tehuti.c 66 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466
  1. /*
  2. * Tehuti Networks(R) Network Driver
  3. * ethtool interface implementation
  4. * Copyright (C) 2007 Tehuti Networks Ltd. All rights reserved
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation; either version 2 of the License, or
  9. * (at your option) any later version.
  10. */
  11. /*
  12. * RX HW/SW interaction overview
  13. * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  14. * There are 2 types of RX communication channels between driver and NIC.
  15. * 1) RX Free Fifo - RXF - holds descriptors of empty buffers to accept incoming
  16. * traffic. This Fifo is filled by SW and is readen by HW. Each descriptor holds
  17. * info about buffer's location, size and ID. An ID field is used to identify a
  18. * buffer when it's returned with data via RXD Fifo (see below)
  19. * 2) RX Data Fifo - RXD - holds descriptors of full buffers. This Fifo is
  20. * filled by HW and is readen by SW. Each descriptor holds status and ID.
  21. * HW pops descriptor from RXF Fifo, stores ID, fills buffer with incoming data,
  22. * via dma moves it into host memory, builds new RXD descriptor with same ID,
  23. * pushes it into RXD Fifo and raises interrupt to indicate new RX data.
  24. *
  25. * Current NIC configuration (registers + firmware) makes NIC use 2 RXF Fifos.
  26. * One holds 1.5K packets and another - 26K packets. Depending on incoming
  27. * packet size, HW desides on a RXF Fifo to pop buffer from. When packet is
  28. * filled with data, HW builds new RXD descriptor for it and push it into single
  29. * RXD Fifo.
  30. *
  31. * RX SW Data Structures
  32. * ~~~~~~~~~~~~~~~~~~~~~
  33. * skb db - used to keep track of all skbs owned by SW and their dma addresses.
  34. * For RX case, ownership lasts from allocating new empty skb for RXF until
  35. * accepting full skb from RXD and passing it to OS. Each RXF Fifo has its own
  36. * skb db. Implemented as array with bitmask.
  37. * fifo - keeps info about fifo's size and location, relevant HW registers,
  38. * usage and skb db. Each RXD and RXF Fifo has its own fifo structure.
  39. * Implemented as simple struct.
  40. *
  41. * RX SW Execution Flow
  42. * ~~~~~~~~~~~~~~~~~~~~
  43. * Upon initialization (ifconfig up) driver creates RX fifos and initializes
  44. * relevant registers. At the end of init phase, driver enables interrupts.
  45. * NIC sees that there is no RXF buffers and raises
  46. * RD_INTR interrupt, isr fills skbs and Rx begins.
  47. * Driver has two receive operation modes:
  48. * NAPI - interrupt-driven mixed with polling
  49. * interrupt-driven only
  50. *
  51. * Interrupt-driven only flow is following. When buffer is ready, HW raises
  52. * interrupt and isr is called. isr collects all available packets
  53. * (bdx_rx_receive), refills skbs (bdx_rx_alloc_skbs) and exit.
  54. * Rx buffer allocation note
  55. * ~~~~~~~~~~~~~~~~~~~~~~~~~
  56. * Driver cares to feed such amount of RxF descriptors that respective amount of
  57. * RxD descriptors can not fill entire RxD fifo. The main reason is lack of
  58. * overflow check in Bordeaux for RxD fifo free/used size.
  59. * FIXME: this is NOT fully implemented, more work should be done
  60. *
  61. */
  62. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  63. #include "tehuti.h"
  64. static DEFINE_PCI_DEVICE_TABLE(bdx_pci_tbl) = {
  65. { PCI_VDEVICE(TEHUTI, 0x3009), },
  66. { PCI_VDEVICE(TEHUTI, 0x3010), },
  67. { PCI_VDEVICE(TEHUTI, 0x3014), },
  68. { 0 }
  69. };
  70. MODULE_DEVICE_TABLE(pci, bdx_pci_tbl);
  71. /* Definitions needed by ISR or NAPI functions */
  72. static void bdx_rx_alloc_skbs(struct bdx_priv *priv, struct rxf_fifo *f);
  73. static void bdx_tx_cleanup(struct bdx_priv *priv);
  74. static int bdx_rx_receive(struct bdx_priv *priv, struct rxd_fifo *f, int budget);
  75. /* Definitions needed by FW loading */
  76. static void bdx_tx_push_desc_safe(struct bdx_priv *priv, void *data, int size);
  77. /* Definitions needed by hw_start */
  78. static int bdx_tx_init(struct bdx_priv *priv);
  79. static int bdx_rx_init(struct bdx_priv *priv);
  80. /* Definitions needed by bdx_close */
  81. static void bdx_rx_free(struct bdx_priv *priv);
  82. static void bdx_tx_free(struct bdx_priv *priv);
  83. /* Definitions needed by bdx_probe */
  84. static void bdx_set_ethtool_ops(struct net_device *netdev);
  85. /*************************************************************************
  86. * Print Info *
  87. *************************************************************************/
  88. static void print_hw_id(struct pci_dev *pdev)
  89. {
  90. struct pci_nic *nic = pci_get_drvdata(pdev);
  91. u16 pci_link_status = 0;
  92. u16 pci_ctrl = 0;
  93. pci_read_config_word(pdev, PCI_LINK_STATUS_REG, &pci_link_status);
  94. pci_read_config_word(pdev, PCI_DEV_CTRL_REG, &pci_ctrl);
  95. pr_info("%s%s\n", BDX_NIC_NAME,
  96. nic->port_num == 1 ? "" : ", 2-Port");
  97. pr_info("srom 0x%x fpga %d build %u lane# %d max_pl 0x%x mrrs 0x%x\n",
  98. readl(nic->regs + SROM_VER), readl(nic->regs + FPGA_VER) & 0xFFF,
  99. readl(nic->regs + FPGA_SEED),
  100. GET_LINK_STATUS_LANES(pci_link_status),
  101. GET_DEV_CTRL_MAXPL(pci_ctrl), GET_DEV_CTRL_MRRS(pci_ctrl));
  102. }
  103. static void print_fw_id(struct pci_nic *nic)
  104. {
  105. pr_info("fw 0x%x\n", readl(nic->regs + FW_VER));
  106. }
  107. static void print_eth_id(struct net_device *ndev)
  108. {
  109. netdev_info(ndev, "%s, Port %c\n",
  110. BDX_NIC_NAME, (ndev->if_port == 0) ? 'A' : 'B');
  111. }
  112. /*************************************************************************
  113. * Code *
  114. *************************************************************************/
  115. #define bdx_enable_interrupts(priv) \
  116. do { WRITE_REG(priv, regIMR, IR_RUN); } while (0)
  117. #define bdx_disable_interrupts(priv) \
  118. do { WRITE_REG(priv, regIMR, 0); } while (0)
  119. /* bdx_fifo_init
  120. * create TX/RX descriptor fifo for host-NIC communication.
  121. * 1K extra space is allocated at the end of the fifo to simplify
  122. * processing of descriptors that wraps around fifo's end
  123. * @priv - NIC private structure
  124. * @f - fifo to initialize
  125. * @fsz_type - fifo size type: 0-4KB, 1-8KB, 2-16KB, 3-32KB
  126. * @reg_XXX - offsets of registers relative to base address
  127. *
  128. * Returns 0 on success, negative value on failure
  129. *
  130. */
  131. static int
  132. bdx_fifo_init(struct bdx_priv *priv, struct fifo *f, int fsz_type,
  133. u16 reg_CFG0, u16 reg_CFG1, u16 reg_RPTR, u16 reg_WPTR)
  134. {
  135. u16 memsz = FIFO_SIZE * (1 << fsz_type);
  136. memset(f, 0, sizeof(struct fifo));
  137. /* pci_alloc_consistent gives us 4k-aligned memory */
  138. f->va = pci_alloc_consistent(priv->pdev,
  139. memsz + FIFO_EXTRA_SPACE, &f->da);
  140. if (!f->va) {
  141. pr_err("pci_alloc_consistent failed\n");
  142. RET(-ENOMEM);
  143. }
  144. f->reg_CFG0 = reg_CFG0;
  145. f->reg_CFG1 = reg_CFG1;
  146. f->reg_RPTR = reg_RPTR;
  147. f->reg_WPTR = reg_WPTR;
  148. f->rptr = 0;
  149. f->wptr = 0;
  150. f->memsz = memsz;
  151. f->size_mask = memsz - 1;
  152. WRITE_REG(priv, reg_CFG0, (u32) ((f->da & TX_RX_CFG0_BASE) | fsz_type));
  153. WRITE_REG(priv, reg_CFG1, H32_64(f->da));
  154. RET(0);
  155. }
  156. /* bdx_fifo_free - free all resources used by fifo
  157. * @priv - NIC private structure
  158. * @f - fifo to release
  159. */
  160. static void bdx_fifo_free(struct bdx_priv *priv, struct fifo *f)
  161. {
  162. ENTER;
  163. if (f->va) {
  164. pci_free_consistent(priv->pdev,
  165. f->memsz + FIFO_EXTRA_SPACE, f->va, f->da);
  166. f->va = NULL;
  167. }
  168. RET();
  169. }
  170. /*
  171. * bdx_link_changed - notifies OS about hw link state.
  172. * @bdx_priv - hw adapter structure
  173. */
  174. static void bdx_link_changed(struct bdx_priv *priv)
  175. {
  176. u32 link = READ_REG(priv, regMAC_LNK_STAT) & MAC_LINK_STAT;
  177. if (!link) {
  178. if (netif_carrier_ok(priv->ndev)) {
  179. netif_stop_queue(priv->ndev);
  180. netif_carrier_off(priv->ndev);
  181. netdev_err(priv->ndev, "Link Down\n");
  182. }
  183. } else {
  184. if (!netif_carrier_ok(priv->ndev)) {
  185. netif_wake_queue(priv->ndev);
  186. netif_carrier_on(priv->ndev);
  187. netdev_err(priv->ndev, "Link Up\n");
  188. }
  189. }
  190. }
  191. static void bdx_isr_extra(struct bdx_priv *priv, u32 isr)
  192. {
  193. if (isr & IR_RX_FREE_0) {
  194. bdx_rx_alloc_skbs(priv, &priv->rxf_fifo0);
  195. DBG("RX_FREE_0\n");
  196. }
  197. if (isr & IR_LNKCHG0)
  198. bdx_link_changed(priv);
  199. if (isr & IR_PCIE_LINK)
  200. netdev_err(priv->ndev, "PCI-E Link Fault\n");
  201. if (isr & IR_PCIE_TOUT)
  202. netdev_err(priv->ndev, "PCI-E Time Out\n");
  203. }
  204. /* bdx_isr - Interrupt Service Routine for Bordeaux NIC
  205. * @irq - interrupt number
  206. * @ndev - network device
  207. * @regs - CPU registers
  208. *
  209. * Return IRQ_NONE if it was not our interrupt, IRQ_HANDLED - otherwise
  210. *
  211. * It reads ISR register to know interrupt reasons, and proceed them one by one.
  212. * Reasons of interest are:
  213. * RX_DESC - new packet has arrived and RXD fifo holds its descriptor
  214. * RX_FREE - number of free Rx buffers in RXF fifo gets low
  215. * TX_FREE - packet was transmited and RXF fifo holds its descriptor
  216. */
  217. static irqreturn_t bdx_isr_napi(int irq, void *dev)
  218. {
  219. struct net_device *ndev = dev;
  220. struct bdx_priv *priv = netdev_priv(ndev);
  221. u32 isr;
  222. ENTER;
  223. isr = (READ_REG(priv, regISR) & IR_RUN);
  224. if (unlikely(!isr)) {
  225. bdx_enable_interrupts(priv);
  226. return IRQ_NONE; /* Not our interrupt */
  227. }
  228. if (isr & IR_EXTRA)
  229. bdx_isr_extra(priv, isr);
  230. if (isr & (IR_RX_DESC_0 | IR_TX_FREE_0)) {
  231. if (likely(napi_schedule_prep(&priv->napi))) {
  232. __napi_schedule(&priv->napi);
  233. RET(IRQ_HANDLED);
  234. } else {
  235. /* NOTE: we get here if intr has slipped into window
  236. * between these lines in bdx_poll:
  237. * bdx_enable_interrupts(priv);
  238. * return 0;
  239. * currently intrs are disabled (since we read ISR),
  240. * and we have failed to register next poll.
