sh_eth.c 59 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426
  1. /*
  2. * SuperH Ethernet device driver
  3. *
  4. * Copyright (C) 2006-2012 Nobuhiro Iwamatsu
  5. * Copyright (C) 2008-2012 Renesas Solutions Corp.
  6. *
  7. * This program is free software; you can redistribute it and/or modify it
  8. * under the terms and conditions of the GNU General Public License,
  9. * version 2, as published by the Free Software Foundation.
  10. *
  11. * This program is distributed in the hope it will be useful, but WITHOUT
  12. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  14. * more details.
  15. * You should have received a copy of the GNU General Public License along with
  16. * this program; if not, write to the Free Software Foundation, Inc.,
  17. * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  18. *
  19. * The full GNU General Public License is included in this distribution in
  20. * the file called "COPYING".
  21. */
  22. #include <linux/init.h>
  23. #include <linux/module.h>
  24. #include <linux/kernel.h>
  25. #include <linux/spinlock.h>
  26. #include <linux/interrupt.h>
  27. #include <linux/dma-mapping.h>
  28. #include <linux/etherdevice.h>
  29. #include <linux/delay.h>
  30. #include <linux/platform_device.h>
  31. #include <linux/mdio-bitbang.h>
  32. #include <linux/netdevice.h>
  33. #include <linux/phy.h>
  34. #include <linux/cache.h>
  35. #include <linux/io.h>
  36. #include <linux/pm_runtime.h>
  37. #include <linux/slab.h>
  38. #include <linux/ethtool.h>
  39. #include <linux/if_vlan.h>
  40. #include <linux/clk.h>
  41. #include <linux/sh_eth.h>
  42. #include "sh_eth.h"
  43. #define SH_ETH_DEF_MSG_ENABLE \
  44. (NETIF_MSG_LINK | \
  45. NETIF_MSG_TIMER | \
  46. NETIF_MSG_RX_ERR| \
  47. NETIF_MSG_TX_ERR)
  48. /* There is CPU dependent code */
  49. #if defined(CONFIG_CPU_SUBTYPE_SH7724)
  50. #define SH_ETH_RESET_DEFAULT 1
  51. static void sh_eth_set_duplex(struct net_device *ndev)
  52. {
  53. struct sh_eth_private *mdp = netdev_priv(ndev);
  54. if (mdp->duplex) /* Full */
  55. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
  56. else /* Half */
  57. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
  58. }
  59. static void sh_eth_set_rate(struct net_device *ndev)
  60. {
  61. struct sh_eth_private *mdp = netdev_priv(ndev);
  62. switch (mdp->speed) {
  63. case 10: /* 10BASE */
  64. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_RTM, ECMR);
  65. break;
  66. case 100:/* 100BASE */
  67. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_RTM, ECMR);
  68. break;
  69. default:
  70. break;
  71. }
  72. }
  73. /* SH7724 */
  74. static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
  75. .set_duplex = sh_eth_set_duplex,
  76. .set_rate = sh_eth_set_rate,
  77. .ecsr_value = ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
  78. .ecsipr_value = ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
  79. .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x01ff009f,
  80. .tx_check = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
  81. .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RDE |
  82. EESR_RFRMER | EESR_TFE | EESR_TDE | EESR_ECI,
  83. .tx_error_check = EESR_TWB | EESR_TABT | EESR_TDE | EESR_TFE,
  84. .apr = 1,
  85. .mpr = 1,
  86. .tpauser = 1,
  87. .hw_swap = 1,
  88. .rpadir = 1,
  89. .rpadir_value = 0x00020000, /* NET_IP_ALIGN assumed to be 2 */
  90. };
  91. #elif defined(CONFIG_CPU_SUBTYPE_SH7757)
  92. #define SH_ETH_HAS_BOTH_MODULES 1
  93. #define SH_ETH_HAS_TSU 1
  94. static void sh_eth_set_duplex(struct net_device *ndev)
  95. {
  96. struct sh_eth_private *mdp = netdev_priv(ndev);
  97. if (mdp->duplex) /* Full */
  98. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
  99. else /* Half */
  100. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
  101. }
  102. static void sh_eth_set_rate(struct net_device *ndev)
  103. {
  104. struct sh_eth_private *mdp = netdev_priv(ndev);
  105. switch (mdp->speed) {
  106. case 10: /* 10BASE */
  107. sh_eth_write(ndev, 0, RTRATE);
  108. break;
  109. case 100:/* 100BASE */
  110. sh_eth_write(ndev, 1, RTRATE);
  111. break;
  112. default:
  113. break;
  114. }
  115. }
  116. /* SH7757 */
  117. static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
  118. .set_duplex = sh_eth_set_duplex,
  119. .set_rate = sh_eth_set_rate,
  120. .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
  121. .rmcr_value = 0x00000001,
  122. .tx_check = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
  123. .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RDE |
  124. EESR_RFRMER | EESR_TFE | EESR_TDE | EESR_ECI,
  125. .tx_error_check = EESR_TWB | EESR_TABT | EESR_TDE | EESR_TFE,
  126. .apr = 1,
  127. .mpr = 1,
  128. .tpauser = 1,
  129. .hw_swap = 1,
  130. .no_ade = 1,
  131. .rpadir = 1,
  132. .rpadir_value = 2 << 16,
  133. };
  134. #define SH_GIGA_ETH_BASE 0xfee00000
  135. #define GIGA_MALR(port) (SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c8)
  136. #define GIGA_MAHR(port) (SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c0)
  137. static void sh_eth_chip_reset_giga(struct net_device *ndev)
  138. {
  139. int i;
  140. unsigned long mahr[2], malr[2];
  141. /* save MAHR and MALR */
  142. for (i = 0; i < 2; i++) {
  143. malr[i] = ioread32((void *)GIGA_MALR(i));
  144. mahr[i] = ioread32((void *)GIGA_MAHR(i));
  145. }
  146. /* reset device */
  147. iowrite32(ARSTR_ARSTR, (void *)(SH_GIGA_ETH_BASE + 0x1800));
  148. mdelay(1);
  149. /* restore MAHR and MALR */
  150. for (i = 0; i < 2; i++) {
  151. iowrite32(malr[i], (void *)GIGA_MALR(i));
  152. iowrite32(mahr[i], (void *)GIGA_MAHR(i));
  153. }
  154. }
  155. static int sh_eth_is_gether(struct sh_eth_private *mdp);
  156. static void sh_eth_reset(struct net_device *ndev)
  157. {
  158. struct sh_eth_private *mdp = netdev_priv(ndev);
  159. int cnt = 100;
  160. if (sh_eth_is_gether(mdp)) {
  161. sh_eth_write(ndev, 0x03, EDSR);
  162. sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_GETHER,
  163. EDMR);
  164. while (cnt > 0) {
  165. if (!(sh_eth_read(ndev, EDMR) & 0x3))
  166. break;
  167. mdelay(1);
  168. cnt--;
  169. }
  170. if (cnt < 0)
  171. printk(KERN_ERR "Device reset fail\n");
  172. /* Table Init */
  173. sh_eth_write(ndev, 0x0, TDLAR);
  174. sh_eth_write(ndev, 0x0, TDFAR);
  175. sh_eth_write(ndev, 0x0, TDFXR);
  176. sh_eth_write(ndev, 0x0, TDFFR);
  177. sh_eth_write(ndev, 0x0, RDLAR);
  178. sh_eth_write(ndev, 0x0, RDFAR);
  179. sh_eth_write(ndev, 0x0, RDFXR);
  180. sh_eth_write(ndev, 0x0, RDFFR);
  181. } else {
  182. sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_ETHER,
  183. EDMR);
  184. mdelay(3);
  185. sh_eth_write(ndev, sh_eth_read(ndev, EDMR) & ~EDMR_SRST_ETHER,
  186. EDMR);
  187. }
  188. }
  189. static void sh_eth_set_duplex_giga(struct net_device *ndev)
  190. {
  191. struct sh_eth_private *mdp = netdev_priv(ndev);
  192. if (mdp->duplex) /* Full */
  193. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
  194. else /* Half */
  195. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
  196. }
  197. static void sh_eth_set_rate_giga(struct net_device *ndev)
  198. {
  199. struct sh_eth_private *mdp = netdev_priv(ndev);
  200. switch (mdp->speed) {
  201. case 10: /* 10BASE */
  202. sh_eth_write(ndev, 0x00000000, GECMR);
  203. break;
  204. case 100:/* 100BASE */
  205. sh_eth_write(ndev, 0x00000010, GECMR);
  206. break;
  207. case 1000: /* 1000BASE */
  208. sh_eth_write(ndev, 0x00000020, GECMR);
  209. break;
  210. default:
  211. break;
  212. }
  213. }
  214. /* SH7757(GETHERC) */
  215. static struct sh_eth_cpu_data sh_eth_my_cpu_data_giga = {
  216. .chip_reset = sh_eth_chip_reset_giga,
  217. .set_duplex = sh_eth_set_duplex_giga,
  218. .set_rate = sh_eth_set_rate_giga,
  219. .ecsr_value = ECSR_ICD | ECSR_MPD,
  220. .ecsipr_value = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
  221. .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
  222. .tx_check = EESR_TC1 | EESR_FTC,
  223. .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT | \
  224. EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE | \
  225. EESR_ECI,
  226. .tx_error_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_TDE | \
  227. EESR_TFE,
  228. .fdr_value = 0x0000072f,
  229. .rmcr_value = 0x00000001,
  230. .apr = 1,
  231. .mpr = 1,
  232. .tpauser = 1,
  233. .bculr = 1,
  234. .hw_swap = 1,
  235. .rpadir = 1,
  236. .rpadir_value = 2 << 16,
  237. .no_trimd = 1,
  238. .no_ade = 1,
  239. .tsu = 1,
  240. };
  241. static struct sh_eth_cpu_data *sh_eth_get_cpu_data(struct sh_eth_private *mdp)
  242. {
  243. if (sh_eth_is_gether(mdp))
  244. return &sh_eth_my_cpu_data_giga;
  245. else
  246. return &sh_eth_my_cpu_data;
  247. }
  248. #elif defined(CONFIG_CPU_SUBTYPE_SH7734) || defined(CONFIG_CPU_SUBTYPE_SH7763)
  249. #define SH_ETH_HAS_TSU 1
  250. static void sh_eth_reset_hw_crc(struct net_device *ndev);
  251. static void sh_eth_chip_reset(struct net_device *ndev)
  252. {
  253. struct sh_eth_private *mdp = netdev_priv(ndev);
  254. /* reset device */
