core-device.c 33 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287
  1. /*
  2. * Device probing and sysfs code.
  3. *
  4. * Copyright (C) 2005-2006 Kristian Hoegsberg <krh@bitplanet.net>
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation; either version 2 of the License, or
  9. * (at your option) any later version.
  10. *
  11. * This program is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU General Public License
  17. * along with this program; if not, write to the Free Software Foundation,
  18. * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  19. */
  20. #include <linux/bug.h>
  21. #include <linux/ctype.h>
  22. #include <linux/delay.h>
  23. #include <linux/device.h>
  24. #include <linux/errno.h>
  25. #include <linux/firewire.h>
  26. #include <linux/firewire-constants.h>
  27. #include <linux/idr.h>
  28. #include <linux/jiffies.h>
  29. #include <linux/kobject.h>
  30. #include <linux/list.h>
  31. #include <linux/mod_devicetable.h>
  32. #include <linux/module.h>
  33. #include <linux/mutex.h>
  34. #include <linux/rwsem.h>
  35. #include <linux/slab.h>
  36. #include <linux/spinlock.h>
  37. #include <linux/string.h>
  38. #include <linux/workqueue.h>
  39. #include <linux/atomic.h>
  40. #include <asm/byteorder.h>
  41. #include "core.h"
  42. void fw_csr_iterator_init(struct fw_csr_iterator *ci, const u32 *p)
  43. {
  44. ci->p = p + 1;
  45. ci->end = ci->p + (p[0] >> 16);
  46. }
  47. EXPORT_SYMBOL(fw_csr_iterator_init);
  48. int fw_csr_iterator_next(struct fw_csr_iterator *ci, int *key, int *value)
  49. {
  50. *key = *ci->p >> 24;
  51. *value = *ci->p & 0xffffff;
  52. return ci->p++ < ci->end;
  53. }
  54. EXPORT_SYMBOL(fw_csr_iterator_next);
  55. static const u32 *search_leaf(const u32 *directory, int search_key)
  56. {
  57. struct fw_csr_iterator ci;
  58. int last_key = 0, key, value;
  59. fw_csr_iterator_init(&ci, directory);
  60. while (fw_csr_iterator_next(&ci, &key, &value)) {
  61. if (last_key == search_key &&
  62. key == (CSR_DESCRIPTOR | CSR_LEAF))
  63. return ci.p - 1 + value;
  64. last_key = key;
  65. }
  66. return NULL;
  67. }
  68. static int textual_leaf_to_string(const u32 *block, char *buf, size_t size)
  69. {
  70. unsigned int quadlets, i;
  71. char c;
  72. if (!size || !buf)
  73. return -EINVAL;
  74. quadlets = min(block[0] >> 16, 256U);
  75. if (quadlets < 2)
  76. return -ENODATA;
  77. if (block[1] != 0 || block[2] != 0)
  78. /* unknown language/character set */
  79. return -ENODATA;
  80. block += 3;
  81. quadlets -= 2;
  82. for (i = 0; i < quadlets * 4 && i < size - 1; i++) {
  83. c = block[i / 4] >> (24 - 8 * (i % 4));
  84. if (c == '\0')
  85. break;
  86. buf[i] = c;
  87. }
  88. buf[i] = '\0';
  89. return i;
  90. }
  91. /**
  92. * fw_csr_string() - reads a string from the configuration ROM
  93. * @directory: e.g. root directory or unit directory
  94. * @key: the key of the preceding directory entry
  95. * @buf: where to put the string
  96. * @size: size of @buf, in bytes
  97. *
  98. * The string is taken from a minimal ASCII text descriptor leaf after
  99. * the immediate entry with @key. The string is zero-terminated.
  100. * Returns strlen(buf) or a negative error code.
  101. */
  102. int fw_csr_string(const u32 *directory, int key, char *buf, size_t size)
  103. {
  104. const u32 *leaf = search_leaf(directory, key);
  105. if (!leaf)
  106. return -ENOENT;
  107. return textual_leaf_to_string(leaf, buf, size);
  108. }
  109. EXPORT_SYMBOL(fw_csr_string);
  110. static void get_ids(const u32 *directory, int *id)
  111. {
  112. struct fw_csr_iterator ci;
  113. int key, value;
  114. fw_csr_iterator_init(&ci, directory);
  115. while (fw_csr_iterator_next(&ci, &key, &value)) {
  116. switch (key) {
  117. case CSR_VENDOR: id[0] = value; break;
  118. case CSR_MODEL: id[1] = value; break;
  119. case CSR_SPECIFIER_ID: id[2] = value; break;
  120. case CSR_VERSION: id[3] = value; break;
  121. }
  122. }
  123. }
  124. static void get_modalias_ids(struct fw_unit *unit, int *id)
  125. {
  126. get_ids(&fw_parent_device(unit)->config_rom[5], id);
  127. get_ids(unit->directory, id);
  128. }
  129. static bool match_ids(const struct ieee1394_device_id *id_table, int *id)
  130. {
  131. int match = 0;
  132. if (id[0] == id_table->vendor_id)
  133. match |= IEEE1394_MATCH_VENDOR_ID;
  134. if (id[1] == id_table->model_id)
  135. match |= IEEE1394_MATCH_MODEL_ID;
  136. if (id[2] == id_table->specifier_id)
  137. match |= IEEE1394_MATCH_SPECIFIER_ID;