  241. * so we read the regs to trigger chip
  242. * and allow further interupts. */
  243. READ_REG(priv, regTXF_WPTR_0);
  244. READ_REG(priv, regRXD_WPTR_0);
  245. }
  246. }
  247. bdx_enable_interrupts(priv);
  248. RET(IRQ_HANDLED);
  249. }
  250. static int bdx_poll(struct napi_struct *napi, int budget)
  251. {
  252. struct bdx_priv *priv = container_of(napi, struct bdx_priv, napi);
  253. int work_done;
  254. ENTER;
  255. bdx_tx_cleanup(priv);
  256. work_done = bdx_rx_receive(priv, &priv->rxd_fifo0, budget);
  257. if ((work_done < budget) ||
  258. (priv->napi_stop++ >= 30)) {
  259. DBG("rx poll is done. backing to isr-driven\n");
  260. /* from time to time we exit to let NAPI layer release
  261. * device lock and allow waiting tasks (eg rmmod) to advance) */
  262. priv->napi_stop = 0;
  263. napi_complete(napi);
  264. bdx_enable_interrupts(priv);
  265. }
  266. return work_done;
  267. }
  268. /* bdx_fw_load - loads firmware to NIC
  269. * @priv - NIC private structure
  270. * Firmware is loaded via TXD fifo, so it must be initialized first.
  271. * Firware must be loaded once per NIC not per PCI device provided by NIC (NIC
  272. * can have few of them). So all drivers use semaphore register to choose one
  273. * that will actually load FW to NIC.
  274. */
  275. static int bdx_fw_load(struct bdx_priv *priv)
  276. {
  277. const struct firmware *fw = NULL;
  278. int master, i;
  279. int rc;
  280. ENTER;
  281. master = READ_REG(priv, regINIT_SEMAPHORE);
  282. if (!READ_REG(priv, regINIT_STATUS) && master) {
  283. rc = request_firmware(&fw, "tehuti/bdx.bin", &priv->pdev->dev);
  284. if (rc)
  285. goto out;
  286. bdx_tx_push_desc_safe(priv, (char *)fw->data, fw->size);
  287. mdelay(100);
  288. }
  289. for (i = 0; i < 200; i++) {
  290. if (READ_REG(priv, regINIT_STATUS)) {
  291. rc = 0;
  292. goto out;
  293. }
  294. mdelay(2);
  295. }
  296. rc = -EIO;
  297. out:
  298. if (master)
  299. WRITE_REG(priv, regINIT_SEMAPHORE, 1);
  300. release_firmware(fw);
  301. if (rc) {
  302. netdev_err(priv->ndev, "firmware loading failed\n");
  303. if (rc == -EIO)
  304. DBG("VPC = 0x%x VIC = 0x%x INIT_STATUS = 0x%x i=%d\n",
  305. READ_REG(priv, regVPC),
  306. READ_REG(priv, regVIC),
  307. READ_REG(priv, regINIT_STATUS), i);
  308. RET(rc);
  309. } else {
  310. DBG("%s: firmware loading success\n", priv->ndev->name);
  311. RET(0);
  312. }
  313. }
  314. static void bdx_restore_mac(struct net_device *ndev, struct bdx_priv *priv)
  315. {
  316. u32 val;
  317. ENTER;
  318. DBG("mac0=%x mac1=%x mac2=%x\n",
  319. READ_REG(priv, regUNC_MAC0_A),
  320. READ_REG(priv, regUNC_MAC1_A), READ_REG(priv, regUNC_MAC2_A));
  321. val = (ndev->dev_addr[0] << 8) | (ndev->dev_addr[1]);
  322. WRITE_REG(priv, regUNC_MAC2_A, val);
  323. val = (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]);
  324. WRITE_REG(priv, regUNC_MAC1_A, val);
  325. val = (ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]);
  326. WRITE_REG(priv, regUNC_MAC0_A, val);
  327. DBG("mac0=%x mac1=%x mac2=%x\n",
  328. READ_REG(priv, regUNC_MAC0_A),
  329. READ_REG(priv, regUNC_MAC1_A), READ_REG(priv, regUNC_MAC2_A));
  330. RET();
  331. }
  332. /* bdx_hw_start - inits registers and starts HW's Rx and Tx engines
  333. * @priv - NIC private structure
  334. */
  335. static int bdx_hw_start(struct bdx_priv *priv)
  336. {
  337. int rc = -EIO;
  338. struct net_device *ndev = priv->ndev;
  339. ENTER;
  340. bdx_link_changed(priv);
  341. /* 10G overall max length (vlan, eth&ip header, ip payload, crc) */
  342. WRITE_REG(priv, regFRM_LENGTH, 0X3FE0);
  343. WRITE_REG(priv, regPAUSE_QUANT, 0x96);
  344. WRITE_REG(priv, regRX_FIFO_SECTION, 0x800010);
  345. WRITE_REG(priv, regTX_FIFO_SECTION, 0xE00010);
  346. WRITE_REG(priv, regRX_FULLNESS, 0);
  347. WRITE_REG(priv, regTX_FULLNESS, 0);
  348. WRITE_REG(priv, regCTRLST,
  349. regCTRLST_BASE | regCTRLST_RX_ENA | regCTRLST_TX_ENA);
  350. WRITE_REG(priv, regVGLB, 0);
  351. WRITE_REG(priv, regMAX_FRAME_A,
  352. priv->rxf_fifo0.m.pktsz & MAX_FRAME_AB_VAL);
  353. DBG("RDINTCM=%08x\n", priv->rdintcm); /*NOTE: test script uses this */
  354. WRITE_REG(priv, regRDINTCM0, priv->rdintcm);
  355. WRITE_REG(priv, regRDINTCM2, 0); /*cpu_to_le32(rcm.val)); */
  356. DBG("TDINTCM=%08x\n", priv->tdintcm); /*NOTE: test script uses this */
  357. WRITE_REG(priv, regTDINTCM0, priv->tdintcm); /* old val = 0x300064 */
  358. /* Enable timer interrupt once in 2 secs. */
  359. /*WRITE_REG(priv, regGTMR0, ((GTMR_SEC * 2) & GTMR_DATA)); */
  360. bdx_restore_mac(priv->ndev, priv);
  361. WRITE_REG(priv, regGMAC_RXF_A, GMAC_RX_FILTER_OSEN |
  362. GMAC_RX_FILTER_AM | GMAC_RX_FILTER_AB);
  363. #define BDX_IRQ_TYPE ((priv->nic->irq_type == IRQ_MSI) ? 0 : IRQF_SHARED)
  364. rc = request_irq(priv->pdev->irq, bdx_isr_napi, BDX_IRQ_TYPE,
  365. ndev->name, ndev);
  366. if (rc)
  367. goto err_irq;
  368. bdx_enable_interrupts(priv);
  369. RET(0);
  370. err_irq:
  371. RET(rc);
  372. }
  373. static void bdx_hw_stop(struct bdx_priv *priv)
  374. {
  375. ENTER;
  376. bdx_disable_interrupts(priv);
  377. free_irq(priv->pdev->irq, priv->ndev);
  378. netif_carrier_off(priv->ndev);
  379. netif_stop_queue(priv->ndev);
  380. RET();
  381. }
  382. static int bdx_hw_reset_direct(void __iomem *regs)
  383. {
  384. u32 val, i;
  385. ENTER;
  386. /* reset sequences: read, write 1, read, write 0 */
  387. val = readl(regs + regCLKPLL);
  388. writel((val | CLKPLL_SFTRST) + 0x8, regs + regCLKPLL);
  389. udelay(50);
  390. val = readl(regs + regCLKPLL);
  391. writel(val & ~CLKPLL_SFTRST, regs + regCLKPLL);
  392. /* check that the PLLs are locked and reset ended */
  393. for (i = 0; i < 70; i++, mdelay(10))
  394. if ((readl(regs + regCLKPLL) & CLKPLL_LKD) == CLKPLL_LKD) {
  395. /* do any PCI-E read transaction */
  396. readl(regs + regRXD_CFG0_0);
  397. return 0;
  398. }
  399. pr_err("HW reset failed\n");
  400. return 1; /* failure */
  401. }
  402. static int bdx_hw_reset(struct bdx_priv *priv)
  403. {
  404. u32 val, i;
  405. ENTER;
  406. if (priv->port == 0) {
  407. /* reset sequences: read, write 1, read, write 0 */
  408. val = READ_REG(priv, regCLKPLL);
  409. WRITE_REG(priv, regCLKPLL, (val | CLKPLL_SFTRST) + 0x8);
  410. udelay(50);
  411. val = READ_REG(priv, regCLKPLL);
  412. WRITE_REG(priv, regCLKPLL, val & ~CLKPLL_SFTRST);
  413. }
  414. /* check that the PLLs are locked and reset ended */
  415. for (i = 0; i < 70; i++, mdelay(10))
  416. if ((READ_REG(priv, regCLKPLL) & CLKPLL_LKD) == CLKPLL_LKD) {
  417. /* do any PCI-E read transaction */
  418. READ_REG(priv, regRXD_CFG0_0);
  419. return 0;
  420. }
  421. pr_err("HW reset failed\n");
  422. return 1; /* failure */
  423. }
  424. static int bdx_sw_reset(struct bdx_priv *priv)
  425. {
  426. int i;
  427. ENTER;
  428. /* 1. load MAC (obsolete) */
  429. /* 2. disable Rx (and Tx) */
  430. WRITE_REG(priv, regGMAC_RXF_A, 0);
  431. mdelay(100);
  432. /* 3. disable port */
  433. WRITE_REG(priv, regDIS_PORT, 1);
  434. /* 4. disable queue */
  435. WRITE_REG(priv, regDIS_QU, 1);
  436. /* 5. wait until hw is disabled */
  437. for (i = 0; i < 50; i++) {
  438. if (READ_REG(priv, regRST_PORT) & 1)
  439. break;
  440. mdelay(10);
  441. }
  442. if (i == 50)
  443. netdev_err(priv->ndev, "SW reset timeout. continuing anyway\n");
  444. /* 6. disable intrs */
  445. WRITE_REG(priv, regRDINTCM0, 0);
  446. WRITE_REG(priv, regTDINTCM0, 0);
  447. WRITE_REG(priv, regIMR, 0);
  448. READ_REG(priv, regISR);
  449. /* 7. reset queue */
  450. WRITE_REG(priv, regRST_QU, 1);
  451. /* 8. reset port */
  452. WRITE_REG(priv, regRST_PORT, 1);
  453. /* 9. zero all read and write pointers */
  454. for (i = regTXD_WPTR_0; i <= regTXF_RPTR_3; i += 0x10)
  455. DBG("%x = %x\n", i, READ_REG(priv, i) & TXF_WPTR_WR_PTR);
  456. for (i = regTXD_WPTR_0; i <= regTXF_RPTR_3; i += 0x10)
  457. WRITE_REG(priv, i, 0);
  458. /* 10. unseet port disable */
  459. WRITE_REG(priv, regDIS_PORT, 0);
  460. /* 11. unset queue disable */
  461. WRITE_REG(priv, regDIS_QU, 0);
  462. /* 12. unset queue reset */
  463. WRITE_REG(priv, regRST_QU, 0);
  464. /* 13. unset port reset */
  465. WRITE_REG(priv, regRST_PORT, 0);
  466. /* 14. enable Rx */
  467. /* skiped. will be done later */
  468. /* 15. save MAC (obsolete) */
  469. for (i = regTXD_WPTR_0; i <= regTXF_RPTR_3; i += 0x10)
  470. DBG("%x = %x\n", i, READ_REG(priv, i) & TXF_WPTR_WR_PTR);
  471. RET(0);
  472. }
  473. /* bdx_reset - performs right type of reset depending on hw type */
  474. static int bdx_reset(struct bdx_priv *priv)
  475. {
  476. ENTER;
  477. RET((priv->pdev->device == 0x3009)
  478. ? bdx_hw_reset(priv)
  479. : bdx_sw_reset(priv));
  480. }
  481. /**
  482. * bdx_close - Disables a network interface
  483. * @netdev: network interface device structure
  484. *
  485. * Returns 0, this is not allowed to fail
  486. *
  487. * The close entry point is called when an interface is de-activated
  488. * by the OS. The hardware is still under the drivers control, but
  489. * needs to be disabled. A global MAC reset is issued to stop the
  490. * hardware, and all transmit and receive resources are freed.
  491. **/
  492. static int bdx_close(struct net_device *ndev)
  493. {
  494. struct bdx_priv *priv = NULL;
  495. ENTER;
  496. priv = netdev_priv(ndev);
  497. napi_disable(&priv->napi);
  498. bdx_reset(priv);
  499. bdx_hw_stop(priv);
  500. bdx_rx_free(priv);
  501. bdx_tx_free(priv);
  502. RET(0);
  503. }
  504. /**
  505. * bdx_open - Called when a network interface is made active
  506. * @netdev: network interface device structure
  507. *
  508. * Returns 0 on success, negative value on failure
  509. *
  510. * The open entry point is called when a network interface is made
  511. * active by the system (IFF_UP). At this point all resources needed
  512. * for transmit and receive operations are allocated, the interrupt
  513. * handler is registered with the OS, the watchdog timer is started,
  514. * and the stack is notified that the interface is ready.