  255. sh_eth_tsu_write(mdp, ARSTR_ARSTR, ARSTR);
  256. mdelay(1);
  257. }
  258. static void sh_eth_reset(struct net_device *ndev)
  259. {
  260. int cnt = 100;
  261. sh_eth_write(ndev, EDSR_ENALL, EDSR);
  262. sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_GETHER, EDMR);
  263. while (cnt > 0) {
  264. if (!(sh_eth_read(ndev, EDMR) & 0x3))
  265. break;
  266. mdelay(1);
  267. cnt--;
  268. }
  269. if (cnt == 0)
  270. printk(KERN_ERR "Device reset fail\n");
  271. /* Table Init */
  272. sh_eth_write(ndev, 0x0, TDLAR);
  273. sh_eth_write(ndev, 0x0, TDFAR);
  274. sh_eth_write(ndev, 0x0, TDFXR);
  275. sh_eth_write(ndev, 0x0, TDFFR);
  276. sh_eth_write(ndev, 0x0, RDLAR);
  277. sh_eth_write(ndev, 0x0, RDFAR);
  278. sh_eth_write(ndev, 0x0, RDFXR);
  279. sh_eth_write(ndev, 0x0, RDFFR);
  280. /* Reset HW CRC register */
  281. sh_eth_reset_hw_crc(ndev);
  282. }
  283. static void sh_eth_set_duplex(struct net_device *ndev)
  284. {
  285. struct sh_eth_private *mdp = netdev_priv(ndev);
  286. if (mdp->duplex) /* Full */
  287. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
  288. else /* Half */
  289. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
  290. }
  291. static void sh_eth_set_rate(struct net_device *ndev)
  292. {
  293. struct sh_eth_private *mdp = netdev_priv(ndev);
  294. switch (mdp->speed) {
  295. case 10: /* 10BASE */
  296. sh_eth_write(ndev, GECMR_10, GECMR);
  297. break;
  298. case 100:/* 100BASE */
  299. sh_eth_write(ndev, GECMR_100, GECMR);
  300. break;
  301. case 1000: /* 1000BASE */
  302. sh_eth_write(ndev, GECMR_1000, GECMR);
  303. break;
  304. default:
  305. break;
  306. }
  307. }
  308. /* sh7763 */
  309. static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
  310. .chip_reset = sh_eth_chip_reset,
  311. .set_duplex = sh_eth_set_duplex,
  312. .set_rate = sh_eth_set_rate,
  313. .ecsr_value = ECSR_ICD | ECSR_MPD,
  314. .ecsipr_value = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
  315. .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
  316. .tx_check = EESR_TC1 | EESR_FTC,
  317. .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT | \
  318. EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE | \
  319. EESR_ECI,
  320. .tx_error_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_TDE | \
  321. EESR_TFE,
  322. .apr = 1,
  323. .mpr = 1,
  324. .tpauser = 1,
  325. .bculr = 1,
  326. .hw_swap = 1,
  327. .no_trimd = 1,
  328. .no_ade = 1,
  329. .tsu = 1,
  330. #if defined(CONFIG_CPU_SUBTYPE_SH7734)
  331. .hw_crc = 1,
  332. #endif
  333. };
  334. static void sh_eth_reset_hw_crc(struct net_device *ndev)
  335. {
  336. if (sh_eth_my_cpu_data.hw_crc)
  337. sh_eth_write(ndev, 0x0, CSMR);
  338. }
  339. #elif defined(CONFIG_ARCH_R8A7740)
  340. #define SH_ETH_HAS_TSU 1
  341. static void sh_eth_chip_reset(struct net_device *ndev)
  342. {
  343. struct sh_eth_private *mdp = netdev_priv(ndev);
  344. unsigned long mii;
  345. /* reset device */
  346. sh_eth_tsu_write(mdp, ARSTR_ARSTR, ARSTR);
  347. mdelay(1);
  348. switch (mdp->phy_interface) {
  349. case PHY_INTERFACE_MODE_GMII:
  350. mii = 2;
  351. break;
  352. case PHY_INTERFACE_MODE_MII:
  353. mii = 1;
  354. break;
  355. case PHY_INTERFACE_MODE_RMII:
  356. default:
  357. mii = 0;
  358. break;
  359. }
  360. sh_eth_write(ndev, mii, RMII_MII);
  361. }
  362. static void sh_eth_reset(struct net_device *ndev)
  363. {
  364. int cnt = 100;
  365. sh_eth_write(ndev, EDSR_ENALL, EDSR);
  366. sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_GETHER, EDMR);
  367. while (cnt > 0) {
  368. if (!(sh_eth_read(ndev, EDMR) & 0x3))
  369. break;
  370. mdelay(1);
  371. cnt--;
  372. }
  373. if (cnt == 0)
  374. printk(KERN_ERR "Device reset fail\n");
  375. /* Table Init */
  376. sh_eth_write(ndev, 0x0, TDLAR);
  377. sh_eth_write(ndev, 0x0, TDFAR);
  378. sh_eth_write(ndev, 0x0, TDFXR);
  379. sh_eth_write(ndev, 0x0, TDFFR);
  380. sh_eth_write(ndev, 0x0, RDLAR);
  381. sh_eth_write(ndev, 0x0, RDFAR);
  382. sh_eth_write(ndev, 0x0, RDFXR);
  383. sh_eth_write(ndev, 0x0, RDFFR);
  384. }
  385. static void sh_eth_set_duplex(struct net_device *ndev)
  386. {
  387. struct sh_eth_private *mdp = netdev_priv(ndev);
  388. if (mdp->duplex) /* Full */
  389. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
  390. else /* Half */
  391. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
  392. }
  393. static void sh_eth_set_rate(struct net_device *ndev)
  394. {
  395. struct sh_eth_private *mdp = netdev_priv(ndev);
  396. switch (mdp->speed) {
  397. case 10: /* 10BASE */
  398. sh_eth_write(ndev, GECMR_10, GECMR);
  399. break;
  400. case 100:/* 100BASE */
  401. sh_eth_write(ndev, GECMR_100, GECMR);
  402. break;
  403. case 1000: /* 1000BASE */
  404. sh_eth_write(ndev, GECMR_1000, GECMR);
  405. break;
  406. default:
  407. break;
  408. }
  409. }
  410. /* R8A7740 */
  411. static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
  412. .chip_reset = sh_eth_chip_reset,
  413. .set_duplex = sh_eth_set_duplex,
  414. .set_rate = sh_eth_set_rate,
  415. .ecsr_value = ECSR_ICD | ECSR_MPD,
  416. .ecsipr_value = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
  417. .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
  418. .tx_check = EESR_TC1 | EESR_FTC,
  419. .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT | \
  420. EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE | \
  421. EESR_ECI,
  422. .tx_error_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_TDE | \
  423. EESR_TFE,
  424. .apr = 1,
  425. .mpr = 1,
  426. .tpauser = 1,
  427. .bculr = 1,
  428. .hw_swap = 1,
  429. .no_trimd = 1,
  430. .no_ade = 1,
  431. .tsu = 1,
  432. };
  433. #elif defined(CONFIG_CPU_SUBTYPE_SH7619)
  434. #define SH_ETH_RESET_DEFAULT 1
  435. static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
  436. .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
  437. .apr = 1,
  438. .mpr = 1,
  439. .tpauser = 1,
  440. .hw_swap = 1,
  441. };
  442. #elif defined(CONFIG_CPU_SUBTYPE_SH7710) || defined(CONFIG_CPU_SUBTYPE_SH7712)
  443. #define SH_ETH_RESET_DEFAULT 1
  444. #define SH_ETH_HAS_TSU 1
  445. static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
  446. .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
  447. .tsu = 1,
  448. };
  449. #endif
  450. static void sh_eth_set_default_cpu_data(struct sh_eth_cpu_data *cd)
  451. {
  452. if (!cd->ecsr_value)
  453. cd->ecsr_value = DEFAULT_ECSR_INIT;
  454. if (!cd->ecsipr_value)
  455. cd->ecsipr_value = DEFAULT_ECSIPR_INIT;
  456. if (!cd->fcftr_value)
  457. cd->fcftr_value = DEFAULT_FIFO_F_D_RFF | \
  458. DEFAULT_FIFO_F_D_RFD;
  459. if (!cd->fdr_value)
  460. cd->fdr_value = DEFAULT_FDR_INIT;
  461. if (!cd->rmcr_value)
  462. cd->rmcr_value = DEFAULT_RMCR_VALUE;
  463. if (!cd->tx_check)
  464. cd->tx_check = DEFAULT_TX_CHECK;
  465. if (!cd->eesr_err_check)
  466. cd->eesr_err_check = DEFAULT_EESR_ERR_CHECK;
  467. if (!cd->tx_error_check)
  468. cd->tx_error_check = DEFAULT_TX_ERROR_CHECK;
  469. }
  470. #if defined(SH_ETH_RESET_DEFAULT)
  471. /* Chip Reset */
  472. static void sh_eth_reset(struct net_device *ndev)
  473. {
  474. sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_ETHER, EDMR);
  475. mdelay(3);
  476. sh_eth_write(ndev, sh_eth_read(ndev, EDMR) & ~EDMR_SRST_ETHER, EDMR);
  477. }
  478. #endif
  479. #if defined(CONFIG_CPU_SH4) || defined(CONFIG_ARCH_SHMOBILE)
  480. static void sh_eth_set_receive_align(struct sk_buff *skb)
  481. {
  482. int reserve;
  483. reserve = SH4_SKB_RX_ALIGN - ((u32)skb->data & (SH4_SKB_RX_ALIGN - 1));
  484. if (reserve)
  485. skb_reserve(skb, reserve);
  486. }
  487. #else
  488. static void sh_eth_set_receive_align(struct sk_buff *skb)
  489. {
  490. skb_reserve(skb, SH2_SH3_SKB_RX_ALIGN);
  491. }
  492. #endif
  493. /* CPU <-> EDMAC endian convert */
  494. static inline __u32 cpu_to_edmac(struct sh_eth_private *mdp, u32 x)
  495. {
  496. switch (mdp->edmac_endian) {
  497. case EDMAC_LITTLE_ENDIAN:
  498. return cpu_to_le32(x);
  499. case EDMAC_BIG_ENDIAN:
  500. return cpu_to_be32(x);
  501. }
  502. return x;
  503. }
  504. static inline __u32 edmac_to_cpu(struct sh_eth_private *mdp, u32 x)
  505. {
  506. switch (mdp->edmac_endian) {
  507. case EDMAC_LITTLE_ENDIAN:
  508. return le32_to_cpu(x);
  509. case EDMAC_BIG_ENDIAN:
  510. return be32_to_cpu(x);
  511. }
  512. return x;
  513. }
  514. /*
  515. * Program the hardware MAC address from dev->dev_addr.
  516. */
  517. static void update_mac_address(struct net_device *ndev)
  518. {
  519. sh_eth_write(ndev,
  520. (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
  521. (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]), MAHR);
  522. sh_eth_write(ndev,
  523. (ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]), MALR);
  524. }
  525. /*
  526. * Get MAC address from SuperH MAC address register
  527. *
  528. * SuperH's Ethernet device doesn't have 'ROM' to MAC address.
  529. * This driver get MAC address that use by bootloader(U-boot or sh-ipl+g).
  530. * When you want use this device, you must set MAC address in bootloader.
