
  461. struct sched_state saved[SCHED_STATES_MAX];
  462. };
  463. /*
  464. * Initialize interator that runs through all events and counters.
  465. */
  466. static void perf_sched_init(struct perf_sched *sched, struct event_constraint **c,
  467. int num, int wmin, int wmax)
  468. {
  469. int idx;
  470. memset(sched, 0, sizeof(*sched));
  471. sched->max_events = num;
  472. sched->max_weight = wmax;
  473. sched->constraints = c;
  474. for (idx = 0; idx < num; idx++) {
  475. if (c[idx]->weight == wmin)
  476. break;
  477. }
  478. sched->state.event = idx; /* start with min weight */
  479. sched->state.weight = wmin;
  480. sched->state.unassigned = num;
  481. }
  482. static void perf_sched_save_state(struct perf_sched *sched)
  483. {
  484. if (WARN_ON_ONCE(sched->saved_states >= SCHED_STATES_MAX))
  485. return;
  486. sched->saved[sched->saved_states] = sched->state;
  487. sched->saved_states++;
  488. }
  489. static bool perf_sched_restore_state(struct perf_sched *sched)
  490. {
  491. if (!sched->saved_states)
  492. return false;
  493. sched->saved_states--;
  494. sched->state = sched->saved[sched->saved_states];
  495. /* continue with next counter: */
  496. clear_bit(sched->state.counter++, sched->state.used);
  497. return true;
  498. }
  499. /*
  500. * Select a counter for the current event to schedule. Return true on
  501. * success.
  502. */
  503. static bool __perf_sched_find_counter(struct perf_sched *sched)
  504. {
  505. struct event_constraint *c;
  506. int idx;
  507. if (!sched->state.unassigned)
  508. return false;
  509. if (sched->state.event >= sched->max_events)
  510. return false;
  511. c = sched->constraints[sched->state.event];
  512. /* Prefer fixed purpose counters */
  513. if (c->idxmsk64 & (~0ULL << INTEL_PMC_IDX_FIXED)) {
  514. idx = INTEL_PMC_IDX_FIXED;
  515. for_each_set_bit_from(idx, c->idxmsk, X86_PMC_IDX_MAX) {
  516. if (!__test_and_set_bit(idx, sched->state.used))
  517. goto done;
  518. }
  519. }
  520. /* Grab the first unused counter starting with idx */
  521. idx = sched->state.counter;
  522. for_each_set_bit_from(idx, c->idxmsk, INTEL_PMC_IDX_FIXED) {
  523. if (!__test_and_set_bit(idx, sched->state.used))
  524. goto done;
  525. }
  526. return false;
  527. done:
  528. sched->state.counter = idx;
  529. if (c->overlap)
  530. perf_sched_save_state(sched);
  531. return true;
  532. }
  533. static bool perf_sched_find_counter(struct perf_sched *sched)
  534. {
  535. while (!__perf_sched_find_counter(sched)) {
  536. if (!perf_sched_restore_state(sched))
  537. return false;
  538. }
  539. return true;
  540. }
  541. /*
  542. * Go through all unassigned events and find the next one to schedule.
  543. * Take events with the least weight first. Return true on success.
  544. */
  545. static bool perf_sched_next_event(struct perf_sched *sched)
  546. {
  547. struct event_constraint *c;
  548. if (!sched->state.unassigned || !--sched->state.unassigned)
  549. return false;
  550. do {
  551. /* next event */
  552. sched->state.event++;
  553. if (sched->state.event >= sched->max_events) {
  554. /* next weight */
  555. sched->state.event = 0;
  556. sched->state.weight++;
  557. if (sched->state.weight > sched->max_weight)
  558. return false;
  559. }
  560. c = sched->constraints[sched->state.event];
  561. } while (c->weight != sched->state.weight);
  562. sched->state.counter = 0; /* start with first counter */
  563. return true;
  564. }
  565. /*
  566. * Assign a counter for each event.
