en_tx.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754
  1. /*
  2. * Copyright (c) 2007 Mellanox Technologies. All rights reserved.
  3. *
  4. * This software is available to you under a choice of one of two
  5. * licenses. You may choose to be licensed under the terms of the GNU
  6. * General Public License (GPL) Version 2, available from the file
  7. * COPYING in the main directory of this source tree, or the
  8. * OpenIB.org BSD license below:
  9. *
  10. * Redistribution and use in source and binary forms, with or
  11. * without modification, are permitted provided that the following
  12. * conditions are met:
  13. *
  14. * - Redistributions of source code must retain the above
  15. * copyright notice, this list of conditions and the following
  16. * disclaimer.
  17. *
  18. * - Redistributions in binary form must reproduce the above
  19. * copyright notice, this list of conditions and the following
  20. * disclaimer in the documentation and/or other materials
  21. * provided with the distribution.
  22. *
  23. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  24. * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  25. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  26. * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  27. * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  28. * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  29. * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  30. * SOFTWARE.
  31. *
  32. */
  33. #include <asm/page.h>
  34. #include <linux/mlx4/cq.h>
  35. #include <linux/slab.h>
  36. #include <linux/mlx4/qp.h>
  37. #include <linux/skbuff.h>
  38. #include <linux/if_vlan.h>
  39. #include <linux/vmalloc.h>
  40. #include <linux/tcp.h>
  41. #include <linux/moduleparam.h>
  42. #include "mlx4_en.h"
  43. enum {
  44. MAX_INLINE = 104, /* 128 - 16 - 4 - 4 */
  45. MAX_BF = 256,
  46. };
  47. static int inline_thold __read_mostly = MAX_INLINE;
  48. module_param_named(inline_thold, inline_thold, int, 0444);
  49. MODULE_PARM_DESC(inline_thold, "threshold for using inline data");
  50. int mlx4_en_create_tx_ring(struct mlx4_en_priv *priv,
  51. struct mlx4_en_tx_ring *ring, int qpn, u32 size,
  52. u16 stride)
  53. {
  54. struct mlx4_en_dev *mdev = priv->mdev;
  55. int tmp;
  56. int err;
  57. ring->size = size;
  58. ring->size_mask = size - 1;
  59. ring->stride = stride;
  60. inline_thold = min(inline_thold, MAX_INLINE);
  61. tmp = size * sizeof(struct mlx4_en_tx_info);
  62. ring->tx_info = vmalloc(tmp);
  63. if (!ring->tx_info)
  64. return -ENOMEM;
  65. en_dbg(DRV, priv, "Allocated tx_info ring at addr:%p size:%d\n",
  66. ring->tx_info, tmp);
  67. ring->bounce_buf = kmalloc(MAX_DESC_SIZE, GFP_KERNEL);
  68. if (!ring->bounce_buf) {
  69. err = -ENOMEM;
  70. goto err_tx;
  71. }
  72. ring->buf_size = ALIGN(size * ring->stride, MLX4_EN_PAGE_SIZE);
  73. err = mlx4_alloc_hwq_res(mdev->dev, &ring->wqres, ring->buf_size,
  74. 2 * PAGE_SIZE);
  75. if (err) {
  76. en_err(priv, "Failed allocating hwq resources\n");