  531. *
  532. */
  533. static void read_mac_address(struct net_device *ndev, unsigned char *mac)
  534. {
  535. if (mac[0] || mac[1] || mac[2] || mac[3] || mac[4] || mac[5]) {
  536. memcpy(ndev->dev_addr, mac, 6);
  537. } else {
  538. ndev->dev_addr[0] = (sh_eth_read(ndev, MAHR) >> 24);
  539. ndev->dev_addr[1] = (sh_eth_read(ndev, MAHR) >> 16) & 0xFF;
  540. ndev->dev_addr[2] = (sh_eth_read(ndev, MAHR) >> 8) & 0xFF;
  541. ndev->dev_addr[3] = (sh_eth_read(ndev, MAHR) & 0xFF);
  542. ndev->dev_addr[4] = (sh_eth_read(ndev, MALR) >> 8) & 0xFF;
  543. ndev->dev_addr[5] = (sh_eth_read(ndev, MALR) & 0xFF);
  544. }
  545. }
  546. static int sh_eth_is_gether(struct sh_eth_private *mdp)
  547. {
  548. if (mdp->reg_offset == sh_eth_offset_gigabit)
  549. return 1;
  550. else
  551. return 0;
  552. }
  553. static unsigned long sh_eth_get_edtrr_trns(struct sh_eth_private *mdp)
  554. {
  555. if (sh_eth_is_gether(mdp))
  556. return EDTRR_TRNS_GETHER;
  557. else
  558. return EDTRR_TRNS_ETHER;
  559. }
  560. struct bb_info {
  561. void (*set_gate)(void *addr);
  562. struct mdiobb_ctrl ctrl;
  563. void *addr;
  564. u32 mmd_msk;/* MMD */
  565. u32 mdo_msk;
  566. u32 mdi_msk;
  567. u32 mdc_msk;
  568. };
  569. /* PHY bit set */
  570. static void bb_set(void *addr, u32 msk)
  571. {
  572. iowrite32(ioread32(addr) | msk, addr);
  573. }
  574. /* PHY bit clear */
  575. static void bb_clr(void *addr, u32 msk)
  576. {
  577. iowrite32((ioread32(addr) & ~msk), addr);
  578. }
  579. /* PHY bit read */
  580. static int bb_read(void *addr, u32 msk)
  581. {
  582. return (ioread32(addr) & msk) != 0;
  583. }
  584. /* Data I/O pin control */
  585. static void sh_mmd_ctrl(struct mdiobb_ctrl *ctrl, int bit)
  586. {
  587. struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
  588. if (bitbang->set_gate)
  589. bitbang->set_gate(bitbang->addr);
  590. if (bit)
  591. bb_set(bitbang->addr, bitbang->mmd_msk);
  592. else
  593. bb_clr(bitbang->addr, bitbang->mmd_msk);
  594. }
  595. /* Set bit data*/
  596. static void sh_set_mdio(struct mdiobb_ctrl *ctrl, int bit)
  597. {
  598. struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
  599. if (bitbang->set_gate)
  600. bitbang->set_gate(bitbang->addr);
  601. if (bit)
  602. bb_set(bitbang->addr, bitbang->mdo_msk);
  603. else
  604. bb_clr(bitbang->addr, bitbang->mdo_msk);
  605. }
  606. /* Get bit data*/
  607. static int sh_get_mdio(struct mdiobb_ctrl *ctrl)
  608. {
  609. struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
  610. if (bitbang->set_gate)
  611. bitbang->set_gate(bitbang->addr);
  612. return bb_read(bitbang->addr, bitbang->mdi_msk);
  613. }
  614. /* MDC pin control */
  615. static void sh_mdc_ctrl(struct mdiobb_ctrl *ctrl, int bit)
  616. {
  617. struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
  618. if (bitbang->set_gate)
  619. bitbang->set_gate(bitbang->addr);
  620. if (bit)
  621. bb_set(bitbang->addr, bitbang->mdc_msk);
  622. else
  623. bb_clr(bitbang->addr, bitbang->mdc_msk);
  624. }
  625. /* mdio bus control struct */
  626. static struct mdiobb_ops bb_ops = {
  627. .owner = THIS_MODULE,
  628. .set_mdc = sh_mdc_ctrl,
  629. .set_mdio_dir = sh_mmd_ctrl,
  630. .set_mdio_data = sh_set_mdio,
  631. .get_mdio_data = sh_get_mdio,
  632. };
  633. /* free skb and descriptor buffer */
  634. static void sh_eth_ring_free(struct net_device *ndev)
  635. {
  636. struct sh_eth_private *mdp = netdev_priv(ndev);
  637. int i;
  638. /* Free Rx skb ringbuffer */
  639. if (mdp->rx_skbuff) {
  640. for (i = 0; i < RX_RING_SIZE; i++) {
  641. if (mdp->rx_skbuff[i])
  642. dev_kfree_skb(mdp->rx_skbuff[i]);
  643. }
  644. }
  645. kfree(mdp->rx_skbuff);
  646. /* Free Tx skb ringbuffer */
  647. if (mdp->tx_skbuff) {
  648. for (i = 0; i < TX_RING_SIZE; i++) {
  649. if (mdp->tx_skbuff[i])
  650. dev_kfree_skb(mdp->tx_skbuff[i]);
  651. }
  652. }
  653. kfree(mdp->tx_skbuff);
  654. }
  655. /* format skb and descriptor buffer */
  656. static void sh_eth_ring_format(struct net_device *ndev)
  657. {
  658. struct sh_eth_private *mdp = netdev_priv(ndev);
  659. int i;
  660. struct sk_buff *skb;
  661. struct sh_eth_rxdesc *rxdesc = NULL;
  662. struct sh_eth_txdesc *txdesc = NULL;
  663. int rx_ringsize = sizeof(*rxdesc) * RX_RING_SIZE;
  664. int tx_ringsize = sizeof(*txdesc) * TX_RING_SIZE;
  665. mdp->cur_rx = mdp->cur_tx = 0;
  666. mdp->dirty_rx = mdp->dirty_tx = 0;
  667. memset(mdp->rx_ring, 0, rx_ringsize);
  668. /* build Rx ring buffer */
  669. for (i = 0; i < RX_RING_SIZE; i++) {
  670. /* skb */
  671. mdp->rx_skbuff[i] = NULL;
  672. skb = netdev_alloc_skb(ndev, mdp->rx_buf_sz);
  673. mdp->rx_skbuff[i] = skb;
  674. if (skb == NULL)
  675. break;
  676. dma_map_single(&ndev->dev, skb->data, mdp->rx_buf_sz,
  677. DMA_FROM_DEVICE);
  678. sh_eth_set_receive_align(skb);
  679. /* RX descriptor */
  680. rxdesc = &mdp->rx_ring[i];
  681. rxdesc->addr = virt_to_phys(PTR_ALIGN(skb->data, 4));
  682. rxdesc->status = cpu_to_edmac(mdp, RD_RACT | RD_RFP);
  683. /* The size of the buffer is 16 byte boundary. */
  684. rxdesc->buffer_length = ALIGN(mdp->rx_buf_sz, 16);
  685. /* Rx descriptor address set */
  686. if (i == 0) {
  687. sh_eth_write(ndev, mdp->rx_desc_dma, RDLAR);
  688. if (sh_eth_is_gether(mdp))
  689. sh_eth_write(ndev, mdp->rx_desc_dma, RDFAR);
  690. }
  691. }
  692. mdp->dirty_rx = (u32) (i - RX_RING_SIZE);
  693. /* Mark the last entry as wrapping the ring. */
  694. rxdesc->status |= cpu_to_edmac(mdp, RD_RDEL);
  695. memset(mdp->tx_ring, 0, tx_ringsize);
  696. /* build Tx ring buffer */
  697. for (i = 0; i < TX_RING_SIZE; i++) {
  698. mdp->tx_skbuff[i] = NULL;
  699. txdesc = &mdp->tx_ring[i];
  700. txdesc->status = cpu_to_edmac(mdp, TD_TFP);
  701. txdesc->buffer_length = 0;
  702. if (i == 0) {
  703. /* Tx descriptor address set */
  704. sh_eth_write(ndev, mdp->tx_desc_dma, TDLAR);
  705. if (sh_eth_is_gether(mdp))
  706. sh_eth_write(ndev, mdp->tx_desc_dma, TDFAR);
  707. }
  708. }
  709. txdesc->status |= cpu_to_edmac(mdp, TD_TDLE);
  710. }
  711. /* Get skb and descriptor buffer */
  712. static int sh_eth_ring_init(struct net_device *ndev)
  713. {
  714. struct sh_eth_private *mdp = netdev_priv(ndev);
  715. int rx_ringsize, tx_ringsize, ret = 0;
  716. /*
  717. * +26 gets the maximum ethernet encapsulation, +7 & ~7 because the
  718. * card needs room to do 8 byte alignment, +2 so we can reserve
  719. * the first 2 bytes, and +16 gets room for the status word from the
  720. * card.
  721. */
  722. mdp->rx_buf_sz = (ndev->mtu <= 1492 ? PKT_BUF_SZ :
  723. (((ndev->mtu + 26 + 7) & ~7) + 2 + 16));
  724. if (mdp->cd->rpadir)
  725. mdp->rx_buf_sz += NET_IP_ALIGN;
  726. /* Allocate RX and TX skb rings */
  727. mdp->rx_skbuff = kmalloc(sizeof(*mdp->rx_skbuff) * RX_RING_SIZE,
  728. GFP_KERNEL);
  729. if (!mdp->rx_skbuff) {
  730. dev_err(&ndev->dev, "Cannot allocate Rx skb\n");
  731. ret = -ENOMEM;
  732. return ret;
  733. }
  734. mdp->tx_skbuff = kmalloc(sizeof(*mdp->tx_skbuff) * TX_RING_SIZE,
  735. GFP_KERNEL);
  736. if (!mdp->tx_skbuff) {
  737. dev_err(&ndev->dev, "Cannot allocate Tx skb\n");
  738. ret = -ENOMEM;
  739. goto skb_ring_free;
  740. }
  741. /* Allocate all Rx descriptors. */
  742. rx_ringsize = sizeof(struct sh_eth_rxdesc) * RX_RING_SIZE;
  743. mdp->rx_ring = dma_alloc_coherent(NULL, rx_ringsize, &mdp->rx_desc_dma,
  744. GFP_KERNEL);
  745. if (!mdp->rx_ring) {
  746. dev_err(&ndev->dev, "Cannot allocate Rx Ring (size %d bytes)\n",
  747. rx_ringsize);
  748. ret = -ENOMEM;
  749. goto desc_ring_free;
  750. }
  751. mdp->dirty_rx = 0;
  752. /* Allocate all Tx descriptors. */
  753. tx_ringsize = sizeof(struct sh_eth_txdesc) * TX_RING_SIZE;
  754. mdp->tx_ring = dma_alloc_coherent(NULL, tx_ringsize, &mdp->tx_desc_dma,
  755. GFP_KERNEL);
  756. if (!mdp->tx_ring) {
  757. dev_err(&ndev->dev, "Cannot allocate Tx Ring (size %d bytes)\n",
  758. tx_ringsize);
  759. ret = -ENOMEM;
  760. goto desc_ring_free;
  761. }
  762. return ret;
  763. desc_ring_free:
  764. /* free DMA buffer */
  765. dma_free_coherent(NULL, rx_ringsize, mdp->rx_ring, mdp->rx_desc_dma);
  766. skb_ring_free:
  767. /* Free Rx and Tx skb ring buffer */
  768. sh_eth_ring_free(ndev);
  769. return ret;
  770. }
  771. static int sh_eth_dev_init(struct net_device *ndev)
  772. {
  773. int ret = 0;
  774. struct sh_eth_private *mdp = netdev_priv(ndev);
  775. u_int32_t rx_int_var, tx_int_var;
  776. u32 val;
  777. /* Soft Reset */
  778. sh_eth_reset(ndev);
  779. /* Descriptor format */
  780. sh_eth_ring_format(ndev);
  781. if (mdp->cd->rpadir)
  782. sh_eth_write(ndev, mdp->cd->rpadir_value, RPADIR);
  783. /* all sh_eth int mask */
  784. sh_eth_write(ndev, 0, EESIPR);
  785. #if defined(__LITTLE_ENDIAN)
  786. if (mdp->cd->hw_swap)
  787. sh_eth_write(ndev, EDMR_EL, EDMR);
  788. else
  789. #endif
  790. sh_eth_write(ndev, 0, EDMR);
