md.c 222 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614
  1. /*
  2. md.c : Multiple Devices driver for Linux
  3. Copyright (C) 1998, 1999, 2000 Ingo Molnar
  4. completely rewritten, based on the MD driver code from Marc Zyngier
  5. Changes:
  6. - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
  7. - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
  8. - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
  9. - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
  10. - kmod support by: Cyrus Durgin
  11. - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
  12. - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
  13. - lots of fixes and improvements to the RAID1/RAID5 and generic
  14. RAID code (such as request based resynchronization):
  15. Neil Brown <neilb@cse.unsw.edu.au>.
  16. - persistent bitmap code
  17. Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
  18. This program is free software; you can redistribute it and/or modify
  19. it under the terms of the GNU General Public License as published by
  20. the Free Software Foundation; either version 2, or (at your option)
  21. any later version.
  22. You should have received a copy of the GNU General Public License
  23. (for example /usr/src/linux/COPYING); if not, write to the Free
  24. Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  25. */
  26. #include <linux/kthread.h>
  27. #include <linux/blkdev.h>
  28. #include <linux/sysctl.h>
  29. #include <linux/seq_file.h>
  30. #include <linux/fs.h>
  31. #include <linux/poll.h>
  32. #include <linux/ctype.h>
  33. #include <linux/string.h>
  34. #include <linux/hdreg.h>
  35. #include <linux/proc_fs.h>
  36. #include <linux/random.h>
  37. #include <linux/module.h>
  38. #include <linux/reboot.h>
  39. #include <linux/file.h>
  40. #include <linux/compat.h>
  41. #include <linux/delay.h>
  42. #include <linux/raid/md_p.h>
  43. #include <linux/raid/md_u.h>
  44. #include <linux/slab.h>
  45. #include "md.h"
  46. #include "bitmap.h"
  47. #ifndef MODULE
  48. static void autostart_arrays(int part);
  49. #endif
  50. /* pers_list is a list of registered personalities protected
  51. * by pers_lock.
  52. * pers_lock does extra service to protect accesses to
  53. * mddev->thread when the mutex cannot be held.
  54. */
  55. static LIST_HEAD(pers_list);
  56. static DEFINE_SPINLOCK(pers_lock);
  57. static void md_print_devices(void);
  58. static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
  59. static struct workqueue_struct *md_wq;
  60. static struct workqueue_struct *md_misc_wq;
  61. #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
  62. /*
  63. * Default number of read corrections we'll attempt on an rdev
  64. * before ejecting it from the array. We divide the read error
  65. * count by 2 for every hour elapsed between read errors.
  66. */
  67. #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
  68. /*
  69. * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
  70. * is 1000 KB/sec, so the extra system load does not show up that much.
  71. * Increase it if you want to have more _guaranteed_ speed. Note that
  72. * the RAID driver will use the maximum available bandwidth if the IO
  73. * subsystem is idle. There is also an 'absolute maximum' reconstruction
  74. * speed limit - in case reconstruction slows down your system despite
  75. * idle IO detection.
  76. *
  77. * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
  78. * or /sys/block/mdX/md/sync_speed_{min,max}
  79. */
  80. static int sysctl_speed_limit_min = 1000;
  81. static int sysctl_speed_limit_max = 200000;
  82. static inline int speed_min(struct mddev *mddev)
  83. {
  84. return mddev->sync_speed_min ?
  85. mddev->sync_speed_min : sysctl_speed_limit_min;
  86. }
  87. static inline int speed_max(struct mddev *mddev)
  88. {
  89. return mddev->sync_speed_max ?
  90. mddev->sync_speed_max : sysctl_speed_limit_max;
  91. }
  92. static struct ctl_table_header *raid_table_header;
  93. static ctl_table raid_table[] = {
  94. {
  95. .procname = "speed_limit_min",
  96. .data = &sysctl_speed_limit_min,
  97. .maxlen = sizeof(int),
  98. .mode = S_IRUGO|S_IWUSR,
  99. .proc_handler = proc_dointvec,
  100. },
  101. {
  102. .procname = "speed_limit_max",
  103. .data = &sysctl_speed_limit_max,
  104. .maxlen = sizeof(int),
  105. .mode = S_IRUGO|S_IWUSR,
  106. .proc_handler = proc_dointvec,
  107. },
  108. { }
  109. };
  110. static ctl_table raid_dir_table[] = {
  111. {
  112. .procname = "raid",
  113. .maxlen = 0,
  114. .mode = S_IRUGO|S_IXUGO,
  115. .child = raid_table,
  116. },
  117. { }
  118. };
  119. static ctl_table raid_root_table[] = {
  120. {
  121. .procname = "dev",
  122. .maxlen = 0,
  123. .mode = 0555,
  124. .child = raid_dir_table,
  125. },
  126. { }
  127. };
  128. static const struct block_device_operations md_fops;
  129. static int start_readonly;
  130. /* bio_clone_mddev
  131. * like bio_clone, but with a local bio set
  132. */
  133. static void mddev_bio_destructor(struct bio *bio)
  134. {
  135. struct mddev *mddev, **mddevp;
  136. mddevp = (void*)bio;
  137. mddev = mddevp[-1];
  138. bio_free(bio, mddev->bio_set);
  139. }
  140. struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
  141. struct mddev *mddev)
  142. {
  143. struct bio *b;
  144. struct mddev **mddevp;
  145. if (!mddev || !mddev->bio_set)
  146. return bio_alloc(gfp_mask, nr_iovecs);
  147. b = bio_alloc_bioset(gfp_mask, nr_iovecs,
  148. mddev->bio_set);
  149. if (!b)
  150. return NULL;
  151. mddevp = (void*)b;
  152. mddevp[-1] = mddev;
  153. b->bi_destructor = mddev_bio_destructor;
  154. return b;
  155. }
  156. EXPORT_SYMBOL_GPL(bio_alloc_mddev);
  157. struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
  158. struct mddev *mddev)
  159. {
  160. struct bio *b;
  161. struct mddev **mddevp;
  162. if (!mddev || !mddev->bio_set)
  163. return bio_clone(bio, gfp_mask);
  164. b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs,
  165. mddev->bio_set);
  166. if (!b)
  167. return NULL;
  168. mddevp = (void*)b;
  169. mddevp[-1] = mddev;
  170. b->bi_destructor = mddev_bio_destructor;
  171. __bio_clone(b, bio);
  172. if (bio_integrity(bio)) {
  173. int ret;
  174. ret = bio_integrity_clone(b, bio, gfp_mask, mddev->bio_set);
  175. if (ret < 0) {
  176. bio_put(b);
  177. return NULL;
  178. }
  179. }
  180. return b;
  181. }
  182. EXPORT_SYMBOL_GPL(bio_clone_mddev);
  183. void md_trim_bio(struct bio *bio, int offset, int size)
  184. {
  185. /* 'bio' is a cloned bio which we need to trim to match
  186. * the given offset and size.
  187. * This requires adjusting bi_sector, bi_size, and bi_io_vec
  188. */
  189. int i;
  190. struct bio_vec *bvec;
  191. int sofar = 0;
  192. size <<= 9;
  193. if (offset == 0 && size == bio->bi_size)
  194. return;
  195. bio->bi_sector += offset;
  196. bio->bi_size = size;
  197. offset <<= 9;
  198. clear_bit(BIO_SEG_VALID, &bio->bi_flags);
  199. while (bio->bi_idx < bio->bi_vcnt &&
  200. bio->bi_io_vec[bio->bi_idx].bv_len <= offset) {
  201. /* remove this whole bio_vec */
  202. offset -= bio->bi_io_vec[bio->bi_idx].bv_len;
  203. bio->bi_idx++;
  204. }
  205. if (bio->bi_idx < bio->bi_vcnt) {
  206. bio->bi_io_vec[bio->bi_idx].bv_offset += offset;
  207. bio->bi_io_vec[bio->bi_idx].bv_len -= offset;
  208. }
  209. /* avoid any complications with bi_idx being non-zero*/
  210. if (bio->bi_idx) {
  211. memmove(bio->bi_io_vec, bio->bi_io_vec+bio->bi_idx,
  212. (bio->bi_vcnt - bio->bi_idx) * sizeof(struct bio_vec));
  213. bio->bi_vcnt -= bio->bi_idx;
  214. bio->bi_idx = 0;
  215. }
  216. /* Make sure vcnt and last bv are not too big */
  217. bio_for_each_segment(bvec, bio, i) {
  218. if (sofar + bvec->bv_len > size)
  219. bvec->bv_len = size - sofar;
  220. if (bvec->bv_len == 0) {
  221. bio->bi_vcnt = i;
  222. break;
  223. }
  224. sofar += bvec->bv_len;
  225. }
  226. }
  227. EXPORT_SYMBOL_GPL(md_trim_bio);
  228. /*
  229. * We have a system wide 'event count' that is incremented
  230. * on any 'interesting' event, and readers of /proc/mdstat
  231. * can use 'poll' or 'select' to find out when the event
  232. * count increases.
  233. *
  234. * Events are:
  235. * start array, stop array, error, add device, remove device,
  236. * start build, activate spare
  237. */
  238. static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
  239. static atomic_t md_event_count;
  240. void md_new_event(struct mddev *mddev)
  241. {
  242. atomic_inc(&md_event_count);
  243. wake_up(&md_event_waiters);
  244. }
  245. EXPORT_SYMBOL_GPL(md_new_event);
  246. /* Alternate version that can be called from interrupts
  247. * when calling sysfs_notify isn't needed.
  248. */
  249. static void md_new_event_inintr(struct mddev *mddev)
  250. {
  251. atomic_inc(&md_event_count);
  252. wake_up(&md_event_waiters);
  253. }
  254. /*
  255. * Enables to iterate over all existing md arrays
  256. * all_mddevs_lock protects this list.
  257. */
  258. static LIST_HEAD(all_mddevs);
  259. static DEFINE_SPINLOCK(all_mddevs_lock);
  260. /*
  261. * iterates through all used mddevs in the system.
  262. * We take care to grab the all_mddevs_lock whenever navigating
  263. * the list, and to always hold a refcount when unlocked.
  264. * Any code which breaks out of this loop while own
  265. * a reference to the current mddev and must mddev_put it.
  266. */
  267. #define for_each_mddev(_mddev,_tmp) \
  268. \
  269. for (({ spin_lock(&all_mddevs_lock); \
  270. _tmp = all_mddevs.next; \
  271. _mddev = NULL;}); \
  272. ({ if (_tmp != &all_mddevs) \
  273. mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
  274. spin_unlock(&all_mddevs_lock); \
  275. if (_mddev) mddev_put(_mddev); \
  276. _mddev = list_entry(_tmp, struct mddev, all_mddevs); \
  277. _tmp != &all_mddevs;}); \
  278. ({ spin_lock(&all_mddevs_lock); \
  279. _tmp = _tmp->next;}) \
  280. )
  281. /* Rather than calling directly into the personality make_request function,
  282. * IO requests come here first so that we can check if the device is
  283. * being suspended pending a reconfiguration.
  284. * We hold a refcount over the call to ->make_request. By the time that
  285. * call has finished, the bio has been linked into some internal structure
  286. * and so is visible to ->quiesce(), so we don't need the refcount any more.
  287. */
  288. static void md_make_request(struct request_queue *q, struct bio *bio)
  289. {
  290. const int rw = bio_data_dir(bio);
  291. struct mddev *mddev = q->queuedata;
  292. int cpu;
  293. unsigned int sectors;
  294. if (mddev == NULL || mddev->pers == NULL
  295. || !mddev->ready) {
  296. bio_io_error(bio);
  297. return;
  298. }
  299. smp_rmb(); /* Ensure implications of 'active' are visible */
  300. rcu_read_lock();
  301. if (mddev->suspended) {
  302. DEFINE_WAIT(__wait);
  303. for (;;) {
  304. prepare_to_wait(&mddev->sb_wait, &__wait,
  305. TASK_UNINTERRUPTIBLE);
  306. if (!mddev->suspended)
  307. break;
  308. rcu_read_unlock();
  309. schedule();
  310. rcu_read_lock();
  311. }
  312. finish_wait(&mddev->sb_wait, &__wait);
  313. }
  314. atomic_inc(&mddev->active_io);
  315. rcu_read_unlock();
  316. /*
  317. * save the sectors now since our bio can
  318. * go away inside make_request
  319. */
  320. sectors = bio_sectors(bio);
  321. mddev->pers->make_request(mddev, bio);
  322. cpu = part_stat_lock();
  323. part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
  324. part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
  325. part_stat_unlock();
  326. if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
  327. wake_up(&mddev->sb_wait);
  328. }
  329. /* mddev_suspend makes sure no new requests are submitted
  330. * to the device, and that any requests that have been submitted
  331. * are completely handled.
  332. * Once ->stop is called and completes, the module will be completely
  333. * unused.
  334. */
  335. void mddev_suspend(struct mddev *mddev)
  336. {
  337. BUG_ON(mddev->suspended);
  338. mddev->suspended = 1;
  339. synchronize_rcu();
  340. wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
  341. mddev->pers->quiesce(mddev, 1);
  342. del_timer_sync(&mddev->safemode_timer);
  343. }
  344. EXPORT_SYMBOL_GPL(mddev_suspend);
  345. void mddev_resume(struct mddev *mddev)
  346. {
  347. mddev->suspended = 0;
  348. wake_up(&mddev->sb_wait);
  349. mddev->pers->quiesce(mddev, 0);
  350. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  351. md_wakeup_thread(mddev->thread);
  352. md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
  353. }
  354. EXPORT_SYMBOL_GPL(mddev_resume);
  355. int mddev_congested(struct mddev *mddev, int bits)
  356. {
  357. return mddev->suspended;
  358. }
  359. EXPORT_SYMBOL(mddev_congested);
  360. /*
  361. * Generic flush handling for md
  362. */
  363. static void md_end_flush(struct bio *bio, int err)
  364. {
  365. struct md_rdev *rdev = bio->bi_private;
  366. struct mddev *mddev = rdev->mddev;
  367. rdev_dec_pending(rdev, mddev);
  368. if (atomic_dec_and_test(&mddev->flush_pending)) {
  369. /* The pre-request flush has finished */
  370. queue_work(md_wq, &mddev->flush_work);
  371. }
  372. bio_put(bio);
  373. }
  374. static void md_submit_flush_data(struct work_struct *ws);
  375. static void submit_flushes(struct work_struct *ws)
  376. {
  377. struct mddev *mddev = container_of(ws, struct mddev, flush_work);
  378. struct md_rdev *rdev;
  379. INIT_WORK(&mddev->flush_work, md_submit_flush_data);
  380. atomic_set(&mddev->flush_pending, 1);
  381. rcu_read_lock();
  382. rdev_for_each_rcu(rdev, mddev)
  383. if (rdev->raid_disk >= 0 &&
  384. !test_bit(Faulty, &rdev->flags)) {
  385. /* Take two references, one is dropped
  386. * when request finishes, one after
  387. * we reclaim rcu_read_lock
  388. */
  389. struct bio *bi;
  390. atomic_inc(&rdev->nr_pending);
  391. atomic_inc(&rdev->nr_pending);
  392. rcu_read_unlock();
  393. bi = bio_alloc_mddev(GFP_NOIO, 0, mddev);
  394. bi->bi_end_io = md_end_flush;
  395. bi->bi_private = rdev;
  396. bi->bi_bdev = rdev->bdev;
  397. atomic_inc(&mddev->flush_pending);
  398. submit_bio(WRITE_FLUSH, bi);
  399. rcu_read_lock();
  400. rdev_dec_pending(rdev, mddev);
  401. }
  402. rcu_read_unlock();
  403. if (atomic_dec_and_test(&mddev->flush_pending))
  404. queue_work(md_wq, &mddev->flush_work);
  405. }
  406. static void md_submit_flush_data(struct work_struct *ws)
  407. {
  408. struct mddev *mddev = container_of(ws, struct mddev, flush_work);
  409. struct bio *bio = mddev->flush_bio;
  410. if (bio->bi_size == 0)
  411. /* an empty barrier - all done */
  412. bio_endio(bio, 0);
  413. else {
  414. bio->bi_rw &= ~REQ_FLUSH;
  415. mddev->pers->make_request(mddev, bio);
  416. }
  417. mddev->flush_bio = NULL;
  418. wake_up(&mddev->sb_wait);
  419. }
  420. void md_flush_request(struct mddev *mddev, struct bio *bio)
  421. {
  422. spin_lock_irq(&mddev->write_lock);
  423. wait_event_lock_irq(mddev->sb_wait,
  424. !mddev->flush_bio,
  425. mddev->write_lock, /*nothing*/);
  426. mddev->flush_bio = bio;
  427. spin_unlock_irq(&mddev->write_lock);
  428. INIT_WORK(&mddev->flush_work, submit_flushes);
  429. queue_work(md_wq, &mddev->flush_work);
  430. }
  431. EXPORT_SYMBOL(md_flush_request);
  432. /* Support for plugging.
  433. * This mirrors the plugging support in request_queue, but does not
  434. * require having a whole queue or request structures.
  435. * We allocate an md_plug_cb for each md device and each thread it gets
  436. * plugged on. This links tot the private plug_handle structure in the
  437. * personality data where we keep a count of the number of outstanding
  438. * plugs so other code can see if a plug is active.
  439. */
  440. struct md_plug_cb {
  441. struct blk_plug_cb cb;
  442. struct mddev *mddev;
  443. };
  444. static void plugger_unplug(struct blk_plug_cb *cb)
  445. {
  446. struct md_plug_cb *mdcb = container_of(cb, struct md_plug_cb, cb);
  447. if (atomic_dec_and_test(&mdcb->mddev->plug_cnt))
  448. md_wakeup_thread(mdcb->mddev->thread);
  449. kfree(mdcb);
  450. }
  451. /* Check that an unplug wakeup will come shortly.
  452. * If not, wakeup the md thread immediately
  453. */
  454. int mddev_check_plugged(struct mddev *mddev)
  455. {
  456. struct blk_plug *plug = current->plug;
  457. struct md_plug_cb *mdcb;
  458. if (!plug)
  459. return 0;
  460. list_for_each_entry(mdcb, &plug->cb_list, cb.list) {
  461. if (mdcb->cb.callback == plugger_unplug &&
  462. mdcb->mddev == mddev) {
  463. /* Already on the list, move to top */
  464. if (mdcb != list_first_entry(&plug->cb_list,
  465. struct md_plug_cb,
  466. cb.list))
  467. list_move(&mdcb->cb.list, &plug->cb_list);
  468. return 1;
  469. }
  470. }
  471. /* Not currently on the callback list */
  472. mdcb = kmalloc(sizeof(*mdcb), GFP_ATOMIC);
  473. if (!mdcb)
  474. return 0;
  475. mdcb->mddev = mddev;
  476. mdcb->cb.callback = plugger_unplug;
  477. atomic_inc(&mddev->plug_cnt);
  478. list_add(&mdcb->cb.list, &plug->cb_list);
  479. return 1;
  480. }
  481. EXPORT_SYMBOL_GPL(mddev_check_plugged);
  482. static inline struct mddev *mddev_get(struct mddev *mddev)
  483. {
  484. atomic_inc(&mddev->active);
  485. return mddev;
  486. }
  487. static void mddev_delayed_delete(struct work_struct *ws);
  488. static void mddev_put(struct mddev *mddev)
  489. {
  490. struct bio_set *bs = NULL;
  491. if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
  492. return;
  493. if (!mddev->raid_disks && list_empty(&mddev->disks) &&
  494. mddev->ctime == 0 && !mddev->hold_active) {
  495. /* Array is not configured at all, and not held active,
  496. * so destroy it */
  497. list_del_init(&mddev->all_mddevs);
  498. bs = mddev->bio_set;
  499. mddev->bio_set = NULL;
  500. if (mddev->gendisk) {
  501. /* We did a probe so need to clean up. Call
  502. * queue_work inside the spinlock so that
  503. * flush_workqueue() after mddev_find will
  504. * succeed in waiting for the work to be done.
  505. */
  506. INIT_WORK(&mddev->del_work, mddev_delayed_delete);
  507. queue_work(md_misc_wq, &mddev->del_work);
  508. } else
  509. kfree(mddev);
  510. }
  511. spin_unlock(&all_mddevs_lock);
  512. if (bs)
  513. bioset_free(bs);
  514. }
  515. void mddev_init(struct mddev *mddev)
  516. {
  517. mutex_init(&mddev->open_mutex);
  518. mutex_init(&mddev->reconfig_mutex);
  519. mutex_init(&mddev->bitmap_info.mutex);
  520. INIT_LIST_HEAD(&mddev->disks);
  521. INIT_LIST_HEAD(&mddev->all_mddevs);
  522. init_timer(&mddev->safemode_timer);
  523. atomic_set(&mddev->active, 1);
  524. atomic_set(&mddev->openers, 0);
  525. atomic_set(&mddev->active_io, 0);
  526. atomic_set(&mddev->plug_cnt, 0);
  527. spin_lock_init(&mddev->write_lock);
  528. atomic_set(&mddev->flush_pending, 0);
  529. init_waitqueue_head(&mddev->sb_wait);
  530. init_waitqueue_head(&mddev->recovery_wait);
  531. mddev->reshape_position = MaxSector;
  532. mddev->reshape_backwards = 0;
  533. mddev->resync_min = 0;
  534. mddev->resync_max = MaxSector;
  535. mddev->level = LEVEL_NONE;
  536. }
  537. EXPORT_SYMBOL_GPL(mddev_init);
  538. static struct mddev * mddev_find(dev_t unit)
  539. {
  540. struct mddev *mddev, *new = NULL;
  541. if (unit && MAJOR(unit) != MD_MAJOR)
  542. unit &= ~((1<<MdpMinorShift)-1);
  543. retry:
  544. spin_lock(&all_mddevs_lock);
  545. if (unit) {
  546. list_for_each_entry(mddev, &all_mddevs, all_mddevs)
  547. if (mddev->unit == unit) {
  548. mddev_get(mddev);
  549. spin_unlock(&all_mddevs_lock);
  550. kfree(new);
  551. return mddev;
  552. }
  553. if (new) {
  554. list_add(&new->all_mddevs, &all_mddevs);
  555. spin_unlock(&all_mddevs_lock);
  556. new->hold_active = UNTIL_IOCTL;
  557. return new;
  558. }
  559. } else if (new) {
  560. /* find an unused unit number */
  561. static int next_minor = 512;
  562. int start = next_minor;
  563. int is_free = 0;
  564. int dev = 0;
  565. while (!is_free) {
  566. dev = MKDEV(MD_MAJOR, next_minor);
  567. next_minor++;
  568. if (next_minor > MINORMASK)
  569. next_minor = 0;
  570. if (next_minor == start) {
  571. /* Oh dear, all in use. */
  572. spin_unlock(&all_mddevs_lock);
  573. kfree(new);
  574. return NULL;
  575. }
  576. is_free = 1;
  577. list_for_each_entry(mddev, &all_mddevs, all_mddevs)
  578. if (mddev->unit == dev) {
  579. is_free = 0;
  580. break;
  581. }
  582. }
  583. new->unit = dev;
  584. new->md_minor = MINOR(dev);
  585. new->hold_active = UNTIL_STOP;
  586. list_add(&new->all_mddevs, &all_mddevs);
  587. spin_unlock(&all_mddevs_lock);
  588. return new;
  589. }
  590. spin_unlock(&all_mddevs_lock);
  591. new = kzalloc(sizeof(*new), GFP_KERNEL);
  592. if (!new)
  593. return NULL;
  594. new->unit = unit;
  595. if (MAJOR(unit) == MD_MAJOR)
  596. new->md_minor = MINOR(unit);
  597. else
  598. new->md_minor = MINOR(unit) >> MdpMinorShift;
  599. mddev_init(new);
  600. goto retry;
  601. }
  602. static inline int mddev_lock(struct mddev * mddev)
  603. {
  604. return mutex_lock_interruptible(&mddev->reconfig_mutex);
  605. }
  606. static inline int mddev_is_locked(struct mddev *mddev)
  607. {
  608. return mutex_is_locked(&mddev->reconfig_mutex);
  609. }
  610. static inline int mddev_trylock(struct mddev * mddev)
  611. {
  612. return mutex_trylock(&mddev->reconfig_mutex);
  613. }
  614. static struct attribute_group md_redundancy_group;
  615. static void mddev_unlock(struct mddev * mddev)
  616. {
  617. if (mddev->to_remove) {
  618. /* These cannot be removed under reconfig_mutex as
  619. * an access to the files will try to take reconfig_mutex
  620. * while holding the file unremovable, which leads to
  621. * a deadlock.
  622. * So hold set sysfs_active while the remove in happeing,
  623. * and anything else which might set ->to_remove or my
  624. * otherwise change the sysfs namespace will fail with
  625. * -EBUSY if sysfs_active is still set.
  626. * We set sysfs_active under reconfig_mutex and elsewhere
  627. * test it under the same mutex to ensure its correct value
  628. * is seen.
  629. */
  630. struct attribute_group *to_remove = mddev->to_remove;
  631. mddev->to_remove = NULL;
  632. mddev->sysfs_active = 1;
  633. mutex_unlock(&mddev->reconfig_mutex);
  634. if (mddev->kobj.sd) {
  635. if (to_remove != &md_redundancy_group)
  636. sysfs_remove_group(&mddev->kobj, to_remove);
  637. if (mddev->pers == NULL ||
  638. mddev->pers->sync_request == NULL) {
  639. sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
  640. if (mddev->sysfs_action)
  641. sysfs_put(mddev->sysfs_action);
  642. mddev->sysfs_action = NULL;
  643. }
  644. }
  645. mddev->sysfs_active = 0;
  646. } else
  647. mutex_unlock(&mddev->reconfig_mutex);
  648. /* As we've dropped the mutex we need a spinlock to
  649. * make sure the thread doesn't disappear
  650. */
  651. spin_lock(&pers_lock);
  652. md_wakeup_thread(mddev->thread);
  653. spin_unlock(&pers_lock);
  654. }
  655. static struct md_rdev * find_rdev_nr(struct mddev *mddev, int nr)
  656. {
  657. struct md_rdev *rdev;
  658. rdev_for_each(rdev, mddev)
  659. if (rdev->desc_nr == nr)
  660. return rdev;
  661. return NULL;
  662. }
  663. static struct md_rdev * find_rdev(struct mddev * mddev, dev_t dev)
  664. {
  665. struct md_rdev *rdev;
  666. rdev_for_each(rdev, mddev)
  667. if (rdev->bdev->bd_dev == dev)
  668. return rdev;
  669. return NULL;
  670. }
  671. static struct md_personality *find_pers(int level, char *clevel)
  672. {
  673. struct md_personality *pers;
  674. list_for_each_entry(pers, &pers_list, list) {
  675. if (level != LEVEL_NONE && pers->level == level)
  676. return pers;
  677. if (strcmp(pers->name, clevel)==0)
  678. return pers;
  679. }
  680. return NULL;
  681. }
  682. /* return the offset of the super block in 512byte sectors */
  683. static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
  684. {
  685. sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
  686. return MD_NEW_SIZE_SECTORS(num_sectors);
  687. }
  688. static int alloc_disk_sb(struct md_rdev * rdev)
  689. {
  690. if (rdev->sb_page)
  691. MD_BUG();
  692. rdev->sb_page = alloc_page(GFP_KERNEL);
  693. if (!rdev->sb_page) {
  694. printk(KERN_ALERT "md: out of memory.\n");
  695. return -ENOMEM;
  696. }
  697. return 0;
  698. }
  699. void md_rdev_clear(struct md_rdev *rdev)
  700. {
  701. if (rdev->sb_page) {
  702. put_page(rdev->sb_page);
  703. rdev->sb_loaded = 0;
  704. rdev->sb_page = NULL;
  705. rdev->sb_start = 0;
  706. rdev->sectors = 0;
  707. }
  708. if (rdev->bb_page) {
  709. put_page(rdev->bb_page);
  710. rdev->bb_page = NULL;
  711. }
  712. kfree(rdev->badblocks.page);
  713. rdev->badblocks.page = NULL;
  714. }
  715. EXPORT_SYMBOL_GPL(md_rdev_clear);
  716. static void super_written(struct bio *bio, int error)
  717. {
  718. struct md_rdev *rdev = bio->bi_private;
  719. struct mddev *mddev = rdev->mddev;
  720. if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
  721. printk("md: super_written gets error=%d, uptodate=%d\n",
  722. error, test_bit(BIO_UPTODATE, &bio->bi_flags));
  723. WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
  724. md_error(mddev, rdev);
  725. }
  726. if (atomic_dec_and_test(&mddev->pending_writes))
  727. wake_up(&mddev->sb_wait);
  728. bio_put(bio);
  729. }
  730. void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
  731. sector_t sector, int size, struct page *page)
  732. {
  733. /* write first size bytes of page to sector of rdev
  734. * Increment mddev->pending_writes before returning
  735. * and decrement it on completion, waking up sb_wait
  736. * if zero is reached.
  737. * If an error occurred, call md_error
  738. */
  739. struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
  740. bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
  741. bio->bi_sector = sector;
  742. bio_add_page(bio, page, size, 0);
  743. bio->bi_private = rdev;
  744. bio->bi_end_io = super_written;
  745. atomic_inc(&mddev->pending_writes);
  746. submit_bio(WRITE_FLUSH_FUA, bio);
  747. }
  748. void md_super_wait(struct mddev *mddev)
  749. {
  750. /* wait for all superblock writes that were scheduled to complete */
  751. DEFINE_WAIT(wq);
  752. for(;;) {
  753. prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
  754. if (atomic_read(&mddev->pending_writes)==0)
  755. break;
  756. schedule();
  757. }
  758. finish_wait(&mddev->sb_wait, &wq);
  759. }
  760. static void bi_complete(struct bio *bio, int error)
  761. {
  762. complete((struct completion*)bio->bi_private);
  763. }
  764. int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
  765. struct page *page, int rw, bool metadata_op)
  766. {
  767. struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
  768. struct completion event;
  769. int ret;
  770. rw |= REQ_SYNC;
  771. bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
  772. rdev->meta_bdev : rdev->bdev;
  773. if (metadata_op)
  774. bio->bi_sector = sector + rdev->sb_start;
  775. else if (rdev->mddev->reshape_position != MaxSector &&
  776. (rdev->mddev->reshape_backwards ==
  777. (sector >= rdev->mddev->reshape_position)))
  778. bio->bi_sector = sector + rdev->new_data_offset;
  779. else
  780. bio->bi_sector = sector + rdev->data_offset;
  781. bio_add_page(bio, page, size, 0);
  782. init_completion(&event);
  783. bio->bi_private = &event;
  784. bio->bi_end_io = bi_complete;
  785. submit_bio(rw, bio);
  786. wait_for_completion(&event);
  787. ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
  788. bio_put(bio);
  789. return ret;
  790. }
  791. EXPORT_SYMBOL_GPL(sync_page_io);
  792. static int read_disk_sb(struct md_rdev * rdev, int size)
  793. {
  794. char b[BDEVNAME_SIZE];
  795. if (!rdev->sb_page) {
  796. MD_BUG();
  797. return -EINVAL;
  798. }
  799. if (rdev->sb_loaded)
  800. return 0;
  801. if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
  802. goto fail;
  803. rdev->sb_loaded = 1;
  804. return 0;
  805. fail:
  806. printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
  807. bdevname(rdev->bdev,b));
  808. return -EINVAL;
  809. }
  810. static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
  811. {
  812. return sb1->set_uuid0 == sb2->set_uuid0 &&
  813. sb1->set_uuid1 == sb2->set_uuid1 &&
  814. sb1->set_uuid2 == sb2->set_uuid2 &&
  815. sb1->set_uuid3 == sb2->set_uuid3;
  816. }
  817. static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
  818. {
  819. int ret;
  820. mdp_super_t *tmp1, *tmp2;
  821. tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
  822. tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
  823. if (!tmp1 || !tmp2) {
  824. ret = 0;
  825. printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
  826. goto abort;
  827. }
  828. *tmp1 = *sb1;
  829. *tmp2 = *sb2;
  830. /*
  831. * nr_disks is not constant
  832. */
  833. tmp1->nr_disks = 0;
  834. tmp2->nr_disks = 0;
  835. ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
  836. abort:
  837. kfree(tmp1);
  838. kfree(tmp2);
  839. return ret;
  840. }
  841. static u32 md_csum_fold(u32 csum)
  842. {
  843. csum = (csum & 0xffff) + (csum >> 16);
  844. return (csum & 0xffff) + (csum >> 16);
  845. }
  846. static unsigned int calc_sb_csum(mdp_super_t * sb)
  847. {
  848. u64 newcsum = 0;
  849. u32 *sb32 = (u32*)sb;
  850. int i;
  851. unsigned int disk_csum, csum;
  852. disk_csum = sb->sb_csum;
  853. sb->sb_csum = 0;
  854. for (i = 0; i < MD_SB_BYTES/4 ; i++)
  855. newcsum += sb32[i];
  856. csum = (newcsum & 0xffffffff) + (newcsum>>32);
  857. #ifdef CONFIG_ALPHA
  858. /* This used to use csum_partial, which was wrong for several
  859. * reasons including that different results are returned on
  860. * different architectures. It isn't critical that we get exactly
  861. * the same return value as before (we always csum_fold before
  862. * testing, and that removes any differences). However as we
  863. * know that csum_partial always returned a 16bit value on
  864. * alphas, do a fold to maximise conformity to previous behaviour.
  865. */
  866. sb->sb_csum = md_csum_fold(disk_csum);
  867. #else
  868. sb->sb_csum = disk_csum;
  869. #endif
  870. return csum;
  871. }
  872. /*
  873. * Handle superblock details.
  874. * We want to be able to handle multiple superblock formats
  875. * so we have a common interface to them all, and an array of
  876. * different handlers.
  877. * We rely on user-space to write the initial superblock, and support
  878. * reading and updating of superblocks.
  879. * Interface methods are:
  880. * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
  881. * loads and validates a superblock on dev.
  882. * if refdev != NULL, compare superblocks on both devices
  883. * Return:
  884. * 0 - dev has a superblock that is compatible with refdev
  885. * 1 - dev has a superblock that is compatible and newer than refdev
  886. * so dev should be used as the refdev in future
  887. * -EINVAL superblock incompatible or invalid
  888. * -othererror e.g. -EIO
  889. *
  890. * int validate_super(struct mddev *mddev, struct md_rdev *dev)
  891. * Verify that dev is acceptable into mddev.
  892. * The first time, mddev->raid_disks will be 0, and data from
  893. * dev should be merged in. Subsequent calls check that dev
  894. * is new enough. Return 0 or -EINVAL
  895. *
  896. * void sync_super(struct mddev *mddev, struct md_rdev *dev)
  897. * Update the superblock for rdev with data in mddev
  898. * This does not write to disc.
  899. *
  900. */
  901. struct super_type {
  902. char *name;
  903. struct module *owner;
  904. int (*load_super)(struct md_rdev *rdev,
  905. struct md_rdev *refdev,
  906. int minor_version);
  907. int (*validate_super)(struct mddev *mddev,
  908. struct md_rdev *rdev);
  909. void (*sync_super)(struct mddev *mddev,
  910. struct md_rdev *rdev);
  911. unsigned long long (*rdev_size_change)(struct md_rdev *rdev,
  912. sector_t num_sectors);
  913. int (*allow_new_offset)(struct md_rdev *rdev,
  914. unsigned long long new_offset);
  915. };
  916. /*
  917. * Check that the given mddev has no bitmap.
  918. *
  919. * This function is called from the run method of all personalities that do not
  920. * support bitmaps. It prints an error message and returns non-zero if mddev
  921. * has a bitmap. Otherwise, it returns 0.
  922. *
  923. */
  924. int md_check_no_bitmap(struct mddev *mddev)
  925. {
  926. if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
  927. return 0;
  928. printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
  929. mdname(mddev), mddev->pers->name);
  930. return 1;
  931. }
  932. EXPORT_SYMBOL(md_check_no_bitmap);
  933. /*
  934. * load_super for 0.90.0
  935. */
  936. static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
  937. {
  938. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  939. mdp_super_t *sb;
  940. int ret;
  941. /*
  942. * Calculate the position of the superblock (512byte sectors),
  943. * it's at the end of the disk.
  944. *
  945. * It also happens to be a multiple of 4Kb.
