zcrypt_cex2a.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499
  1. /*
  2. * linux/drivers/s390/crypto/zcrypt_cex2a.c
  3. *
  4. * zcrypt 2.1.0
  5. *
  6. * Copyright (C) 2001, 2006 IBM Corporation
  7. * Author(s): Robert Burroughs
  8. * Eric Rossman (edrossma@us.ibm.com)
  9. *
  10. * Hotplug & misc device support: Jochen Roehrig (roehrig@de.ibm.com)
  11. * Major cleanup & driver split: Martin Schwidefsky <schwidefsky@de.ibm.com>
  12. * Ralph Wuerthner <rwuerthn@de.ibm.com>
  13. *
  14. * This program is free software; you can redistribute it and/or modify
  15. * it under the terms of the GNU General Public License as published by
  16. * the Free Software Foundation; either version 2, or (at your option)
  17. * any later version.
  18. *
  19. * This program is distributed in the hope that it will be useful,
  20. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  21. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  22. * GNU General Public License for more details.
  23. *
  24. * You should have received a copy of the GNU General Public License
  25. * along with this program; if not, write to the Free Software
  26. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  27. */
  28. #include <linux/module.h>
  29. #include <linux/slab.h>
  30. #include <linux/init.h>
  31. #include <linux/err.h>
  32. #include <linux/atomic.h>
  33. #include <asm/uaccess.h>
  34. #include "ap_bus.h"
  35. #include "zcrypt_api.h"
  36. #include "zcrypt_error.h"
  37. #include "zcrypt_cex2a.h"
  38. #define CEX2A_MIN_MOD_SIZE 1 /* 8 bits */
  39. #define CEX2A_MAX_MOD_SIZE 256 /* 2048 bits */
  40. #define CEX3A_MIN_MOD_SIZE CEX2A_MIN_MOD_SIZE
  41. #define CEX3A_MAX_MOD_SIZE 512 /* 4096 bits */
  42. #define CEX2A_SPEED_RATING 970
  43. #define CEX3A_SPEED_RATING 900 /* Fixme: Needs finetuning */
  44. #define CEX2A_MAX_MESSAGE_SIZE 0x390 /* sizeof(struct type50_crb2_msg) */
  45. #define CEX2A_MAX_RESPONSE_SIZE 0x110 /* max outputdatalength + type80_hdr */
  46. #define CEX3A_MAX_RESPONSE_SIZE 0x210 /* 512 bit modulus
  47. * (max outputdatalength) +
  48. * type80_hdr*/
  49. #define CEX3A_MAX_MESSAGE_SIZE sizeof(struct type50_crb3_msg)
  50. #define CEX2A_CLEANUP_TIME (15*HZ)
  51. #define CEX3A_CLEANUP_TIME CEX2A_CLEANUP_TIME
  52. static struct ap_device_id zcrypt_cex2a_ids[] = {
  53. { AP_DEVICE(AP_DEVICE_TYPE_CEX2A) },
  54. { AP_DEVICE(AP_DEVICE_TYPE_CEX3A) },
  55. { /* end of list */ },
  56. };
  57. MODULE_DEVICE_TABLE(ap, zcrypt_cex2a_ids);
  58. MODULE_AUTHOR("IBM Corporation");
  59. MODULE_DESCRIPTION("CEX2A Cryptographic Coprocessor device driver, "
  60. "Copyright 2001, 2006 IBM Corporation");
  61. MODULE_LICENSE("GPL");
  62. static int zcrypt_cex2a_probe(struct ap_device *ap_dev);
  63. static void zcrypt_cex2a_remove(struct ap_device *ap_dev);
  64. static void zcrypt_cex2a_receive(struct ap_device *, struct ap_message *,
  65. struct ap_message *);
  66. static struct ap_driver zcrypt_cex2a_driver = {
  67. .probe = zcrypt_cex2a_probe,
  68. .remove = zcrypt_cex2a_remove,
  69. .ids = zcrypt_cex2a_ids,
  70. .request_timeout = CEX2A_CLEANUP_TIME,
  71. };
  72. /**
  73. * Convert a ICAMEX message to a type50 MEX message.