  138. if (id[3] == id_table->version)
  139. match |= IEEE1394_MATCH_VERSION;
  140. return (match & id_table->match_flags) == id_table->match_flags;
  141. }
  142. static bool is_fw_unit(struct device *dev);
  143. static int fw_unit_match(struct device *dev, struct device_driver *drv)
  144. {
  145. const struct ieee1394_device_id *id_table =
  146. container_of(drv, struct fw_driver, driver)->id_table;
  147. int id[] = {0, 0, 0, 0};
  148. /* We only allow binding to fw_units. */
  149. if (!is_fw_unit(dev))
  150. return 0;
  151. get_modalias_ids(fw_unit(dev), id);
  152. for (; id_table->match_flags != 0; id_table++)
  153. if (match_ids(id_table, id))
  154. return 1;
  155. return 0;
  156. }
  157. static int get_modalias(struct fw_unit *unit, char *buffer, size_t buffer_size)
  158. {
  159. int id[] = {0, 0, 0, 0};
  160. get_modalias_ids(unit, id);
  161. return snprintf(buffer, buffer_size,
  162. "ieee1394:ven%08Xmo%08Xsp%08Xver%08X",
  163. id[0], id[1], id[2], id[3]);
  164. }
  165. static int fw_unit_uevent(struct device *dev, struct kobj_uevent_env *env)
  166. {
  167. struct fw_unit *unit = fw_unit(dev);
  168. char modalias[64];
  169. get_modalias(unit, modalias, sizeof(modalias));
  170. if (add_uevent_var(env, "MODALIAS=%s", modalias))
  171. return -ENOMEM;
  172. return 0;
  173. }
  174. struct bus_type fw_bus_type = {
  175. .name = "firewire",
  176. .match = fw_unit_match,
  177. };
  178. EXPORT_SYMBOL(fw_bus_type);
  179. int fw_device_enable_phys_dma(struct fw_device *device)
  180. {
  181. int generation = device->generation;
  182. /* device->node_id, accessed below, must not be older than generation */
  183. smp_rmb();
  184. return device->card->driver->enable_phys_dma(device->card,
  185. device->node_id,
  186. generation);
  187. }
  188. EXPORT_SYMBOL(fw_device_enable_phys_dma);
  189. struct config_rom_attribute {
  190. struct device_attribute attr;
  191. u32 key;
  192. };
  193. static ssize_t show_immediate(struct device *dev,
  194. struct device_attribute *dattr, char *buf)
  195. {
  196. struct config_rom_attribute *attr =
  197. container_of(dattr, struct config_rom_attribute, attr);
  198. struct fw_csr_iterator ci;
  199. const u32 *dir;
  200. int key, value, ret = -ENOENT;
  201. down_read(&fw_device_rwsem);
  202. if (is_fw_unit(dev))
  203. dir = fw_unit(dev)->directory;
  204. else
  205. dir = fw_device(dev)->config_rom + 5;
  206. fw_csr_iterator_init(&ci, dir);
  207. while (fw_csr_iterator_next(&ci, &key, &value))
  208. if (attr->key == key) {
  209. ret = snprintf(buf, buf ? PAGE_SIZE : 0,
  210. "0x%06x\n", value);
  211. break;
  212. }
  213. up_read(&fw_device_rwsem);
  214. return ret;
  215. }
  216. #define IMMEDIATE_ATTR(name, key) \
  217. { __ATTR(name, S_IRUGO, show_immediate, NULL), key }
  218. static ssize_t show_text_leaf(struct device *dev,
  219. struct device_attribute *dattr, char *buf)
  220. {
  221. struct config_rom_attribute *attr =
  222. container_of(dattr, struct config_rom_attribute, attr);
  223. const u32 *dir;
  224. size_t bufsize;
  225. char dummy_buf[2];
  226. int ret;
  227. down_read(&fw_device_rwsem);
  228. if (is_fw_unit(dev))
  229. dir = fw_unit(dev)->directory;
  230. else
  231. dir = fw_device(dev)->config_rom + 5;
  232. if (buf) {
  233. bufsize = PAGE_SIZE - 1;
  234. } else {
  235. buf = dummy_buf;
  236. bufsize = 1;
  237. }
  238. ret = fw_csr_string(dir, attr->key, buf, bufsize);
  239. if (ret >= 0) {
  240. /* Strip trailing whitespace and add newline. */
  241. while (ret > 0 && isspace(buf[ret - 1]))
  242. ret--;
  243. strcpy(buf + ret, "\n");
  244. ret++;
  245. }
  246. up_read(&fw_device_rwsem);
  247. return ret;
  248. }
  249. #define TEXT_LEAF_ATTR(name, key) \
  250. { __ATTR(name, S_IRUGO, show_text_leaf, NULL), key }
  251. static struct config_rom_attribute config_rom_attributes[] = {
  252. IMMEDIATE_ATTR(vendor, CSR_VENDOR),
  253. IMMEDIATE_ATTR(hardware_version, CSR_HARDWARE_VERSION),
  254. IMMEDIATE_ATTR(specifier_id, CSR_SPECIFIER_ID),
  255. IMMEDIATE_ATTR(version, CSR_VERSION),
  256. IMMEDIATE_ATTR(model, CSR_MODEL),
  257. TEXT_LEAF_ATTR(vendor_name, CSR_VENDOR),
  258. TEXT_LEAF_ATTR(model_name, CSR_MODEL),
  259. TEXT_LEAF_ATTR(hardware_version_name, CSR_HARDWARE_VERSION),
  260. };
  261. static void init_fw_attribute_group(struct device *dev,
  262. struct device_attribute *attrs,
  263. struct fw_attribute_group *group)
  264. {
  265. struct device_attribute *attr;
  266. int i, j;
  267. for (j = 0; attrs[j].attr.name != NULL; j++)