  77. goto err_bounce;
  78. }
  79. err = mlx4_en_map_buffer(&ring->wqres.buf);
  80. if (err) {
  81. en_err(priv, "Failed to map TX buffer\n");
  82. goto err_hwq_res;
  83. }
  84. ring->buf = ring->wqres.buf.direct.buf;
  85. en_dbg(DRV, priv, "Allocated TX ring (addr:%p) - buf:%p size:%d "
  86. "buf_size:%d dma:%llx\n", ring, ring->buf, ring->size,
  87. ring->buf_size, (unsigned long long) ring->wqres.buf.direct.map);
  88. ring->qpn = qpn;
  89. err = mlx4_qp_alloc(mdev->dev, ring->qpn, &ring->qp);
  90. if (err) {
  91. en_err(priv, "Failed allocating qp %d\n", ring->qpn);
  92. goto err_map;
  93. }
  94. ring->qp.event = mlx4_en_sqp_event;
  95. err = mlx4_bf_alloc(mdev->dev, &ring->bf);
  96. if (err) {
  97. en_dbg(DRV, priv, "working without blueflame (%d)", err);
  98. ring->bf.uar = &mdev->priv_uar;
  99. ring->bf.uar->map = mdev->uar_map;
  100. ring->bf_enabled = false;
  101. } else
  102. ring->bf_enabled = true;
  103. return 0;
  104. err_map:
  105. mlx4_en_unmap_buffer(&ring->wqres.buf);
  106. err_hwq_res:
  107. mlx4_free_hwq_res(mdev->dev, &ring->wqres, ring->buf_size);
  108. err_bounce:
  109. kfree(ring->bounce_buf);
  110. ring->bounce_buf = NULL;
  111. err_tx:
  112. vfree(ring->tx_info);
  113. ring->tx_info = NULL;
  114. return err;
  115. }
  116. void mlx4_en_destroy_tx_ring(struct mlx4_en_priv *priv,
  117. struct mlx4_en_tx_ring *ring)
  118. {
  119. struct mlx4_en_dev *mdev = priv->mdev;
  120. en_dbg(DRV, priv, "Destroying tx ring, qpn: %d\n", ring->qpn);
  121. if (ring->bf_enabled)
  122. mlx4_bf_free(mdev->dev, &ring->bf);
  123. mlx4_qp_remove(mdev->dev, &ring->qp);
  124. mlx4_qp_free(mdev->dev, &ring->qp);
  125. mlx4_qp_release_range(mdev->dev, ring->qpn, 1);
  126. mlx4_en_unmap_buffer(&ring->wqres.buf);
  127. mlx4_free_hwq_res(mdev->dev, &ring->wqres, ring->buf_size);
  128. kfree(ring->bounce_buf);
  129. ring->bounce_buf = NULL;
  130. vfree(ring->tx_info);
  131. ring->tx_info = NULL;
  132. }
  133. int mlx4_en_activate_tx_ring(struct mlx4_en_priv *priv,
  134. struct mlx4_en_tx_ring *ring,
  135. int cq, int user_prio)
  136. {
  137. struct mlx4_en_dev *mdev = priv->mdev;
  138. int err;
  139. ring->cqn = cq;
  140. ring->prod = 0;
  141. ring->cons = 0xffffffff;
  142. ring->last_nr_txbb = 1;
  143. ring->poll_cnt = 0;
  144. ring->blocked = 0;
  145. memset(ring->tx_info, 0, ring->size * sizeof(struct mlx4_en_tx_info));
  146. memset(ring->buf, 0, ring->buf_size);
  147. ring->qp_state = MLX4_QP_STATE_RST;
  148. ring->doorbell_qpn = ring->qp.qpn << 8;
  149. mlx4_en_fill_qp_context(priv, ring->size, ring->stride, 1, 0, ring->qpn,
  150. ring->cqn, user_prio, &ring->context);
  151. if (ring->bf_enabled)
  152. ring->context.usr_page = cpu_to_be32(ring->bf.uar->index);
  153. err = mlx4_qp_to_ready(mdev->dev, &ring->wqres.mtt, &ring->context,
  154. &ring->qp, &ring->qp_state);
  155. return err;
  156. }
  157. void mlx4_en_deactivate_tx_ring(struct mlx4_en_priv *priv,
  158. struct mlx4_en_tx_ring *ring)
