skbuff.h 48 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724
  1. /*
  2. * Definitions for the 'struct sk_buff' memory handlers.
  3. *
  4. * Authors:
  5. * Alan Cox, <gw4pts@gw4pts.ampr.org>
  6. * Florian La Roche, <rzsfl@rz.uni-sb.de>
  7. *
  8. * This program is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU General Public License
  10. * as published by the Free Software Foundation; either version
  11. * 2 of the License, or (at your option) any later version.
  12. */
  13. #ifndef _LINUX_SKBUFF_H
  14. #define _LINUX_SKBUFF_H
  15. #include <linux/kernel.h>
  16. #include <linux/compiler.h>
  17. #include <linux/time.h>
  18. #include <linux/cache.h>
  19. #include <asm/atomic.h>
  20. #include <asm/types.h>
  21. #include <linux/spinlock.h>
  22. #include <linux/net.h>
  23. #include <linux/textsearch.h>
  24. #include <net/checksum.h>
  25. #include <linux/rcupdate.h>
  26. #include <linux/dmaengine.h>
  27. #include <linux/hrtimer.h>
  28. #define HAVE_ALLOC_SKB /* For the drivers to know */
  29. #define HAVE_ALIGNABLE_SKB /* Ditto 8) */
  30. /* Don't change this without changing skb_csum_unnecessary! */
  31. #define CHECKSUM_NONE 0
  32. #define CHECKSUM_UNNECESSARY 1
  33. #define CHECKSUM_COMPLETE 2
  34. #define CHECKSUM_PARTIAL 3
  35. #define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \
  36. ~(SMP_CACHE_BYTES - 1))
  37. #define SKB_WITH_OVERHEAD(X) \
  38. ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
  39. #define SKB_MAX_ORDER(X, ORDER) \
  40. SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
  41. #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
  42. #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
  43. /* A. Checksumming of received packets by device.
  44. *
  45. * NONE: device failed to checksum this packet.
  46. * skb->csum is undefined.
  47. *
  48. * UNNECESSARY: device parsed packet and wouldbe verified checksum.
  49. * skb->csum is undefined.
  50. * It is bad option, but, unfortunately, many of vendors do this.
  51. * Apparently with secret goal to sell you new device, when you
  52. * will add new protocol to your host. F.e. IPv6. 8)
  53. *
  54. * COMPLETE: the most generic way. Device supplied checksum of _all_
  55. * the packet as seen by netif_rx in skb->csum.
  56. * NOTE: Even if device supports only some protocols, but
  57. * is able to produce some skb->csum, it MUST use COMPLETE,
  58. * not UNNECESSARY.
  59. *
  60. * PARTIAL: identical to the case for output below. This may occur
  61. * on a packet received directly from another Linux OS, e.g.,
  62. * a virtualised Linux kernel on the same host. The packet can
  63. * be treated in the same way as UNNECESSARY except that on
  64. * output (i.e., forwarding) the checksum must be filled in
  65. * by the OS or the hardware.
  66. *
  67. * B. Checksumming on output.
  68. *
  69. * NONE: skb is checksummed by protocol or csum is not required.
  70. *
  71. * PARTIAL: device is required to csum packet as seen by hard_start_xmit
  72. * from skb->csum_start to the end and to record the checksum
  73. * at skb->csum_start + skb->csum_offset.
  74. *
  75. * Device must show its capabilities in dev->features, set
  76. * at device setup time.
  77. * NETIF_F_HW_CSUM - it is clever device, it is able to checksum
  78. * everything.
  79. * NETIF_F_NO_CSUM - loopback or reliable single hop media.
  80. * NETIF_F_IP_CSUM - device is dumb. It is able to csum only
  81. * TCP/UDP over IPv4. Sigh. Vendors like this
  82. * way by an unknown reason. Though, see comment above
  83. * about CHECKSUM_UNNECESSARY. 8)
  84. * NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead.
  85. *
  86. * Any questions? No questions, good. --ANK
  87. */
  88. struct net_device;
  89. struct scatterlist;
  90. struct pipe_inode_info;
  91. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  92. struct nf_conntrack {
  93. atomic_t use;
  94. };
  95. #endif
  96. #ifdef CONFIG_BRIDGE_NETFILTER
  97. struct nf_bridge_info {
  98. atomic_t use;
  99. struct net_device *physindev;
  100. struct net_device *physoutdev;
  101. unsigned int mask;
  102. unsigned long data[32 / sizeof(unsigned long)];
  103. };
  104. #endif
  105. struct sk_buff_head {
  106. /* These two members must be first. */
  107. struct sk_buff *next;
  108. struct sk_buff *prev;
  109. __u32 qlen;
  110. spinlock_t lock;
  111. };
  112. struct sk_buff;
  113. /* To allow 64K frame to be packed as single skb without frag_list */
  114. #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2)
  115. typedef struct skb_frag_struct skb_frag_t;
  116. struct skb_frag_struct {
  117. struct page *page;
  118. __u32 page_offset;
  119. __u32 size;
  120. };
  121. /* This data is invariant across clones and lives at
  122. * the end of the header data, ie. at skb->end.
  123. */
  124. struct skb_shared_info {
  125. atomic_t dataref;
  126. unsigned short nr_frags;
  127. unsigned short gso_size;
  128. /* Warning: this field is not always filled in (UFO)! */
  129. unsigned short gso_segs;
  130. unsigned short gso_type;
  131. __be32 ip6_frag_id;
  132. struct sk_buff *frag_list;
  133. skb_frag_t frags[MAX_SKB_FRAGS];
  134. };
  135. /* We divide dataref into two halves. The higher 16 bits hold references
  136. * to the payload part of skb->data. The lower 16 bits hold references to
  137. * the entire skb->data. A clone of a headerless skb holds the length of
  138. * the header in skb->hdr_len.
  139. *
  140. * All users must obey the rule that the skb->data reference count must be
  141. * greater than or equal to the payload reference count.
  142. *
  143. * Holding a reference to the payload part means that the user does not
  144. * care about modifications to the header part of skb->data.