  567. */
  568. int perf_assign_events(struct event_constraint **constraints, int n,
  569. int wmin, int wmax, int *assign)
  570. {
  571. struct perf_sched sched;
  572. perf_sched_init(&sched, constraints, n, wmin, wmax);
  573. do {
  574. if (!perf_sched_find_counter(&sched))
  575. break; /* failed */
  576. if (assign)
  577. assign[sched.state.event] = sched.state.counter;
  578. } while (perf_sched_next_event(&sched));
  579. return sched.state.unassigned;
  580. }
  581. int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
  582. {
  583. struct event_constraint *c, *constraints[X86_PMC_IDX_MAX];
  584. unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
  585. int i, wmin, wmax, num = 0;
  586. struct hw_perf_event *hwc;
  587. bitmap_zero(used_mask, X86_PMC_IDX_MAX);
  588. for (i = 0, wmin = X86_PMC_IDX_MAX, wmax = 0; i < n; i++) {
  589. c = x86_pmu.get_event_constraints(cpuc, cpuc->event_list[i]);
  590. constraints[i] = c;
  591. wmin = min(wmin, c->weight);
  592. wmax = max(wmax, c->weight);
  593. }
  594. /*
  595. * fastpath, try to reuse previous register
  596. */
  597. for (i = 0; i < n; i++) {
  598. hwc = &cpuc->event_list[i]->hw;
  599. c = constraints[i];
  600. /* never assigned */
  601. if (hwc->idx == -1)
  602. break;
  603. /* constraint still honored */
  604. if (!test_bit(hwc->idx, c->idxmsk))
  605. break;
  606. /* not already used */
  607. if (test_bit(hwc->idx, used_mask))
  608. break;
  609. __set_bit(hwc->idx, used_mask);
  610. if (assign)
  611. assign[i] = hwc->idx;
  612. }
  613. /* slow path */
  614. if (i != n)
  615. num = perf_assign_events(constraints, n, wmin, wmax, assign);
  616. /*
  617. * scheduling failed or is just a simulation,
  618. * free resources if necessary
  619. */
  620. if (!assign || num) {
  621. for (i = 0; i < n; i++) {
  622. if (x86_pmu.put_event_constraints)
  623. x86_pmu.put_event_constraints(cpuc, cpuc->event_list[i]);
  624. }
  625. }
  626. return num ? -EINVAL : 0;
  627. }
  628. /*
  629. * dogrp: true if must collect siblings events (group)
  630. * returns total number of events and error code
  631. */
  632. static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
  633. {
  634. struct perf_event *event;
  635. int n, max_count;
  636. max_count = x86_pmu.num_counters + x86_pmu.num_counters_fixed;
  637. /* current number of events already accepted */
  638. n = cpuc->n_events;
  639. if (is_x86_event(leader)) {
  640. if (n >= max_count)
  641. return -EINVAL;
  642. cpuc->event_list[n] = leader;
  643. n++;
  644. }
  645. if (!dogrp)
  646. return n;
  647. list_for_each_entry(event, &leader->sibling_list, group_entry) {
  648. if (!is_x86_event(event) ||
  649. event->state <= PERF_EVENT_STATE_OFF)
  650. continue;
  651. if (n >= max_count)
  652. return -EINVAL;
  653. cpuc->event_list[n] = event;
  654. n++;
  655. }
  656. return n;
  657. }
  658. static inline void x86_assign_hw_event(struct perf_event *event,
  659. struct cpu_hw_events *cpuc, int i)
  660. {
  661. struct hw_perf_event *hwc = &event->hw;
  662. hwc->idx = cpuc->assign[i];
  663. hwc->last_cpu = smp_processor_id();
  664. hwc->last_tag = ++cpuc->tags[i];
  665. if (hwc->idx == INTEL_PMC_IDX_FIXED_BTS) {
  666. hwc->config_base = 0;
  667. hwc->event_base = 0;
  668. } else if (hwc->idx >= INTEL_PMC_IDX_FIXED) {
  669. hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
  670. hwc->event_base = MSR_ARCH_PERFMON_FIXED_CTR0 + (hwc->idx - INTEL_PMC_IDX_FIXED);
  671. hwc->event_base_rdpmc = (hwc->idx - INTEL_PMC_IDX_FIXED) | 1<<30;
  672. } else {
  673. hwc->config_base = x86_pmu_config_addr(hwc->idx);
  674. hwc->event_base = x86_pmu_event_addr(hwc->idx);
  675. hwc->event_base_rdpmc = hwc->idx;
  676. }
  677. }
  678. static inline int match_prev_assignment(struct hw_perf_event *hwc,
  679. struct cpu_hw_events *cpuc,
  680. int i)
  681. {
  682. return hwc->idx == cpuc->assign[i] &&
  683. hwc->last_cpu == smp_processor_id() &&
  684. hwc->last_tag == cpuc->tags[i];
  685. }
  686. static void x86_pmu_start(struct perf_event *event, int flags);
  687. static void x86_pmu_enable(struct pmu *pmu)
  688. {
  689. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  690. struct perf_event *event;
  691. struct hw_perf_event *hwc;
  692. int i, added = cpuc->n_added;
  693. if (!x86_pmu_initialized())
  694. return;
  695. if (cpuc->enabled)
  696. return;
  697. if (cpuc->n_added) {
  698. int n_running = cpuc->n_events - cpuc->n_added;
  699. /*
  700. * apply assignment obtained either from
  701. * hw_perf_group_sched_in() or x86_pmu_enable()
  702. *
  703. * step1: save events moving to new counters
  704. * step2: reprogram moved events into new counters
  705. */
  706. for (i = 0; i < n_running; i++) {
  707. event = cpuc->event_list[i];
  708. hwc = &event->hw;
  709. /*
  710. * we can avoid reprogramming counter if:
  711. * - assigned same counter as last time
  712. * - running on same CPU as last time
  713. * - no other event has used the counter since
  714. */
  715. if (hwc->idx == -1 ||
  716. match_prev_assignment(hwc, cpuc, i))
  717. continue;
  718. /*
  719. * Ensure we don't accidentally enable a stopped
  720. * counter simply because we rescheduled.
  721. */
  722. if (hwc->state & PERF_HES_STOPPED)
  723. hwc->state |= PERF_HES_ARCH;
  724. x86_pmu_stop(event, PERF_EF_UPDATE);
  725. }
  726. for (i = 0; i < cpuc->n_events; i++) {
  727. event = cpuc->event_list[i];
  728. hwc = &event->hw;
  729. if (!match_prev_assignment(hwc, cpuc, i))
  730. x86_assign_hw_event(event, cpuc, i);
  731. else if (i < n_running)
  732. continue;
  733. if (hwc->state & PERF_HES_ARCH)
  734. continue;
  735. x86_pmu_start(event, PERF_EF_RELOAD);
  736. }
  737. cpuc->n_added = 0;
  738. perf_events_lapic_init();
  739. }
  740. cpuc->enabled = 1;
  741. barrier();
  742. x86_pmu.enable_all(added);
  743. }
  744. static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
  745. /*
  746. * Set the next IRQ period, based on the hwc->period_left value.