  946. */
  947. rdev->sb_start = calc_dev_sboffset(rdev);
  948. ret = read_disk_sb(rdev, MD_SB_BYTES);
  949. if (ret) return ret;
  950. ret = -EINVAL;
  951. bdevname(rdev->bdev, b);
  952. sb = page_address(rdev->sb_page);
  953. if (sb->md_magic != MD_SB_MAGIC) {
  954. printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
  955. b);
  956. goto abort;
  957. }
  958. if (sb->major_version != 0 ||
  959. sb->minor_version < 90 ||
  960. sb->minor_version > 91) {
  961. printk(KERN_WARNING "Bad version number %d.%d on %s\n",
  962. sb->major_version, sb->minor_version,
  963. b);
  964. goto abort;
  965. }
  966. if (sb->raid_disks <= 0)
  967. goto abort;
  968. if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
  969. printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
  970. b);
  971. goto abort;
  972. }
  973. rdev->preferred_minor = sb->md_minor;
  974. rdev->data_offset = 0;
  975. rdev->new_data_offset = 0;
  976. rdev->sb_size = MD_SB_BYTES;
  977. rdev->badblocks.shift = -1;
  978. if (sb->level == LEVEL_MULTIPATH)
  979. rdev->desc_nr = -1;
  980. else
  981. rdev->desc_nr = sb->this_disk.number;
  982. if (!refdev) {
  983. ret = 1;
  984. } else {
  985. __u64 ev1, ev2;
  986. mdp_super_t *refsb = page_address(refdev->sb_page);
  987. if (!uuid_equal(refsb, sb)) {
  988. printk(KERN_WARNING "md: %s has different UUID to %s\n",
  989. b, bdevname(refdev->bdev,b2));
  990. goto abort;
  991. }
  992. if (!sb_equal(refsb, sb)) {
  993. printk(KERN_WARNING "md: %s has same UUID"
  994. " but different superblock to %s\n",
  995. b, bdevname(refdev->bdev, b2));
  996. goto abort;
  997. }
  998. ev1 = md_event(sb);
  999. ev2 = md_event(refsb);
  1000. if (ev1 > ev2)
  1001. ret = 1;
  1002. else
  1003. ret = 0;
  1004. }
  1005. rdev->sectors = rdev->sb_start;
  1006. /* Limit to 4TB as metadata cannot record more than that */
  1007. if (rdev->sectors >= (2ULL << 32))
  1008. rdev->sectors = (2ULL << 32) - 2;
  1009. if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
  1010. /* "this cannot possibly happen" ... */
  1011. ret = -EINVAL;
  1012. abort:
  1013. return ret;
  1014. }
  1015. /*
  1016. * validate_super for 0.90.0
  1017. */
  1018. static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
  1019. {
  1020. mdp_disk_t *desc;
  1021. mdp_super_t *sb = page_address(rdev->sb_page);
  1022. __u64 ev1 = md_event(sb);
  1023. rdev->raid_disk = -1;
  1024. clear_bit(Faulty, &rdev->flags);
  1025. clear_bit(In_sync, &rdev->flags);
  1026. clear_bit(WriteMostly, &rdev->flags);
  1027. if (mddev->raid_disks == 0) {
  1028. mddev->major_version = 0;
  1029. mddev->minor_version = sb->minor_version;
  1030. mddev->patch_version = sb->patch_version;
  1031. mddev->external = 0;
  1032. mddev->chunk_sectors = sb->chunk_size >> 9;
  1033. mddev->ctime = sb->ctime;
  1034. mddev->utime = sb->utime;
  1035. mddev->level = sb->level;
  1036. mddev->clevel[0] = 0;
  1037. mddev->layout = sb->layout;
  1038. mddev->raid_disks = sb->raid_disks;
  1039. mddev->dev_sectors = ((sector_t)sb->size) * 2;
  1040. mddev->events = ev1;
  1041. mddev->bitmap_info.offset = 0;
  1042. mddev->bitmap_info.space = 0;
  1043. /* bitmap can use 60 K after the 4K superblocks */
  1044. mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
  1045. mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
  1046. mddev->reshape_backwards = 0;
  1047. if (mddev->minor_version >= 91) {
  1048. mddev->reshape_position = sb->reshape_position;
  1049. mddev->delta_disks = sb->delta_disks;
  1050. mddev->new_level = sb->new_level;
  1051. mddev->new_layout = sb->new_layout;
  1052. mddev->new_chunk_sectors = sb->new_chunk >> 9;
  1053. if (mddev->delta_disks < 0)
  1054. mddev->reshape_backwards = 1;
  1055. } else {
  1056. mddev->reshape_position = MaxSector;
  1057. mddev->delta_disks = 0;
  1058. mddev->new_level = mddev->level;
  1059. mddev->new_layout = mddev->layout;
  1060. mddev->new_chunk_sectors = mddev->chunk_sectors;
  1061. }
  1062. if (sb->state & (1<<MD_SB_CLEAN))
  1063. mddev->recovery_cp = MaxSector;
  1064. else {
  1065. if (sb->events_hi == sb->cp_events_hi &&
  1066. sb->events_lo == sb->cp_events_lo) {
  1067. mddev->recovery_cp = sb->recovery_cp;
  1068. } else
  1069. mddev->recovery_cp = 0;
  1070. }
  1071. memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
  1072. memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
  1073. memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
  1074. memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
  1075. mddev->max_disks = MD_SB_DISKS;
  1076. if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
  1077. mddev->bitmap_info.file == NULL) {
  1078. mddev->bitmap_info.offset =
  1079. mddev->bitmap_info.default_offset;
  1080. mddev->bitmap_info.space =
  1081. mddev->bitmap_info.space;
  1082. }
  1083. } else if (mddev->pers == NULL) {
  1084. /* Insist on good event counter while assembling, except
  1085. * for spares (which don't need an event count) */
  1086. ++ev1;
  1087. if (sb->disks[rdev->desc_nr].state & (
  1088. (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
  1089. if (ev1 < mddev->events)
  1090. return -EINVAL;
  1091. } else if (mddev->bitmap) {
  1092. /* if adding to array with a bitmap, then we can accept an
  1093. * older device ... but not too old.
  1094. */
  1095. if (ev1 < mddev->bitmap->events_cleared)
  1096. return 0;
  1097. } else {
  1098. if (ev1 < mddev->events)
  1099. /* just a hot-add of a new device, leave raid_disk at -1 */
  1100. return 0;
  1101. }
  1102. if (mddev->level != LEVEL_MULTIPATH) {
  1103. desc = sb->disks + rdev->desc_nr;
  1104. if (desc->state & (1<<MD_DISK_FAULTY))
  1105. set_bit(Faulty, &rdev->flags);
  1106. else if (desc->state & (1<<MD_DISK_SYNC) /* &&
  1107. desc->raid_disk < mddev->raid_disks */) {
  1108. set_bit(In_sync, &rdev->flags);
  1109. rdev->raid_disk = desc->raid_disk;
  1110. } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
  1111. /* active but not in sync implies recovery up to
  1112. * reshape position. We don't know exactly where
  1113. * that is, so set to zero for now */
  1114. if (mddev->minor_version >= 91) {
  1115. rdev->recovery_offset = 0;
  1116. rdev->raid_disk = desc->raid_disk;
  1117. }
  1118. }
  1119. if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
  1120. set_bit(WriteMostly, &rdev->flags);
  1121. } else /* MULTIPATH are always insync */
  1122. set_bit(In_sync, &rdev->flags);
  1123. return 0;
  1124. }
  1125. /*
  1126. * sync_super for 0.90.0
  1127. */
  1128. static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
  1129. {
  1130. mdp_super_t *sb;
  1131. struct md_rdev *rdev2;
  1132. int next_spare = mddev->raid_disks;
  1133. /* make rdev->sb match mddev data..
  1134. *
  1135. * 1/ zero out disks
  1136. * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
  1137. * 3/ any empty disks < next_spare become removed
  1138. *
  1139. * disks[0] gets initialised to REMOVED because
  1140. * we cannot be sure from other fields if it has
  1141. * been initialised or not.
  1142. */
  1143. int i;
  1144. int active=0, working=0,failed=0,spare=0,nr_disks=0;
  1145. rdev->sb_size = MD_SB_BYTES;
  1146. sb = page_address(rdev->sb_page);
  1147. memset(sb, 0, sizeof(*sb));
  1148. sb->md_magic = MD_SB_MAGIC;
  1149. sb->major_version = mddev->major_version;
  1150. sb->patch_version = mddev->patch_version;
  1151. sb->gvalid_words = 0; /* ignored */
  1152. memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
  1153. memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
  1154. memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
  1155. memcpy(&sb->set_uuid3, mddev->uuid+12,4);
  1156. sb->ctime = mddev->ctime;
  1157. sb->level = mddev->level;
  1158. sb->size = mddev->dev_sectors / 2;
  1159. sb->raid_disks = mddev->raid_disks;
  1160. sb->md_minor = mddev->md_minor;
  1161. sb->not_persistent = 0;
  1162. sb->utime = mddev->utime;
  1163. sb->state = 0;
  1164. sb->events_hi = (mddev->events>>32);
  1165. sb->events_lo = (u32)mddev->events;
  1166. if (mddev->reshape_position == MaxSector)
  1167. sb->minor_version = 90;
  1168. else {
  1169. sb->minor_version = 91;
  1170. sb->reshape_position = mddev->reshape_position;
  1171. sb->new_level = mddev->new_level;
  1172. sb->delta_disks = mddev->delta_disks;
  1173. sb->new_layout = mddev->new_layout;
  1174. sb->new_chunk = mddev->new_chunk_sectors << 9;
  1175. }
  1176. mddev->minor_version = sb->minor_version;
  1177. if (mddev->in_sync)
  1178. {
  1179. sb->recovery_cp = mddev->recovery_cp;
  1180. sb->cp_events_hi = (mddev->events>>32);
  1181. sb->cp_events_lo = (u32)mddev->events;
  1182. if (mddev->recovery_cp == MaxSector)
  1183. sb->state = (1<< MD_SB_CLEAN);
  1184. } else
  1185. sb->recovery_cp = 0;
  1186. sb->layout = mddev->layout;
  1187. sb->chunk_size = mddev->chunk_sectors << 9;
  1188. if (mddev->bitmap && mddev->bitmap_info.file == NULL)
  1189. sb->state |= (1<<MD_SB_BITMAP_PRESENT);
  1190. sb->disks[0].state = (1<<MD_DISK_REMOVED);
  1191. rdev_for_each(rdev2, mddev) {
  1192. mdp_disk_t *d;
  1193. int desc_nr;
  1194. int is_active = test_bit(In_sync, &rdev2->flags);
  1195. if (rdev2->raid_disk >= 0 &&
  1196. sb->minor_version >= 91)
  1197. /* we have nowhere to store the recovery_offset,
  1198. * but if it is not below the reshape_position,
  1199. * we can piggy-back on that.
  1200. */
  1201. is_active = 1;
  1202. if (rdev2->raid_disk < 0 ||
  1203. test_bit(Faulty, &rdev2->flags))
  1204. is_active = 0;
  1205. if (is_active)
  1206. desc_nr = rdev2->raid_disk;
  1207. else
  1208. desc_nr = next_spare++;
  1209. rdev2->desc_nr = desc_nr;
  1210. d = &sb->disks[rdev2->desc_nr];
  1211. nr_disks++;
  1212. d->number = rdev2->desc_nr;
  1213. d->major = MAJOR(rdev2->bdev->bd_dev);
  1214. d->minor = MINOR(rdev2->bdev->bd_dev);
  1215. if (is_active)
  1216. d->raid_disk = rdev2->raid_disk;
  1217. else
  1218. d->raid_disk = rdev2->desc_nr; /* compatibility */
  1219. if (test_bit(Faulty, &rdev2->flags))
  1220. d->state = (1<<MD_DISK_FAULTY);
  1221. else if (is_active) {
  1222. d->state = (1<<MD_DISK_ACTIVE);
  1223. if (test_bit(In_sync, &rdev2->flags))
  1224. d->state |= (1<<MD_DISK_SYNC);
  1225. active++;
  1226. working++;
  1227. } else {
  1228. d->state = 0;
  1229. spare++;
  1230. working++;
  1231. }
  1232. if (test_bit(WriteMostly, &rdev2->flags))
  1233. d->state |= (1<<MD_DISK_WRITEMOSTLY);
  1234. }
  1235. /* now set the "removed" and "faulty" bits on any missing devices */
  1236. for (i=0 ; i < mddev->raid_disks ; i++) {
  1237. mdp_disk_t *d = &sb->disks[i];
  1238. if (d->state == 0 && d->number == 0) {
  1239. d->number = i;
  1240. d->raid_disk = i;
  1241. d->state = (1<<MD_DISK_REMOVED);
  1242. d->state |= (1<<MD_DISK_FAULTY);
  1243. failed++;
  1244. }
  1245. }
  1246. sb->nr_disks = nr_disks;
  1247. sb->active_disks = active;
  1248. sb->working_disks = working;
  1249. sb->failed_disks = failed;
  1250. sb->spare_disks = spare;
  1251. sb->this_disk = sb->disks[rdev->desc_nr];
  1252. sb->sb_csum = calc_sb_csum(sb);
  1253. }
  1254. /*
  1255. * rdev_size_change for 0.90.0
  1256. */
  1257. static unsigned long long
  1258. super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
  1259. {
  1260. if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
  1261. return 0; /* component must fit device */
  1262. if (rdev->mddev->bitmap_info.offset)
  1263. return 0; /* can't move bitmap */
  1264. rdev->sb_start = calc_dev_sboffset(rdev);
  1265. if (!num_sectors || num_sectors > rdev->sb_start)
  1266. num_sectors = rdev->sb_start;
  1267. /* Limit to 4TB as metadata cannot record more than that.
  1268. * 4TB == 2^32 KB, or 2*2^32 sectors.
  1269. */
  1270. if (num_sectors >= (2ULL << 32))
  1271. num_sectors = (2ULL << 32) - 2;
  1272. md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
  1273. rdev->sb_page);
  1274. md_super_wait(rdev->mddev);
  1275. return num_sectors;
  1276. }
  1277. static int
  1278. super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
  1279. {
  1280. /* non-zero offset changes not possible with v0.90 */
  1281. return new_offset == 0;
  1282. }
  1283. /*
  1284. * version 1 superblock
  1285. */
  1286. static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
  1287. {
  1288. __le32 disk_csum;
  1289. u32 csum;
  1290. unsigned long long newcsum;
  1291. int size = 256 + le32_to_cpu(sb->max_dev)*2;
  1292. __le32 *isuper = (__le32*)sb;
  1293. int i;
  1294. disk_csum = sb->sb_csum;
  1295. sb->sb_csum = 0;
  1296. newcsum = 0;
  1297. for (i=0; size>=4; size -= 4 )
  1298. newcsum += le32_to_cpu(*isuper++);
  1299. if (size == 2)
  1300. newcsum += le16_to_cpu(*(__le16*) isuper);
  1301. csum = (newcsum & 0xffffffff) + (newcsum >> 32);
  1302. sb->sb_csum = disk_csum;
  1303. return cpu_to_le32(csum);
  1304. }
  1305. static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
  1306. int acknowledged);
  1307. static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
  1308. {
  1309. struct mdp_superblock_1 *sb;
  1310. int ret;
  1311. sector_t sb_start;
  1312. sector_t sectors;
  1313. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  1314. int bmask;
  1315. /*
  1316. * Calculate the position of the superblock in 512byte sectors.
  1317. * It is always aligned to a 4K boundary and
  1318. * depeding on minor_version, it can be:
  1319. * 0: At least 8K, but less than 12K, from end of device
  1320. * 1: At start of device
  1321. * 2: 4K from start of device.
  1322. */
  1323. switch(minor_version) {
  1324. case 0:
  1325. sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
  1326. sb_start -= 8*2;
  1327. sb_start &= ~(sector_t)(4*2-1);
  1328. break;
  1329. case 1:
  1330. sb_start = 0;
  1331. break;
  1332. case 2:
  1333. sb_start = 8;
  1334. break;
  1335. default:
  1336. return -EINVAL;
  1337. }
  1338. rdev->sb_start = sb_start;
  1339. /* superblock is rarely larger than 1K, but it can be larger,
  1340. * and it is safe to read 4k, so we do that
  1341. */
  1342. ret = read_disk_sb(rdev, 4096);
  1343. if (ret) return ret;
  1344. sb = page_address(rdev->sb_page);
  1345. if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
  1346. sb->major_version != cpu_to_le32(1) ||
  1347. le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
  1348. le64_to_cpu(sb->super_offset) != rdev->sb_start ||
  1349. (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
  1350. return -EINVAL;
  1351. if (calc_sb_1_csum(sb) != sb->sb_csum) {
  1352. printk("md: invalid superblock checksum on %s\n",
  1353. bdevname(rdev->bdev,b));
  1354. return -EINVAL;
  1355. }
  1356. if (le64_to_cpu(sb->data_size) < 10) {
  1357. printk("md: data_size too small on %s\n",
  1358. bdevname(rdev->bdev,b));
  1359. return -EINVAL;
  1360. }
  1361. if (sb->pad0 ||
  1362. sb->pad3[0] ||
  1363. memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
  1364. /* Some padding is non-zero, might be a new feature */
  1365. return -EINVAL;
  1366. rdev->preferred_minor = 0xffff;
  1367. rdev->data_offset = le64_to_cpu(sb->data_offset);
  1368. rdev->new_data_offset = rdev->data_offset;
  1369. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
  1370. (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
  1371. rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
  1372. atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
  1373. rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
  1374. bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
  1375. if (rdev->sb_size & bmask)
  1376. rdev->sb_size = (rdev->sb_size | bmask) + 1;
  1377. if (minor_version
  1378. && rdev->data_offset < sb_start + (rdev->sb_size/512))
  1379. return -EINVAL;
  1380. if (minor_version
  1381. && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
  1382. return -EINVAL;
  1383. if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
  1384. rdev->desc_nr = -1;
  1385. else
  1386. rdev->desc_nr = le32_to_cpu(sb->dev_number);
  1387. if (!rdev->bb_page) {
  1388. rdev->bb_page = alloc_page(GFP_KERNEL);
  1389. if (!rdev->bb_page)
  1390. return -ENOMEM;
  1391. }
  1392. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
  1393. rdev->badblocks.count == 0) {
  1394. /* need to load the bad block list.
  1395. * Currently we limit it to one page.
  1396. */
  1397. s32 offset;
  1398. sector_t bb_sector;
  1399. u64 *bbp;
  1400. int i;
  1401. int sectors = le16_to_cpu(sb->bblog_size);
  1402. if (sectors > (PAGE_SIZE / 512))
  1403. return -EINVAL;
  1404. offset = le32_to_cpu(sb->bblog_offset);
  1405. if (offset == 0)
  1406. return -EINVAL;
  1407. bb_sector = (long long)offset;
  1408. if (!sync_page_io(rdev, bb_sector, sectors << 9,
  1409. rdev->bb_page, READ, true))
  1410. return -EIO;
  1411. bbp = (u64 *)page_address(rdev->bb_page);
  1412. rdev->badblocks.shift = sb->bblog_shift;
  1413. for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
  1414. u64 bb = le64_to_cpu(*bbp);
  1415. int count = bb & (0x3ff);
  1416. u64 sector = bb >> 10;
  1417. sector <<= sb->bblog_shift;
  1418. count <<= sb->bblog_shift;
  1419. if (bb + 1 == 0)
  1420. break;
  1421. if (md_set_badblocks(&rdev->badblocks,
  1422. sector, count, 1) == 0)
  1423. return -EINVAL;
  1424. }
  1425. } else if (sb->bblog_offset == 0)
  1426. rdev->badblocks.shift = -1;
  1427. if (!refdev) {
  1428. ret = 1;
  1429. } else {
  1430. __u64 ev1, ev2;
  1431. struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
  1432. if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
  1433. sb->level != refsb->level ||
  1434. sb->layout != refsb->layout ||
  1435. sb->chunksize != refsb->chunksize) {
  1436. printk(KERN_WARNING "md: %s has strangely different"
  1437. " superblock to %s\n",
  1438. bdevname(rdev->bdev,b),
  1439. bdevname(refdev->bdev,b2));
  1440. return -EINVAL;
  1441. }
  1442. ev1 = le64_to_cpu(sb->events);
  1443. ev2 = le64_to_cpu(refsb->events);
  1444. if (ev1 > ev2)
  1445. ret = 1;
  1446. else
  1447. ret = 0;
  1448. }
  1449. if (minor_version) {
  1450. sectors = (i_size_read(rdev->bdev->bd_inode) >> 9);
  1451. sectors -= rdev->data_offset;
  1452. } else
  1453. sectors = rdev->sb_start;
  1454. if (sectors < le64_to_cpu(sb->data_size))
  1455. return -EINVAL;
  1456. rdev->sectors = le64_to_cpu(sb->data_size);
  1457. return ret;
  1458. }
  1459. static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
  1460. {
  1461. struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
  1462. __u64 ev1 = le64_to_cpu(sb->events);
  1463. rdev->raid_disk = -1;
  1464. clear_bit(Faulty, &rdev->flags);
  1465. clear_bit(In_sync, &rdev->flags);
  1466. clear_bit(WriteMostly, &rdev->flags);
  1467. if (mddev->raid_disks == 0) {
  1468. mddev->major_version = 1;
  1469. mddev->patch_version = 0;
  1470. mddev->external = 0;
  1471. mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
  1472. mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
  1473. mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
  1474. mddev->level = le32_to_cpu(sb->level);
  1475. mddev->clevel[0] = 0;
  1476. mddev->layout = le32_to_cpu(sb->layout);
  1477. mddev->raid_disks = le32_to_cpu(sb->raid_disks);
  1478. mddev->dev_sectors = le64_to_cpu(sb->size);
  1479. mddev->events = ev1;
  1480. mddev->bitmap_info.offset = 0;
  1481. mddev->bitmap_info.space = 0;
  1482. /* Default location for bitmap is 1K after superblock
  1483. * using 3K - total of 4K
  1484. */
  1485. mddev->bitmap_info.default_offset = 1024 >> 9;
  1486. mddev->bitmap_info.default_space = (4096-1024) >> 9;
  1487. mddev->reshape_backwards = 0;
  1488. mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
  1489. memcpy(mddev->uuid, sb->set_uuid, 16);
  1490. mddev->max_disks = (4096-256)/2;
  1491. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
  1492. mddev->bitmap_info.file == NULL) {
  1493. mddev->bitmap_info.offset =
  1494. (__s32)le32_to_cpu(sb->bitmap_offset);
  1495. /* Metadata doesn't record how much space is available.
  1496. * For 1.0, we assume we can use up to the superblock
  1497. * if before, else to 4K beyond superblock.
  1498. * For others, assume no change is possible.
  1499. */
  1500. if (mddev->minor_version > 0)
  1501. mddev->bitmap_info.space = 0;
  1502. else if (mddev->bitmap_info.offset > 0)
  1503. mddev->bitmap_info.space =
  1504. 8 - mddev->bitmap_info.offset;
  1505. else
  1506. mddev->bitmap_info.space =
  1507. -mddev->bitmap_info.offset;
  1508. }
  1509. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
  1510. mddev->reshape_position = le64_to_cpu(sb->reshape_position);
  1511. mddev->delta_disks = le32_to_cpu(sb->delta_disks);
  1512. mddev->new_level = le32_to_cpu(sb->new_level);
  1513. mddev->new_layout = le32_to_cpu(sb->new_layout);
  1514. mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
  1515. if (mddev->delta_disks < 0 ||
  1516. (mddev->delta_disks == 0 &&
  1517. (le32_to_cpu(sb->feature_map)
  1518. & MD_FEATURE_RESHAPE_BACKWARDS)))
  1519. mddev->reshape_backwards = 1;
  1520. } else {
  1521. mddev->reshape_position = MaxSector;
  1522. mddev->delta_disks = 0;
  1523. mddev->new_level = mddev->level;
  1524. mddev->new_layout = mddev->layout;
  1525. mddev->new_chunk_sectors = mddev->chunk_sectors;
  1526. }
  1527. } else if (mddev->pers == NULL) {
  1528. /* Insist of good event counter while assembling, except for
  1529. * spares (which don't need an event count) */
  1530. ++ev1;
  1531. if (rdev->desc_nr >= 0 &&
  1532. rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
  1533. le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
  1534. if (ev1 < mddev->events)
  1535. return -EINVAL;
  1536. } else if (mddev->bitmap) {
  1537. /* If adding to array with a bitmap, then we can accept an
  1538. * older device, but not too old.
  1539. */
  1540. if (ev1 < mddev->bitmap->events_cleared)
  1541. return 0;
  1542. } else {
  1543. if (ev1 < mddev->events)
  1544. /* just a hot-add of a new device, leave raid_disk at -1 */
  1545. return 0;
  1546. }
  1547. if (mddev->level != LEVEL_MULTIPATH) {
  1548. int role;
  1549. if (rdev->desc_nr < 0 ||
  1550. rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
  1551. role = 0xffff;
  1552. rdev->desc_nr = -1;
  1553. } else
  1554. role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
  1555. switch(role) {
  1556. case 0xffff: /* spare */
  1557. break;
  1558. case 0xfffe: /* faulty */
  1559. set_bit(Faulty, &rdev->flags);
  1560. break;
  1561. default:
  1562. if ((le32_to_cpu(sb->feature_map) &
  1563. MD_FEATURE_RECOVERY_OFFSET))
  1564. rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
  1565. else
  1566. set_bit(In_sync, &rdev->flags);
  1567. rdev->raid_disk = role;
  1568. break;
  1569. }
  1570. if (sb->devflags & WriteMostly1)
  1571. set_bit(WriteMostly, &rdev->flags);
  1572. if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
  1573. set_bit(Replacement, &rdev->flags);
  1574. } else /* MULTIPATH are always insync */
  1575. set_bit(In_sync, &rdev->flags);
  1576. return 0;
  1577. }
  1578. static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
  1579. {
  1580. struct mdp_superblock_1 *sb;
  1581. struct md_rdev *rdev2;
  1582. int max_dev, i;
  1583. /* make rdev->sb match mddev and rdev data. */
  1584. sb = page_address(rdev->sb_page);
  1585. sb->feature_map = 0;
  1586. sb->pad0 = 0;
  1587. sb->recovery_offset = cpu_to_le64(0);
  1588. memset(sb->pad3, 0, sizeof(sb->pad3));
  1589. sb->utime = cpu_to_le64((__u64)mddev->utime);
  1590. sb->events = cpu_to_le64(mddev->events);
  1591. if (mddev->in_sync)
  1592. sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
  1593. else
  1594. sb->resync_offset = cpu_to_le64(0);
  1595. sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
  1596. sb->raid_disks = cpu_to_le32(mddev->raid_disks);
  1597. sb->size = cpu_to_le64(mddev->dev_sectors);
  1598. sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
  1599. sb->level = cpu_to_le32(mddev->level);
  1600. sb->layout = cpu_to_le32(mddev->layout);
  1601. if (test_bit(WriteMostly, &rdev->flags))
  1602. sb->devflags |= WriteMostly1;
  1603. else
  1604. sb->devflags &= ~WriteMostly1;
  1605. sb->data_offset = cpu_to_le64(rdev->data_offset);
  1606. sb->data_size = cpu_to_le64(rdev->sectors);
  1607. if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
  1608. sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
  1609. sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
  1610. }
  1611. if (rdev->raid_disk >= 0 &&
  1612. !test_bit(In_sync, &rdev->flags)) {
  1613. sb->feature_map |=
  1614. cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
  1615. sb->recovery_offset =
  1616. cpu_to_le64(rdev->recovery_offset);
  1617. }
  1618. if (test_bit(Replacement, &rdev->flags))
  1619. sb->feature_map |=
  1620. cpu_to_le32(MD_FEATURE_REPLACEMENT);
  1621. if (mddev->reshape_position != MaxSector) {
  1622. sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
  1623. sb->reshape_position = cpu_to_le64(mddev->reshape_position);
  1624. sb->new_layout = cpu_to_le32(mddev->new_layout);
  1625. sb->delta_disks = cpu_to_le32(mddev->delta_disks);
  1626. sb->new_level = cpu_to_le32(mddev->new_level);
  1627. sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
  1628. if (mddev->delta_disks == 0 &&
  1629. mddev->reshape_backwards)
  1630. sb->feature_map
  1631. |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
  1632. if (rdev->new_data_offset != rdev->data_offset) {
  1633. sb->feature_map
  1634. |= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
  1635. sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
  1636. - rdev->data_offset));
  1637. }
  1638. }
  1639. if (rdev->badblocks.count == 0)
  1640. /* Nothing to do for bad blocks*/ ;
  1641. else if (sb->bblog_offset == 0)
  1642. /* Cannot record bad blocks on this device */
  1643. md_error(mddev, rdev);
  1644. else {
  1645. struct badblocks *bb = &rdev->badblocks;
  1646. u64 *bbp = (u64 *)page_address(rdev->bb_page);
  1647. u64 *p = bb->page;
  1648. sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
  1649. if (bb->changed) {
  1650. unsigned seq;
  1651. retry:
  1652. seq = read_seqbegin(&bb->lock);
  1653. memset(bbp, 0xff, PAGE_SIZE);
  1654. for (i = 0 ; i < bb->count ; i++) {
  1655. u64 internal_bb = *p++;
  1656. u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
  1657. | BB_LEN(internal_bb));
  1658. *bbp++ = cpu_to_le64(store_bb);
  1659. }
  1660. bb->changed = 0;
  1661. if (read_seqretry(&bb->lock, seq))
  1662. goto retry;
  1663. bb->sector = (rdev->sb_start +
  1664. (int)le32_to_cpu(sb->bblog_offset));
  1665. bb->size = le16_to_cpu(sb->bblog_size);
  1666. }
  1667. }
  1668. max_dev = 0;
  1669. rdev_for_each(rdev2, mddev)
  1670. if (rdev2->desc_nr+1 > max_dev)
  1671. max_dev = rdev2->desc_nr+1;
  1672. if (max_dev > le32_to_cpu(sb->max_dev)) {
  1673. int bmask;
  1674. sb->max_dev = cpu_to_le32(max_dev);
  1675. rdev->sb_size = max_dev * 2 + 256;
  1676. bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
  1677. if (rdev->sb_size & bmask)
  1678. rdev->sb_size = (rdev->sb_size | bmask) + 1;
  1679. } else
  1680. max_dev = le32_to_cpu(sb->max_dev);
  1681. for (i=0; i<max_dev;i++)
  1682. sb->dev_roles[i] = cpu_to_le16(0xfffe);
  1683. rdev_for_each(rdev2, mddev) {
  1684. i = rdev2->desc_nr;
  1685. if (test_bit(Faulty, &rdev2->flags))
  1686. sb->dev_roles[i] = cpu_to_le16(0xfffe);
  1687. else if (test_bit(In_sync, &rdev2->flags))
  1688. sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
  1689. else if (rdev2->raid_disk >= 0)
  1690. sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
  1691. else
  1692. sb->dev_roles[i] = cpu_to_le16(0xffff);
  1693. }
  1694. sb->sb_csum = calc_sb_1_csum(sb);
  1695. }
  1696. static unsigned long long
  1697. super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
  1698. {
  1699. struct mdp_superblock_1 *sb;
  1700. sector_t max_sectors;
  1701. if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
  1702. return 0; /* component must fit device */
  1703. if (rdev->data_offset != rdev->new_data_offset)
  1704. return 0; /* too confusing */
  1705. if (rdev->sb_start < rdev->data_offset) {
  1706. /* minor versions 1 and 2; superblock before data */
  1707. max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
  1708. max_sectors -= rdev->data_offset;
  1709. if (!num_sectors || num_sectors > max_sectors)
  1710. num_sectors = max_sectors;
  1711. } else if (rdev->mddev->bitmap_info.offset) {
  1712. /* minor version 0 with bitmap we can't move */
  1713. return 0;
  1714. } else {
  1715. /* minor version 0; superblock after data */
  1716. sector_t sb_start;
  1717. sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
  1718. sb_start &= ~(sector_t)(4*2 - 1);
  1719. max_sectors = rdev->sectors + sb_start - rdev->sb_start;
  1720. if (!num_sectors || num_sectors > max_sectors)
  1721. num_sectors = max_sectors;
  1722. rdev->sb_start = sb_start;
  1723. }
  1724. sb = page_address(rdev->sb_page);
  1725. sb->data_size = cpu_to_le64(num_sectors);
  1726. sb->super_offset = rdev->sb_start;
  1727. sb->sb_csum = calc_sb_1_csum(sb);
  1728. md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
  1729. rdev->sb_page);
  1730. md_super_wait(rdev->mddev);
  1731. return num_sectors;
  1732. }
  1733. static int
  1734. super_1_allow_new_offset(struct md_rdev *rdev,
  1735. unsigned long long new_offset)
  1736. {
  1737. /* All necessary checks on new >= old have been done */
  1738. struct bitmap *bitmap;
  1739. if (new_offset >= rdev->data_offset)
  1740. return 1;
  1741. /* with 1.0 metadata, there is no metadata to tread on
  1742. * so we can always move back */
  1743. if (rdev->mddev->minor_version == 0)
  1744. return 1;
  1745. /* otherwise we must be sure not to step on
  1746. * any metadata, so stay:
  1747. * 36K beyond start of superblock
  1748. * beyond end of badblocks
  1749. * beyond write-intent bitmap
  1750. */
  1751. if (rdev->sb_start + (32+4)*2 > new_offset)
  1752. return 0;
  1753. bitmap = rdev->mddev->bitmap;
  1754. if (bitmap && !rdev->mddev->bitmap_info.file &&
  1755. rdev->sb_start + rdev->mddev->bitmap_info.offset +
  1756. bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
  1757. return 0;
  1758. if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
  1759. return 0;
  1760. return 1;
  1761. }
  1762. static struct super_type super_types[] = {
  1763. [0] = {
  1764. .name = "0.90.0",
  1765. .owner = THIS_MODULE,
  1766. .load_super = super_90_load,
  1767. .validate_super = super_90_validate,
  1768. .sync_super = super_90_sync,
  1769. .rdev_size_change = super_90_rdev_size_change,
  1770. .allow_new_offset = super_90_allow_new_offset,
  1771. },
  1772. [1] = {
  1773. .name = "md-1",
  1774. .owner = THIS_MODULE,
  1775. .load_super = super_1_load,
  1776. .validate_super = super_1_validate,
  1777. .sync_super = super_1_sync,
  1778. .rdev_size_change = super_1_rdev_size_change,
  1779. .allow_new_offset = super_1_allow_new_offset,
  1780. },
  1781. };
  1782. static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
  1783. {
  1784. if (mddev->sync_super) {
  1785. mddev->sync_super(mddev, rdev);
  1786. return;
  1787. }
  1788. BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
  1789. super_types[mddev->major_version].sync_super(mddev, rdev);
  1790. }
  1791. static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
  1792. {
  1793. struct md_rdev *rdev, *rdev2;
  1794. rcu_read_lock();
  1795. rdev_for_each_rcu(rdev, mddev1)
  1796. rdev_for_each_rcu(rdev2, mddev2)
  1797. if (rdev->bdev->bd_contains ==
  1798. rdev2->bdev->bd_contains) {
  1799. rcu_read_unlock();
  1800. return 1;
  1801. }
  1802. rcu_read_unlock();
  1803. return 0;
  1804. }
  1805. static LIST_HEAD(pending_raid_disks);
  1806. /*
  1807. * Try to register data integrity profile for an mddev
  1808. *
  1809. * This is called when an array is started and after a disk has been kicked
  1810. * from the array. It only succeeds if all working and active component devices
  1811. * are integrity capable with matching profiles.
  1812. */
  1813. int md_integrity_register(struct mddev *mddev)
  1814. {
  1815. struct md_rdev *rdev, *reference = NULL;
  1816. if (list_empty(&mddev->disks))
  1817. return 0; /* nothing to do */
  1818. if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
  1819. return 0; /* shouldn't register, or already is */
  1820. rdev_for_each(rdev, mddev) {
  1821. /* skip spares and non-functional disks */
  1822. if (test_bit(Faulty, &rdev->flags))
  1823. continue;
  1824. if (rdev->raid_disk < 0)
  1825. continue;
  1826. if (!reference) {
  1827. /* Use the first rdev as the reference */
  1828. reference = rdev;
  1829. continue;
  1830. }
  1831. /* does this rdev's profile match the reference profile? */
  1832. if (blk_integrity_compare(reference->bdev->bd_disk,
  1833. rdev->bdev->bd_disk) < 0)
  1834. return -EINVAL;
  1835. }
  1836. if (!reference || !bdev_get_integrity(reference->bdev))
  1837. return 0;
  1838. /*
  1839. * All component devices are integrity capable and have matching
  1840. * profiles, register the common profile for the md device.