  159. {
  160. struct mlx4_en_dev *mdev = priv->mdev;
  161. mlx4_qp_modify(mdev->dev, NULL, ring->qp_state,
  162. MLX4_QP_STATE_RST, NULL, 0, 0, &ring->qp);
  163. }
  164. static u32 mlx4_en_free_tx_desc(struct mlx4_en_priv *priv,
  165. struct mlx4_en_tx_ring *ring,
  166. int index, u8 owner)
  167. {
  168. struct mlx4_en_tx_info *tx_info = &ring->tx_info[index];
  169. struct mlx4_en_tx_desc *tx_desc = ring->buf + index * TXBB_SIZE;
  170. struct mlx4_wqe_data_seg *data = (void *) tx_desc + tx_info->data_offset;
  171. struct sk_buff *skb = tx_info->skb;
  172. struct skb_frag_struct *frag;
  173. void *end = ring->buf + ring->buf_size;
  174. int frags = skb_shinfo(skb)->nr_frags;
  175. int i;
  176. __be32 *ptr = (__be32 *)tx_desc;
  177. __be32 stamp = cpu_to_be32(STAMP_VAL | (!!owner << STAMP_SHIFT));
  178. /* Optimize the common case when there are no wraparounds */
  179. if (likely((void *) tx_desc + tx_info->nr_txbb * TXBB_SIZE <= end)) {
  180. if (!tx_info->inl) {
  181. if (tx_info->linear) {
  182. dma_unmap_single(priv->ddev,
  183. (dma_addr_t) be64_to_cpu(data->addr),
  184. be32_to_cpu(data->byte_count),
  185. PCI_DMA_TODEVICE);
  186. ++data;
  187. }
  188. for (i = 0; i < frags; i++) {
  189. frag = &skb_shinfo(skb)->frags[i];
  190. dma_unmap_page(priv->ddev,
  191. (dma_addr_t) be64_to_cpu(data[i].addr),
  192. skb_frag_size(frag), PCI_DMA_TODEVICE);
  193. }
  194. }
  195. /* Stamp the freed descriptor */
  196. for (i = 0; i < tx_info->nr_txbb * TXBB_SIZE; i += STAMP_STRIDE) {
  197. *ptr = stamp;
  198. ptr += STAMP_DWORDS;
  199. }
  200. } else {
  201. if (!tx_info->inl) {
  202. if ((void *) data >= end) {
  203. data = ring->buf + ((void *)data - end);
  204. }
  205. if (tx_info->linear) {
  206. dma_unmap_single(priv->ddev,
  207. (dma_addr_t) be64_to_cpu(data->addr),
  208. be32_to_cpu(data->byte_count),
  209. PCI_DMA_TODEVICE);
  210. ++data;
  211. }
  212. for (i = 0; i < frags; i++) {
  213. /* Check for wraparound before unmapping */
  214. if ((void *) data >= end)
  215. data = ring->buf;
  216. frag = &skb_shinfo(skb)->frags[i];
  217. dma_unmap_page(priv->ddev,
  218. (dma_addr_t) be64_to_cpu(data->addr),
  219. skb_frag_size(frag), PCI_DMA_TODEVICE);
  220. ++data;
  221. }
  222. }
  223. /* Stamp the freed descriptor */
  224. for (i = 0; i < tx_info->nr_txbb * TXBB_SIZE; i += STAMP_STRIDE) {
  225. *ptr = stamp;
  226. ptr += STAMP_DWORDS;
  227. if ((void *) ptr >= end) {
  228. ptr = ring->buf;
  229. stamp ^= cpu_to_be32(0x80000000);
  230. }
  231. }
  232. }
  233. dev_kfree_skb_any(skb);
  234. return tx_info->nr_txbb;
  235. }
  236. int mlx4_en_free_tx_buf(struct net_device *dev, struct mlx4_en_tx_ring *ring)
  237. {
  238. struct mlx4_en_priv *priv = netdev_priv(dev);
  239. int cnt = 0;
  240. /* Skip last polled descriptor */
  241. ring->cons += ring->last_nr_txbb;
  242. en_dbg(DRV, priv, "Freeing Tx buf - cons:0x%x prod:0x%x\n",
  243. ring->cons, ring->prod);
  244. if ((u32) (ring->prod - ring->cons) > ring->size) {