  268. group->attrs[j] = &attrs[j].attr;
  269. for (i = 0; i < ARRAY_SIZE(config_rom_attributes); i++) {
  270. attr = &config_rom_attributes[i].attr;
  271. if (attr->show(dev, attr, NULL) < 0)
  272. continue;
  273. group->attrs[j++] = &attr->attr;
  274. }
  275. group->attrs[j] = NULL;
  276. group->groups[0] = &group->group;
  277. group->groups[1] = NULL;
  278. group->group.attrs = group->attrs;
  279. dev->groups = (const struct attribute_group **) group->groups;
  280. }
  281. static ssize_t modalias_show(struct device *dev,
  282. struct device_attribute *attr, char *buf)
  283. {
  284. struct fw_unit *unit = fw_unit(dev);
  285. int length;
  286. length = get_modalias(unit, buf, PAGE_SIZE);
  287. strcpy(buf + length, "\n");
  288. return length + 1;
  289. }
  290. static ssize_t rom_index_show(struct device *dev,
  291. struct device_attribute *attr, char *buf)
  292. {
  293. struct fw_device *device = fw_device(dev->parent);
  294. struct fw_unit *unit = fw_unit(dev);
  295. return snprintf(buf, PAGE_SIZE, "%d\n",
  296. (int)(unit->directory - device->config_rom));
  297. }
  298. static struct device_attribute fw_unit_attributes[] = {
  299. __ATTR_RO(modalias),
  300. __ATTR_RO(rom_index),
  301. __ATTR_NULL,
  302. };
  303. static ssize_t config_rom_show(struct device *dev,
  304. struct device_attribute *attr, char *buf)
  305. {
  306. struct fw_device *device = fw_device(dev);
  307. size_t length;
  308. down_read(&fw_device_rwsem);
  309. length = device->config_rom_length * 4;
  310. memcpy(buf, device->config_rom, length);
  311. up_read(&fw_device_rwsem);
  312. return length;
  313. }
  314. static ssize_t guid_show(struct device *dev,
  315. struct device_attribute *attr, char *buf)
  316. {
  317. struct fw_device *device = fw_device(dev);
  318. int ret;
  319. down_read(&fw_device_rwsem);
  320. ret = snprintf(buf, PAGE_SIZE, "0x%08x%08x\n",
  321. device->config_rom[3], device->config_rom[4]);
  322. up_read(&fw_device_rwsem);
  323. return ret;
  324. }
  325. static int units_sprintf(char *buf, const u32 *directory)
  326. {
  327. struct fw_csr_iterator ci;
  328. int key, value;
  329. int specifier_id = 0;
  330. int version = 0;
  331. fw_csr_iterator_init(&ci, directory);
  332. while (fw_csr_iterator_next(&ci, &key, &value)) {
  333. switch (key) {
  334. case CSR_SPECIFIER_ID:
  335. specifier_id = value;
  336. break;
  337. case CSR_VERSION:
  338. version = value;
  339. break;
  340. }
  341. }
  342. return sprintf(buf, "0x%06x:0x%06x ", specifier_id, version);
  343. }
  344. static ssize_t units_show(struct device *dev,
  345. struct device_attribute *attr, char *buf)
  346. {
  347. struct fw_device *device = fw_device(dev);
  348. struct fw_csr_iterator ci;
  349. int key, value, i = 0;
  350. down_read(&fw_device_rwsem);
  351. fw_csr_iterator_init(&ci, &device->config_rom[5]);
  352. while (fw_csr_iterator_next(&ci, &key, &value)) {
  353. if (key != (CSR_UNIT | CSR_DIRECTORY))
  354. continue;
  355. i += units_sprintf(&buf[i], ci.p + value - 1);
  356. if (i >= PAGE_SIZE - (8 + 1 + 8 + 1))
  357. break;
  358. }
  359. up_read(&fw_device_rwsem);
  360. if (i)
  361. buf[i - 1] = '\n';
  362. return i;
  363. }
  364. static struct device_attribute fw_device_attributes[] = {
  365. __ATTR_RO(config_rom),
  366. __ATTR_RO(guid),
  367. __ATTR_RO(units),
  368. __ATTR_NULL,
  369. };
  370. static int read_rom(struct fw_device *device,
  371. int generation, int index, u32 *data)
  372. {
  373. u64 offset = (CSR_REGISTER_BASE | CSR_CONFIG_ROM) + index * 4;
  374. int i, rcode;
  375. /* device->node_id, accessed below, must not be older than generation */
  376. smp_rmb();
  377. for (i = 10; i < 100; i += 10) {
  378. rcode = fw_run_transaction(device->card,
  379. TCODE_READ_QUADLET_REQUEST, device->node_id,
  380. generation, device->max_speed, offset, data, 4);
  381. if (rcode != RCODE_BUSY)
  382. break;
  383. msleep(i);
  384. }
  385. be32_to_cpus(data);
  386. return rcode;
  387. }
  388. #define MAX_CONFIG_ROM_SIZE 256
  389. /*
  390. * Read the bus info block, perform a speed probe, and read all of the rest of
  391. * the config ROM. We do all this with a cached bus generation. If the bus
  392. * generation changes under us, read_config_rom will fail and get retried.
  393. * It's better to start all over in this case because the node from which we
  394. * are reading the ROM may have changed the ROM during the reset.
  395. * Returns either a result code or a negative error code.