  74. *
  75. * @zdev: crypto device pointer
  76. * @zreq: crypto request pointer
  77. * @mex: pointer to user input data
  78. *
  79. * Returns 0 on success or -EFAULT.
  80. */
  81. static int ICAMEX_msg_to_type50MEX_msg(struct zcrypt_device *zdev,
  82. struct ap_message *ap_msg,
  83. struct ica_rsa_modexpo *mex)
  84. {
  85. unsigned char *mod, *exp, *inp;
  86. int mod_len;
  87. mod_len = mex->inputdatalength;
  88. if (mod_len <= 128) {
  89. struct type50_meb1_msg *meb1 = ap_msg->message;
  90. memset(meb1, 0, sizeof(*meb1));
  91. ap_msg->length = sizeof(*meb1);
  92. meb1->header.msg_type_code = TYPE50_TYPE_CODE;
  93. meb1->header.msg_len = sizeof(*meb1);
  94. meb1->keyblock_type = TYPE50_MEB1_FMT;
  95. mod = meb1->modulus + sizeof(meb1->modulus) - mod_len;
  96. exp = meb1->exponent + sizeof(meb1->exponent) - mod_len;
  97. inp = meb1->message + sizeof(meb1->message) - mod_len;
  98. } else if (mod_len <= 256) {
  99. struct type50_meb2_msg *meb2 = ap_msg->message;
  100. memset(meb2, 0, sizeof(*meb2));
  101. ap_msg->length = sizeof(*meb2);
  102. meb2->header.msg_type_code = TYPE50_TYPE_CODE;
  103. meb2->header.msg_len = sizeof(*meb2);
  104. meb2->keyblock_type = TYPE50_MEB2_FMT;
  105. mod = meb2->modulus + sizeof(meb2->modulus) - mod_len;
  106. exp = meb2->exponent + sizeof(meb2->exponent) - mod_len;
  107. inp = meb2->message + sizeof(meb2->message) - mod_len;
  108. } else {
  109. /* mod_len > 256 = 4096 bit RSA Key */
  110. struct type50_meb3_msg *meb3 = ap_msg->message;
  111. memset(meb3, 0, sizeof(*meb3));
  112. ap_msg->length = sizeof(*meb3);
  113. meb3->header.msg_type_code = TYPE50_TYPE_CODE;
  114. meb3->header.msg_len = sizeof(*meb3);
  115. meb3->keyblock_type = TYPE50_MEB3_FMT;
  116. mod = meb3->modulus + sizeof(meb3->modulus) - mod_len;
  117. exp = meb3->exponent + sizeof(meb3->exponent) - mod_len;
  118. inp = meb3->message + sizeof(meb3->message) - mod_len;
  119. }
  120. if (copy_from_user(mod, mex->n_modulus, mod_len) ||
  121. copy_from_user(exp, mex->b_key, mod_len) ||
  122. copy_from_user(inp, mex->inputdata, mod_len))
  123. return -EFAULT;
  124. return 0;
  125. }
  126. /**
  127. * Convert a ICACRT message to a type50 CRT message.
  128. *
  129. * @zdev: crypto device pointer
  130. * @zreq: crypto request pointer
  131. * @crt: pointer to user input data
  132. *
  133. * Returns 0 on success or -EFAULT.
  134. */
  135. static int ICACRT_msg_to_type50CRT_msg(struct zcrypt_device *zdev,
  136. struct ap_message *ap_msg,
  137. struct ica_rsa_modexpo_crt *crt)
  138. {
  139. int mod_len, short_len, long_len, long_offset, limit;
  140. unsigned char *p, *q, *dp, *dq, *u, *inp;
  141. mod_len = crt->inputdatalength;
  142. short_len = mod_len / 2;
  143. long_len = mod_len / 2 + 8;
  144. /*
  145. * CEX2A cannot handle p, dp, or U > 128 bytes.