  791. /* FIFO size set */
  792. sh_eth_write(ndev, mdp->cd->fdr_value, FDR);
  793. sh_eth_write(ndev, 0, TFTR);
  794. /* Frame recv control */
  795. sh_eth_write(ndev, mdp->cd->rmcr_value, RMCR);
  796. rx_int_var = mdp->rx_int_var = DESC_I_RINT8 | DESC_I_RINT5;
  797. tx_int_var = mdp->tx_int_var = DESC_I_TINT2;
  798. sh_eth_write(ndev, rx_int_var | tx_int_var, TRSCER);
  799. if (mdp->cd->bculr)
  800. sh_eth_write(ndev, 0x800, BCULR); /* Burst sycle set */
  801. sh_eth_write(ndev, mdp->cd->fcftr_value, FCFTR);
  802. if (!mdp->cd->no_trimd)
  803. sh_eth_write(ndev, 0, TRIMD);
  804. /* Recv frame limit set register */
  805. sh_eth_write(ndev, ndev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN,
  806. RFLR);
  807. sh_eth_write(ndev, sh_eth_read(ndev, EESR), EESR);
  808. sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
  809. /* PAUSE Prohibition */
  810. val = (sh_eth_read(ndev, ECMR) & ECMR_DM) |
  811. ECMR_ZPF | (mdp->duplex ? ECMR_DM : 0) | ECMR_TE | ECMR_RE;
  812. sh_eth_write(ndev, val, ECMR);
  813. if (mdp->cd->set_rate)
  814. mdp->cd->set_rate(ndev);
  815. /* E-MAC Status Register clear */
  816. sh_eth_write(ndev, mdp->cd->ecsr_value, ECSR);
  817. /* E-MAC Interrupt Enable register */
  818. sh_eth_write(ndev, mdp->cd->ecsipr_value, ECSIPR);
  819. /* Set MAC address */
  820. update_mac_address(ndev);
  821. /* mask reset */
  822. if (mdp->cd->apr)
  823. sh_eth_write(ndev, APR_AP, APR);
  824. if (mdp->cd->mpr)
  825. sh_eth_write(ndev, MPR_MP, MPR);
  826. if (mdp->cd->tpauser)
  827. sh_eth_write(ndev, TPAUSER_UNLIMITED, TPAUSER);
  828. /* Setting the Rx mode will start the Rx process. */
  829. sh_eth_write(ndev, EDRRR_R, EDRRR);
  830. netif_start_queue(ndev);
  831. return ret;
  832. }
  833. /* free Tx skb function */
  834. static int sh_eth_txfree(struct net_device *ndev)
  835. {
  836. struct sh_eth_private *mdp = netdev_priv(ndev);
  837. struct sh_eth_txdesc *txdesc;
  838. int freeNum = 0;
  839. int entry = 0;
  840. for (; mdp->cur_tx - mdp->dirty_tx > 0; mdp->dirty_tx++) {
  841. entry = mdp->dirty_tx % TX_RING_SIZE;
  842. txdesc = &mdp->tx_ring[entry];
  843. if (txdesc->status & cpu_to_edmac(mdp, TD_TACT))
  844. break;
  845. /* Free the original skb. */
  846. if (mdp->tx_skbuff[entry]) {
  847. dma_unmap_single(&ndev->dev, txdesc->addr,
  848. txdesc->buffer_length, DMA_TO_DEVICE);
  849. dev_kfree_skb_irq(mdp->tx_skbuff[entry]);
  850. mdp->tx_skbuff[entry] = NULL;
  851. freeNum++;
  852. }
  853. txdesc->status = cpu_to_edmac(mdp, TD_TFP);
  854. if (entry >= TX_RING_SIZE - 1)
  855. txdesc->status |= cpu_to_edmac(mdp, TD_TDLE);
  856. ndev->stats.tx_packets++;
  857. ndev->stats.tx_bytes += txdesc->buffer_length;
  858. }
  859. return freeNum;
  860. }
  861. /* Packet receive function */
  862. static int sh_eth_rx(struct net_device *ndev)
  863. {
  864. struct sh_eth_private *mdp = netdev_priv(ndev);
  865. struct sh_eth_rxdesc *rxdesc;
  866. int entry = mdp->cur_rx % RX_RING_SIZE;
  867. int boguscnt = (mdp->dirty_rx + RX_RING_SIZE) - mdp->cur_rx;
  868. struct sk_buff *skb;
  869. u16 pkt_len = 0;
  870. u32 desc_status;
  871. rxdesc = &mdp->rx_ring[entry];
  872. while (!(rxdesc->status & cpu_to_edmac(mdp, RD_RACT))) {
  873. desc_status = edmac_to_cpu(mdp, rxdesc->status);
  874. pkt_len = rxdesc->frame_length;
  875. #if defined(CONFIG_ARCH_R8A7740)
  876. desc_status >>= 16;
  877. #endif
  878. if (--boguscnt < 0)
  879. break;
  880. if (!(desc_status & RDFEND))
  881. ndev->stats.rx_length_errors++;
  882. if (desc_status & (RD_RFS1 | RD_RFS2 | RD_RFS3 | RD_RFS4 |
  883. RD_RFS5 | RD_RFS6 | RD_RFS10)) {
  884. ndev->stats.rx_errors++;
  885. if (desc_status & RD_RFS1)
  886. ndev->stats.rx_crc_errors++;
  887. if (desc_status & RD_RFS2)
  888. ndev->stats.rx_frame_errors++;
  889. if (desc_status & RD_RFS3)
  890. ndev->stats.rx_length_errors++;
  891. if (desc_status & RD_RFS4)
  892. ndev->stats.rx_length_errors++;
  893. if (desc_status & RD_RFS6)
  894. ndev->stats.rx_missed_errors++;
  895. if (desc_status & RD_RFS10)
  896. ndev->stats.rx_over_errors++;
  897. } else {
  898. if (!mdp->cd->hw_swap)
  899. sh_eth_soft_swap(
  900. phys_to_virt(ALIGN(rxdesc->addr, 4)),
  901. pkt_len + 2);
  902. skb = mdp->rx_skbuff[entry];
  903. mdp->rx_skbuff[entry] = NULL;
  904. if (mdp->cd->rpadir)
  905. skb_reserve(skb, NET_IP_ALIGN);
  906. skb_put(skb, pkt_len);
  907. skb->protocol = eth_type_trans(skb, ndev);
  908. netif_rx(skb);
  909. ndev->stats.rx_packets++;
  910. ndev->stats.rx_bytes += pkt_len;
  911. }
  912. rxdesc->status |= cpu_to_edmac(mdp, RD_RACT);
  913. entry = (++mdp->cur_rx) % RX_RING_SIZE;
  914. rxdesc = &mdp->rx_ring[entry];
  915. }
  916. /* Refill the Rx ring buffers. */
  917. for (; mdp->cur_rx - mdp->dirty_rx > 0; mdp->dirty_rx++) {
  918. entry = mdp->dirty_rx % RX_RING_SIZE;
  919. rxdesc = &mdp->rx_ring[entry];
  920. /* The size of the buffer is 16 byte boundary. */
  921. rxdesc->buffer_length = ALIGN(mdp->rx_buf_sz, 16);
  922. if (mdp->rx_skbuff[entry] == NULL) {
  923. skb = netdev_alloc_skb(ndev, mdp->rx_buf_sz);
  924. mdp->rx_skbuff[entry] = skb;
  925. if (skb == NULL)
  926. break; /* Better luck next round. */
  927. dma_map_single(&ndev->dev, skb->data, mdp->rx_buf_sz,
  928. DMA_FROM_DEVICE);
  929. sh_eth_set_receive_align(skb);
  930. skb_checksum_none_assert(skb);
  931. rxdesc->addr = virt_to_phys(PTR_ALIGN(skb->data, 4));
  932. }
  933. if (entry >= RX_RING_SIZE - 1)
  934. rxdesc->status |=
  935. cpu_to_edmac(mdp, RD_RACT | RD_RFP | RD_RDEL);
  936. else
  937. rxdesc->status |=
  938. cpu_to_edmac(mdp, RD_RACT | RD_RFP);
  939. }
  940. /* Restart Rx engine if stopped. */
  941. /* If we don't need to check status, don't. -KDU */
  942. if (!(sh_eth_read(ndev, EDRRR) & EDRRR_R)) {
  943. /* fix the values for the next receiving */
  944. mdp->cur_rx = mdp->dirty_rx = (sh_eth_read(ndev, RDFAR) -
  945. sh_eth_read(ndev, RDLAR)) >> 4;
  946. sh_eth_write(ndev, EDRRR_R, EDRRR);
  947. }
  948. return 0;
  949. }
  950. static void sh_eth_rcv_snd_disable(struct net_device *ndev)
  951. {
  952. /* disable tx and rx */
  953. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) &
  954. ~(ECMR_RE | ECMR_TE), ECMR);
  955. }
  956. static void sh_eth_rcv_snd_enable(struct net_device *ndev)
  957. {
  958. /* enable tx and rx */
  959. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) |
  960. (ECMR_RE | ECMR_TE), ECMR);
  961. }
  962. /* error control function */
  963. static void sh_eth_error(struct net_device *ndev, int intr_status)
  964. {
  965. struct sh_eth_private *mdp = netdev_priv(ndev);
  966. u32 felic_stat;
  967. u32 link_stat;
  968. u32 mask;
  969. if (intr_status & EESR_ECI) {
  970. felic_stat = sh_eth_read(ndev, ECSR);
  971. sh_eth_write(ndev, felic_stat, ECSR); /* clear int */
  972. if (felic_stat & ECSR_ICD)
  973. ndev->stats.tx_carrier_errors++;
  974. if (felic_stat & ECSR_LCHNG) {
  975. /* Link Changed */
  976. if (mdp->cd->no_psr || mdp->no_ether_link) {
  977. if (mdp->link == PHY_DOWN)
  978. link_stat = 0;
  979. else
  980. link_stat = PHY_ST_LINK;
  981. } else {
  982. link_stat = (sh_eth_read(ndev, PSR));
  983. if (mdp->ether_link_active_low)
  984. link_stat = ~link_stat;
  985. }
  986. if (!(link_stat & PHY_ST_LINK))
  987. sh_eth_rcv_snd_disable(ndev);
  988. else {
  989. /* Link Up */
  990. sh_eth_write(ndev, sh_eth_read(ndev, EESIPR) &
  991. ~DMAC_M_ECI, EESIPR);
  992. /*clear int */
  993. sh_eth_write(ndev, sh_eth_read(ndev, ECSR),
  994. ECSR);
  995. sh_eth_write(ndev, sh_eth_read(ndev, EESIPR) |
  996. DMAC_M_ECI, EESIPR);
  997. /* enable tx and rx */
  998. sh_eth_rcv_snd_enable(ndev);
  999. }
  1000. }
  1001. }
  1002. if (intr_status & EESR_TWB) {
  1003. /* Write buck end. unused write back interrupt */
  1004. if (intr_status & EESR_TABT) /* Transmit Abort int */
  1005. ndev->stats.tx_aborted_errors++;
  1006. if (netif_msg_tx_err(mdp))
  1007. dev_err(&ndev->dev, "Transmit Abort\n");
  1008. }
  1009. if (intr_status & EESR_RABT) {
  1010. /* Receive Abort int */
  1011. if (intr_status & EESR_RFRMER) {
  1012. /* Receive Frame Overflow int */
  1013. ndev->stats.rx_frame_errors++;
  1014. if (netif_msg_rx_err(mdp))
  1015. dev_err(&ndev->dev, "Receive Abort\n");
  1016. }
  1017. }
  1018. if (intr_status & EESR_TDE) {
  1019. /* Transmit Descriptor Empty int */
  1020. ndev->stats.tx_fifo_errors++;
  1021. if (netif_msg_tx_err(mdp))
  1022. dev_err(&ndev->dev, "Transmit Descriptor Empty\n");
  1023. }
  1024. if (intr_status & EESR_TFE) {
  1025. /* FIFO under flow */
  1026. ndev->stats.tx_fifo_errors++;
  1027. if (netif_msg_tx_err(mdp))
  1028. dev_err(&ndev->dev, "Transmit FIFO Under flow\n");
  1029. }
  1030. if (intr_status & EESR_RDE) {
  1031. /* Receive Descriptor Empty int */
  1032. ndev->stats.rx_over_errors++;
  1033. if (netif_msg_rx_err(mdp))
  1034. dev_err(&ndev->dev, "Receive Descriptor Empty\n");