  515. **/
  516. static int bdx_open(struct net_device *ndev)
  517. {
  518. struct bdx_priv *priv;
  519. int rc;
  520. ENTER;
  521. priv = netdev_priv(ndev);
  522. bdx_reset(priv);
  523. if (netif_running(ndev))
  524. netif_stop_queue(priv->ndev);
  525. if ((rc = bdx_tx_init(priv)) ||
  526. (rc = bdx_rx_init(priv)) ||
  527. (rc = bdx_fw_load(priv)))
  528. goto err;
  529. bdx_rx_alloc_skbs(priv, &priv->rxf_fifo0);
  530. rc = bdx_hw_start(priv);
  531. if (rc)
  532. goto err;
  533. napi_enable(&priv->napi);
  534. print_fw_id(priv->nic);
  535. RET(0);
  536. err:
  537. bdx_close(ndev);
  538. RET(rc);
  539. }
  540. static int bdx_range_check(struct bdx_priv *priv, u32 offset)
  541. {
  542. return (offset > (u32) (BDX_REGS_SIZE / priv->nic->port_num)) ?
  543. -EINVAL : 0;
  544. }
  545. static int bdx_ioctl_priv(struct net_device *ndev, struct ifreq *ifr, int cmd)
  546. {
  547. struct bdx_priv *priv = netdev_priv(ndev);
  548. u32 data[3];
  549. int error;
  550. ENTER;
  551. DBG("jiffies=%ld cmd=%d\n", jiffies, cmd);
  552. if (cmd != SIOCDEVPRIVATE) {
  553. error = copy_from_user(data, ifr->ifr_data, sizeof(data));
  554. if (error) {
  555. pr_err("can't copy from user\n");
  556. RET(-EFAULT);
  557. }
  558. DBG("%d 0x%x 0x%x\n", data[0], data[1], data[2]);
  559. }
  560. if (!capable(CAP_SYS_RAWIO))
  561. return -EPERM;
  562. switch (data[0]) {
  563. case BDX_OP_READ:
  564. error = bdx_range_check(priv, data[1]);
  565. if (error < 0)
  566. return error;
  567. data[2] = READ_REG(priv, data[1]);
  568. DBG("read_reg(0x%x)=0x%x (dec %d)\n", data[1], data[2],
  569. data[2]);
  570. error = copy_to_user(ifr->ifr_data, data, sizeof(data));
  571. if (error)
  572. RET(-EFAULT);
  573. break;
  574. case BDX_OP_WRITE:
  575. error = bdx_range_check(priv, data[1]);
  576. if (error < 0)
  577. return error;
  578. WRITE_REG(priv, data[1], data[2]);
  579. DBG("write_reg(0x%x, 0x%x)\n", data[1], data[2]);
  580. break;
  581. default:
  582. RET(-EOPNOTSUPP);
  583. }
  584. return 0;
  585. }
  586. static int bdx_ioctl(struct net_device *ndev, struct ifreq *ifr, int cmd)
  587. {
  588. ENTER;
  589. if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
  590. RET(bdx_ioctl_priv(ndev, ifr, cmd));
  591. else
  592. RET(-EOPNOTSUPP);
  593. }
  594. /*
  595. * __bdx_vlan_rx_vid - private helper for adding/killing VLAN vid
  596. * by passing VLAN filter table to hardware
  597. * @ndev network device
  598. * @vid VLAN vid
  599. * @op add or kill operation
  600. */
  601. static void __bdx_vlan_rx_vid(struct net_device *ndev, uint16_t vid, int enable)
  602. {
  603. struct bdx_priv *priv = netdev_priv(ndev);
  604. u32 reg, bit, val;
  605. ENTER;
  606. DBG2("vid=%d value=%d\n", (int)vid, enable);
  607. if (unlikely(vid >= 4096)) {
  608. pr_err("invalid VID: %u (> 4096)\n", vid);
  609. RET();
  610. }
  611. reg = regVLAN_0 + (vid / 32) * 4;
  612. bit = 1 << vid % 32;
  613. val = READ_REG(priv, reg);
  614. DBG2("reg=%x, val=%x, bit=%d\n", reg, val, bit);
  615. if (enable)
  616. val |= bit;
  617. else
  618. val &= ~bit;
  619. DBG2("new val %x\n", val);
  620. WRITE_REG(priv, reg, val);
  621. RET();
  622. }
  623. /*
  624. * bdx_vlan_rx_add_vid - kernel hook for adding VLAN vid to hw filtering table
  625. * @ndev network device
  626. * @vid VLAN vid to add
  627. */
  628. static int bdx_vlan_rx_add_vid(struct net_device *ndev, uint16_t vid)
  629. {
  630. __bdx_vlan_rx_vid(ndev, vid, 1);
  631. return 0;
  632. }
  633. /*
  634. * bdx_vlan_rx_kill_vid - kernel hook for killing VLAN vid in hw filtering table
  635. * @ndev network device
  636. * @vid VLAN vid to kill
  637. */
  638. static int bdx_vlan_rx_kill_vid(struct net_device *ndev, unsigned short vid)
  639. {
  640. __bdx_vlan_rx_vid(ndev, vid, 0);
  641. return 0;
  642. }
  643. /**
  644. * bdx_change_mtu - Change the Maximum Transfer Unit
  645. * @netdev: network interface device structure
  646. * @new_mtu: new value for maximum frame size
  647. *
  648. * Returns 0 on success, negative on failure
  649. */
  650. static int bdx_change_mtu(struct net_device *ndev, int new_mtu)
  651. {
  652. ENTER;
  653. if (new_mtu == ndev->mtu)
  654. RET(0);
  655. /* enforce minimum frame size */
  656. if (new_mtu < ETH_ZLEN) {
  657. netdev_err(ndev, "mtu %d is less then minimal %d\n",
  658. new_mtu, ETH_ZLEN);
  659. RET(-EINVAL);
  660. }
  661. ndev->mtu = new_mtu;
  662. if (netif_running(ndev)) {
  663. bdx_close(ndev);
  664. bdx_open(ndev);
  665. }
  666. RET(0);
  667. }
  668. static void bdx_setmulti(struct net_device *ndev)
  669. {
  670. struct bdx_priv *priv = netdev_priv(ndev);
  671. u32 rxf_val =
  672. GMAC_RX_FILTER_AM | GMAC_RX_FILTER_AB | GMAC_RX_FILTER_OSEN;
  673. int i;
  674. ENTER;
  675. /* IMF - imperfect (hash) rx multicat filter */
  676. /* PMF - perfect rx multicat filter */
  677. /* FIXME: RXE(OFF) */
  678. if (ndev->flags & IFF_PROMISC) {
  679. rxf_val |= GMAC_RX_FILTER_PRM;
  680. } else if (ndev->flags & IFF_ALLMULTI) {
  681. /* set IMF to accept all multicast frmaes */
  682. for (i = 0; i < MAC_MCST_HASH_NUM; i++)
  683. WRITE_REG(priv, regRX_MCST_HASH0 + i * 4, ~0);
  684. } else if (!netdev_mc_empty(ndev)) {
  685. u8 hash;
  686. struct netdev_hw_addr *ha;
  687. u32 reg, val;
  688. /* set IMF to deny all multicast frames */
  689. for (i = 0; i < MAC_MCST_HASH_NUM; i++)
  690. WRITE_REG(priv, regRX_MCST_HASH0 + i * 4, 0);
  691. /* set PMF to deny all multicast frames */
  692. for (i = 0; i < MAC_MCST_NUM; i++) {
  693. WRITE_REG(priv, regRX_MAC_MCST0 + i * 8, 0);
  694. WRITE_REG(priv, regRX_MAC_MCST1 + i * 8, 0);
  695. }
  696. /* use PMF to accept first MAC_MCST_NUM (15) addresses */
  697. /* TBD: sort addresses and write them in ascending order
  698. * into RX_MAC_MCST regs. we skip this phase now and accept ALL
  699. * multicast frames throu IMF */
  700. /* accept the rest of addresses throu IMF */
  701. netdev_for_each_mc_addr(ha, ndev) {
  702. hash = 0;
  703. for (i = 0; i < ETH_ALEN; i++)
  704. hash ^= ha->addr[i];
  705. reg = regRX_MCST_HASH0 + ((hash >> 5) << 2);
  706. val = READ_REG(priv, reg);
  707. val |= (1 << (hash % 32));
  708. WRITE_REG(priv, reg, val);
  709. }
  710. } else {
  711. DBG("only own mac %d\n", netdev_mc_count(ndev));
  712. rxf_val |= GMAC_RX_FILTER_AB;
  713. }
  714. WRITE_REG(priv, regGMAC_RXF_A, rxf_val);
  715. /* enable RX */
  716. /* FIXME: RXE(ON) */
  717. RET();
  718. }
  719. static int bdx_set_mac(struct net_device *ndev, void *p)
  720. {
  721. struct bdx_priv *priv = netdev_priv(ndev);
  722. struct sockaddr *addr = p;
  723. ENTER;
  724. /*
  725. if (netif_running(dev))
  726. return -EBUSY
  727. */
  728. memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
  729. bdx_restore_mac(ndev, priv);
  730. RET(0);
  731. }
  732. static int bdx_read_mac(struct bdx_priv *priv)
  733. {
  734. u16 macAddress[3], i;
  735. ENTER;
  736. macAddress[2] = READ_REG(priv, regUNC_MAC0_A);
  737. macAddress[2] = READ_REG(priv, regUNC_MAC0_A);
  738. macAddress[1] = READ_REG(priv, regUNC_MAC1_A);
  739. macAddress[1] = READ_REG(priv, regUNC_MAC1_A);
  740. macAddress[0] = READ_REG(priv, regUNC_MAC2_A);
  741. macAddress[0] = READ_REG(priv, regUNC_MAC2_A);
  742. for (i = 0; i < 3; i++) {
  743. priv->ndev->dev_addr[i * 2 + 1] = macAddress[i];
  744. priv->ndev->dev_addr[i * 2] = macAddress[i] >> 8;
  745. }
  746. RET(0);
  747. }
  748. static u64 bdx_read_l2stat(struct bdx_priv *priv, int reg)
  749. {
  750. u64 val;
  751. val = READ_REG(priv, reg);
  752. val |= ((u64) READ_REG(priv, reg + 8)) << 32;
  753. return val;
  754. }
  755. /*Do the statistics-update work*/
  756. static void bdx_update_stats(struct bdx_priv *priv)
  757. {
  758. struct bdx_stats *stats = &priv->hw_stats;
  759. u64 *stats_vector = (u64 *) stats;
  760. int i;
  761. int addr;
  762. /*Fill HW structure */
  763. addr = 0x7200;
  764. /*First 12 statistics - 0x7200 - 0x72B0 */
  765. for (i = 0; i < 12; i++) {
  766. stats_vector[i] = bdx_read_l2stat(priv, addr);
  767. addr += 0x10;
  768. }
  769. BDX_ASSERT(addr != 0x72C0);
  770. /* 0x72C0-0x72E0 RSRV */
  771. addr = 0x72F0;
  772. for (; i < 16; i++) {
  773. stats_vector[i] = bdx_read_l2stat(priv, addr);
  774. addr += 0x10;
  775. }
  776. BDX_ASSERT(addr != 0x7330);
  777. /* 0x7330-0x7360 RSRV */
  778. addr = 0x7370;
  779. for (; i < 19; i++) {
  780. stats_vector[i] = bdx_read_l2stat(priv, addr);
  781. addr += 0x10;
  782. }
  783. BDX_ASSERT(addr != 0x73A0);
  784. /* 0x73A0-0x73B0 RSRV */
  785. addr = 0x73C0;
  786. for (; i < 23; i++) {
  787. stats_vector[i] = bdx_read_l2stat(priv, addr);
  788. addr += 0x10;
  789. }
  790. BDX_ASSERT(addr != 0x7400);
  791. BDX_ASSERT((sizeof(struct bdx_stats) / sizeof(u64)) != i);
  792. }
  793. static void print_rxdd(struct rxd_desc *rxdd, u32 rxd_val1, u16 len,
  794. u16 rxd_vlan);
  795. static void print_rxfd(struct rxf_desc *rxfd);
  796. /*************************************************************************
  797. * Rx DB *
  798. *************************************************************************/
  799. static void bdx_rxdb_destroy(struct rxdb *db)
  800. {
  801. vfree(db);
  802. }
  803. static struct rxdb *bdx_rxdb_create(int nelem)
  804. {
  805. struct rxdb *db;
  806. int i;
  807. db = vmalloc(sizeof(struct rxdb)
  808. + (nelem * sizeof(int))
  809. + (nelem * sizeof(struct rx_map)));
  810. if (likely(db != NULL)) {
  811. db->stack = (int *)(db + 1);
  812. db->elems = (void *)(db->stack + nelem);
  813. db->nelem = nelem;
  814. db->top = nelem;
  815. for (i = 0; i < nelem; i++)
  816. db->stack[i] = nelem - i - 1; /* to make first allocs
  817. close to db struct*/
  818. }
  819. return db;
  820. }
  821. static inline int bdx_rxdb_alloc_elem(struct rxdb *db)
  822. {
  823. BDX_ASSERT(db->top <= 0);
  824. return db->stack[--(db->top)];
  825. }
  826. static inline void *bdx_rxdb_addr_elem(struct rxdb *db, int n)
  827. {
  828. BDX_ASSERT((n < 0) || (n >= db->nelem));
  829. return db->elems + n;
  830. }
  831. static inline int bdx_rxdb_available(struct rxdb *db)
  832. {
  833. return db->top;
  834. }
  835. static inline void bdx_rxdb_free_elem(struct rxdb *db, int n)
  836. {
  837. BDX_ASSERT((n >= db->nelem) || (n < 0));
  838. db->stack[(db->top)++] = n;
  839. }
  840. /*************************************************************************
  841. * Rx Init *
  842. *************************************************************************/
  843. /* bdx_rx_init - initialize RX all related HW and SW resources
  844. * @priv - NIC private structure
  845. *
  846. * Returns 0 on success, negative value on failure
  847. *
  848. * It creates rxf and rxd fifos, update relevant HW registers, preallocate
  849. * skb for rx. It assumes that Rx is desabled in HW
  850. * funcs are grouped for better cache usage
  851. *
  852. * RxD fifo is smaller than RxF fifo by design. Upon high load, RxD will be