  145. */
  146. #define SKB_DATAREF_SHIFT 16
  147. #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
  148. enum {
  149. SKB_FCLONE_UNAVAILABLE,
  150. SKB_FCLONE_ORIG,
  151. SKB_FCLONE_CLONE,
  152. };
  153. enum {
  154. SKB_GSO_TCPV4 = 1 << 0,
  155. SKB_GSO_UDP = 1 << 1,
  156. /* This indicates the skb is from an untrusted source. */
  157. SKB_GSO_DODGY = 1 << 2,
  158. /* This indicates the tcp segment has CWR set. */
  159. SKB_GSO_TCP_ECN = 1 << 3,
  160. SKB_GSO_TCPV6 = 1 << 4,
  161. };
  162. #if BITS_PER_LONG > 32
  163. #define NET_SKBUFF_DATA_USES_OFFSET 1
  164. #endif
  165. #ifdef NET_SKBUFF_DATA_USES_OFFSET
  166. typedef unsigned int sk_buff_data_t;
  167. #else
  168. typedef unsigned char *sk_buff_data_t;
  169. #endif
  170. /**
  171. * struct sk_buff - socket buffer
  172. * @next: Next buffer in list
  173. * @prev: Previous buffer in list
  174. * @sk: Socket we are owned by
  175. * @tstamp: Time we arrived
  176. * @dev: Device we arrived on/are leaving by
  177. * @transport_header: Transport layer header
  178. * @network_header: Network layer header
  179. * @mac_header: Link layer header
  180. * @dst: destination entry
  181. * @sp: the security path, used for xfrm
  182. * @cb: Control buffer. Free for use by every layer. Put private vars here
  183. * @len: Length of actual data
  184. * @data_len: Data length
  185. * @mac_len: Length of link layer header
  186. * @hdr_len: writable header length of cloned skb
  187. * @csum: Checksum (must include start/offset pair)
  188. * @csum_start: Offset from skb->head where checksumming should start
  189. * @csum_offset: Offset from csum_start where checksum should be stored
  190. * @local_df: allow local fragmentation
  191. * @cloned: Head may be cloned (check refcnt to be sure)
  192. * @nohdr: Payload reference only, must not modify header
  193. * @pkt_type: Packet class
  194. * @fclone: skbuff clone status
  195. * @ip_summed: Driver fed us an IP checksum
  196. * @priority: Packet queueing priority
  197. * @users: User count - see {datagram,tcp}.c
  198. * @protocol: Packet protocol from driver
  199. * @truesize: Buffer size
  200. * @head: Head of buffer
  201. * @data: Data head pointer
  202. * @tail: Tail pointer
  203. * @end: End pointer
  204. * @destructor: Destruct function
  205. * @mark: Generic packet mark
  206. * @nfct: Associated connection, if any
  207. * @ipvs_property: skbuff is owned by ipvs
  208. * @peeked: this packet has been seen already, so stats have been
  209. * done for it, don't do them again
  210. * @nf_trace: netfilter packet trace flag
  211. * @nfctinfo: Relationship of this skb to the connection
  212. * @nfct_reasm: netfilter conntrack re-assembly pointer
  213. * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
  214. * @iif: ifindex of device we arrived on
  215. * @queue_mapping: Queue mapping for multiqueue devices
  216. * @tc_index: Traffic control index
  217. * @tc_verd: traffic control verdict
  218. * @ndisc_nodetype: router type (from link layer)
  219. * @dma_cookie: a cookie to one of several possible DMA operations
  220. * done by skb DMA functions
  221. * @secmark: security marking
  222. * @vlan_tci: vlan tag control information
  223. */
  224. struct sk_buff {
  225. /* These two members must be first. */
  226. struct sk_buff *next;
  227. struct sk_buff *prev;
  228. struct sock *sk;
  229. ktime_t tstamp;
  230. struct net_device *dev;
  231. union {
  232. struct dst_entry *dst;
  233. struct rtable *rtable;
  234. };
  235. struct sec_path *sp;
  236. /*
  237. * This is the control buffer. It is free to use for every
  238. * layer. Please put your private variables there. If you
  239. * want to keep them across layers you have to do a skb_clone()
  240. * first. This is owned by whoever has the skb queued ATM.
  241. */
  242. char cb[48];
  243. unsigned int len,
  244. data_len;
  245. __u16 mac_len,
  246. hdr_len;
  247. union {
  248. __wsum csum;
  249. struct {
  250. __u16 csum_start;
  251. __u16 csum_offset;
  252. };
  253. };
  254. __u32 priority;
  255. __u8 local_df:1,
  256. cloned:1,
  257. ip_summed:2,
  258. nohdr:1,
  259. nfctinfo:3;
  260. __u8 pkt_type:3,
  261. fclone:2,
  262. ipvs_property:1,
  263. peeked:1,
  264. nf_trace:1;
  265. __be16 protocol;
  266. void (*destructor)(struct sk_buff *skb);
  267. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  268. struct nf_conntrack *nfct;
  269. struct sk_buff *nfct_reasm;
  270. #endif
  271. #ifdef CONFIG_BRIDGE_NETFILTER
  272. struct nf_bridge_info *nf_bridge;
  273. #endif
  274. int iif;
  275. __u16 queue_mapping;
  276. #ifdef CONFIG_NET_SCHED
  277. __u16 tc_index; /* traffic control index */
  278. #ifdef CONFIG_NET_CLS_ACT
  279. __u16 tc_verd; /* traffic control verdict */
  280. #endif
  281. #endif
  282. #ifdef CONFIG_IPV6_NDISC_NODETYPE
  283. __u8 ndisc_nodetype:2;
  284. #endif
  285. #if defined(CONFIG_MAC80211) || defined(CONFIG_MAC80211_MODULE)
  286. __u8 do_not_encrypt:1;
  287. #endif
  288. /* 0/13/14 bit hole */
  289. #ifdef CONFIG_NET_DMA
  290. dma_cookie_t dma_cookie;
  291. #endif
  292. #ifdef CONFIG_NETWORK_SECMARK
  293. __u32 secmark;
  294. #endif
  295. __u32 mark;
  296. __u16 vlan_tci;
  297. sk_buff_data_t transport_header;
  298. sk_buff_data_t network_header;
  299. sk_buff_data_t mac_header;
  300. /* These elements must be at the end, see alloc_skb() for details. */
  301. sk_buff_data_t tail;
  302. sk_buff_data_t end;
  303. unsigned char *head,
  304. *data;
  305. unsigned int truesize;
  306. atomic_t users;
  307. };
  308. #ifdef __KERNEL__
  309. /*
  310. * Handling routines are only of interest to the kernel
  311. */
  312. #include <linux/slab.h>
  313. #include <asm/system.h>
  314. extern void kfree_skb(struct sk_buff *skb);
  315. extern void __kfree_skb(struct sk_buff *skb);
  316. extern struct sk_buff *__alloc_skb(unsigned int size,
  317. gfp_t priority, int fclone, int node);
  318. static inline struct sk_buff *alloc_skb(unsigned int size,
  319. gfp_t priority)
  320. {
  321. return __alloc_skb(size, priority, 0, -1);
  322. }
  323. static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
  324. gfp_t priority)
  325. {
  326. return __alloc_skb(size, priority, 1, -1);
  327. }
  328. extern struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
  329. extern struct sk_buff *skb_clone(struct sk_buff *skb,
  330. gfp_t priority);
  331. extern struct sk_buff *skb_copy(const struct sk_buff *skb,
  332. gfp_t priority);
  333. extern struct sk_buff *pskb_copy(struct sk_buff *skb,
  334. gfp_t gfp_mask);
  335. extern int pskb_expand_head(struct sk_buff *skb,
  336. int nhead, int ntail,
  337. gfp_t gfp_mask);
  338. extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
  339. unsigned int headroom);
  340. extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
  341. int newheadroom, int newtailroom,
  342. gfp_t priority);
  343. extern int skb_to_sgvec(struct sk_buff *skb,
  344. struct scatterlist *sg, int offset,
  345. int len);
  346. extern int skb_cow_data(struct sk_buff *skb, int tailbits,
  347. struct sk_buff **trailer);
  348. extern int skb_pad(struct sk_buff *skb, int pad);
  349. #define dev_kfree_skb(a) kfree_skb(a)
  350. extern void skb_over_panic(struct sk_buff *skb, int len,
  351. void *here);
  352. extern void skb_under_panic(struct sk_buff *skb, int len,
  353. void *here);
  354. extern void skb_truesize_bug(struct sk_buff *skb);
  355. static inline void skb_truesize_check(struct sk_buff *skb)
  356. {
  357. int len = sizeof(struct sk_buff) + skb->len;
  358. if (unlikely((int)skb->truesize < len))
  359. skb_truesize_bug(skb);
  360. }
  361. extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
  362. int getfrag(void *from, char *to, int offset,
  363. int len,int odd, struct sk_buff *skb),
  364. void *from, int length);
  365. struct skb_seq_state
  366. {
  367. __u32 lower_offset;
  368. __u32 upper_offset;
  369. __u32 frag_idx;
  370. __u32 stepped_offset;
  371. struct sk_buff *root_skb;
  372. struct sk_buff *cur_skb;
  373. __u8 *frag_data;
  374. };
  375. extern void skb_prepare_seq_read(struct sk_buff *skb,
  376. unsigned int from, unsigned int to,
  377. struct skb_seq_state *st);
  378. extern unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
  379. struct skb_seq_state *st);
  380. extern void skb_abort_seq_read(struct skb_seq_state *st);
  381. extern unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
  382. unsigned int to, struct ts_config *config,
  383. struct ts_state *state);
  384. #ifdef NET_SKBUFF_DATA_USES_OFFSET
  385. static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
  386. {
  387. return skb->head + skb->end;
  388. }
  389. #else
  390. static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
  391. {
  392. return skb->end;
  393. }
  394. #endif
  395. /* Internal */
  396. #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
  397. /**
  398. * skb_queue_empty - check if a queue is empty
  399. * @list: queue head
  400. *
  401. * Returns true if the queue is empty, false otherwise.