  1841. */
  1842. if (blk_integrity_register(mddev->gendisk,
  1843. bdev_get_integrity(reference->bdev)) != 0) {
  1844. printk(KERN_ERR "md: failed to register integrity for %s\n",
  1845. mdname(mddev));
  1846. return -EINVAL;
  1847. }
  1848. printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
  1849. if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
  1850. printk(KERN_ERR "md: failed to create integrity pool for %s\n",
  1851. mdname(mddev));
  1852. return -EINVAL;
  1853. }
  1854. return 0;
  1855. }
  1856. EXPORT_SYMBOL(md_integrity_register);
  1857. /* Disable data integrity if non-capable/non-matching disk is being added */
  1858. void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
  1859. {
  1860. struct blk_integrity *bi_rdev = bdev_get_integrity(rdev->bdev);
  1861. struct blk_integrity *bi_mddev = blk_get_integrity(mddev->gendisk);
  1862. if (!bi_mddev) /* nothing to do */
  1863. return;
  1864. if (rdev->raid_disk < 0) /* skip spares */
  1865. return;
  1866. if (bi_rdev && blk_integrity_compare(mddev->gendisk,
  1867. rdev->bdev->bd_disk) >= 0)
  1868. return;
  1869. printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
  1870. blk_integrity_unregister(mddev->gendisk);
  1871. }
  1872. EXPORT_SYMBOL(md_integrity_add_rdev);
  1873. static int bind_rdev_to_array(struct md_rdev * rdev, struct mddev * mddev)
  1874. {
  1875. char b[BDEVNAME_SIZE];
  1876. struct kobject *ko;
  1877. char *s;
  1878. int err;
  1879. if (rdev->mddev) {
  1880. MD_BUG();
  1881. return -EINVAL;
  1882. }
  1883. /* prevent duplicates */
  1884. if (find_rdev(mddev, rdev->bdev->bd_dev))
  1885. return -EEXIST;
  1886. /* make sure rdev->sectors exceeds mddev->dev_sectors */
  1887. if (rdev->sectors && (mddev->dev_sectors == 0 ||
  1888. rdev->sectors < mddev->dev_sectors)) {
  1889. if (mddev->pers) {
  1890. /* Cannot change size, so fail
  1891. * If mddev->level <= 0, then we don't care
  1892. * about aligning sizes (e.g. linear)
  1893. */
  1894. if (mddev->level > 0)
  1895. return -ENOSPC;
  1896. } else
  1897. mddev->dev_sectors = rdev->sectors;
  1898. }
  1899. /* Verify rdev->desc_nr is unique.
  1900. * If it is -1, assign a free number, else
  1901. * check number is not in use
  1902. */
  1903. if (rdev->desc_nr < 0) {
  1904. int choice = 0;
  1905. if (mddev->pers) choice = mddev->raid_disks;
  1906. while (find_rdev_nr(mddev, choice))
  1907. choice++;
  1908. rdev->desc_nr = choice;
  1909. } else {
  1910. if (find_rdev_nr(mddev, rdev->desc_nr))
  1911. return -EBUSY;
  1912. }
  1913. if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
  1914. printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
  1915. mdname(mddev), mddev->max_disks);
  1916. return -EBUSY;
  1917. }
  1918. bdevname(rdev->bdev,b);
  1919. while ( (s=strchr(b, '/')) != NULL)
  1920. *s = '!';
  1921. rdev->mddev = mddev;
  1922. printk(KERN_INFO "md: bind<%s>\n", b);
  1923. if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
  1924. goto fail;
  1925. ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
  1926. if (sysfs_create_link(&rdev->kobj, ko, "block"))
  1927. /* failure here is OK */;
  1928. rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
  1929. list_add_rcu(&rdev->same_set, &mddev->disks);
  1930. bd_link_disk_holder(rdev->bdev, mddev->gendisk);
  1931. /* May as well allow recovery to be retried once */
  1932. mddev->recovery_disabled++;
  1933. return 0;
  1934. fail:
  1935. printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
  1936. b, mdname(mddev));
  1937. return err;
  1938. }
  1939. static void md_delayed_delete(struct work_struct *ws)
  1940. {
  1941. struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
  1942. kobject_del(&rdev->kobj);
  1943. kobject_put(&rdev->kobj);
  1944. }
  1945. static void unbind_rdev_from_array(struct md_rdev * rdev)
  1946. {
  1947. char b[BDEVNAME_SIZE];
  1948. if (!rdev->mddev) {
  1949. MD_BUG();
  1950. return;
  1951. }
  1952. bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
  1953. list_del_rcu(&rdev->same_set);
  1954. printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
  1955. rdev->mddev = NULL;
  1956. sysfs_remove_link(&rdev->kobj, "block");
  1957. sysfs_put(rdev->sysfs_state);
  1958. rdev->sysfs_state = NULL;
  1959. rdev->badblocks.count = 0;
  1960. /* We need to delay this, otherwise we can deadlock when
  1961. * writing to 'remove' to "dev/state". We also need
  1962. * to delay it due to rcu usage.
  1963. */
  1964. synchronize_rcu();
  1965. INIT_WORK(&rdev->del_work, md_delayed_delete);
  1966. kobject_get(&rdev->kobj);
  1967. queue_work(md_misc_wq, &rdev->del_work);
  1968. }
  1969. /*
  1970. * prevent the device from being mounted, repartitioned or
  1971. * otherwise reused by a RAID array (or any other kernel
  1972. * subsystem), by bd_claiming the device.
  1973. */
  1974. static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
  1975. {
  1976. int err = 0;
  1977. struct block_device *bdev;
  1978. char b[BDEVNAME_SIZE];
  1979. bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
  1980. shared ? (struct md_rdev *)lock_rdev : rdev);
  1981. if (IS_ERR(bdev)) {
  1982. printk(KERN_ERR "md: could not open %s.\n",
  1983. __bdevname(dev, b));
  1984. return PTR_ERR(bdev);
  1985. }
  1986. rdev->bdev = bdev;
  1987. return err;
  1988. }
  1989. static void unlock_rdev(struct md_rdev *rdev)
  1990. {
  1991. struct block_device *bdev = rdev->bdev;
  1992. rdev->bdev = NULL;
  1993. if (!bdev)
  1994. MD_BUG();
  1995. blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
  1996. }
  1997. void md_autodetect_dev(dev_t dev);
  1998. static void export_rdev(struct md_rdev * rdev)
  1999. {
  2000. char b[BDEVNAME_SIZE];
  2001. printk(KERN_INFO "md: export_rdev(%s)\n",
  2002. bdevname(rdev->bdev,b));
  2003. if (rdev->mddev)
  2004. MD_BUG();
  2005. md_rdev_clear(rdev);
  2006. #ifndef MODULE
  2007. if (test_bit(AutoDetected, &rdev->flags))
  2008. md_autodetect_dev(rdev->bdev->bd_dev);
  2009. #endif
  2010. unlock_rdev(rdev);
  2011. kobject_put(&rdev->kobj);
  2012. }
  2013. static void kick_rdev_from_array(struct md_rdev * rdev)
  2014. {
  2015. unbind_rdev_from_array(rdev);
  2016. export_rdev(rdev);
  2017. }
  2018. static void export_array(struct mddev *mddev)
  2019. {
  2020. struct md_rdev *rdev, *tmp;
  2021. rdev_for_each_safe(rdev, tmp, mddev) {
  2022. if (!rdev->mddev) {
  2023. MD_BUG();
  2024. continue;
  2025. }
  2026. kick_rdev_from_array(rdev);
  2027. }
  2028. if (!list_empty(&mddev->disks))
  2029. MD_BUG();
  2030. mddev->raid_disks = 0;
  2031. mddev->major_version = 0;
  2032. }
  2033. static void print_desc(mdp_disk_t *desc)
  2034. {
  2035. printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
  2036. desc->major,desc->minor,desc->raid_disk,desc->state);
  2037. }
  2038. static void print_sb_90(mdp_super_t *sb)
  2039. {
  2040. int i;
  2041. printk(KERN_INFO
  2042. "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
  2043. sb->major_version, sb->minor_version, sb->patch_version,
  2044. sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
  2045. sb->ctime);
  2046. printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
  2047. sb->level, sb->size, sb->nr_disks, sb->raid_disks,
  2048. sb->md_minor, sb->layout, sb->chunk_size);
  2049. printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d"
  2050. " FD:%d SD:%d CSUM:%08x E:%08lx\n",
  2051. sb->utime, sb->state, sb->active_disks, sb->working_disks,
  2052. sb->failed_disks, sb->spare_disks,
  2053. sb->sb_csum, (unsigned long)sb->events_lo);
  2054. printk(KERN_INFO);
  2055. for (i = 0; i < MD_SB_DISKS; i++) {
  2056. mdp_disk_t *desc;
  2057. desc = sb->disks + i;
  2058. if (desc->number || desc->major || desc->minor ||
  2059. desc->raid_disk || (desc->state && (desc->state != 4))) {
  2060. printk(" D %2d: ", i);
  2061. print_desc(desc);
  2062. }
  2063. }
  2064. printk(KERN_INFO "md: THIS: ");
  2065. print_desc(&sb->this_disk);
  2066. }
  2067. static void print_sb_1(struct mdp_superblock_1 *sb)
  2068. {
  2069. __u8 *uuid;
  2070. uuid = sb->set_uuid;
  2071. printk(KERN_INFO
  2072. "md: SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n"
  2073. "md: Name: \"%s\" CT:%llu\n",
  2074. le32_to_cpu(sb->major_version),
  2075. le32_to_cpu(sb->feature_map),
  2076. uuid,
  2077. sb->set_name,
  2078. (unsigned long long)le64_to_cpu(sb->ctime)
  2079. & MD_SUPERBLOCK_1_TIME_SEC_MASK);
  2080. uuid = sb->device_uuid;
  2081. printk(KERN_INFO
  2082. "md: L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu"
  2083. " RO:%llu\n"
  2084. "md: Dev:%08x UUID: %pU\n"
  2085. "md: (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n"
  2086. "md: (MaxDev:%u) \n",
  2087. le32_to_cpu(sb->level),
  2088. (unsigned long long)le64_to_cpu(sb->size),
  2089. le32_to_cpu(sb->raid_disks),
  2090. le32_to_cpu(sb->layout),
  2091. le32_to_cpu(sb->chunksize),
  2092. (unsigned long long)le64_to_cpu(sb->data_offset),
  2093. (unsigned long long)le64_to_cpu(sb->data_size),
  2094. (unsigned long long)le64_to_cpu(sb->super_offset),
  2095. (unsigned long long)le64_to_cpu(sb->recovery_offset),
  2096. le32_to_cpu(sb->dev_number),
  2097. uuid,
  2098. sb->devflags,
  2099. (unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK,
  2100. (unsigned long long)le64_to_cpu(sb->events),
  2101. (unsigned long long)le64_to_cpu(sb->resync_offset),
  2102. le32_to_cpu(sb->sb_csum),
  2103. le32_to_cpu(sb->max_dev)
  2104. );
  2105. }
  2106. static void print_rdev(struct md_rdev *rdev, int major_version)
  2107. {
  2108. char b[BDEVNAME_SIZE];
  2109. printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n",
  2110. bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors,
  2111. test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
  2112. rdev->desc_nr);
  2113. if (rdev->sb_loaded) {
  2114. printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version);
  2115. switch (major_version) {
  2116. case 0:
  2117. print_sb_90(page_address(rdev->sb_page));
  2118. break;
  2119. case 1:
  2120. print_sb_1(page_address(rdev->sb_page));
  2121. break;
  2122. }
  2123. } else
  2124. printk(KERN_INFO "md: no rdev superblock!\n");
  2125. }
  2126. static void md_print_devices(void)
  2127. {
  2128. struct list_head *tmp;
  2129. struct md_rdev *rdev;
  2130. struct mddev *mddev;
  2131. char b[BDEVNAME_SIZE];
  2132. printk("\n");
  2133. printk("md: **********************************\n");
  2134. printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n");
  2135. printk("md: **********************************\n");
  2136. for_each_mddev(mddev, tmp) {
  2137. if (mddev->bitmap)
  2138. bitmap_print_sb(mddev->bitmap);
  2139. else
  2140. printk("%s: ", mdname(mddev));
  2141. rdev_for_each(rdev, mddev)
  2142. printk("<%s>", bdevname(rdev->bdev,b));
  2143. printk("\n");
  2144. rdev_for_each(rdev, mddev)
  2145. print_rdev(rdev, mddev->major_version);
  2146. }
  2147. printk("md: **********************************\n");
  2148. printk("\n");
  2149. }
  2150. static void sync_sbs(struct mddev * mddev, int nospares)
  2151. {
  2152. /* Update each superblock (in-memory image), but
  2153. * if we are allowed to, skip spares which already
  2154. * have the right event counter, or have one earlier
  2155. * (which would mean they aren't being marked as dirty
  2156. * with the rest of the array)
  2157. */
  2158. struct md_rdev *rdev;
  2159. rdev_for_each(rdev, mddev) {
  2160. if (rdev->sb_events == mddev->events ||
  2161. (nospares &&
  2162. rdev->raid_disk < 0 &&
  2163. rdev->sb_events+1 == mddev->events)) {
  2164. /* Don't update this superblock */
  2165. rdev->sb_loaded = 2;
  2166. } else {
  2167. sync_super(mddev, rdev);
  2168. rdev->sb_loaded = 1;
  2169. }
  2170. }
  2171. }
  2172. static void md_update_sb(struct mddev * mddev, int force_change)
  2173. {
  2174. struct md_rdev *rdev;
  2175. int sync_req;
  2176. int nospares = 0;
  2177. int any_badblocks_changed = 0;
  2178. repeat:
  2179. /* First make sure individual recovery_offsets are correct */
  2180. rdev_for_each(rdev, mddev) {
  2181. if (rdev->raid_disk >= 0 &&
  2182. mddev->delta_disks >= 0 &&
  2183. !test_bit(In_sync, &rdev->flags) &&
  2184. mddev->curr_resync_completed > rdev->recovery_offset)
  2185. rdev->recovery_offset = mddev->curr_resync_completed;
  2186. }
  2187. if (!mddev->persistent) {
  2188. clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
  2189. clear_bit(MD_CHANGE_DEVS, &mddev->flags);
  2190. if (!mddev->external) {
  2191. clear_bit(MD_CHANGE_PENDING, &mddev->flags);
  2192. rdev_for_each(rdev, mddev) {
  2193. if (rdev->badblocks.changed) {
  2194. rdev->badblocks.changed = 0;
  2195. md_ack_all_badblocks(&rdev->badblocks);
  2196. md_error(mddev, rdev);
  2197. }
  2198. clear_bit(Blocked, &rdev->flags);
  2199. clear_bit(BlockedBadBlocks, &rdev->flags);
  2200. wake_up(&rdev->blocked_wait);
  2201. }
  2202. }
  2203. wake_up(&mddev->sb_wait);
  2204. return;
  2205. }
  2206. spin_lock_irq(&mddev->write_lock);
  2207. mddev->utime = get_seconds();
  2208. if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
  2209. force_change = 1;
  2210. if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
  2211. /* just a clean<-> dirty transition, possibly leave spares alone,
  2212. * though if events isn't the right even/odd, we will have to do
  2213. * spares after all
  2214. */
  2215. nospares = 1;
  2216. if (force_change)
  2217. nospares = 0;
  2218. if (mddev->degraded)
  2219. /* If the array is degraded, then skipping spares is both
  2220. * dangerous and fairly pointless.
  2221. * Dangerous because a device that was removed from the array
  2222. * might have a event_count that still looks up-to-date,
  2223. * so it can be re-added without a resync.
  2224. * Pointless because if there are any spares to skip,
  2225. * then a recovery will happen and soon that array won't
  2226. * be degraded any more and the spare can go back to sleep then.
  2227. */
  2228. nospares = 0;
  2229. sync_req = mddev->in_sync;
  2230. /* If this is just a dirty<->clean transition, and the array is clean
  2231. * and 'events' is odd, we can roll back to the previous clean state */
  2232. if (nospares
  2233. && (mddev->in_sync && mddev->recovery_cp == MaxSector)
  2234. && mddev->can_decrease_events
  2235. && mddev->events != 1) {
  2236. mddev->events--;
  2237. mddev->can_decrease_events = 0;
  2238. } else {
  2239. /* otherwise we have to go forward and ... */
  2240. mddev->events ++;
  2241. mddev->can_decrease_events = nospares;
  2242. }
  2243. if (!mddev->events) {
  2244. /*
  2245. * oops, this 64-bit counter should never wrap.
  2246. * Either we are in around ~1 trillion A.C., assuming
  2247. * 1 reboot per second, or we have a bug:
  2248. */
  2249. MD_BUG();
  2250. mddev->events --;
  2251. }
  2252. rdev_for_each(rdev, mddev) {
  2253. if (rdev->badblocks.changed)
  2254. any_badblocks_changed++;
  2255. if (test_bit(Faulty, &rdev->flags))
  2256. set_bit(FaultRecorded, &rdev->flags);
  2257. }
  2258. sync_sbs(mddev, nospares);
  2259. spin_unlock_irq(&mddev->write_lock);
  2260. pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
  2261. mdname(mddev), mddev->in_sync);
  2262. bitmap_update_sb(mddev->bitmap);
  2263. rdev_for_each(rdev, mddev) {
  2264. char b[BDEVNAME_SIZE];
  2265. if (rdev->sb_loaded != 1)
  2266. continue; /* no noise on spare devices */
  2267. if (!test_bit(Faulty, &rdev->flags) &&
  2268. rdev->saved_raid_disk == -1) {
  2269. md_super_write(mddev,rdev,
  2270. rdev->sb_start, rdev->sb_size,
  2271. rdev->sb_page);
  2272. pr_debug("md: (write) %s's sb offset: %llu\n",
  2273. bdevname(rdev->bdev, b),
  2274. (unsigned long long)rdev->sb_start);
  2275. rdev->sb_events = mddev->events;
  2276. if (rdev->badblocks.size) {
  2277. md_super_write(mddev, rdev,
  2278. rdev->badblocks.sector,
  2279. rdev->badblocks.size << 9,
  2280. rdev->bb_page);
  2281. rdev->badblocks.size = 0;
  2282. }
  2283. } else if (test_bit(Faulty, &rdev->flags))
  2284. pr_debug("md: %s (skipping faulty)\n",
  2285. bdevname(rdev->bdev, b));
  2286. else
  2287. pr_debug("(skipping incremental s/r ");
  2288. if (mddev->level == LEVEL_MULTIPATH)
  2289. /* only need to write one superblock... */
  2290. break;
  2291. }
  2292. md_super_wait(mddev);
  2293. /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
  2294. spin_lock_irq(&mddev->write_lock);
  2295. if (mddev->in_sync != sync_req ||
  2296. test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
  2297. /* have to write it out again */
  2298. spin_unlock_irq(&mddev->write_lock);
  2299. goto repeat;
  2300. }
  2301. clear_bit(MD_CHANGE_PENDING, &mddev->flags);
  2302. spin_unlock_irq(&mddev->write_lock);
  2303. wake_up(&mddev->sb_wait);
  2304. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  2305. sysfs_notify(&mddev->kobj, NULL, "sync_completed");
  2306. rdev_for_each(rdev, mddev) {
  2307. if (test_and_clear_bit(FaultRecorded, &rdev->flags))
  2308. clear_bit(Blocked, &rdev->flags);
  2309. if (any_badblocks_changed)
  2310. md_ack_all_badblocks(&rdev->badblocks);
  2311. clear_bit(BlockedBadBlocks, &rdev->flags);
  2312. wake_up(&rdev->blocked_wait);
  2313. }
  2314. }
  2315. /* words written to sysfs files may, or may not, be \n terminated.
  2316. * We want to accept with case. For this we use cmd_match.
  2317. */
  2318. static int cmd_match(const char *cmd, const char *str)
  2319. {
  2320. /* See if cmd, written into a sysfs file, matches
  2321. * str. They must either be the same, or cmd can
  2322. * have a trailing newline
  2323. */
  2324. while (*cmd && *str && *cmd == *str) {
  2325. cmd++;
  2326. str++;
  2327. }
  2328. if (*cmd == '\n')
  2329. cmd++;
  2330. if (*str || *cmd)
  2331. return 0;
  2332. return 1;
  2333. }
  2334. struct rdev_sysfs_entry {
  2335. struct attribute attr;
  2336. ssize_t (*show)(struct md_rdev *, char *);
  2337. ssize_t (*store)(struct md_rdev *, const char *, size_t);
  2338. };
  2339. static ssize_t
  2340. state_show(struct md_rdev *rdev, char *page)
  2341. {
  2342. char *sep = "";
  2343. size_t len = 0;
  2344. if (test_bit(Faulty, &rdev->flags) ||
  2345. rdev->badblocks.unacked_exist) {
  2346. len+= sprintf(page+len, "%sfaulty",sep);
  2347. sep = ",";
  2348. }
  2349. if (test_bit(In_sync, &rdev->flags)) {
  2350. len += sprintf(page+len, "%sin_sync",sep);
  2351. sep = ",";
  2352. }
  2353. if (test_bit(WriteMostly, &rdev->flags)) {
  2354. len += sprintf(page+len, "%swrite_mostly",sep);
  2355. sep = ",";
  2356. }
  2357. if (test_bit(Blocked, &rdev->flags) ||
  2358. (rdev->badblocks.unacked_exist
  2359. && !test_bit(Faulty, &rdev->flags))) {
  2360. len += sprintf(page+len, "%sblocked", sep);
  2361. sep = ",";
  2362. }
  2363. if (!test_bit(Faulty, &rdev->flags) &&
  2364. !test_bit(In_sync, &rdev->flags)) {
  2365. len += sprintf(page+len, "%sspare", sep);
  2366. sep = ",";
  2367. }
  2368. if (test_bit(WriteErrorSeen, &rdev->flags)) {
  2369. len += sprintf(page+len, "%swrite_error", sep);
  2370. sep = ",";
  2371. }
  2372. if (test_bit(WantReplacement, &rdev->flags)) {
  2373. len += sprintf(page+len, "%swant_replacement", sep);
  2374. sep = ",";
  2375. }
  2376. if (test_bit(Replacement, &rdev->flags)) {
  2377. len += sprintf(page+len, "%sreplacement", sep);
  2378. sep = ",";
  2379. }
  2380. return len+sprintf(page+len, "\n");
  2381. }
  2382. static ssize_t
  2383. state_store(struct md_rdev *rdev, const char *buf, size_t len)
  2384. {
  2385. /* can write
  2386. * faulty - simulates an error
  2387. * remove - disconnects the device
  2388. * writemostly - sets write_mostly
  2389. * -writemostly - clears write_mostly
  2390. * blocked - sets the Blocked flags
  2391. * -blocked - clears the Blocked and possibly simulates an error
  2392. * insync - sets Insync providing device isn't active
  2393. * write_error - sets WriteErrorSeen
  2394. * -write_error - clears WriteErrorSeen
  2395. */
  2396. int err = -EINVAL;
  2397. if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
  2398. md_error(rdev->mddev, rdev);
  2399. if (test_bit(Faulty, &rdev->flags))
  2400. err = 0;
  2401. else
  2402. err = -EBUSY;
  2403. } else if (cmd_match(buf, "remove")) {
  2404. if (rdev->raid_disk >= 0)
  2405. err = -EBUSY;
  2406. else {
  2407. struct mddev *mddev = rdev->mddev;
  2408. kick_rdev_from_array(rdev);
  2409. if (mddev->pers)
  2410. md_update_sb(mddev, 1);
  2411. md_new_event(mddev);
  2412. err = 0;
  2413. }
  2414. } else if (cmd_match(buf, "writemostly")) {
  2415. set_bit(WriteMostly, &rdev->flags);
  2416. err = 0;
  2417. } else if (cmd_match(buf, "-writemostly")) {
  2418. clear_bit(WriteMostly, &rdev->flags);
  2419. err = 0;
  2420. } else if (cmd_match(buf, "blocked")) {
  2421. set_bit(Blocked, &rdev->flags);
  2422. err = 0;
  2423. } else if (cmd_match(buf, "-blocked")) {
  2424. if (!test_bit(Faulty, &rdev->flags) &&
  2425. rdev->badblocks.unacked_exist) {
  2426. /* metadata handler doesn't understand badblocks,
  2427. * so we need to fail the device
  2428. */
  2429. md_error(rdev->mddev, rdev);
  2430. }
  2431. clear_bit(Blocked, &rdev->flags);
  2432. clear_bit(BlockedBadBlocks, &rdev->flags);
  2433. wake_up(&rdev->blocked_wait);
  2434. set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
  2435. md_wakeup_thread(rdev->mddev->thread);
  2436. err = 0;
  2437. } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
  2438. set_bit(In_sync, &rdev->flags);
  2439. err = 0;
  2440. } else if (cmd_match(buf, "write_error")) {
  2441. set_bit(WriteErrorSeen, &rdev->flags);
  2442. err = 0;
  2443. } else if (cmd_match(buf, "-write_error")) {
  2444. clear_bit(WriteErrorSeen, &rdev->flags);
  2445. err = 0;
  2446. } else if (cmd_match(buf, "want_replacement")) {
  2447. /* Any non-spare device that is not a replacement can
  2448. * become want_replacement at any time, but we then need to
  2449. * check if recovery is needed.
  2450. */
  2451. if (rdev->raid_disk >= 0 &&
  2452. !test_bit(Replacement, &rdev->flags))
  2453. set_bit(WantReplacement, &rdev->flags);
  2454. set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
  2455. md_wakeup_thread(rdev->mddev->thread);
  2456. err = 0;
  2457. } else if (cmd_match(buf, "-want_replacement")) {
  2458. /* Clearing 'want_replacement' is always allowed.
  2459. * Once replacements starts it is too late though.
  2460. */
  2461. err = 0;
  2462. clear_bit(WantReplacement, &rdev->flags);
  2463. } else if (cmd_match(buf, "replacement")) {
  2464. /* Can only set a device as a replacement when array has not
  2465. * yet been started. Once running, replacement is automatic
  2466. * from spares, or by assigning 'slot'.
  2467. */
  2468. if (rdev->mddev->pers)
  2469. err = -EBUSY;
  2470. else {
  2471. set_bit(Replacement, &rdev->flags);
  2472. err = 0;
  2473. }
  2474. } else if (cmd_match(buf, "-replacement")) {
  2475. /* Similarly, can only clear Replacement before start */
  2476. if (rdev->mddev->pers)
  2477. err = -EBUSY;
  2478. else {
  2479. clear_bit(Replacement, &rdev->flags);
  2480. err = 0;
  2481. }
  2482. }
  2483. if (!err)
  2484. sysfs_notify_dirent_safe(rdev->sysfs_state);
  2485. return err ? err : len;
  2486. }
  2487. static struct rdev_sysfs_entry rdev_state =
  2488. __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
  2489. static ssize_t
  2490. errors_show(struct md_rdev *rdev, char *page)
  2491. {
  2492. return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
  2493. }
  2494. static ssize_t
  2495. errors_store(struct md_rdev *rdev, const char *buf, size_t len)
  2496. {
  2497. char *e;
  2498. unsigned long n = simple_strtoul(buf, &e, 10);
  2499. if (*buf && (*e == 0 || *e == '\n')) {
  2500. atomic_set(&rdev->corrected_errors, n);
  2501. return len;
  2502. }
  2503. return -EINVAL;
  2504. }
  2505. static struct rdev_sysfs_entry rdev_errors =
  2506. __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
  2507. static ssize_t
  2508. slot_show(struct md_rdev *rdev, char *page)
  2509. {
  2510. if (rdev->raid_disk < 0)
  2511. return sprintf(page, "none\n");
  2512. else
  2513. return sprintf(page, "%d\n", rdev->raid_disk);
  2514. }
  2515. static ssize_t
  2516. slot_store(struct md_rdev *rdev, const char *buf, size_t len)
  2517. {
  2518. char *e;
  2519. int err;
  2520. int slot = simple_strtoul(buf, &e, 10);
  2521. if (strncmp(buf, "none", 4)==0)
  2522. slot = -1;
  2523. else if (e==buf || (*e && *e!= '\n'))
  2524. return -EINVAL;
  2525. if (rdev->mddev->pers && slot == -1) {
  2526. /* Setting 'slot' on an active array requires also
  2527. * updating the 'rd%d' link, and communicating
  2528. * with the personality with ->hot_*_disk.
  2529. * For now we only support removing
  2530. * failed/spare devices. This normally happens automatically,
  2531. * but not when the metadata is externally managed.
  2532. */
  2533. if (rdev->raid_disk == -1)
  2534. return -EEXIST;
  2535. /* personality does all needed checks */
  2536. if (rdev->mddev->pers->hot_remove_disk == NULL)
  2537. return -EINVAL;
  2538. err = rdev->mddev->pers->
  2539. hot_remove_disk(rdev->mddev, rdev);
  2540. if (err)
  2541. return err;
  2542. sysfs_unlink_rdev(rdev->mddev, rdev);
  2543. rdev->raid_disk = -1;
  2544. set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
  2545. md_wakeup_thread(rdev->mddev->thread);
  2546. } else if (rdev->mddev->pers) {
  2547. /* Activating a spare .. or possibly reactivating
  2548. * if we ever get bitmaps working here.
  2549. */
  2550. if (rdev->raid_disk != -1)
  2551. return -EBUSY;
  2552. if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
  2553. return -EBUSY;
  2554. if (rdev->mddev->pers->hot_add_disk == NULL)
  2555. return -EINVAL;
  2556. if (slot >= rdev->mddev->raid_disks &&
  2557. slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
  2558. return -ENOSPC;
  2559. rdev->raid_disk = slot;
  2560. if (test_bit(In_sync, &rdev->flags))
  2561. rdev->saved_raid_disk = slot;
  2562. else
  2563. rdev->saved_raid_disk = -1;
  2564. clear_bit(In_sync, &rdev->flags);
  2565. err = rdev->mddev->pers->
  2566. hot_add_disk(rdev->mddev, rdev);
  2567. if (err) {
  2568. rdev->raid_disk = -1;
  2569. return err;
  2570. } else
  2571. sysfs_notify_dirent_safe(rdev->sysfs_state);
  2572. if (sysfs_link_rdev(rdev->mddev, rdev))
  2573. /* failure here is OK */;
  2574. /* don't wakeup anyone, leave that to userspace. */
  2575. } else {
  2576. if (slot >= rdev->mddev->raid_disks &&
  2577. slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
  2578. return -ENOSPC;
  2579. rdev->raid_disk = slot;
  2580. /* assume it is working */
  2581. clear_bit(Faulty, &rdev->flags);
  2582. clear_bit(WriteMostly, &rdev->flags);
  2583. set_bit(In_sync, &rdev->flags);
  2584. sysfs_notify_dirent_safe(rdev->sysfs_state);
  2585. }
  2586. return len;
  2587. }
  2588. static struct rdev_sysfs_entry rdev_slot =
  2589. __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
  2590. static ssize_t
  2591. offset_show(struct md_rdev *rdev, char *page)
  2592. {
  2593. return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
  2594. }
  2595. static ssize_t
  2596. offset_store(struct md_rdev *rdev, const char *buf, size_t len)
  2597. {
  2598. unsigned long long offset;
  2599. if (strict_strtoull(buf, 10, &offset) < 0)
  2600. return -EINVAL;
  2601. if (rdev->mddev->pers && rdev->raid_disk >= 0)
  2602. return -EBUSY;
  2603. if (rdev->sectors && rdev->mddev->external)
  2604. /* Must set offset before size, so overlap checks
  2605. * can be sane */
  2606. return -EBUSY;
  2607. rdev->data_offset = offset;
  2608. return len;
  2609. }
  2610. static struct rdev_sysfs_entry rdev_offset =
  2611. __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
  2612. static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
  2613. {
  2614. return sprintf(page, "%llu\n",
  2615. (unsigned long long)rdev->new_data_offset);
  2616. }
  2617. static ssize_t new_offset_store(struct md_rdev *rdev,
  2618. const char *buf, size_t len)
  2619. {
  2620. unsigned long long new_offset;
  2621. struct mddev *mddev = rdev->mddev;
  2622. if (strict_strtoull(buf, 10, &new_offset) < 0)
  2623. return -EINVAL;
  2624. if (mddev->sync_thread)
  2625. return -EBUSY;
  2626. if (new_offset == rdev->data_offset)
  2627. /* reset is always permitted */
  2628. ;
  2629. else if (new_offset > rdev->data_offset) {
  2630. /* must not push array size beyond rdev_sectors */
  2631. if (new_offset - rdev->data_offset
  2632. + mddev->dev_sectors > rdev->sectors)
  2633. return -E2BIG;
  2634. }
  2635. /* Metadata worries about other space details. */
  2636. /* decreasing the offset is inconsistent with a backwards
  2637. * reshape.
  2638. */
  2639. if (new_offset < rdev->data_offset &&
  2640. mddev->reshape_backwards)
  2641. return -EINVAL;
  2642. /* Increasing offset is inconsistent with forwards
  2643. * reshape. reshape_direction should be set to
  2644. * 'backwards' first.
  2645. */
  2646. if (new_offset > rdev->data_offset &&
  2647. !mddev->reshape_backwards)
  2648. return -EINVAL;
  2649. if (mddev->pers && mddev->persistent &&
  2650. !super_types[mddev->major_version]
  2651. .allow_new_offset(rdev, new_offset))
  2652. return -E2BIG;
  2653. rdev->new_data_offset = new_offset;
  2654. if (new_offset > rdev->data_offset)
  2655. mddev->reshape_backwards = 1;
  2656. else if (new_offset < rdev->data_offset)
  2657. mddev->reshape_backwards = 0;
  2658. return len;
  2659. }
  2660. static struct rdev_sysfs_entry rdev_new_offset =
  2661. __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
  2662. static ssize_t
  2663. rdev_size_show(struct md_rdev *rdev, char *page)
  2664. {
  2665. return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
  2666. }
  2667. static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
  2668. {
  2669. /* check if two start/length pairs overlap */
  2670. if (s1+l1 <= s2)
  2671. return 0;
  2672. if (s2+l2 <= s1)
  2673. return 0;
  2674. return 1;
  2675. }
  2676. static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
  2677. {
  2678. unsigned long long blocks;
  2679. sector_t new;
  2680. if (strict_strtoull(buf, 10, &blocks) < 0)
  2681. return -EINVAL;
  2682. if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
  2683. return -EINVAL; /* sector conversion overflow */
  2684. new = blocks * 2;
  2685. if (new != blocks * 2)
  2686. return -EINVAL; /* unsigned long long to sector_t overflow */
  2687. *sectors = new;
  2688. return 0;
  2689. }
  2690. static ssize_t
  2691. rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
  2692. {
  2693. struct mddev *my_mddev = rdev->mddev;
  2694. sector_t oldsectors = rdev->sectors;
  2695. sector_t sectors;
  2696. if (strict_blocks_to_sectors(buf, &sectors) < 0)
  2697. return -EINVAL;
  2698. if (rdev->data_offset != rdev->new_data_offset)
  2699. return -EINVAL; /* too confusing */
  2700. if (my_mddev->pers && rdev->raid_disk >= 0) {
  2701. if (my_mddev->persistent) {
  2702. sectors = super_types[my_mddev->major_version].
  2703. rdev_size_change(rdev, sectors);
  2704. if (!sectors)
  2705. return -EBUSY;
  2706. } else if (!sectors)
  2707. sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
  2708. rdev->data_offset;
  2709. }
  2710. if (sectors < my_mddev->dev_sectors)
  2711. return -EINVAL; /* component must fit device */
  2712. rdev->sectors = sectors;
  2713. if (sectors > oldsectors && my_mddev->external) {
  2714. /* need to check that all other rdevs with the same ->bdev
  2715. * do not overlap. We need to unlock the mddev to avoid
  2716. * a deadlock. We have already changed rdev->sectors, and if
  2717. * we have to change it back, we will have the lock again.
  2718. */
  2719. struct mddev *mddev;
  2720. int overlap = 0;
  2721. struct list_head *tmp;
  2722. mddev_unlock(my_mddev);
  2723. for_each_mddev(mddev, tmp) {
  2724. struct md_rdev *rdev2;
  2725. mddev_lock(mddev);
  2726. rdev_for_each(rdev2, mddev)
  2727. if (rdev->bdev == rdev2->bdev &&
  2728. rdev != rdev2 &&
  2729. overlaps(rdev->data_offset, rdev->sectors,
  2730. rdev2->data_offset,
  2731. rdev2->sectors)) {
  2732. overlap = 1;
  2733. break;
  2734. }
  2735. mddev_unlock(mddev);
  2736. if (overlap) {
  2737. mddev_put(mddev);
  2738. break;
  2739. }
  2740. }
  2741. mddev_lock(my_mddev);
  2742. if (overlap) {
  2743. /* Someone else could have slipped in a size
  2744. * change here, but doing so is just silly.