  747. * To be called with the event disabled in hw:
  748. */
  749. int x86_perf_event_set_period(struct perf_event *event)
  750. {
  751. struct hw_perf_event *hwc = &event->hw;
  752. s64 left = local64_read(&hwc->period_left);
  753. s64 period = hwc->sample_period;
  754. int ret = 0, idx = hwc->idx;
  755. if (idx == INTEL_PMC_IDX_FIXED_BTS)
  756. return 0;
  757. /*
  758. * If we are way outside a reasonable range then just skip forward:
  759. */
  760. if (unlikely(left <= -period)) {
  761. left = period;
  762. local64_set(&hwc->period_left, left);
  763. hwc->last_period = period;
  764. ret = 1;
  765. }
  766. if (unlikely(left <= 0)) {
  767. left += period;
  768. local64_set(&hwc->period_left, left);
  769. hwc->last_period = period;
  770. ret = 1;
  771. }
  772. /*
  773. * Quirk: certain CPUs dont like it if just 1 hw_event is left:
  774. */
  775. if (unlikely(left < 2))
  776. left = 2;
  777. if (left > x86_pmu.max_period)
  778. left = x86_pmu.max_period;
  779. per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
  780. /*
  781. * The hw event starts counting from this event offset,
  782. * mark it to be able to extra future deltas:
  783. */
  784. local64_set(&hwc->prev_count, (u64)-left);
  785. wrmsrl(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask);
  786. /*
  787. * Due to erratum on certan cpu we need
  788. * a second write to be sure the register
  789. * is updated properly
  790. */
  791. if (x86_pmu.perfctr_second_write) {
  792. wrmsrl(hwc->event_base,
  793. (u64)(-left) & x86_pmu.cntval_mask);
  794. }
  795. perf_event_update_userpage(event);
  796. return ret;
  797. }
  798. void x86_pmu_enable_event(struct perf_event *event)
  799. {
  800. if (__this_cpu_read(cpu_hw_events.enabled))
  801. __x86_pmu_enable_event(&event->hw,
  802. ARCH_PERFMON_EVENTSEL_ENABLE);
  803. }
  804. /*
  805. * Add a single event to the PMU.
  806. *
  807. * The event is added to the group of enabled events
  808. * but only if it can be scehduled with existing events.
  809. */
  810. static int x86_pmu_add(struct perf_event *event, int flags)
  811. {
  812. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  813. struct hw_perf_event *hwc;
  814. int assign[X86_PMC_IDX_MAX];
  815. int n, n0, ret;
  816. hwc = &event->hw;
  817. perf_pmu_disable(event->pmu);
  818. n0 = cpuc->n_events;
  819. ret = n = collect_events(cpuc, event, false);
  820. if (ret < 0)
  821. goto out;
  822. hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
  823. if (!(flags & PERF_EF_START))
  824. hwc->state |= PERF_HES_ARCH;
  825. /*
  826. * If group events scheduling transaction was started,
  827. * skip the schedulability test here, it will be performed
  828. * at commit time (->commit_txn) as a whole
  829. */
  830. if (cpuc->group_flag & PERF_EVENT_TXN)
  831. goto done_collect;
  832. ret = x86_pmu.schedule_events(cpuc, n, assign);
  833. if (ret)
  834. goto out;
  835. /*
  836. * copy new assignment, now we know it is possible
  837. * will be used by hw_perf_enable()
  838. */
  839. memcpy(cpuc->assign, assign, n*sizeof(int));
  840. done_collect:
  841. cpuc->n_events = n;
  842. cpuc->n_added += n - n0;
  843. cpuc->n_txn += n - n0;
  844. ret = 0;
  845. out:
  846. perf_pmu_enable(event->pmu);
  847. return ret;
  848. }
  849. static void x86_pmu_start(struct perf_event *event, int flags)
  850. {
  851. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  852. int idx = event->hw.idx;
  853. if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
  854. return;
  855. if (WARN_ON_ONCE(idx == -1))
  856. return;
  857. if (flags & PERF_EF_RELOAD) {
  858. WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
  859. x86_perf_event_set_period(event);
  860. }
  861. event->hw.state = 0;
  862. cpuc->events[idx] = event;
  863. __set_bit(idx, cpuc->active_mask);
  864. __set_bit(idx, cpuc->running);
  865. x86_pmu.enable(event);
  866. perf_event_update_userpage(event);
  867. }
  868. void perf_event_print_debug(void)
  869. {
  870. u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
  871. u64 pebs;
  872. struct cpu_hw_events *cpuc;
  873. unsigned long flags;
  874. int cpu, idx;
  875. if (!x86_pmu.num_counters)
  876. return;
  877. local_irq_save(flags);
  878. cpu = smp_processor_id();
  879. cpuc = &per_cpu(cpu_hw_events, cpu);
  880. if (x86_pmu.version >= 2) {
  881. rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
  882. rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
  883. rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
  884. rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
  885. rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
  886. pr_info("\n");
  887. pr_info("CPU#%d: ctrl: %016llx\n", cpu, ctrl);
  888. pr_info("CPU#%d: status: %016llx\n", cpu, status);
  889. pr_info("CPU#%d: overflow: %016llx\n", cpu, overflow);
  890. pr_info("CPU#%d: fixed: %016llx\n", cpu, fixed);
  891. pr_info("CPU#%d: pebs: %016llx\n", cpu, pebs);
  892. }
  893. pr_info("CPU#%d: active: %016llx\n", cpu, *(u64 *)cpuc->active_mask);
  894. for (idx = 0; idx < x86_pmu.num_counters; idx++) {
  895. rdmsrl(x86_pmu_config_addr(idx), pmc_ctrl);
  896. rdmsrl(x86_pmu_event_addr(idx), pmc_count);
  897. prev_left = per_cpu(pmc_prev_left[idx], cpu);
  898. pr_info("CPU#%d: gen-PMC%d ctrl: %016llx\n",
  899. cpu, idx, pmc_ctrl);
  900. pr_info("CPU#%d: gen-PMC%d count: %016llx\n",
  901. cpu, idx, pmc_count);
  902. pr_info("CPU#%d: gen-PMC%d left: %016llx\n",
  903. cpu, idx, prev_left);
  904. }
  905. for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
  906. rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
  907. pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
  908. cpu, idx, pmc_count);
  909. }
  910. local_irq_restore(flags);
  911. }
  912. void x86_pmu_stop(struct perf_event *event, int flags)
  913. {
  914. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  915. struct hw_perf_event *hwc = &event->hw;
  916. if (__test_and_clear_bit(hwc->idx, cpuc->active_mask)) {
  917. x86_pmu.disable(event);
  918. cpuc->events[hwc->idx] = NULL;
  919. WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
  920. hwc->state |= PERF_HES_STOPPED;
  921. }
  922. if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
  923. /*
  924. * Drain the remaining delta count out of a event
  925. * that we are disabling:
  926. */
  927. x86_perf_event_update(event);
  928. hwc->state |= PERF_HES_UPTODATE;
  929. }
  930. }
  931. static void x86_pmu_del(struct perf_event *event, int flags)
  932. {
  933. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  934. int i;
  935. /*
  936. * If we're called during a txn, we don't need to do anything.