  1035. }
  1036. if (intr_status & EESR_RFE) {
  1037. /* Receive FIFO Overflow int */
  1038. ndev->stats.rx_fifo_errors++;
  1039. if (netif_msg_rx_err(mdp))
  1040. dev_err(&ndev->dev, "Receive FIFO Overflow\n");
  1041. }
  1042. if (!mdp->cd->no_ade && (intr_status & EESR_ADE)) {
  1043. /* Address Error */
  1044. ndev->stats.tx_fifo_errors++;
  1045. if (netif_msg_tx_err(mdp))
  1046. dev_err(&ndev->dev, "Address Error\n");
  1047. }
  1048. mask = EESR_TWB | EESR_TABT | EESR_ADE | EESR_TDE | EESR_TFE;
  1049. if (mdp->cd->no_ade)
  1050. mask &= ~EESR_ADE;
  1051. if (intr_status & mask) {
  1052. /* Tx error */
  1053. u32 edtrr = sh_eth_read(ndev, EDTRR);
  1054. /* dmesg */
  1055. dev_err(&ndev->dev, "TX error. status=%8.8x cur_tx=%8.8x ",
  1056. intr_status, mdp->cur_tx);
  1057. dev_err(&ndev->dev, "dirty_tx=%8.8x state=%8.8x EDTRR=%8.8x.\n",
  1058. mdp->dirty_tx, (u32) ndev->state, edtrr);
  1059. /* dirty buffer free */
  1060. sh_eth_txfree(ndev);
  1061. /* SH7712 BUG */
  1062. if (edtrr ^ sh_eth_get_edtrr_trns(mdp)) {
  1063. /* tx dma start */
  1064. sh_eth_write(ndev, sh_eth_get_edtrr_trns(mdp), EDTRR);
  1065. }
  1066. /* wakeup */
  1067. netif_wake_queue(ndev);
  1068. }
  1069. }
  1070. static irqreturn_t sh_eth_interrupt(int irq, void *netdev)
  1071. {
  1072. struct net_device *ndev = netdev;
  1073. struct sh_eth_private *mdp = netdev_priv(ndev);
  1074. struct sh_eth_cpu_data *cd = mdp->cd;
  1075. irqreturn_t ret = IRQ_NONE;
  1076. u32 intr_status = 0;
  1077. spin_lock(&mdp->lock);
  1078. /* Get interrpt stat */
  1079. intr_status = sh_eth_read(ndev, EESR);
  1080. /* Clear interrupt */
  1081. if (intr_status & (EESR_FRC | EESR_RMAF | EESR_RRF |
  1082. EESR_RTLF | EESR_RTSF | EESR_PRE | EESR_CERF |
  1083. cd->tx_check | cd->eesr_err_check)) {
  1084. sh_eth_write(ndev, intr_status, EESR);
  1085. ret = IRQ_HANDLED;
  1086. } else
  1087. goto other_irq;
  1088. if (intr_status & (EESR_FRC | /* Frame recv*/
  1089. EESR_RMAF | /* Multi cast address recv*/
  1090. EESR_RRF | /* Bit frame recv */
  1091. EESR_RTLF | /* Long frame recv*/
  1092. EESR_RTSF | /* short frame recv */
  1093. EESR_PRE | /* PHY-LSI recv error */
  1094. EESR_CERF)){ /* recv frame CRC error */
  1095. sh_eth_rx(ndev);
  1096. }
  1097. /* Tx Check */
  1098. if (intr_status & cd->tx_check) {
  1099. sh_eth_txfree(ndev);
  1100. netif_wake_queue(ndev);
  1101. }
  1102. if (intr_status & cd->eesr_err_check)
  1103. sh_eth_error(ndev, intr_status);
  1104. other_irq:
  1105. spin_unlock(&mdp->lock);
  1106. return ret;
  1107. }
  1108. static void sh_eth_timer(unsigned long data)
  1109. {
  1110. struct net_device *ndev = (struct net_device *)data;
  1111. struct sh_eth_private *mdp = netdev_priv(ndev);
  1112. mod_timer(&mdp->timer, jiffies + (10 * HZ));
  1113. }
  1114. /* PHY state control function */
  1115. static void sh_eth_adjust_link(struct net_device *ndev)
  1116. {
  1117. struct sh_eth_private *mdp = netdev_priv(ndev);
  1118. struct phy_device *phydev = mdp->phydev;
  1119. int new_state = 0;
  1120. if (phydev->link != PHY_DOWN) {
  1121. if (phydev->duplex != mdp->duplex) {
  1122. new_state = 1;
  1123. mdp->duplex = phydev->duplex;
  1124. if (mdp->cd->set_duplex)
  1125. mdp->cd->set_duplex(ndev);
  1126. }
  1127. if (phydev->speed != mdp->speed) {
  1128. new_state = 1;
  1129. mdp->speed = phydev->speed;
  1130. if (mdp->cd->set_rate)
  1131. mdp->cd->set_rate(ndev);
  1132. }
  1133. if (mdp->link == PHY_DOWN) {
  1134. sh_eth_write(ndev,
  1135. (sh_eth_read(ndev, ECMR) & ~ECMR_TXF), ECMR);
  1136. new_state = 1;
  1137. mdp->link = phydev->link;
  1138. }
  1139. } else if (mdp->link) {
  1140. new_state = 1;
  1141. mdp->link = PHY_DOWN;
  1142. mdp->speed = 0;
  1143. mdp->duplex = -1;
  1144. }
  1145. if (new_state && netif_msg_link(mdp))
  1146. phy_print_status(phydev);
  1147. }
  1148. /* PHY init function */
  1149. static int sh_eth_phy_init(struct net_device *ndev)
  1150. {
  1151. struct sh_eth_private *mdp = netdev_priv(ndev);
  1152. char phy_id[MII_BUS_ID_SIZE + 3];
  1153. struct phy_device *phydev = NULL;
  1154. snprintf(phy_id, sizeof(phy_id), PHY_ID_FMT,
  1155. mdp->mii_bus->id , mdp->phy_id);
  1156. mdp->link = PHY_DOWN;
  1157. mdp->speed = 0;
  1158. mdp->duplex = -1;
  1159. /* Try connect to PHY */
  1160. phydev = phy_connect(ndev, phy_id, sh_eth_adjust_link,
  1161. 0, mdp->phy_interface);
  1162. if (IS_ERR(phydev)) {
  1163. dev_err(&ndev->dev, "phy_connect failed\n");
  1164. return PTR_ERR(phydev);
  1165. }
  1166. dev_info(&ndev->dev, "attached phy %i to driver %s\n",
  1167. phydev->addr, phydev->drv->name);
  1168. mdp->phydev = phydev;
  1169. return 0;
  1170. }
  1171. /* PHY control start function */
  1172. static int sh_eth_phy_start(struct net_device *ndev)
  1173. {
  1174. struct sh_eth_private *mdp = netdev_priv(ndev);
  1175. int ret;
  1176. ret = sh_eth_phy_init(ndev);
  1177. if (ret)
  1178. return ret;
  1179. /* reset phy - this also wakes it from PDOWN */
  1180. phy_write(mdp->phydev, MII_BMCR, BMCR_RESET);
  1181. phy_start(mdp->phydev);
  1182. return 0;
  1183. }
  1184. static int sh_eth_get_settings(struct net_device *ndev,
  1185. struct ethtool_cmd *ecmd)
  1186. {
  1187. struct sh_eth_private *mdp = netdev_priv(ndev);
  1188. unsigned long flags;
  1189. int ret;
  1190. spin_lock_irqsave(&mdp->lock, flags);
  1191. ret = phy_ethtool_gset(mdp->phydev, ecmd);
  1192. spin_unlock_irqrestore(&mdp->lock, flags);
  1193. return ret;
  1194. }
  1195. static int sh_eth_set_settings(struct net_device *ndev,
  1196. struct ethtool_cmd *ecmd)
  1197. {
  1198. struct sh_eth_private *mdp = netdev_priv(ndev);
  1199. unsigned long flags;
  1200. int ret;
  1201. spin_lock_irqsave(&mdp->lock, flags);
  1202. /* disable tx and rx */
  1203. sh_eth_rcv_snd_disable(ndev);
  1204. ret = phy_ethtool_sset(mdp->phydev, ecmd);
  1205. if (ret)
  1206. goto error_exit;
  1207. if (ecmd->duplex == DUPLEX_FULL)
  1208. mdp->duplex = 1;
  1209. else
  1210. mdp->duplex = 0;
  1211. if (mdp->cd->set_duplex)
  1212. mdp->cd->set_duplex(ndev);
  1213. error_exit:
  1214. mdelay(1);
  1215. /* enable tx and rx */
  1216. sh_eth_rcv_snd_enable(ndev);
  1217. spin_unlock_irqrestore(&mdp->lock, flags);
  1218. return ret;
  1219. }
  1220. static int sh_eth_nway_reset(struct net_device *ndev)
  1221. {
  1222. struct sh_eth_private *mdp = netdev_priv(ndev);
  1223. unsigned long flags;
  1224. int ret;
  1225. spin_lock_irqsave(&mdp->lock, flags);
  1226. ret = phy_start_aneg(mdp->phydev);
  1227. spin_unlock_irqrestore(&mdp->lock, flags);
  1228. return ret;
  1229. }
  1230. static u32 sh_eth_get_msglevel(struct net_device *ndev)
  1231. {
  1232. struct sh_eth_private *mdp = netdev_priv(ndev);
  1233. return mdp->msg_enable;
  1234. }
  1235. static void sh_eth_set_msglevel(struct net_device *ndev, u32 value)
  1236. {
  1237. struct sh_eth_private *mdp = netdev_priv(ndev);
  1238. mdp->msg_enable = value;
  1239. }
  1240. static const char sh_eth_gstrings_stats[][ETH_GSTRING_LEN] = {
  1241. "rx_current", "tx_current",
  1242. "rx_dirty", "tx_dirty",
  1243. };
  1244. #define SH_ETH_STATS_LEN ARRAY_SIZE(sh_eth_gstrings_stats)
  1245. static int sh_eth_get_sset_count(struct net_device *netdev, int sset)
  1246. {
  1247. switch (sset) {
  1248. case ETH_SS_STATS:
  1249. return SH_ETH_STATS_LEN;
  1250. default:
  1251. return -EOPNOTSUPP;
  1252. }
  1253. }
  1254. static void sh_eth_get_ethtool_stats(struct net_device *ndev,
  1255. struct ethtool_stats *stats, u64 *data)
  1256. {
  1257. struct sh_eth_private *mdp = netdev_priv(ndev);
  1258. int i = 0;
  1259. /* device-specific stats */
  1260. data[i++] = mdp->cur_rx;
  1261. data[i++] = mdp->cur_tx;
  1262. data[i++] = mdp->dirty_rx;
  1263. data[i++] = mdp->dirty_tx;
  1264. }
  1265. static void sh_eth_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
  1266. {
  1267. switch (stringset) {
  1268. case ETH_SS_STATS:
  1269. memcpy(data, *sh_eth_gstrings_stats,
  1270. sizeof(sh_eth_gstrings_stats));
  1271. break;
  1272. }
  1273. }
  1274. static const struct ethtool_ops sh_eth_ethtool_ops = {
  1275. .get_settings = sh_eth_get_settings,
  1276. .set_settings = sh_eth_set_settings,
  1277. .nway_reset = sh_eth_nway_reset,
  1278. .get_msglevel = sh_eth_get_msglevel,
  1279. .set_msglevel = sh_eth_set_msglevel,
  1280. .get_link = ethtool_op_get_link,
  1281. .get_strings = sh_eth_get_strings,
  1282. .get_ethtool_stats = sh_eth_get_ethtool_stats,
  1283. .get_sset_count = sh_eth_get_sset_count,
  1284. };
  1285. /* network device open function */
  1286. static int sh_eth_open(struct net_device *ndev)
  1287. {
  1288. int ret = 0;
  1289. struct sh_eth_private *mdp = netdev_priv(ndev);
  1290. pm_runtime_get_sync(&mdp->pdev->dev);
  1291. ret = request_irq(ndev->irq, sh_eth_interrupt,
  1292. #if defined(CONFIG_CPU_SUBTYPE_SH7763) || \