  2745. * We put oldsectors back because we *know* it is
  2746. * safe, and trust userspace not to race with
  2747. * itself
  2748. */
  2749. rdev->sectors = oldsectors;
  2750. return -EBUSY;
  2751. }
  2752. }
  2753. return len;
  2754. }
  2755. static struct rdev_sysfs_entry rdev_size =
  2756. __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
  2757. static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
  2758. {
  2759. unsigned long long recovery_start = rdev->recovery_offset;
  2760. if (test_bit(In_sync, &rdev->flags) ||
  2761. recovery_start == MaxSector)
  2762. return sprintf(page, "none\n");
  2763. return sprintf(page, "%llu\n", recovery_start);
  2764. }
  2765. static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
  2766. {
  2767. unsigned long long recovery_start;
  2768. if (cmd_match(buf, "none"))
  2769. recovery_start = MaxSector;
  2770. else if (strict_strtoull(buf, 10, &recovery_start))
  2771. return -EINVAL;
  2772. if (rdev->mddev->pers &&
  2773. rdev->raid_disk >= 0)
  2774. return -EBUSY;
  2775. rdev->recovery_offset = recovery_start;
  2776. if (recovery_start == MaxSector)
  2777. set_bit(In_sync, &rdev->flags);
  2778. else
  2779. clear_bit(In_sync, &rdev->flags);
  2780. return len;
  2781. }
  2782. static struct rdev_sysfs_entry rdev_recovery_start =
  2783. __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
  2784. static ssize_t
  2785. badblocks_show(struct badblocks *bb, char *page, int unack);
  2786. static ssize_t
  2787. badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
  2788. static ssize_t bb_show(struct md_rdev *rdev, char *page)
  2789. {
  2790. return badblocks_show(&rdev->badblocks, page, 0);
  2791. }
  2792. static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
  2793. {
  2794. int rv = badblocks_store(&rdev->badblocks, page, len, 0);
  2795. /* Maybe that ack was all we needed */
  2796. if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
  2797. wake_up(&rdev->blocked_wait);
  2798. return rv;
  2799. }
  2800. static struct rdev_sysfs_entry rdev_bad_blocks =
  2801. __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
  2802. static ssize_t ubb_show(struct md_rdev *rdev, char *page)
  2803. {
  2804. return badblocks_show(&rdev->badblocks, page, 1);
  2805. }
  2806. static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
  2807. {
  2808. return badblocks_store(&rdev->badblocks, page, len, 1);
  2809. }
  2810. static struct rdev_sysfs_entry rdev_unack_bad_blocks =
  2811. __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
  2812. static struct attribute *rdev_default_attrs[] = {
  2813. &rdev_state.attr,
  2814. &rdev_errors.attr,
  2815. &rdev_slot.attr,
  2816. &rdev_offset.attr,
  2817. &rdev_new_offset.attr,
  2818. &rdev_size.attr,
  2819. &rdev_recovery_start.attr,
  2820. &rdev_bad_blocks.attr,
  2821. &rdev_unack_bad_blocks.attr,
  2822. NULL,
  2823. };
  2824. static ssize_t
  2825. rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  2826. {
  2827. struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
  2828. struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
  2829. struct mddev *mddev = rdev->mddev;
  2830. ssize_t rv;
  2831. if (!entry->show)
  2832. return -EIO;
  2833. rv = mddev ? mddev_lock(mddev) : -EBUSY;
  2834. if (!rv) {
  2835. if (rdev->mddev == NULL)
  2836. rv = -EBUSY;
  2837. else
  2838. rv = entry->show(rdev, page);
  2839. mddev_unlock(mddev);
  2840. }
  2841. return rv;
  2842. }
  2843. static ssize_t
  2844. rdev_attr_store(struct kobject *kobj, struct attribute *attr,
  2845. const char *page, size_t length)
  2846. {
  2847. struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
  2848. struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
  2849. ssize_t rv;
  2850. struct mddev *mddev = rdev->mddev;
  2851. if (!entry->store)
  2852. return -EIO;
  2853. if (!capable(CAP_SYS_ADMIN))
  2854. return -EACCES;
  2855. rv = mddev ? mddev_lock(mddev): -EBUSY;
  2856. if (!rv) {
  2857. if (rdev->mddev == NULL)
  2858. rv = -EBUSY;
  2859. else
  2860. rv = entry->store(rdev, page, length);
  2861. mddev_unlock(mddev);
  2862. }
  2863. return rv;
  2864. }
  2865. static void rdev_free(struct kobject *ko)
  2866. {
  2867. struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
  2868. kfree(rdev);
  2869. }
  2870. static const struct sysfs_ops rdev_sysfs_ops = {
  2871. .show = rdev_attr_show,
  2872. .store = rdev_attr_store,
  2873. };
  2874. static struct kobj_type rdev_ktype = {
  2875. .release = rdev_free,
  2876. .sysfs_ops = &rdev_sysfs_ops,
  2877. .default_attrs = rdev_default_attrs,
  2878. };
  2879. int md_rdev_init(struct md_rdev *rdev)
  2880. {
  2881. rdev->desc_nr = -1;
  2882. rdev->saved_raid_disk = -1;
  2883. rdev->raid_disk = -1;
  2884. rdev->flags = 0;
  2885. rdev->data_offset = 0;
  2886. rdev->new_data_offset = 0;
  2887. rdev->sb_events = 0;
  2888. rdev->last_read_error.tv_sec = 0;
  2889. rdev->last_read_error.tv_nsec = 0;
  2890. rdev->sb_loaded = 0;
  2891. rdev->bb_page = NULL;
  2892. atomic_set(&rdev->nr_pending, 0);
  2893. atomic_set(&rdev->read_errors, 0);
  2894. atomic_set(&rdev->corrected_errors, 0);
  2895. INIT_LIST_HEAD(&rdev->same_set);
  2896. init_waitqueue_head(&rdev->blocked_wait);
  2897. /* Add space to store bad block list.
  2898. * This reserves the space even on arrays where it cannot
  2899. * be used - I wonder if that matters
  2900. */
  2901. rdev->badblocks.count = 0;
  2902. rdev->badblocks.shift = 0;
  2903. rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
  2904. seqlock_init(&rdev->badblocks.lock);
  2905. if (rdev->badblocks.page == NULL)
  2906. return -ENOMEM;
  2907. return 0;
  2908. }
  2909. EXPORT_SYMBOL_GPL(md_rdev_init);
  2910. /*
  2911. * Import a device. If 'super_format' >= 0, then sanity check the superblock
  2912. *
  2913. * mark the device faulty if:
  2914. *
  2915. * - the device is nonexistent (zero size)
  2916. * - the device has no valid superblock
  2917. *
  2918. * a faulty rdev _never_ has rdev->sb set.
  2919. */
  2920. static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
  2921. {
  2922. char b[BDEVNAME_SIZE];
  2923. int err;
  2924. struct md_rdev *rdev;
  2925. sector_t size;
  2926. rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
  2927. if (!rdev) {
  2928. printk(KERN_ERR "md: could not alloc mem for new device!\n");
  2929. return ERR_PTR(-ENOMEM);
  2930. }
  2931. err = md_rdev_init(rdev);
  2932. if (err)
  2933. goto abort_free;
  2934. err = alloc_disk_sb(rdev);
  2935. if (err)
  2936. goto abort_free;
  2937. err = lock_rdev(rdev, newdev, super_format == -2);
  2938. if (err)
  2939. goto abort_free;
  2940. kobject_init(&rdev->kobj, &rdev_ktype);
  2941. size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
  2942. if (!size) {
  2943. printk(KERN_WARNING
  2944. "md: %s has zero or unknown size, marking faulty!\n",
  2945. bdevname(rdev->bdev,b));
  2946. err = -EINVAL;
  2947. goto abort_free;
  2948. }
  2949. if (super_format >= 0) {
  2950. err = super_types[super_format].
  2951. load_super(rdev, NULL, super_minor);
  2952. if (err == -EINVAL) {
  2953. printk(KERN_WARNING
  2954. "md: %s does not have a valid v%d.%d "
  2955. "superblock, not importing!\n",
  2956. bdevname(rdev->bdev,b),
  2957. super_format, super_minor);
  2958. goto abort_free;
  2959. }
  2960. if (err < 0) {
  2961. printk(KERN_WARNING
  2962. "md: could not read %s's sb, not importing!\n",
  2963. bdevname(rdev->bdev,b));
  2964. goto abort_free;
  2965. }
  2966. }
  2967. if (super_format == -1)
  2968. /* hot-add for 0.90, or non-persistent: so no badblocks */
  2969. rdev->badblocks.shift = -1;
  2970. return rdev;
  2971. abort_free:
  2972. if (rdev->bdev)
  2973. unlock_rdev(rdev);
  2974. md_rdev_clear(rdev);
  2975. kfree(rdev);
  2976. return ERR_PTR(err);
  2977. }
  2978. /*
  2979. * Check a full RAID array for plausibility
  2980. */
  2981. static void analyze_sbs(struct mddev * mddev)
  2982. {
  2983. int i;
  2984. struct md_rdev *rdev, *freshest, *tmp;
  2985. char b[BDEVNAME_SIZE];
  2986. freshest = NULL;
  2987. rdev_for_each_safe(rdev, tmp, mddev)
  2988. switch (super_types[mddev->major_version].
  2989. load_super(rdev, freshest, mddev->minor_version)) {
  2990. case 1:
  2991. freshest = rdev;
  2992. break;
  2993. case 0:
  2994. break;
  2995. default:
  2996. printk( KERN_ERR \
  2997. "md: fatal superblock inconsistency in %s"
  2998. " -- removing from array\n",
  2999. bdevname(rdev->bdev,b));
  3000. kick_rdev_from_array(rdev);
  3001. }
  3002. super_types[mddev->major_version].
  3003. validate_super(mddev, freshest);
  3004. i = 0;
  3005. rdev_for_each_safe(rdev, tmp, mddev) {
  3006. if (mddev->max_disks &&
  3007. (rdev->desc_nr >= mddev->max_disks ||
  3008. i > mddev->max_disks)) {
  3009. printk(KERN_WARNING
  3010. "md: %s: %s: only %d devices permitted\n",
  3011. mdname(mddev), bdevname(rdev->bdev, b),
  3012. mddev->max_disks);
  3013. kick_rdev_from_array(rdev);
  3014. continue;
  3015. }
  3016. if (rdev != freshest)
  3017. if (super_types[mddev->major_version].
  3018. validate_super(mddev, rdev)) {
  3019. printk(KERN_WARNING "md: kicking non-fresh %s"
  3020. " from array!\n",
  3021. bdevname(rdev->bdev,b));
  3022. kick_rdev_from_array(rdev);
  3023. continue;
  3024. }
  3025. if (mddev->level == LEVEL_MULTIPATH) {
  3026. rdev->desc_nr = i++;
  3027. rdev->raid_disk = rdev->desc_nr;
  3028. set_bit(In_sync, &rdev->flags);
  3029. } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
  3030. rdev->raid_disk = -1;
  3031. clear_bit(In_sync, &rdev->flags);
  3032. }
  3033. }
  3034. }
  3035. /* Read a fixed-point number.
  3036. * Numbers in sysfs attributes should be in "standard" units where
  3037. * possible, so time should be in seconds.
  3038. * However we internally use a a much smaller unit such as
  3039. * milliseconds or jiffies.
  3040. * This function takes a decimal number with a possible fractional
  3041. * component, and produces an integer which is the result of
  3042. * multiplying that number by 10^'scale'.
  3043. * all without any floating-point arithmetic.
  3044. */
  3045. int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
  3046. {
  3047. unsigned long result = 0;
  3048. long decimals = -1;
  3049. while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
  3050. if (*cp == '.')
  3051. decimals = 0;
  3052. else if (decimals < scale) {
  3053. unsigned int value;
  3054. value = *cp - '0';
  3055. result = result * 10 + value;
  3056. if (decimals >= 0)
  3057. decimals++;
  3058. }
  3059. cp++;
  3060. }
  3061. if (*cp == '\n')
  3062. cp++;
  3063. if (*cp)
  3064. return -EINVAL;
  3065. if (decimals < 0)
  3066. decimals = 0;
  3067. while (decimals < scale) {
  3068. result *= 10;
  3069. decimals ++;
  3070. }
  3071. *res = result;
  3072. return 0;
  3073. }
  3074. static void md_safemode_timeout(unsigned long data);
  3075. static ssize_t
  3076. safe_delay_show(struct mddev *mddev, char *page)
  3077. {
  3078. int msec = (mddev->safemode_delay*1000)/HZ;
  3079. return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
  3080. }
  3081. static ssize_t
  3082. safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
  3083. {
  3084. unsigned long msec;
  3085. if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
  3086. return -EINVAL;
  3087. if (msec == 0)
  3088. mddev->safemode_delay = 0;
  3089. else {
  3090. unsigned long old_delay = mddev->safemode_delay;
  3091. mddev->safemode_delay = (msec*HZ)/1000;
  3092. if (mddev->safemode_delay == 0)
  3093. mddev->safemode_delay = 1;
  3094. if (mddev->safemode_delay < old_delay)
  3095. md_safemode_timeout((unsigned long)mddev);
  3096. }
  3097. return len;
  3098. }
  3099. static struct md_sysfs_entry md_safe_delay =
  3100. __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
  3101. static ssize_t
  3102. level_show(struct mddev *mddev, char *page)
  3103. {
  3104. struct md_personality *p = mddev->pers;
  3105. if (p)
  3106. return sprintf(page, "%s\n", p->name);
  3107. else if (mddev->clevel[0])
  3108. return sprintf(page, "%s\n", mddev->clevel);
  3109. else if (mddev->level != LEVEL_NONE)
  3110. return sprintf(page, "%d\n", mddev->level);
  3111. else
  3112. return 0;
  3113. }
  3114. static ssize_t
  3115. level_store(struct mddev *mddev, const char *buf, size_t len)
  3116. {
  3117. char clevel[16];
  3118. ssize_t rv = len;
  3119. struct md_personality *pers;
  3120. long level;
  3121. void *priv;
  3122. struct md_rdev *rdev;
  3123. if (mddev->pers == NULL) {
  3124. if (len == 0)
  3125. return 0;
  3126. if (len >= sizeof(mddev->clevel))
  3127. return -ENOSPC;
  3128. strncpy(mddev->clevel, buf, len);
  3129. if (mddev->clevel[len-1] == '\n')
  3130. len--;
  3131. mddev->clevel[len] = 0;
  3132. mddev->level = LEVEL_NONE;
  3133. return rv;
  3134. }
  3135. /* request to change the personality. Need to ensure:
  3136. * - array is not engaged in resync/recovery/reshape
  3137. * - old personality can be suspended
  3138. * - new personality will access other array.
  3139. */
  3140. if (mddev->sync_thread ||
  3141. mddev->reshape_position != MaxSector ||
  3142. mddev->sysfs_active)
  3143. return -EBUSY;
  3144. if (!mddev->pers->quiesce) {
  3145. printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
  3146. mdname(mddev), mddev->pers->name);
  3147. return -EINVAL;
  3148. }
  3149. /* Now find the new personality */
  3150. if (len == 0 || len >= sizeof(clevel))
  3151. return -EINVAL;
  3152. strncpy(clevel, buf, len);
  3153. if (clevel[len-1] == '\n')
  3154. len--;
  3155. clevel[len] = 0;
  3156. if (strict_strtol(clevel, 10, &level))
  3157. level = LEVEL_NONE;
  3158. if (request_module("md-%s", clevel) != 0)
  3159. request_module("md-level-%s", clevel);
  3160. spin_lock(&pers_lock);
  3161. pers = find_pers(level, clevel);
  3162. if (!pers || !try_module_get(pers->owner)) {
  3163. spin_unlock(&pers_lock);
  3164. printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
  3165. return -EINVAL;
  3166. }
  3167. spin_unlock(&pers_lock);
  3168. if (pers == mddev->pers) {
  3169. /* Nothing to do! */
  3170. module_put(pers->owner);
  3171. return rv;
  3172. }
  3173. if (!pers->takeover) {
  3174. module_put(pers->owner);
  3175. printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
  3176. mdname(mddev), clevel);
  3177. return -EINVAL;
  3178. }
  3179. rdev_for_each(rdev, mddev)
  3180. rdev->new_raid_disk = rdev->raid_disk;
  3181. /* ->takeover must set new_* and/or delta_disks
  3182. * if it succeeds, and may set them when it fails.
  3183. */
  3184. priv = pers->takeover(mddev);
  3185. if (IS_ERR(priv)) {
  3186. mddev->new_level = mddev->level;
  3187. mddev->new_layout = mddev->layout;
  3188. mddev->new_chunk_sectors = mddev->chunk_sectors;
  3189. mddev->raid_disks -= mddev->delta_disks;
  3190. mddev->delta_disks = 0;
  3191. mddev->reshape_backwards = 0;
  3192. module_put(pers->owner);
  3193. printk(KERN_WARNING "md: %s: %s would not accept array\n",
  3194. mdname(mddev), clevel);
  3195. return PTR_ERR(priv);
  3196. }
  3197. /* Looks like we have a winner */
  3198. mddev_suspend(mddev);
  3199. mddev->pers->stop(mddev);
  3200. if (mddev->pers->sync_request == NULL &&
  3201. pers->sync_request != NULL) {
  3202. /* need to add the md_redundancy_group */
  3203. if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
  3204. printk(KERN_WARNING
  3205. "md: cannot register extra attributes for %s\n",
  3206. mdname(mddev));
  3207. mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, NULL, "sync_action");
  3208. }
  3209. if (mddev->pers->sync_request != NULL &&
  3210. pers->sync_request == NULL) {
  3211. /* need to remove the md_redundancy_group */
  3212. if (mddev->to_remove == NULL)
  3213. mddev->to_remove = &md_redundancy_group;
  3214. }
  3215. if (mddev->pers->sync_request == NULL &&
  3216. mddev->external) {
  3217. /* We are converting from a no-redundancy array
  3218. * to a redundancy array and metadata is managed
  3219. * externally so we need to be sure that writes
  3220. * won't block due to a need to transition
  3221. * clean->dirty
  3222. * until external management is started.
  3223. */
  3224. mddev->in_sync = 0;
  3225. mddev->safemode_delay = 0;
  3226. mddev->safemode = 0;
  3227. }
  3228. rdev_for_each(rdev, mddev) {
  3229. if (rdev->raid_disk < 0)
  3230. continue;
  3231. if (rdev->new_raid_disk >= mddev->raid_disks)
  3232. rdev->new_raid_disk = -1;
  3233. if (rdev->new_raid_disk == rdev->raid_disk)
  3234. continue;
  3235. sysfs_unlink_rdev(mddev, rdev);
  3236. }
  3237. rdev_for_each(rdev, mddev) {
  3238. if (rdev->raid_disk < 0)
  3239. continue;
  3240. if (rdev->new_raid_disk == rdev->raid_disk)
  3241. continue;
  3242. rdev->raid_disk = rdev->new_raid_disk;
  3243. if (rdev->raid_disk < 0)
  3244. clear_bit(In_sync, &rdev->flags);
  3245. else {
  3246. if (sysfs_link_rdev(mddev, rdev))
  3247. printk(KERN_WARNING "md: cannot register rd%d"
  3248. " for %s after level change\n",
  3249. rdev->raid_disk, mdname(mddev));
  3250. }
  3251. }
  3252. module_put(mddev->pers->owner);
  3253. mddev->pers = pers;
  3254. mddev->private = priv;
  3255. strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
  3256. mddev->level = mddev->new_level;
  3257. mddev->layout = mddev->new_layout;
  3258. mddev->chunk_sectors = mddev->new_chunk_sectors;
  3259. mddev->delta_disks = 0;
  3260. mddev->reshape_backwards = 0;
  3261. mddev->degraded = 0;
  3262. if (mddev->pers->sync_request == NULL) {
  3263. /* this is now an array without redundancy, so
  3264. * it must always be in_sync
  3265. */
  3266. mddev->in_sync = 1;
  3267. del_timer_sync(&mddev->safemode_timer);
  3268. }
  3269. pers->run(mddev);
  3270. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  3271. mddev_resume(mddev);
  3272. sysfs_notify(&mddev->kobj, NULL, "level");
  3273. md_new_event(mddev);
  3274. return rv;
  3275. }
  3276. static struct md_sysfs_entry md_level =
  3277. __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
  3278. static ssize_t
  3279. layout_show(struct mddev *mddev, char *page)
  3280. {
  3281. /* just a number, not meaningful for all levels */
  3282. if (mddev->reshape_position != MaxSector &&
  3283. mddev->layout != mddev->new_layout)
  3284. return sprintf(page, "%d (%d)\n",
  3285. mddev->new_layout, mddev->layout);
  3286. return sprintf(page, "%d\n", mddev->layout);
  3287. }
  3288. static ssize_t
  3289. layout_store(struct mddev *mddev, const char *buf, size_t len)
  3290. {
  3291. char *e;
  3292. unsigned long n = simple_strtoul(buf, &e, 10);
  3293. if (!*buf || (*e && *e != '\n'))
  3294. return -EINVAL;
  3295. if (mddev->pers) {
  3296. int err;
  3297. if (mddev->pers->check_reshape == NULL)
  3298. return -EBUSY;
  3299. mddev->new_layout = n;
  3300. err = mddev->pers->check_reshape(mddev);
  3301. if (err) {
  3302. mddev->new_layout = mddev->layout;
  3303. return err;
  3304. }
  3305. } else {
  3306. mddev->new_layout = n;
  3307. if (mddev->reshape_position == MaxSector)
  3308. mddev->layout = n;
  3309. }
  3310. return len;
  3311. }
  3312. static struct md_sysfs_entry md_layout =
  3313. __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
  3314. static ssize_t
  3315. raid_disks_show(struct mddev *mddev, char *page)
  3316. {
  3317. if (mddev->raid_disks == 0)
  3318. return 0;
  3319. if (mddev->reshape_position != MaxSector &&
  3320. mddev->delta_disks != 0)
  3321. return sprintf(page, "%d (%d)\n", mddev->raid_disks,
  3322. mddev->raid_disks - mddev->delta_disks);
  3323. return sprintf(page, "%d\n", mddev->raid_disks);
  3324. }
  3325. static int update_raid_disks(struct mddev *mddev, int raid_disks);
  3326. static ssize_t
  3327. raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
  3328. {
  3329. char *e;
  3330. int rv = 0;
  3331. unsigned long n = simple_strtoul(buf, &e, 10);
  3332. if (!*buf || (*e && *e != '\n'))
  3333. return -EINVAL;
  3334. if (mddev->pers)
  3335. rv = update_raid_disks(mddev, n);
  3336. else if (mddev->reshape_position != MaxSector) {
  3337. struct md_rdev *rdev;
  3338. int olddisks = mddev->raid_disks - mddev->delta_disks;
  3339. rdev_for_each(rdev, mddev) {
  3340. if (olddisks < n &&
  3341. rdev->data_offset < rdev->new_data_offset)
  3342. return -EINVAL;
  3343. if (olddisks > n &&
  3344. rdev->data_offset > rdev->new_data_offset)
  3345. return -EINVAL;
  3346. }
  3347. mddev->delta_disks = n - olddisks;
  3348. mddev->raid_disks = n;
  3349. mddev->reshape_backwards = (mddev->delta_disks < 0);
  3350. } else
  3351. mddev->raid_disks = n;
  3352. return rv ? rv : len;
  3353. }
  3354. static struct md_sysfs_entry md_raid_disks =
  3355. __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
  3356. static ssize_t
  3357. chunk_size_show(struct mddev *mddev, char *page)
  3358. {
  3359. if (mddev->reshape_position != MaxSector &&
  3360. mddev->chunk_sectors != mddev->new_chunk_sectors)
  3361. return sprintf(page, "%d (%d)\n",
  3362. mddev->new_chunk_sectors << 9,
  3363. mddev->chunk_sectors << 9);
  3364. return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
  3365. }
  3366. static ssize_t
  3367. chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
  3368. {
  3369. char *e;
  3370. unsigned long n = simple_strtoul(buf, &e, 10);
  3371. if (!*buf || (*e && *e != '\n'))
  3372. return -EINVAL;
  3373. if (mddev->pers) {
  3374. int err;
  3375. if (mddev->pers->check_reshape == NULL)
  3376. return -EBUSY;
  3377. mddev->new_chunk_sectors = n >> 9;
  3378. err = mddev->pers->check_reshape(mddev);
  3379. if (err) {
  3380. mddev->new_chunk_sectors = mddev->chunk_sectors;
  3381. return err;
  3382. }
  3383. } else {
  3384. mddev->new_chunk_sectors = n >> 9;
  3385. if (mddev->reshape_position == MaxSector)
  3386. mddev->chunk_sectors = n >> 9;
  3387. }
  3388. return len;
  3389. }
  3390. static struct md_sysfs_entry md_chunk_size =
  3391. __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
  3392. static ssize_t
  3393. resync_start_show(struct mddev *mddev, char *page)
  3394. {
  3395. if (mddev->recovery_cp == MaxSector)
  3396. return sprintf(page, "none\n");
  3397. return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
  3398. }
  3399. static ssize_t
  3400. resync_start_store(struct mddev *mddev, const char *buf, size_t len)
  3401. {
  3402. char *e;
  3403. unsigned long long n = simple_strtoull(buf, &e, 10);
  3404. if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
  3405. return -EBUSY;
  3406. if (cmd_match(buf, "none"))
  3407. n = MaxSector;
  3408. else if (!*buf || (*e && *e != '\n'))
  3409. return -EINVAL;
  3410. mddev->recovery_cp = n;
  3411. return len;
  3412. }
  3413. static struct md_sysfs_entry md_resync_start =
  3414. __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
  3415. /*
  3416. * The array state can be:
  3417. *
  3418. * clear
  3419. * No devices, no size, no level
  3420. * Equivalent to STOP_ARRAY ioctl
  3421. * inactive
  3422. * May have some settings, but array is not active
  3423. * all IO results in error
  3424. * When written, doesn't tear down array, but just stops it
  3425. * suspended (not supported yet)
  3426. * All IO requests will block. The array can be reconfigured.
  3427. * Writing this, if accepted, will block until array is quiescent
  3428. * readonly
  3429. * no resync can happen. no superblocks get written.
  3430. * write requests fail
  3431. * read-auto
  3432. * like readonly, but behaves like 'clean' on a write request.
  3433. *
  3434. * clean - no pending writes, but otherwise active.
  3435. * When written to inactive array, starts without resync
  3436. * If a write request arrives then
  3437. * if metadata is known, mark 'dirty' and switch to 'active'.
  3438. * if not known, block and switch to write-pending
  3439. * If written to an active array that has pending writes, then fails.
  3440. * active
  3441. * fully active: IO and resync can be happening.
  3442. * When written to inactive array, starts with resync
  3443. *
  3444. * write-pending
  3445. * clean, but writes are blocked waiting for 'active' to be written.
  3446. *
  3447. * active-idle
  3448. * like active, but no writes have been seen for a while (100msec).
  3449. *
  3450. */
  3451. enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
  3452. write_pending, active_idle, bad_word};
  3453. static char *array_states[] = {
  3454. "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
  3455. "write-pending", "active-idle", NULL };
  3456. static int match_word(const char *word, char **list)
  3457. {
  3458. int n;
  3459. for (n=0; list[n]; n++)
  3460. if (cmd_match(word, list[n]))
  3461. break;
  3462. return n;
  3463. }
  3464. static ssize_t
  3465. array_state_show(struct mddev *mddev, char *page)
  3466. {
  3467. enum array_state st = inactive;
  3468. if (mddev->pers)
  3469. switch(mddev->ro) {
  3470. case 1:
  3471. st = readonly;
  3472. break;
  3473. case 2:
  3474. st = read_auto;
  3475. break;
  3476. case 0:
  3477. if (mddev->in_sync)
  3478. st = clean;
  3479. else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
  3480. st = write_pending;
  3481. else if (mddev->safemode)
  3482. st = active_idle;
  3483. else
  3484. st = active;
  3485. }
  3486. else {
  3487. if (list_empty(&mddev->disks) &&
  3488. mddev->raid_disks == 0 &&
  3489. mddev->dev_sectors == 0)
  3490. st = clear;
  3491. else
  3492. st = inactive;
  3493. }
  3494. return sprintf(page, "%s\n", array_states[st]);
  3495. }
  3496. static int do_md_stop(struct mddev * mddev, int ro, int is_open);
  3497. static int md_set_readonly(struct mddev * mddev, int is_open);
  3498. static int do_md_run(struct mddev * mddev);
  3499. static int restart_array(struct mddev *mddev);
  3500. static ssize_t
  3501. array_state_store(struct mddev *mddev, const char *buf, size_t len)
  3502. {
  3503. int err = -EINVAL;
  3504. enum array_state st = match_word(buf, array_states);
  3505. switch(st) {
  3506. case bad_word:
  3507. break;
  3508. case clear:
  3509. /* stopping an active array */
  3510. if (atomic_read(&mddev->openers) > 0)
  3511. return -EBUSY;
  3512. err = do_md_stop(mddev, 0, 0);
  3513. break;
  3514. case inactive:
  3515. /* stopping an active array */
  3516. if (mddev->pers) {
  3517. if (atomic_read(&mddev->openers) > 0)
  3518. return -EBUSY;
  3519. err = do_md_stop(mddev, 2, 0);
  3520. } else
  3521. err = 0; /* already inactive */
  3522. break;
  3523. case suspended:
  3524. break; /* not supported yet */
  3525. case readonly:
  3526. if (mddev->pers)
  3527. err = md_set_readonly(mddev, 0);
  3528. else {
  3529. mddev->ro = 1;
  3530. set_disk_ro(mddev->gendisk, 1);
  3531. err = do_md_run(mddev);
  3532. }
  3533. break;
  3534. case read_auto:
  3535. if (mddev->pers) {
  3536. if (mddev->ro == 0)
  3537. err = md_set_readonly(mddev, 0);
  3538. else if (mddev->ro == 1)
  3539. err = restart_array(mddev);
  3540. if (err == 0) {
  3541. mddev->ro = 2;
  3542. set_disk_ro(mddev->gendisk, 0);
  3543. }
  3544. } else {
  3545. mddev->ro = 2;
  3546. err = do_md_run(mddev);
  3547. }
  3548. break;
  3549. case clean:
  3550. if (mddev->pers) {
  3551. restart_array(mddev);
  3552. spin_lock_irq(&mddev->write_lock);
  3553. if (atomic_read(&mddev->writes_pending) == 0) {
  3554. if (mddev->in_sync == 0) {
  3555. mddev->in_sync = 1;
  3556. if (mddev->safemode == 1)
  3557. mddev->safemode = 0;
  3558. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  3559. }
  3560. err = 0;
  3561. } else
  3562. err = -EBUSY;
  3563. spin_unlock_irq(&mddev->write_lock);
  3564. } else
  3565. err = -EINVAL;
  3566. break;
  3567. case active:
  3568. if (mddev->pers) {
  3569. restart_array(mddev);
  3570. clear_bit(MD_CHANGE_PENDING, &mddev->flags);
  3571. wake_up(&mddev->sb_wait);
  3572. err = 0;
  3573. } else {
  3574. mddev->ro = 0;
  3575. set_disk_ro(mddev->gendisk, 0);
  3576. err = do_md_run(mddev);
  3577. }
  3578. break;
  3579. case write_pending:
  3580. case active_idle:
  3581. /* these cannot be set */
  3582. break;
  3583. }
  3584. if (err)
  3585. return err;
  3586. else {
  3587. if (mddev->hold_active == UNTIL_IOCTL)
  3588. mddev->hold_active = 0;
  3589. sysfs_notify_dirent_safe(mddev->sysfs_state);
  3590. return len;
  3591. }
  3592. }
  3593. static struct md_sysfs_entry md_array_state =
  3594. __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
  3595. static ssize_t
  3596. max_corrected_read_errors_show(struct mddev *mddev, char *page) {
  3597. return sprintf(page, "%d\n",
  3598. atomic_read(&mddev->max_corr_read_errors));
  3599. }
  3600. static ssize_t
  3601. max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
  3602. {
  3603. char *e;
  3604. unsigned long n = simple_strtoul(buf, &e, 10);
  3605. if (*buf && (*e == 0 || *e == '\n')) {
  3606. atomic_set(&mddev->max_corr_read_errors, n);
  3607. return len;
  3608. }
  3609. return -EINVAL;
  3610. }
  3611. static struct md_sysfs_entry max_corr_read_errors =
  3612. __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
  3613. max_corrected_read_errors_store);
  3614. static ssize_t
  3615. null_show(struct mddev *mddev, char *page)
  3616. {
  3617. return -EINVAL;
  3618. }
  3619. static ssize_t
  3620. new_dev_store(struct mddev *mddev, const char *buf, size_t len)
  3621. {
  3622. /* buf must be %d:%d\n? giving major and minor numbers */
  3623. /* The new device is added to the array.
  3624. * If the array has a persistent superblock, we read the
  3625. * superblock to initialise info and check validity.
  3626. * Otherwise, only checking done is that in bind_rdev_to_array,
  3627. * which mainly checks size.
  3628. */
  3629. char *e;
  3630. int major = simple_strtoul(buf, &e, 10);
  3631. int minor;
  3632. dev_t dev;
  3633. struct md_rdev *rdev;
  3634. int err;
  3635. if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
  3636. return -EINVAL;
  3637. minor = simple_strtoul(e+1, &e, 10);
  3638. if (*e && *e != '\n')
  3639. return -EINVAL;
  3640. dev = MKDEV(major, minor);
  3641. if (major != MAJOR(dev) ||
  3642. minor != MINOR(dev))
  3643. return -EOVERFLOW;
  3644. if (mddev->persistent) {
  3645. rdev = md_import_device(dev, mddev->major_version,
  3646. mddev->minor_version);
  3647. if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
  3648. struct md_rdev *rdev0
  3649. = list_entry(mddev->disks.next,
  3650. struct md_rdev, same_set);
  3651. err = super_types[mddev->major_version]
  3652. .load_super(rdev, rdev0, mddev->minor_version);
  3653. if (err < 0)
  3654. goto out;
  3655. }
  3656. } else if (mddev->external)
  3657. rdev = md_import_device(dev, -2, -1);
  3658. else
  3659. rdev = md_import_device(dev, -1, -1);
  3660. if (IS_ERR(rdev))
  3661. return PTR_ERR(rdev);
  3662. err = bind_rdev_to_array(rdev, mddev);
  3663. out:
  3664. if (err)
  3665. export_rdev(rdev);
  3666. return err ? err : len;
  3667. }
  3668. static struct md_sysfs_entry md_new_device =
  3669. __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
  3670. static ssize_t
  3671. bitmap_store(struct mddev *mddev, const char *buf, size_t len)
  3672. {
  3673. char *end;
  3674. unsigned long chunk, end_chunk;
  3675. if (!mddev->bitmap)
  3676. goto out;
  3677. /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
  3678. while (*buf) {
  3679. chunk = end_chunk = simple_strtoul(buf, &end, 0);
  3680. if (buf == end) break;
  3681. if (*end == '-') { /* range */
  3682. buf = end + 1;
  3683. end_chunk = simple_strtoul(buf, &end, 0);
  3684. if (buf == end) break;
  3685. }
  3686. if (*end && !isspace(*end)) break;
  3687. bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
  3688. buf = skip_spaces(end);
  3689. }
  3690. bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
  3691. out:
  3692. return len;
  3693. }
  3694. static struct md_sysfs_entry md_bitmap =
  3695. __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
  3696. static ssize_t
  3697. size_show(struct mddev *mddev, char *page)
  3698. {
  3699. return sprintf(page, "%llu\n",
  3700. (unsigned long long)mddev->dev_sectors / 2);
  3701. }
  3702. static int update_size(struct mddev *mddev, sector_t num_sectors);
  3703. static ssize_t
  3704. size_store(struct mddev *mddev, const char *buf, size_t len)
  3705. {
  3706. /* If array is inactive, we can reduce the component size, but
  3707. * not increase it (except from 0).
  3708. * If array is active, we can try an on-line resize
  3709. */
  3710. sector_t sectors;
  3711. int err = strict_blocks_to_sectors(buf, &sectors);
  3712. if (err < 0)
  3713. return err;
  3714. if (mddev->pers) {
  3715. err = update_size(mddev, sectors);
  3716. md_update_sb(mddev, 1);
  3717. } else {
  3718. if (mddev->dev_sectors == 0 ||
  3719. mddev->dev_sectors > sectors)
  3720. mddev->dev_sectors = sectors;
  3721. else
  3722. err = -ENOSPC;
  3723. }
  3724. return err ? err : len;
  3725. }
  3726. static struct md_sysfs_entry md_size =
  3727. __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
  3728. /* Metdata version.
  3729. * This is one of
  3730. * 'none' for arrays with no metadata (good luck...)
  3731. * 'external' for arrays with externally managed metadata,
  3732. * or N.M for internally known formats
  3733. */
  3734. static ssize_t
  3735. metadata_show(struct mddev *mddev, char *page)
  3736. {
  3737. if (mddev->persistent)
  3738. return sprintf(page, "%d.%d\n",
  3739. mddev->major_version, mddev->minor_version);
  3740. else if (mddev->external)
  3741. return sprintf(page, "external:%s\n", mddev->metadata_type);
  3742. else
  3743. return sprintf(page, "none\n");
  3744. }
  3745. static ssize_t
  3746. metadata_store(struct mddev *mddev, const char *buf, size_t len)
  3747. {
  3748. int major, minor;
  3749. char *e;
  3750. /* Changing the details of 'external' metadata is
  3751. * always permitted. Otherwise there must be
  3752. * no devices attached to the array.
  3753. */
  3754. if (mddev->external && strncmp(buf, "external:", 9) == 0)
  3755. ;
  3756. else if (!list_empty(&mddev->disks))
  3757. return -EBUSY;
  3758. if (cmd_match(buf, "none")) {
  3759. mddev->persistent = 0;
  3760. mddev->external = 0;
  3761. mddev->major_version = 0;
  3762. mddev->minor_version = 90;
  3763. return len;
  3764. }
  3765. if (strncmp(buf, "external:", 9) == 0) {
  3766. size_t namelen = len-9;
  3767. if (namelen >= sizeof(mddev->metadata_type))
  3768. namelen = sizeof(mddev->metadata_type)-1;
  3769. strncpy(mddev->metadata_type, buf+9, namelen);
  3770. mddev->metadata_type[namelen] = 0;
  3771. if (namelen && mddev->metadata_type[namelen-1] == '\n')
  3772. mddev->metadata_type[--namelen] = 0;
  3773. mddev->persistent = 0;
  3774. mddev->external = 1;
  3775. mddev->major_version = 0;
  3776. mddev->minor_version = 90;
  3777. return len;
  3778. }
  3779. major = simple_strtoul(buf, &e, 10);
  3780. if (e==buf || *e != '.')