  937. * The events never got scheduled and ->cancel_txn will truncate
  938. * the event_list.
  939. */
  940. if (cpuc->group_flag & PERF_EVENT_TXN)
  941. return;
  942. x86_pmu_stop(event, PERF_EF_UPDATE);
  943. for (i = 0; i < cpuc->n_events; i++) {
  944. if (event == cpuc->event_list[i]) {
  945. if (x86_pmu.put_event_constraints)
  946. x86_pmu.put_event_constraints(cpuc, event);
  947. while (++i < cpuc->n_events)
  948. cpuc->event_list[i-1] = cpuc->event_list[i];
  949. --cpuc->n_events;
  950. break;
  951. }
  952. }
  953. perf_event_update_userpage(event);
  954. }
  955. int x86_pmu_handle_irq(struct pt_regs *regs)
  956. {
  957. struct perf_sample_data data;
  958. struct cpu_hw_events *cpuc;
  959. struct perf_event *event;
  960. int idx, handled = 0;
  961. u64 val;
  962. cpuc = &__get_cpu_var(cpu_hw_events);
  963. /*
  964. * Some chipsets need to unmask the LVTPC in a particular spot
  965. * inside the nmi handler. As a result, the unmasking was pushed
  966. * into all the nmi handlers.
  967. *
  968. * This generic handler doesn't seem to have any issues where the
  969. * unmasking occurs so it was left at the top.
  970. */
  971. apic_write(APIC_LVTPC, APIC_DM_NMI);
  972. for (idx = 0; idx < x86_pmu.num_counters; idx++) {
  973. if (!test_bit(idx, cpuc->active_mask)) {
  974. /*
  975. * Though we deactivated the counter some cpus
  976. * might still deliver spurious interrupts still
  977. * in flight. Catch them:
  978. */
  979. if (__test_and_clear_bit(idx, cpuc->running))
  980. handled++;
  981. continue;
  982. }
  983. event = cpuc->events[idx];
  984. val = x86_perf_event_update(event);
  985. if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
  986. continue;
  987. /*
  988. * event overflow
  989. */
  990. handled++;
  991. perf_sample_data_init(&data, 0, event->hw.last_period);
  992. if (!x86_perf_event_set_period(event))
  993. continue;
  994. if (perf_event_overflow(event, &data, regs))
  995. x86_pmu_stop(event, 0);
  996. }
  997. if (handled)
  998. inc_irq_stat(apic_perf_irqs);
  999. return handled;
  1000. }
  1001. void perf_events_lapic_init(void)
  1002. {
  1003. if (!x86_pmu.apic || !x86_pmu_initialized())
  1004. return;
  1005. /*
  1006. * Always use NMI for PMU
  1007. */
  1008. apic_write(APIC_LVTPC, APIC_DM_NMI);
  1009. }
  1010. static int __kprobes
  1011. perf_event_nmi_handler(unsigned int cmd, struct pt_regs *regs)
  1012. {
  1013. if (!atomic_read(&active_events))
  1014. return NMI_DONE;
  1015. return x86_pmu.handle_irq(regs);
  1016. }
  1017. struct event_constraint emptyconstraint;
  1018. struct event_constraint unconstrained;
  1019. static int __cpuinit
  1020. x86_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
  1021. {
  1022. unsigned int cpu = (long)hcpu;
  1023. struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
  1024. int ret = NOTIFY_OK;
  1025. switch (action & ~CPU_TASKS_FROZEN) {
  1026. case CPU_UP_PREPARE:
  1027. cpuc->kfree_on_online = NULL;
  1028. if (x86_pmu.cpu_prepare)
  1029. ret = x86_pmu.cpu_prepare(cpu);
  1030. break;
  1031. case CPU_STARTING:
  1032. if (x86_pmu.attr_rdpmc)
  1033. set_in_cr4(X86_CR4_PCE);
  1034. if (x86_pmu.cpu_starting)
  1035. x86_pmu.cpu_starting(cpu);
  1036. break;
  1037. case CPU_ONLINE:
  1038. kfree(cpuc->kfree_on_online);
  1039. break;
  1040. case CPU_DYING:
  1041. if (x86_pmu.cpu_dying)
  1042. x86_pmu.cpu_dying(cpu);
  1043. break;
  1044. case CPU_UP_CANCELED:
  1045. case CPU_DEAD:
  1046. if (x86_pmu.cpu_dead)
  1047. x86_pmu.cpu_dead(cpu);
  1048. break;
  1049. default:
  1050. break;
  1051. }
  1052. return ret;
  1053. }
  1054. static void __init pmu_check_apic(void)
  1055. {
  1056. if (cpu_has_apic)
  1057. return;
  1058. x86_pmu.apic = 0;
  1059. pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
  1060. pr_info("no hardware sampling interrupt available.\n");
  1061. }
  1062. static struct attribute_group x86_pmu_format_group = {
  1063. .name = "format",
  1064. .attrs = NULL,
  1065. };
  1066. static int __init init_hw_perf_events(void)
  1067. {