  853. * filled and packets will be dropped by nic without getting into host or
  854. * cousing interrupt. Anyway, in that condition, host has no chance to process
  855. * all packets, but dropping in nic is cheaper, since it takes 0 cpu cycles
  856. */
  857. /* TBD: ensure proper packet size */
  858. static int bdx_rx_init(struct bdx_priv *priv)
  859. {
  860. ENTER;
  861. if (bdx_fifo_init(priv, &priv->rxd_fifo0.m, priv->rxd_size,
  862. regRXD_CFG0_0, regRXD_CFG1_0,
  863. regRXD_RPTR_0, regRXD_WPTR_0))
  864. goto err_mem;
  865. if (bdx_fifo_init(priv, &priv->rxf_fifo0.m, priv->rxf_size,
  866. regRXF_CFG0_0, regRXF_CFG1_0,
  867. regRXF_RPTR_0, regRXF_WPTR_0))
  868. goto err_mem;
  869. priv->rxdb = bdx_rxdb_create(priv->rxf_fifo0.m.memsz /
  870. sizeof(struct rxf_desc));
  871. if (!priv->rxdb)
  872. goto err_mem;
  873. priv->rxf_fifo0.m.pktsz = priv->ndev->mtu + VLAN_ETH_HLEN;
  874. return 0;
  875. err_mem:
  876. netdev_err(priv->ndev, "Rx init failed\n");
  877. return -ENOMEM;
  878. }
  879. /* bdx_rx_free_skbs - frees and unmaps all skbs allocated for the fifo
  880. * @priv - NIC private structure
  881. * @f - RXF fifo
  882. */
  883. static void bdx_rx_free_skbs(struct bdx_priv *priv, struct rxf_fifo *f)
  884. {
  885. struct rx_map *dm;
  886. struct rxdb *db = priv->rxdb;
  887. u16 i;
  888. ENTER;
  889. DBG("total=%d free=%d busy=%d\n", db->nelem, bdx_rxdb_available(db),
  890. db->nelem - bdx_rxdb_available(db));
  891. while (bdx_rxdb_available(db) > 0) {
  892. i = bdx_rxdb_alloc_elem(db);
  893. dm = bdx_rxdb_addr_elem(db, i);
  894. dm->dma = 0;
  895. }
  896. for (i = 0; i < db->nelem; i++) {
  897. dm = bdx_rxdb_addr_elem(db, i);
  898. if (dm->dma) {
  899. pci_unmap_single(priv->pdev,
  900. dm->dma, f->m.pktsz,
  901. PCI_DMA_FROMDEVICE);
  902. dev_kfree_skb(dm->skb);
  903. }
  904. }
  905. }
  906. /* bdx_rx_free - release all Rx resources
  907. * @priv - NIC private structure
  908. * It assumes that Rx is desabled in HW
  909. */
  910. static void bdx_rx_free(struct bdx_priv *priv)
  911. {
  912. ENTER;
  913. if (priv->rxdb) {
  914. bdx_rx_free_skbs(priv, &priv->rxf_fifo0);
  915. bdx_rxdb_destroy(priv->rxdb);
  916. priv->rxdb = NULL;
  917. }
  918. bdx_fifo_free(priv, &priv->rxf_fifo0.m);
  919. bdx_fifo_free(priv, &priv->rxd_fifo0.m);
  920. RET();
  921. }
  922. /*************************************************************************
  923. * Rx Engine *
  924. *************************************************************************/
  925. /* bdx_rx_alloc_skbs - fill rxf fifo with new skbs
  926. * @priv - nic's private structure
  927. * @f - RXF fifo that needs skbs
  928. * It allocates skbs, build rxf descs and push it (rxf descr) into rxf fifo.
  929. * skb's virtual and physical addresses are stored in skb db.
  930. * To calculate free space, func uses cached values of RPTR and WPTR
  931. * When needed, it also updates RPTR and WPTR.
  932. */
  933. /* TBD: do not update WPTR if no desc were written */
  934. static void bdx_rx_alloc_skbs(struct bdx_priv *priv, struct rxf_fifo *f)
  935. {
  936. struct sk_buff *skb;
  937. struct rxf_desc *rxfd;
  938. struct rx_map *dm;
  939. int dno, delta, idx;
  940. struct rxdb *db = priv->rxdb;
  941. ENTER;
  942. dno = bdx_rxdb_available(db) - 1;
  943. while (dno > 0) {
  944. skb = netdev_alloc_skb(priv->ndev, f->m.pktsz + NET_IP_ALIGN);
  945. if (!skb) {
  946. pr_err("NO MEM: netdev_alloc_skb failed\n");
  947. break;
  948. }
  949. skb_reserve(skb, NET_IP_ALIGN);
  950. idx = bdx_rxdb_alloc_elem(db);
  951. dm = bdx_rxdb_addr_elem(db, idx);
  952. dm->dma = pci_map_single(priv->pdev,
  953. skb->data, f->m.pktsz,
  954. PCI_DMA_FROMDEVICE);
  955. dm->skb = skb;
  956. rxfd = (struct rxf_desc *)(f->m.va + f->m.wptr);
  957. rxfd->info = CPU_CHIP_SWAP32(0x10003); /* INFO=1 BC=3 */
  958. rxfd->va_lo = idx;
  959. rxfd->pa_lo = CPU_CHIP_SWAP32(L32_64(dm->dma));
  960. rxfd->pa_hi = CPU_CHIP_SWAP32(H32_64(dm->dma));
  961. rxfd->len = CPU_CHIP_SWAP32(f->m.pktsz);
  962. print_rxfd(rxfd);
  963. f->m.wptr += sizeof(struct rxf_desc);
  964. delta = f->m.wptr - f->m.memsz;
  965. if (unlikely(delta >= 0)) {
  966. f->m.wptr = delta;
  967. if (delta > 0) {
  968. memcpy(f->m.va, f->m.va + f->m.memsz, delta);
  969. DBG("wrapped descriptor\n");
  970. }
  971. }
  972. dno--;
  973. }
  974. /*TBD: to do - delayed rxf wptr like in txd */
  975. WRITE_REG(priv, f->m.reg_WPTR, f->m.wptr & TXF_WPTR_WR_PTR);
  976. RET();
  977. }
  978. static inline void
  979. NETIF_RX_MUX(struct bdx_priv *priv, u32 rxd_val1, u16 rxd_vlan,
  980. struct sk_buff *skb)
  981. {
  982. ENTER;
  983. DBG("rxdd->flags.bits.vtag=%d\n", GET_RXD_VTAG(rxd_val1));
  984. if (GET_RXD_VTAG(rxd_val1)) {
  985. DBG("%s: vlan rcv vlan '%x' vtag '%x'\n",
  986. priv->ndev->name,
  987. GET_RXD_VLAN_ID(rxd_vlan),
  988. GET_RXD_VTAG(rxd_val1));
  989. __vlan_hwaccel_put_tag(skb, GET_RXD_VLAN_TCI(rxd_vlan));
  990. }
  991. netif_receive_skb(skb);
  992. }
  993. static void bdx_recycle_skb(struct bdx_priv *priv, struct rxd_desc *rxdd)
  994. {
  995. struct rxf_desc *rxfd;
  996. struct rx_map *dm;
  997. struct rxf_fifo *f;
  998. struct rxdb *db;
  999. struct sk_buff *skb;
  1000. int delta;
  1001. ENTER;
  1002. DBG("priv=%p rxdd=%p\n", priv, rxdd);
  1003. f = &priv->rxf_fifo0;
  1004. db = priv->rxdb;
  1005. DBG("db=%p f=%p\n", db, f);
  1006. dm = bdx_rxdb_addr_elem(db, rxdd->va_lo);
  1007. DBG("dm=%p\n", dm);
  1008. skb = dm->skb;
  1009. rxfd = (struct rxf_desc *)(f->m.va + f->m.wptr);
  1010. rxfd->info = CPU_CHIP_SWAP32(0x10003); /* INFO=1 BC=3 */
  1011. rxfd->va_lo = rxdd->va_lo;
  1012. rxfd->pa_lo = CPU_CHIP_SWAP32(L32_64(dm->dma));
  1013. rxfd->pa_hi = CPU_CHIP_SWAP32(H32_64(dm->dma));
  1014. rxfd->len = CPU_CHIP_SWAP32(f->m.pktsz);
  1015. print_rxfd(rxfd);
  1016. f->m.wptr += sizeof(struct rxf_desc);
  1017. delta = f->m.wptr - f->m.memsz;
  1018. if (unlikely(delta >= 0)) {
  1019. f->m.wptr = delta;
  1020. if (delta > 0) {
  1021. memcpy(f->m.va, f->m.va + f->m.memsz, delta);
  1022. DBG("wrapped descriptor\n");
  1023. }
  1024. }
  1025. RET();
  1026. }
  1027. /* bdx_rx_receive - receives full packets from RXD fifo and pass them to OS
  1028. * NOTE: a special treatment is given to non-continuous descriptors
  1029. * that start near the end, wraps around and continue at the beginning. a second
  1030. * part is copied right after the first, and then descriptor is interpreted as
  1031. * normal. fifo has an extra space to allow such operations
  1032. * @priv - nic's private structure
  1033. * @f - RXF fifo that needs skbs
  1034. */
  1035. /* TBD: replace memcpy func call by explicite inline asm */
  1036. static int bdx_rx_receive(struct bdx_priv *priv, struct rxd_fifo *f, int budget)
  1037. {
  1038. struct net_device *ndev = priv->ndev;
  1039. struct sk_buff *skb, *skb2;
  1040. struct rxd_desc *rxdd;
  1041. struct rx_map *dm;
  1042. struct rxf_fifo *rxf_fifo;
  1043. int tmp_len, size;
  1044. int done = 0;
  1045. int max_done = BDX_MAX_RX_DONE;
  1046. struct rxdb *db = NULL;
  1047. /* Unmarshalled descriptor - copy of descriptor in host order */
  1048. u32 rxd_val1;
  1049. u16 len;
  1050. u16 rxd_vlan;
  1051. ENTER;
  1052. max_done = budget;
  1053. f->m.wptr = READ_REG(priv, f->m.reg_WPTR) & TXF_WPTR_WR_PTR;
  1054. size = f->m.wptr - f->m.rptr;
  1055. if (size < 0)
  1056. size = f->m.memsz + size; /* size is negative :-) */
  1057. while (size > 0) {
  1058. rxdd = (struct rxd_desc *)(f->m.va + f->m.rptr);
  1059. rxd_val1 = CPU_CHIP_SWAP32(rxdd->rxd_val1);
  1060. len = CPU_CHIP_SWAP16(rxdd->len);
  1061. rxd_vlan = CPU_CHIP_SWAP16(rxdd->rxd_vlan);
  1062. print_rxdd(rxdd, rxd_val1, len, rxd_vlan);
  1063. tmp_len = GET_RXD_BC(rxd_val1) << 3;
  1064. BDX_ASSERT(tmp_len <= 0);
  1065. size -= tmp_len;
  1066. if (size < 0) /* test for partially arrived descriptor */
  1067. break;
  1068. f->m.rptr += tmp_len;
  1069. tmp_len = f->m.rptr - f->m.memsz;
  1070. if (unlikely(tmp_len >= 0)) {
  1071. f->m.rptr = tmp_len;
  1072. if (tmp_len > 0) {
  1073. DBG("wrapped desc rptr=%d tmp_len=%d\n",
  1074. f->m.rptr, tmp_len);
  1075. memcpy(f->m.va + f->m.memsz, f->m.va, tmp_len);
  1076. }
  1077. }
  1078. if (unlikely(GET_RXD_ERR(rxd_val1))) {
  1079. DBG("rxd_err = 0x%x\n", GET_RXD_ERR(rxd_val1));
  1080. ndev->stats.rx_errors++;
  1081. bdx_recycle_skb(priv, rxdd);
  1082. continue;
  1083. }
  1084. rxf_fifo = &priv->rxf_fifo0;
  1085. db = priv->rxdb;
  1086. dm = bdx_rxdb_addr_elem(db, rxdd->va_lo);
  1087. skb = dm->skb;
  1088. if (len < BDX_COPYBREAK &&
  1089. (skb2 = netdev_alloc_skb(priv->ndev, len + NET_IP_ALIGN))) {
  1090. skb_reserve(skb2, NET_IP_ALIGN);
  1091. /*skb_put(skb2, len); */
  1092. pci_dma_sync_single_for_cpu(priv->pdev,
  1093. dm->dma, rxf_fifo->m.pktsz,
  1094. PCI_DMA_FROMDEVICE);
  1095. memcpy(skb2->data, skb->data, len);
  1096. bdx_recycle_skb(priv, rxdd);
  1097. skb = skb2;
  1098. } else {
  1099. pci_unmap_single(priv->pdev,
  1100. dm->dma, rxf_fifo->m.pktsz,
  1101. PCI_DMA_FROMDEVICE);
  1102. bdx_rxdb_free_elem(db, rxdd->va_lo);
  1103. }
  1104. ndev->stats.rx_bytes += len;
  1105. skb_put(skb, len);
  1106. skb->protocol = eth_type_trans(skb, ndev);
  1107. /* Non-IP packets aren't checksum-offloaded */
  1108. if (GET_RXD_PKT_ID(rxd_val1) == 0)
  1109. skb_checksum_none_assert(skb);
  1110. else
  1111. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1112. NETIF_RX_MUX(priv, rxd_val1, rxd_vlan, skb);
  1113. if (++done >= max_done)
  1114. break;
  1115. }
  1116. ndev->stats.rx_packets += done;
  1117. /* FIXME: do smth to minimize pci accesses */
  1118. WRITE_REG(priv, f->m.reg_RPTR, f->m.rptr & TXF_WPTR_WR_PTR);
  1119. bdx_rx_alloc_skbs(priv, &priv->rxf_fifo0);
  1120. RET(done);
  1121. }
  1122. /*************************************************************************
  1123. * Debug / Temprorary Code *
  1124. *************************************************************************/
  1125. static void print_rxdd(struct rxd_desc *rxdd, u32 rxd_val1, u16 len,
  1126. u16 rxd_vlan)
  1127. {
  1128. DBG("ERROR: rxdd bc %d rxfq %d to %d type %d err %d rxp %d pkt_id %d vtag %d len %d vlan_id %d cfi %d prio %d va_lo %d va_hi %d\n",
  1129. GET_RXD_BC(rxd_val1), GET_RXD_RXFQ(rxd_val1), GET_RXD_TO(rxd_val1),
  1130. GET_RXD_TYPE(rxd_val1), GET_RXD_ERR(rxd_val1),
  1131. GET_RXD_RXP(rxd_val1), GET_RXD_PKT_ID(rxd_val1),
  1132. GET_RXD_VTAG(rxd_val1), len, GET_RXD_VLAN_ID(rxd_vlan),
  1133. GET_RXD_CFI(rxd_vlan), GET_RXD_PRIO(rxd_vlan), rxdd->va_lo,
  1134. rxdd->va_hi);
  1135. }
  1136. static void print_rxfd(struct rxf_desc *rxfd)
  1137. {
  1138. DBG("=== RxF desc CHIP ORDER/ENDIANNESS =============\n"
  1139. "info 0x%x va_lo %u pa_lo 0x%x pa_hi 0x%x len 0x%x\n",
  1140. rxfd->info, rxfd->va_lo, rxfd->pa_lo, rxfd->pa_hi, rxfd->len);
  1141. }
  1142. /*
  1143. * TX HW/SW interaction overview
  1144. * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  1145. * There are 2 types of TX communication channels between driver and NIC.