  3781. return -EINVAL;
  3782. buf = e+1;
  3783. minor = simple_strtoul(buf, &e, 10);
  3784. if (e==buf || (*e && *e != '\n') )
  3785. return -EINVAL;
  3786. if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
  3787. return -ENOENT;
  3788. mddev->major_version = major;
  3789. mddev->minor_version = minor;
  3790. mddev->persistent = 1;
  3791. mddev->external = 0;
  3792. return len;
  3793. }
  3794. static struct md_sysfs_entry md_metadata =
  3795. __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
  3796. static ssize_t
  3797. action_show(struct mddev *mddev, char *page)
  3798. {
  3799. char *type = "idle";
  3800. if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
  3801. type = "frozen";
  3802. else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  3803. (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
  3804. if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  3805. type = "reshape";
  3806. else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  3807. if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  3808. type = "resync";
  3809. else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
  3810. type = "check";
  3811. else
  3812. type = "repair";
  3813. } else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
  3814. type = "recover";
  3815. }
  3816. return sprintf(page, "%s\n", type);
  3817. }
  3818. static void reap_sync_thread(struct mddev *mddev);
  3819. static ssize_t
  3820. action_store(struct mddev *mddev, const char *page, size_t len)
  3821. {
  3822. if (!mddev->pers || !mddev->pers->sync_request)
  3823. return -EINVAL;
  3824. if (cmd_match(page, "frozen"))
  3825. set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  3826. else
  3827. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  3828. if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
  3829. if (mddev->sync_thread) {
  3830. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  3831. reap_sync_thread(mddev);
  3832. }
  3833. } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  3834. test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
  3835. return -EBUSY;
  3836. else if (cmd_match(page, "resync"))
  3837. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3838. else if (cmd_match(page, "recover")) {
  3839. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  3840. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3841. } else if (cmd_match(page, "reshape")) {
  3842. int err;
  3843. if (mddev->pers->start_reshape == NULL)
  3844. return -EINVAL;
  3845. err = mddev->pers->start_reshape(mddev);
  3846. if (err)
  3847. return err;
  3848. sysfs_notify(&mddev->kobj, NULL, "degraded");
  3849. } else {
  3850. if (cmd_match(page, "check"))
  3851. set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  3852. else if (!cmd_match(page, "repair"))
  3853. return -EINVAL;
  3854. set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  3855. set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  3856. }
  3857. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3858. md_wakeup_thread(mddev->thread);
  3859. sysfs_notify_dirent_safe(mddev->sysfs_action);
  3860. return len;
  3861. }
  3862. static ssize_t
  3863. mismatch_cnt_show(struct mddev *mddev, char *page)
  3864. {
  3865. return sprintf(page, "%llu\n",
  3866. (unsigned long long) mddev->resync_mismatches);
  3867. }
  3868. static struct md_sysfs_entry md_scan_mode =
  3869. __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
  3870. static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
  3871. static ssize_t
  3872. sync_min_show(struct mddev *mddev, char *page)
  3873. {
  3874. return sprintf(page, "%d (%s)\n", speed_min(mddev),
  3875. mddev->sync_speed_min ? "local": "system");
  3876. }
  3877. static ssize_t
  3878. sync_min_store(struct mddev *mddev, const char *buf, size_t len)
  3879. {
  3880. int min;
  3881. char *e;
  3882. if (strncmp(buf, "system", 6)==0) {
  3883. mddev->sync_speed_min = 0;
  3884. return len;
  3885. }
  3886. min = simple_strtoul(buf, &e, 10);
  3887. if (buf == e || (*e && *e != '\n') || min <= 0)
  3888. return -EINVAL;
  3889. mddev->sync_speed_min = min;
  3890. return len;
  3891. }
  3892. static struct md_sysfs_entry md_sync_min =
  3893. __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
  3894. static ssize_t
  3895. sync_max_show(struct mddev *mddev, char *page)
  3896. {
  3897. return sprintf(page, "%d (%s)\n", speed_max(mddev),
  3898. mddev->sync_speed_max ? "local": "system");
  3899. }
  3900. static ssize_t
  3901. sync_max_store(struct mddev *mddev, const char *buf, size_t len)
  3902. {
  3903. int max;
  3904. char *e;
  3905. if (strncmp(buf, "system", 6)==0) {
  3906. mddev->sync_speed_max = 0;
  3907. return len;
  3908. }
  3909. max = simple_strtoul(buf, &e, 10);
  3910. if (buf == e || (*e && *e != '\n') || max <= 0)
  3911. return -EINVAL;
  3912. mddev->sync_speed_max = max;
  3913. return len;
  3914. }
  3915. static struct md_sysfs_entry md_sync_max =
  3916. __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
  3917. static ssize_t
  3918. degraded_show(struct mddev *mddev, char *page)
  3919. {
  3920. return sprintf(page, "%d\n", mddev->degraded);
  3921. }
  3922. static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
  3923. static ssize_t
  3924. sync_force_parallel_show(struct mddev *mddev, char *page)
  3925. {
  3926. return sprintf(page, "%d\n", mddev->parallel_resync);
  3927. }
  3928. static ssize_t
  3929. sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
  3930. {
  3931. long n;
  3932. if (strict_strtol(buf, 10, &n))
  3933. return -EINVAL;
  3934. if (n != 0 && n != 1)
  3935. return -EINVAL;
  3936. mddev->parallel_resync = n;
  3937. if (mddev->sync_thread)
  3938. wake_up(&resync_wait);
  3939. return len;
  3940. }
  3941. /* force parallel resync, even with shared block devices */
  3942. static struct md_sysfs_entry md_sync_force_parallel =
  3943. __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
  3944. sync_force_parallel_show, sync_force_parallel_store);
  3945. static ssize_t
  3946. sync_speed_show(struct mddev *mddev, char *page)
  3947. {
  3948. unsigned long resync, dt, db;
  3949. if (mddev->curr_resync == 0)
  3950. return sprintf(page, "none\n");
  3951. resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
  3952. dt = (jiffies - mddev->resync_mark) / HZ;
  3953. if (!dt) dt++;
  3954. db = resync - mddev->resync_mark_cnt;
  3955. return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
  3956. }
  3957. static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
  3958. static ssize_t
  3959. sync_completed_show(struct mddev *mddev, char *page)
  3960. {
  3961. unsigned long long max_sectors, resync;
  3962. if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  3963. return sprintf(page, "none\n");
  3964. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
  3965. test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  3966. max_sectors = mddev->resync_max_sectors;
  3967. else
  3968. max_sectors = mddev->dev_sectors;
  3969. resync = mddev->curr_resync_completed;
  3970. return sprintf(page, "%llu / %llu\n", resync, max_sectors);
  3971. }
  3972. static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
  3973. static ssize_t
  3974. min_sync_show(struct mddev *mddev, char *page)
  3975. {
  3976. return sprintf(page, "%llu\n",
  3977. (unsigned long long)mddev->resync_min);
  3978. }
  3979. static ssize_t
  3980. min_sync_store(struct mddev *mddev, const char *buf, size_t len)
  3981. {
  3982. unsigned long long min;
  3983. if (strict_strtoull(buf, 10, &min))
  3984. return -EINVAL;
  3985. if (min > mddev->resync_max)
  3986. return -EINVAL;
  3987. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  3988. return -EBUSY;
  3989. /* Must be a multiple of chunk_size */
  3990. if (mddev->chunk_sectors) {
  3991. sector_t temp = min;
  3992. if (sector_div(temp, mddev->chunk_sectors))
  3993. return -EINVAL;
  3994. }
  3995. mddev->resync_min = min;
  3996. return len;
  3997. }
  3998. static struct md_sysfs_entry md_min_sync =
  3999. __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
  4000. static ssize_t
  4001. max_sync_show(struct mddev *mddev, char *page)
  4002. {
  4003. if (mddev->resync_max == MaxSector)
  4004. return sprintf(page, "max\n");
  4005. else
  4006. return sprintf(page, "%llu\n",
  4007. (unsigned long long)mddev->resync_max);
  4008. }
  4009. static ssize_t
  4010. max_sync_store(struct mddev *mddev, const char *buf, size_t len)
  4011. {
  4012. if (strncmp(buf, "max", 3) == 0)
  4013. mddev->resync_max = MaxSector;
  4014. else {
  4015. unsigned long long max;
  4016. if (strict_strtoull(buf, 10, &max))
  4017. return -EINVAL;
  4018. if (max < mddev->resync_min)
  4019. return -EINVAL;
  4020. if (max < mddev->resync_max &&
  4021. mddev->ro == 0 &&
  4022. test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  4023. return -EBUSY;
  4024. /* Must be a multiple of chunk_size */
  4025. if (mddev->chunk_sectors) {
  4026. sector_t temp = max;
  4027. if (sector_div(temp, mddev->chunk_sectors))
  4028. return -EINVAL;
  4029. }
  4030. mddev->resync_max = max;
  4031. }
  4032. wake_up(&mddev->recovery_wait);
  4033. return len;
  4034. }
  4035. static struct md_sysfs_entry md_max_sync =
  4036. __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
  4037. static ssize_t
  4038. suspend_lo_show(struct mddev *mddev, char *page)
  4039. {
  4040. return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
  4041. }
  4042. static ssize_t
  4043. suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
  4044. {
  4045. char *e;
  4046. unsigned long long new = simple_strtoull(buf, &e, 10);
  4047. unsigned long long old = mddev->suspend_lo;
  4048. if (mddev->pers == NULL ||
  4049. mddev->pers->quiesce == NULL)
  4050. return -EINVAL;
  4051. if (buf == e || (*e && *e != '\n'))
  4052. return -EINVAL;
  4053. mddev->suspend_lo = new;
  4054. if (new >= old)
  4055. /* Shrinking suspended region */
  4056. mddev->pers->quiesce(mddev, 2);
  4057. else {
  4058. /* Expanding suspended region - need to wait */
  4059. mddev->pers->quiesce(mddev, 1);
  4060. mddev->pers->quiesce(mddev, 0);
  4061. }
  4062. return len;
  4063. }
  4064. static struct md_sysfs_entry md_suspend_lo =
  4065. __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
  4066. static ssize_t
  4067. suspend_hi_show(struct mddev *mddev, char *page)
  4068. {
  4069. return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
  4070. }
  4071. static ssize_t
  4072. suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
  4073. {
  4074. char *e;
  4075. unsigned long long new = simple_strtoull(buf, &e, 10);
  4076. unsigned long long old = mddev->suspend_hi;
  4077. if (mddev->pers == NULL ||
  4078. mddev->pers->quiesce == NULL)
  4079. return -EINVAL;
  4080. if (buf == e || (*e && *e != '\n'))
  4081. return -EINVAL;
  4082. mddev->suspend_hi = new;
  4083. if (new <= old)
  4084. /* Shrinking suspended region */
  4085. mddev->pers->quiesce(mddev, 2);
  4086. else {
  4087. /* Expanding suspended region - need to wait */
  4088. mddev->pers->quiesce(mddev, 1);
  4089. mddev->pers->quiesce(mddev, 0);
  4090. }
  4091. return len;
  4092. }
  4093. static struct md_sysfs_entry md_suspend_hi =
  4094. __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
  4095. static ssize_t
  4096. reshape_position_show(struct mddev *mddev, char *page)
  4097. {
  4098. if (mddev->reshape_position != MaxSector)
  4099. return sprintf(page, "%llu\n",
  4100. (unsigned long long)mddev->reshape_position);
  4101. strcpy(page, "none\n");
  4102. return 5;
  4103. }
  4104. static ssize_t
  4105. reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
  4106. {
  4107. struct md_rdev *rdev;
  4108. char *e;
  4109. unsigned long long new = simple_strtoull(buf, &e, 10);
  4110. if (mddev->pers)
  4111. return -EBUSY;
  4112. if (buf == e || (*e && *e != '\n'))
  4113. return -EINVAL;
  4114. mddev->reshape_position = new;
  4115. mddev->delta_disks = 0;
  4116. mddev->reshape_backwards = 0;
  4117. mddev->new_level = mddev->level;
  4118. mddev->new_layout = mddev->layout;
  4119. mddev->new_chunk_sectors = mddev->chunk_sectors;
  4120. rdev_for_each(rdev, mddev)
  4121. rdev->new_data_offset = rdev->data_offset;
  4122. return len;
  4123. }
  4124. static struct md_sysfs_entry md_reshape_position =
  4125. __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
  4126. reshape_position_store);
  4127. static ssize_t
  4128. reshape_direction_show(struct mddev *mddev, char *page)
  4129. {
  4130. return sprintf(page, "%s\n",
  4131. mddev->reshape_backwards ? "backwards" : "forwards");
  4132. }
  4133. static ssize_t
  4134. reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
  4135. {
  4136. int backwards = 0;
  4137. if (cmd_match(buf, "forwards"))
  4138. backwards = 0;
  4139. else if (cmd_match(buf, "backwards"))
  4140. backwards = 1;
  4141. else
  4142. return -EINVAL;
  4143. if (mddev->reshape_backwards == backwards)
  4144. return len;
  4145. /* check if we are allowed to change */
  4146. if (mddev->delta_disks)
  4147. return -EBUSY;
  4148. if (mddev->persistent &&
  4149. mddev->major_version == 0)
  4150. return -EINVAL;
  4151. mddev->reshape_backwards = backwards;
  4152. return len;
  4153. }
  4154. static struct md_sysfs_entry md_reshape_direction =
  4155. __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
  4156. reshape_direction_store);
  4157. static ssize_t
  4158. array_size_show(struct mddev *mddev, char *page)
  4159. {
  4160. if (mddev->external_size)
  4161. return sprintf(page, "%llu\n",
  4162. (unsigned long long)mddev->array_sectors/2);
  4163. else
  4164. return sprintf(page, "default\n");
  4165. }
  4166. static ssize_t
  4167. array_size_store(struct mddev *mddev, const char *buf, size_t len)
  4168. {
  4169. sector_t sectors;
  4170. if (strncmp(buf, "default", 7) == 0) {
  4171. if (mddev->pers)
  4172. sectors = mddev->pers->size(mddev, 0, 0);
  4173. else
  4174. sectors = mddev->array_sectors;
  4175. mddev->external_size = 0;
  4176. } else {
  4177. if (strict_blocks_to_sectors(buf, &sectors) < 0)
  4178. return -EINVAL;
  4179. if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
  4180. return -E2BIG;
  4181. mddev->external_size = 1;
  4182. }
  4183. mddev->array_sectors = sectors;
  4184. if (mddev->pers) {
  4185. set_capacity(mddev->gendisk, mddev->array_sectors);
  4186. revalidate_disk(mddev->gendisk);
  4187. }
  4188. return len;
  4189. }
  4190. static struct md_sysfs_entry md_array_size =
  4191. __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
  4192. array_size_store);
  4193. static struct attribute *md_default_attrs[] = {
  4194. &md_level.attr,
  4195. &md_layout.attr,
  4196. &md_raid_disks.attr,
  4197. &md_chunk_size.attr,
  4198. &md_size.attr,
  4199. &md_resync_start.attr,
  4200. &md_metadata.attr,
  4201. &md_new_device.attr,
  4202. &md_safe_delay.attr,
  4203. &md_array_state.attr,
  4204. &md_reshape_position.attr,
  4205. &md_reshape_direction.attr,
  4206. &md_array_size.attr,
  4207. &max_corr_read_errors.attr,
  4208. NULL,
  4209. };
  4210. static struct attribute *md_redundancy_attrs[] = {
  4211. &md_scan_mode.attr,
  4212. &md_mismatches.attr,
  4213. &md_sync_min.attr,
  4214. &md_sync_max.attr,
  4215. &md_sync_speed.attr,
  4216. &md_sync_force_parallel.attr,
  4217. &md_sync_completed.attr,
  4218. &md_min_sync.attr,
  4219. &md_max_sync.attr,
  4220. &md_suspend_lo.attr,
  4221. &md_suspend_hi.attr,
  4222. &md_bitmap.attr,
  4223. &md_degraded.attr,
  4224. NULL,
  4225. };
  4226. static struct attribute_group md_redundancy_group = {
  4227. .name = NULL,
  4228. .attrs = md_redundancy_attrs,
  4229. };
  4230. static ssize_t
  4231. md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  4232. {
  4233. struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
  4234. struct mddev *mddev = container_of(kobj, struct mddev, kobj);
  4235. ssize_t rv;
  4236. if (!entry->show)
  4237. return -EIO;
  4238. spin_lock(&all_mddevs_lock);
  4239. if (list_empty(&mddev->all_mddevs)) {
  4240. spin_unlock(&all_mddevs_lock);
  4241. return -EBUSY;
  4242. }
  4243. mddev_get(mddev);
  4244. spin_unlock(&all_mddevs_lock);
  4245. rv = mddev_lock(mddev);
  4246. if (!rv) {
  4247. rv = entry->show(mddev, page);
  4248. mddev_unlock(mddev);
  4249. }
  4250. mddev_put(mddev);
  4251. return rv;
  4252. }
  4253. static ssize_t
  4254. md_attr_store(struct kobject *kobj, struct attribute *attr,
  4255. const char *page, size_t length)
  4256. {
  4257. struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
  4258. struct mddev *mddev = container_of(kobj, struct mddev, kobj);
  4259. ssize_t rv;
  4260. if (!entry->store)
  4261. return -EIO;
  4262. if (!capable(CAP_SYS_ADMIN))
  4263. return -EACCES;
  4264. spin_lock(&all_mddevs_lock);
  4265. if (list_empty(&mddev->all_mddevs)) {
  4266. spin_unlock(&all_mddevs_lock);
  4267. return -EBUSY;
  4268. }
  4269. mddev_get(mddev);
  4270. spin_unlock(&all_mddevs_lock);
  4271. rv = mddev_lock(mddev);
  4272. if (!rv) {
  4273. rv = entry->store(mddev, page, length);
  4274. mddev_unlock(mddev);
  4275. }
  4276. mddev_put(mddev);
  4277. return rv;
  4278. }
  4279. static void md_free(struct kobject *ko)
  4280. {
  4281. struct mddev *mddev = container_of(ko, struct mddev, kobj);
  4282. if (mddev->sysfs_state)
  4283. sysfs_put(mddev->sysfs_state);
  4284. if (mddev->gendisk) {
  4285. del_gendisk(mddev->gendisk);
  4286. put_disk(mddev->gendisk);
  4287. }
  4288. if (mddev->queue)
  4289. blk_cleanup_queue(mddev->queue);
  4290. kfree(mddev);
  4291. }
  4292. static const struct sysfs_ops md_sysfs_ops = {
  4293. .show = md_attr_show,
  4294. .store = md_attr_store,
  4295. };
  4296. static struct kobj_type md_ktype = {
  4297. .release = md_free,
  4298. .sysfs_ops = &md_sysfs_ops,
  4299. .default_attrs = md_default_attrs,
  4300. };
  4301. int mdp_major = 0;
  4302. static void mddev_delayed_delete(struct work_struct *ws)
  4303. {
  4304. struct mddev *mddev = container_of(ws, struct mddev, del_work);
  4305. sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
  4306. kobject_del(&mddev->kobj);
  4307. kobject_put(&mddev->kobj);
  4308. }
  4309. static int md_alloc(dev_t dev, char *name)
  4310. {
  4311. static DEFINE_MUTEX(disks_mutex);
  4312. struct mddev *mddev = mddev_find(dev);
  4313. struct gendisk *disk;
  4314. int partitioned;
  4315. int shift;
  4316. int unit;
  4317. int error;
  4318. if (!mddev)
  4319. return -ENODEV;
  4320. partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
  4321. shift = partitioned ? MdpMinorShift : 0;
  4322. unit = MINOR(mddev->unit) >> shift;
  4323. /* wait for any previous instance of this device to be
  4324. * completely removed (mddev_delayed_delete).
  4325. */
  4326. flush_workqueue(md_misc_wq);
  4327. mutex_lock(&disks_mutex);
  4328. error = -EEXIST;
  4329. if (mddev->gendisk)
  4330. goto abort;
  4331. if (name) {
  4332. /* Need to ensure that 'name' is not a duplicate.
  4333. */
  4334. struct mddev *mddev2;
  4335. spin_lock(&all_mddevs_lock);
  4336. list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
  4337. if (mddev2->gendisk &&
  4338. strcmp(mddev2->gendisk->disk_name, name) == 0) {
  4339. spin_unlock(&all_mddevs_lock);
  4340. goto abort;
  4341. }
  4342. spin_unlock(&all_mddevs_lock);
  4343. }
  4344. error = -ENOMEM;
  4345. mddev->queue = blk_alloc_queue(GFP_KERNEL);
  4346. if (!mddev->queue)
  4347. goto abort;
  4348. mddev->queue->queuedata = mddev;
  4349. blk_queue_make_request(mddev->queue, md_make_request);
  4350. blk_set_stacking_limits(&mddev->queue->limits);
  4351. disk = alloc_disk(1 << shift);
  4352. if (!disk) {
  4353. blk_cleanup_queue(mddev->queue);
  4354. mddev->queue = NULL;
  4355. goto abort;
  4356. }
  4357. disk->major = MAJOR(mddev->unit);
  4358. disk->first_minor = unit << shift;
  4359. if (name)
  4360. strcpy(disk->disk_name, name);
  4361. else if (partitioned)
  4362. sprintf(disk->disk_name, "md_d%d", unit);
  4363. else
  4364. sprintf(disk->disk_name, "md%d", unit);
  4365. disk->fops = &md_fops;
  4366. disk->private_data = mddev;
  4367. disk->queue = mddev->queue;
  4368. blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
  4369. /* Allow extended partitions. This makes the
  4370. * 'mdp' device redundant, but we can't really
  4371. * remove it now.
  4372. */
  4373. disk->flags |= GENHD_FL_EXT_DEVT;
  4374. mddev->gendisk = disk;
  4375. /* As soon as we call add_disk(), another thread could get
  4376. * through to md_open, so make sure it doesn't get too far
  4377. */
  4378. mutex_lock(&mddev->open_mutex);
  4379. add_disk(disk);
  4380. error = kobject_init_and_add(&mddev->kobj, &md_ktype,
  4381. &disk_to_dev(disk)->kobj, "%s", "md");
  4382. if (error) {
  4383. /* This isn't possible, but as kobject_init_and_add is marked
  4384. * __must_check, we must do something with the result
  4385. */
  4386. printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
  4387. disk->disk_name);
  4388. error = 0;
  4389. }
  4390. if (mddev->kobj.sd &&
  4391. sysfs_create_group(&mddev->kobj, &md_bitmap_group))
  4392. printk(KERN_DEBUG "pointless warning\n");
  4393. mutex_unlock(&mddev->open_mutex);
  4394. abort:
  4395. mutex_unlock(&disks_mutex);
  4396. if (!error && mddev->kobj.sd) {
  4397. kobject_uevent(&mddev->kobj, KOBJ_ADD);
  4398. mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
  4399. }
  4400. mddev_put(mddev);
  4401. return error;
  4402. }
  4403. static struct kobject *md_probe(dev_t dev, int *part, void *data)
  4404. {
  4405. md_alloc(dev, NULL);
  4406. return NULL;
  4407. }
  4408. static int add_named_array(const char *val, struct kernel_param *kp)
  4409. {
  4410. /* val must be "md_*" where * is not all digits.
  4411. * We allocate an array with a large free minor number, and
  4412. * set the name to val. val must not already be an active name.
  4413. */
  4414. int len = strlen(val);
  4415. char buf[DISK_NAME_LEN];
  4416. while (len && val[len-1] == '\n')
  4417. len--;
  4418. if (len >= DISK_NAME_LEN)
  4419. return -E2BIG;
  4420. strlcpy(buf, val, len+1);
  4421. if (strncmp(buf, "md_", 3) != 0)
  4422. return -EINVAL;
  4423. return md_alloc(0, buf);
  4424. }
  4425. static void md_safemode_timeout(unsigned long data)
  4426. {
  4427. struct mddev *mddev = (struct mddev *) data;
  4428. if (!atomic_read(&mddev->writes_pending)) {
  4429. mddev->safemode = 1;
  4430. if (mddev->external)
  4431. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4432. }
  4433. md_wakeup_thread(mddev->thread);
  4434. }
  4435. static int start_dirty_degraded;
  4436. int md_run(struct mddev *mddev)
  4437. {
  4438. int err;
  4439. struct md_rdev *rdev;
  4440. struct md_personality *pers;
  4441. if (list_empty(&mddev->disks))
  4442. /* cannot run an array with no devices.. */
  4443. return -EINVAL;
  4444. if (mddev->pers)
  4445. return -EBUSY;
  4446. /* Cannot run until previous stop completes properly */
  4447. if (mddev->sysfs_active)
  4448. return -EBUSY;
  4449. /*
  4450. * Analyze all RAID superblock(s)
  4451. */
  4452. if (!mddev->raid_disks) {
  4453. if (!mddev->persistent)
  4454. return -EINVAL;
  4455. analyze_sbs(mddev);
  4456. }
  4457. if (mddev->level != LEVEL_NONE)
  4458. request_module("md-level-%d", mddev->level);
  4459. else if (mddev->clevel[0])
  4460. request_module("md-%s", mddev->clevel);
  4461. /*
  4462. * Drop all container device buffers, from now on
  4463. * the only valid external interface is through the md
  4464. * device.
  4465. */
  4466. rdev_for_each(rdev, mddev) {
  4467. if (test_bit(Faulty, &rdev->flags))
  4468. continue;
  4469. sync_blockdev(rdev->bdev);
  4470. invalidate_bdev(rdev->bdev);
  4471. /* perform some consistency tests on the device.
  4472. * We don't want the data to overlap the metadata,
  4473. * Internal Bitmap issues have been handled elsewhere.
  4474. */
  4475. if (rdev->meta_bdev) {
  4476. /* Nothing to check */;
  4477. } else if (rdev->data_offset < rdev->sb_start) {
  4478. if (mddev->dev_sectors &&
  4479. rdev->data_offset + mddev->dev_sectors
  4480. > rdev->sb_start) {
  4481. printk("md: %s: data overlaps metadata\n",
  4482. mdname(mddev));
  4483. return -EINVAL;
  4484. }
  4485. } else {
  4486. if (rdev->sb_start + rdev->sb_size/512
  4487. > rdev->data_offset) {
  4488. printk("md: %s: metadata overlaps data\n",
  4489. mdname(mddev));
  4490. return -EINVAL;
  4491. }
  4492. }
  4493. sysfs_notify_dirent_safe(rdev->sysfs_state);
  4494. }
  4495. if (mddev->bio_set == NULL)
  4496. mddev->bio_set = bioset_create(BIO_POOL_SIZE,
  4497. sizeof(struct mddev *));
  4498. spin_lock(&pers_lock);
  4499. pers = find_pers(mddev->level, mddev->clevel);
  4500. if (!pers || !try_module_get(pers->owner)) {
  4501. spin_unlock(&pers_lock);
  4502. if (mddev->level != LEVEL_NONE)
  4503. printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
  4504. mddev->level);
  4505. else
  4506. printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
  4507. mddev->clevel);
  4508. return -EINVAL;
  4509. }
  4510. mddev->pers = pers;
  4511. spin_unlock(&pers_lock);
  4512. if (mddev->level != pers->level) {
  4513. mddev->level = pers->level;
  4514. mddev->new_level = pers->level;
  4515. }
  4516. strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
  4517. if (mddev->reshape_position != MaxSector &&
  4518. pers->start_reshape == NULL) {
  4519. /* This personality cannot handle reshaping... */
  4520. mddev->pers = NULL;
  4521. module_put(pers->owner);
  4522. return -EINVAL;
  4523. }
  4524. if (pers->sync_request) {
  4525. /* Warn if this is a potentially silly
  4526. * configuration.
  4527. */
  4528. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  4529. struct md_rdev *rdev2;
  4530. int warned = 0;
  4531. rdev_for_each(rdev, mddev)
  4532. rdev_for_each(rdev2, mddev) {
  4533. if (rdev < rdev2 &&
  4534. rdev->bdev->bd_contains ==
  4535. rdev2->bdev->bd_contains) {
  4536. printk(KERN_WARNING
  4537. "%s: WARNING: %s appears to be"
  4538. " on the same physical disk as"
  4539. " %s.\n",
  4540. mdname(mddev),
  4541. bdevname(rdev->bdev,b),
  4542. bdevname(rdev2->bdev,b2));
  4543. warned = 1;
  4544. }
  4545. }
  4546. if (warned)
  4547. printk(KERN_WARNING
  4548. "True protection against single-disk"
  4549. " failure might be compromised.\n");
  4550. }
  4551. mddev->recovery = 0;
  4552. /* may be over-ridden by personality */
  4553. mddev->resync_max_sectors = mddev->dev_sectors;
  4554. mddev->ok_start_degraded = start_dirty_degraded;
  4555. if (start_readonly && mddev->ro == 0)
  4556. mddev->ro = 2; /* read-only, but switch on first write */
  4557. err = mddev->pers->run(mddev);
  4558. if (err)
  4559. printk(KERN_ERR "md: pers->run() failed ...\n");
  4560. else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) {
  4561. WARN_ONCE(!mddev->external_size, "%s: default size too small,"
  4562. " but 'external_size' not in effect?\n", __func__);
  4563. printk(KERN_ERR
  4564. "md: invalid array_size %llu > default size %llu\n",
  4565. (unsigned long long)mddev->array_sectors / 2,
  4566. (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2);
  4567. err = -EINVAL;
  4568. mddev->pers->stop(mddev);
  4569. }
  4570. if (err == 0 && mddev->pers->sync_request &&
  4571. (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
  4572. err = bitmap_create(mddev);
  4573. if (err) {
  4574. printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
  4575. mdname(mddev), err);
  4576. mddev->pers->stop(mddev);
  4577. }
  4578. }
  4579. if (err) {
  4580. module_put(mddev->pers->owner);
  4581. mddev->pers = NULL;
  4582. bitmap_destroy(mddev);
  4583. return err;
  4584. }
  4585. if (mddev->pers->sync_request) {
  4586. if (mddev->kobj.sd &&
  4587. sysfs_create_group(&mddev->kobj, &md_redundancy_group))
  4588. printk(KERN_WARNING
  4589. "md: cannot register extra attributes for %s\n",
  4590. mdname(mddev));
  4591. mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
  4592. } else if (mddev->ro == 2) /* auto-readonly not meaningful */
  4593. mddev->ro = 0;
  4594. atomic_set(&mddev->writes_pending,0);
  4595. atomic_set(&mddev->max_corr_read_errors,
  4596. MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
  4597. mddev->safemode = 0;
  4598. mddev->safemode_timer.function = md_safemode_timeout;
  4599. mddev->safemode_timer.data = (unsigned long) mddev;
  4600. mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
  4601. mddev->in_sync = 1;
  4602. smp_wmb();
  4603. mddev->ready = 1;
  4604. rdev_for_each(rdev, mddev)
  4605. if (rdev->raid_disk >= 0)
  4606. if (sysfs_link_rdev(mddev, rdev))
  4607. /* failure here is OK */;
  4608. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4609. if (mddev->flags)
  4610. md_update_sb(mddev, 0);
  4611. md_new_event(mddev);
  4612. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4613. sysfs_notify_dirent_safe(mddev->sysfs_action);
  4614. sysfs_notify(&mddev->kobj, NULL, "degraded");
  4615. return 0;
  4616. }
  4617. EXPORT_SYMBOL_GPL(md_run);
  4618. static int do_md_run(struct mddev *mddev)
  4619. {
  4620. int err;
  4621. err = md_run(mddev);
  4622. if (err)
  4623. goto out;
  4624. err = bitmap_load(mddev);
  4625. if (err) {
  4626. bitmap_destroy(mddev);
  4627. goto out;
  4628. }
  4629. md_wakeup_thread(mddev->thread);
  4630. md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
  4631. set_capacity(mddev->gendisk, mddev->array_sectors);
  4632. revalidate_disk(mddev->gendisk);
  4633. mddev->changed = 1;
  4634. kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
  4635. out:
  4636. return err;
  4637. }
  4638. static int restart_array(struct mddev *mddev)
  4639. {
  4640. struct gendisk *disk = mddev->gendisk;
  4641. /* Complain if it has no devices */
  4642. if (list_empty(&mddev->disks))
  4643. return -ENXIO;
  4644. if (!mddev->pers)
  4645. return -EINVAL;
  4646. if (!mddev->ro)
  4647. return -EBUSY;
  4648. mddev->safemode = 0;
  4649. mddev->ro = 0;
  4650. set_disk_ro(disk, 0);
  4651. printk(KERN_INFO "md: %s switched to read-write mode.\n",
  4652. mdname(mddev));
  4653. /* Kick recovery or resync if necessary */
  4654. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4655. md_wakeup_thread(mddev->thread);
  4656. md_wakeup_thread(mddev->sync_thread);
  4657. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4658. return 0;
  4659. }
  4660. /* similar to deny_write_access, but accounts for our holding a reference
  4661. * to the file ourselves */
  4662. static int deny_bitmap_write_access(struct file * file)
  4663. {
  4664. struct inode *inode = file->f_mapping->host;
  4665. spin_lock(&inode->i_lock);
  4666. if (atomic_read(&inode->i_writecount) > 1) {
  4667. spin_unlock(&inode->i_lock);
  4668. return -ETXTBSY;
  4669. }
  4670. atomic_set(&inode->i_writecount, -1);
  4671. spin_unlock(&inode->i_lock);
  4672. return 0;
  4673. }
  4674. void restore_bitmap_write_access(struct file *file)
  4675. {
  4676. struct inode *inode = file->f_mapping->host;
  4677. spin_lock(&inode->i_lock);
  4678. atomic_set(&inode->i_writecount, 1);
  4679. spin_unlock(&inode->i_lock);
  4680. }
  4681. static void md_clean(struct mddev *mddev)
  4682. {
  4683. mddev->array_sectors = 0;
  4684. mddev->external_size = 0;
  4685. mddev->dev_sectors = 0;
  4686. mddev->raid_disks = 0;
  4687. mddev->recovery_cp = 0;
  4688. mddev->resync_min = 0;
  4689. mddev->resync_max = MaxSector;
  4690. mddev->reshape_position = MaxSector;
  4691. mddev->external = 0;
  4692. mddev->persistent = 0;
  4693. mddev->level = LEVEL_NONE;
  4694. mddev->clevel[0] = 0;
  4695. mddev->flags = 0;
  4696. mddev->ro = 0;
  4697. mddev->metadata_type[0] = 0;
  4698. mddev->chunk_sectors = 0;
  4699. mddev->ctime = mddev->utime = 0;
  4700. mddev->layout = 0;
  4701. mddev->max_disks = 0;
  4702. mddev->events = 0;
  4703. mddev->can_decrease_events = 0;
  4704. mddev->delta_disks = 0;
  4705. mddev->reshape_backwards = 0;
  4706. mddev->new_level = LEVEL_NONE;
  4707. mddev->new_layout = 0;
  4708. mddev->new_chunk_sectors = 0;
  4709. mddev->curr_resync = 0;
  4710. mddev->resync_mismatches = 0;
  4711. mddev->suspend_lo = mddev->suspend_hi = 0;
  4712. mddev->sync_speed_min = mddev->sync_speed_max = 0;
  4713. mddev->recovery = 0;
  4714. mddev->in_sync = 0;
  4715. mddev->changed = 0;
  4716. mddev->degraded = 0;
  4717. mddev->safemode = 0;
  4718. mddev->merge_check_needed = 0;
  4719. mddev->bitmap_info.offset = 0;
  4720. mddev->bitmap_info.default_offset = 0;
  4721. mddev->bitmap_info.default_space = 0;
  4722. mddev->bitmap_info.chunksize = 0;
  4723. mddev->bitmap_info.daemon_sleep = 0;
  4724. mddev->bitmap_info.max_write_behind = 0;
  4725. }
  4726. static void __md_stop_writes(struct mddev *mddev)
  4727. {
  4728. if (mddev->sync_thread) {
  4729. set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  4730. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  4731. reap_sync_thread(mddev);
  4732. }
  4733. del_timer_sync(&mddev->safemode_timer);
  4734. bitmap_flush(mddev);
  4735. md_super_wait(mddev);
  4736. if (!mddev->in_sync || mddev->flags) {
  4737. /* mark array as shutdown cleanly */
  4738. mddev->in_sync = 1;
  4739. md_update_sb(mddev, 1);
  4740. }
  4741. }
  4742. void md_stop_writes(struct mddev *mddev)
  4743. {
  4744. mddev_lock(mddev);
  4745. __md_stop_writes(mddev);
  4746. mddev_unlock(mddev);
  4747. }
  4748. EXPORT_SYMBOL_GPL(md_stop_writes);
  4749. void md_stop(struct mddev *mddev)
  4750. {
  4751. mddev->ready = 0;
  4752. mddev->pers->stop(mddev);
  4753. if (mddev->pers->sync_request && mddev->to_remove == NULL)
  4754. mddev->to_remove = &md_redundancy_group;
  4755. module_put(mddev->pers->owner);
  4756. mddev->pers = NULL;
  4757. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  4758. }
  4759. EXPORT_SYMBOL_GPL(md_stop);
  4760. static int md_set_readonly(struct mddev *mddev, int is_open)
  4761. {
  4762. int err = 0;
  4763. mutex_lock(&mddev->open_mutex);
  4764. if (atomic_read(&mddev->openers) > is_open) {
  4765. printk("md: %s still in use.\n",mdname(mddev));
  4766. err = -EBUSY;
  4767. goto out;
  4768. }
  4769. if (mddev->pers) {
  4770. __md_stop_writes(mddev);
  4771. err = -ENXIO;
  4772. if (mddev->ro==1)
  4773. goto out;
  4774. mddev->ro = 1;
  4775. set_disk_ro(mddev->gendisk, 1);
  4776. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  4777. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4778. err = 0;
  4779. }
  4780. out:
  4781. mutex_unlock(&mddev->open_mutex);
  4782. return err;
  4783. }
  4784. /* mode:
  4785. * 0 - completely stop and dis-assemble array
  4786. * 2 - stop but do not disassemble array
  4787. */
  4788. static int do_md_stop(struct mddev * mddev, int mode, int is_open)
  4789. {
  4790. struct gendisk *disk = mddev->gendisk;
  4791. struct md_rdev *rdev;
  4792. mutex_lock(&mddev->open_mutex);
  4793. if (atomic_read(&mddev->openers) > is_open ||
  4794. mddev->sysfs_active) {
  4795. printk("md: %s still in use.\n",mdname(mddev));
  4796. mutex_unlock(&mddev->open_mutex);
  4797. return -EBUSY;
  4798. }
  4799. if (mddev->pers) {
  4800. if (mddev->ro)
  4801. set_disk_ro(disk, 0);
  4802. __md_stop_writes(mddev);
  4803. md_stop(mddev);
  4804. mddev->queue->merge_bvec_fn = NULL;
  4805. mddev->queue->backing_dev_info.congested_fn = NULL;
  4806. /* tell userspace to handle 'inactive' */
  4807. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4808. rdev_for_each(rdev, mddev)
  4809. if (rdev->raid_disk >= 0)
  4810. sysfs_unlink_rdev(mddev, rdev);
  4811. set_capacity(disk, 0);
  4812. mutex_unlock(&mddev->open_mutex);
  4813. mddev->changed = 1;
  4814. revalidate_disk(disk);
  4815. if (mddev->ro)
  4816. mddev->ro = 0;
  4817. } else
  4818. mutex_unlock(&mddev->open_mutex);
  4819. /*
  4820. * Free resources if final stop
  4821. */
  4822. if (mode == 0) {
  4823. printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
  4824. bitmap_destroy(mddev);
  4825. if (mddev->bitmap_info.file) {
  4826. restore_bitmap_write_access(mddev->bitmap_info.file);
  4827. fput(mddev->bitmap_info.file);
  4828. mddev->bitmap_info.file = NULL;
  4829. }
  4830. mddev->bitmap_info.offset = 0;
  4831. export_array(mddev);
  4832. md_clean(mddev);
  4833. kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
  4834. if (mddev->hold_active == UNTIL_STOP)
  4835. mddev->hold_active = 0;
  4836. }
  4837. blk_integrity_unregister(disk);
  4838. md_new_event(mddev);
  4839. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4840. return 0;
  4841. }
  4842. #ifndef MODULE
  4843. static void autorun_array(struct mddev *mddev)
  4844. {
  4845. struct md_rdev *rdev;
  4846. int err;
  4847. if (list_empty(&mddev->disks))
  4848. return;
  4849. printk(KERN_INFO "md: running: ");
  4850. rdev_for_each(rdev, mddev) {
  4851. char b[BDEVNAME_SIZE];
  4852. printk("<%s>", bdevname(rdev->bdev,b));
  4853. }
  4854. printk("\n");
  4855. err = do_md_run(mddev);
  4856. if (err) {
  4857. printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
  4858. do_md_stop(mddev, 0, 0);
  4859. }
  4860. }
  4861. /*
  4862. * lets try to run arrays based on all disks that have arrived
  4863. * until now. (those are in pending_raid_disks)
  4864. *
  4865. * the method: pick the first pending disk, collect all disks with
  4866. * the same UUID, remove all from the pending list and put them into
  4867. * the 'same_array' list. Then order this list based on superblock
  4868. * update time (freshest comes first), kick out 'old' disks and
  4869. * compare superblocks. If everything's fine then run it.
