sb_edac.c 44 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843
  1. /* Intel Sandy Bridge -EN/-EP/-EX Memory Controller kernel module
  2. *
  3. * This driver supports the memory controllers found on the Intel
  4. * processor family Sandy Bridge.
  5. *
  6. * This file may be distributed under the terms of the
  7. * GNU General Public License version 2 only.
  8. *
  9. * Copyright (c) 2011 by:
  10. * Mauro Carvalho Chehab <mchehab@redhat.com>
  11. */
  12. #include <linux/module.h>
  13. #include <linux/init.h>
  14. #include <linux/pci.h>
  15. #include <linux/pci_ids.h>
  16. #include <linux/slab.h>
  17. #include <linux/delay.h>
  18. #include <linux/edac.h>
  19. #include <linux/mmzone.h>
  20. #include <linux/smp.h>
  21. #include <linux/bitmap.h>
  22. #include <linux/math64.h>
  23. #include <asm/processor.h>
  24. #include <asm/mce.h>
  25. #include "edac_core.h"
  26. /* Static vars */
  27. static LIST_HEAD(sbridge_edac_list);
  28. static DEFINE_MUTEX(sbridge_edac_lock);
  29. static int probed;
  30. /*
  31. * Alter this version for the module when modifications are made
  32. */
  33. #define SBRIDGE_REVISION " Ver: 1.0.0 "
  34. #define EDAC_MOD_STR "sbridge_edac"
  35. /*
  36. * Debug macros
  37. */
  38. #define sbridge_printk(level, fmt, arg...) \
  39. edac_printk(level, "sbridge", fmt, ##arg)
  40. #define sbridge_mc_printk(mci, level, fmt, arg...) \
  41. edac_mc_chipset_printk(mci, level, "sbridge", fmt, ##arg)
  42. /*
  43. * Get a bit field at register value <v>, from bit <lo> to bit <hi>
  44. */
  45. #define GET_BITFIELD(v, lo, hi) \
  46. (((v) & ((1ULL << ((hi) - (lo) + 1)) - 1) << (lo)) >> (lo))
  47. /*
  48. * sbridge Memory Controller Registers
  49. */
  50. /*
  51. * FIXME: For now, let's order by device function, as it makes
  52. * easier for driver's development process. This table should be
  53. * moved to pci_id.h when submitted upstream
  54. */
  55. #define PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0 0x3cf4 /* 12.6 */
  56. #define PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1 0x3cf6 /* 12.7 */
  57. #define PCI_DEVICE_ID_INTEL_SBRIDGE_BR 0x3cf5 /* 13.6 */
  58. #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0 0x3ca0 /* 14.0 */
  59. #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA 0x3ca8 /* 15.0 */
  60. #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS 0x3c71 /* 15.1 */
  61. #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0 0x3caa /* 15.2 */
  62. #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1 0x3cab /* 15.3 */
  63. #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2 0x3cac /* 15.4 */
  64. #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3 0x3cad /* 15.5 */
  65. #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO 0x3cb8 /* 17.0 */
  66. /*
  67. * Currently, unused, but will be needed in the future
  68. * implementations, as they hold the error counters
  69. */
  70. #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_ERR0 0x3c72 /* 16.2 */
  71. #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_ERR1 0x3c73 /* 16.3 */
  72. #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_ERR2 0x3c76 /* 16.6 */
  73. #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_ERR3 0x3c77 /* 16.7 */
  74. /* Devices 12 Function 6, Offsets 0x80 to 0xcc */
  75. static const u32 dram_rule[] = {
  76. 0x80, 0x88, 0x90, 0x98, 0xa0,
  77. 0xa8, 0xb0, 0xb8, 0xc0, 0xc8,