  146. * If we have one of these, we need to do extra checking.
  147. * For CEX3A the limit is 256 bytes.
  148. */
  149. if (zdev->max_mod_size == CEX3A_MAX_MOD_SIZE)
  150. limit = 256;
  151. else
  152. limit = 128;
  153. if (long_len > limit) {
  154. /*
  155. * zcrypt_rsa_crt already checked for the leading
  156. * zeroes of np_prime, bp_key and u_mult_inc.
  157. */
  158. long_offset = long_len - limit;
  159. long_len = limit;
  160. } else
  161. long_offset = 0;
  162. /*
  163. * Instead of doing extra work for p, dp, U > 64 bytes, we'll just use
  164. * the larger message structure.
  165. */
  166. if (long_len <= 64) {
  167. struct type50_crb1_msg *crb1 = ap_msg->message;
  168. memset(crb1, 0, sizeof(*crb1));
  169. ap_msg->length = sizeof(*crb1);
  170. crb1->header.msg_type_code = TYPE50_TYPE_CODE;
  171. crb1->header.msg_len = sizeof(*crb1);
  172. crb1->keyblock_type = TYPE50_CRB1_FMT;
  173. p = crb1->p + sizeof(crb1->p) - long_len;
  174. q = crb1->q + sizeof(crb1->q) - short_len;
  175. dp = crb1->dp + sizeof(crb1->dp) - long_len;
  176. dq = crb1->dq + sizeof(crb1->dq) - short_len;
  177. u = crb1->u + sizeof(crb1->u) - long_len;
  178. inp = crb1->message + sizeof(crb1->message) - mod_len;
  179. } else if (long_len <= 128) {
  180. struct type50_crb2_msg *crb2 = ap_msg->message;
  181. memset(crb2, 0, sizeof(*crb2));
  182. ap_msg->length = sizeof(*crb2);
  183. crb2->header.msg_type_code = TYPE50_TYPE_CODE;
  184. crb2->header.msg_len = sizeof(*crb2);
  185. crb2->keyblock_type = TYPE50_CRB2_FMT;
  186. p = crb2->p + sizeof(crb2->p) - long_len;
  187. q = crb2->q + sizeof(crb2->q) - short_len;
  188. dp = crb2->dp + sizeof(crb2->dp) - long_len;
  189. dq = crb2->dq + sizeof(crb2->dq) - short_len;
  190. u = crb2->u + sizeof(crb2->u) - long_len;
  191. inp = crb2->message + sizeof(crb2->message) - mod_len;
  192. } else {
  193. /* long_len >= 256 */
  194. struct type50_crb3_msg *crb3 = ap_msg->message;
  195. memset(crb3, 0, sizeof(*crb3));
  196. ap_msg->length = sizeof(*crb3);
  197. crb3->header.msg_type_code = TYPE50_TYPE_CODE;
  198. crb3->header.msg_len = sizeof(*crb3);
  199. crb3->keyblock_type = TYPE50_CRB3_FMT;
  200. p = crb3->p + sizeof(crb3->p) - long_len;
  201. q = crb3->q + sizeof(crb3->q) - short_len;
  202. dp = crb3->dp + sizeof(crb3->dp) - long_len;
  203. dq = crb3->dq + sizeof(crb3->dq) - short_len;
  204. u = crb3->u + sizeof(crb3->u) - long_len;
  205. inp = crb3->message + sizeof(crb3->message) - mod_len;
  206. }
  207. if (copy_from_user(p, crt->np_prime + long_offset, long_len) ||
  208. copy_from_user(q, crt->nq_prime, short_len) ||
  209. copy_from_user(dp, crt->bp_key + long_offset, long_len) ||
  210. copy_from_user(dq, crt->bq_key, short_len) ||
  211. copy_from_user(u, crt->u_mult_inv + long_offset, long_len) ||
  212. copy_from_user(inp, crt->inputdata, mod_len))
  213. return -EFAULT;
  214. return 0;
  215. }
  216. /**
  217. * Copy results from a type 80 reply message back to user space.