  245. if (netif_msg_tx_err(priv))
  246. en_warn(priv, "Tx consumer passed producer!\n");
  247. return 0;
  248. }
  249. while (ring->cons != ring->prod) {
  250. ring->last_nr_txbb = mlx4_en_free_tx_desc(priv, ring,
  251. ring->cons & ring->size_mask,
  252. !!(ring->cons & ring->size));
  253. ring->cons += ring->last_nr_txbb;
  254. cnt++;
  255. }
  256. if (cnt)
  257. en_dbg(DRV, priv, "Freed %d uncompleted tx descriptors\n", cnt);
  258. return cnt;
  259. }
  260. static void mlx4_en_process_tx_cq(struct net_device *dev, struct mlx4_en_cq *cq)
  261. {
  262. struct mlx4_en_priv *priv = netdev_priv(dev);
  263. struct mlx4_cq *mcq = &cq->mcq;
  264. struct mlx4_en_tx_ring *ring = &priv->tx_ring[cq->ring];
  265. struct mlx4_cqe *cqe;
  266. u16 index;
  267. u16 new_index, ring_index;
  268. u32 txbbs_skipped = 0;
  269. u32 cons_index = mcq->cons_index;
  270. int size = cq->size;
  271. u32 size_mask = ring->size_mask;
  272. struct mlx4_cqe *buf = cq->buf;
  273. u32 packets = 0;
  274. u32 bytes = 0;
  275. if (!priv->port_up)
  276. return;
  277. index = cons_index & size_mask;
  278. cqe = &buf[index];
  279. ring_index = ring->cons & size_mask;
  280. /* Process all completed CQEs */
  281. while (XNOR(cqe->owner_sr_opcode & MLX4_CQE_OWNER_MASK,
  282. cons_index & size)) {
  283. /*
  284. * make sure we read the CQE after we read the
  285. * ownership bit
  286. */
  287. rmb();
  288. /* Skip over last polled CQE */
  289. new_index = be16_to_cpu(cqe->wqe_index) & size_mask;
  290. do {
  291. txbbs_skipped += ring->last_nr_txbb;
  292. ring_index = (ring_index + ring->last_nr_txbb) & size_mask;
  293. /* free next descriptor */
  294. ring->last_nr_txbb = mlx4_en_free_tx_desc(
  295. priv, ring, ring_index,
  296. !!((ring->cons + txbbs_skipped) &
  297. ring->size));
  298. packets++;
  299. bytes += ring->tx_info[ring_index].nr_bytes;
  300. } while (ring_index != new_index);
  301. ++cons_index;
  302. index = cons_index & size_mask;
  303. cqe = &buf[index];
  304. }
  305. /*
  306. * To prevent CQ overflow we first update CQ consumer and only then
  307. * the ring consumer.
  308. */
  309. mcq->cons_index = cons_index;
  310. mlx4_cq_set_ci(mcq);
  311. wmb();
  312. ring->cons += txbbs_skipped;
  313. netdev_tx_completed_queue(ring->tx_queue, packets, bytes);
  314. /* Wakeup Tx queue if this ring stopped it */
  315. if (unlikely(ring->blocked)) {
  316. if ((u32) (ring->prod - ring->cons) <=
  317. ring->size - HEADROOM - MAX_DESC_TXBBS) {
  318. ring->blocked = 0;
  319. netif_tx_wake_queue(ring->tx_queue);
  320. priv->port_stats.wake_queue++;
  321. }
  322. }
  323. }
  324. void mlx4_en_tx_irq(struct mlx4_cq *mcq)
  325. {
  326. struct mlx4_en_cq *cq = container_of(mcq, struct mlx4_en_cq, mcq);
  327. struct mlx4_en_priv *priv = netdev_priv(cq->dev);
  328. mlx4_en_process_tx_cq(cq->dev, cq);
  329. mlx4_en_arm_cq(priv, cq);
  330. }
  331. static struct mlx4_en_tx_desc *mlx4_en_bounce_to_desc(struct mlx4_en_priv *priv,