  4870. *
  4871. * If "unit" is allocated, then bump its reference count
  4872. */
  4873. static void autorun_devices(int part)
  4874. {
  4875. struct md_rdev *rdev0, *rdev, *tmp;
  4876. struct mddev *mddev;
  4877. char b[BDEVNAME_SIZE];
  4878. printk(KERN_INFO "md: autorun ...\n");
  4879. while (!list_empty(&pending_raid_disks)) {
  4880. int unit;
  4881. dev_t dev;
  4882. LIST_HEAD(candidates);
  4883. rdev0 = list_entry(pending_raid_disks.next,
  4884. struct md_rdev, same_set);
  4885. printk(KERN_INFO "md: considering %s ...\n",
  4886. bdevname(rdev0->bdev,b));
  4887. INIT_LIST_HEAD(&candidates);
  4888. rdev_for_each_list(rdev, tmp, &pending_raid_disks)
  4889. if (super_90_load(rdev, rdev0, 0) >= 0) {
  4890. printk(KERN_INFO "md: adding %s ...\n",
  4891. bdevname(rdev->bdev,b));
  4892. list_move(&rdev->same_set, &candidates);
  4893. }
  4894. /*
  4895. * now we have a set of devices, with all of them having
  4896. * mostly sane superblocks. It's time to allocate the
  4897. * mddev.
  4898. */
  4899. if (part) {
  4900. dev = MKDEV(mdp_major,
  4901. rdev0->preferred_minor << MdpMinorShift);
  4902. unit = MINOR(dev) >> MdpMinorShift;
  4903. } else {
  4904. dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
  4905. unit = MINOR(dev);
  4906. }
  4907. if (rdev0->preferred_minor != unit) {
  4908. printk(KERN_INFO "md: unit number in %s is bad: %d\n",
  4909. bdevname(rdev0->bdev, b), rdev0->preferred_minor);
  4910. break;
  4911. }
  4912. md_probe(dev, NULL, NULL);
  4913. mddev = mddev_find(dev);
  4914. if (!mddev || !mddev->gendisk) {
  4915. if (mddev)
  4916. mddev_put(mddev);
  4917. printk(KERN_ERR
  4918. "md: cannot allocate memory for md drive.\n");
  4919. break;
  4920. }
  4921. if (mddev_lock(mddev))
  4922. printk(KERN_WARNING "md: %s locked, cannot run\n",
  4923. mdname(mddev));
  4924. else if (mddev->raid_disks || mddev->major_version
  4925. || !list_empty(&mddev->disks)) {
  4926. printk(KERN_WARNING
  4927. "md: %s already running, cannot run %s\n",
  4928. mdname(mddev), bdevname(rdev0->bdev,b));
  4929. mddev_unlock(mddev);
  4930. } else {
  4931. printk(KERN_INFO "md: created %s\n", mdname(mddev));
  4932. mddev->persistent = 1;
  4933. rdev_for_each_list(rdev, tmp, &candidates) {
  4934. list_del_init(&rdev->same_set);
  4935. if (bind_rdev_to_array(rdev, mddev))
  4936. export_rdev(rdev);
  4937. }
  4938. autorun_array(mddev);
  4939. mddev_unlock(mddev);
  4940. }
  4941. /* on success, candidates will be empty, on error
  4942. * it won't...
  4943. */
  4944. rdev_for_each_list(rdev, tmp, &candidates) {
  4945. list_del_init(&rdev->same_set);
  4946. export_rdev(rdev);
  4947. }
  4948. mddev_put(mddev);
  4949. }
  4950. printk(KERN_INFO "md: ... autorun DONE.\n");
  4951. }
  4952. #endif /* !MODULE */
  4953. static int get_version(void __user * arg)
  4954. {
  4955. mdu_version_t ver;
  4956. ver.major = MD_MAJOR_VERSION;
  4957. ver.minor = MD_MINOR_VERSION;
  4958. ver.patchlevel = MD_PATCHLEVEL_VERSION;
  4959. if (copy_to_user(arg, &ver, sizeof(ver)))
  4960. return -EFAULT;
  4961. return 0;
  4962. }
  4963. static int get_array_info(struct mddev * mddev, void __user * arg)
  4964. {
  4965. mdu_array_info_t info;
  4966. int nr,working,insync,failed,spare;
  4967. struct md_rdev *rdev;
  4968. nr=working=insync=failed=spare=0;
  4969. rdev_for_each(rdev, mddev) {
  4970. nr++;
  4971. if (test_bit(Faulty, &rdev->flags))
  4972. failed++;
  4973. else {
  4974. working++;
  4975. if (test_bit(In_sync, &rdev->flags))
  4976. insync++;
  4977. else
  4978. spare++;
  4979. }
  4980. }
  4981. info.major_version = mddev->major_version;
  4982. info.minor_version = mddev->minor_version;
  4983. info.patch_version = MD_PATCHLEVEL_VERSION;
  4984. info.ctime = mddev->ctime;
  4985. info.level = mddev->level;
  4986. info.size = mddev->dev_sectors / 2;
  4987. if (info.size != mddev->dev_sectors / 2) /* overflow */
  4988. info.size = -1;
  4989. info.nr_disks = nr;
  4990. info.raid_disks = mddev->raid_disks;
  4991. info.md_minor = mddev->md_minor;
  4992. info.not_persistent= !mddev->persistent;
  4993. info.utime = mddev->utime;
  4994. info.state = 0;
  4995. if (mddev->in_sync)
  4996. info.state = (1<<MD_SB_CLEAN);
  4997. if (mddev->bitmap && mddev->bitmap_info.offset)
  4998. info.state = (1<<MD_SB_BITMAP_PRESENT);
  4999. info.active_disks = insync;
  5000. info.working_disks = working;
  5001. info.failed_disks = failed;
  5002. info.spare_disks = spare;
  5003. info.layout = mddev->layout;
  5004. info.chunk_size = mddev->chunk_sectors << 9;
  5005. if (copy_to_user(arg, &info, sizeof(info)))
  5006. return -EFAULT;
  5007. return 0;
  5008. }
  5009. static int get_bitmap_file(struct mddev * mddev, void __user * arg)
  5010. {
  5011. mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
  5012. char *ptr, *buf = NULL;
  5013. int err = -ENOMEM;
  5014. if (md_allow_write(mddev))
  5015. file = kmalloc(sizeof(*file), GFP_NOIO);
  5016. else
  5017. file = kmalloc(sizeof(*file), GFP_KERNEL);
  5018. if (!file)
  5019. goto out;
  5020. /* bitmap disabled, zero the first byte and copy out */
  5021. if (!mddev->bitmap || !mddev->bitmap->storage.file) {
  5022. file->pathname[0] = '\0';
  5023. goto copy_out;
  5024. }
  5025. buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
  5026. if (!buf)
  5027. goto out;
  5028. ptr = d_path(&mddev->bitmap->storage.file->f_path,
  5029. buf, sizeof(file->pathname));
  5030. if (IS_ERR(ptr))
  5031. goto out;
  5032. strcpy(file->pathname, ptr);
  5033. copy_out:
  5034. err = 0;
  5035. if (copy_to_user(arg, file, sizeof(*file)))
  5036. err = -EFAULT;
  5037. out:
  5038. kfree(buf);
  5039. kfree(file);
  5040. return err;
  5041. }
  5042. static int get_disk_info(struct mddev * mddev, void __user * arg)
  5043. {
  5044. mdu_disk_info_t info;
  5045. struct md_rdev *rdev;
  5046. if (copy_from_user(&info, arg, sizeof(info)))
  5047. return -EFAULT;
  5048. rdev = find_rdev_nr(mddev, info.number);
  5049. if (rdev) {
  5050. info.major = MAJOR(rdev->bdev->bd_dev);
  5051. info.minor = MINOR(rdev->bdev->bd_dev);
  5052. info.raid_disk = rdev->raid_disk;
  5053. info.state = 0;
  5054. if (test_bit(Faulty, &rdev->flags))
  5055. info.state |= (1<<MD_DISK_FAULTY);
  5056. else if (test_bit(In_sync, &rdev->flags)) {
  5057. info.state |= (1<<MD_DISK_ACTIVE);
  5058. info.state |= (1<<MD_DISK_SYNC);
  5059. }
  5060. if (test_bit(WriteMostly, &rdev->flags))
  5061. info.state |= (1<<MD_DISK_WRITEMOSTLY);
  5062. } else {
  5063. info.major = info.minor = 0;
  5064. info.raid_disk = -1;
  5065. info.state = (1<<MD_DISK_REMOVED);
  5066. }
  5067. if (copy_to_user(arg, &info, sizeof(info)))
  5068. return -EFAULT;
  5069. return 0;
  5070. }
  5071. static int add_new_disk(struct mddev * mddev, mdu_disk_info_t *info)
  5072. {
  5073. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  5074. struct md_rdev *rdev;
  5075. dev_t dev = MKDEV(info->major,info->minor);
  5076. if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
  5077. return -EOVERFLOW;
  5078. if (!mddev->raid_disks) {
  5079. int err;
  5080. /* expecting a device which has a superblock */
  5081. rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
  5082. if (IS_ERR(rdev)) {
  5083. printk(KERN_WARNING
  5084. "md: md_import_device returned %ld\n",
  5085. PTR_ERR(rdev));
  5086. return PTR_ERR(rdev);
  5087. }
  5088. if (!list_empty(&mddev->disks)) {
  5089. struct md_rdev *rdev0
  5090. = list_entry(mddev->disks.next,
  5091. struct md_rdev, same_set);
  5092. err = super_types[mddev->major_version]
  5093. .load_super(rdev, rdev0, mddev->minor_version);
  5094. if (err < 0) {
  5095. printk(KERN_WARNING
  5096. "md: %s has different UUID to %s\n",
  5097. bdevname(rdev->bdev,b),
  5098. bdevname(rdev0->bdev,b2));
  5099. export_rdev(rdev);
  5100. return -EINVAL;
  5101. }
  5102. }
  5103. err = bind_rdev_to_array(rdev, mddev);
  5104. if (err)
  5105. export_rdev(rdev);
  5106. return err;
  5107. }
  5108. /*
  5109. * add_new_disk can be used once the array is assembled
  5110. * to add "hot spares". They must already have a superblock
  5111. * written
  5112. */
  5113. if (mddev->pers) {
  5114. int err;
  5115. if (!mddev->pers->hot_add_disk) {
  5116. printk(KERN_WARNING
  5117. "%s: personality does not support diskops!\n",
  5118. mdname(mddev));
  5119. return -EINVAL;
  5120. }
  5121. if (mddev->persistent)
  5122. rdev = md_import_device(dev, mddev->major_version,
  5123. mddev->minor_version);
  5124. else
  5125. rdev = md_import_device(dev, -1, -1);
  5126. if (IS_ERR(rdev)) {
  5127. printk(KERN_WARNING
  5128. "md: md_import_device returned %ld\n",
  5129. PTR_ERR(rdev));
  5130. return PTR_ERR(rdev);
  5131. }
  5132. /* set saved_raid_disk if appropriate */
  5133. if (!mddev->persistent) {
  5134. if (info->state & (1<<MD_DISK_SYNC) &&
  5135. info->raid_disk < mddev->raid_disks) {
  5136. rdev->raid_disk = info->raid_disk;
  5137. set_bit(In_sync, &rdev->flags);
  5138. } else
  5139. rdev->raid_disk = -1;
  5140. } else
  5141. super_types[mddev->major_version].
  5142. validate_super(mddev, rdev);
  5143. if ((info->state & (1<<MD_DISK_SYNC)) &&
  5144. (!test_bit(In_sync, &rdev->flags) ||
  5145. rdev->raid_disk != info->raid_disk)) {
  5146. /* This was a hot-add request, but events doesn't
  5147. * match, so reject it.
  5148. */
  5149. export_rdev(rdev);
  5150. return -EINVAL;
  5151. }
  5152. if (test_bit(In_sync, &rdev->flags))
  5153. rdev->saved_raid_disk = rdev->raid_disk;
  5154. else
  5155. rdev->saved_raid_disk = -1;
  5156. clear_bit(In_sync, &rdev->flags); /* just to be sure */
  5157. if (info->state & (1<<MD_DISK_WRITEMOSTLY))
  5158. set_bit(WriteMostly, &rdev->flags);
  5159. else
  5160. clear_bit(WriteMostly, &rdev->flags);
  5161. rdev->raid_disk = -1;
  5162. err = bind_rdev_to_array(rdev, mddev);
  5163. if (!err && !mddev->pers->hot_remove_disk) {
  5164. /* If there is hot_add_disk but no hot_remove_disk
  5165. * then added disks for geometry changes,
  5166. * and should be added immediately.
  5167. */
  5168. super_types[mddev->major_version].
  5169. validate_super(mddev, rdev);
  5170. err = mddev->pers->hot_add_disk(mddev, rdev);
  5171. if (err)
  5172. unbind_rdev_from_array(rdev);
  5173. }
  5174. if (err)
  5175. export_rdev(rdev);
  5176. else
  5177. sysfs_notify_dirent_safe(rdev->sysfs_state);
  5178. md_update_sb(mddev, 1);
  5179. if (mddev->degraded)
  5180. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  5181. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  5182. if (!err)
  5183. md_new_event(mddev);
  5184. md_wakeup_thread(mddev->thread);
  5185. return err;
  5186. }
  5187. /* otherwise, add_new_disk is only allowed
  5188. * for major_version==0 superblocks
  5189. */
  5190. if (mddev->major_version != 0) {
  5191. printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
  5192. mdname(mddev));
  5193. return -EINVAL;
  5194. }
  5195. if (!(info->state & (1<<MD_DISK_FAULTY))) {
  5196. int err;
  5197. rdev = md_import_device(dev, -1, 0);
  5198. if (IS_ERR(rdev)) {
  5199. printk(KERN_WARNING
  5200. "md: error, md_import_device() returned %ld\n",
  5201. PTR_ERR(rdev));
  5202. return PTR_ERR(rdev);
  5203. }
  5204. rdev->desc_nr = info->number;
  5205. if (info->raid_disk < mddev->raid_disks)
  5206. rdev->raid_disk = info->raid_disk;
  5207. else
  5208. rdev->raid_disk = -1;
  5209. if (rdev->raid_disk < mddev->raid_disks)
  5210. if (info->state & (1<<MD_DISK_SYNC))
  5211. set_bit(In_sync, &rdev->flags);
  5212. if (info->state & (1<<MD_DISK_WRITEMOSTLY))
  5213. set_bit(WriteMostly, &rdev->flags);
  5214. if (!mddev->persistent) {
  5215. printk(KERN_INFO "md: nonpersistent superblock ...\n");
  5216. rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
  5217. } else
  5218. rdev->sb_start = calc_dev_sboffset(rdev);
  5219. rdev->sectors = rdev->sb_start;
  5220. err = bind_rdev_to_array(rdev, mddev);
  5221. if (err) {
  5222. export_rdev(rdev);
  5223. return err;
  5224. }
  5225. }
  5226. return 0;
  5227. }
  5228. static int hot_remove_disk(struct mddev * mddev, dev_t dev)
  5229. {
  5230. char b[BDEVNAME_SIZE];
  5231. struct md_rdev *rdev;
  5232. rdev = find_rdev(mddev, dev);
  5233. if (!rdev)
  5234. return -ENXIO;
  5235. if (rdev->raid_disk >= 0)
  5236. goto busy;
  5237. kick_rdev_from_array(rdev);
  5238. md_update_sb(mddev, 1);
  5239. md_new_event(mddev);
  5240. return 0;
  5241. busy:
  5242. printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
  5243. bdevname(rdev->bdev,b), mdname(mddev));
  5244. return -EBUSY;
  5245. }
  5246. static int hot_add_disk(struct mddev * mddev, dev_t dev)
  5247. {
  5248. char b[BDEVNAME_SIZE];
  5249. int err;
  5250. struct md_rdev *rdev;
  5251. if (!mddev->pers)
  5252. return -ENODEV;
  5253. if (mddev->major_version != 0) {
  5254. printk(KERN_WARNING "%s: HOT_ADD may only be used with"
  5255. " version-0 superblocks.\n",
  5256. mdname(mddev));
  5257. return -EINVAL;
  5258. }
  5259. if (!mddev->pers->hot_add_disk) {
  5260. printk(KERN_WARNING
  5261. "%s: personality does not support diskops!\n",
  5262. mdname(mddev));
  5263. return -EINVAL;
  5264. }
  5265. rdev = md_import_device(dev, -1, 0);
  5266. if (IS_ERR(rdev)) {
  5267. printk(KERN_WARNING
  5268. "md: error, md_import_device() returned %ld\n",
  5269. PTR_ERR(rdev));
  5270. return -EINVAL;
  5271. }
  5272. if (mddev->persistent)
  5273. rdev->sb_start = calc_dev_sboffset(rdev);
  5274. else
  5275. rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
  5276. rdev->sectors = rdev->sb_start;
  5277. if (test_bit(Faulty, &rdev->flags)) {
  5278. printk(KERN_WARNING
  5279. "md: can not hot-add faulty %s disk to %s!\n",
  5280. bdevname(rdev->bdev,b), mdname(mddev));
  5281. err = -EINVAL;
  5282. goto abort_export;
  5283. }
  5284. clear_bit(In_sync, &rdev->flags);
  5285. rdev->desc_nr = -1;
  5286. rdev->saved_raid_disk = -1;
  5287. err = bind_rdev_to_array(rdev, mddev);
  5288. if (err)
  5289. goto abort_export;
  5290. /*
  5291. * The rest should better be atomic, we can have disk failures
  5292. * noticed in interrupt contexts ...
  5293. */
  5294. rdev->raid_disk = -1;
  5295. md_update_sb(mddev, 1);
  5296. /*
  5297. * Kick recovery, maybe this spare has to be added to the
  5298. * array immediately.
  5299. */
  5300. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  5301. md_wakeup_thread(mddev->thread);
  5302. md_new_event(mddev);
  5303. return 0;
  5304. abort_export:
  5305. export_rdev(rdev);
  5306. return err;
  5307. }
  5308. static int set_bitmap_file(struct mddev *mddev, int fd)
  5309. {
  5310. int err;
  5311. if (mddev->pers) {
  5312. if (!mddev->pers->quiesce)
  5313. return -EBUSY;
  5314. if (mddev->recovery || mddev->sync_thread)
  5315. return -EBUSY;
  5316. /* we should be able to change the bitmap.. */
  5317. }
  5318. if (fd >= 0) {
  5319. if (mddev->bitmap)
  5320. return -EEXIST; /* cannot add when bitmap is present */
  5321. mddev->bitmap_info.file = fget(fd);
  5322. if (mddev->bitmap_info.file == NULL) {
  5323. printk(KERN_ERR "%s: error: failed to get bitmap file\n",
  5324. mdname(mddev));
  5325. return -EBADF;
  5326. }
  5327. err = deny_bitmap_write_access(mddev->bitmap_info.file);
  5328. if (err) {
  5329. printk(KERN_ERR "%s: error: bitmap file is already in use\n",
  5330. mdname(mddev));
  5331. fput(mddev->bitmap_info.file);
  5332. mddev->bitmap_info.file = NULL;
  5333. return err;
  5334. }
  5335. mddev->bitmap_info.offset = 0; /* file overrides offset */
  5336. } else if (mddev->bitmap == NULL)
  5337. return -ENOENT; /* cannot remove what isn't there */
  5338. err = 0;
  5339. if (mddev->pers) {
  5340. mddev->pers->quiesce(mddev, 1);
  5341. if (fd >= 0) {
  5342. err = bitmap_create(mddev);
  5343. if (!err)
  5344. err = bitmap_load(mddev);
  5345. }
  5346. if (fd < 0 || err) {
  5347. bitmap_destroy(mddev);
  5348. fd = -1; /* make sure to put the file */
  5349. }
  5350. mddev->pers->quiesce(mddev, 0);
  5351. }
  5352. if (fd < 0) {
  5353. if (mddev->bitmap_info.file) {
  5354. restore_bitmap_write_access(mddev->bitmap_info.file);
  5355. fput(mddev->bitmap_info.file);
  5356. }
  5357. mddev->bitmap_info.file = NULL;
  5358. }
  5359. return err;
  5360. }
  5361. /*
  5362. * set_array_info is used two different ways
  5363. * The original usage is when creating a new array.
  5364. * In this usage, raid_disks is > 0 and it together with
  5365. * level, size, not_persistent,layout,chunksize determine the
  5366. * shape of the array.
  5367. * This will always create an array with a type-0.90.0 superblock.
  5368. * The newer usage is when assembling an array.
  5369. * In this case raid_disks will be 0, and the major_version field is
  5370. * use to determine which style super-blocks are to be found on the devices.
  5371. * The minor and patch _version numbers are also kept incase the
  5372. * super_block handler wishes to interpret them.
  5373. */
  5374. static int set_array_info(struct mddev * mddev, mdu_array_info_t *info)
  5375. {
  5376. if (info->raid_disks == 0) {
  5377. /* just setting version number for superblock loading */
  5378. if (info->major_version < 0 ||
  5379. info->major_version >= ARRAY_SIZE(super_types) ||
  5380. super_types[info->major_version].name == NULL) {
  5381. /* maybe try to auto-load a module? */
  5382. printk(KERN_INFO
  5383. "md: superblock version %d not known\n",
  5384. info->major_version);
  5385. return -EINVAL;
  5386. }
  5387. mddev->major_version = info->major_version;
  5388. mddev->minor_version = info->minor_version;
  5389. mddev->patch_version = info->patch_version;
  5390. mddev->persistent = !info->not_persistent;
  5391. /* ensure mddev_put doesn't delete this now that there
  5392. * is some minimal configuration.
  5393. */
  5394. mddev->ctime = get_seconds();
  5395. return 0;
  5396. }
  5397. mddev->major_version = MD_MAJOR_VERSION;
  5398. mddev->minor_version = MD_MINOR_VERSION;
  5399. mddev->patch_version = MD_PATCHLEVEL_VERSION;
  5400. mddev->ctime = get_seconds();
  5401. mddev->level = info->level;
  5402. mddev->clevel[0] = 0;
  5403. mddev->dev_sectors = 2 * (sector_t)info->size;
  5404. mddev->raid_disks = info->raid_disks;
  5405. /* don't set md_minor, it is determined by which /dev/md* was
  5406. * openned
  5407. */
  5408. if (info->state & (1<<MD_SB_CLEAN))
  5409. mddev->recovery_cp = MaxSector;
  5410. else
  5411. mddev->recovery_cp = 0;
  5412. mddev->persistent = ! info->not_persistent;
  5413. mddev->external = 0;
  5414. mddev->layout = info->layout;
  5415. mddev->chunk_sectors = info->chunk_size >> 9;
  5416. mddev->max_disks = MD_SB_DISKS;
  5417. if (mddev->persistent)
  5418. mddev->flags = 0;
  5419. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  5420. mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
  5421. mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
  5422. mddev->bitmap_info.offset = 0;
  5423. mddev->reshape_position = MaxSector;
  5424. /*
  5425. * Generate a 128 bit UUID
  5426. */
  5427. get_random_bytes(mddev->uuid, 16);
  5428. mddev->new_level = mddev->level;
  5429. mddev->new_chunk_sectors = mddev->chunk_sectors;
  5430. mddev->new_layout = mddev->layout;
  5431. mddev->delta_disks = 0;
  5432. mddev->reshape_backwards = 0;
  5433. return 0;
  5434. }
  5435. void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
  5436. {
  5437. WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
  5438. if (mddev->external_size)
  5439. return;
  5440. mddev->array_sectors = array_sectors;
  5441. }
  5442. EXPORT_SYMBOL(md_set_array_sectors);
  5443. static int update_size(struct mddev *mddev, sector_t num_sectors)
  5444. {
  5445. struct md_rdev *rdev;
  5446. int rv;
  5447. int fit = (num_sectors == 0);
  5448. if (mddev->pers->resize == NULL)
  5449. return -EINVAL;
  5450. /* The "num_sectors" is the number of sectors of each device that
  5451. * is used. This can only make sense for arrays with redundancy.
  5452. * linear and raid0 always use whatever space is available. We can only
  5453. * consider changing this number if no resync or reconstruction is
  5454. * happening, and if the new size is acceptable. It must fit before the
  5455. * sb_start or, if that is <data_offset, it must fit before the size
  5456. * of each device. If num_sectors is zero, we find the largest size
  5457. * that fits.
  5458. */
  5459. if (mddev->sync_thread)
  5460. return -EBUSY;
  5461. rdev_for_each(rdev, mddev) {
  5462. sector_t avail = rdev->sectors;
  5463. if (fit && (num_sectors == 0 || num_sectors > avail))
  5464. num_sectors = avail;
  5465. if (avail < num_sectors)
  5466. return -ENOSPC;
  5467. }
  5468. rv = mddev->pers->resize(mddev, num_sectors);
  5469. if (!rv)
  5470. revalidate_disk(mddev->gendisk);
  5471. return rv;
  5472. }
  5473. static int update_raid_disks(struct mddev *mddev, int raid_disks)
  5474. {
  5475. int rv;
  5476. struct md_rdev *rdev;
  5477. /* change the number of raid disks */
  5478. if (mddev->pers->check_reshape == NULL)
  5479. return -EINVAL;
  5480. if (raid_disks <= 0 ||
  5481. (mddev->max_disks && raid_disks >= mddev->max_disks))
  5482. return -EINVAL;
  5483. if (mddev->sync_thread || mddev->reshape_position != MaxSector)
  5484. return -EBUSY;
  5485. rdev_for_each(rdev, mddev) {
  5486. if (mddev->raid_disks < raid_disks &&
  5487. rdev->data_offset < rdev->new_data_offset)
  5488. return -EINVAL;
  5489. if (mddev->raid_disks > raid_disks &&
  5490. rdev->data_offset > rdev->new_data_offset)
  5491. return -EINVAL;
  5492. }
  5493. mddev->delta_disks = raid_disks - mddev->raid_disks;
  5494. if (mddev->delta_disks < 0)
  5495. mddev->reshape_backwards = 1;
  5496. else if (mddev->delta_disks > 0)
  5497. mddev->reshape_backwards = 0;
  5498. rv = mddev->pers->check_reshape(mddev);
  5499. if (rv < 0) {
  5500. mddev->delta_disks = 0;
  5501. mddev->reshape_backwards = 0;
  5502. }
  5503. return rv;
  5504. }
  5505. /*
  5506. * update_array_info is used to change the configuration of an
  5507. * on-line array.
  5508. * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
  5509. * fields in the info are checked against the array.
  5510. * Any differences that cannot be handled will cause an error.
  5511. * Normally, only one change can be managed at a time.
  5512. */
  5513. static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
  5514. {
  5515. int rv = 0;
  5516. int cnt = 0;
  5517. int state = 0;
  5518. /* calculate expected state,ignoring low bits */
  5519. if (mddev->bitmap && mddev->bitmap_info.offset)
  5520. state |= (1 << MD_SB_BITMAP_PRESENT);
  5521. if (mddev->major_version != info->major_version ||
  5522. mddev->minor_version != info->minor_version ||
  5523. /* mddev->patch_version != info->patch_version || */
  5524. mddev->ctime != info->ctime ||
  5525. mddev->level != info->level ||
  5526. /* mddev->layout != info->layout || */
  5527. !mddev->persistent != info->not_persistent||
  5528. mddev->chunk_sectors != info->chunk_size >> 9 ||
  5529. /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
  5530. ((state^info->state) & 0xfffffe00)
  5531. )
  5532. return -EINVAL;
  5533. /* Check there is only one change */
  5534. if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
  5535. cnt++;
  5536. if (mddev->raid_disks != info->raid_disks)
  5537. cnt++;
  5538. if (mddev->layout != info->layout)
  5539. cnt++;
  5540. if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
  5541. cnt++;
  5542. if (cnt == 0)
  5543. return 0;
  5544. if (cnt > 1)
  5545. return -EINVAL;
  5546. if (mddev->layout != info->layout) {
  5547. /* Change layout
  5548. * we don't need to do anything at the md level, the
  5549. * personality will take care of it all.
  5550. */
  5551. if (mddev->pers->check_reshape == NULL)
  5552. return -EINVAL;
  5553. else {
  5554. mddev->new_layout = info->layout;
  5555. rv = mddev->pers->check_reshape(mddev);
  5556. if (rv)
  5557. mddev->new_layout = mddev->layout;
  5558. return rv;
  5559. }
  5560. }
  5561. if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
  5562. rv = update_size(mddev, (sector_t)info->size * 2);
  5563. if (mddev->raid_disks != info->raid_disks)
  5564. rv = update_raid_disks(mddev, info->raid_disks);
  5565. if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
  5566. if (mddev->pers->quiesce == NULL)
  5567. return -EINVAL;
  5568. if (mddev->recovery || mddev->sync_thread)
  5569. return -EBUSY;
  5570. if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
  5571. /* add the bitmap */
  5572. if (mddev->bitmap)
  5573. return -EEXIST;
  5574. if (mddev->bitmap_info.default_offset == 0)
  5575. return -EINVAL;
  5576. mddev->bitmap_info.offset =
  5577. mddev->bitmap_info.default_offset;
  5578. mddev->bitmap_info.space =
  5579. mddev->bitmap_info.default_space;
  5580. mddev->pers->quiesce(mddev, 1);
  5581. rv = bitmap_create(mddev);
  5582. if (!rv)
  5583. rv = bitmap_load(mddev);
  5584. if (rv)
  5585. bitmap_destroy(mddev);
  5586. mddev->pers->quiesce(mddev, 0);
  5587. } else {
  5588. /* remove the bitmap */
  5589. if (!mddev->bitmap)
  5590. return -ENOENT;
  5591. if (mddev->bitmap->storage.file)
  5592. return -EINVAL;
  5593. mddev->pers->quiesce(mddev, 1);
  5594. bitmap_destroy(mddev);
  5595. mddev->pers->quiesce(mddev, 0);
  5596. mddev->bitmap_info.offset = 0;
  5597. }
  5598. }
  5599. md_update_sb(mddev, 1);
  5600. return rv;
  5601. }
  5602. static int set_disk_faulty(struct mddev *mddev, dev_t dev)
  5603. {
  5604. struct md_rdev *rdev;
  5605. if (mddev->pers == NULL)
  5606. return -ENODEV;
  5607. rdev = find_rdev(mddev, dev);
  5608. if (!rdev)
  5609. return -ENODEV;
  5610. md_error(mddev, rdev);
  5611. if (!test_bit(Faulty, &rdev->flags))
  5612. return -EBUSY;
  5613. return 0;
  5614. }
  5615. /*
  5616. * We have a problem here : there is no easy way to give a CHS
  5617. * virtual geometry. We currently pretend that we have a 2 heads
  5618. * 4 sectors (with a BIG number of cylinders...). This drives
  5619. * dosfs just mad... ;-)
  5620. */
  5621. static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
  5622. {
  5623. struct mddev *mddev = bdev->bd_disk->private_data;
  5624. geo->heads = 2;
  5625. geo->sectors = 4;
  5626. geo->cylinders = mddev->array_sectors / 8;
  5627. return 0;
  5628. }
  5629. static int md_ioctl(struct block_device *bdev, fmode_t mode,
  5630. unsigned int cmd, unsigned long arg)
  5631. {
  5632. int err = 0;
  5633. void __user *argp = (void __user *)arg;
  5634. struct mddev *mddev = NULL;
  5635. int ro;
  5636. switch (cmd) {
  5637. case RAID_VERSION:
  5638. case GET_ARRAY_INFO:
  5639. case GET_DISK_INFO:
  5640. break;
  5641. default:
  5642. if (!capable(CAP_SYS_ADMIN))
  5643. return -EACCES;
  5644. }
  5645. /*
  5646. * Commands dealing with the RAID driver but not any
  5647. * particular array:
  5648. */
  5649. switch (cmd)
  5650. {
  5651. case RAID_VERSION:
  5652. err = get_version(argp);
  5653. goto done;
  5654. case PRINT_RAID_DEBUG:
  5655. err = 0;
  5656. md_print_devices();
  5657. goto done;
  5658. #ifndef MODULE
  5659. case RAID_AUTORUN:
  5660. err = 0;
  5661. autostart_arrays(arg);
  5662. goto done;
  5663. #endif
  5664. default:;
  5665. }
  5666. /*
  5667. * Commands creating/starting a new array:
  5668. */
  5669. mddev = bdev->bd_disk->private_data;
  5670. if (!mddev) {
  5671. BUG();
  5672. goto abort;
  5673. }
  5674. err = mddev_lock(mddev);
  5675. if (err) {
  5676. printk(KERN_INFO
  5677. "md: ioctl lock interrupted, reason %d, cmd %d\n",
  5678. err, cmd);
  5679. goto abort;
  5680. }
  5681. switch (cmd)
  5682. {
  5683. case SET_ARRAY_INFO:
  5684. {
  5685. mdu_array_info_t info;
  5686. if (!arg)
  5687. memset(&info, 0, sizeof(info));
  5688. else if (copy_from_user(&info, argp, sizeof(info))) {
  5689. err = -EFAULT;
  5690. goto abort_unlock;
  5691. }
  5692. if (mddev->pers) {
  5693. err = update_array_info(mddev, &info);
  5694. if (err) {
  5695. printk(KERN_WARNING "md: couldn't update"
  5696. " array info. %d\n", err);
  5697. goto abort_unlock;
  5698. }
  5699. goto done_unlock;
  5700. }
  5701. if (!list_empty(&mddev->disks)) {
  5702. printk(KERN_WARNING
  5703. "md: array %s already has disks!\n",
  5704. mdname(mddev));
  5705. err = -EBUSY;
  5706. goto abort_unlock;
  5707. }
  5708. if (mddev->raid_disks) {
  5709. printk(KERN_WARNING
  5710. "md: array %s already initialised!\n",
  5711. mdname(mddev));
  5712. err = -EBUSY;
  5713. goto abort_unlock;
  5714. }
  5715. err = set_array_info(mddev, &info);
  5716. if (err) {
  5717. printk(KERN_WARNING "md: couldn't set"
  5718. " array info. %d\n", err);
  5719. goto abort_unlock;
  5720. }
  5721. }
  5722. goto done_unlock;
  5723. default:;
  5724. }
  5725. /*
  5726. * Commands querying/configuring an existing array:
  5727. */
  5728. /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
  5729. * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
  5730. if ((!mddev->raid_disks && !mddev->external)
  5731. && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
  5732. && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
  5733. && cmd != GET_BITMAP_FILE) {
  5734. err = -ENODEV;
  5735. goto abort_unlock;
  5736. }
  5737. /*
  5738. * Commands even a read-only array can execute:
  5739. */
  5740. switch (cmd)
  5741. {
  5742. case GET_ARRAY_INFO:
  5743. err = get_array_info(mddev, argp);
  5744. goto done_unlock;
  5745. case GET_BITMAP_FILE:
  5746. err = get_bitmap_file(mddev, argp);
  5747. goto done_unlock;
  5748. case GET_DISK_INFO:
  5749. err = get_disk_info(mddev, argp);
  5750. goto done_unlock;
  5751. case RESTART_ARRAY_RW:
  5752. err = restart_array(mddev);
  5753. goto done_unlock;
  5754. case STOP_ARRAY:
  5755. err = do_md_stop(mddev, 0, 1);
  5756. goto done_unlock;
  5757. case STOP_ARRAY_RO:
  5758. err = md_set_readonly(mddev, 1);
  5759. goto done_unlock;
  5760. case BLKROSET:
  5761. if (get_user(ro, (int __user *)(arg))) {
  5762. err = -EFAULT;
  5763. goto done_unlock;
  5764. }
  5765. err = -EINVAL;
  5766. /* if the bdev is going readonly the value of mddev->ro
  5767. * does not matter, no writes are coming
  5768. */
  5769. if (ro)
  5770. goto done_unlock;
  5771. /* are we are already prepared for writes? */
  5772. if (mddev->ro != 1)
  5773. goto done_unlock;
  5774. /* transitioning to readauto need only happen for
  5775. * arrays that call md_write_start
  5776. */
  5777. if (mddev->pers) {
  5778. err = restart_array(mddev);
  5779. if (err == 0) {
  5780. mddev->ro = 2;
  5781. set_disk_ro(mddev->gendisk, 0);
  5782. }
  5783. }
  5784. goto done_unlock;
  5785. }
  5786. /*
  5787. * The remaining ioctls are changing the state of the
  5788. * superblock, so we do not allow them on read-only arrays.