  78. };
  79. #define MAX_SAD ARRAY_SIZE(dram_rule)
  80. #define SAD_LIMIT(reg) ((GET_BITFIELD(reg, 6, 25) << 26) | 0x3ffffff)
  81. #define DRAM_ATTR(reg) GET_BITFIELD(reg, 2, 3)
  82. #define INTERLEAVE_MODE(reg) GET_BITFIELD(reg, 1, 1)
  83. #define DRAM_RULE_ENABLE(reg) GET_BITFIELD(reg, 0, 0)
  84. static char *get_dram_attr(u32 reg)
  85. {
  86. switch(DRAM_ATTR(reg)) {
  87. case 0:
  88. return "DRAM";
  89. case 1:
  90. return "MMCFG";
  91. case 2:
  92. return "NXM";
  93. default:
  94. return "unknown";
  95. }
  96. }
  97. static const u32 interleave_list[] = {
  98. 0x84, 0x8c, 0x94, 0x9c, 0xa4,
  99. 0xac, 0xb4, 0xbc, 0xc4, 0xcc,
  100. };
  101. #define MAX_INTERLEAVE ARRAY_SIZE(interleave_list)
  102. #define SAD_PKG0(reg) GET_BITFIELD(reg, 0, 2)
  103. #define SAD_PKG1(reg) GET_BITFIELD(reg, 3, 5)
  104. #define SAD_PKG2(reg) GET_BITFIELD(reg, 8, 10)
  105. #define SAD_PKG3(reg) GET_BITFIELD(reg, 11, 13)
  106. #define SAD_PKG4(reg) GET_BITFIELD(reg, 16, 18)
  107. #define SAD_PKG5(reg) GET_BITFIELD(reg, 19, 21)
  108. #define SAD_PKG6(reg) GET_BITFIELD(reg, 24, 26)
  109. #define SAD_PKG7(reg) GET_BITFIELD(reg, 27, 29)
  110. static inline int sad_pkg(u32 reg, int interleave)
  111. {
  112. switch (interleave) {
  113. case 0:
  114. return SAD_PKG0(reg);
  115. case 1:
  116. return SAD_PKG1(reg);
  117. case 2:
  118. return SAD_PKG2(reg);
  119. case 3:
  120. return SAD_PKG3(reg);
  121. case 4:
  122. return SAD_PKG4(reg);
  123. case 5:
  124. return SAD_PKG5(reg);
  125. case 6:
  126. return SAD_PKG6(reg);
  127. case 7:
  128. return SAD_PKG7(reg);
  129. default:
  130. return -EINVAL;
  131. }
  132. }
  133. /* Devices 12 Function 7 */
  134. #define TOLM 0x80
  135. #define TOHM 0x84
  136. #define GET_TOLM(reg) ((GET_BITFIELD(reg, 0, 3) << 28) | 0x3ffffff)
  137. #define GET_TOHM(reg) ((GET_BITFIELD(reg, 0, 20) << 25) | 0x3ffffff)
  138. /* Device 13 Function 6 */
  139. #define SAD_TARGET 0xf0
  140. #define SOURCE_ID(reg) GET_BITFIELD(reg, 9, 11)
  141. #define SAD_CONTROL 0xf4
  142. #define NODE_ID(reg) GET_BITFIELD(reg, 0, 2)
  143. /* Device 14 function 0 */
  144. static const u32 tad_dram_rule[] = {
  145. 0x40, 0x44, 0x48, 0x4c,
  146. 0x50, 0x54, 0x58, 0x5c,
  147. 0x60, 0x64, 0x68, 0x6c,
  148. };
  149. #define MAX_TAD ARRAY_SIZE(tad_dram_rule)
  150. #define TAD_LIMIT(reg) ((GET_BITFIELD(reg, 12, 31) << 26) | 0x3ffffff)
  151. #define TAD_SOCK(reg) GET_BITFIELD(reg, 10, 11)
  152. #define TAD_CH(reg) GET_BITFIELD(reg, 8, 9)
  153. #define TAD_TGT3(reg) GET_BITFIELD(reg, 6, 7)
  154. #define TAD_TGT2(reg) GET_BITFIELD(reg, 4, 5)
  155. #define TAD_TGT1(reg) GET_BITFIELD(reg, 2, 3)
  156. #define TAD_TGT0(reg) GET_BITFIELD(reg, 0, 1)
  157. /* Device 15, function 0 */
  158. #define MCMTR 0x7c
  159. #define IS_ECC_ENABLED(mcmtr) GET_BITFIELD(mcmtr, 2, 2)
  160. #define IS_LOCKSTEP_ENABLED(mcmtr) GET_BITFIELD(mcmtr, 1, 1)
  161. #define IS_CLOSE_PG(mcmtr) GET_BITFIELD(mcmtr, 0, 0)
  162. /* Device 15, function 1 */
  163. #define RASENABLES 0xac
  164. #define IS_MIRROR_ENABLED(reg) GET_BITFIELD(reg, 0, 0)
  165. /* Device 15, functions 2-5 */
  166. static const int mtr_regs[] = {
  167. 0x80, 0x84, 0x88,
  168. };
  169. #define RANK_DISABLE(mtr) GET_BITFIELD(mtr, 16, 19)
  170. #define IS_DIMM_PRESENT(mtr) GET_BITFIELD(mtr, 14, 14)
  171. #define RANK_CNT_BITS(mtr) GET_BITFIELD(mtr, 12, 13)
  172. #define RANK_WIDTH_BITS(mtr) GET_BITFIELD(mtr, 2, 4)