  396. */
  397. static int read_config_rom(struct fw_device *device, int generation)
  398. {
  399. struct fw_card *card = device->card;
  400. const u32 *old_rom, *new_rom;
  401. u32 *rom, *stack;
  402. u32 sp, key;
  403. int i, end, length, ret;
  404. rom = kmalloc(sizeof(*rom) * MAX_CONFIG_ROM_SIZE +
  405. sizeof(*stack) * MAX_CONFIG_ROM_SIZE, GFP_KERNEL);
  406. if (rom == NULL)
  407. return -ENOMEM;
  408. stack = &rom[MAX_CONFIG_ROM_SIZE];
  409. memset(rom, 0, sizeof(*rom) * MAX_CONFIG_ROM_SIZE);
  410. device->max_speed = SCODE_100;
  411. /* First read the bus info block. */
  412. for (i = 0; i < 5; i++) {
  413. ret = read_rom(device, generation, i, &rom[i]);
  414. if (ret != RCODE_COMPLETE)
  415. goto out;
  416. /*
  417. * As per IEEE1212 7.2, during initialization, devices can
  418. * reply with a 0 for the first quadlet of the config
  419. * rom to indicate that they are booting (for example,
  420. * if the firmware is on the disk of a external
  421. * harddisk). In that case we just fail, and the
  422. * retry mechanism will try again later.
  423. */
  424. if (i == 0 && rom[i] == 0) {
  425. ret = RCODE_BUSY;
  426. goto out;
  427. }
  428. }
  429. device->max_speed = device->node->max_speed;
  430. /*
  431. * Determine the speed of
  432. * - devices with link speed less than PHY speed,
  433. * - devices with 1394b PHY (unless only connected to 1394a PHYs),
  434. * - all devices if there are 1394b repeaters.
  435. * Note, we cannot use the bus info block's link_spd as starting point
  436. * because some buggy firmwares set it lower than necessary and because
  437. * 1394-1995 nodes do not have the field.
  438. */
  439. if ((rom[2] & 0x7) < device->max_speed ||
  440. device->max_speed == SCODE_BETA ||
  441. card->beta_repeaters_present) {
  442. u32 dummy;
  443. /* for S1600 and S3200 */
  444. if (device->max_speed == SCODE_BETA)
  445. device->max_speed = card->link_speed;
  446. while (device->max_speed > SCODE_100) {
  447. if (read_rom(device, generation, 0, &dummy) ==
  448. RCODE_COMPLETE)
  449. break;
  450. device->max_speed--;
  451. }
  452. }
  453. /*
  454. * Now parse the config rom. The config rom is a recursive
  455. * directory structure so we parse it using a stack of
  456. * references to the blocks that make up the structure. We
  457. * push a reference to the root directory on the stack to
  458. * start things off.
  459. */
  460. length = i;
  461. sp = 0;
  462. stack[sp++] = 0xc0000005;
  463. while (sp > 0) {
  464. /*
  465. * Pop the next block reference of the stack. The
  466. * lower 24 bits is the offset into the config rom,
  467. * the upper 8 bits are the type of the reference the
  468. * block.
  469. */
  470. key = stack[--sp];
  471. i = key & 0xffffff;
  472. if (WARN_ON(i >= MAX_CONFIG_ROM_SIZE)) {
  473. ret = -ENXIO;
  474. goto out;
  475. }
  476. /* Read header quadlet for the block to get the length. */
  477. ret = read_rom(device, generation, i, &rom[i]);
  478. if (ret != RCODE_COMPLETE)
  479. goto out;
  480. end = i + (rom[i] >> 16) + 1;
  481. if (end > MAX_CONFIG_ROM_SIZE) {
  482. /*
  483. * This block extends outside the config ROM which is
  484. * a firmware bug. Ignore this whole block, i.e.
  485. * simply set a fake block length of 0.
  486. */
  487. fw_err(card, "skipped invalid ROM block %x at %llx\n",
  488. rom[i],
  489. i * 4 | CSR_REGISTER_BASE | CSR_CONFIG_ROM);
  490. rom[i] = 0;
  491. end = i;
  492. }
  493. i++;
  494. /*
  495. * Now read in the block. If this is a directory
  496. * block, check the entries as we read them to see if
  497. * it references another block, and push it in that case.
  498. */
  499. for (; i < end; i++) {
  500. ret = read_rom(device, generation, i, &rom[i]);
  501. if (ret != RCODE_COMPLETE)
  502. goto out;
  503. if ((key >> 30) != 3 || (rom[i] >> 30) < 2)
  504. continue;
  505. /*
  506. * Offset points outside the ROM. May be a firmware
  507. * bug or an Extended ROM entry (IEEE 1212-2001 clause
  508. * 7.7.18). Simply overwrite this pointer here by a
  509. * fake immediate entry so that later iterators over
  510. * the ROM don't have to check offsets all the time.
  511. */
  512. if (i + (rom[i] & 0xffffff) >= MAX_CONFIG_ROM_SIZE) {
  513. fw_err(card,
  514. "skipped unsupported ROM entry %x at %llx\n",
  515. rom[i],
  516. i * 4 | CSR_REGISTER_BASE | CSR_CONFIG_ROM);
  517. rom[i] = 0;
  518. continue;
  519. }
  520. stack[sp++] = i + rom[i];
  521. }
  522. if (length < i)
  523. length = i;
  524. }
  525. old_rom = device->config_rom;
  526. new_rom = kmemdup(rom, length * 4, GFP_KERNEL);
  527. if (new_rom == NULL) {
  528. ret = -ENOMEM;
  529. goto out;
  530. }
  531. down_write(&fw_device_rwsem);
  532. device->config_rom = new_rom;
  533. device->config_rom_length = length;
  534. up_write(&fw_device_rwsem);
  535. kfree(old_rom);
  536. ret = RCODE_COMPLETE;
  537. device->max_rec = rom[2] >> 12 & 0xf;
  538. device->cmc = rom[2] >> 30 & 1;
  539. device->irmc = rom[2] >> 31 & 1;
  540. out:
  541. kfree(rom);
  542. return ret;
  543. }
  544. static void fw_unit_release(struct device *dev)
  545. {
  546. struct fw_unit *unit = fw_unit(dev);
  547. fw_device_put(fw_parent_device(unit));
  548. kfree(unit);
  549. }
  550. static struct device_type fw_unit_type = {
  551. .uevent = fw_unit_uevent,
  552. .release = fw_unit_release,
  553. };
  554. static bool is_fw_unit(struct device *dev)
  555. {
  556. return dev->type == &fw_unit_type;
  557. }
  558. static void create_units(struct fw_device *device)
  559. {
  560. struct fw_csr_iterator ci;
  561. struct fw_unit *unit;
  562. int key, value, i;
  563. i = 0;
  564. fw_csr_iterator_init(&ci, &device->config_rom[5]);
  565. while (fw_csr_iterator_next(&ci, &key, &value)) {
  566. if (key != (CSR_UNIT | CSR_DIRECTORY))
  567. continue;
  568. /*
  569. * Get the address of the unit directory and try to
  570. * match the drivers id_tables against it.