  5789. * However non-MD ioctls (e.g. get-size) will still come through
  5790. * here and hit the 'default' below, so only disallow
  5791. * 'md' ioctls, and switch to rw mode if started auto-readonly.
  5792. */
  5793. if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) {
  5794. if (mddev->ro == 2) {
  5795. mddev->ro = 0;
  5796. sysfs_notify_dirent_safe(mddev->sysfs_state);
  5797. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  5798. md_wakeup_thread(mddev->thread);
  5799. } else {
  5800. err = -EROFS;
  5801. goto abort_unlock;
  5802. }
  5803. }
  5804. switch (cmd)
  5805. {
  5806. case ADD_NEW_DISK:
  5807. {
  5808. mdu_disk_info_t info;
  5809. if (copy_from_user(&info, argp, sizeof(info)))
  5810. err = -EFAULT;
  5811. else
  5812. err = add_new_disk(mddev, &info);
  5813. goto done_unlock;
  5814. }
  5815. case HOT_REMOVE_DISK:
  5816. err = hot_remove_disk(mddev, new_decode_dev(arg));
  5817. goto done_unlock;
  5818. case HOT_ADD_DISK:
  5819. err = hot_add_disk(mddev, new_decode_dev(arg));
  5820. goto done_unlock;
  5821. case SET_DISK_FAULTY:
  5822. err = set_disk_faulty(mddev, new_decode_dev(arg));
  5823. goto done_unlock;
  5824. case RUN_ARRAY:
  5825. err = do_md_run(mddev);
  5826. goto done_unlock;
  5827. case SET_BITMAP_FILE:
  5828. err = set_bitmap_file(mddev, (int)arg);
  5829. goto done_unlock;
  5830. default:
  5831. err = -EINVAL;
  5832. goto abort_unlock;
  5833. }
  5834. done_unlock:
  5835. abort_unlock:
  5836. if (mddev->hold_active == UNTIL_IOCTL &&
  5837. err != -EINVAL)
  5838. mddev->hold_active = 0;
  5839. mddev_unlock(mddev);
  5840. return err;
  5841. done:
  5842. if (err)
  5843. MD_BUG();
  5844. abort:
  5845. return err;
  5846. }
  5847. #ifdef CONFIG_COMPAT
  5848. static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
  5849. unsigned int cmd, unsigned long arg)
  5850. {
  5851. switch (cmd) {
  5852. case HOT_REMOVE_DISK:
  5853. case HOT_ADD_DISK:
  5854. case SET_DISK_FAULTY:
  5855. case SET_BITMAP_FILE:
  5856. /* These take in integer arg, do not convert */
  5857. break;
  5858. default:
  5859. arg = (unsigned long)compat_ptr(arg);
  5860. break;
  5861. }
  5862. return md_ioctl(bdev, mode, cmd, arg);
  5863. }
  5864. #endif /* CONFIG_COMPAT */
  5865. static int md_open(struct block_device *bdev, fmode_t mode)
  5866. {
  5867. /*
  5868. * Succeed if we can lock the mddev, which confirms that
  5869. * it isn't being stopped right now.
  5870. */
  5871. struct mddev *mddev = mddev_find(bdev->bd_dev);
  5872. int err;
  5873. if (!mddev)
  5874. return -ENODEV;
  5875. if (mddev->gendisk != bdev->bd_disk) {
  5876. /* we are racing with mddev_put which is discarding this
  5877. * bd_disk.
  5878. */
  5879. mddev_put(mddev);
  5880. /* Wait until bdev->bd_disk is definitely gone */
  5881. flush_workqueue(md_misc_wq);
  5882. /* Then retry the open from the top */
  5883. return -ERESTARTSYS;
  5884. }
  5885. BUG_ON(mddev != bdev->bd_disk->private_data);
  5886. if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
  5887. goto out;
  5888. err = 0;
  5889. atomic_inc(&mddev->openers);
  5890. mutex_unlock(&mddev->open_mutex);
  5891. check_disk_change(bdev);
  5892. out:
  5893. return err;
  5894. }
  5895. static int md_release(struct gendisk *disk, fmode_t mode)
  5896. {
  5897. struct mddev *mddev = disk->private_data;
  5898. BUG_ON(!mddev);
  5899. atomic_dec(&mddev->openers);
  5900. mddev_put(mddev);
  5901. return 0;
  5902. }
  5903. static int md_media_changed(struct gendisk *disk)
  5904. {
  5905. struct mddev *mddev = disk->private_data;
  5906. return mddev->changed;
  5907. }
  5908. static int md_revalidate(struct gendisk *disk)
  5909. {
  5910. struct mddev *mddev = disk->private_data;
  5911. mddev->changed = 0;
  5912. return 0;
  5913. }
  5914. static const struct block_device_operations md_fops =
  5915. {
  5916. .owner = THIS_MODULE,
  5917. .open = md_open,
  5918. .release = md_release,
  5919. .ioctl = md_ioctl,
  5920. #ifdef CONFIG_COMPAT
  5921. .compat_ioctl = md_compat_ioctl,
  5922. #endif
  5923. .getgeo = md_getgeo,
  5924. .media_changed = md_media_changed,
  5925. .revalidate_disk= md_revalidate,
  5926. };
  5927. static int md_thread(void * arg)
  5928. {
  5929. struct md_thread *thread = arg;
  5930. /*
  5931. * md_thread is a 'system-thread', it's priority should be very
  5932. * high. We avoid resource deadlocks individually in each
  5933. * raid personality. (RAID5 does preallocation) We also use RR and
  5934. * the very same RT priority as kswapd, thus we will never get
  5935. * into a priority inversion deadlock.
  5936. *
  5937. * we definitely have to have equal or higher priority than
  5938. * bdflush, otherwise bdflush will deadlock if there are too
  5939. * many dirty RAID5 blocks.
  5940. */
  5941. allow_signal(SIGKILL);
  5942. while (!kthread_should_stop()) {
  5943. /* We need to wait INTERRUPTIBLE so that
  5944. * we don't add to the load-average.
  5945. * That means we need to be sure no signals are
  5946. * pending
  5947. */
  5948. if (signal_pending(current))
  5949. flush_signals(current);
  5950. wait_event_interruptible_timeout
  5951. (thread->wqueue,
  5952. test_bit(THREAD_WAKEUP, &thread->flags)
  5953. || kthread_should_stop(),
  5954. thread->timeout);
  5955. clear_bit(THREAD_WAKEUP, &thread->flags);
  5956. if (!kthread_should_stop())
  5957. thread->run(thread->mddev);
  5958. }
  5959. return 0;
  5960. }
  5961. void md_wakeup_thread(struct md_thread *thread)
  5962. {
  5963. if (thread) {
  5964. pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
  5965. set_bit(THREAD_WAKEUP, &thread->flags);
  5966. wake_up(&thread->wqueue);
  5967. }
  5968. }
  5969. struct md_thread *md_register_thread(void (*run) (struct mddev *), struct mddev *mddev,
  5970. const char *name)
  5971. {
  5972. struct md_thread *thread;
  5973. thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
  5974. if (!thread)
  5975. return NULL;
  5976. init_waitqueue_head(&thread->wqueue);
  5977. thread->run = run;
  5978. thread->mddev = mddev;
  5979. thread->timeout = MAX_SCHEDULE_TIMEOUT;
  5980. thread->tsk = kthread_run(md_thread, thread,
  5981. "%s_%s",
  5982. mdname(thread->mddev),
  5983. name ?: mddev->pers->name);
  5984. if (IS_ERR(thread->tsk)) {
  5985. kfree(thread);
  5986. return NULL;
  5987. }
  5988. return thread;
  5989. }
  5990. void md_unregister_thread(struct md_thread **threadp)
  5991. {
  5992. struct md_thread *thread = *threadp;
  5993. if (!thread)
  5994. return;
  5995. pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
  5996. /* Locking ensures that mddev_unlock does not wake_up a
  5997. * non-existent thread
  5998. */
  5999. spin_lock(&pers_lock);
  6000. *threadp = NULL;
  6001. spin_unlock(&pers_lock);
  6002. kthread_stop(thread->tsk);
  6003. kfree(thread);
  6004. }
  6005. void md_error(struct mddev *mddev, struct md_rdev *rdev)
  6006. {
  6007. if (!mddev) {
  6008. MD_BUG();
  6009. return;
  6010. }
  6011. if (!rdev || test_bit(Faulty, &rdev->flags))
  6012. return;
  6013. if (!mddev->pers || !mddev->pers->error_handler)
  6014. return;
  6015. mddev->pers->error_handler(mddev,rdev);
  6016. if (mddev->degraded)
  6017. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  6018. sysfs_notify_dirent_safe(rdev->sysfs_state);
  6019. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6020. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  6021. md_wakeup_thread(mddev->thread);
  6022. if (mddev->event_work.func)
  6023. queue_work(md_misc_wq, &mddev->event_work);
  6024. md_new_event_inintr(mddev);
  6025. }
  6026. /* seq_file implementation /proc/mdstat */
  6027. static void status_unused(struct seq_file *seq)
  6028. {
  6029. int i = 0;
  6030. struct md_rdev *rdev;
  6031. seq_printf(seq, "unused devices: ");
  6032. list_for_each_entry(rdev, &pending_raid_disks, same_set) {
  6033. char b[BDEVNAME_SIZE];
  6034. i++;
  6035. seq_printf(seq, "%s ",
  6036. bdevname(rdev->bdev,b));
  6037. }
  6038. if (!i)
  6039. seq_printf(seq, "<none>");
  6040. seq_printf(seq, "\n");
  6041. }
  6042. static void status_resync(struct seq_file *seq, struct mddev * mddev)
  6043. {
  6044. sector_t max_sectors, resync, res;
  6045. unsigned long dt, db;
  6046. sector_t rt;
  6047. int scale;
  6048. unsigned int per_milli;
  6049. resync = mddev->curr_resync - atomic_read(&mddev->recovery_active);
  6050. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
  6051. test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  6052. max_sectors = mddev->resync_max_sectors;
  6053. else
  6054. max_sectors = mddev->dev_sectors;
  6055. /*
  6056. * Should not happen.
  6057. */
  6058. if (!max_sectors) {
  6059. MD_BUG();
  6060. return;
  6061. }
  6062. /* Pick 'scale' such that (resync>>scale)*1000 will fit
  6063. * in a sector_t, and (max_sectors>>scale) will fit in a
  6064. * u32, as those are the requirements for sector_div.
  6065. * Thus 'scale' must be at least 10
  6066. */
  6067. scale = 10;
  6068. if (sizeof(sector_t) > sizeof(unsigned long)) {
  6069. while ( max_sectors/2 > (1ULL<<(scale+32)))
  6070. scale++;
  6071. }
  6072. res = (resync>>scale)*1000;
  6073. sector_div(res, (u32)((max_sectors>>scale)+1));
  6074. per_milli = res;
  6075. {
  6076. int i, x = per_milli/50, y = 20-x;
  6077. seq_printf(seq, "[");
  6078. for (i = 0; i < x; i++)
  6079. seq_printf(seq, "=");
  6080. seq_printf(seq, ">");
  6081. for (i = 0; i < y; i++)
  6082. seq_printf(seq, ".");
  6083. seq_printf(seq, "] ");
  6084. }
  6085. seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
  6086. (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
  6087. "reshape" :
  6088. (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
  6089. "check" :
  6090. (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
  6091. "resync" : "recovery"))),
  6092. per_milli/10, per_milli % 10,
  6093. (unsigned long long) resync/2,
  6094. (unsigned long long) max_sectors/2);
  6095. /*
  6096. * dt: time from mark until now
  6097. * db: blocks written from mark until now
  6098. * rt: remaining time
  6099. *
  6100. * rt is a sector_t, so could be 32bit or 64bit.
  6101. * So we divide before multiply in case it is 32bit and close
  6102. * to the limit.
  6103. * We scale the divisor (db) by 32 to avoid losing precision
  6104. * near the end of resync when the number of remaining sectors
  6105. * is close to 'db'.
  6106. * We then divide rt by 32 after multiplying by db to compensate.
  6107. * The '+1' avoids division by zero if db is very small.
  6108. */
  6109. dt = ((jiffies - mddev->resync_mark) / HZ);
  6110. if (!dt) dt++;
  6111. db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
  6112. - mddev->resync_mark_cnt;
  6113. rt = max_sectors - resync; /* number of remaining sectors */
  6114. sector_div(rt, db/32+1);
  6115. rt *= dt;
  6116. rt >>= 5;
  6117. seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
  6118. ((unsigned long)rt % 60)/6);
  6119. seq_printf(seq, " speed=%ldK/sec", db/2/dt);
  6120. }
  6121. static void *md_seq_start(struct seq_file *seq, loff_t *pos)
  6122. {
  6123. struct list_head *tmp;
  6124. loff_t l = *pos;
  6125. struct mddev *mddev;
  6126. if (l >= 0x10000)
  6127. return NULL;
  6128. if (!l--)
  6129. /* header */
  6130. return (void*)1;
  6131. spin_lock(&all_mddevs_lock);
  6132. list_for_each(tmp,&all_mddevs)
  6133. if (!l--) {
  6134. mddev = list_entry(tmp, struct mddev, all_mddevs);
  6135. mddev_get(mddev);
  6136. spin_unlock(&all_mddevs_lock);
  6137. return mddev;
  6138. }
  6139. spin_unlock(&all_mddevs_lock);
  6140. if (!l--)
  6141. return (void*)2;/* tail */
  6142. return NULL;
  6143. }
  6144. static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  6145. {
  6146. struct list_head *tmp;
  6147. struct mddev *next_mddev, *mddev = v;
  6148. ++*pos;
  6149. if (v == (void*)2)
  6150. return NULL;
  6151. spin_lock(&all_mddevs_lock);
  6152. if (v == (void*)1)
  6153. tmp = all_mddevs.next;
  6154. else
  6155. tmp = mddev->all_mddevs.next;
  6156. if (tmp != &all_mddevs)
  6157. next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
  6158. else {
  6159. next_mddev = (void*)2;
  6160. *pos = 0x10000;
  6161. }
  6162. spin_unlock(&all_mddevs_lock);
  6163. if (v != (void*)1)
  6164. mddev_put(mddev);
  6165. return next_mddev;
  6166. }
  6167. static void md_seq_stop(struct seq_file *seq, void *v)
  6168. {
  6169. struct mddev *mddev = v;
  6170. if (mddev && v != (void*)1 && v != (void*)2)
  6171. mddev_put(mddev);
  6172. }
  6173. static int md_seq_show(struct seq_file *seq, void *v)
  6174. {
  6175. struct mddev *mddev = v;
  6176. sector_t sectors;
  6177. struct md_rdev *rdev;
  6178. if (v == (void*)1) {
  6179. struct md_personality *pers;
  6180. seq_printf(seq, "Personalities : ");
  6181. spin_lock(&pers_lock);
  6182. list_for_each_entry(pers, &pers_list, list)
  6183. seq_printf(seq, "[%s] ", pers->name);
  6184. spin_unlock(&pers_lock);
  6185. seq_printf(seq, "\n");
  6186. seq->poll_event = atomic_read(&md_event_count);
  6187. return 0;
  6188. }
  6189. if (v == (void*)2) {
  6190. status_unused(seq);
  6191. return 0;
  6192. }
  6193. if (mddev_lock(mddev) < 0)
  6194. return -EINTR;
  6195. if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
  6196. seq_printf(seq, "%s : %sactive", mdname(mddev),
  6197. mddev->pers ? "" : "in");
  6198. if (mddev->pers) {
  6199. if (mddev->ro==1)
  6200. seq_printf(seq, " (read-only)");
  6201. if (mddev->ro==2)
  6202. seq_printf(seq, " (auto-read-only)");
  6203. seq_printf(seq, " %s", mddev->pers->name);
  6204. }
  6205. sectors = 0;
  6206. rdev_for_each(rdev, mddev) {
  6207. char b[BDEVNAME_SIZE];
  6208. seq_printf(seq, " %s[%d]",
  6209. bdevname(rdev->bdev,b), rdev->desc_nr);
  6210. if (test_bit(WriteMostly, &rdev->flags))
  6211. seq_printf(seq, "(W)");
  6212. if (test_bit(Faulty, &rdev->flags)) {
  6213. seq_printf(seq, "(F)");
  6214. continue;
  6215. }
  6216. if (rdev->raid_disk < 0)
  6217. seq_printf(seq, "(S)"); /* spare */
  6218. if (test_bit(Replacement, &rdev->flags))
  6219. seq_printf(seq, "(R)");
  6220. sectors += rdev->sectors;
  6221. }
  6222. if (!list_empty(&mddev->disks)) {
  6223. if (mddev->pers)
  6224. seq_printf(seq, "\n %llu blocks",
  6225. (unsigned long long)
  6226. mddev->array_sectors / 2);
  6227. else
  6228. seq_printf(seq, "\n %llu blocks",
  6229. (unsigned long long)sectors / 2);
  6230. }
  6231. if (mddev->persistent) {
  6232. if (mddev->major_version != 0 ||
  6233. mddev->minor_version != 90) {
  6234. seq_printf(seq," super %d.%d",
  6235. mddev->major_version,
  6236. mddev->minor_version);
  6237. }
  6238. } else if (mddev->external)
  6239. seq_printf(seq, " super external:%s",
  6240. mddev->metadata_type);
  6241. else
  6242. seq_printf(seq, " super non-persistent");
  6243. if (mddev->pers) {
  6244. mddev->pers->status(seq, mddev);
  6245. seq_printf(seq, "\n ");
  6246. if (mddev->pers->sync_request) {
  6247. if (mddev->curr_resync > 2) {
  6248. status_resync(seq, mddev);
  6249. seq_printf(seq, "\n ");
  6250. } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
  6251. seq_printf(seq, "\tresync=DELAYED\n ");
  6252. else if (mddev->recovery_cp < MaxSector)
  6253. seq_printf(seq, "\tresync=PENDING\n ");
  6254. }
  6255. } else
  6256. seq_printf(seq, "\n ");
  6257. bitmap_status(seq, mddev->bitmap);
  6258. seq_printf(seq, "\n");
  6259. }
  6260. mddev_unlock(mddev);
  6261. return 0;
  6262. }
  6263. static const struct seq_operations md_seq_ops = {
  6264. .start = md_seq_start,
  6265. .next = md_seq_next,
  6266. .stop = md_seq_stop,
  6267. .show = md_seq_show,
  6268. };
  6269. static int md_seq_open(struct inode *inode, struct file *file)
  6270. {
  6271. struct seq_file *seq;
  6272. int error;
  6273. error = seq_open(file, &md_seq_ops);
  6274. if (error)
  6275. return error;
  6276. seq = file->private_data;
  6277. seq->poll_event = atomic_read(&md_event_count);
  6278. return error;
  6279. }
  6280. static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
  6281. {
  6282. struct seq_file *seq = filp->private_data;
  6283. int mask;
  6284. poll_wait(filp, &md_event_waiters, wait);
  6285. /* always allow read */
  6286. mask = POLLIN | POLLRDNORM;
  6287. if (seq->poll_event != atomic_read(&md_event_count))
  6288. mask |= POLLERR | POLLPRI;
  6289. return mask;
  6290. }
  6291. static const struct file_operations md_seq_fops = {
  6292. .owner = THIS_MODULE,
  6293. .open = md_seq_open,
  6294. .read = seq_read,
  6295. .llseek = seq_lseek,
  6296. .release = seq_release_private,
  6297. .poll = mdstat_poll,
  6298. };
  6299. int register_md_personality(struct md_personality *p)
  6300. {
  6301. spin_lock(&pers_lock);
  6302. list_add_tail(&p->list, &pers_list);
  6303. printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
  6304. spin_unlock(&pers_lock);
  6305. return 0;
  6306. }
  6307. int unregister_md_personality(struct md_personality *p)
  6308. {
  6309. printk(KERN_INFO "md: %s personality unregistered\n", p->name);
  6310. spin_lock(&pers_lock);
  6311. list_del_init(&p->list);
  6312. spin_unlock(&pers_lock);
  6313. return 0;
  6314. }
  6315. static int is_mddev_idle(struct mddev *mddev, int init)
  6316. {
  6317. struct md_rdev * rdev;
  6318. int idle;
  6319. int curr_events;
  6320. idle = 1;
  6321. rcu_read_lock();
  6322. rdev_for_each_rcu(rdev, mddev) {
  6323. struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
  6324. curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
  6325. (int)part_stat_read(&disk->part0, sectors[1]) -
  6326. atomic_read(&disk->sync_io);
  6327. /* sync IO will cause sync_io to increase before the disk_stats
  6328. * as sync_io is counted when a request starts, and
  6329. * disk_stats is counted when it completes.
  6330. * So resync activity will cause curr_events to be smaller than
  6331. * when there was no such activity.
  6332. * non-sync IO will cause disk_stat to increase without
  6333. * increasing sync_io so curr_events will (eventually)
  6334. * be larger than it was before. Once it becomes
  6335. * substantially larger, the test below will cause
  6336. * the array to appear non-idle, and resync will slow
  6337. * down.
  6338. * If there is a lot of outstanding resync activity when
  6339. * we set last_event to curr_events, then all that activity
  6340. * completing might cause the array to appear non-idle
  6341. * and resync will be slowed down even though there might
  6342. * not have been non-resync activity. This will only
  6343. * happen once though. 'last_events' will soon reflect
  6344. * the state where there is little or no outstanding
  6345. * resync requests, and further resync activity will
  6346. * always make curr_events less than last_events.
  6347. *
  6348. */
  6349. if (init || curr_events - rdev->last_events > 64) {
  6350. rdev->last_events = curr_events;
  6351. idle = 0;
  6352. }
  6353. }
  6354. rcu_read_unlock();
  6355. return idle;
  6356. }
  6357. void md_done_sync(struct mddev *mddev, int blocks, int ok)
  6358. {
  6359. /* another "blocks" (512byte) blocks have been synced */
  6360. atomic_sub(blocks, &mddev->recovery_active);
  6361. wake_up(&mddev->recovery_wait);
  6362. if (!ok) {
  6363. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6364. md_wakeup_thread(mddev->thread);
  6365. // stop recovery, signal do_sync ....
  6366. }
  6367. }
  6368. /* md_write_start(mddev, bi)
  6369. * If we need to update some array metadata (e.g. 'active' flag
  6370. * in superblock) before writing, schedule a superblock update
  6371. * and wait for it to complete.
  6372. */
  6373. void md_write_start(struct mddev *mddev, struct bio *bi)
  6374. {
  6375. int did_change = 0;
  6376. if (bio_data_dir(bi) != WRITE)
  6377. return;
  6378. BUG_ON(mddev->ro == 1);
  6379. if (mddev->ro == 2) {
  6380. /* need to switch to read/write */
  6381. mddev->ro = 0;
  6382. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  6383. md_wakeup_thread(mddev->thread);
  6384. md_wakeup_thread(mddev->sync_thread);
  6385. did_change = 1;
  6386. }
  6387. atomic_inc(&mddev->writes_pending);
  6388. if (mddev->safemode == 1)
  6389. mddev->safemode = 0;
  6390. if (mddev->in_sync) {
  6391. spin_lock_irq(&mddev->write_lock);
  6392. if (mddev->in_sync) {
  6393. mddev->in_sync = 0;
  6394. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  6395. set_bit(MD_CHANGE_PENDING, &mddev->flags);
  6396. md_wakeup_thread(mddev->thread);
  6397. did_change = 1;
  6398. }
  6399. spin_unlock_irq(&mddev->write_lock);
  6400. }
  6401. if (did_change)
  6402. sysfs_notify_dirent_safe(mddev->sysfs_state);
  6403. wait_event(mddev->sb_wait,
  6404. !test_bit(MD_CHANGE_PENDING, &mddev->flags));
  6405. }
  6406. void md_write_end(struct mddev *mddev)
  6407. {
  6408. if (atomic_dec_and_test(&mddev->writes_pending)) {
  6409. if (mddev->safemode == 2)
  6410. md_wakeup_thread(mddev->thread);
  6411. else if (mddev->safemode_delay)
  6412. mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
  6413. }
  6414. }
  6415. /* md_allow_write(mddev)
  6416. * Calling this ensures that the array is marked 'active' so that writes
  6417. * may proceed without blocking. It is important to call this before
  6418. * attempting a GFP_KERNEL allocation while holding the mddev lock.
  6419. * Must be called with mddev_lock held.
  6420. *
  6421. * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
  6422. * is dropped, so return -EAGAIN after notifying userspace.
  6423. */
  6424. int md_allow_write(struct mddev *mddev)
  6425. {
  6426. if (!mddev->pers)
  6427. return 0;
  6428. if (mddev->ro)
  6429. return 0;
  6430. if (!mddev->pers->sync_request)
  6431. return 0;
  6432. spin_lock_irq(&mddev->write_lock);
  6433. if (mddev->in_sync) {
  6434. mddev->in_sync = 0;
  6435. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  6436. set_bit(MD_CHANGE_PENDING, &mddev->flags);
  6437. if (mddev->safemode_delay &&
  6438. mddev->safemode == 0)
  6439. mddev->safemode = 1;
  6440. spin_unlock_irq(&mddev->write_lock);
  6441. md_update_sb(mddev, 0);
  6442. sysfs_notify_dirent_safe(mddev->sysfs_state);
  6443. } else
  6444. spin_unlock_irq(&mddev->write_lock);
  6445. if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
  6446. return -EAGAIN;
  6447. else
  6448. return 0;
  6449. }
  6450. EXPORT_SYMBOL_GPL(md_allow_write);
  6451. #define SYNC_MARKS 10
  6452. #define SYNC_MARK_STEP (3*HZ)
  6453. void md_do_sync(struct mddev *mddev)
  6454. {
  6455. struct mddev *mddev2;
  6456. unsigned int currspeed = 0,
  6457. window;
  6458. sector_t max_sectors,j, io_sectors;
  6459. unsigned long mark[SYNC_MARKS];
  6460. sector_t mark_cnt[SYNC_MARKS];
  6461. int last_mark,m;
  6462. struct list_head *tmp;
  6463. sector_t last_check;
  6464. int skipped = 0;
  6465. struct md_rdev *rdev;
  6466. char *desc;
  6467. /* just incase thread restarts... */
  6468. if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
  6469. return;
  6470. if (mddev->ro) /* never try to sync a read-only array */
  6471. return;
  6472. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  6473. if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
  6474. desc = "data-check";
  6475. else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  6476. desc = "requested-resync";
  6477. else
  6478. desc = "resync";
  6479. } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  6480. desc = "reshape";
  6481. else
  6482. desc = "recovery";
  6483. /* we overload curr_resync somewhat here.
  6484. * 0 == not engaged in resync at all
  6485. * 2 == checking that there is no conflict with another sync
  6486. * 1 == like 2, but have yielded to allow conflicting resync to
  6487. * commense
  6488. * other == active in resync - this many blocks
  6489. *
  6490. * Before starting a resync we must have set curr_resync to
  6491. * 2, and then checked that every "conflicting" array has curr_resync
  6492. * less than ours. When we find one that is the same or higher
  6493. * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
  6494. * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
  6495. * This will mean we have to start checking from the beginning again.
  6496. *
  6497. */
  6498. do {
  6499. mddev->curr_resync = 2;
  6500. try_again:
  6501. if (kthread_should_stop())
  6502. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6503. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
  6504. goto skip;
  6505. for_each_mddev(mddev2, tmp) {
  6506. if (mddev2 == mddev)
  6507. continue;
  6508. if (!mddev->parallel_resync
  6509. && mddev2->curr_resync
  6510. && match_mddev_units(mddev, mddev2)) {
  6511. DEFINE_WAIT(wq);
  6512. if (mddev < mddev2 && mddev->curr_resync == 2) {
  6513. /* arbitrarily yield */
  6514. mddev->curr_resync = 1;
  6515. wake_up(&resync_wait);
  6516. }
  6517. if (mddev > mddev2 && mddev->curr_resync == 1)
  6518. /* no need to wait here, we can wait the next
  6519. * time 'round when curr_resync == 2
  6520. */
  6521. continue;
  6522. /* We need to wait 'interruptible' so as not to
  6523. * contribute to the load average, and not to
  6524. * be caught by 'softlockup'
  6525. */
  6526. prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
  6527. if (!kthread_should_stop() &&
  6528. mddev2->curr_resync >= mddev->curr_resync) {
  6529. printk(KERN_INFO "md: delaying %s of %s"
  6530. " until %s has finished (they"
  6531. " share one or more physical units)\n",
  6532. desc, mdname(mddev), mdname(mddev2));
  6533. mddev_put(mddev2);
  6534. if (signal_pending(current))
  6535. flush_signals(current);
  6536. schedule();
  6537. finish_wait(&resync_wait, &wq);
  6538. goto try_again;
  6539. }
  6540. finish_wait(&resync_wait, &wq);
  6541. }
  6542. }
  6543. } while (mddev->curr_resync < 2);
  6544. j = 0;
  6545. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  6546. /* resync follows the size requested by the personality,
  6547. * which defaults to physical size, but can be virtual size
  6548. */
  6549. max_sectors = mddev->resync_max_sectors;
  6550. mddev->resync_mismatches = 0;
  6551. /* we don't use the checkpoint if there's a bitmap */
  6552. if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  6553. j = mddev->resync_min;
  6554. else if (!mddev->bitmap)
  6555. j = mddev->recovery_cp;
  6556. } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  6557. max_sectors = mddev->resync_max_sectors;
  6558. else {
  6559. /* recovery follows the physical size of devices */
  6560. max_sectors = mddev->dev_sectors;
  6561. j = MaxSector;
  6562. rcu_read_lock();
  6563. rdev_for_each_rcu(rdev, mddev)
  6564. if (rdev->raid_disk >= 0 &&
  6565. !test_bit(Faulty, &rdev->flags) &&
  6566. !test_bit(In_sync, &rdev->flags) &&
  6567. rdev->recovery_offset < j)
  6568. j = rdev->recovery_offset;
  6569. rcu_read_unlock();
  6570. }
  6571. printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
  6572. printk(KERN_INFO "md: minimum _guaranteed_ speed:"
  6573. " %d KB/sec/disk.\n", speed_min(mddev));
  6574. printk(KERN_INFO "md: using maximum available idle IO bandwidth "
  6575. "(but not more than %d KB/sec) for %s.\n",
  6576. speed_max(mddev), desc);
  6577. is_mddev_idle(mddev, 1); /* this initializes IO event counters */
  6578. io_sectors = 0;
  6579. for (m = 0; m < SYNC_MARKS; m++) {
  6580. mark[m] = jiffies;
  6581. mark_cnt[m] = io_sectors;
  6582. }
  6583. last_mark = 0;
  6584. mddev->resync_mark = mark[last_mark];
  6585. mddev->resync_mark_cnt = mark_cnt[last_mark];
  6586. /*
  6587. * Tune reconstruction:
  6588. */
  6589. window = 32*(PAGE_SIZE/512);
  6590. printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
  6591. window/2, (unsigned long long)max_sectors/2);
  6592. atomic_set(&mddev->recovery_active, 0);
  6593. last_check = 0;
  6594. if (j>2) {
  6595. printk(KERN_INFO
  6596. "md: resuming %s of %s from checkpoint.\n",
  6597. desc, mdname(mddev));
  6598. mddev->curr_resync = j;
  6599. }
  6600. mddev->curr_resync_completed = j;
  6601. while (j < max_sectors) {
  6602. sector_t sectors;
  6603. skipped = 0;
  6604. if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
  6605. ((mddev->curr_resync > mddev->curr_resync_completed &&
  6606. (mddev->curr_resync - mddev->curr_resync_completed)
  6607. > (max_sectors >> 4)) ||
  6608. (j - mddev->curr_resync_completed)*2
  6609. >= mddev->resync_max - mddev->curr_resync_completed
  6610. )) {
  6611. /* time to update curr_resync_completed */
  6612. wait_event(mddev->recovery_wait,
  6613. atomic_read(&mddev->recovery_active) == 0);
  6614. mddev->curr_resync_completed = j;
  6615. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  6616. sysfs_notify(&mddev->kobj, NULL, "sync_completed");
  6617. }
  6618. while (j >= mddev->resync_max && !kthread_should_stop()) {
  6619. /* As this condition is controlled by user-space,
  6620. * we can block indefinitely, so use '_interruptible'
  6621. * to avoid triggering warnings.