  1293. defined(CONFIG_CPU_SUBTYPE_SH7764) || \
  1294. defined(CONFIG_CPU_SUBTYPE_SH7757)
  1295. IRQF_SHARED,
  1296. #else
  1297. 0,
  1298. #endif
  1299. ndev->name, ndev);
  1300. if (ret) {
  1301. dev_err(&ndev->dev, "Can not assign IRQ number\n");
  1302. return ret;
  1303. }
  1304. /* Descriptor set */
  1305. ret = sh_eth_ring_init(ndev);
  1306. if (ret)
  1307. goto out_free_irq;
  1308. /* device init */
  1309. ret = sh_eth_dev_init(ndev);
  1310. if (ret)
  1311. goto out_free_irq;
  1312. /* PHY control start*/
  1313. ret = sh_eth_phy_start(ndev);
  1314. if (ret)
  1315. goto out_free_irq;
  1316. /* Set the timer to check for link beat. */
  1317. init_timer(&mdp->timer);
  1318. mdp->timer.expires = (jiffies + (24 * HZ)) / 10;/* 2.4 sec. */
  1319. setup_timer(&mdp->timer, sh_eth_timer, (unsigned long)ndev);
  1320. return ret;
  1321. out_free_irq:
  1322. free_irq(ndev->irq, ndev);
  1323. pm_runtime_put_sync(&mdp->pdev->dev);
  1324. return ret;
  1325. }
  1326. /* Timeout function */
  1327. static void sh_eth_tx_timeout(struct net_device *ndev)
  1328. {
  1329. struct sh_eth_private *mdp = netdev_priv(ndev);
  1330. struct sh_eth_rxdesc *rxdesc;
  1331. int i;
  1332. netif_stop_queue(ndev);
  1333. if (netif_msg_timer(mdp))
  1334. dev_err(&ndev->dev, "%s: transmit timed out, status %8.8x,"
  1335. " resetting...\n", ndev->name, (int)sh_eth_read(ndev, EESR));
  1336. /* tx_errors count up */
  1337. ndev->stats.tx_errors++;
  1338. /* timer off */
  1339. del_timer_sync(&mdp->timer);
  1340. /* Free all the skbuffs in the Rx queue. */
  1341. for (i = 0; i < RX_RING_SIZE; i++) {
  1342. rxdesc = &mdp->rx_ring[i];
  1343. rxdesc->status = 0;
  1344. rxdesc->addr = 0xBADF00D0;
  1345. if (mdp->rx_skbuff[i])
  1346. dev_kfree_skb(mdp->rx_skbuff[i]);
  1347. mdp->rx_skbuff[i] = NULL;
  1348. }
  1349. for (i = 0; i < TX_RING_SIZE; i++) {
  1350. if (mdp->tx_skbuff[i])
  1351. dev_kfree_skb(mdp->tx_skbuff[i]);
  1352. mdp->tx_skbuff[i] = NULL;
  1353. }
  1354. /* device init */
  1355. sh_eth_dev_init(ndev);
  1356. /* timer on */
  1357. mdp->timer.expires = (jiffies + (24 * HZ)) / 10;/* 2.4 sec. */
  1358. add_timer(&mdp->timer);
  1359. }
  1360. /* Packet transmit function */
  1361. static int sh_eth_start_xmit(struct sk_buff *skb, struct net_device *ndev)
  1362. {
  1363. struct sh_eth_private *mdp = netdev_priv(ndev);
  1364. struct sh_eth_txdesc *txdesc;
  1365. u32 entry;
  1366. unsigned long flags;
  1367. spin_lock_irqsave(&mdp->lock, flags);
  1368. if ((mdp->cur_tx - mdp->dirty_tx) >= (TX_RING_SIZE - 4)) {
  1369. if (!sh_eth_txfree(ndev)) {
  1370. if (netif_msg_tx_queued(mdp))
  1371. dev_warn(&ndev->dev, "TxFD exhausted.\n");
  1372. netif_stop_queue(ndev);
  1373. spin_unlock_irqrestore(&mdp->lock, flags);
  1374. return NETDEV_TX_BUSY;
  1375. }
  1376. }
  1377. spin_unlock_irqrestore(&mdp->lock, flags);
  1378. entry = mdp->cur_tx % TX_RING_SIZE;
  1379. mdp->tx_skbuff[entry] = skb;
  1380. txdesc = &mdp->tx_ring[entry];
  1381. /* soft swap. */
  1382. if (!mdp->cd->hw_swap)
  1383. sh_eth_soft_swap(phys_to_virt(ALIGN(txdesc->addr, 4)),
  1384. skb->len + 2);
  1385. txdesc->addr = dma_map_single(&ndev->dev, skb->data, skb->len,
  1386. DMA_TO_DEVICE);
  1387. if (skb->len < ETHERSMALL)
  1388. txdesc->buffer_length = ETHERSMALL;
  1389. else
  1390. txdesc->buffer_length = skb->len;
  1391. if (entry >= TX_RING_SIZE - 1)
  1392. txdesc->status |= cpu_to_edmac(mdp, TD_TACT | TD_TDLE);
  1393. else
  1394. txdesc->status |= cpu_to_edmac(mdp, TD_TACT);
  1395. mdp->cur_tx++;
  1396. if (!(sh_eth_read(ndev, EDTRR) & sh_eth_get_edtrr_trns(mdp)))
  1397. sh_eth_write(ndev, sh_eth_get_edtrr_trns(mdp), EDTRR);
  1398. return NETDEV_TX_OK;
  1399. }
  1400. /* device close function */
  1401. static int sh_eth_close(struct net_device *ndev)
  1402. {
  1403. struct sh_eth_private *mdp = netdev_priv(ndev);
  1404. int ringsize;
  1405. netif_stop_queue(ndev);
  1406. /* Disable interrupts by clearing the interrupt mask. */
  1407. sh_eth_write(ndev, 0x0000, EESIPR);
  1408. /* Stop the chip's Tx and Rx processes. */
  1409. sh_eth_write(ndev, 0, EDTRR);
  1410. sh_eth_write(ndev, 0, EDRRR);
  1411. /* PHY Disconnect */
  1412. if (mdp->phydev) {
  1413. phy_stop(mdp->phydev);
  1414. phy_disconnect(mdp->phydev);
  1415. }
  1416. free_irq(ndev->irq, ndev);
  1417. del_timer_sync(&mdp->timer);
  1418. /* Free all the skbuffs in the Rx queue. */
  1419. sh_eth_ring_free(ndev);
  1420. /* free DMA buffer */
  1421. ringsize = sizeof(struct sh_eth_rxdesc) * RX_RING_SIZE;
  1422. dma_free_coherent(NULL, ringsize, mdp->rx_ring, mdp->rx_desc_dma);
  1423. /* free DMA buffer */
  1424. ringsize = sizeof(struct sh_eth_txdesc) * TX_RING_SIZE;
  1425. dma_free_coherent(NULL, ringsize, mdp->tx_ring, mdp->tx_desc_dma);
  1426. pm_runtime_put_sync(&mdp->pdev->dev);
  1427. return 0;
  1428. }
  1429. static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev)
  1430. {
  1431. struct sh_eth_private *mdp = netdev_priv(ndev);
  1432. pm_runtime_get_sync(&mdp->pdev->dev);
  1433. ndev->stats.tx_dropped += sh_eth_read(ndev, TROCR);
  1434. sh_eth_write(ndev, 0, TROCR); /* (write clear) */
  1435. ndev->stats.collisions += sh_eth_read(ndev, CDCR);
  1436. sh_eth_write(ndev, 0, CDCR); /* (write clear) */
  1437. ndev->stats.tx_carrier_errors += sh_eth_read(ndev, LCCR);
  1438. sh_eth_write(ndev, 0, LCCR); /* (write clear) */
  1439. if (sh_eth_is_gether(mdp)) {
  1440. ndev->stats.tx_carrier_errors += sh_eth_read(ndev, CERCR);
  1441. sh_eth_write(ndev, 0, CERCR); /* (write clear) */
  1442. ndev->stats.tx_carrier_errors += sh_eth_read(ndev, CEECR);
  1443. sh_eth_write(ndev, 0, CEECR); /* (write clear) */
  1444. } else {
  1445. ndev->stats.tx_carrier_errors += sh_eth_read(ndev, CNDCR);
  1446. sh_eth_write(ndev, 0, CNDCR); /* (write clear) */
  1447. }
  1448. pm_runtime_put_sync(&mdp->pdev->dev);
  1449. return &ndev->stats;
  1450. }
  1451. /* ioctl to device function */
  1452. static int sh_eth_do_ioctl(struct net_device *ndev, struct ifreq *rq,
  1453. int cmd)
  1454. {
  1455. struct sh_eth_private *mdp = netdev_priv(ndev);
  1456. struct phy_device *phydev = mdp->phydev;
  1457. if (!netif_running(ndev))
  1458. return -EINVAL;
  1459. if (!phydev)
  1460. return -ENODEV;
  1461. return phy_mii_ioctl(phydev, rq, cmd);
  1462. }
  1463. #if defined(SH_ETH_HAS_TSU)
  1464. /* For TSU_POSTn. Please refer to the manual about this (strange) bitfields */
  1465. static void *sh_eth_tsu_get_post_reg_offset(struct sh_eth_private *mdp,
  1466. int entry)
  1467. {
  1468. return sh_eth_tsu_get_offset(mdp, TSU_POST1) + (entry / 8 * 4);
  1469. }
  1470. static u32 sh_eth_tsu_get_post_mask(int entry)
  1471. {
  1472. return 0x0f << (28 - ((entry % 8) * 4));
  1473. }
  1474. static u32 sh_eth_tsu_get_post_bit(struct sh_eth_private *mdp, int entry)
  1475. {
  1476. return (0x08 >> (mdp->port << 1)) << (28 - ((entry % 8) * 4));
  1477. }
  1478. static void sh_eth_tsu_enable_cam_entry_post(struct net_device *ndev,
  1479. int entry)
  1480. {
  1481. struct sh_eth_private *mdp = netdev_priv(ndev);
  1482. u32 tmp;
  1483. void *reg_offset;
  1484. reg_offset = sh_eth_tsu_get_post_reg_offset(mdp, entry);
  1485. tmp = ioread32(reg_offset);
  1486. iowrite32(tmp | sh_eth_tsu_get_post_bit(mdp, entry), reg_offset);
  1487. }
  1488. static bool sh_eth_tsu_disable_cam_entry_post(struct net_device *ndev,
  1489. int entry)
  1490. {
  1491. struct sh_eth_private *mdp = netdev_priv(ndev);
  1492. u32 post_mask, ref_mask, tmp;
  1493. void *reg_offset;
  1494. reg_offset = sh_eth_tsu_get_post_reg_offset(mdp, entry);
  1495. post_mask = sh_eth_tsu_get_post_mask(entry);
  1496. ref_mask = sh_eth_tsu_get_post_bit(mdp, entry) & ~post_mask;
  1497. tmp = ioread32(reg_offset);
  1498. iowrite32(tmp & ~post_mask, reg_offset);
  1499. /* If other port enables, the function returns "true" */
  1500. return tmp & ref_mask;
  1501. }
  1502. static int sh_eth_tsu_busy(struct net_device *ndev)
  1503. {
  1504. int timeout = SH_ETH_TSU_TIMEOUT_MS * 100;
  1505. struct sh_eth_private *mdp = netdev_priv(ndev);
  1506. while ((sh_eth_tsu_read(mdp, TSU_ADSBSY) & TSU_ADSBSY_0)) {
  1507. udelay(10);
  1508. timeout--;
  1509. if (timeout <= 0) {
  1510. dev_err(&ndev->dev, "%s: timeout\n", __func__);
  1511. return -ETIMEDOUT;
  1512. }
  1513. }
  1514. return 0;
  1515. }
  1516. static int sh_eth_tsu_write_entry(struct net_device *ndev, void *reg,
  1517. const u8 *addr)
  1518. {
  1519. u32 val;
  1520. val = addr[0] << 24 | addr[1] << 16 | addr[2] << 8 | addr[3];
  1521. iowrite32(val, reg);
  1522. if (sh_eth_tsu_busy(ndev) < 0)
  1523. return -EBUSY;
  1524. val = addr[4] << 8 | addr[5];
  1525. iowrite32(val, reg + 4);
  1526. if (sh_eth_tsu_busy(ndev) < 0)
  1527. return -EBUSY;
  1528. return 0;
  1529. }
  1530. static void sh_eth_tsu_read_entry(void *reg, u8 *addr)
  1531. {