  218. *
  219. * @zdev: crypto device pointer
  220. * @reply: reply AP message.
  221. * @data: pointer to user output data
  222. * @length: size of user output data
  223. *
  224. * Returns 0 on success or -EFAULT.
  225. */
  226. static int convert_type80(struct zcrypt_device *zdev,
  227. struct ap_message *reply,
  228. char __user *outputdata,
  229. unsigned int outputdatalength)
  230. {
  231. struct type80_hdr *t80h = reply->message;
  232. unsigned char *data;
  233. if (t80h->len < sizeof(*t80h) + outputdatalength) {
  234. /* The result is too short, the CEX2A card may not do that.. */
  235. zdev->online = 0;
  236. return -EAGAIN; /* repeat the request on a different device. */
  237. }
  238. if (zdev->user_space_type == ZCRYPT_CEX2A)
  239. BUG_ON(t80h->len > CEX2A_MAX_RESPONSE_SIZE);
  240. else
  241. BUG_ON(t80h->len > CEX3A_MAX_RESPONSE_SIZE);
  242. data = reply->message + t80h->len - outputdatalength;
  243. if (copy_to_user(outputdata, data, outputdatalength))
  244. return -EFAULT;
  245. return 0;
  246. }
  247. static int convert_response(struct zcrypt_device *zdev,
  248. struct ap_message *reply,
  249. char __user *outputdata,
  250. unsigned int outputdatalength)
  251. {
  252. /* Response type byte is the second byte in the response. */
  253. switch (((unsigned char *) reply->message)[1]) {
  254. case TYPE82_RSP_CODE:
  255. case TYPE88_RSP_CODE:
  256. return convert_error(zdev, reply);
  257. case TYPE80_RSP_CODE:
  258. return convert_type80(zdev, reply,
  259. outputdata, outputdatalength);
  260. default: /* Unknown response type, this should NEVER EVER happen */
  261. zdev->online = 0;
  262. return -EAGAIN; /* repeat the request on a different device. */
  263. }
  264. }
  265. /**
  266. * This function is called from the AP bus code after a crypto request
  267. * "msg" has finished with the reply message "reply".
  268. * It is called from tasklet context.
  269. * @ap_dev: pointer to the AP device
  270. * @msg: pointer to the AP message
  271. * @reply: pointer to the AP reply message
  272. */
  273. static void zcrypt_cex2a_receive(struct ap_device *ap_dev,
  274. struct ap_message *msg,
  275. struct ap_message *reply)
  276. {
  277. static struct error_hdr error_reply = {
  278. .type = TYPE82_RSP_CODE,
  279. .reply_code = REP82_ERROR_MACHINE_FAILURE,
  280. };
  281. struct type80_hdr *t80h;
  282. int length;
  283. /* Copy the reply message to the request message buffer. */
  284. if (IS_ERR(reply)) {
  285. memcpy(msg->message, &error_reply, sizeof(error_reply));
  286. goto out;
  287. }
  288. t80h = reply->message;
  289. if (t80h->type == TYPE80_RSP_CODE) {
  290. if (ap_dev->device_type == AP_DEVICE_TYPE_CEX2A)
  291. length = min(CEX2A_MAX_RESPONSE_SIZE, (int) t80h->len);
  292. else
  293. length = min(CEX3A_MAX_RESPONSE_SIZE, (int) t80h->len);
  294. memcpy(msg->message, reply->message, length);
  295. } else
  296. memcpy(msg->message, reply->message, sizeof error_reply);
  297. out:
  298. complete((struct completion *) msg->private);
  299. }
  300. static atomic_t zcrypt_step = ATOMIC_INIT(0);
  301. /**
  302. * The request distributor calls this function if it picked the CEX2A
  303. * device to handle a modexpo request.