  571. */
  572. unit = kzalloc(sizeof(*unit), GFP_KERNEL);
  573. if (unit == NULL) {
  574. fw_err(device->card, "out of memory for unit\n");
  575. continue;
  576. }
  577. unit->directory = ci.p + value - 1;
  578. unit->device.bus = &fw_bus_type;
  579. unit->device.type = &fw_unit_type;
  580. unit->device.parent = &device->device;
  581. dev_set_name(&unit->device, "%s.%d", dev_name(&device->device), i++);
  582. BUILD_BUG_ON(ARRAY_SIZE(unit->attribute_group.attrs) <
  583. ARRAY_SIZE(fw_unit_attributes) +
  584. ARRAY_SIZE(config_rom_attributes));
  585. init_fw_attribute_group(&unit->device,
  586. fw_unit_attributes,
  587. &unit->attribute_group);
  588. if (device_register(&unit->device) < 0)
  589. goto skip_unit;
  590. fw_device_get(device);
  591. continue;
  592. skip_unit:
  593. kfree(unit);
  594. }
  595. }
  596. static int shutdown_unit(struct device *device, void *data)
  597. {
  598. device_unregister(device);
  599. return 0;
  600. }
  601. /*
  602. * fw_device_rwsem acts as dual purpose mutex:
  603. * - serializes accesses to fw_device_idr,
  604. * - serializes accesses to fw_device.config_rom/.config_rom_length and
  605. * fw_unit.directory, unless those accesses happen at safe occasions
  606. */
  607. DECLARE_RWSEM(fw_device_rwsem);
  608. DEFINE_IDR(fw_device_idr);
  609. int fw_cdev_major;
  610. struct fw_device *fw_device_get_by_devt(dev_t devt)
  611. {
  612. struct fw_device *device;
  613. down_read(&fw_device_rwsem);
  614. device = idr_find(&fw_device_idr, MINOR(devt));
  615. if (device)
  616. fw_device_get(device);
  617. up_read(&fw_device_rwsem);
  618. return device;
  619. }
  620. struct workqueue_struct *fw_workqueue;
  621. EXPORT_SYMBOL(fw_workqueue);
  622. static void fw_schedule_device_work(struct fw_device *device,
  623. unsigned long delay)
  624. {
  625. queue_delayed_work(fw_workqueue, &device->work, delay);
  626. }
  627. /*
  628. * These defines control the retry behavior for reading the config
  629. * rom. It shouldn't be necessary to tweak these; if the device
  630. * doesn't respond to a config rom read within 10 seconds, it's not
  631. * going to respond at all. As for the initial delay, a lot of
  632. * devices will be able to respond within half a second after bus
  633. * reset. On the other hand, it's not really worth being more
  634. * aggressive than that, since it scales pretty well; if 10 devices
  635. * are plugged in, they're all getting read within one second.
  636. */
  637. #define MAX_RETRIES 10
  638. #define RETRY_DELAY (3 * HZ)
  639. #define INITIAL_DELAY (HZ / 2)
  640. #define SHUTDOWN_DELAY (2 * HZ)
  641. static void fw_device_shutdown(struct work_struct *work)
  642. {
  643. struct fw_device *device =
  644. container_of(work, struct fw_device, work.work);
  645. int minor = MINOR(device->device.devt);
  646. if (time_before64(get_jiffies_64(),
  647. device->card->reset_jiffies + SHUTDOWN_DELAY)
  648. && !list_empty(&device->card->link)) {
  649. fw_schedule_device_work(device, SHUTDOWN_DELAY);
  650. return;
  651. }
  652. if (atomic_cmpxchg(&device->state,
  653. FW_DEVICE_GONE,
  654. FW_DEVICE_SHUTDOWN) != FW_DEVICE_GONE)
  655. return;
  656. fw_device_cdev_remove(device);
  657. device_for_each_child(&device->device, NULL, shutdown_unit);
  658. device_unregister(&device->device);
  659. down_write(&fw_device_rwsem);
  660. idr_remove(&fw_device_idr, minor);
  661. up_write(&fw_device_rwsem);
  662. fw_device_put(device);
  663. }
  664. static void fw_device_release(struct device *dev)
  665. {
  666. struct fw_device *device = fw_device(dev);
  667. struct fw_card *card = device->card;
  668. unsigned long flags;
  669. /*
  670. * Take the card lock so we don't set this to NULL while a
  671. * FW_NODE_UPDATED callback is being handled or while the
  672. * bus manager work looks at this node.