  402. */
  403. static inline int skb_queue_empty(const struct sk_buff_head *list)
  404. {
  405. return list->next == (struct sk_buff *)list;
  406. }
  407. /**
  408. * skb_get - reference buffer
  409. * @skb: buffer to reference
  410. *
  411. * Makes another reference to a socket buffer and returns a pointer
  412. * to the buffer.
  413. */
  414. static inline struct sk_buff *skb_get(struct sk_buff *skb)
  415. {
  416. atomic_inc(&skb->users);
  417. return skb;
  418. }
  419. /*
  420. * If users == 1, we are the only owner and are can avoid redundant
  421. * atomic change.
  422. */
  423. /**
  424. * skb_cloned - is the buffer a clone
  425. * @skb: buffer to check
  426. *
  427. * Returns true if the buffer was generated with skb_clone() and is
  428. * one of multiple shared copies of the buffer. Cloned buffers are
  429. * shared data so must not be written to under normal circumstances.
  430. */
  431. static inline int skb_cloned(const struct sk_buff *skb)
  432. {
  433. return skb->cloned &&
  434. (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
  435. }
  436. /**
  437. * skb_header_cloned - is the header a clone
  438. * @skb: buffer to check
  439. *
  440. * Returns true if modifying the header part of the buffer requires
  441. * the data to be copied.
  442. */
  443. static inline int skb_header_cloned(const struct sk_buff *skb)
  444. {
  445. int dataref;
  446. if (!skb->cloned)
  447. return 0;
  448. dataref = atomic_read(&skb_shinfo(skb)->dataref);
  449. dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
  450. return dataref != 1;
  451. }
  452. /**
  453. * skb_header_release - release reference to header
  454. * @skb: buffer to operate on
  455. *
  456. * Drop a reference to the header part of the buffer. This is done
  457. * by acquiring a payload reference. You must not read from the header
  458. * part of skb->data after this.
  459. */
  460. static inline void skb_header_release(struct sk_buff *skb)
  461. {
  462. BUG_ON(skb->nohdr);
  463. skb->nohdr = 1;
  464. atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
  465. }
  466. /**
  467. * skb_shared - is the buffer shared
  468. * @skb: buffer to check
  469. *
  470. * Returns true if more than one person has a reference to this
  471. * buffer.
  472. */
  473. static inline int skb_shared(const struct sk_buff *skb)
  474. {
  475. return atomic_read(&skb->users) != 1;
  476. }
  477. /**
  478. * skb_share_check - check if buffer is shared and if so clone it
  479. * @skb: buffer to check
  480. * @pri: priority for memory allocation
  481. *
  482. * If the buffer is shared the buffer is cloned and the old copy
  483. * drops a reference. A new clone with a single reference is returned.
  484. * If the buffer is not shared the original buffer is returned. When
  485. * being called from interrupt status or with spinlocks held pri must
  486. * be GFP_ATOMIC.
  487. *
  488. * NULL is returned on a memory allocation failure.
  489. */
  490. static inline struct sk_buff *skb_share_check(struct sk_buff *skb,
  491. gfp_t pri)
  492. {
  493. might_sleep_if(pri & __GFP_WAIT);
  494. if (skb_shared(skb)) {
  495. struct sk_buff *nskb = skb_clone(skb, pri);
  496. kfree_skb(skb);
  497. skb = nskb;
  498. }
  499. return skb;
  500. }
  501. /*
  502. * Copy shared buffers into a new sk_buff. We effectively do COW on
  503. * packets to handle cases where we have a local reader and forward
  504. * and a couple of other messy ones. The normal one is tcpdumping
  505. * a packet thats being forwarded.
  506. */
  507. /**
  508. * skb_unshare - make a copy of a shared buffer
  509. * @skb: buffer to check
  510. * @pri: priority for memory allocation
  511. *
  512. * If the socket buffer is a clone then this function creates a new
  513. * copy of the data, drops a reference count on the old copy and returns
  514. * the new copy with the reference count at 1. If the buffer is not a clone
  515. * the original buffer is returned. When called with a spinlock held or
  516. * from interrupt state @pri must be %GFP_ATOMIC
  517. *
  518. * %NULL is returned on a memory allocation failure.
  519. */
  520. static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
  521. gfp_t pri)
  522. {
  523. might_sleep_if(pri & __GFP_WAIT);
  524. if (skb_cloned(skb)) {
  525. struct sk_buff *nskb = skb_copy(skb, pri);
  526. kfree_skb(skb); /* Free our shared copy */
  527. skb = nskb;
  528. }
  529. return skb;
  530. }
  531. /**
  532. * skb_peek
  533. * @list_: list to peek at
  534. *
  535. * Peek an &sk_buff. Unlike most other operations you _MUST_
  536. * be careful with this one. A peek leaves the buffer on the
  537. * list and someone else may run off with it. You must hold
  538. * the appropriate locks or have a private queue to do this.
  539. *
  540. * Returns %NULL for an empty list or a pointer to the head element.
  541. * The reference count is not incremented and the reference is therefore
  542. * volatile. Use with caution.