  173. #define COL_WIDTH_BITS(mtr) GET_BITFIELD(mtr, 0, 1)
  174. static const u32 tad_ch_nilv_offset[] = {
  175. 0x90, 0x94, 0x98, 0x9c,
  176. 0xa0, 0xa4, 0xa8, 0xac,
  177. 0xb0, 0xb4, 0xb8, 0xbc,
  178. };
  179. #define CHN_IDX_OFFSET(reg) GET_BITFIELD(reg, 28, 29)
  180. #define TAD_OFFSET(reg) (GET_BITFIELD(reg, 6, 25) << 26)
  181. static const u32 rir_way_limit[] = {
  182. 0x108, 0x10c, 0x110, 0x114, 0x118,
  183. };
  184. #define MAX_RIR_RANGES ARRAY_SIZE(rir_way_limit)
  185. #define IS_RIR_VALID(reg) GET_BITFIELD(reg, 31, 31)
  186. #define RIR_WAY(reg) GET_BITFIELD(reg, 28, 29)
  187. #define RIR_LIMIT(reg) ((GET_BITFIELD(reg, 1, 10) << 29)| 0x1fffffff)
  188. #define MAX_RIR_WAY 8
  189. static const u32 rir_offset[MAX_RIR_RANGES][MAX_RIR_WAY] = {
  190. { 0x120, 0x124, 0x128, 0x12c, 0x130, 0x134, 0x138, 0x13c },
  191. { 0x140, 0x144, 0x148, 0x14c, 0x150, 0x154, 0x158, 0x15c },
  192. { 0x160, 0x164, 0x168, 0x16c, 0x170, 0x174, 0x178, 0x17c },
  193. { 0x180, 0x184, 0x188, 0x18c, 0x190, 0x194, 0x198, 0x19c },
  194. { 0x1a0, 0x1a4, 0x1a8, 0x1ac, 0x1b0, 0x1b4, 0x1b8, 0x1bc },
  195. };
  196. #define RIR_RNK_TGT(reg) GET_BITFIELD(reg, 16, 19)
  197. #define RIR_OFFSET(reg) GET_BITFIELD(reg, 2, 14)
  198. /* Device 16, functions 2-7 */
  199. /*
  200. * FIXME: Implement the error count reads directly
  201. */
  202. static const u32 correrrcnt[] = {
  203. 0x104, 0x108, 0x10c, 0x110,
  204. };
  205. #define RANK_ODD_OV(reg) GET_BITFIELD(reg, 31, 31)
  206. #define RANK_ODD_ERR_CNT(reg) GET_BITFIELD(reg, 16, 30)
  207. #define RANK_EVEN_OV(reg) GET_BITFIELD(reg, 15, 15)
  208. #define RANK_EVEN_ERR_CNT(reg) GET_BITFIELD(reg, 0, 14)
  209. static const u32 correrrthrsld[] = {
  210. 0x11c, 0x120, 0x124, 0x128,
  211. };
  212. #define RANK_ODD_ERR_THRSLD(reg) GET_BITFIELD(reg, 16, 30)
  213. #define RANK_EVEN_ERR_THRSLD(reg) GET_BITFIELD(reg, 0, 14)
  214. /* Device 17, function 0 */
  215. #define RANK_CFG_A 0x0328
  216. #define IS_RDIMM_ENABLED(reg) GET_BITFIELD(reg, 11, 11)
  217. /*
  218. * sbridge structs
  219. */
  220. #define NUM_CHANNELS 4
  221. #define MAX_DIMMS 3 /* Max DIMMS per channel */
  222. struct sbridge_info {
  223. u32 mcmtr;
  224. };
  225. struct sbridge_channel {
  226. u32 ranks;
  227. u32 dimms;
  228. };
  229. struct pci_id_descr {
  230. int dev;
  231. int func;
  232. int dev_id;
  233. int optional;
  234. };
  235. struct pci_id_table {
  236. const struct pci_id_descr *descr;
  237. int n_devs;
  238. };
  239. struct sbridge_dev {
  240. struct list_head list;
  241. u8 bus, mc;
  242. u8 node_id, source_id;
  243. struct pci_dev **pdev;
  244. int n_devs;
  245. struct mem_ctl_info *mci;
  246. };
  247. struct sbridge_pvt {
  248. struct pci_dev *pci_ta, *pci_ddrio, *pci_ras;
  249. struct pci_dev *pci_sad0, *pci_sad1, *pci_ha0;
  250. struct pci_dev *pci_br;
  251. struct pci_dev *pci_tad[NUM_CHANNELS];
  252. struct sbridge_dev *sbridge_dev;
  253. struct sbridge_info info;
  254. struct sbridge_channel channel[NUM_CHANNELS];
  255. /* Memory type detection */
  256. bool is_mirrored, is_lockstep, is_close_pg;
  257. /* Fifo double buffers */
  258. struct mce mce_entry[MCE_LOG_LEN];
  259. struct mce mce_outentry[MCE_LOG_LEN];
  260. /* Fifo in/out counters */
  261. unsigned mce_in, mce_out;
  262. /* Count indicator to show errors not got */
  263. unsigned mce_overrun;
  264. /* Memory description */
  265. u64 tolm, tohm;