  332. struct mlx4_en_tx_ring *ring,
  333. u32 index,
  334. unsigned int desc_size)
  335. {
  336. u32 copy = (ring->size - index) * TXBB_SIZE;
  337. int i;
  338. for (i = desc_size - copy - 4; i >= 0; i -= 4) {
  339. if ((i & (TXBB_SIZE - 1)) == 0)
  340. wmb();
  341. *((u32 *) (ring->buf + i)) =
  342. *((u32 *) (ring->bounce_buf + copy + i));
  343. }
  344. for (i = copy - 4; i >= 4 ; i -= 4) {
  345. if ((i & (TXBB_SIZE - 1)) == 0)
  346. wmb();
  347. *((u32 *) (ring->buf + index * TXBB_SIZE + i)) =
  348. *((u32 *) (ring->bounce_buf + i));
  349. }
  350. /* Return real descriptor location */
  351. return ring->buf + index * TXBB_SIZE;
  352. }
  353. static int is_inline(struct sk_buff *skb, void **pfrag)
  354. {
  355. void *ptr;
  356. if (inline_thold && !skb_is_gso(skb) && skb->len <= inline_thold) {
  357. if (skb_shinfo(skb)->nr_frags == 1) {
  358. ptr = skb_frag_address_safe(&skb_shinfo(skb)->frags[0]);
  359. if (unlikely(!ptr))
  360. return 0;
  361. if (pfrag)
  362. *pfrag = ptr;
  363. return 1;
  364. } else if (unlikely(skb_shinfo(skb)->nr_frags))
  365. return 0;
  366. else
  367. return 1;
  368. }
  369. return 0;
  370. }
  371. static int inline_size(struct sk_buff *skb)
  372. {
  373. if (skb->len + CTRL_SIZE + sizeof(struct mlx4_wqe_inline_seg)
  374. <= MLX4_INLINE_ALIGN)
  375. return ALIGN(skb->len + CTRL_SIZE +
  376. sizeof(struct mlx4_wqe_inline_seg), 16);
  377. else
  378. return ALIGN(skb->len + CTRL_SIZE + 2 *
  379. sizeof(struct mlx4_wqe_inline_seg), 16);
  380. }
  381. static int get_real_size(struct sk_buff *skb, struct net_device *dev,
  382. int *lso_header_size)
  383. {
  384. struct mlx4_en_priv *priv = netdev_priv(dev);
  385. int real_size;
  386. if (skb_is_gso(skb)) {
  387. *lso_header_size = skb_transport_offset(skb) + tcp_hdrlen(skb);
  388. real_size = CTRL_SIZE + skb_shinfo(skb)->nr_frags * DS_SIZE +
  389. ALIGN(*lso_header_size + 4, DS_SIZE);
  390. if (unlikely(*lso_header_size != skb_headlen(skb))) {
  391. /* We add a segment for the skb linear buffer only if
  392. * it contains data */
  393. if (*lso_header_size < skb_headlen(skb))
  394. real_size += DS_SIZE;
  395. else {
  396. if (netif_msg_tx_err(priv))
  397. en_warn(priv, "Non-linear headers\n");
  398. return 0;
  399. }
  400. }
  401. } else {
  402. *lso_header_size = 0;
  403. if (!is_inline(skb, NULL))
  404. real_size = CTRL_SIZE + (skb_shinfo(skb)->nr_frags + 1) * DS_SIZE;
  405. else
  406. real_size = inline_size(skb);
  407. }
  408. return real_size;
  409. }
  410. static void build_inline_wqe(struct mlx4_en_tx_desc *tx_desc, struct sk_buff *skb,
  411. int real_size, u16 *vlan_tag, int tx_ind, void *fragptr)
  412. {
  413. struct mlx4_wqe_inline_seg *inl = &tx_desc->inl;
  414. int spc = MLX4_INLINE_ALIGN - CTRL_SIZE - sizeof *inl;
  415. if (skb->len <= spc) {
  416. inl->byte_count = cpu_to_be32(1 << 31 | skb->len);
  417. skb_copy_from_linear_data(skb, inl + 1, skb_headlen(skb));
  418. if (skb_shinfo(skb)->nr_frags)
  419. memcpy(((void *)(inl + 1)) + skb_headlen(skb), fragptr,