  1146. * 1) TX Free Fifo - TXF - holds ack descriptors for sent packets
  1147. * 2) TX Data Fifo - TXD - holds descriptors of full buffers.
  1148. *
  1149. * Currently NIC supports TSO, checksuming and gather DMA
  1150. * UFO and IP fragmentation is on the way
  1151. *
  1152. * RX SW Data Structures
  1153. * ~~~~~~~~~~~~~~~~~~~~~
  1154. * txdb - used to keep track of all skbs owned by SW and their dma addresses.
  1155. * For TX case, ownership lasts from geting packet via hard_xmit and until HW
  1156. * acknowledges sent by TXF descriptors.
  1157. * Implemented as cyclic buffer.
  1158. * fifo - keeps info about fifo's size and location, relevant HW registers,
  1159. * usage and skb db. Each RXD and RXF Fifo has its own fifo structure.
  1160. * Implemented as simple struct.
  1161. *
  1162. * TX SW Execution Flow
  1163. * ~~~~~~~~~~~~~~~~~~~~
  1164. * OS calls driver's hard_xmit method with packet to sent.
  1165. * Driver creates DMA mappings, builds TXD descriptors and kicks HW
  1166. * by updating TXD WPTR.
  1167. * When packet is sent, HW write us TXF descriptor and SW frees original skb.
  1168. * To prevent TXD fifo overflow without reading HW registers every time,
  1169. * SW deploys "tx level" technique.
  1170. * Upon strart up, tx level is initialized to TXD fifo length.
  1171. * For every sent packet, SW gets its TXD descriptor sizei
  1172. * (from precalculated array) and substructs it from tx level.
  1173. * The size is also stored in txdb. When TXF ack arrives, SW fetch size of
  1174. * original TXD descriptor from txdb and adds it to tx level.
  1175. * When Tx level drops under some predefined treshhold, the driver
  1176. * stops the TX queue. When TX level rises above that level,
  1177. * the tx queue is enabled again.
  1178. *
  1179. * This technique avoids eccessive reading of RPTR and WPTR registers.
  1180. * As our benchmarks shows, it adds 1.5 Gbit/sec to NIS's throuput.
  1181. */
  1182. /*************************************************************************
  1183. * Tx DB *
  1184. *************************************************************************/
  1185. static inline int bdx_tx_db_size(struct txdb *db)
  1186. {
  1187. int taken = db->wptr - db->rptr;
  1188. if (taken < 0)
  1189. taken = db->size + 1 + taken; /* (size + 1) equals memsz */
  1190. return db->size - taken;
  1191. }
  1192. /* __bdx_tx_ptr_next - helper function, increment read/write pointer + wrap
  1193. * @d - tx data base
  1194. * @ptr - read or write pointer
  1195. */
  1196. static inline void __bdx_tx_db_ptr_next(struct txdb *db, struct tx_map **pptr)
  1197. {
  1198. BDX_ASSERT(db == NULL || pptr == NULL); /* sanity */
  1199. BDX_ASSERT(*pptr != db->rptr && /* expect either read */
  1200. *pptr != db->wptr); /* or write pointer */
  1201. BDX_ASSERT(*pptr < db->start || /* pointer has to be */
  1202. *pptr >= db->end); /* in range */
  1203. ++*pptr;
  1204. if (unlikely(*pptr == db->end))
  1205. *pptr = db->start;
  1206. }
  1207. /* bdx_tx_db_inc_rptr - increment read pointer
  1208. * @d - tx data base
  1209. */
  1210. static inline void bdx_tx_db_inc_rptr(struct txdb *db)
  1211. {
  1212. BDX_ASSERT(db->rptr == db->wptr); /* can't read from empty db */
  1213. __bdx_tx_db_ptr_next(db, &db->rptr);
  1214. }
  1215. /* bdx_tx_db_inc_rptr - increment write pointer
  1216. * @d - tx data base
  1217. */
  1218. static inline void bdx_tx_db_inc_wptr(struct txdb *db)
  1219. {
  1220. __bdx_tx_db_ptr_next(db, &db->wptr);
  1221. BDX_ASSERT(db->rptr == db->wptr); /* we can not get empty db as
  1222. a result of write */
  1223. }
  1224. /* bdx_tx_db_init - creates and initializes tx db
  1225. * @d - tx data base
  1226. * @sz_type - size of tx fifo
  1227. * Returns 0 on success, error code otherwise
  1228. */
  1229. static int bdx_tx_db_init(struct txdb *d, int sz_type)
  1230. {
  1231. int memsz = FIFO_SIZE * (1 << (sz_type + 1));
  1232. d->start = vmalloc(memsz);
  1233. if (!d->start)
  1234. return -ENOMEM;
  1235. /*
  1236. * In order to differentiate between db is empty and db is full
  1237. * states at least one element should always be empty in order to
  1238. * avoid rptr == wptr which means db is empty
  1239. */
  1240. d->size = memsz / sizeof(struct tx_map) - 1;
  1241. d->end = d->start + d->size + 1; /* just after last element */
  1242. /* all dbs are created equally empty */
  1243. d->rptr = d->start;
  1244. d->wptr = d->start;
  1245. return 0;
  1246. }
  1247. /* bdx_tx_db_close - closes tx db and frees all memory
  1248. * @d - tx data base
  1249. */
  1250. static void bdx_tx_db_close(struct txdb *d)
  1251. {
  1252. BDX_ASSERT(d == NULL);
  1253. vfree(d->start);
  1254. d->start = NULL;
  1255. }
  1256. /*************************************************************************
  1257. * Tx Engine *
  1258. *************************************************************************/
  1259. /* sizes of tx desc (including padding if needed) as function
  1260. * of skb's frag number */
  1261. static struct {
  1262. u16 bytes;
  1263. u16 qwords; /* qword = 64 bit */
  1264. } txd_sizes[MAX_SKB_FRAGS + 1];
  1265. /* txdb_map_skb - creates and stores dma mappings for skb's data blocks
  1266. * @priv - NIC private structure
  1267. * @skb - socket buffer to map
  1268. *
  1269. * It makes dma mappings for skb's data blocks and writes them to PBL of
  1270. * new tx descriptor. It also stores them in the tx db, so they could be
  1271. * unmaped after data was sent. It is reponsibility of a caller to make
  1272. * sure that there is enough space in the tx db. Last element holds pointer
  1273. * to skb itself and marked with zero length
  1274. */
  1275. static inline void
  1276. bdx_tx_map_skb(struct bdx_priv *priv, struct sk_buff *skb,
  1277. struct txd_desc *txdd)
  1278. {
  1279. struct txdb *db = &priv->txdb;
  1280. struct pbl *pbl = &txdd->pbl[0];
  1281. int nr_frags = skb_shinfo(skb)->nr_frags;
  1282. int i;
  1283. db->wptr->len = skb_headlen(skb);
  1284. db->wptr->addr.dma = pci_map_single(priv->pdev, skb->data,
  1285. db->wptr->len, PCI_DMA_TODEVICE);
  1286. pbl->len = CPU_CHIP_SWAP32(db->wptr->len);
  1287. pbl->pa_lo = CPU_CHIP_SWAP32(L32_64(db->wptr->addr.dma));
  1288. pbl->pa_hi = CPU_CHIP_SWAP32(H32_64(db->wptr->addr.dma));
  1289. DBG("=== pbl len: 0x%x ================\n", pbl->len);
  1290. DBG("=== pbl pa_lo: 0x%x ================\n", pbl->pa_lo);
  1291. DBG("=== pbl pa_hi: 0x%x ================\n", pbl->pa_hi);
  1292. bdx_tx_db_inc_wptr(db);
  1293. for (i = 0; i < nr_frags; i++) {
  1294. const struct skb_frag_struct *frag;
  1295. frag = &skb_shinfo(skb)->frags[i];
  1296. db->wptr->len = skb_frag_size(frag);
  1297. db->wptr->addr.dma = skb_frag_dma_map(&priv->pdev->dev, frag,
  1298. 0, skb_frag_size(frag),
  1299. DMA_TO_DEVICE);
  1300. pbl++;
  1301. pbl->len = CPU_CHIP_SWAP32(db->wptr->len);
  1302. pbl->pa_lo = CPU_CHIP_SWAP32(L32_64(db->wptr->addr.dma));
  1303. pbl->pa_hi = CPU_CHIP_SWAP32(H32_64(db->wptr->addr.dma));
  1304. bdx_tx_db_inc_wptr(db);
  1305. }
  1306. /* add skb clean up info. */
  1307. db->wptr->len = -txd_sizes[nr_frags].bytes;
  1308. db->wptr->addr.skb = skb;
  1309. bdx_tx_db_inc_wptr(db);
  1310. }
  1311. /* init_txd_sizes - precalculate sizes of descriptors for skbs up to 16 frags
  1312. * number of frags is used as index to fetch correct descriptors size,
  1313. * instead of calculating it each time */
  1314. static void __init init_txd_sizes(void)
  1315. {
  1316. int i, lwords;
  1317. /* 7 - is number of lwords in txd with one phys buffer
  1318. * 3 - is number of lwords used for every additional phys buffer */
  1319. for (i = 0; i < MAX_SKB_FRAGS + 1; i++) {
  1320. lwords = 7 + (i * 3);
  1321. if (lwords & 1)
  1322. lwords++; /* pad it with 1 lword */
  1323. txd_sizes[i].qwords = lwords >> 1;
  1324. txd_sizes[i].bytes = lwords << 2;
  1325. }
  1326. }
  1327. /* bdx_tx_init - initialize all Tx related stuff.