  543. */
  544. static inline struct sk_buff *skb_peek(struct sk_buff_head *list_)
  545. {
  546. struct sk_buff *list = ((struct sk_buff *)list_)->next;
  547. if (list == (struct sk_buff *)list_)
  548. list = NULL;
  549. return list;
  550. }
  551. /**
  552. * skb_peek_tail
  553. * @list_: list to peek at
  554. *
  555. * Peek an &sk_buff. Unlike most other operations you _MUST_
  556. * be careful with this one. A peek leaves the buffer on the
  557. * list and someone else may run off with it. You must hold
  558. * the appropriate locks or have a private queue to do this.
  559. *
  560. * Returns %NULL for an empty list or a pointer to the tail element.
  561. * The reference count is not incremented and the reference is therefore
  562. * volatile. Use with caution.
  563. */
  564. static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_)
  565. {
  566. struct sk_buff *list = ((struct sk_buff *)list_)->prev;
  567. if (list == (struct sk_buff *)list_)
  568. list = NULL;
  569. return list;
  570. }
  571. /**
  572. * skb_queue_len - get queue length
  573. * @list_: list to measure
  574. *
  575. * Return the length of an &sk_buff queue.
  576. */
  577. static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
  578. {
  579. return list_->qlen;
  580. }
  581. /*
  582. * This function creates a split out lock class for each invocation;
  583. * this is needed for now since a whole lot of users of the skb-queue
  584. * infrastructure in drivers have different locking usage (in hardirq)
  585. * than the networking core (in softirq only). In the long run either the
  586. * network layer or drivers should need annotation to consolidate the
  587. * main types of usage into 3 classes.
  588. */
  589. static inline void skb_queue_head_init(struct sk_buff_head *list)
  590. {
  591. spin_lock_init(&list->lock);
  592. list->prev = list->next = (struct sk_buff *)list;
  593. list->qlen = 0;
  594. }
  595. static inline void skb_queue_head_init_class(struct sk_buff_head *list,
  596. struct lock_class_key *class)
  597. {
  598. skb_queue_head_init(list);
  599. lockdep_set_class(&list->lock, class);
  600. }
  601. /*
  602. * Insert an sk_buff on a list.
  603. *
  604. * The "__skb_xxxx()" functions are the non-atomic ones that
  605. * can only be called with interrupts disabled.
  606. */
  607. extern void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
  608. static inline void __skb_insert(struct sk_buff *newsk,
  609. struct sk_buff *prev, struct sk_buff *next,
  610. struct sk_buff_head *list)
  611. {
  612. newsk->next = next;
  613. newsk->prev = prev;
  614. next->prev = prev->next = newsk;
  615. list->qlen++;
  616. }
  617. /**
  618. * __skb_queue_after - queue a buffer at the list head
  619. * @list: list to use
  620. * @prev: place after this buffer
  621. * @newsk: buffer to queue
  622. *
  623. * Queue a buffer int the middle of a list. This function takes no locks
  624. * and you must therefore hold required locks before calling it.
  625. *
  626. * A buffer cannot be placed on two lists at the same time.
  627. */
  628. static inline void __skb_queue_after(struct sk_buff_head *list,
  629. struct sk_buff *prev,
  630. struct sk_buff *newsk)
  631. {
  632. __skb_insert(newsk, prev, prev->next, list);
  633. }
  634. extern void skb_append(struct sk_buff *old, struct sk_buff *newsk,
  635. struct sk_buff_head *list);
  636. static inline void __skb_queue_before(struct sk_buff_head *list,
  637. struct sk_buff *next,
  638. struct sk_buff *newsk)
  639. {
  640. __skb_insert(newsk, next->prev, next, list);
  641. }
  642. /**
  643. * __skb_queue_head - queue a buffer at the list head
  644. * @list: list to use
  645. * @newsk: buffer to queue
  646. *
  647. * Queue a buffer at the start of a list. This function takes no locks
  648. * and you must therefore hold required locks before calling it.
  649. *
  650. * A buffer cannot be placed on two lists at the same time.
  651. */
  652. extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
  653. static inline void __skb_queue_head(struct sk_buff_head *list,
  654. struct sk_buff *newsk)
  655. {
  656. __skb_queue_after(list, (struct sk_buff *)list, newsk);
  657. }
  658. /**
  659. * __skb_queue_tail - queue a buffer at the list tail
  660. * @list: list to use
  661. * @newsk: buffer to queue
  662. *
  663. * Queue a buffer at the end of a list. This function takes no locks
  664. * and you must therefore hold required locks before calling it.
  665. *
  666. * A buffer cannot be placed on two lists at the same time.
  667. */
  668. extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
  669. static inline void __skb_queue_tail(struct sk_buff_head *list,
  670. struct sk_buff *newsk)
  671. {
  672. __skb_queue_before(list, (struct sk_buff *)list, newsk);
  673. }
  674. /*
  675. * remove sk_buff from list. _Must_ be called atomically, and with
  676. * the list known..
  677. */
  678. extern void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
  679. static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
  680. {
  681. struct sk_buff *next, *prev;
  682. list->qlen--;
  683. next = skb->next;
  684. prev = skb->prev;
  685. skb->next = skb->prev = NULL;
  686. next->prev = prev;
  687. prev->next = next;
  688. }
  689. /**
  690. * __skb_dequeue - remove from the head of the queue
  691. * @list: list to dequeue from
  692. *
  693. * Remove the head of the list. This function does not take any locks
  694. * so must be used with appropriate locks held only. The head item is
  695. * returned or %NULL if the list is empty.
  696. */
  697. extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
  698. static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
  699. {
  700. struct sk_buff *skb = skb_peek(list);
  701. if (skb)
  702. __skb_unlink(skb, list);
  703. return skb;
  704. }
  705. /**
  706. * __skb_dequeue_tail - remove from the tail of the queue
  707. * @list: list to dequeue from
  708. *
  709. * Remove the tail of the list. This function does not take any locks
  710. * so must be used with appropriate locks held only. The tail item is
  711. * returned or %NULL if the list is empty.