  304. * @zdev: pointer to zcrypt_device structure that identifies the
  305. * CEX2A device to the request distributor
  306. * @mex: pointer to the modexpo request buffer
  307. */
  308. static long zcrypt_cex2a_modexpo(struct zcrypt_device *zdev,
  309. struct ica_rsa_modexpo *mex)
  310. {
  311. struct ap_message ap_msg;
  312. struct completion work;
  313. int rc;
  314. ap_init_message(&ap_msg);
  315. if (zdev->user_space_type == ZCRYPT_CEX2A)
  316. ap_msg.message = kmalloc(CEX2A_MAX_MESSAGE_SIZE, GFP_KERNEL);
  317. else
  318. ap_msg.message = kmalloc(CEX3A_MAX_MESSAGE_SIZE, GFP_KERNEL);
  319. if (!ap_msg.message)
  320. return -ENOMEM;
  321. ap_msg.receive = zcrypt_cex2a_receive;
  322. ap_msg.psmid = (((unsigned long long) current->pid) << 32) +
  323. atomic_inc_return(&zcrypt_step);
  324. ap_msg.private = &work;
  325. rc = ICAMEX_msg_to_type50MEX_msg(zdev, &ap_msg, mex);
  326. if (rc)
  327. goto out_free;
  328. init_completion(&work);
  329. ap_queue_message(zdev->ap_dev, &ap_msg);
  330. rc = wait_for_completion_interruptible(&work);
  331. if (rc == 0)
  332. rc = convert_response(zdev, &ap_msg, mex->outputdata,
  333. mex->outputdatalength);
  334. else
  335. /* Signal pending. */
  336. ap_cancel_message(zdev->ap_dev, &ap_msg);
  337. out_free:
  338. kfree(ap_msg.message);
  339. return rc;
  340. }
  341. /**
  342. * The request distributor calls this function if it picked the CEX2A
  343. * device to handle a modexpo_crt request.
  344. * @zdev: pointer to zcrypt_device structure that identifies the
  345. * CEX2A device to the request distributor
  346. * @crt: pointer to the modexpoc_crt request buffer
  347. */
  348. static long zcrypt_cex2a_modexpo_crt(struct zcrypt_device *zdev,
  349. struct ica_rsa_modexpo_crt *crt)
  350. {
  351. struct ap_message ap_msg;
  352. struct completion work;
  353. int rc;
  354. ap_init_message(&ap_msg);
  355. if (zdev->user_space_type == ZCRYPT_CEX2A)
  356. ap_msg.message = kmalloc(CEX2A_MAX_MESSAGE_SIZE, GFP_KERNEL);
  357. else
  358. ap_msg.message = kmalloc(CEX3A_MAX_MESSAGE_SIZE, GFP_KERNEL);
  359. if (!ap_msg.message)
  360. return -ENOMEM;
  361. ap_msg.receive = zcrypt_cex2a_receive;
  362. ap_msg.psmid = (((unsigned long long) current->pid) << 32) +
  363. atomic_inc_return(&zcrypt_step);
  364. ap_msg.private = &work;
  365. rc = ICACRT_msg_to_type50CRT_msg(zdev, &ap_msg, crt);
  366. if (rc)
  367. goto out_free;
  368. init_completion(&work);
  369. ap_queue_message(zdev->ap_dev, &ap_msg);
  370. rc = wait_for_completion_interruptible(&work);
  371. if (rc == 0)
  372. rc = convert_response(zdev, &ap_msg, crt->outputdata,
  373. crt->outputdatalength);
  374. else
  375. /* Signal pending. */
  376. ap_cancel_message(zdev->ap_dev, &ap_msg);
  377. out_free:
  378. kfree(ap_msg.message);
  379. return rc;
  380. }
  381. /**
  382. * The crypto operations for a CEX2A card.