  1328. * Namely, TXD and TXF fifos, database etc */
  1329. static int bdx_tx_init(struct bdx_priv *priv)
  1330. {
  1331. if (bdx_fifo_init(priv, &priv->txd_fifo0.m, priv->txd_size,
  1332. regTXD_CFG0_0,
  1333. regTXD_CFG1_0, regTXD_RPTR_0, regTXD_WPTR_0))
  1334. goto err_mem;
  1335. if (bdx_fifo_init(priv, &priv->txf_fifo0.m, priv->txf_size,
  1336. regTXF_CFG0_0,
  1337. regTXF_CFG1_0, regTXF_RPTR_0, regTXF_WPTR_0))
  1338. goto err_mem;
  1339. /* The TX db has to keep mappings for all packets sent (on TxD)
  1340. * and not yet reclaimed (on TxF) */
  1341. if (bdx_tx_db_init(&priv->txdb, max(priv->txd_size, priv->txf_size)))
  1342. goto err_mem;
  1343. priv->tx_level = BDX_MAX_TX_LEVEL;
  1344. #ifdef BDX_DELAY_WPTR
  1345. priv->tx_update_mark = priv->tx_level - 1024;
  1346. #endif
  1347. return 0;
  1348. err_mem:
  1349. netdev_err(priv->ndev, "Tx init failed\n");
  1350. return -ENOMEM;
  1351. }
  1352. /*
  1353. * bdx_tx_space - calculates available space in TX fifo
  1354. * @priv - NIC private structure
  1355. * Returns available space in TX fifo in bytes
  1356. */
  1357. static inline int bdx_tx_space(struct bdx_priv *priv)
  1358. {
  1359. struct txd_fifo *f = &priv->txd_fifo0;
  1360. int fsize;
  1361. f->m.rptr = READ_REG(priv, f->m.reg_RPTR) & TXF_WPTR_WR_PTR;
  1362. fsize = f->m.rptr - f->m.wptr;
  1363. if (fsize <= 0)
  1364. fsize = f->m.memsz + fsize;
  1365. return fsize;
  1366. }
  1367. /* bdx_tx_transmit - send packet to NIC
  1368. * @skb - packet to send
  1369. * ndev - network device assigned to NIC
  1370. * Return codes:
  1371. * o NETDEV_TX_OK everything ok.
  1372. * o NETDEV_TX_BUSY Cannot transmit packet, try later
  1373. * Usually a bug, means queue start/stop flow control is broken in
  1374. * the driver. Note: the driver must NOT put the skb in its DMA ring.
  1375. * o NETDEV_TX_LOCKED Locking failed, please retry quickly.
  1376. */
  1377. static netdev_tx_t bdx_tx_transmit(struct sk_buff *skb,
  1378. struct net_device *ndev)
  1379. {
  1380. struct bdx_priv *priv = netdev_priv(ndev);
  1381. struct txd_fifo *f = &priv->txd_fifo0;
  1382. int txd_checksum = 7; /* full checksum */
  1383. int txd_lgsnd = 0;
  1384. int txd_vlan_id = 0;
  1385. int txd_vtag = 0;
  1386. int txd_mss = 0;
  1387. int nr_frags = skb_shinfo(skb)->nr_frags;
  1388. struct txd_desc *txdd;
  1389. int len;
  1390. unsigned long flags;
  1391. ENTER;
  1392. local_irq_save(flags);
  1393. if (!spin_trylock(&priv->tx_lock)) {
  1394. local_irq_restore(flags);
  1395. DBG("%s[%s]: TX locked, returning NETDEV_TX_LOCKED\n",
  1396. BDX_DRV_NAME, ndev->name);
  1397. return NETDEV_TX_LOCKED;
  1398. }
  1399. /* build tx descriptor */
  1400. BDX_ASSERT(f->m.wptr >= f->m.memsz); /* started with valid wptr */
  1401. txdd = (struct txd_desc *)(f->m.va + f->m.wptr);
  1402. if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL))
  1403. txd_checksum = 0;
  1404. if (skb_shinfo(skb)->gso_size) {
  1405. txd_mss = skb_shinfo(skb)->gso_size;
  1406. txd_lgsnd = 1;
  1407. DBG("skb %p skb len %d gso size = %d\n", skb, skb->len,
  1408. txd_mss);
  1409. }
  1410. if (vlan_tx_tag_present(skb)) {
  1411. /*Cut VLAN ID to 12 bits */
  1412. txd_vlan_id = vlan_tx_tag_get(skb) & BITS_MASK(12);
  1413. txd_vtag = 1;
  1414. }
  1415. txdd->length = CPU_CHIP_SWAP16(skb->len);
  1416. txdd->mss = CPU_CHIP_SWAP16(txd_mss);
  1417. txdd->txd_val1 =
  1418. CPU_CHIP_SWAP32(TXD_W1_VAL
  1419. (txd_sizes[nr_frags].qwords, txd_checksum, txd_vtag,
  1420. txd_lgsnd, txd_vlan_id));
  1421. DBG("=== TxD desc =====================\n");
  1422. DBG("=== w1: 0x%x ================\n", txdd->txd_val1);
  1423. DBG("=== w2: mss 0x%x len 0x%x\n", txdd->mss, txdd->length);
  1424. bdx_tx_map_skb(priv, skb, txdd);
  1425. /* increment TXD write pointer. In case of
  1426. fifo wrapping copy reminder of the descriptor
  1427. to the beginning */
  1428. f->m.wptr += txd_sizes[nr_frags].bytes;
  1429. len = f->m.wptr - f->m.memsz;
  1430. if (unlikely(len >= 0)) {
  1431. f->m.wptr = len;
  1432. if (len > 0) {
  1433. BDX_ASSERT(len > f->m.memsz);
  1434. memcpy(f->m.va, f->m.va + f->m.memsz, len);
  1435. }
  1436. }
  1437. BDX_ASSERT(f->m.wptr >= f->m.memsz); /* finished with valid wptr */
  1438. priv->tx_level -= txd_sizes[nr_frags].bytes;
  1439. BDX_ASSERT(priv->tx_level <= 0 || priv->tx_level > BDX_MAX_TX_LEVEL);
  1440. #ifdef BDX_DELAY_WPTR
  1441. if (priv->tx_level > priv->tx_update_mark) {
  1442. /* Force memory writes to complete before letting h/w
  1443. know there are new descriptors to fetch.
  1444. (might be needed on platforms like IA64)
  1445. wmb(); */
  1446. WRITE_REG(priv, f->m.reg_WPTR, f->m.wptr & TXF_WPTR_WR_PTR);
  1447. } else {
  1448. if (priv->tx_noupd++ > BDX_NO_UPD_PACKETS) {
  1449. priv->tx_noupd = 0;
  1450. WRITE_REG(priv, f->m.reg_WPTR,
  1451. f->m.wptr & TXF_WPTR_WR_PTR);
  1452. }
  1453. }
  1454. #else
  1455. /* Force memory writes to complete before letting h/w
  1456. know there are new descriptors to fetch.
  1457. (might be needed on platforms like IA64)
  1458. wmb(); */
  1459. WRITE_REG(priv, f->m.reg_WPTR, f->m.wptr & TXF_WPTR_WR_PTR);
  1460. #endif
  1461. #ifdef BDX_LLTX
  1462. ndev->trans_start = jiffies; /* NETIF_F_LLTX driver :( */
  1463. #endif
  1464. ndev->stats.tx_packets++;
  1465. ndev->stats.tx_bytes += skb->len;
  1466. if (priv->tx_level < BDX_MIN_TX_LEVEL) {
  1467. DBG("%s: %s: TX Q STOP level %d\n",
  1468. BDX_DRV_NAME, ndev->name, priv->tx_level);
  1469. netif_stop_queue(ndev);
  1470. }
  1471. spin_unlock_irqrestore(&priv->tx_lock, flags);
  1472. return NETDEV_TX_OK;
  1473. }
  1474. /* bdx_tx_cleanup - clean TXF fifo, run in the context of IRQ.
  1475. * @priv - bdx adapter
  1476. * It scans TXF fifo for descriptors, frees DMA mappings and reports to OS
  1477. * that those packets were sent
  1478. */
  1479. static void bdx_tx_cleanup(struct bdx_priv *priv)
  1480. {
  1481. struct txf_fifo *f = &priv->txf_fifo0;
  1482. struct txdb *db = &priv->txdb;
  1483. int tx_level = 0;
  1484. ENTER;
  1485. f->m.wptr = READ_REG(priv, f->m.reg_WPTR) & TXF_WPTR_MASK;
  1486. BDX_ASSERT(f->m.rptr >= f->m.memsz); /* started with valid rptr */
  1487. while (f->m.wptr != f->m.rptr) {
  1488. f->m.rptr += BDX_TXF_DESC_SZ;
  1489. f->m.rptr &= f->m.size_mask;
  1490. /* unmap all the fragments */
  1491. /* first has to come tx_maps containing dma */
  1492. BDX_ASSERT(db->rptr->len == 0);
  1493. do {
  1494. BDX_ASSERT(db->rptr->addr.dma == 0);
  1495. pci_unmap_page(priv->pdev, db->rptr->addr.dma,
  1496. db->rptr->len, PCI_DMA_TODEVICE);
  1497. bdx_tx_db_inc_rptr(db);
  1498. } while (db->rptr->len > 0);
  1499. tx_level -= db->rptr->len; /* '-' koz len is negative */
  1500. /* now should come skb pointer - free it */
  1501. dev_kfree_skb_irq(db->rptr->addr.skb);
  1502. bdx_tx_db_inc_rptr(db);
  1503. }
  1504. /* let h/w know which TXF descriptors were cleaned */
  1505. BDX_ASSERT((f->m.wptr & TXF_WPTR_WR_PTR) >= f->m.memsz);
  1506. WRITE_REG(priv, f->m.reg_RPTR, f->m.rptr & TXF_WPTR_WR_PTR);
  1507. /* We reclaimed resources, so in case the Q is stopped by xmit callback,
  1508. * we resume the transmition and use tx_lock to synchronize with xmit.*/
  1509. spin_lock(&priv->tx_lock);
  1510. priv->tx_level += tx_level;
  1511. BDX_ASSERT(priv->tx_level <= 0 || priv->tx_level > BDX_MAX_TX_LEVEL);
  1512. #ifdef BDX_DELAY_WPTR
  1513. if (priv->tx_noupd) {
  1514. priv->tx_noupd = 0;
  1515. WRITE_REG(priv, priv->txd_fifo0.m.reg_WPTR,
  1516. priv->txd_fifo0.m.wptr & TXF_WPTR_WR_PTR);
  1517. }
  1518. #endif
  1519. if (unlikely(netif_queue_stopped(priv->ndev) &&
  1520. netif_carrier_ok(priv->ndev) &&
  1521. (priv->tx_level >= BDX_MIN_TX_LEVEL))) {
  1522. DBG("%s: %s: TX Q WAKE level %d\n",
  1523. BDX_DRV_NAME, priv->ndev->name, priv->tx_level);
  1524. netif_wake_queue(priv->ndev);
  1525. }
  1526. spin_unlock(&priv->tx_lock);
  1527. }
  1528. /* bdx_tx_free_skbs - frees all skbs from TXD fifo.
  1529. * It gets called when OS stops this dev, eg upon "ifconfig down" or rmmod
  1530. */
  1531. static void bdx_tx_free_skbs(struct bdx_priv *priv)
  1532. {
  1533. struct txdb *db = &priv->txdb;
  1534. ENTER;
  1535. while (db->rptr != db->wptr) {
  1536. if (likely(db->rptr->len))
  1537. pci_unmap_page(priv->pdev, db->rptr->addr.dma,
  1538. db->rptr->len, PCI_DMA_TODEVICE);
  1539. else
  1540. dev_kfree_skb(db->rptr->addr.skb);
  1541. bdx_tx_db_inc_rptr(db);
  1542. }
  1543. RET();
  1544. }
  1545. /* bdx_tx_free - frees all Tx resources */
  1546. static void bdx_tx_free(struct bdx_priv *priv)
  1547. {
  1548. ENTER;
  1549. bdx_tx_free_skbs(priv);
  1550. bdx_fifo_free(priv, &priv->txd_fifo0.m);
  1551. bdx_fifo_free(priv, &priv->txf_fifo0.m);
  1552. bdx_tx_db_close(&priv->txdb);
  1553. }
  1554. /* bdx_tx_push_desc - push descriptor to TxD fifo
  1555. * @priv - NIC private structure
  1556. * @data - desc's data
  1557. * @size - desc's size
  1558. *
  1559. * Pushes desc to TxD fifo and overlaps it if needed.
  1560. * NOTE: this func does not check for available space. this is responsibility
  1561. * of the caller. Neither does it check that data size is smaller than
  1562. * fifo size.