  712. */
  713. extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
  714. static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
  715. {
  716. struct sk_buff *skb = skb_peek_tail(list);
  717. if (skb)
  718. __skb_unlink(skb, list);
  719. return skb;
  720. }
  721. static inline int skb_is_nonlinear(const struct sk_buff *skb)
  722. {
  723. return skb->data_len;
  724. }
  725. static inline unsigned int skb_headlen(const struct sk_buff *skb)
  726. {
  727. return skb->len - skb->data_len;
  728. }
  729. static inline int skb_pagelen(const struct sk_buff *skb)
  730. {
  731. int i, len = 0;
  732. for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
  733. len += skb_shinfo(skb)->frags[i].size;
  734. return len + skb_headlen(skb);
  735. }
  736. static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
  737. struct page *page, int off, int size)
  738. {
  739. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  740. frag->page = page;
  741. frag->page_offset = off;
  742. frag->size = size;
  743. skb_shinfo(skb)->nr_frags = i + 1;
  744. }
  745. #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
  746. #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_shinfo(skb)->frag_list)
  747. #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
  748. #ifdef NET_SKBUFF_DATA_USES_OFFSET
  749. static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
  750. {
  751. return skb->head + skb->tail;
  752. }
  753. static inline void skb_reset_tail_pointer(struct sk_buff *skb)
  754. {
  755. skb->tail = skb->data - skb->head;
  756. }
  757. static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
  758. {
  759. skb_reset_tail_pointer(skb);
  760. skb->tail += offset;
  761. }
  762. #else /* NET_SKBUFF_DATA_USES_OFFSET */
  763. static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
  764. {
  765. return skb->tail;
  766. }
  767. static inline void skb_reset_tail_pointer(struct sk_buff *skb)
  768. {
  769. skb->tail = skb->data;
  770. }
  771. static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
  772. {
  773. skb->tail = skb->data + offset;
  774. }
  775. #endif /* NET_SKBUFF_DATA_USES_OFFSET */
  776. /*
  777. * Add data to an sk_buff
  778. */
  779. extern unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
  780. static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
  781. {
  782. unsigned char *tmp = skb_tail_pointer(skb);
  783. SKB_LINEAR_ASSERT(skb);
  784. skb->tail += len;
  785. skb->len += len;
  786. return tmp;
  787. }
  788. extern unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
  789. static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
  790. {
  791. skb->data -= len;
  792. skb->len += len;
  793. return skb->data;
  794. }
  795. extern unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
  796. static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
  797. {
  798. skb->len -= len;
  799. BUG_ON(skb->len < skb->data_len);
  800. return skb->data += len;
  801. }
  802. extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
  803. static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
  804. {
  805. if (len > skb_headlen(skb) &&
  806. !__pskb_pull_tail(skb, len-skb_headlen(skb)))
  807. return NULL;
  808. skb->len -= len;
  809. return skb->data += len;
  810. }
  811. static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
  812. {
  813. return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
  814. }
  815. static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
  816. {
  817. if (likely(len <= skb_headlen(skb)))
  818. return 1;
  819. if (unlikely(len > skb->len))
  820. return 0;
  821. return __pskb_pull_tail(skb, len-skb_headlen(skb)) != NULL;
  822. }
  823. /**
  824. * skb_headroom - bytes at buffer head
  825. * @skb: buffer to check
  826. *
  827. * Return the number of bytes of free space at the head of an &sk_buff.
  828. */
  829. static inline unsigned int skb_headroom(const struct sk_buff *skb)
  830. {
  831. return skb->data - skb->head;
  832. }
  833. /**
  834. * skb_tailroom - bytes at buffer end
  835. * @skb: buffer to check
  836. *
  837. * Return the number of bytes of free space at the tail of an sk_buff
  838. */
  839. static inline int skb_tailroom(const struct sk_buff *skb)
  840. {
  841. return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
  842. }
  843. /**
  844. * skb_reserve - adjust headroom
  845. * @skb: buffer to alter
  846. * @len: bytes to move
  847. *
  848. * Increase the headroom of an empty &sk_buff by reducing the tail
  849. * room. This is only allowed for an empty buffer.
  850. */
  851. static inline void skb_reserve(struct sk_buff *skb, int len)
  852. {
  853. skb->data += len;
  854. skb->tail += len;
  855. }
  856. #ifdef NET_SKBUFF_DATA_USES_OFFSET
  857. static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
  858. {
  859. return skb->head + skb->transport_header;
  860. }
  861. static inline void skb_reset_transport_header(struct sk_buff *skb)
  862. {
  863. skb->transport_header = skb->data - skb->head;
  864. }
  865. static inline void skb_set_transport_header(struct sk_buff *skb,
  866. const int offset)
  867. {
  868. skb_reset_transport_header(skb);
  869. skb->transport_header += offset;
  870. }
  871. static inline unsigned char *skb_network_header(const struct sk_buff *skb)
  872. {
  873. return skb->head + skb->network_header;
  874. }
  875. static inline void skb_reset_network_header(struct sk_buff *skb)
  876. {
  877. skb->network_header = skb->data - skb->head;
  878. }
  879. static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
  880. {
  881. skb_reset_network_header(skb);
  882. skb->network_header += offset;
  883. }
  884. static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
  885. {
  886. return skb->head + skb->mac_header;
  887. }
  888. static inline int skb_mac_header_was_set(const struct sk_buff *skb)
  889. {
  890. return skb->mac_header != ~0U;
  891. }
  892. static inline void skb_reset_mac_header(struct sk_buff *skb)
  893. {
  894. skb->mac_header = skb->data - skb->head;
  895. }
  896. static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
  897. {
  898. skb_reset_mac_header(skb);
  899. skb->mac_header += offset;
  900. }
  901. #else /* NET_SKBUFF_DATA_USES_OFFSET */
  902. static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
  903. {
  904. return skb->transport_header;
  905. }
  906. static inline void skb_reset_transport_header(struct sk_buff *skb)
  907. {
  908. skb->transport_header = skb->data;
  909. }
  910. static inline void skb_set_transport_header(struct sk_buff *skb,
  911. const int offset)
  912. {
  913. skb->transport_header = skb->data + offset;
  914. }
  915. static inline unsigned char *skb_network_header(const struct sk_buff *skb)
  916. {
  917. return skb->network_header;
  918. }
  919. static inline void skb_reset_network_header(struct sk_buff *skb)
  920. {
  921. skb->network_header = skb->data;
  922. }
  923. static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
  924. {
  925. skb->network_header = skb->data + offset;
  926. }
  927. static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
  928. {
  929. return skb->mac_header;
  930. }
  931. static inline int skb_mac_header_was_set(const struct sk_buff *skb)
  932. {
  933. return skb->mac_header != NULL;
  934. }
  935. static inline void skb_reset_mac_header(struct sk_buff *skb)
  936. {
  937. skb->mac_header = skb->data;
  938. }
  939. static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
  940. {
  941. skb->mac_header = skb->data + offset;
  942. }
  943. #endif /* NET_SKBUFF_DATA_USES_OFFSET */
  944. static inline int skb_transport_offset(const struct sk_buff *skb)
  945. {
  946. return skb_transport_header(skb) - skb->data;
  947. }
  948. static inline u32 skb_network_header_len(const struct sk_buff *skb)
  949. {
  950. return skb->transport_header - skb->network_header;
  951. }
  952. static inline int skb_network_offset(const struct sk_buff *skb)
  953. {
  954. return skb_network_header(skb) - skb->data;
  955. }
  956. /*
  957. * CPUs often take a performance hit when accessing unaligned memory
  958. * locations. The actual performance hit varies, it can be small if the
  959. * hardware handles it or large if we have to take an exception and fix it
  960. * in software.
  961. *
  962. * Since an ethernet header is 14 bytes network drivers often end up with
  963. * the IP header at an unaligned offset. The IP header can be aligned by
  964. * shifting the start of the packet by 2 bytes. Drivers should do this
  965. * with:
  966. *
  967. * skb_reserve(NET_IP_ALIGN);
  968. *
  969. * The downside to this alignment of the IP header is that the DMA is now
  970. * unaligned. On some architectures the cost of an unaligned DMA is high
  971. * and this cost outweighs the gains made by aligning the IP header.
  972. *
  973. * Since this trade off varies between architectures, we allow NET_IP_ALIGN
  974. * to be overridden.