  673. */
  674. spin_lock_irqsave(&card->lock, flags);
  675. device->node->data = NULL;
  676. spin_unlock_irqrestore(&card->lock, flags);
  677. fw_node_put(device->node);
  678. kfree(device->config_rom);
  679. kfree(device);
  680. fw_card_put(card);
  681. }
  682. static struct device_type fw_device_type = {
  683. .release = fw_device_release,
  684. };
  685. static bool is_fw_device(struct device *dev)
  686. {
  687. return dev->type == &fw_device_type;
  688. }
  689. static int update_unit(struct device *dev, void *data)
  690. {
  691. struct fw_unit *unit = fw_unit(dev);
  692. struct fw_driver *driver = (struct fw_driver *)dev->driver;
  693. if (is_fw_unit(dev) && driver != NULL && driver->update != NULL) {
  694. device_lock(dev);
  695. driver->update(unit);
  696. device_unlock(dev);
  697. }
  698. return 0;
  699. }
  700. static void fw_device_update(struct work_struct *work)
  701. {
  702. struct fw_device *device =
  703. container_of(work, struct fw_device, work.work);
  704. fw_device_cdev_update(device);
  705. device_for_each_child(&device->device, NULL, update_unit);
  706. }
  707. /*
  708. * If a device was pending for deletion because its node went away but its
  709. * bus info block and root directory header matches that of a newly discovered
  710. * device, revive the existing fw_device.
  711. * The newly allocated fw_device becomes obsolete instead.
  712. */
  713. static int lookup_existing_device(struct device *dev, void *data)
  714. {
  715. struct fw_device *old = fw_device(dev);
  716. struct fw_device *new = data;
  717. struct fw_card *card = new->card;
  718. int match = 0;
  719. if (!is_fw_device(dev))
  720. return 0;
  721. down_read(&fw_device_rwsem); /* serialize config_rom access */
  722. spin_lock_irq(&card->lock); /* serialize node access */
  723. if (memcmp(old->config_rom, new->config_rom, 6 * 4) == 0 &&
  724. atomic_cmpxchg(&old->state,
  725. FW_DEVICE_GONE,
  726. FW_DEVICE_RUNNING) == FW_DEVICE_GONE) {
  727. struct fw_node *current_node = new->node;
  728. struct fw_node *obsolete_node = old->node;
  729. new->node = obsolete_node;
  730. new->node->data = new;
  731. old->node = current_node;
  732. old->node->data = old;
  733. old->max_speed = new->max_speed;
  734. old->node_id = current_node->node_id;
  735. smp_wmb(); /* update node_id before generation */
  736. old->generation = card->generation;
  737. old->config_rom_retries = 0;
  738. fw_notice(card, "rediscovered device %s\n", dev_name(dev));
  739. PREPARE_DELAYED_WORK(&old->work, fw_device_update);
  740. fw_schedule_device_work(old, 0);
  741. if (current_node == card->root_node)
  742. fw_schedule_bm_work(card, 0);
  743. match = 1;
  744. }
  745. spin_unlock_irq(&card->lock);
  746. up_read(&fw_device_rwsem);
  747. return match;
  748. }
  749. enum { BC_UNKNOWN = 0, BC_UNIMPLEMENTED, BC_IMPLEMENTED, };
  750. static void set_broadcast_channel(struct fw_device *device, int generation)
  751. {
  752. struct fw_card *card = device->card;
  753. __be32 data;
  754. int rcode;
  755. if (!card->broadcast_channel_allocated)
  756. return;
  757. /*
  758. * The Broadcast_Channel Valid bit is required by nodes which want to
  759. * transmit on this channel. Such transmissions are practically
  760. * exclusive to IP over 1394 (RFC 2734). IP capable nodes are required
  761. * to be IRM capable and have a max_rec of 8 or more. We use this fact
  762. * to narrow down to which nodes we send Broadcast_Channel updates.
  763. */
  764. if (!device->irmc || device->max_rec < 8)
  765. return;
  766. /*
  767. * Some 1394-1995 nodes crash if this 1394a-2000 register is written.
  768. * Perform a read test first.
  769. */
  770. if (device->bc_implemented == BC_UNKNOWN) {
  771. rcode = fw_run_transaction(card, TCODE_READ_QUADLET_REQUEST,
  772. device->node_id, generation, device->max_speed,
  773. CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL,
  774. &data, 4);
  775. switch (rcode) {
  776. case RCODE_COMPLETE:
  777. if (data & cpu_to_be32(1 << 31)) {
  778. device->bc_implemented = BC_IMPLEMENTED;
  779. break;
  780. }
  781. /* else fall through to case address error */
  782. case RCODE_ADDRESS_ERROR:
  783. device->bc_implemented = BC_UNIMPLEMENTED;
  784. }
  785. }
  786. if (device->bc_implemented == BC_IMPLEMENTED) {
  787. data = cpu_to_be32(BROADCAST_CHANNEL_INITIAL |
  788. BROADCAST_CHANNEL_VALID);
  789. fw_run_transaction(card, TCODE_WRITE_QUADLET_REQUEST,
  790. device->node_id, generation, device->max_speed,
  791. CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL,
  792. &data, 4);
  793. }
  794. }
  795. int fw_device_set_broadcast_channel(struct device *dev, void *gen)
  796. {
  797. if (is_fw_device(dev))
  798. set_broadcast_channel(fw_device(dev), (long)gen);
  799. return 0;
  800. }
  801. static void fw_device_init(struct work_struct *work)
  802. {
  803. struct fw_device *device =
  804. container_of(work, struct fw_device, work.work);
  805. struct fw_card *card = device->card;
  806. struct device *revived_dev;
  807. int minor, ret;
  808. /*
  809. * All failure paths here set node->data to NULL, so that we
  810. * don't try to do device_for_each_child() on a kfree()'d
  811. * device.