  6622. */
  6623. flush_signals(current); /* just in case */
  6624. wait_event_interruptible(mddev->recovery_wait,
  6625. mddev->resync_max > j
  6626. || kthread_should_stop());
  6627. }
  6628. if (kthread_should_stop())
  6629. goto interrupted;
  6630. sectors = mddev->pers->sync_request(mddev, j, &skipped,
  6631. currspeed < speed_min(mddev));
  6632. if (sectors == 0) {
  6633. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6634. goto out;
  6635. }
  6636. if (!skipped) { /* actual IO requested */
  6637. io_sectors += sectors;
  6638. atomic_add(sectors, &mddev->recovery_active);
  6639. }
  6640. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
  6641. break;
  6642. j += sectors;
  6643. if (j>1) mddev->curr_resync = j;
  6644. mddev->curr_mark_cnt = io_sectors;
  6645. if (last_check == 0)
  6646. /* this is the earliest that rebuild will be
  6647. * visible in /proc/mdstat
  6648. */
  6649. md_new_event(mddev);
  6650. if (last_check + window > io_sectors || j == max_sectors)
  6651. continue;
  6652. last_check = io_sectors;
  6653. repeat:
  6654. if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
  6655. /* step marks */
  6656. int next = (last_mark+1) % SYNC_MARKS;
  6657. mddev->resync_mark = mark[next];
  6658. mddev->resync_mark_cnt = mark_cnt[next];
  6659. mark[next] = jiffies;
  6660. mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
  6661. last_mark = next;
  6662. }
  6663. if (kthread_should_stop())
  6664. goto interrupted;
  6665. /*
  6666. * this loop exits only if either when we are slower than
  6667. * the 'hard' speed limit, or the system was IO-idle for
  6668. * a jiffy.
  6669. * the system might be non-idle CPU-wise, but we only care
  6670. * about not overloading the IO subsystem. (things like an
  6671. * e2fsck being done on the RAID array should execute fast)
  6672. */
  6673. cond_resched();
  6674. currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
  6675. /((jiffies-mddev->resync_mark)/HZ +1) +1;
  6676. if (currspeed > speed_min(mddev)) {
  6677. if ((currspeed > speed_max(mddev)) ||
  6678. !is_mddev_idle(mddev, 0)) {
  6679. msleep(500);
  6680. goto repeat;
  6681. }
  6682. }
  6683. }
  6684. printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
  6685. /*
  6686. * this also signals 'finished resyncing' to md_stop
  6687. */
  6688. out:
  6689. wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
  6690. /* tell personality that we are finished */
  6691. mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
  6692. if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
  6693. mddev->curr_resync > 2) {
  6694. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  6695. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
  6696. if (mddev->curr_resync >= mddev->recovery_cp) {
  6697. printk(KERN_INFO
  6698. "md: checkpointing %s of %s.\n",
  6699. desc, mdname(mddev));
  6700. mddev->recovery_cp =
  6701. mddev->curr_resync_completed;
  6702. }
  6703. } else
  6704. mddev->recovery_cp = MaxSector;
  6705. } else {
  6706. if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
  6707. mddev->curr_resync = MaxSector;
  6708. rcu_read_lock();
  6709. rdev_for_each_rcu(rdev, mddev)
  6710. if (rdev->raid_disk >= 0 &&
  6711. mddev->delta_disks >= 0 &&
  6712. !test_bit(Faulty, &rdev->flags) &&
  6713. !test_bit(In_sync, &rdev->flags) &&
  6714. rdev->recovery_offset < mddev->curr_resync)
  6715. rdev->recovery_offset = mddev->curr_resync;
  6716. rcu_read_unlock();
  6717. }
  6718. }
  6719. skip:
  6720. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  6721. if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
  6722. /* We completed so min/max setting can be forgotten if used. */
  6723. if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  6724. mddev->resync_min = 0;
  6725. mddev->resync_max = MaxSector;
  6726. } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  6727. mddev->resync_min = mddev->curr_resync_completed;
  6728. mddev->curr_resync = 0;
  6729. wake_up(&resync_wait);
  6730. set_bit(MD_RECOVERY_DONE, &mddev->recovery);
  6731. md_wakeup_thread(mddev->thread);
  6732. return;
  6733. interrupted:
  6734. /*
  6735. * got a signal, exit.
  6736. */
  6737. printk(KERN_INFO
  6738. "md: md_do_sync() got signal ... exiting\n");
  6739. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6740. goto out;
  6741. }
  6742. EXPORT_SYMBOL_GPL(md_do_sync);
  6743. static int remove_and_add_spares(struct mddev *mddev)
  6744. {
  6745. struct md_rdev *rdev;
  6746. int spares = 0;
  6747. int removed = 0;
  6748. mddev->curr_resync_completed = 0;
  6749. rdev_for_each(rdev, mddev)
  6750. if (rdev->raid_disk >= 0 &&
  6751. !test_bit(Blocked, &rdev->flags) &&
  6752. (test_bit(Faulty, &rdev->flags) ||
  6753. ! test_bit(In_sync, &rdev->flags)) &&
  6754. atomic_read(&rdev->nr_pending)==0) {
  6755. if (mddev->pers->hot_remove_disk(
  6756. mddev, rdev) == 0) {
  6757. sysfs_unlink_rdev(mddev, rdev);
  6758. rdev->raid_disk = -1;
  6759. removed++;
  6760. }
  6761. }
  6762. if (removed)
  6763. sysfs_notify(&mddev->kobj, NULL,
  6764. "degraded");
  6765. rdev_for_each(rdev, mddev) {
  6766. if (rdev->raid_disk >= 0 &&
  6767. !test_bit(In_sync, &rdev->flags) &&
  6768. !test_bit(Faulty, &rdev->flags))
  6769. spares++;
  6770. if (rdev->raid_disk < 0
  6771. && !test_bit(Faulty, &rdev->flags)) {
  6772. rdev->recovery_offset = 0;
  6773. if (mddev->pers->
  6774. hot_add_disk(mddev, rdev) == 0) {
  6775. if (sysfs_link_rdev(mddev, rdev))
  6776. /* failure here is OK */;
  6777. spares++;
  6778. md_new_event(mddev);
  6779. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  6780. }
  6781. }
  6782. }
  6783. return spares;
  6784. }
  6785. static void reap_sync_thread(struct mddev *mddev)
  6786. {
  6787. struct md_rdev *rdev;
  6788. /* resync has finished, collect result */
  6789. md_unregister_thread(&mddev->sync_thread);
  6790. if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
  6791. !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
  6792. /* success...*/
  6793. /* activate any spares */
  6794. if (mddev->pers->spare_active(mddev))
  6795. sysfs_notify(&mddev->kobj, NULL,
  6796. "degraded");
  6797. }
  6798. if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
  6799. mddev->pers->finish_reshape)
  6800. mddev->pers->finish_reshape(mddev);
  6801. /* If array is no-longer degraded, then any saved_raid_disk
  6802. * information must be scrapped. Also if any device is now
  6803. * In_sync we must scrape the saved_raid_disk for that device
  6804. * do the superblock for an incrementally recovered device
  6805. * written out.
  6806. */
  6807. rdev_for_each(rdev, mddev)
  6808. if (!mddev->degraded ||
  6809. test_bit(In_sync, &rdev->flags))
  6810. rdev->saved_raid_disk = -1;
  6811. md_update_sb(mddev, 1);
  6812. clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  6813. clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  6814. clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
  6815. clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  6816. clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  6817. /* flag recovery needed just to double check */
  6818. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  6819. sysfs_notify_dirent_safe(mddev->sysfs_action);
  6820. md_new_event(mddev);
  6821. if (mddev->event_work.func)
  6822. queue_work(md_misc_wq, &mddev->event_work);
  6823. }
  6824. /*
  6825. * This routine is regularly called by all per-raid-array threads to
  6826. * deal with generic issues like resync and super-block update.
  6827. * Raid personalities that don't have a thread (linear/raid0) do not
  6828. * need this as they never do any recovery or update the superblock.
  6829. *
  6830. * It does not do any resync itself, but rather "forks" off other threads
  6831. * to do that as needed.
  6832. * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
  6833. * "->recovery" and create a thread at ->sync_thread.
  6834. * When the thread finishes it sets MD_RECOVERY_DONE
  6835. * and wakeups up this thread which will reap the thread and finish up.
  6836. * This thread also removes any faulty devices (with nr_pending == 0).
  6837. *
  6838. * The overall approach is:
  6839. * 1/ if the superblock needs updating, update it.
  6840. * 2/ If a recovery thread is running, don't do anything else.
  6841. * 3/ If recovery has finished, clean up, possibly marking spares active.
  6842. * 4/ If there are any faulty devices, remove them.
  6843. * 5/ If array is degraded, try to add spares devices
  6844. * 6/ If array has spares or is not in-sync, start a resync thread.
  6845. */
  6846. void md_check_recovery(struct mddev *mddev)
  6847. {
  6848. if (mddev->suspended)
  6849. return;
  6850. if (mddev->bitmap)
  6851. bitmap_daemon_work(mddev);
  6852. if (signal_pending(current)) {
  6853. if (mddev->pers->sync_request && !mddev->external) {
  6854. printk(KERN_INFO "md: %s in immediate safe mode\n",
  6855. mdname(mddev));
  6856. mddev->safemode = 2;
  6857. }
  6858. flush_signals(current);
  6859. }
  6860. if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
  6861. return;
  6862. if ( ! (
  6863. (mddev->flags & ~ (1<<MD_CHANGE_PENDING)) ||
  6864. test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
  6865. test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
  6866. (mddev->external == 0 && mddev->safemode == 1) ||
  6867. (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
  6868. && !mddev->in_sync && mddev->recovery_cp == MaxSector)
  6869. ))
  6870. return;
  6871. if (mddev_trylock(mddev)) {
  6872. int spares = 0;
  6873. if (mddev->ro) {
  6874. /* Only thing we do on a ro array is remove
  6875. * failed devices.
  6876. */
  6877. struct md_rdev *rdev;
  6878. rdev_for_each(rdev, mddev)
  6879. if (rdev->raid_disk >= 0 &&
  6880. !test_bit(Blocked, &rdev->flags) &&
  6881. test_bit(Faulty, &rdev->flags) &&
  6882. atomic_read(&rdev->nr_pending)==0) {
  6883. if (mddev->pers->hot_remove_disk(
  6884. mddev, rdev) == 0) {
  6885. sysfs_unlink_rdev(mddev, rdev);
  6886. rdev->raid_disk = -1;
  6887. }
  6888. }
  6889. clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  6890. goto unlock;
  6891. }
  6892. if (!mddev->external) {
  6893. int did_change = 0;
  6894. spin_lock_irq(&mddev->write_lock);
  6895. if (mddev->safemode &&
  6896. !atomic_read(&mddev->writes_pending) &&
  6897. !mddev->in_sync &&
  6898. mddev->recovery_cp == MaxSector) {
  6899. mddev->in_sync = 1;
  6900. did_change = 1;
  6901. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  6902. }
  6903. if (mddev->safemode == 1)
  6904. mddev->safemode = 0;
  6905. spin_unlock_irq(&mddev->write_lock);
  6906. if (did_change)
  6907. sysfs_notify_dirent_safe(mddev->sysfs_state);
  6908. }
  6909. if (mddev->flags)
  6910. md_update_sb(mddev, 0);
  6911. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
  6912. !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
  6913. /* resync/recovery still happening */
  6914. clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  6915. goto unlock;
  6916. }
  6917. if (mddev->sync_thread) {
  6918. reap_sync_thread(mddev);
  6919. goto unlock;
  6920. }
  6921. /* Set RUNNING before clearing NEEDED to avoid
  6922. * any transients in the value of "sync_action".
  6923. */
  6924. set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  6925. /* Clear some bits that don't mean anything, but
  6926. * might be left set
  6927. */
  6928. clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6929. clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
  6930. if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
  6931. test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
  6932. goto unlock;
  6933. /* no recovery is running.
  6934. * remove any failed drives, then
  6935. * add spares if possible.
  6936. * Spare are also removed and re-added, to allow
  6937. * the personality to fail the re-add.
  6938. */
  6939. if (mddev->reshape_position != MaxSector) {
  6940. if (mddev->pers->check_reshape == NULL ||
  6941. mddev->pers->check_reshape(mddev) != 0)
  6942. /* Cannot proceed */
  6943. goto unlock;
  6944. set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
  6945. clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  6946. } else if ((spares = remove_and_add_spares(mddev))) {
  6947. clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  6948. clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  6949. clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  6950. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  6951. } else if (mddev->recovery_cp < MaxSector) {
  6952. set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  6953. clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  6954. } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  6955. /* nothing to be done ... */
  6956. goto unlock;
  6957. if (mddev->pers->sync_request) {
  6958. if (spares) {
  6959. /* We are adding a device or devices to an array
  6960. * which has the bitmap stored on all devices.
  6961. * So make sure all bitmap pages get written
  6962. */
  6963. bitmap_write_all(mddev->bitmap);
  6964. }
  6965. mddev->sync_thread = md_register_thread(md_do_sync,
  6966. mddev,
  6967. "resync");
  6968. if (!mddev->sync_thread) {
  6969. printk(KERN_ERR "%s: could not start resync"
  6970. " thread...\n",
  6971. mdname(mddev));
  6972. /* leave the spares where they are, it shouldn't hurt */
  6973. clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  6974. clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  6975. clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
  6976. clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  6977. clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  6978. } else
  6979. md_wakeup_thread(mddev->sync_thread);
  6980. sysfs_notify_dirent_safe(mddev->sysfs_action);
  6981. md_new_event(mddev);
  6982. }
  6983. unlock:
  6984. if (!mddev->sync_thread) {
  6985. clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  6986. if (test_and_clear_bit(MD_RECOVERY_RECOVER,
  6987. &mddev->recovery))
  6988. if (mddev->sysfs_action)
  6989. sysfs_notify_dirent_safe(mddev->sysfs_action);
  6990. }
  6991. mddev_unlock(mddev);
  6992. }
  6993. }
  6994. void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
  6995. {
  6996. sysfs_notify_dirent_safe(rdev->sysfs_state);
  6997. wait_event_timeout(rdev->blocked_wait,
  6998. !test_bit(Blocked, &rdev->flags) &&
  6999. !test_bit(BlockedBadBlocks, &rdev->flags),
  7000. msecs_to_jiffies(5000));
  7001. rdev_dec_pending(rdev, mddev);
  7002. }
  7003. EXPORT_SYMBOL(md_wait_for_blocked_rdev);
  7004. void md_finish_reshape(struct mddev *mddev)
  7005. {
  7006. /* called be personality module when reshape completes. */
  7007. struct md_rdev *rdev;
  7008. rdev_for_each(rdev, mddev) {
  7009. if (rdev->data_offset > rdev->new_data_offset)
  7010. rdev->sectors += rdev->data_offset - rdev->new_data_offset;
  7011. else
  7012. rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
  7013. rdev->data_offset = rdev->new_data_offset;
  7014. }
  7015. }
  7016. EXPORT_SYMBOL(md_finish_reshape);
  7017. /* Bad block management.
  7018. * We can record which blocks on each device are 'bad' and so just
  7019. * fail those blocks, or that stripe, rather than the whole device.
  7020. * Entries in the bad-block table are 64bits wide. This comprises:
  7021. * Length of bad-range, in sectors: 0-511 for lengths 1-512
  7022. * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
  7023. * A 'shift' can be set so that larger blocks are tracked and
  7024. * consequently larger devices can be covered.
  7025. * 'Acknowledged' flag - 1 bit. - the most significant bit.
  7026. *
  7027. * Locking of the bad-block table uses a seqlock so md_is_badblock
  7028. * might need to retry if it is very unlucky.
  7029. * We will sometimes want to check for bad blocks in a bi_end_io function,
  7030. * so we use the write_seqlock_irq variant.
  7031. *
  7032. * When looking for a bad block we specify a range and want to
  7033. * know if any block in the range is bad. So we binary-search
  7034. * to the last range that starts at-or-before the given endpoint,
  7035. * (or "before the sector after the target range")
  7036. * then see if it ends after the given start.
  7037. * We return
  7038. * 0 if there are no known bad blocks in the range
  7039. * 1 if there are known bad block which are all acknowledged
  7040. * -1 if there are bad blocks which have not yet been acknowledged in metadata.
  7041. * plus the start/length of the first bad section we overlap.
  7042. */
  7043. int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
  7044. sector_t *first_bad, int *bad_sectors)
  7045. {
  7046. int hi;
  7047. int lo = 0;
  7048. u64 *p = bb->page;
  7049. int rv = 0;
  7050. sector_t target = s + sectors;
  7051. unsigned seq;
  7052. if (bb->shift > 0) {
  7053. /* round the start down, and the end up */
  7054. s >>= bb->shift;
  7055. target += (1<<bb->shift) - 1;
  7056. target >>= bb->shift;
  7057. sectors = target - s;
  7058. }
  7059. /* 'target' is now the first block after the bad range */
  7060. retry:
  7061. seq = read_seqbegin(&bb->lock);
  7062. hi = bb->count;
  7063. /* Binary search between lo and hi for 'target'
  7064. * i.e. for the last range that starts before 'target'
  7065. */
  7066. /* INVARIANT: ranges before 'lo' and at-or-after 'hi'
  7067. * are known not to be the last range before target.
  7068. * VARIANT: hi-lo is the number of possible
  7069. * ranges, and decreases until it reaches 1
  7070. */
  7071. while (hi - lo > 1) {
  7072. int mid = (lo + hi) / 2;
  7073. sector_t a = BB_OFFSET(p[mid]);
  7074. if (a < target)
  7075. /* This could still be the one, earlier ranges
  7076. * could not. */
  7077. lo = mid;
  7078. else
  7079. /* This and later ranges are definitely out. */
  7080. hi = mid;
  7081. }
  7082. /* 'lo' might be the last that started before target, but 'hi' isn't */
  7083. if (hi > lo) {
  7084. /* need to check all range that end after 's' to see if
  7085. * any are unacknowledged.
  7086. */
  7087. while (lo >= 0 &&
  7088. BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
  7089. if (BB_OFFSET(p[lo]) < target) {
  7090. /* starts before the end, and finishes after
  7091. * the start, so they must overlap
  7092. */
  7093. if (rv != -1 && BB_ACK(p[lo]))
  7094. rv = 1;
  7095. else
  7096. rv = -1;
  7097. *first_bad = BB_OFFSET(p[lo]);
  7098. *bad_sectors = BB_LEN(p[lo]);
  7099. }
  7100. lo--;
  7101. }
  7102. }
  7103. if (read_seqretry(&bb->lock, seq))
  7104. goto retry;
  7105. return rv;
  7106. }
  7107. EXPORT_SYMBOL_GPL(md_is_badblock);
  7108. /*
  7109. * Add a range of bad blocks to the table.
  7110. * This might extend the table, or might contract it
  7111. * if two adjacent ranges can be merged.
  7112. * We binary-search to find the 'insertion' point, then
  7113. * decide how best to handle it.
  7114. */
  7115. static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
  7116. int acknowledged)
  7117. {
  7118. u64 *p;
  7119. int lo, hi;
  7120. int rv = 1;
  7121. if (bb->shift < 0)
  7122. /* badblocks are disabled */
  7123. return 0;
  7124. if (bb->shift) {
  7125. /* round the start down, and the end up */
  7126. sector_t next = s + sectors;
  7127. s >>= bb->shift;
  7128. next += (1<<bb->shift) - 1;
  7129. next >>= bb->shift;
  7130. sectors = next - s;
  7131. }
  7132. write_seqlock_irq(&bb->lock);
  7133. p = bb->page;
  7134. lo = 0;
  7135. hi = bb->count;
  7136. /* Find the last range that starts at-or-before 's' */
  7137. while (hi - lo > 1) {
  7138. int mid = (lo + hi) / 2;
  7139. sector_t a = BB_OFFSET(p[mid]);
  7140. if (a <= s)
  7141. lo = mid;
  7142. else
  7143. hi = mid;
  7144. }
  7145. if (hi > lo && BB_OFFSET(p[lo]) > s)
  7146. hi = lo;
  7147. if (hi > lo) {
  7148. /* we found a range that might merge with the start
  7149. * of our new range
  7150. */
  7151. sector_t a = BB_OFFSET(p[lo]);
  7152. sector_t e = a + BB_LEN(p[lo]);
  7153. int ack = BB_ACK(p[lo]);
  7154. if (e >= s) {
  7155. /* Yes, we can merge with a previous range */
  7156. if (s == a && s + sectors >= e)
  7157. /* new range covers old */
  7158. ack = acknowledged;
  7159. else
  7160. ack = ack && acknowledged;
  7161. if (e < s + sectors)
  7162. e = s + sectors;
  7163. if (e - a <= BB_MAX_LEN) {
  7164. p[lo] = BB_MAKE(a, e-a, ack);
  7165. s = e;
  7166. } else {
  7167. /* does not all fit in one range,
  7168. * make p[lo] maximal
  7169. */
  7170. if (BB_LEN(p[lo]) != BB_MAX_LEN)
  7171. p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
  7172. s = a + BB_MAX_LEN;
  7173. }
  7174. sectors = e - s;
  7175. }
  7176. }
  7177. if (sectors && hi < bb->count) {
  7178. /* 'hi' points to the first range that starts after 's'.
  7179. * Maybe we can merge with the start of that range */
  7180. sector_t a = BB_OFFSET(p[hi]);
  7181. sector_t e = a + BB_LEN(p[hi]);
  7182. int ack = BB_ACK(p[hi]);
  7183. if (a <= s + sectors) {
  7184. /* merging is possible */
  7185. if (e <= s + sectors) {
  7186. /* full overlap */
  7187. e = s + sectors;
  7188. ack = acknowledged;
  7189. } else
  7190. ack = ack && acknowledged;
  7191. a = s;
  7192. if (e - a <= BB_MAX_LEN) {
  7193. p[hi] = BB_MAKE(a, e-a, ack);
  7194. s = e;
  7195. } else {
  7196. p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
  7197. s = a + BB_MAX_LEN;
  7198. }
  7199. sectors = e - s;
  7200. lo = hi;
  7201. hi++;
  7202. }
  7203. }
  7204. if (sectors == 0 && hi < bb->count) {
  7205. /* we might be able to combine lo and hi */
  7206. /* Note: 's' is at the end of 'lo' */
  7207. sector_t a = BB_OFFSET(p[hi]);
  7208. int lolen = BB_LEN(p[lo]);
  7209. int hilen = BB_LEN(p[hi]);
  7210. int newlen = lolen + hilen - (s - a);
  7211. if (s >= a && newlen < BB_MAX_LEN) {
  7212. /* yes, we can combine them */
  7213. int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
  7214. p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
  7215. memmove(p + hi, p + hi + 1,
  7216. (bb->count - hi - 1) * 8);
  7217. bb->count--;
  7218. }
  7219. }
  7220. while (sectors) {
  7221. /* didn't merge (it all).
  7222. * Need to add a range just before 'hi' */
  7223. if (bb->count >= MD_MAX_BADBLOCKS) {
  7224. /* No room for more */
  7225. rv = 0;
  7226. break;
  7227. } else {
  7228. int this_sectors = sectors;
  7229. memmove(p + hi + 1, p + hi,
  7230. (bb->count - hi) * 8);
  7231. bb->count++;
  7232. if (this_sectors > BB_MAX_LEN)
  7233. this_sectors = BB_MAX_LEN;
  7234. p[hi] = BB_MAKE(s, this_sectors, acknowledged);
  7235. sectors -= this_sectors;
  7236. s += this_sectors;
  7237. }
  7238. }
  7239. bb->changed = 1;
  7240. if (!acknowledged)
  7241. bb->unacked_exist = 1;
  7242. write_sequnlock_irq(&bb->lock);
  7243. return rv;
  7244. }
  7245. int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
  7246. int is_new)
  7247. {
  7248. int rv;
  7249. if (is_new)
  7250. s += rdev->new_data_offset;
  7251. else
  7252. s += rdev->data_offset;
  7253. rv = md_set_badblocks(&rdev->badblocks,
  7254. s, sectors, 0);
  7255. if (rv) {
  7256. /* Make sure they get written out promptly */
  7257. sysfs_notify_dirent_safe(rdev->sysfs_state);
  7258. set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
  7259. md_wakeup_thread(rdev->mddev->thread);
  7260. }
  7261. return rv;
  7262. }
  7263. EXPORT_SYMBOL_GPL(rdev_set_badblocks);
  7264. /*
  7265. * Remove a range of bad blocks from the table.
  7266. * This may involve extending the table if we spilt a region,
  7267. * but it must not fail. So if the table becomes full, we just
  7268. * drop the remove request.
  7269. */
  7270. static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
  7271. {
  7272. u64 *p;
  7273. int lo, hi;
  7274. sector_t target = s + sectors;
  7275. int rv = 0;
  7276. if (bb->shift > 0) {
  7277. /* When clearing we round the start up and the end down.
  7278. * This should not matter as the shift should align with
  7279. * the block size and no rounding should ever be needed.
  7280. * However it is better the think a block is bad when it
  7281. * isn't than to think a block is not bad when it is.
  7282. */
  7283. s += (1<<bb->shift) - 1;
  7284. s >>= bb->shift;
  7285. target >>= bb->shift;
  7286. sectors = target - s;
  7287. }
  7288. write_seqlock_irq(&bb->lock);
  7289. p = bb->page;
  7290. lo = 0;
  7291. hi = bb->count;
  7292. /* Find the last range that starts before 'target' */
  7293. while (hi - lo > 1) {
  7294. int mid = (lo + hi) / 2;
  7295. sector_t a = BB_OFFSET(p[mid]);
  7296. if (a < target)
  7297. lo = mid;
  7298. else
  7299. hi = mid;
  7300. }
  7301. if (hi > lo) {
  7302. /* p[lo] is the last range that could overlap the
  7303. * current range. Earlier ranges could also overlap,
  7304. * but only this one can overlap the end of the range.
  7305. */
  7306. if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
  7307. /* Partial overlap, leave the tail of this range */
  7308. int ack = BB_ACK(p[lo]);
  7309. sector_t a = BB_OFFSET(p[lo]);
  7310. sector_t end = a + BB_LEN(p[lo]);
  7311. if (a < s) {
  7312. /* we need to split this range */
  7313. if (bb->count >= MD_MAX_BADBLOCKS) {
  7314. rv = 0;
  7315. goto out;
  7316. }
  7317. memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
  7318. bb->count++;
  7319. p[lo] = BB_MAKE(a, s-a, ack);
  7320. lo++;
  7321. }
  7322. p[lo] = BB_MAKE(target, end - target, ack);
  7323. /* there is no longer an overlap */
  7324. hi = lo;
  7325. lo--;
  7326. }
  7327. while (lo >= 0 &&
  7328. BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
  7329. /* This range does overlap */
  7330. if (BB_OFFSET(p[lo]) < s) {
  7331. /* Keep the early parts of this range. */
  7332. int ack = BB_ACK(p[lo]);
  7333. sector_t start = BB_OFFSET(p[lo]);
  7334. p[lo] = BB_MAKE(start, s - start, ack);
  7335. /* now low doesn't overlap, so.. */
  7336. break;
  7337. }
  7338. lo--;
  7339. }
  7340. /* 'lo' is strictly before, 'hi' is strictly after,
  7341. * anything between needs to be discarded
  7342. */
  7343. if (hi - lo > 1) {
  7344. memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
  7345. bb->count -= (hi - lo - 1);
  7346. }
  7347. }
  7348. bb->changed = 1;
  7349. out:
  7350. write_sequnlock_irq(&bb->lock);
  7351. return rv;
  7352. }
  7353. int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
  7354. int is_new)
  7355. {
  7356. if (is_new)
  7357. s += rdev->new_data_offset;
  7358. else
  7359. s += rdev->data_offset;
  7360. return md_clear_badblocks(&rdev->badblocks,
  7361. s, sectors);
  7362. }
  7363. EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
  7364. /*
  7365. * Acknowledge all bad blocks in a list.
  7366. * This only succeeds if ->changed is clear. It is used by
  7367. * in-kernel metadata updates
  7368. */
  7369. void md_ack_all_badblocks(struct badblocks *bb)
  7370. {
  7371. if (bb->page == NULL || bb->changed)
  7372. /* no point even trying */
  7373. return;
  7374. write_seqlock_irq(&bb->lock);
  7375. if (bb->changed == 0 && bb->unacked_exist) {
  7376. u64 *p = bb->page;
  7377. int i;
  7378. for (i = 0; i < bb->count ; i++) {
  7379. if (!BB_ACK(p[i])) {
  7380. sector_t start = BB_OFFSET(p[i]);
  7381. int len = BB_LEN(p[i]);
  7382. p[i] = BB_MAKE(start, len, 1);
  7383. }
  7384. }
  7385. bb->unacked_exist = 0;
  7386. }
  7387. write_sequnlock_irq(&bb->lock);
  7388. }
  7389. EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
  7390. /* sysfs access to bad-blocks list.
  7391. * We present two files.
  7392. * 'bad-blocks' lists sector numbers and lengths of ranges that
  7393. * are recorded as bad. The list is truncated to fit within
  7394. * the one-page limit of sysfs.
  7395. * Writing "sector length" to this file adds an acknowledged
  7396. * bad block list.
  7397. * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
  7398. * been acknowledged. Writing to this file adds bad blocks
  7399. * without acknowledging them. This is largely for testing.
  7400. */
  7401. static ssize_t
  7402. badblocks_show(struct badblocks *bb, char *page, int unack)
  7403. {
  7404. size_t len;
  7405. int i;
  7406. u64 *p = bb->page;
  7407. unsigned seq;
  7408. if (bb->shift < 0)
  7409. return 0;
  7410. retry:
  7411. seq = read_seqbegin(&bb->lock);
  7412. len = 0;
  7413. i = 0;
  7414. while (len < PAGE_SIZE && i < bb->count) {
  7415. sector_t s = BB_OFFSET(p[i]);
  7416. unsigned int length = BB_LEN(p[i]);
  7417. int ack = BB_ACK(p[i]);
  7418. i++;
  7419. if (unack && ack)
  7420. continue;
  7421. len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
  7422. (unsigned long long)s << bb->shift,
  7423. length << bb->shift);
  7424. }
  7425. if (unack && len == 0)
  7426. bb->unacked_exist = 0;
  7427. if (read_seqretry(&bb->lock, seq))
  7428. goto retry;
  7429. return len;
  7430. }
  7431. #define DO_DEBUG 1
  7432. static ssize_t
  7433. badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
  7434. {
  7435. unsigned long long sector;
  7436. int length;
  7437. char newline;
  7438. #ifdef DO_DEBUG
  7439. /* Allow clearing via sysfs *only* for testing/debugging.
  7440. * Normally only a successful write may clear a badblock
  7441. */
  7442. int clear = 0;
  7443. if (page[0] == '-') {
  7444. clear = 1;
  7445. page++;
  7446. }
  7447. #endif /* DO_DEBUG */
  7448. switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
  7449. case 3:
  7450. if (newline != '\n')
  7451. return -EINVAL;
  7452. case 2:
  7453. if (length <= 0)
  7454. return -EINVAL;
  7455. break;
  7456. default:
  7457. return -EINVAL;
  7458. }
  7459. #ifdef DO_DEBUG
  7460. if (clear) {
  7461. md_clear_badblocks(bb, sector, length);
  7462. return len;
  7463. }
  7464. #endif /* DO_DEBUG */
  7465. if (md_set_badblocks(bb, sector, length, !unack))
  7466. return len;
  7467. else
  7468. return -ENOSPC;
  7469. }
  7470. static int md_notify_reboot(struct notifier_block *this,
  7471. unsigned long code, void *x)
  7472. {
  7473. struct list_head *tmp;
  7474. struct mddev *mddev;
  7475. int need_delay = 0;
  7476. for_each_mddev(mddev, tmp) {
  7477. if (mddev_trylock(mddev)) {
  7478. if (mddev->pers)
  7479. __md_stop_writes(mddev);
  7480. mddev->safemode = 2;
  7481. mddev_unlock(mddev);
  7482. }
  7483. need_delay = 1;
  7484. }
  7485. /*
  7486. * certain more exotic SCSI devices are known to be
  7487. * volatile wrt too early system reboots. While the
  7488. * right place to handle this issue is the given
  7489. * driver, we do want to have a safe RAID driver ...
  7490. */
  7491. if (need_delay)
  7492. mdelay(1000*1);
  7493. return NOTIFY_DONE;
  7494. }
  7495. static struct notifier_block md_notifier = {
  7496. .notifier_call = md_notify_reboot,
  7497. .next = NULL,
  7498. .priority = INT_MAX, /* before any real devices */
  7499. };
  7500. static void md_geninit(void)
  7501. {
  7502. pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
  7503. proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
  7504. }
  7505. static int __init md_init(void)
  7506. {
  7507. int ret = -ENOMEM;
  7508. md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
  7509. if (!md_wq)
  7510. goto err_wq;
  7511. md_misc_wq = alloc_workqueue("md_misc", 0, 0);
  7512. if (!md_misc_wq)
  7513. goto err_misc_wq;
  7514. if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
  7515. goto err_md;
  7516. if ((ret = register_blkdev(0, "mdp")) < 0)
  7517. goto err_mdp;
  7518. mdp_major = ret;
  7519. blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE,
  7520. md_probe, NULL, NULL);
  7521. blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
  7522. md_probe, NULL, NULL);
  7523. register_reboot_notifier(&md_notifier);
  7524. raid_table_header = register_sysctl_table(raid_root_table);
  7525. md_geninit();
  7526. return 0;
  7527. err_mdp:
  7528. unregister_blkdev(MD_MAJOR, "md");
  7529. err_md:
  7530. destroy_workqueue(md_misc_wq);
  7531. err_misc_wq:
  7532. destroy_workqueue(md_wq);
  7533. err_wq:
  7534. return ret;
  7535. }
  7536. #ifndef MODULE
  7537. /*
  7538. * Searches all registered partitions for autorun RAID arrays
  7539. * at boot time.
  7540. */
  7541. static LIST_HEAD(all_detected_devices);
  7542. struct detected_devices_node {
  7543. struct list_head list;
  7544. dev_t dev;
  7545. };
  7546. void md_autodetect_dev(dev_t dev)
  7547. {
  7548. struct detected_devices_node *node_detected_dev;
  7549. node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
  7550. if (node_detected_dev) {
  7551. node_detected_dev->dev = dev;
  7552. list_add_tail(&node_detected_dev->list, &all_detected_devices);
  7553. } else {
  7554. printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
  7555. ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
  7556. }
  7557. }
  7558. static void autostart_arrays(int part)
  7559. {
  7560. struct md_rdev *rdev;
  7561. struct detected_devices_node *node_detected_dev;
  7562. dev_t dev;
  7563. int i_scanned, i_passed;
  7564. i_scanned = 0;
  7565. i_passed = 0;
  7566. printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
  7567. while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
  7568. i_scanned++;
  7569. node_detected_dev = list_entry(all_detected_devices.next,
  7570. struct detected_devices_node, list);
  7571. list_del(&node_detected_dev->list);
  7572. dev = node_detected_dev->dev;
  7573. kfree(node_detected_dev);
  7574. rdev = md_import_device(dev,0, 90);
  7575. if (IS_ERR(rdev))
  7576. continue;
  7577. if (test_bit(Faulty, &rdev->flags)) {
  7578. MD_BUG();
  7579. continue;
  7580. }
  7581. set_bit(AutoDetected, &rdev->flags);
  7582. list_add(&rdev->same_set, &pending_raid_disks);
  7583. i_passed++;
  7584. }
  7585. printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
  7586. i_scanned, i_passed);
  7587. autorun_devices(part);
  7588. }
  7589. #endif /* !MODULE */
  7590. static __exit void md_exit(void)
  7591. {
  7592. struct mddev *mddev;
  7593. struct list_head *tmp;
  7594. blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS);
  7595. blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
  7596. unregister_blkdev(MD_MAJOR,"md");
  7597. unregister_blkdev(mdp_major, "mdp");
  7598. unregister_reboot_notifier(&md_notifier);
  7599. unregister_sysctl_table(raid_table_header);
  7600. remove_proc_entry("mdstat", NULL);
  7601. for_each_mddev(mddev, tmp) {
  7602. export_array(mddev);
  7603. mddev->hold_active = 0;
  7604. }
  7605. destroy_workqueue(md_misc_wq);
  7606. destroy_workqueue(md_wq);
  7607. }
  7608. subsys_initcall(md_init);
  7609. module_exit(md_exit)
  7610. static int get_ro(char *buffer, struct kernel_param *kp)
  7611. {
  7612. return sprintf(buffer, "%d", start_readonly);
  7613. }
  7614. static int set_ro(const char *val, struct kernel_param *kp)
  7615. {
  7616. char *e;
  7617. int num = simple_strtoul(val, &e, 10);
  7618. if (*val && (*e == '\0' || *e == '\n')) {
  7619. start_readonly = num;
  7620. return 0;
  7621. }
  7622. return -EINVAL;
  7623. }
  7624. module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
  7625. module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
  7626. module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
  7627. EXPORT_SYMBOL(register_md_personality);
  7628. EXPORT_SYMBOL(unregister_md_personality);
  7629. EXPORT_SYMBOL(md_error);
  7630. EXPORT_SYMBOL(md_done_sync);
  7631. EXPORT_SYMBOL(md_write_start);
  7632. EXPORT_SYMBOL(md_write_end);
  7633. EXPORT_SYMBOL(md_register_thread);
  7634. EXPORT_SYMBOL(md_unregister_thread);
  7635. EXPORT_SYMBOL(md_wakeup_thread);
  7636. EXPORT_SYMBOL(md_check_recovery);
  7637. MODULE_LICENSE("GPL");
  7638. MODULE_DESCRIPTION("MD RAID framework");
  7639. MODULE_ALIAS("md");
  7640. MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);