  975. */
  976. #ifndef NET_IP_ALIGN
  977. #define NET_IP_ALIGN 2
  978. #endif
  979. /*
  980. * The networking layer reserves some headroom in skb data (via
  981. * dev_alloc_skb). This is used to avoid having to reallocate skb data when
  982. * the header has to grow. In the default case, if the header has to grow
  983. * 16 bytes or less we avoid the reallocation.
  984. *
  985. * Unfortunately this headroom changes the DMA alignment of the resulting
  986. * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
  987. * on some architectures. An architecture can override this value,
  988. * perhaps setting it to a cacheline in size (since that will maintain
  989. * cacheline alignment of the DMA). It must be a power of 2.
  990. *
  991. * Various parts of the networking layer expect at least 16 bytes of
  992. * headroom, you should not reduce this.
  993. */
  994. #ifndef NET_SKB_PAD
  995. #define NET_SKB_PAD 16
  996. #endif
  997. extern int ___pskb_trim(struct sk_buff *skb, unsigned int len);
  998. static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
  999. {
  1000. if (unlikely(skb->data_len)) {
  1001. WARN_ON(1);
  1002. return;
  1003. }
  1004. skb->len = len;
  1005. skb_set_tail_pointer(skb, len);
  1006. }
  1007. extern void skb_trim(struct sk_buff *skb, unsigned int len);
  1008. static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
  1009. {
  1010. if (skb->data_len)
  1011. return ___pskb_trim(skb, len);
  1012. __skb_trim(skb, len);
  1013. return 0;
  1014. }
  1015. static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
  1016. {
  1017. return (len < skb->len) ? __pskb_trim(skb, len) : 0;
  1018. }
  1019. /**
  1020. * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
  1021. * @skb: buffer to alter
  1022. * @len: new length
  1023. *
  1024. * This is identical to pskb_trim except that the caller knows that
  1025. * the skb is not cloned so we should never get an error due to out-
  1026. * of-memory.
  1027. */
  1028. static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
  1029. {
  1030. int err = pskb_trim(skb, len);
  1031. BUG_ON(err);
  1032. }
  1033. /**
  1034. * skb_orphan - orphan a buffer
  1035. * @skb: buffer to orphan
  1036. *
  1037. * If a buffer currently has an owner then we call the owner's
  1038. * destructor function and make the @skb unowned. The buffer continues
  1039. * to exist but is no longer charged to its former owner.
  1040. */
  1041. static inline void skb_orphan(struct sk_buff *skb)
  1042. {
  1043. if (skb->destructor)
  1044. skb->destructor(skb);
  1045. skb->destructor = NULL;
  1046. skb->sk = NULL;
  1047. }
  1048. /**
  1049. * __skb_queue_purge - empty a list
  1050. * @list: list to empty
  1051. *
  1052. * Delete all buffers on an &sk_buff list. Each buffer is removed from
  1053. * the list and one reference dropped. This function does not take the
  1054. * list lock and the caller must hold the relevant locks to use it.
  1055. */
  1056. extern void skb_queue_purge(struct sk_buff_head *list);
  1057. static inline void __skb_queue_purge(struct sk_buff_head *list)
  1058. {
  1059. struct sk_buff *skb;
  1060. while ((skb = __skb_dequeue(list)) != NULL)
  1061. kfree_skb(skb);
  1062. }
  1063. /**
  1064. * __dev_alloc_skb - allocate an skbuff for receiving
  1065. * @length: length to allocate
  1066. * @gfp_mask: get_free_pages mask, passed to alloc_skb
  1067. *
  1068. * Allocate a new &sk_buff and assign it a usage count of one. The
  1069. * buffer has unspecified headroom built in. Users should allocate
  1070. * the headroom they think they need without accounting for the
  1071. * built in space. The built in space is used for optimisations.
  1072. *
  1073. * %NULL is returned if there is no free memory.
  1074. */
  1075. static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
  1076. gfp_t gfp_mask)
  1077. {
  1078. struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask);
  1079. if (likely(skb))
  1080. skb_reserve(skb, NET_SKB_PAD);
  1081. return skb;
  1082. }
  1083. extern struct sk_buff *dev_alloc_skb(unsigned int length);
  1084. extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
  1085. unsigned int length, gfp_t gfp_mask);
  1086. /**
  1087. * netdev_alloc_skb - allocate an skbuff for rx on a specific device
  1088. * @dev: network device to receive on
  1089. * @length: length to allocate
  1090. *
  1091. * Allocate a new &sk_buff and assign it a usage count of one. The
  1092. * buffer has unspecified headroom built in. Users should allocate
  1093. * the headroom they think they need without accounting for the
  1094. * built in space. The built in space is used for optimisations.
  1095. *
  1096. * %NULL is returned if there is no free memory. Although this function
  1097. * allocates memory it can be called from an interrupt.
  1098. */
  1099. static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
  1100. unsigned int length)
  1101. {
  1102. return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
  1103. }
  1104. /**
  1105. * skb_clone_writable - is the header of a clone writable
  1106. * @skb: buffer to check
  1107. * @len: length up to which to write
  1108. *
  1109. * Returns true if modifying the header part of the cloned buffer
  1110. * does not requires the data to be copied.
  1111. */
  1112. static inline int skb_clone_writable(struct sk_buff *skb, unsigned int len)
  1113. {
  1114. return !skb_header_cloned(skb) &&
  1115. skb_headroom(skb) + len <= skb->hdr_len;
  1116. }
  1117. static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
  1118. int cloned)
  1119. {
  1120. int delta = 0;
  1121. if (headroom < NET_SKB_PAD)
  1122. headroom = NET_SKB_PAD;
  1123. if (headroom > skb_headroom(skb))
  1124. delta = headroom - skb_headroom(skb);
  1125. if (delta || cloned)
  1126. return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
  1127. GFP_ATOMIC);
  1128. return 0;
  1129. }
  1130. /**
  1131. * skb_cow - copy header of skb when it is required
  1132. * @skb: buffer to cow
  1133. * @headroom: needed headroom
  1134. *
  1135. * If the skb passed lacks sufficient headroom or its data part
  1136. * is shared, data is reallocated. If reallocation fails, an error
  1137. * is returned and original skb is not changed.
  1138. *
  1139. * The result is skb with writable area skb->head...skb->tail
  1140. * and at least @headroom of space at head.
  1141. */
  1142. static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
  1143. {
  1144. return __skb_cow(skb, headroom, skb_cloned(skb));
  1145. }
  1146. /**
  1147. * skb_cow_head - skb_cow but only making the head writable
  1148. * @skb: buffer to cow
  1149. * @headroom: needed headroom
  1150. *
  1151. * This function is identical to skb_cow except that we replace the
  1152. * skb_cloned check by skb_header_cloned. It should be used when
  1153. * you only need to push on some header and do not need to modify
  1154. * the data.
  1155. */
  1156. static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
  1157. {
  1158. return __skb_cow(skb, headroom, skb_header_cloned(skb));
  1159. }
  1160. /**
  1161. * skb_padto - pad an skbuff up to a minimal size
  1162. * @skb: buffer to pad
  1163. * @len: minimal length
  1164. *
  1165. * Pads up a buffer to ensure the trailing bytes exist and are
  1166. * blanked. If the buffer already contains sufficient data it
  1167. * is untouched. Otherwise it is extended. Returns zero on
  1168. * success. The skb is freed on error.