  1068. struct x86_pmu_quirk *quirk;
  1069. int err;
  1070. pr_info("Performance Events: ");
  1071. switch (boot_cpu_data.x86_vendor) {
  1072. case X86_VENDOR_INTEL:
  1073. err = intel_pmu_init();
  1074. break;
  1075. case X86_VENDOR_AMD:
  1076. err = amd_pmu_init();
  1077. break;
  1078. default:
  1079. return 0;
  1080. }
  1081. if (err != 0) {
  1082. pr_cont("no PMU driver, software events only.\n");
  1083. return 0;
  1084. }
  1085. pmu_check_apic();
  1086. /* sanity check that the hardware exists or is emulated */
  1087. if (!check_hw_exists())
  1088. return 0;
  1089. pr_cont("%s PMU driver.\n", x86_pmu.name);
  1090. for (quirk = x86_pmu.quirks; quirk; quirk = quirk->next)
  1091. quirk->func();
  1092. if (!x86_pmu.intel_ctrl)
  1093. x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
  1094. perf_events_lapic_init();
  1095. register_nmi_handler(NMI_LOCAL, perf_event_nmi_handler, 0, "PMI");
  1096. unconstrained = (struct event_constraint)
  1097. __EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1,
  1098. 0, x86_pmu.num_counters, 0);
  1099. x86_pmu.attr_rdpmc = 1; /* enable userspace RDPMC usage by default */
  1100. x86_pmu_format_group.attrs = x86_pmu.format_attrs;
  1101. pr_info("... version: %d\n", x86_pmu.version);
  1102. pr_info("... bit width: %d\n", x86_pmu.cntval_bits);
  1103. pr_info("... generic registers: %d\n", x86_pmu.num_counters);
  1104. pr_info("... value mask: %016Lx\n", x86_pmu.cntval_mask);
  1105. pr_info("... max period: %016Lx\n", x86_pmu.max_period);
  1106. pr_info("... fixed-purpose events: %d\n", x86_pmu.num_counters_fixed);
  1107. pr_info("... event mask: %016Lx\n", x86_pmu.intel_ctrl);
  1108. perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
  1109. perf_cpu_notifier(x86_pmu_notifier);
  1110. return 0;
  1111. }
  1112. early_initcall(init_hw_perf_events);
  1113. static inline void x86_pmu_read(struct perf_event *event)
  1114. {
  1115. x86_perf_event_update(event);
  1116. }
  1117. /*
  1118. * Start group events scheduling transaction
  1119. * Set the flag to make pmu::enable() not perform the
  1120. * schedulability test, it will be performed at commit time
  1121. */
  1122. static void x86_pmu_start_txn(struct pmu *pmu)
  1123. {
  1124. perf_pmu_disable(pmu);
  1125. __this_cpu_or(cpu_hw_events.group_flag, PERF_EVENT_TXN);
  1126. __this_cpu_write(cpu_hw_events.n_txn, 0);
  1127. }
  1128. /*
  1129. * Stop group events scheduling transaction
  1130. * Clear the flag and pmu::enable() will perform the
  1131. * schedulability test.
  1132. */
  1133. static void x86_pmu_cancel_txn(struct pmu *pmu)
  1134. {
  1135. __this_cpu_and(cpu_hw_events.group_flag, ~PERF_EVENT_TXN);
  1136. /*
  1137. * Truncate the collected events.
  1138. */
  1139. __this_cpu_sub(cpu_hw_events.n_added, __this_cpu_read(cpu_hw_events.n_txn));
  1140. __this_cpu_sub(cpu_hw_events.n_events, __this_cpu_read(cpu_hw_events.n_txn));
  1141. perf_pmu_enable(pmu);
  1142. }
  1143. /*
  1144. * Commit group events scheduling transaction
  1145. * Perform the group schedulability test as a whole
  1146. * Return 0 if success
  1147. */
  1148. static int x86_pmu_commit_txn(struct pmu *pmu)
  1149. {
  1150. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  1151. int assign[X86_PMC_IDX_MAX];
  1152. int n, ret;
  1153. n = cpuc->n_events;
  1154. if (!x86_pmu_initialized())
  1155. return -EAGAIN;
  1156. ret = x86_pmu.schedule_events(cpuc, n, assign);
  1157. if (ret)
  1158. return ret;
  1159. /*
  1160. * copy new assignment, now we know it is possible
  1161. * will be used by hw_perf_enable()
  1162. */
  1163. memcpy(cpuc->assign, assign, n*sizeof(int));
  1164. cpuc->group_flag &= ~PERF_EVENT_TXN;
  1165. perf_pmu_enable(pmu);
  1166. return 0;
  1167. }
  1168. /*
  1169. * a fake_cpuc is used to validate event groups. Due to
  1170. * the extra reg logic, we need to also allocate a fake
  1171. * per_core and per_cpu structure. Otherwise, group events
  1172. * using extra reg may conflict without the kernel being
  1173. * able to catch this when the last event gets added to
  1174. * the group.