  812. */
  813. ret = read_config_rom(device, device->generation);
  814. if (ret != RCODE_COMPLETE) {
  815. if (device->config_rom_retries < MAX_RETRIES &&
  816. atomic_read(&device->state) == FW_DEVICE_INITIALIZING) {
  817. device->config_rom_retries++;
  818. fw_schedule_device_work(device, RETRY_DELAY);
  819. } else {
  820. if (device->node->link_on)
  821. fw_notice(card, "giving up on node %x: reading config rom failed: %s\n",
  822. device->node_id,
  823. fw_rcode_string(ret));
  824. if (device->node == card->root_node)
  825. fw_schedule_bm_work(card, 0);
  826. fw_device_release(&device->device);
  827. }
  828. return;
  829. }
  830. revived_dev = device_find_child(card->device,
  831. device, lookup_existing_device);
  832. if (revived_dev) {
  833. put_device(revived_dev);
  834. fw_device_release(&device->device);
  835. return;
  836. }
  837. device_initialize(&device->device);
  838. fw_device_get(device);
  839. down_write(&fw_device_rwsem);
  840. ret = idr_pre_get(&fw_device_idr, GFP_KERNEL) ?
  841. idr_get_new(&fw_device_idr, device, &minor) :
  842. -ENOMEM;
  843. up_write(&fw_device_rwsem);
  844. if (ret < 0)
  845. goto error;
  846. device->device.bus = &fw_bus_type;
  847. device->device.type = &fw_device_type;
  848. device->device.parent = card->device;
  849. device->device.devt = MKDEV(fw_cdev_major, minor);
  850. dev_set_name(&device->device, "fw%d", minor);
  851. BUILD_BUG_ON(ARRAY_SIZE(device->attribute_group.attrs) <
  852. ARRAY_SIZE(fw_device_attributes) +
  853. ARRAY_SIZE(config_rom_attributes));
  854. init_fw_attribute_group(&device->device,
  855. fw_device_attributes,
  856. &device->attribute_group);
  857. if (device_add(&device->device)) {
  858. fw_err(card, "failed to add device\n");
  859. goto error_with_cdev;
  860. }
  861. create_units(device);
  862. /*
  863. * Transition the device to running state. If it got pulled
  864. * out from under us while we did the intialization work, we
  865. * have to shut down the device again here. Normally, though,
  866. * fw_node_event will be responsible for shutting it down when
  867. * necessary. We have to use the atomic cmpxchg here to avoid
  868. * racing with the FW_NODE_DESTROYED case in
  869. * fw_node_event().
  870. */
  871. if (atomic_cmpxchg(&device->state,
  872. FW_DEVICE_INITIALIZING,
  873. FW_DEVICE_RUNNING) == FW_DEVICE_GONE) {
  874. PREPARE_DELAYED_WORK(&device->work, fw_device_shutdown);
  875. fw_schedule_device_work(device, SHUTDOWN_DELAY);
  876. } else {
  877. fw_notice(card, "created device %s: GUID %08x%08x, S%d00\n",
  878. dev_name(&device->device),
  879. device->config_rom[3], device->config_rom[4],
  880. 1 << device->max_speed);
  881. device->config_rom_retries = 0;
  882. set_broadcast_channel(device, device->generation);
  883. }
  884. /*
  885. * Reschedule the IRM work if we just finished reading the
  886. * root node config rom. If this races with a bus reset we
  887. * just end up running the IRM work a couple of extra times -
  888. * pretty harmless.
  889. */
  890. if (device->node == card->root_node)
  891. fw_schedule_bm_work(card, 0);
  892. return;
  893. error_with_cdev:
  894. down_write(&fw_device_rwsem);
  895. idr_remove(&fw_device_idr, minor);
  896. up_write(&fw_device_rwsem);
  897. error:
  898. fw_device_put(device); /* fw_device_idr's reference */
  899. put_device(&device->device); /* our reference */
  900. }
  901. /* Reread and compare bus info block and header of root directory */
  902. static int reread_config_rom(struct fw_device *device, int generation,
  903. bool *changed)
  904. {
  905. u32 q;
  906. int i, rcode;
  907. for (i = 0; i < 6; i++) {
  908. rcode = read_rom(device, generation, i, &q);
  909. if (rcode != RCODE_COMPLETE)
  910. return rcode;
  911. if (i == 0 && q == 0)
  912. /* inaccessible (see read_config_rom); retry later */
  913. return RCODE_BUSY;
  914. if (q != device->config_rom[i]) {
  915. *changed = true;
  916. return RCODE_COMPLETE;
  917. }
  918. }
  919. *changed = false;
  920. return RCODE_COMPLETE;
  921. }
  922. static void fw_device_refresh(struct work_struct *work)
  923. {
  924. struct fw_device *device =
  925. container_of(work, struct fw_device, work.work);
  926. struct fw_card *card = device->card;
  927. int ret, node_id = device->node_id;
  928. bool changed;
  929. ret = reread_config_rom(device, device->generation, &changed);
  930. if (ret != RCODE_COMPLETE)
  931. goto failed_config_rom;
  932. if (!changed) {
  933. if (atomic_cmpxchg(&device->state,
  934. FW_DEVICE_INITIALIZING,
  935. FW_DEVICE_RUNNING) == FW_DEVICE_GONE)
  936. goto gone;
  937. fw_device_update(work);
  938. device->config_rom_retries = 0;
  939. goto out;
  940. }
  941. /*
  942. * Something changed. We keep things simple and don't investigate
  943. * further. We just destroy all previous units and create new ones.