  1169. */
  1170. static inline int skb_padto(struct sk_buff *skb, unsigned int len)
  1171. {
  1172. unsigned int size = skb->len;
  1173. if (likely(size >= len))
  1174. return 0;
  1175. return skb_pad(skb, len-size);
  1176. }
  1177. static inline int skb_add_data(struct sk_buff *skb,
  1178. char __user *from, int copy)
  1179. {
  1180. const int off = skb->len;
  1181. if (skb->ip_summed == CHECKSUM_NONE) {
  1182. int err = 0;
  1183. __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy),
  1184. copy, 0, &err);
  1185. if (!err) {
  1186. skb->csum = csum_block_add(skb->csum, csum, off);
  1187. return 0;
  1188. }
  1189. } else if (!copy_from_user(skb_put(skb, copy), from, copy))
  1190. return 0;
  1191. __skb_trim(skb, off);
  1192. return -EFAULT;
  1193. }
  1194. static inline int skb_can_coalesce(struct sk_buff *skb, int i,
  1195. struct page *page, int off)
  1196. {
  1197. if (i) {
  1198. struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
  1199. return page == frag->page &&
  1200. off == frag->page_offset + frag->size;
  1201. }
  1202. return 0;
  1203. }
  1204. static inline int __skb_linearize(struct sk_buff *skb)
  1205. {
  1206. return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
  1207. }
  1208. /**
  1209. * skb_linearize - convert paged skb to linear one
  1210. * @skb: buffer to linarize
  1211. *
  1212. * If there is no free memory -ENOMEM is returned, otherwise zero
  1213. * is returned and the old skb data released.
  1214. */
  1215. static inline int skb_linearize(struct sk_buff *skb)
  1216. {
  1217. return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
  1218. }
  1219. /**
  1220. * skb_linearize_cow - make sure skb is linear and writable
  1221. * @skb: buffer to process
  1222. *
  1223. * If there is no free memory -ENOMEM is returned, otherwise zero
  1224. * is returned and the old skb data released.
  1225. */
  1226. static inline int skb_linearize_cow(struct sk_buff *skb)
  1227. {
  1228. return skb_is_nonlinear(skb) || skb_cloned(skb) ?
  1229. __skb_linearize(skb) : 0;
  1230. }
  1231. /**
  1232. * skb_postpull_rcsum - update checksum for received skb after pull
  1233. * @skb: buffer to update
  1234. * @start: start of data before pull
  1235. * @len: length of data pulled
  1236. *
  1237. * After doing a pull on a received packet, you need to call this to
  1238. * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
  1239. * CHECKSUM_NONE so that it can be recomputed from scratch.
  1240. */
  1241. static inline void skb_postpull_rcsum(struct sk_buff *skb,
  1242. const void *start, unsigned int len)
  1243. {
  1244. if (skb->ip_summed == CHECKSUM_COMPLETE)
  1245. skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
  1246. }
  1247. unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
  1248. /**
  1249. * pskb_trim_rcsum - trim received skb and update checksum
  1250. * @skb: buffer to trim
  1251. * @len: new length
  1252. *
  1253. * This is exactly the same as pskb_trim except that it ensures the
  1254. * checksum of received packets are still valid after the operation.
  1255. */
  1256. static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
  1257. {
  1258. if (likely(len >= skb->len))
  1259. return 0;
  1260. if (skb->ip_summed == CHECKSUM_COMPLETE)
  1261. skb->ip_summed = CHECKSUM_NONE;
  1262. return __pskb_trim(skb, len);
  1263. }
  1264. #define skb_queue_walk(queue, skb) \
  1265. for (skb = (queue)->next; \
  1266. prefetch(skb->next), (skb != (struct sk_buff *)(queue)); \
  1267. skb = skb->next)
  1268. #define skb_queue_walk_safe(queue, skb, tmp) \
  1269. for (skb = (queue)->next, tmp = skb->next; \
  1270. skb != (struct sk_buff *)(queue); \
  1271. skb = tmp, tmp = skb->next)
  1272. #define skb_queue_reverse_walk(queue, skb) \
  1273. for (skb = (queue)->prev; \
  1274. prefetch(skb->prev), (skb != (struct sk_buff *)(queue)); \
  1275. skb = skb->prev)
  1276. extern struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
  1277. int *peeked, int *err);
  1278. extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
  1279. int noblock, int *err);
  1280. extern unsigned int datagram_poll(struct file *file, struct socket *sock,
  1281. struct poll_table_struct *wait);
  1282. extern int skb_copy_datagram_iovec(const struct sk_buff *from,
  1283. int offset, struct iovec *to,
  1284. int size);
  1285. extern int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb,
  1286. int hlen,
  1287. struct iovec *iov);
  1288. extern void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
  1289. extern int skb_kill_datagram(struct sock *sk, struct sk_buff *skb,
  1290. unsigned int flags);
  1291. extern __wsum skb_checksum(const struct sk_buff *skb, int offset,
  1292. int len, __wsum csum);
  1293. extern int skb_copy_bits(const struct sk_buff *skb, int offset,
  1294. void *to, int len);
  1295. extern int skb_store_bits(struct sk_buff *skb, int offset,
  1296. const void *from, int len);
  1297. extern __wsum skb_copy_and_csum_bits(const struct sk_buff *skb,
  1298. int offset, u8 *to, int len,
  1299. __wsum csum);
  1300. extern int skb_splice_bits(struct sk_buff *skb,
  1301. unsigned int offset,
  1302. struct pipe_inode_info *pipe,
  1303. unsigned int len,
  1304. unsigned int flags);
  1305. extern void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
  1306. extern void skb_split(struct sk_buff *skb,
  1307. struct sk_buff *skb1, const u32 len);
  1308. extern struct sk_buff *skb_segment(struct sk_buff *skb, int features);
  1309. static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
  1310. int len, void *buffer)
  1311. {
  1312. int hlen = skb_headlen(skb);
  1313. if (hlen - offset >= len)
  1314. return skb->data + offset;
  1315. if (skb_copy_bits(skb, offset, buffer, len) < 0)
  1316. return NULL;
  1317. return buffer;
  1318. }
  1319. static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
  1320. void *to,
  1321. const unsigned int len)
  1322. {
  1323. memcpy(to, skb->data, len);
  1324. }
  1325. static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
  1326. const int offset, void *to,
  1327. const unsigned int len)
  1328. {
  1329. memcpy(to, skb->data + offset, len);
  1330. }
  1331. static inline void skb_copy_to_linear_data(struct sk_buff *skb,
  1332. const void *from,
  1333. const unsigned int len)
  1334. {
  1335. memcpy(skb->data, from, len);
  1336. }
  1337. static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
  1338. const int offset,
  1339. const void *from,
  1340. const unsigned int len)
  1341. {
  1342. memcpy(skb->data + offset, from, len);
  1343. }
  1344. extern void skb_init(void);
  1345. /**
  1346. * skb_get_timestamp - get timestamp from a skb
  1347. * @skb: skb to get stamp from
  1348. * @stamp: pointer to struct timeval to store stamp in
  1349. *
  1350. * Timestamps are stored in the skb as offsets to a base timestamp.