  1563. */
  1564. static void bdx_tx_push_desc(struct bdx_priv *priv, void *data, int size)
  1565. {
  1566. struct txd_fifo *f = &priv->txd_fifo0;
  1567. int i = f->m.memsz - f->m.wptr;
  1568. if (size == 0)
  1569. return;
  1570. if (i > size) {
  1571. memcpy(f->m.va + f->m.wptr, data, size);
  1572. f->m.wptr += size;
  1573. } else {
  1574. memcpy(f->m.va + f->m.wptr, data, i);
  1575. f->m.wptr = size - i;
  1576. memcpy(f->m.va, data + i, f->m.wptr);
  1577. }
  1578. WRITE_REG(priv, f->m.reg_WPTR, f->m.wptr & TXF_WPTR_WR_PTR);
  1579. }
  1580. /* bdx_tx_push_desc_safe - push descriptor to TxD fifo in a safe way
  1581. * @priv - NIC private structure
  1582. * @data - desc's data
  1583. * @size - desc's size
  1584. *
  1585. * NOTE: this func does check for available space and, if necessary, waits for
  1586. * NIC to read existing data before writing new one.
  1587. */
  1588. static void bdx_tx_push_desc_safe(struct bdx_priv *priv, void *data, int size)
  1589. {
  1590. int timer = 0;
  1591. ENTER;
  1592. while (size > 0) {
  1593. /* we substruct 8 because when fifo is full rptr == wptr
  1594. which also means that fifo is empty, we can understand
  1595. the difference, but could hw do the same ??? :) */
  1596. int avail = bdx_tx_space(priv) - 8;
  1597. if (avail <= 0) {
  1598. if (timer++ > 300) { /* prevent endless loop */
  1599. DBG("timeout while writing desc to TxD fifo\n");
  1600. break;
  1601. }
  1602. udelay(50); /* give hw a chance to clean fifo */
  1603. continue;
  1604. }
  1605. avail = min(avail, size);
  1606. DBG("about to push %d bytes starting %p size %d\n", avail,
  1607. data, size);
  1608. bdx_tx_push_desc(priv, data, avail);
  1609. size -= avail;
  1610. data += avail;
  1611. }
  1612. RET();
  1613. }
  1614. static const struct net_device_ops bdx_netdev_ops = {
  1615. .ndo_open = bdx_open,
  1616. .ndo_stop = bdx_close,
  1617. .ndo_start_xmit = bdx_tx_transmit,
  1618. .ndo_validate_addr = eth_validate_addr,
  1619. .ndo_do_ioctl = bdx_ioctl,
  1620. .ndo_set_rx_mode = bdx_setmulti,
  1621. .ndo_change_mtu = bdx_change_mtu,
  1622. .ndo_set_mac_address = bdx_set_mac,
  1623. .ndo_vlan_rx_add_vid = bdx_vlan_rx_add_vid,
  1624. .ndo_vlan_rx_kill_vid = bdx_vlan_rx_kill_vid,
  1625. };
  1626. /**
  1627. * bdx_probe - Device Initialization Routine
  1628. * @pdev: PCI device information struct
  1629. * @ent: entry in bdx_pci_tbl
  1630. *
  1631. * Returns 0 on success, negative on failure
  1632. *
  1633. * bdx_probe initializes an adapter identified by a pci_dev structure.
  1634. * The OS initialization, configuring of the adapter private structure,
  1635. * and a hardware reset occur.
  1636. *
  1637. * functions and their order used as explained in
  1638. * /usr/src/linux/Documentation/DMA-{API,mapping}.txt
  1639. *
  1640. */
  1641. /* TBD: netif_msg should be checked and implemented. I disable it for now */
  1642. static int __devinit
  1643. bdx_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
  1644. {
  1645. struct net_device *ndev;
  1646. struct bdx_priv *priv;
  1647. int err, pci_using_dac, port;
  1648. unsigned long pciaddr;
  1649. u32 regionSize;
  1650. struct pci_nic *nic;
  1651. ENTER;
  1652. nic = vmalloc(sizeof(*nic));
  1653. if (!nic)
  1654. RET(-ENOMEM);
  1655. /************** pci *****************/
  1656. err = pci_enable_device(pdev);
  1657. if (err) /* it triggers interrupt, dunno why. */
  1658. goto err_pci; /* it's not a problem though */
  1659. if (!(err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) &&
  1660. !(err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64)))) {
  1661. pci_using_dac = 1;
  1662. } else {
  1663. if ((err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) ||
  1664. (err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)))) {
  1665. pr_err("No usable DMA configuration, aborting\n");
  1666. goto err_dma;
  1667. }
  1668. pci_using_dac = 0;
  1669. }
  1670. err = pci_request_regions(pdev, BDX_DRV_NAME);
  1671. if (err)
  1672. goto err_dma;
  1673. pci_set_master(pdev);
  1674. pciaddr = pci_resource_start(pdev, 0);
  1675. if (!pciaddr) {
  1676. err = -EIO;
  1677. pr_err("no MMIO resource\n");
  1678. goto err_out_res;
  1679. }
  1680. regionSize = pci_resource_len(pdev, 0);
  1681. if (regionSize < BDX_REGS_SIZE) {
  1682. err = -EIO;
  1683. pr_err("MMIO resource (%x) too small\n", regionSize);
  1684. goto err_out_res;
  1685. }
  1686. nic->regs = ioremap(pciaddr, regionSize);
  1687. if (!nic->regs) {
  1688. err = -EIO;
  1689. pr_err("ioremap failed\n");
  1690. goto err_out_res;
  1691. }
  1692. if (pdev->irq < 2) {
  1693. err = -EIO;
  1694. pr_err("invalid irq (%d)\n", pdev->irq);
  1695. goto err_out_iomap;
  1696. }
  1697. pci_set_drvdata(pdev, nic);
  1698. if (pdev->device == 0x3014)
  1699. nic->port_num = 2;
  1700. else
  1701. nic->port_num = 1;
  1702. print_hw_id(pdev);
  1703. bdx_hw_reset_direct(nic->regs);
  1704. nic->irq_type = IRQ_INTX;
  1705. #ifdef BDX_MSI
  1706. if ((readl(nic->regs + FPGA_VER) & 0xFFF) >= 378) {
  1707. err = pci_enable_msi(pdev);
  1708. if (err)
  1709. pr_err("Can't eneble msi. error is %d\n", err);
  1710. else
  1711. nic->irq_type = IRQ_MSI;
  1712. } else
  1713. DBG("HW does not support MSI\n");
  1714. #endif
  1715. /************** netdev **************/
  1716. for (port = 0; port < nic->port_num; port++) {
  1717. ndev = alloc_etherdev(sizeof(struct bdx_priv));
  1718. if (!ndev) {
  1719. err = -ENOMEM;
  1720. goto err_out_iomap;
  1721. }
  1722. ndev->netdev_ops = &bdx_netdev_ops;
  1723. ndev->tx_queue_len = BDX_NDEV_TXQ_LEN;
  1724. bdx_set_ethtool_ops(ndev); /* ethtool interface */
  1725. /* these fields are used for info purposes only
  1726. * so we can have them same for all ports of the board */
  1727. ndev->if_port = port;
  1728. ndev->features = NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_TSO
  1729. | NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX |
  1730. NETIF_F_HW_VLAN_FILTER | NETIF_F_RXCSUM
  1731. /*| NETIF_F_FRAGLIST */
  1732. ;
  1733. ndev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
  1734. NETIF_F_TSO | NETIF_F_HW_VLAN_TX;
  1735. if (pci_using_dac)
  1736. ndev->features |= NETIF_F_HIGHDMA;
  1737. /************** priv ****************/
  1738. priv = nic->priv[port] = netdev_priv(ndev);
  1739. priv->pBdxRegs = nic->regs + port * 0x8000;
  1740. priv->port = port;
  1741. priv->pdev = pdev;
  1742. priv->ndev = ndev;
  1743. priv->nic = nic;
  1744. priv->msg_enable = BDX_DEF_MSG_ENABLE;
  1745. netif_napi_add(ndev, &priv->napi, bdx_poll, 64);
  1746. if ((readl(nic->regs + FPGA_VER) & 0xFFF) == 308) {
  1747. DBG("HW statistics not supported\n");
  1748. priv->stats_flag = 0;
  1749. } else {
  1750. priv->stats_flag = 1;
  1751. }
  1752. /* Initialize fifo sizes. */
  1753. priv->txd_size = 2;
  1754. priv->txf_size = 2;
  1755. priv->rxd_size = 2;
  1756. priv->rxf_size = 3;
  1757. /* Initialize the initial coalescing registers. */
  1758. priv->rdintcm = INT_REG_VAL(0x20, 1, 4, 12);
  1759. priv->tdintcm = INT_REG_VAL(0x20, 1, 0, 12);
  1760. /* ndev->xmit_lock spinlock is not used.
  1761. * Private priv->tx_lock is used for synchronization
  1762. * between transmit and TX irq cleanup. In addition
  1763. * set multicast list callback has to use priv->tx_lock.
  1764. */
  1765. #ifdef BDX_LLTX
  1766. ndev->features |= NETIF_F_LLTX;
  1767. #endif
  1768. spin_lock_init(&priv->tx_lock);
  1769. /*bdx_hw_reset(priv); */
  1770. if (bdx_read_mac(priv)) {
  1771. pr_err("load MAC address failed\n");
  1772. goto err_out_iomap;
  1773. }
  1774. SET_NETDEV_DEV(ndev, &pdev->dev);
  1775. err = register_netdev(ndev);
  1776. if (err) {
  1777. pr_err("register_netdev failed\n");
  1778. goto err_out_free;
  1779. }
  1780. netif_carrier_off(ndev);
  1781. netif_stop_queue(ndev);
  1782. print_eth_id(ndev);
  1783. }
  1784. RET(0);
  1785. err_out_free:
  1786. free_netdev(ndev);
  1787. err_out_iomap:
  1788. iounmap(nic->regs);
  1789. err_out_res:
  1790. pci_release_regions(pdev);
  1791. err_dma:
  1792. pci_disable_device(pdev);
  1793. err_pci:
  1794. vfree(nic);
  1795. RET(err);
  1796. }
  1797. /****************** Ethtool interface *********************/
  1798. /* get strings for statistics counters */
  1799. static const char
  1800. bdx_stat_names[][ETH_GSTRING_LEN] = {
  1801. "InUCast", /* 0x7200 */
  1802. "InMCast", /* 0x7210 */
  1803. "InBCast", /* 0x7220 */
  1804. "InPkts", /* 0x7230 */
  1805. "InErrors", /* 0x7240 */
  1806. "InDropped", /* 0x7250 */
  1807. "FrameTooLong", /* 0x7260 */
  1808. "FrameSequenceErrors", /* 0x7270 */
  1809. "InVLAN", /* 0x7280 */
  1810. "InDroppedDFE", /* 0x7290 */
  1811. "InDroppedIntFull", /* 0x72A0 */
  1812. "InFrameAlignErrors", /* 0x72B0 */
  1813. /* 0x72C0-0x72E0 RSRV */
  1814. "OutUCast", /* 0x72F0 */
  1815. "OutMCast", /* 0x7300 */
  1816. "OutBCast", /* 0x7310 */
  1817. "OutPkts", /* 0x7320 */
  1818. /* 0x7330-0x7360 RSRV */
  1819. "OutVLAN", /* 0x7370 */
  1820. "InUCastOctects", /* 0x7380 */
  1821. "OutUCastOctects", /* 0x7390 */
  1822. /* 0x73A0-0x73B0 RSRV */
  1823. "InBCastOctects", /* 0x73C0 */
  1824. "OutBCastOctects", /* 0x73D0 */
  1825. "InOctects", /* 0x73E0 */
  1826. "OutOctects", /* 0x73F0 */
  1827. };
  1828. /*
  1829. * bdx_get_settings - get device-specific settings
  1830. * @netdev
  1831. * @ecmd
  1832. */
  1833. static int bdx_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
  1834. {
  1835. u32 rdintcm;
  1836. u32 tdintcm;
  1837. struct bdx_priv *priv = netdev_priv(netdev);
  1838. rdintcm = priv->rdintcm;
  1839. tdintcm = priv->tdintcm;
  1840. ecmd->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
  1841. ecmd->advertising = (ADVERTISED_10000baseT_Full | ADVERTISED_FIBRE);
  1842. ethtool_cmd_speed_set(ecmd, SPEED_10000);
  1843. ecmd->duplex = DUPLEX_FULL;
  1844. ecmd->port = PORT_FIBRE;
  1845. ecmd->transceiver = XCVR_EXTERNAL; /* what does it mean? */