  1175. */
  1176. static void free_fake_cpuc(struct cpu_hw_events *cpuc)
  1177. {
  1178. kfree(cpuc->shared_regs);
  1179. kfree(cpuc);
  1180. }
  1181. static struct cpu_hw_events *allocate_fake_cpuc(void)
  1182. {
  1183. struct cpu_hw_events *cpuc;
  1184. int cpu = raw_smp_processor_id();
  1185. cpuc = kzalloc(sizeof(*cpuc), GFP_KERNEL);
  1186. if (!cpuc)
  1187. return ERR_PTR(-ENOMEM);
  1188. /* only needed, if we have extra_regs */
  1189. if (x86_pmu.extra_regs) {
  1190. cpuc->shared_regs = allocate_shared_regs(cpu);
  1191. if (!cpuc->shared_regs)
  1192. goto error;
  1193. }
  1194. cpuc->is_fake = 1;
  1195. return cpuc;
  1196. error:
  1197. free_fake_cpuc(cpuc);
  1198. return ERR_PTR(-ENOMEM);
  1199. }
  1200. /*
  1201. * validate that we can schedule this event
  1202. */
  1203. static int validate_event(struct perf_event *event)
  1204. {
  1205. struct cpu_hw_events *fake_cpuc;
  1206. struct event_constraint *c;
  1207. int ret = 0;
  1208. fake_cpuc = allocate_fake_cpuc();
  1209. if (IS_ERR(fake_cpuc))
  1210. return PTR_ERR(fake_cpuc);
  1211. c = x86_pmu.get_event_constraints(fake_cpuc, event);
  1212. if (!c || !c->weight)
  1213. ret = -EINVAL;
  1214. if (x86_pmu.put_event_constraints)
  1215. x86_pmu.put_event_constraints(fake_cpuc, event);
  1216. free_fake_cpuc(fake_cpuc);
  1217. return ret;
  1218. }
  1219. /*
  1220. * validate a single event group
  1221. *
  1222. * validation include:
  1223. * - check events are compatible which each other
  1224. * - events do not compete for the same counter
  1225. * - number of events <= number of counters
  1226. *
  1227. * validation ensures the group can be loaded onto the
  1228. * PMU if it was the only group available.
  1229. */
  1230. static int validate_group(struct perf_event *event)
  1231. {
  1232. struct perf_event *leader = event->group_leader;
  1233. struct cpu_hw_events *fake_cpuc;
  1234. int ret = -EINVAL, n;
  1235. fake_cpuc = allocate_fake_cpuc();
  1236. if (IS_ERR(fake_cpuc))
  1237. return PTR_ERR(fake_cpuc);
  1238. /*
  1239. * the event is not yet connected with its
  1240. * siblings therefore we must first collect
  1241. * existing siblings, then add the new event
  1242. * before we can simulate the scheduling
  1243. */
  1244. n = collect_events(fake_cpuc, leader, true);
  1245. if (n < 0)
  1246. goto out;
  1247. fake_cpuc->n_events = n;
  1248. n = collect_events(fake_cpuc, event, false);
  1249. if (n < 0)
  1250. goto out;
  1251. fake_cpuc->n_events = n;
  1252. ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
  1253. out:
  1254. free_fake_cpuc(fake_cpuc);
  1255. return ret;
  1256. }
  1257. static int x86_pmu_event_init(struct perf_event *event)
  1258. {
  1259. struct pmu *tmp;
  1260. int err;
  1261. switch (event->attr.type) {
  1262. case PERF_TYPE_RAW:
  1263. case PERF_TYPE_HARDWARE:
  1264. case PERF_TYPE_HW_CACHE:
  1265. break;
  1266. default:
  1267. return -ENOENT;
  1268. }
  1269. err = __x86_pmu_event_init(event);
  1270. if (!err) {
  1271. /*
  1272. * we temporarily connect event to its pmu
  1273. * such that validate_group() can classify
  1274. * it as an x86 event using is_x86_event()
  1275. */
  1276. tmp = event->pmu;
  1277. event->pmu = &pmu;
  1278. if (event->group_leader != event)
  1279. err = validate_group(event);
  1280. else
  1281. err = validate_event(event);
  1282. event->pmu = tmp;
  1283. }
  1284. if (err) {
  1285. if (event->destroy)
  1286. event->destroy(event);
  1287. }
  1288. return err;
  1289. }
  1290. static int x86_pmu_event_idx(struct perf_event *event)
  1291. {
  1292. int idx = event->hw.idx;
  1293. if (!x86_pmu.attr_rdpmc)
  1294. return 0;
  1295. if (x86_pmu.num_counters_fixed && idx >= INTEL_PMC_IDX_FIXED) {
  1296. idx -= INTEL_PMC_IDX_FIXED;
  1297. idx |= 1 << 30;
  1298. }
  1299. return idx + 1;
  1300. }
  1301. static ssize_t get_attr_rdpmc(struct device *cdev,
  1302. struct device_attribute *attr,
  1303. char *buf)
  1304. {
  1305. return snprintf(buf, 40, "%d\n", x86_pmu.attr_rdpmc);
  1306. }
  1307. static void change_rdpmc(void *info)
  1308. {
  1309. bool enable = !!(unsigned long)info;
  1310. if (enable)
  1311. set_in_cr4(X86_CR4_PCE);
  1312. else
  1313. clear_in_cr4(X86_CR4_PCE);
  1314. }
  1315. static ssize_t set_attr_rdpmc(struct device *cdev,
  1316. struct device_attribute *attr,
  1317. const char *buf, size_t count)
  1318. {
  1319. unsigned long val;
  1320. ssize_t ret;
  1321. ret = kstrtoul(buf, 0, &val);
  1322. if (ret)
  1323. return ret;
  1324. if (!!val != !!x86_pmu.attr_rdpmc) {
  1325. x86_pmu.attr_rdpmc = !!val;
  1326. smp_call_function(change_rdpmc, (void *)val, 1);
  1327. }
  1328. return count;
  1329. }
  1330. static DEVICE_ATTR(rdpmc, S_IRUSR | S_IWUSR, get_attr_rdpmc, set_attr_rdpmc);
  1331. static struct attribute *x86_pmu_attrs[] = {
  1332. &dev_attr_rdpmc.attr,
  1333. NULL,