  1532. u32 val;
  1533. val = ioread32(reg);
  1534. addr[0] = (val >> 24) & 0xff;
  1535. addr[1] = (val >> 16) & 0xff;
  1536. addr[2] = (val >> 8) & 0xff;
  1537. addr[3] = val & 0xff;
  1538. val = ioread32(reg + 4);
  1539. addr[4] = (val >> 8) & 0xff;
  1540. addr[5] = val & 0xff;
  1541. }
  1542. static int sh_eth_tsu_find_entry(struct net_device *ndev, const u8 *addr)
  1543. {
  1544. struct sh_eth_private *mdp = netdev_priv(ndev);
  1545. void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
  1546. int i;
  1547. u8 c_addr[ETH_ALEN];
  1548. for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
  1549. sh_eth_tsu_read_entry(reg_offset, c_addr);
  1550. if (memcmp(addr, c_addr, ETH_ALEN) == 0)
  1551. return i;
  1552. }
  1553. return -ENOENT;
  1554. }
  1555. static int sh_eth_tsu_find_empty(struct net_device *ndev)
  1556. {
  1557. u8 blank[ETH_ALEN];
  1558. int entry;
  1559. memset(blank, 0, sizeof(blank));
  1560. entry = sh_eth_tsu_find_entry(ndev, blank);
  1561. return (entry < 0) ? -ENOMEM : entry;
  1562. }
  1563. static int sh_eth_tsu_disable_cam_entry_table(struct net_device *ndev,
  1564. int entry)
  1565. {
  1566. struct sh_eth_private *mdp = netdev_priv(ndev);
  1567. void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
  1568. int ret;
  1569. u8 blank[ETH_ALEN];
  1570. sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) &
  1571. ~(1 << (31 - entry)), TSU_TEN);
  1572. memset(blank, 0, sizeof(blank));
  1573. ret = sh_eth_tsu_write_entry(ndev, reg_offset + entry * 8, blank);
  1574. if (ret < 0)
  1575. return ret;
  1576. return 0;
  1577. }
  1578. static int sh_eth_tsu_add_entry(struct net_device *ndev, const u8 *addr)
  1579. {
  1580. struct sh_eth_private *mdp = netdev_priv(ndev);
  1581. void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
  1582. int i, ret;
  1583. if (!mdp->cd->tsu)
  1584. return 0;
  1585. i = sh_eth_tsu_find_entry(ndev, addr);
  1586. if (i < 0) {
  1587. /* No entry found, create one */
  1588. i = sh_eth_tsu_find_empty(ndev);
  1589. if (i < 0)
  1590. return -ENOMEM;
  1591. ret = sh_eth_tsu_write_entry(ndev, reg_offset + i * 8, addr);
  1592. if (ret < 0)
  1593. return ret;
  1594. /* Enable the entry */
  1595. sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) |
  1596. (1 << (31 - i)), TSU_TEN);
  1597. }
  1598. /* Entry found or created, enable POST */
  1599. sh_eth_tsu_enable_cam_entry_post(ndev, i);
  1600. return 0;
  1601. }
  1602. static int sh_eth_tsu_del_entry(struct net_device *ndev, const u8 *addr)
  1603. {
  1604. struct sh_eth_private *mdp = netdev_priv(ndev);
  1605. int i, ret;
  1606. if (!mdp->cd->tsu)
  1607. return 0;
  1608. i = sh_eth_tsu_find_entry(ndev, addr);
  1609. if (i) {
  1610. /* Entry found */
  1611. if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
  1612. goto done;
  1613. /* Disable the entry if both ports was disabled */
  1614. ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
  1615. if (ret < 0)
  1616. return ret;
  1617. }
  1618. done:
  1619. return 0;
  1620. }
  1621. static int sh_eth_tsu_purge_all(struct net_device *ndev)
  1622. {
  1623. struct sh_eth_private *mdp = netdev_priv(ndev);
  1624. int i, ret;
  1625. if (unlikely(!mdp->cd->tsu))
  1626. return 0;
  1627. for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++) {
  1628. if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
  1629. continue;
  1630. /* Disable the entry if both ports was disabled */
  1631. ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
  1632. if (ret < 0)
  1633. return ret;
  1634. }
  1635. return 0;
  1636. }
  1637. static void sh_eth_tsu_purge_mcast(struct net_device *ndev)
  1638. {
  1639. struct sh_eth_private *mdp = netdev_priv(ndev);
  1640. u8 addr[ETH_ALEN];
  1641. void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
  1642. int i;
  1643. if (unlikely(!mdp->cd->tsu))
  1644. return;
  1645. for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
  1646. sh_eth_tsu_read_entry(reg_offset, addr);
  1647. if (is_multicast_ether_addr(addr))
  1648. sh_eth_tsu_del_entry(ndev, addr);
  1649. }
  1650. }
  1651. /* Multicast reception directions set */
  1652. static void sh_eth_set_multicast_list(struct net_device *ndev)
  1653. {
  1654. struct sh_eth_private *mdp = netdev_priv(ndev);
  1655. u32 ecmr_bits;
  1656. int mcast_all = 0;
  1657. unsigned long flags;
  1658. spin_lock_irqsave(&mdp->lock, flags);
  1659. /*
  1660. * Initial condition is MCT = 1, PRM = 0.
  1661. * Depending on ndev->flags, set PRM or clear MCT
  1662. */
  1663. ecmr_bits = (sh_eth_read(ndev, ECMR) & ~ECMR_PRM) | ECMR_MCT;
  1664. if (!(ndev->flags & IFF_MULTICAST)) {
  1665. sh_eth_tsu_purge_mcast(ndev);
  1666. mcast_all = 1;
  1667. }
  1668. if (ndev->flags & IFF_ALLMULTI) {
  1669. sh_eth_tsu_purge_mcast(ndev);
  1670. ecmr_bits &= ~ECMR_MCT;
  1671. mcast_all = 1;
  1672. }
  1673. if (ndev->flags & IFF_PROMISC) {
  1674. sh_eth_tsu_purge_all(ndev);
  1675. ecmr_bits = (ecmr_bits & ~ECMR_MCT) | ECMR_PRM;
  1676. } else if (mdp->cd->tsu) {
  1677. struct netdev_hw_addr *ha;
  1678. netdev_for_each_mc_addr(ha, ndev) {
  1679. if (mcast_all && is_multicast_ether_addr(ha->addr))
  1680. continue;
  1681. if (sh_eth_tsu_add_entry(ndev, ha->addr) < 0) {
  1682. if (!mcast_all) {
  1683. sh_eth_tsu_purge_mcast(ndev);
  1684. ecmr_bits &= ~ECMR_MCT;
  1685. mcast_all = 1;
  1686. }
  1687. }
  1688. }
  1689. } else {
  1690. /* Normal, unicast/broadcast-only mode. */
  1691. ecmr_bits = (ecmr_bits & ~ECMR_PRM) | ECMR_MCT;
  1692. }
  1693. /* update the ethernet mode */
  1694. sh_eth_write(ndev, ecmr_bits, ECMR);
  1695. spin_unlock_irqrestore(&mdp->lock, flags);
  1696. }
  1697. static int sh_eth_get_vtag_index(struct sh_eth_private *mdp)
  1698. {
  1699. if (!mdp->port)
  1700. return TSU_VTAG0;
  1701. else
  1702. return TSU_VTAG1;
  1703. }
  1704. static int sh_eth_vlan_rx_add_vid(struct net_device *ndev, u16 vid)
  1705. {
  1706. struct sh_eth_private *mdp = netdev_priv(ndev);
  1707. int vtag_reg_index = sh_eth_get_vtag_index(mdp);
  1708. if (unlikely(!mdp->cd->tsu))
  1709. return -EPERM;
  1710. /* No filtering if vid = 0 */
  1711. if (!vid)
  1712. return 0;
  1713. mdp->vlan_num_ids++;
  1714. /*
  1715. * The controller has one VLAN tag HW filter. So, if the filter is
  1716. * already enabled, the driver disables it and the filte
  1717. */
  1718. if (mdp->vlan_num_ids > 1) {
  1719. /* disable VLAN filter */
  1720. sh_eth_tsu_write(mdp, 0, vtag_reg_index);
  1721. return 0;
  1722. }
  1723. sh_eth_tsu_write(mdp, TSU_VTAG_ENABLE | (vid & TSU_VTAG_VID_MASK),
  1724. vtag_reg_index);
  1725. return 0;
  1726. }
  1727. static int sh_eth_vlan_rx_kill_vid(struct net_device *ndev, u16 vid)
  1728. {
  1729. struct sh_eth_private *mdp = netdev_priv(ndev);
  1730. int vtag_reg_index = sh_eth_get_vtag_index(mdp);
  1731. if (unlikely(!mdp->cd->tsu))
  1732. return -EPERM;
  1733. /* No filtering if vid = 0 */
  1734. if (!vid)
  1735. return 0;
  1736. mdp->vlan_num_ids--;
  1737. sh_eth_tsu_write(mdp, 0, vtag_reg_index);
  1738. return 0;
  1739. }
  1740. #endif /* SH_ETH_HAS_TSU */
  1741. /* SuperH's TSU register init function */
  1742. static void sh_eth_tsu_init(struct sh_eth_private *mdp)
  1743. {
  1744. sh_eth_tsu_write(mdp, 0, TSU_FWEN0); /* Disable forward(0->1) */
  1745. sh_eth_tsu_write(mdp, 0, TSU_FWEN1); /* Disable forward(1->0) */
  1746. sh_eth_tsu_write(mdp, 0, TSU_FCM); /* forward fifo 3k-3k */
  1747. sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL0);
  1748. sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL1);
  1749. sh_eth_tsu_write(mdp, 0, TSU_PRISL0);
  1750. sh_eth_tsu_write(mdp, 0, TSU_PRISL1);
  1751. sh_eth_tsu_write(mdp, 0, TSU_FWSL0);
  1752. sh_eth_tsu_write(mdp, 0, TSU_FWSL1);
  1753. sh_eth_tsu_write(mdp, TSU_FWSLC_POSTENU | TSU_FWSLC_POSTENL, TSU_FWSLC);
  1754. if (sh_eth_is_gether(mdp)) {
  1755. sh_eth_tsu_write(mdp, 0, TSU_QTAG0); /* Disable QTAG(0->1) */
  1756. sh_eth_tsu_write(mdp, 0, TSU_QTAG1); /* Disable QTAG(1->0) */
  1757. } else {
  1758. sh_eth_tsu_write(mdp, 0, TSU_QTAGM0); /* Disable QTAG(0->1) */
  1759. sh_eth_tsu_write(mdp, 0, TSU_QTAGM1); /* Disable QTAG(1->0) */
  1760. }
  1761. sh_eth_tsu_write(mdp, 0, TSU_FWSR); /* all interrupt status clear */
  1762. sh_eth_tsu_write(mdp, 0, TSU_FWINMK); /* Disable all interrupt */
  1763. sh_eth_tsu_write(mdp, 0, TSU_TEN); /* Disable all CAM entry */
  1764. sh_eth_tsu_write(mdp, 0, TSU_POST1); /* Disable CAM entry [ 0- 7] */
  1765. sh_eth_tsu_write(mdp, 0, TSU_POST2); /* Disable CAM entry [ 8-15] */
  1766. sh_eth_tsu_write(mdp, 0, TSU_POST3); /* Disable CAM entry [16-23] */
  1767. sh_eth_tsu_write(mdp, 0, TSU_POST4); /* Disable CAM entry [24-31] */
  1768. }
  1769. /* MDIO bus release function */
  1770. static int sh_mdio_release(struct net_device *ndev)
  1771. {
  1772. struct mii_bus *bus = dev_get_drvdata(&ndev->dev);