  1846. ecmd->autoneg = AUTONEG_DISABLE;
  1847. /* PCK_TH measures in multiples of FIFO bytes
  1848. We translate to packets */
  1849. ecmd->maxtxpkt =
  1850. ((GET_PCK_TH(tdintcm) * PCK_TH_MULT) / BDX_TXF_DESC_SZ);
  1851. ecmd->maxrxpkt =
  1852. ((GET_PCK_TH(rdintcm) * PCK_TH_MULT) / sizeof(struct rxf_desc));
  1853. return 0;
  1854. }
  1855. /*
  1856. * bdx_get_drvinfo - report driver information
  1857. * @netdev
  1858. * @drvinfo
  1859. */
  1860. static void
  1861. bdx_get_drvinfo(struct net_device *netdev, struct ethtool_drvinfo *drvinfo)
  1862. {
  1863. struct bdx_priv *priv = netdev_priv(netdev);
  1864. strlcat(drvinfo->driver, BDX_DRV_NAME, sizeof(drvinfo->driver));
  1865. strlcat(drvinfo->version, BDX_DRV_VERSION, sizeof(drvinfo->version));
  1866. strlcat(drvinfo->fw_version, "N/A", sizeof(drvinfo->fw_version));
  1867. strlcat(drvinfo->bus_info, pci_name(priv->pdev),
  1868. sizeof(drvinfo->bus_info));
  1869. drvinfo->n_stats = ((priv->stats_flag) ? ARRAY_SIZE(bdx_stat_names) : 0);
  1870. drvinfo->testinfo_len = 0;
  1871. drvinfo->regdump_len = 0;
  1872. drvinfo->eedump_len = 0;
  1873. }
  1874. /*
  1875. * bdx_get_coalesce - get interrupt coalescing parameters
  1876. * @netdev
  1877. * @ecoal
  1878. */
  1879. static int
  1880. bdx_get_coalesce(struct net_device *netdev, struct ethtool_coalesce *ecoal)
  1881. {
  1882. u32 rdintcm;
  1883. u32 tdintcm;
  1884. struct bdx_priv *priv = netdev_priv(netdev);
  1885. rdintcm = priv->rdintcm;
  1886. tdintcm = priv->tdintcm;
  1887. /* PCK_TH measures in multiples of FIFO bytes
  1888. We translate to packets */
  1889. ecoal->rx_coalesce_usecs = GET_INT_COAL(rdintcm) * INT_COAL_MULT;
  1890. ecoal->rx_max_coalesced_frames =
  1891. ((GET_PCK_TH(rdintcm) * PCK_TH_MULT) / sizeof(struct rxf_desc));
  1892. ecoal->tx_coalesce_usecs = GET_INT_COAL(tdintcm) * INT_COAL_MULT;
  1893. ecoal->tx_max_coalesced_frames =
  1894. ((GET_PCK_TH(tdintcm) * PCK_TH_MULT) / BDX_TXF_DESC_SZ);
  1895. /* adaptive parameters ignored */
  1896. return 0;
  1897. }
  1898. /*
  1899. * bdx_set_coalesce - set interrupt coalescing parameters
  1900. * @netdev
  1901. * @ecoal
  1902. */
  1903. static int
  1904. bdx_set_coalesce(struct net_device *netdev, struct ethtool_coalesce *ecoal)
  1905. {
  1906. u32 rdintcm;
  1907. u32 tdintcm;
  1908. struct bdx_priv *priv = netdev_priv(netdev);
  1909. int rx_coal;
  1910. int tx_coal;
  1911. int rx_max_coal;
  1912. int tx_max_coal;
  1913. /* Check for valid input */
  1914. rx_coal = ecoal->rx_coalesce_usecs / INT_COAL_MULT;
  1915. tx_coal = ecoal->tx_coalesce_usecs / INT_COAL_MULT;
  1916. rx_max_coal = ecoal->rx_max_coalesced_frames;
  1917. tx_max_coal = ecoal->tx_max_coalesced_frames;
  1918. /* Translate from packets to multiples of FIFO bytes */
  1919. rx_max_coal =
  1920. (((rx_max_coal * sizeof(struct rxf_desc)) + PCK_TH_MULT - 1)
  1921. / PCK_TH_MULT);
  1922. tx_max_coal =
  1923. (((tx_max_coal * BDX_TXF_DESC_SZ) + PCK_TH_MULT - 1)
  1924. / PCK_TH_MULT);
  1925. if ((rx_coal > 0x7FFF) || (tx_coal > 0x7FFF) ||
  1926. (rx_max_coal > 0xF) || (tx_max_coal > 0xF))
  1927. return -EINVAL;
  1928. rdintcm = INT_REG_VAL(rx_coal, GET_INT_COAL_RC(priv->rdintcm),
  1929. GET_RXF_TH(priv->rdintcm), rx_max_coal);
  1930. tdintcm = INT_REG_VAL(tx_coal, GET_INT_COAL_RC(priv->tdintcm), 0,
  1931. tx_max_coal);
  1932. priv->rdintcm = rdintcm;
  1933. priv->tdintcm = tdintcm;
  1934. WRITE_REG(priv, regRDINTCM0, rdintcm);
  1935. WRITE_REG(priv, regTDINTCM0, tdintcm);
  1936. return 0;
  1937. }
  1938. /* Convert RX fifo size to number of pending packets */
  1939. static inline int bdx_rx_fifo_size_to_packets(int rx_size)
  1940. {
  1941. return (FIFO_SIZE * (1 << rx_size)) / sizeof(struct rxf_desc);
  1942. }
  1943. /* Convert TX fifo size to number of pending packets */
  1944. static inline int bdx_tx_fifo_size_to_packets(int tx_size)
  1945. {
  1946. return (FIFO_SIZE * (1 << tx_size)) / BDX_TXF_DESC_SZ;
  1947. }
  1948. /*
  1949. * bdx_get_ringparam - report ring sizes
  1950. * @netdev
  1951. * @ring
  1952. */
  1953. static void
  1954. bdx_get_ringparam(struct net_device *netdev, struct ethtool_ringparam *ring)
  1955. {
  1956. struct bdx_priv *priv = netdev_priv(netdev);
  1957. /*max_pending - the maximum-sized FIFO we allow */
  1958. ring->rx_max_pending = bdx_rx_fifo_size_to_packets(3);
  1959. ring->tx_max_pending = bdx_tx_fifo_size_to_packets(3);
  1960. ring->rx_pending = bdx_rx_fifo_size_to_packets(priv->rxf_size);
  1961. ring->tx_pending = bdx_tx_fifo_size_to_packets(priv->txd_size);
  1962. }
  1963. /*
  1964. * bdx_set_ringparam - set ring sizes
  1965. * @netdev
  1966. * @ring
  1967. */
  1968. static int
  1969. bdx_set_ringparam(struct net_device *netdev, struct ethtool_ringparam *ring)
  1970. {
  1971. struct bdx_priv *priv = netdev_priv(netdev);
  1972. int rx_size = 0;
  1973. int tx_size = 0;
  1974. for (; rx_size < 4; rx_size++) {
  1975. if (bdx_rx_fifo_size_to_packets(rx_size) >= ring->rx_pending)
  1976. break;
  1977. }
  1978. if (rx_size == 4)
  1979. rx_size = 3;
  1980. for (; tx_size < 4; tx_size++) {
  1981. if (bdx_tx_fifo_size_to_packets(tx_size) >= ring->tx_pending)
  1982. break;
  1983. }
  1984. if (tx_size == 4)
  1985. tx_size = 3;
  1986. /*Is there anything to do? */
  1987. if ((rx_size == priv->rxf_size) &&
  1988. (tx_size == priv->txd_size))
  1989. return 0;
  1990. priv->rxf_size = rx_size;
  1991. if (rx_size > 1)
  1992. priv->rxd_size = rx_size - 1;
  1993. else
  1994. priv->rxd_size = rx_size;
  1995. priv->txf_size = priv->txd_size = tx_size;
  1996. if (netif_running(netdev)) {
  1997. bdx_close(netdev);
  1998. bdx_open(netdev);
  1999. }
  2000. return 0;
  2001. }
  2002. /*
  2003. * bdx_get_strings - return a set of strings that describe the requested objects
  2004. * @netdev
  2005. * @data
  2006. */
  2007. static void bdx_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
  2008. {
  2009. switch (stringset) {
  2010. case ETH_SS_STATS:
  2011. memcpy(data, *bdx_stat_names, sizeof(bdx_stat_names));
  2012. break;
  2013. }
  2014. }
  2015. /*
  2016. * bdx_get_sset_count - return number of statistics or tests
  2017. * @netdev
  2018. */
  2019. static int bdx_get_sset_count(struct net_device *netdev, int stringset)
  2020. {
  2021. struct bdx_priv *priv = netdev_priv(netdev);
  2022. switch (stringset) {
  2023. case ETH_SS_STATS:
  2024. BDX_ASSERT(ARRAY_SIZE(bdx_stat_names)
  2025. != sizeof(struct bdx_stats) / sizeof(u64));
  2026. return (priv->stats_flag) ? ARRAY_SIZE(bdx_stat_names) : 0;
  2027. }
  2028. return -EINVAL;
  2029. }
  2030. /*
  2031. * bdx_get_ethtool_stats - return device's hardware L2 statistics
  2032. * @netdev
  2033. * @stats
  2034. * @data
  2035. */
  2036. static void bdx_get_ethtool_stats(struct net_device *netdev,
  2037. struct ethtool_stats *stats, u64 *data)
  2038. {
  2039. struct bdx_priv *priv = netdev_priv(netdev);
  2040. if (priv->stats_flag) {
  2041. /* Update stats from HW */
  2042. bdx_update_stats(priv);
  2043. /* Copy data to user buffer */
  2044. memcpy(data, &priv->hw_stats, sizeof(priv->hw_stats));
  2045. }
  2046. }
  2047. /*
  2048. * bdx_set_ethtool_ops - ethtool interface implementation
  2049. * @netdev
  2050. */
  2051. static void bdx_set_ethtool_ops(struct net_device *netdev)
  2052. {
  2053. static const struct ethtool_ops bdx_ethtool_ops = {
  2054. .get_settings = bdx_get_settings,
  2055. .get_drvinfo = bdx_get_drvinfo,
  2056. .get_link = ethtool_op_get_link,
  2057. .get_coalesce = bdx_get_coalesce,
  2058. .set_coalesce = bdx_set_coalesce,
  2059. .get_ringparam = bdx_get_ringparam,
  2060. .set_ringparam = bdx_set_ringparam,
  2061. .get_strings = bdx_get_strings,
  2062. .get_sset_count = bdx_get_sset_count,
  2063. .get_ethtool_stats = bdx_get_ethtool_stats,
  2064. };
  2065. SET_ETHTOOL_OPS(netdev, &bdx_ethtool_ops);
  2066. }
  2067. /**
  2068. * bdx_remove - Device Removal Routine
  2069. * @pdev: PCI device information struct
  2070. *
  2071. * bdx_remove is called by the PCI subsystem to alert the driver
  2072. * that it should release a PCI device. The could be caused by a
  2073. * Hot-Plug event, or because the driver is going to be removed from
  2074. * memory.
  2075. **/
  2076. static void __devexit bdx_remove(struct pci_dev *pdev)
  2077. {
  2078. struct pci_nic *nic = pci_get_drvdata(pdev);
  2079. struct net_device *ndev;
  2080. int port;
  2081. for (port = 0; port < nic->port_num; port++) {
  2082. ndev = nic->priv[port]->ndev;
  2083. unregister_netdev(ndev);
  2084. free_netdev(ndev);
  2085. }
  2086. /*bdx_hw_reset_direct(nic->regs); */
  2087. #ifdef BDX_MSI
  2088. if (nic->irq_type == IRQ_MSI)
  2089. pci_disable_msi(pdev);
  2090. #endif
  2091. iounmap(nic->regs);
  2092. pci_release_regions(pdev);
  2093. pci_disable_device(pdev);
  2094. pci_set_drvdata(pdev, NULL);
  2095. vfree(nic);
  2096. RET();
  2097. }
  2098. static struct pci_driver bdx_pci_driver = {
  2099. .name = BDX_DRV_NAME,
  2100. .id_table = bdx_pci_tbl,
  2101. .probe = bdx_probe,
  2102. .remove = __devexit_p(bdx_remove),
  2103. };
  2104. /*
  2105. * print_driver_id - print parameters of the driver build
  2106. */
  2107. static void __init print_driver_id(void)
  2108. {
  2109. pr_info("%s, %s\n", BDX_DRV_DESC, BDX_DRV_VERSION);
  2110. pr_info("Options: hw_csum %s\n", BDX_MSI_STRING);
  2111. }
  2112. static int __init bdx_module_init(void)
  2113. {
  2114. ENTER;
  2115. init_txd_sizes();
  2116. print_driver_id();
  2117. RET(pci_register_driver(&bdx_pci_driver));
  2118. }
  2119. module_init(bdx_module_init);
  2120. static void __exit bdx_module_exit(void)
  2121. {
  2122. ENTER;
  2123. pci_unregister_driver(&bdx_pci_driver);
  2124. RET();
  2125. }
  2126. module_exit(bdx_module_exit);
  2127. MODULE_LICENSE("GPL");
  2128. MODULE_AUTHOR(DRIVER_AUTHOR);
  2129. MODULE_DESCRIPTION(BDX_DRV_DESC);
  2130. MODULE_FIRMWARE("tehuti/bdx.bin");