  944. */
  945. device_for_each_child(&device->device, NULL, shutdown_unit);
  946. ret = read_config_rom(device, device->generation);
  947. if (ret != RCODE_COMPLETE)
  948. goto failed_config_rom;
  949. fw_device_cdev_update(device);
  950. create_units(device);
  951. /* Userspace may want to re-read attributes. */
  952. kobject_uevent(&device->device.kobj, KOBJ_CHANGE);
  953. if (atomic_cmpxchg(&device->state,
  954. FW_DEVICE_INITIALIZING,
  955. FW_DEVICE_RUNNING) == FW_DEVICE_GONE)
  956. goto gone;
  957. fw_notice(card, "refreshed device %s\n", dev_name(&device->device));
  958. device->config_rom_retries = 0;
  959. goto out;
  960. failed_config_rom:
  961. if (device->config_rom_retries < MAX_RETRIES &&
  962. atomic_read(&device->state) == FW_DEVICE_INITIALIZING) {
  963. device->config_rom_retries++;
  964. fw_schedule_device_work(device, RETRY_DELAY);
  965. return;
  966. }
  967. fw_notice(card, "giving up on refresh of device %s: %s\n",
  968. dev_name(&device->device), fw_rcode_string(ret));
  969. gone:
  970. atomic_set(&device->state, FW_DEVICE_GONE);
  971. PREPARE_DELAYED_WORK(&device->work, fw_device_shutdown);
  972. fw_schedule_device_work(device, SHUTDOWN_DELAY);
  973. out:
  974. if (node_id == card->root_node->node_id)
  975. fw_schedule_bm_work(card, 0);
  976. }
  977. void fw_node_event(struct fw_card *card, struct fw_node *node, int event)
  978. {
  979. struct fw_device *device;
  980. switch (event) {
  981. case FW_NODE_CREATED:
  982. /*
  983. * Attempt to scan the node, regardless whether its self ID has
  984. * the L (link active) flag set or not. Some broken devices
  985. * send L=0 but have an up-and-running link; others send L=1
  986. * without actually having a link.
  987. */
  988. create:
  989. device = kzalloc(sizeof(*device), GFP_ATOMIC);
  990. if (device == NULL)
  991. break;
  992. /*
  993. * Do minimal intialization of the device here, the
  994. * rest will happen in fw_device_init().
  995. *
  996. * Attention: A lot of things, even fw_device_get(),
  997. * cannot be done before fw_device_init() finished!
  998. * You can basically just check device->state and
  999. * schedule work until then, but only while holding
  1000. * card->lock.
  1001. */
  1002. atomic_set(&device->state, FW_DEVICE_INITIALIZING);
  1003. device->card = fw_card_get(card);
  1004. device->node = fw_node_get(node);
  1005. device->node_id = node->node_id;
  1006. device->generation = card->generation;
  1007. device->is_local = node == card->local_node;
  1008. mutex_init(&device->client_list_mutex);
  1009. INIT_LIST_HEAD(&device->client_list);
  1010. /*
  1011. * Set the node data to point back to this device so
  1012. * FW_NODE_UPDATED callbacks can update the node_id
  1013. * and generation for the device.
  1014. */
  1015. node->data = device;
  1016. /*
  1017. * Many devices are slow to respond after bus resets,
  1018. * especially if they are bus powered and go through
  1019. * power-up after getting plugged in. We schedule the
  1020. * first config rom scan half a second after bus reset.
  1021. */
  1022. INIT_DELAYED_WORK(&device->work, fw_device_init);
  1023. fw_schedule_device_work(device, INITIAL_DELAY);
  1024. break;
  1025. case FW_NODE_INITIATED_RESET:
  1026. case FW_NODE_LINK_ON:
  1027. device = node->data;
  1028. if (device == NULL)
  1029. goto create;
  1030. device->node_id = node->node_id;
  1031. smp_wmb(); /* update node_id before generation */
  1032. device->generation = card->generation;
  1033. if (atomic_cmpxchg(&device->state,
  1034. FW_DEVICE_RUNNING,
  1035. FW_DEVICE_INITIALIZING) == FW_DEVICE_RUNNING) {
  1036. PREPARE_DELAYED_WORK(&device->work, fw_device_refresh);
  1037. fw_schedule_device_work(device,
  1038. device->is_local ? 0 : INITIAL_DELAY);
  1039. }
  1040. break;
  1041. case FW_NODE_UPDATED:
  1042. device = node->data;
  1043. if (device == NULL)
  1044. break;
  1045. device->node_id = node->node_id;
  1046. smp_wmb(); /* update node_id before generation */
  1047. device->generation = card->generation;
  1048. if (atomic_read(&device->state) == FW_DEVICE_RUNNING) {
  1049. PREPARE_DELAYED_WORK(&device->work, fw_device_update);
  1050. fw_schedule_device_work(device, 0);
  1051. }
  1052. break;
  1053. case FW_NODE_DESTROYED:
  1054. case FW_NODE_LINK_OFF:
  1055. if (!node->data)
  1056. break;
  1057. /*
  1058. * Destroy the device associated with the node. There
  1059. * are two cases here: either the device is fully
  1060. * initialized (FW_DEVICE_RUNNING) or we're in the
  1061. * process of reading its config rom
  1062. * (FW_DEVICE_INITIALIZING). If it is fully
  1063. * initialized we can reuse device->work to schedule a
  1064. * full fw_device_shutdown(). If not, there's work
  1065. * scheduled to read it's config rom, and we just put
  1066. * the device in shutdown state to have that code fail
  1067. * to create the device.
  1068. */
  1069. device = node->data;
  1070. if (atomic_xchg(&device->state,
  1071. FW_DEVICE_GONE) == FW_DEVICE_RUNNING) {
  1072. PREPARE_DELAYED_WORK(&device->work, fw_device_shutdown);
  1073. fw_schedule_device_work(device,
  1074. list_empty(&card->link) ? 0 : SHUTDOWN_DELAY);
  1075. }
  1076. break;
  1077. }
  1078. }