  1773. /* unregister mdio bus */
  1774. mdiobus_unregister(bus);
  1775. /* remove mdio bus info from net_device */
  1776. dev_set_drvdata(&ndev->dev, NULL);
  1777. /* free interrupts memory */
  1778. kfree(bus->irq);
  1779. /* free bitbang info */
  1780. free_mdio_bitbang(bus);
  1781. return 0;
  1782. }
  1783. /* MDIO bus init function */
  1784. static int sh_mdio_init(struct net_device *ndev, int id,
  1785. struct sh_eth_plat_data *pd)
  1786. {
  1787. int ret, i;
  1788. struct bb_info *bitbang;
  1789. struct sh_eth_private *mdp = netdev_priv(ndev);
  1790. /* create bit control struct for PHY */
  1791. bitbang = kzalloc(sizeof(struct bb_info), GFP_KERNEL);
  1792. if (!bitbang) {
  1793. ret = -ENOMEM;
  1794. goto out;
  1795. }
  1796. /* bitbang init */
  1797. bitbang->addr = mdp->addr + mdp->reg_offset[PIR];
  1798. bitbang->set_gate = pd->set_mdio_gate;
  1799. bitbang->mdi_msk = 0x08;
  1800. bitbang->mdo_msk = 0x04;
  1801. bitbang->mmd_msk = 0x02;/* MMD */
  1802. bitbang->mdc_msk = 0x01;
  1803. bitbang->ctrl.ops = &bb_ops;
  1804. /* MII controller setting */
  1805. mdp->mii_bus = alloc_mdio_bitbang(&bitbang->ctrl);
  1806. if (!mdp->mii_bus) {
  1807. ret = -ENOMEM;
  1808. goto out_free_bitbang;
  1809. }
  1810. /* Hook up MII support for ethtool */
  1811. mdp->mii_bus->name = "sh_mii";
  1812. mdp->mii_bus->parent = &ndev->dev;
  1813. snprintf(mdp->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
  1814. mdp->pdev->name, id);
  1815. /* PHY IRQ */
  1816. mdp->mii_bus->irq = kmalloc(sizeof(int)*PHY_MAX_ADDR, GFP_KERNEL);
  1817. if (!mdp->mii_bus->irq) {
  1818. ret = -ENOMEM;
  1819. goto out_free_bus;
  1820. }
  1821. for (i = 0; i < PHY_MAX_ADDR; i++)
  1822. mdp->mii_bus->irq[i] = PHY_POLL;
  1823. /* regist mdio bus */
  1824. ret = mdiobus_register(mdp->mii_bus);
  1825. if (ret)
  1826. goto out_free_irq;
  1827. dev_set_drvdata(&ndev->dev, mdp->mii_bus);
  1828. return 0;
  1829. out_free_irq:
  1830. kfree(mdp->mii_bus->irq);
  1831. out_free_bus:
  1832. free_mdio_bitbang(mdp->mii_bus);
  1833. out_free_bitbang:
  1834. kfree(bitbang);
  1835. out:
  1836. return ret;
  1837. }
  1838. static const u16 *sh_eth_get_register_offset(int register_type)
  1839. {
  1840. const u16 *reg_offset = NULL;
  1841. switch (register_type) {
  1842. case SH_ETH_REG_GIGABIT:
  1843. reg_offset = sh_eth_offset_gigabit;
  1844. break;
  1845. case SH_ETH_REG_FAST_SH4:
  1846. reg_offset = sh_eth_offset_fast_sh4;
  1847. break;
  1848. case SH_ETH_REG_FAST_SH3_SH2:
  1849. reg_offset = sh_eth_offset_fast_sh3_sh2;
  1850. break;
  1851. default:
  1852. printk(KERN_ERR "Unknown register type (%d)\n", register_type);
  1853. break;
  1854. }
  1855. return reg_offset;
  1856. }
  1857. static const struct net_device_ops sh_eth_netdev_ops = {
  1858. .ndo_open = sh_eth_open,
  1859. .ndo_stop = sh_eth_close,
  1860. .ndo_start_xmit = sh_eth_start_xmit,
  1861. .ndo_get_stats = sh_eth_get_stats,
  1862. #if defined(SH_ETH_HAS_TSU)
  1863. .ndo_set_rx_mode = sh_eth_set_multicast_list,
  1864. .ndo_vlan_rx_add_vid = sh_eth_vlan_rx_add_vid,
  1865. .ndo_vlan_rx_kill_vid = sh_eth_vlan_rx_kill_vid,
  1866. #endif
  1867. .ndo_tx_timeout = sh_eth_tx_timeout,
  1868. .ndo_do_ioctl = sh_eth_do_ioctl,
  1869. .ndo_validate_addr = eth_validate_addr,
  1870. .ndo_set_mac_address = eth_mac_addr,
  1871. .ndo_change_mtu = eth_change_mtu,
  1872. };
  1873. static int sh_eth_drv_probe(struct platform_device *pdev)
  1874. {
  1875. int ret, devno = 0;
  1876. struct resource *res;
  1877. struct net_device *ndev = NULL;
  1878. struct sh_eth_private *mdp = NULL;
  1879. struct sh_eth_plat_data *pd;
  1880. /* get base addr */
  1881. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1882. if (unlikely(res == NULL)) {
  1883. dev_err(&pdev->dev, "invalid resource\n");
  1884. ret = -EINVAL;
  1885. goto out;
  1886. }
  1887. ndev = alloc_etherdev(sizeof(struct sh_eth_private));
  1888. if (!ndev) {
  1889. ret = -ENOMEM;
  1890. goto out;
  1891. }
  1892. /* The sh Ether-specific entries in the device structure. */
  1893. ndev->base_addr = res->start;
  1894. devno = pdev->id;
  1895. if (devno < 0)
  1896. devno = 0;
  1897. ndev->dma = -1;
  1898. ret = platform_get_irq(pdev, 0);
  1899. if (ret < 0) {
  1900. ret = -ENODEV;
  1901. goto out_release;
  1902. }
  1903. ndev->irq = ret;
  1904. SET_NETDEV_DEV(ndev, &pdev->dev);
  1905. /* Fill in the fields of the device structure with ethernet values. */
  1906. ether_setup(ndev);
  1907. mdp = netdev_priv(ndev);
  1908. mdp->addr = ioremap(res->start, resource_size(res));
  1909. if (mdp->addr == NULL) {
  1910. ret = -ENOMEM;
  1911. dev_err(&pdev->dev, "ioremap failed.\n");
  1912. goto out_release;
  1913. }
  1914. spin_lock_init(&mdp->lock);
  1915. mdp->pdev = pdev;
  1916. pm_runtime_enable(&pdev->dev);
  1917. pm_runtime_resume(&pdev->dev);
  1918. pd = (struct sh_eth_plat_data *)(pdev->dev.platform_data);
  1919. /* get PHY ID */
  1920. mdp->phy_id = pd->phy;
  1921. mdp->phy_interface = pd->phy_interface;
  1922. /* EDMAC endian */
  1923. mdp->edmac_endian = pd->edmac_endian;
  1924. mdp->no_ether_link = pd->no_ether_link;
  1925. mdp->ether_link_active_low = pd->ether_link_active_low;
  1926. mdp->reg_offset = sh_eth_get_register_offset(pd->register_type);
  1927. /* set cpu data */
  1928. #if defined(SH_ETH_HAS_BOTH_MODULES)
  1929. mdp->cd = sh_eth_get_cpu_data(mdp);
  1930. #else
  1931. mdp->cd = &sh_eth_my_cpu_data;
  1932. #endif
  1933. sh_eth_set_default_cpu_data(mdp->cd);
  1934. /* set function */
  1935. ndev->netdev_ops = &sh_eth_netdev_ops;
  1936. SET_ETHTOOL_OPS(ndev, &sh_eth_ethtool_ops);
  1937. ndev->watchdog_timeo = TX_TIMEOUT;
  1938. /* debug message level */
  1939. mdp->msg_enable = SH_ETH_DEF_MSG_ENABLE;
  1940. mdp->post_rx = POST_RX >> (devno << 1);
  1941. mdp->post_fw = POST_FW >> (devno << 1);
  1942. /* read and set MAC address */
  1943. read_mac_address(ndev, pd->mac_addr);
  1944. /* ioremap the TSU registers */
  1945. if (mdp->cd->tsu) {
  1946. struct resource *rtsu;
  1947. rtsu = platform_get_resource(pdev, IORESOURCE_MEM, 1);
  1948. if (!rtsu) {
  1949. dev_err(&pdev->dev, "Not found TSU resource\n");
  1950. goto out_release;
  1951. }
  1952. mdp->tsu_addr = ioremap(rtsu->start,
  1953. resource_size(rtsu));
  1954. mdp->port = devno % 2;
  1955. ndev->features = NETIF_F_HW_VLAN_FILTER;
  1956. }
  1957. /* initialize first or needed device */
  1958. if (!devno || pd->needs_init) {
  1959. if (mdp->cd->chip_reset)
  1960. mdp->cd->chip_reset(ndev);
  1961. if (mdp->cd->tsu) {
  1962. /* TSU init (Init only)*/
  1963. sh_eth_tsu_init(mdp);
  1964. }
  1965. }
  1966. /* network device register */
  1967. ret = register_netdev(ndev);
  1968. if (ret)
  1969. goto out_release;
  1970. /* mdio bus init */
  1971. ret = sh_mdio_init(ndev, pdev->id, pd);
  1972. if (ret)
  1973. goto out_unregister;
  1974. /* print device information */
  1975. pr_info("Base address at 0x%x, %pM, IRQ %d.\n",
  1976. (u32)ndev->base_addr, ndev->dev_addr, ndev->irq);
  1977. platform_set_drvdata(pdev, ndev);
  1978. return ret;
  1979. out_unregister:
  1980. unregister_netdev(ndev);
  1981. out_release:
  1982. /* net_dev free */
  1983. if (mdp && mdp->addr)
  1984. iounmap(mdp->addr);
  1985. if (mdp && mdp->tsu_addr)
  1986. iounmap(mdp->tsu_addr);
  1987. if (ndev)
  1988. free_netdev(ndev);
  1989. out:
  1990. return ret;
  1991. }
  1992. static int sh_eth_drv_remove(struct platform_device *pdev)
  1993. {
  1994. struct net_device *ndev = platform_get_drvdata(pdev);
  1995. struct sh_eth_private *mdp = netdev_priv(ndev);
  1996. if (mdp->cd->tsu)
  1997. iounmap(mdp->tsu_addr);
  1998. sh_mdio_release(ndev);
  1999. unregister_netdev(ndev);
  2000. pm_runtime_disable(&pdev->dev);
  2001. iounmap(mdp->addr);
  2002. free_netdev(ndev);
  2003. platform_set_drvdata(pdev, NULL);
  2004. return 0;
  2005. }
  2006. static int sh_eth_runtime_nop(struct device *dev)
  2007. {
  2008. /*
  2009. * Runtime PM callback shared between ->runtime_suspend()
  2010. * and ->runtime_resume(). Simply returns success.
  2011. *
  2012. * This driver re-initializes all registers after
  2013. * pm_runtime_get_sync() anyway so there is no need
  2014. * to save and restore registers here.
  2015. */
  2016. return 0;
  2017. }
  2018. static struct dev_pm_ops sh_eth_dev_pm_ops = {
  2019. .runtime_suspend = sh_eth_runtime_nop,
  2020. .runtime_resume = sh_eth_runtime_nop,
  2021. };
  2022. static struct platform_driver sh_eth_driver = {
  2023. .probe = sh_eth_drv_probe,
  2024. .remove = sh_eth_drv_remove,
  2025. .driver = {
  2026. .name = CARDNAME,
  2027. .pm = &sh_eth_dev_pm_ops,
  2028. },
  2029. };
  2030. module_platform_driver(sh_eth_driver);
  2031. MODULE_AUTHOR("Nobuhiro Iwamatsu, Yoshihiro Shimoda");
  2032. MODULE_DESCRIPTION("Renesas SuperH Ethernet driver");
  2033. MODULE_LICENSE("GPL v2");