  1351. * This function converts the offset back to a struct timeval and stores
  1352. * it in stamp.
  1353. */
  1354. static inline void skb_get_timestamp(const struct sk_buff *skb, struct timeval *stamp)
  1355. {
  1356. *stamp = ktime_to_timeval(skb->tstamp);
  1357. }
  1358. static inline void __net_timestamp(struct sk_buff *skb)
  1359. {
  1360. skb->tstamp = ktime_get_real();
  1361. }
  1362. static inline ktime_t net_timedelta(ktime_t t)
  1363. {
  1364. return ktime_sub(ktime_get_real(), t);
  1365. }
  1366. static inline ktime_t net_invalid_timestamp(void)
  1367. {
  1368. return ktime_set(0, 0);
  1369. }
  1370. extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
  1371. extern __sum16 __skb_checksum_complete(struct sk_buff *skb);
  1372. static inline int skb_csum_unnecessary(const struct sk_buff *skb)
  1373. {
  1374. return skb->ip_summed & CHECKSUM_UNNECESSARY;
  1375. }
  1376. /**
  1377. * skb_checksum_complete - Calculate checksum of an entire packet
  1378. * @skb: packet to process
  1379. *
  1380. * This function calculates the checksum over the entire packet plus
  1381. * the value of skb->csum. The latter can be used to supply the
  1382. * checksum of a pseudo header as used by TCP/UDP. It returns the
  1383. * checksum.
  1384. *
  1385. * For protocols that contain complete checksums such as ICMP/TCP/UDP,
  1386. * this function can be used to verify that checksum on received
  1387. * packets. In that case the function should return zero if the
  1388. * checksum is correct. In particular, this function will return zero
  1389. * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
  1390. * hardware has already verified the correctness of the checksum.
  1391. */
  1392. static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
  1393. {
  1394. return skb_csum_unnecessary(skb) ?
  1395. 0 : __skb_checksum_complete(skb);
  1396. }
  1397. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  1398. extern void nf_conntrack_destroy(struct nf_conntrack *nfct);
  1399. static inline void nf_conntrack_put(struct nf_conntrack *nfct)
  1400. {
  1401. if (nfct && atomic_dec_and_test(&nfct->use))
  1402. nf_conntrack_destroy(nfct);
  1403. }
  1404. static inline void nf_conntrack_get(struct nf_conntrack *nfct)
  1405. {
  1406. if (nfct)
  1407. atomic_inc(&nfct->use);
  1408. }
  1409. static inline void nf_conntrack_get_reasm(struct sk_buff *skb)
  1410. {
  1411. if (skb)
  1412. atomic_inc(&skb->users);
  1413. }
  1414. static inline void nf_conntrack_put_reasm(struct sk_buff *skb)
  1415. {
  1416. if (skb)
  1417. kfree_skb(skb);
  1418. }
  1419. #endif
  1420. #ifdef CONFIG_BRIDGE_NETFILTER
  1421. static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
  1422. {
  1423. if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
  1424. kfree(nf_bridge);
  1425. }
  1426. static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
  1427. {
  1428. if (nf_bridge)
  1429. atomic_inc(&nf_bridge->use);
  1430. }
  1431. #endif /* CONFIG_BRIDGE_NETFILTER */
  1432. static inline void nf_reset(struct sk_buff *skb)
  1433. {
  1434. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  1435. nf_conntrack_put(skb->nfct);
  1436. skb->nfct = NULL;
  1437. nf_conntrack_put_reasm(skb->nfct_reasm);
  1438. skb->nfct_reasm = NULL;
  1439. #endif
  1440. #ifdef CONFIG_BRIDGE_NETFILTER
  1441. nf_bridge_put(skb->nf_bridge);
  1442. skb->nf_bridge = NULL;
  1443. #endif
  1444. }
  1445. /* Note: This doesn't put any conntrack and bridge info in dst. */
  1446. static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src)
  1447. {
  1448. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  1449. dst->nfct = src->nfct;
  1450. nf_conntrack_get(src->nfct);
  1451. dst->nfctinfo = src->nfctinfo;
  1452. dst->nfct_reasm = src->nfct_reasm;
  1453. nf_conntrack_get_reasm(src->nfct_reasm);
  1454. #endif
  1455. #ifdef CONFIG_BRIDGE_NETFILTER
  1456. dst->nf_bridge = src->nf_bridge;
  1457. nf_bridge_get(src->nf_bridge);
  1458. #endif
  1459. }
  1460. static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
  1461. {
  1462. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  1463. nf_conntrack_put(dst->nfct);
  1464. nf_conntrack_put_reasm(dst->nfct_reasm);
  1465. #endif
  1466. #ifdef CONFIG_BRIDGE_NETFILTER
  1467. nf_bridge_put(dst->nf_bridge);
  1468. #endif
  1469. __nf_copy(dst, src);
  1470. }
  1471. #ifdef CONFIG_NETWORK_SECMARK
  1472. static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
  1473. {
  1474. to->secmark = from->secmark;
  1475. }
  1476. static inline void skb_init_secmark(struct sk_buff *skb)
  1477. {
  1478. skb->secmark = 0;
  1479. }
  1480. #else
  1481. static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
  1482. { }
  1483. static inline void skb_init_secmark(struct sk_buff *skb)
  1484. { }
  1485. #endif
  1486. static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
  1487. {
  1488. skb->queue_mapping = queue_mapping;
  1489. }
  1490. static inline u16 skb_get_queue_mapping(struct sk_buff *skb)
  1491. {
  1492. return skb->queue_mapping;
  1493. }
  1494. static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
  1495. {
  1496. to->queue_mapping = from->queue_mapping;
  1497. }
  1498. static inline int skb_is_gso(const struct sk_buff *skb)
  1499. {
  1500. return skb_shinfo(skb)->gso_size;
  1501. }
  1502. static inline int skb_is_gso_v6(const struct sk_buff *skb)
  1503. {
  1504. return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
  1505. }
  1506. extern void __skb_warn_lro_forwarding(const struct sk_buff *skb);
  1507. static inline bool skb_warn_if_lro(const struct sk_buff *skb)
  1508. {
  1509. /* LRO sets gso_size but not gso_type, whereas if GSO is really
  1510. * wanted then gso_type will be set. */
  1511. struct skb_shared_info *shinfo = skb_shinfo(skb);
  1512. if (shinfo->gso_size != 0 && unlikely(shinfo->gso_type == 0)) {
  1513. __skb_warn_lro_forwarding(skb);
  1514. return true;
  1515. }
  1516. return false;
  1517. }
  1518. static inline void skb_forward_csum(struct sk_buff *skb)
  1519. {
  1520. /* Unfortunately we don't support this one. Any brave souls? */
  1521. if (skb->ip_summed == CHECKSUM_COMPLETE)
  1522. skb->ip_summed = CHECKSUM_NONE;
  1523. }
  1524. bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
  1525. #endif /* __KERNEL__ */
  1526. #endif /* _LINUX_SKBUFF_H */