  383. */
  384. static struct zcrypt_ops zcrypt_cex2a_ops = {
  385. .rsa_modexpo = zcrypt_cex2a_modexpo,
  386. .rsa_modexpo_crt = zcrypt_cex2a_modexpo_crt,
  387. };
  388. /**
  389. * Probe function for CEX2A cards. It always accepts the AP device
  390. * since the bus_match already checked the hardware type.
  391. * @ap_dev: pointer to the AP device.
  392. */
  393. static int zcrypt_cex2a_probe(struct ap_device *ap_dev)
  394. {
  395. struct zcrypt_device *zdev = NULL;
  396. int rc = 0;
  397. switch (ap_dev->device_type) {
  398. case AP_DEVICE_TYPE_CEX2A:
  399. zdev = zcrypt_device_alloc(CEX2A_MAX_RESPONSE_SIZE);
  400. if (!zdev)
  401. return -ENOMEM;
  402. zdev->user_space_type = ZCRYPT_CEX2A;
  403. zdev->type_string = "CEX2A";
  404. zdev->min_mod_size = CEX2A_MIN_MOD_SIZE;
  405. zdev->max_mod_size = CEX2A_MAX_MOD_SIZE;
  406. zdev->short_crt = 1;
  407. zdev->speed_rating = CEX2A_SPEED_RATING;
  408. zdev->max_exp_bit_length = CEX2A_MAX_MOD_SIZE;
  409. break;
  410. case AP_DEVICE_TYPE_CEX3A:
  411. zdev = zcrypt_device_alloc(CEX3A_MAX_RESPONSE_SIZE);
  412. if (!zdev)
  413. return -ENOMEM;
  414. zdev->user_space_type = ZCRYPT_CEX3A;
  415. zdev->type_string = "CEX3A";
  416. zdev->min_mod_size = CEX2A_MIN_MOD_SIZE;
  417. zdev->max_mod_size = CEX2A_MAX_MOD_SIZE;
  418. zdev->max_exp_bit_length = CEX2A_MAX_MOD_SIZE;
  419. if (ap_4096_commands_available(ap_dev->qid)) {
  420. zdev->max_mod_size = CEX3A_MAX_MOD_SIZE;
  421. zdev->max_exp_bit_length = CEX3A_MAX_MOD_SIZE;
  422. }
  423. zdev->short_crt = 1;
  424. zdev->speed_rating = CEX3A_SPEED_RATING;
  425. break;
  426. }
  427. if (zdev != NULL) {
  428. zdev->ap_dev = ap_dev;
  429. zdev->ops = &zcrypt_cex2a_ops;
  430. zdev->online = 1;
  431. ap_dev->reply = &zdev->reply;
  432. ap_dev->private = zdev;
  433. rc = zcrypt_device_register(zdev);
  434. }
  435. if (rc) {
  436. ap_dev->private = NULL;
  437. zcrypt_device_free(zdev);
  438. }
  439. return rc;
  440. }
  441. /**
  442. * This is called to remove the extended CEX2A driver information
  443. * if an AP device is removed.
  444. */
  445. static void zcrypt_cex2a_remove(struct ap_device *ap_dev)
  446. {
  447. struct zcrypt_device *zdev = ap_dev->private;
  448. zcrypt_device_unregister(zdev);
  449. }
  450. int __init zcrypt_cex2a_init(void)
  451. {
  452. return ap_driver_register(&zcrypt_cex2a_driver, THIS_MODULE, "cex2a");
  453. }
  454. void __exit zcrypt_cex2a_exit(void)
  455. {
  456. ap_driver_unregister(&zcrypt_cex2a_driver);
  457. }
  458. module_init(zcrypt_cex2a_init);
  459. module_exit(zcrypt_cex2a_exit);