  1334. };
  1335. static struct attribute_group x86_pmu_attr_group = {
  1336. .attrs = x86_pmu_attrs,
  1337. };
  1338. static const struct attribute_group *x86_pmu_attr_groups[] = {
  1339. &x86_pmu_attr_group,
  1340. &x86_pmu_format_group,
  1341. NULL,
  1342. };
  1343. static void x86_pmu_flush_branch_stack(void)
  1344. {
  1345. if (x86_pmu.flush_branch_stack)
  1346. x86_pmu.flush_branch_stack();
  1347. }
  1348. void perf_check_microcode(void)
  1349. {
  1350. if (x86_pmu.check_microcode)
  1351. x86_pmu.check_microcode();
  1352. }
  1353. EXPORT_SYMBOL_GPL(perf_check_microcode);
  1354. static struct pmu pmu = {
  1355. .pmu_enable = x86_pmu_enable,
  1356. .pmu_disable = x86_pmu_disable,
  1357. .attr_groups = x86_pmu_attr_groups,
  1358. .event_init = x86_pmu_event_init,
  1359. .add = x86_pmu_add,
  1360. .del = x86_pmu_del,
  1361. .start = x86_pmu_start,
  1362. .stop = x86_pmu_stop,
  1363. .read = x86_pmu_read,
  1364. .start_txn = x86_pmu_start_txn,
  1365. .cancel_txn = x86_pmu_cancel_txn,
  1366. .commit_txn = x86_pmu_commit_txn,
  1367. .event_idx = x86_pmu_event_idx,
  1368. .flush_branch_stack = x86_pmu_flush_branch_stack,
  1369. };
  1370. void arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
  1371. {
  1372. userpg->cap_usr_time = 0;
  1373. userpg->cap_usr_rdpmc = x86_pmu.attr_rdpmc;
  1374. userpg->pmc_width = x86_pmu.cntval_bits;
  1375. if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
  1376. return;
  1377. if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
  1378. return;
  1379. userpg->cap_usr_time = 1;
  1380. userpg->time_mult = this_cpu_read(cyc2ns);
  1381. userpg->time_shift = CYC2NS_SCALE_FACTOR;
  1382. userpg->time_offset = this_cpu_read(cyc2ns_offset) - now;
  1383. }
  1384. /*
  1385. * callchain support
  1386. */
  1387. static int backtrace_stack(void *data, char *name)
  1388. {
  1389. return 0;
  1390. }
  1391. static void backtrace_address(void *data, unsigned long addr, int reliable)
  1392. {
  1393. struct perf_callchain_entry *entry = data;
  1394. perf_callchain_store(entry, addr);
  1395. }
  1396. static const struct stacktrace_ops backtrace_ops = {
  1397. .stack = backtrace_stack,
  1398. .address = backtrace_address,
  1399. .walk_stack = print_context_stack_bp,
  1400. };
  1401. void
  1402. perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs)
  1403. {
  1404. if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
  1405. /* TODO: We don't support guest os callchain now */
  1406. return;
  1407. }
  1408. perf_callchain_store(entry, regs->ip);
  1409. dump_trace(NULL, regs, NULL, 0, &backtrace_ops, entry);
  1410. }
  1411. static inline int
  1412. valid_user_frame(const void __user *fp, unsigned long size)
  1413. {
  1414. return (__range_not_ok(fp, size, TASK_SIZE) == 0);
  1415. }
  1416. static unsigned long get_segment_base(unsigned int segment)
  1417. {
  1418. struct desc_struct *desc;
  1419. int idx = segment >> 3;
  1420. if ((segment & SEGMENT_TI_MASK) == SEGMENT_LDT) {
  1421. if (idx > LDT_ENTRIES)
  1422. return 0;
  1423. if (idx > current->active_mm->context.size)
  1424. return 0;
  1425. desc = current->active_mm->context.ldt;
  1426. } else {
  1427. if (idx > GDT_ENTRIES)
  1428. return 0;
  1429. desc = __this_cpu_ptr(&gdt_page.gdt[0]);
  1430. }
  1431. return get_desc_base(desc + idx);
  1432. }
  1433. #ifdef CONFIG_COMPAT
  1434. #include <asm/compat.h>
  1435. static inline int
  1436. perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
  1437. {
  1438. /* 32-bit process in 64-bit kernel. */
  1439. unsigned long ss_base, cs_base;
  1440. struct stack_frame_ia32 frame;
  1441. const void __user *fp;
  1442. if (!test_thread_flag(TIF_IA32))
  1443. return 0;
  1444. cs_base = get_segment_base(regs->cs);
  1445. ss_base = get_segment_base(regs->ss);
  1446. fp = compat_ptr(ss_base + regs->bp);
  1447. while (entry->nr < PERF_MAX_STACK_DEPTH) {
  1448. unsigned long bytes;
  1449. frame.next_frame = 0;
  1450. frame.return_address = 0;
  1451. bytes = copy_from_user_nmi(&frame, fp, sizeof(frame));
  1452. if (bytes != sizeof(frame))
  1453. break;
  1454. if (!valid_user_frame(fp, sizeof(frame)))
  1455. break;
  1456. perf_callchain_store(entry, cs_base + frame.return_address);
  1457. fp = compat_ptr(ss_base + frame.next_frame);
  1458. }
  1459. return 1;
  1460. }
  1461. #else
  1462. static inline int
  1463. perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
  1464. {
  1465. return 0;
  1466. }
  1467. #endif
  1468. void
  1469. perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
  1470. {
  1471. struct stack_frame frame;
  1472. const void __user *fp;
  1473. if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
  1474. /* TODO: We don't support guest os callchain now */
  1475. return;
  1476. }
  1477. /*
  1478. * We don't know what to do with VM86 stacks.. ignore them for now.