  420. skb_frag_size(&skb_shinfo(skb)->frags[0]));
  421. } else {
  422. inl->byte_count = cpu_to_be32(1 << 31 | spc);
  423. if (skb_headlen(skb) <= spc) {
  424. skb_copy_from_linear_data(skb, inl + 1, skb_headlen(skb));
  425. if (skb_headlen(skb) < spc) {
  426. memcpy(((void *)(inl + 1)) + skb_headlen(skb),
  427. fragptr, spc - skb_headlen(skb));
  428. fragptr += spc - skb_headlen(skb);
  429. }
  430. inl = (void *) (inl + 1) + spc;
  431. memcpy(((void *)(inl + 1)), fragptr, skb->len - spc);
  432. } else {
  433. skb_copy_from_linear_data(skb, inl + 1, spc);
  434. inl = (void *) (inl + 1) + spc;
  435. skb_copy_from_linear_data_offset(skb, spc, inl + 1,
  436. skb_headlen(skb) - spc);
  437. if (skb_shinfo(skb)->nr_frags)
  438. memcpy(((void *)(inl + 1)) + skb_headlen(skb) - spc,
  439. fragptr, skb_frag_size(&skb_shinfo(skb)->frags[0]));
  440. }
  441. wmb();
  442. inl->byte_count = cpu_to_be32(1 << 31 | (skb->len - spc));
  443. }
  444. tx_desc->ctrl.vlan_tag = cpu_to_be16(*vlan_tag);
  445. tx_desc->ctrl.ins_vlan = MLX4_WQE_CTRL_INS_VLAN *
  446. (!!vlan_tx_tag_present(skb));
  447. tx_desc->ctrl.fence_size = (real_size / 16) & 0x3f;
  448. }
  449. u16 mlx4_en_select_queue(struct net_device *dev, struct sk_buff *skb)
  450. {
  451. struct mlx4_en_priv *priv = netdev_priv(dev);
  452. u16 rings_p_up = priv->mdev->profile.num_tx_rings_p_up;
  453. u8 up = 0;
  454. if (dev->num_tc)
  455. return skb_tx_hash(dev, skb);
  456. if (vlan_tx_tag_present(skb))
  457. up = vlan_tx_tag_get(skb) >> VLAN_PRIO_SHIFT;
  458. return __skb_tx_hash(dev, skb, rings_p_up) + up * rings_p_up;
  459. }
  460. static void mlx4_bf_copy(void __iomem *dst, unsigned long *src, unsigned bytecnt)
  461. {
  462. __iowrite64_copy(dst, src, bytecnt / 8);
  463. }
  464. netdev_tx_t mlx4_en_xmit(struct sk_buff *skb, struct net_device *dev)
  465. {
  466. struct mlx4_en_priv *priv = netdev_priv(dev);
  467. struct mlx4_en_dev *mdev = priv->mdev;
  468. struct mlx4_en_tx_ring *ring;
  469. struct mlx4_en_tx_desc *tx_desc;
  470. struct mlx4_wqe_data_seg *data;
  471. struct skb_frag_struct *frag;
  472. struct mlx4_en_tx_info *tx_info;
  473. struct ethhdr *ethh;
  474. int tx_ind = 0;
  475. int nr_txbb;
  476. int desc_size;
  477. int real_size;
  478. dma_addr_t dma;
  479. u32 index, bf_index;
  480. __be32 op_own;
  481. u16 vlan_tag = 0;
  482. int i;
  483. int lso_header_size;
  484. void *fragptr;
  485. bool bounce = false;
  486. if (!priv->port_up)
  487. goto tx_drop;
  488. real_size = get_real_size(skb, dev, &lso_header_size);
  489. if (unlikely(!real_size))
  490. goto tx_drop;
  491. /* Align descriptor to TXBB size */
  492. desc_size = ALIGN(real_size, TXBB_SIZE);
  493. nr_txbb = desc_size / TXBB_SIZE;
  494. if (unlikely(nr_txbb > MAX_DESC_TXBBS)) {
  495. if (netif_msg_tx_err(priv))
  496. en_warn(priv, "Oversized header or SG list\n");
  497. goto tx_drop;
  498. }
  499. tx_ind = skb->queue_mapping;
  500. ring = &priv->tx_ring[tx_ind];