  1479. */
  1480. if (regs->flags & (X86_VM_MASK | PERF_EFLAGS_VM))
  1481. return;
  1482. fp = (void __user *)regs->bp;
  1483. perf_callchain_store(entry, regs->ip);
  1484. if (!current->mm)
  1485. return;
  1486. if (perf_callchain_user32(regs, entry))
  1487. return;
  1488. while (entry->nr < PERF_MAX_STACK_DEPTH) {
  1489. unsigned long bytes;
  1490. frame.next_frame = NULL;
  1491. frame.return_address = 0;
  1492. bytes = copy_from_user_nmi(&frame, fp, sizeof(frame));
  1493. if (bytes != sizeof(frame))
  1494. break;
  1495. if (!valid_user_frame(fp, sizeof(frame)))
  1496. break;
  1497. perf_callchain_store(entry, frame.return_address);
  1498. fp = frame.next_frame;
  1499. }
  1500. }
  1501. /*
  1502. * Deal with code segment offsets for the various execution modes:
  1503. *
  1504. * VM86 - the good olde 16 bit days, where the linear address is
  1505. * 20 bits and we use regs->ip + 0x10 * regs->cs.
  1506. *
  1507. * IA32 - Where we need to look at GDT/LDT segment descriptor tables
  1508. * to figure out what the 32bit base address is.
  1509. *
  1510. * X32 - has TIF_X32 set, but is running in x86_64
  1511. *
  1512. * X86_64 - CS,DS,SS,ES are all zero based.
  1513. */
  1514. static unsigned long code_segment_base(struct pt_regs *regs)
  1515. {
  1516. /*
  1517. * If we are in VM86 mode, add the segment offset to convert to a
  1518. * linear address.
  1519. */
  1520. if (regs->flags & X86_VM_MASK)
  1521. return 0x10 * regs->cs;
  1522. /*
  1523. * For IA32 we look at the GDT/LDT segment base to convert the
  1524. * effective IP to a linear address.
  1525. */
  1526. #ifdef CONFIG_X86_32
  1527. if (user_mode(regs) && regs->cs != __USER_CS)
  1528. return get_segment_base(regs->cs);
  1529. #else
  1530. if (test_thread_flag(TIF_IA32)) {
  1531. if (user_mode(regs) && regs->cs != __USER32_CS)
  1532. return get_segment_base(regs->cs);
  1533. }
  1534. #endif
  1535. return 0;
  1536. }
  1537. unsigned long perf_instruction_pointer(struct pt_regs *regs)
  1538. {
  1539. if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
  1540. return perf_guest_cbs->get_guest_ip();
  1541. return regs->ip + code_segment_base(regs);
  1542. }
  1543. unsigned long perf_misc_flags(struct pt_regs *regs)
  1544. {
  1545. int misc = 0;
  1546. if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
  1547. if (perf_guest_cbs->is_user_mode())
  1548. misc |= PERF_RECORD_MISC_GUEST_USER;
  1549. else
  1550. misc |= PERF_RECORD_MISC_GUEST_KERNEL;
  1551. } else {
  1552. if (user_mode(regs))
  1553. misc |= PERF_RECORD_MISC_USER;
  1554. else
  1555. misc |= PERF_RECORD_MISC_KERNEL;
  1556. }
  1557. if (regs->flags & PERF_EFLAGS_EXACT)
  1558. misc |= PERF_RECORD_MISC_EXACT_IP;
  1559. return misc;
  1560. }
  1561. void perf_get_x86_pmu_capability(struct x86_pmu_capability *cap)
  1562. {
  1563. cap->version = x86_pmu.version;
  1564. cap->num_counters_gp = x86_pmu.num_counters;
  1565. cap->num_counters_fixed = x86_pmu.num_counters_fixed;
  1566. cap->bit_width_gp = x86_pmu.cntval_bits;
  1567. cap->bit_width_fixed = x86_pmu.cntval_bits;
  1568. cap->events_mask = (unsigned int)x86_pmu.events_maskl;
  1569. cap->events_mask_len = x86_pmu.events_mask_len;
  1570. }
  1571. EXPORT_SYMBOL_GPL(perf_get_x86_pmu_capability);