  501. if (vlan_tx_tag_present(skb))
  502. vlan_tag = vlan_tx_tag_get(skb);
  503. /* Check available TXBBs And 2K spare for prefetch */
  504. if (unlikely(((int)(ring->prod - ring->cons)) >
  505. ring->size - HEADROOM - MAX_DESC_TXBBS)) {
  506. /* every full Tx ring stops queue */
  507. netif_tx_stop_queue(ring->tx_queue);
  508. ring->blocked = 1;
  509. priv->port_stats.queue_stopped++;
  510. return NETDEV_TX_BUSY;
  511. }
  512. /* Track current inflight packets for performance analysis */
  513. AVG_PERF_COUNTER(priv->pstats.inflight_avg,
  514. (u32) (ring->prod - ring->cons - 1));
  515. /* Packet is good - grab an index and transmit it */
  516. index = ring->prod & ring->size_mask;
  517. bf_index = ring->prod;
  518. /* See if we have enough space for whole descriptor TXBB for setting
  519. * SW ownership on next descriptor; if not, use a bounce buffer. */
  520. if (likely(index + nr_txbb <= ring->size))
  521. tx_desc = ring->buf + index * TXBB_SIZE;
  522. else {
  523. tx_desc = (struct mlx4_en_tx_desc *) ring->bounce_buf;
  524. bounce = true;
  525. }
  526. /* Save skb in tx_info ring */
  527. tx_info = &ring->tx_info[index];
  528. tx_info->skb = skb;
  529. tx_info->nr_txbb = nr_txbb;
  530. /* Prepare ctrl segement apart opcode+ownership, which depends on
  531. * whether LSO is used */
  532. tx_desc->ctrl.vlan_tag = cpu_to_be16(vlan_tag);
  533. tx_desc->ctrl.ins_vlan = MLX4_WQE_CTRL_INS_VLAN *
  534. !!vlan_tx_tag_present(skb);
  535. tx_desc->ctrl.fence_size = (real_size / 16) & 0x3f;
  536. tx_desc->ctrl.srcrb_flags = priv->ctrl_flags;
  537. if (likely(skb->ip_summed == CHECKSUM_PARTIAL)) {
  538. tx_desc->ctrl.srcrb_flags |= cpu_to_be32(MLX4_WQE_CTRL_IP_CSUM |
  539. MLX4_WQE_CTRL_TCP_UDP_CSUM);
  540. ring->tx_csum++;
  541. }
  542. /* Copy dst mac address to wqe */
  543. ethh = (struct ethhdr *)skb->data;
  544. tx_desc->ctrl.srcrb_flags16[0] = get_unaligned((__be16 *)ethh->h_dest);
  545. tx_desc->ctrl.imm = get_unaligned((__be32 *)(ethh->h_dest + 2));
  546. /* Handle LSO (TSO) packets */
  547. if (lso_header_size) {
  548. /* Mark opcode as LSO */
  549. op_own = cpu_to_be32(MLX4_OPCODE_LSO | (1 << 6)) |
  550. ((ring->prod & ring->size) ?
  551. cpu_to_be32(MLX4_EN_BIT_DESC_OWN) : 0);
  552. /* Fill in the LSO prefix */
  553. tx_desc->lso.mss_hdr_size = cpu_to_be32(
  554. skb_shinfo(skb)->gso_size << 16 | lso_header_size);
  555. /* Copy headers;
  556. * note that we already verified that it is linear */
  557. memcpy(tx_desc->lso.header, skb->data, lso_header_size);
  558. data = ((void *) &tx_desc->lso +
  559. ALIGN(lso_header_size + 4, DS_SIZE));
  560. priv->port_stats.tso_packets++;
  561. i = ((skb->len - lso_header_size) / skb_shinfo(skb)->gso_size) +
  562. !!((skb->len - lso_header_size) % skb_shinfo(skb)->gso_size);
  563. tx_info->nr_bytes = skb->len + (i - 1) * lso_header_size;
  564. ring->packets += i;
  565. } else {
  566. /* Normal (Non LSO) packet */
  567. op_own = cpu_to_be32(MLX4_OPCODE_SEND) |
  568. ((ring->prod & ring->size) ?
  569. cpu_to_be32(MLX4_EN_BIT_DESC_OWN) : 0);
  570. data = &tx_desc->data;
  571. tx_info->nr_bytes = max_t(unsigned int, skb->len, ETH_ZLEN);
  572. ring->packets++;
  573. }
  574. ring->bytes += tx_info->nr_bytes;
  575. netdev_tx_sent_queue(ring->tx_queue, tx_info->nr_bytes);
  576. AVG_PERF_COUNTER(priv->pstats.tx_pktsz_avg, skb->len);
  577. /* valid only for none inline segments */
  578. tx_info->data_offset = (void *) data - (void *) tx_desc;
  579. tx_info->linear = (lso_header_size < skb_headlen(skb) && !is_inline(skb, NULL)) ? 1 : 0;
  580. data += skb_shinfo(skb)->nr_frags + tx_info->linear - 1;
  581. if (!is_inline(skb, &fragptr)) {
  582. /* Map fragments */
  583. for (i = skb_shinfo(skb)->nr_frags - 1; i >= 0; i--) {
  584. frag = &skb_shinfo(skb)->frags[i];
  585. dma = skb_frag_dma_map(priv->ddev, frag,
  586. 0, skb_frag_size(frag),
  587. DMA_TO_DEVICE);
  588. data->addr = cpu_to_be64(dma);
  589. data->lkey = cpu_to_be32(mdev->mr.key);
  590. wmb();
  591. data->byte_count = cpu_to_be32(skb_frag_size(frag));
  592. --data;
  593. }
  594. /* Map linear part */
  595. if (tx_info->linear) {
  596. dma = dma_map_single(priv->ddev, skb->data + lso_header_size,
  597. skb_headlen(skb) - lso_header_size, PCI_DMA_TODEVICE);
  598. data->addr = cpu_to_be64(dma);
  599. data->lkey = cpu_to_be32(mdev->mr.key);
  600. wmb();
  601. data->byte_count = cpu_to_be32(skb_headlen(skb) - lso_header_size);
  602. }
  603. tx_info->inl = 0;
  604. } else {
  605. build_inline_wqe(tx_desc, skb, real_size, &vlan_tag, tx_ind, fragptr);
  606. tx_info->inl = 1;
  607. }
  608. ring->prod += nr_txbb;
  609. /* If we used a bounce buffer then copy descriptor back into place */
  610. if (bounce)
  611. tx_desc = mlx4_en_bounce_to_desc(priv, ring, index, desc_size);
  612. /* Run destructor before passing skb to HW */
  613. if (likely(!skb_shared(skb)))
  614. skb_orphan(skb);
  615. if (ring->bf_enabled && desc_size <= MAX_BF && !bounce && !vlan_tag) {
  616. *(__be32 *) (&tx_desc->ctrl.vlan_tag) |= cpu_to_be32(ring->doorbell_qpn);
  617. op_own |= htonl((bf_index & 0xffff) << 8);
  618. /* Ensure new descirptor hits memory
  619. * before setting ownership of this descriptor to HW */
  620. wmb();
  621. tx_desc->ctrl.owner_opcode = op_own;
  622. wmb();
  623. mlx4_bf_copy(ring->bf.reg + ring->bf.offset, (unsigned long *) &tx_desc->ctrl,
  624. desc_size);
  625. wmb();
  626. ring->bf.offset ^= ring->bf.buf_size;
  627. } else {
  628. /* Ensure new descirptor hits memory
  629. * before setting ownership of this descriptor to HW */
  630. wmb();
  631. tx_desc->ctrl.owner_opcode = op_own;
  632. wmb();
  633. iowrite32be(ring->doorbell_qpn, ring->bf.uar->map + MLX4_SEND_DOORBELL);
  634. }
  635. return NETDEV_TX_OK;
  636. tx_drop:
  637. dev_kfree_skb_any(skb);
  638. priv->stats.tx_dropped++;
  639. return NETDEV_TX_OK;
  640. }