  266. };
  267. #define PCI_DESCR(device, function, device_id) \
  268. .dev = (device), \
  269. .func = (function), \
  270. .dev_id = (device_id)
  271. static const struct pci_id_descr pci_dev_descr_sbridge[] = {
  272. /* Processor Home Agent */
  273. { PCI_DESCR(14, 0, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0) },
  274. /* Memory controller */
  275. { PCI_DESCR(15, 0, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA) },
  276. { PCI_DESCR(15, 1, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS) },
  277. { PCI_DESCR(15, 2, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0) },
  278. { PCI_DESCR(15, 3, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1) },
  279. { PCI_DESCR(15, 4, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2) },
  280. { PCI_DESCR(15, 5, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3) },
  281. { PCI_DESCR(17, 0, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO) },
  282. /* System Address Decoder */
  283. { PCI_DESCR(12, 6, PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0) },
  284. { PCI_DESCR(12, 7, PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1) },
  285. /* Broadcast Registers */
  286. { PCI_DESCR(13, 6, PCI_DEVICE_ID_INTEL_SBRIDGE_BR) },
  287. };
  288. #define PCI_ID_TABLE_ENTRY(A) { .descr=A, .n_devs = ARRAY_SIZE(A) }
  289. static const struct pci_id_table pci_dev_descr_sbridge_table[] = {
  290. PCI_ID_TABLE_ENTRY(pci_dev_descr_sbridge),
  291. {0,} /* 0 terminated list. */
  292. };
  293. /*
  294. * pci_device_id table for which devices we are looking for
  295. */
  296. static DEFINE_PCI_DEVICE_TABLE(sbridge_pci_tbl) = {
  297. {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA)},
  298. {0,} /* 0 terminated list. */
  299. };
  300. /****************************************************************************
  301. Ancillary status routines
  302. ****************************************************************************/
  303. static inline int numrank(u32 mtr)
  304. {
  305. int ranks = (1 << RANK_CNT_BITS(mtr));
  306. if (ranks > 4) {
  307. debugf0("Invalid number of ranks: %d (max = 4) raw value = %x (%04x)",
  308. ranks, (unsigned int)RANK_CNT_BITS(mtr), mtr);
  309. return -EINVAL;
  310. }
  311. return ranks;
  312. }
  313. static inline int numrow(u32 mtr)
  314. {
  315. int rows = (RANK_WIDTH_BITS(mtr) + 12);
  316. if (rows < 13 || rows > 18) {
  317. debugf0("Invalid number of rows: %d (should be between 14 and 17) raw value = %x (%04x)",
  318. rows, (unsigned int)RANK_WIDTH_BITS(mtr), mtr);
  319. return -EINVAL;
  320. }
  321. return 1 << rows;
  322. }
  323. static inline int numcol(u32 mtr)
  324. {
  325. int cols = (COL_WIDTH_BITS(mtr) + 10);
  326. if (cols > 12) {
  327. debugf0("Invalid number of cols: %d (max = 4) raw value = %x (%04x)",
  328. cols, (unsigned int)COL_WIDTH_BITS(mtr), mtr);
  329. return -EINVAL;
  330. }
  331. return 1 << cols;
  332. }
  333. static struct sbridge_dev *get_sbridge_dev(u8 bus)
  334. {
  335. struct sbridge_dev *sbridge_dev;
  336. list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
  337. if (sbridge_dev->bus == bus)
  338. return sbridge_dev;
  339. }
  340. return NULL;
  341. }
  342. static struct sbridge_dev *alloc_sbridge_dev(u8 bus,
  343. const struct pci_id_table *table)
  344. {
  345. struct sbridge_dev *sbridge_dev;
  346. sbridge_dev = kzalloc(sizeof(*sbridge_dev), GFP_KERNEL);
  347. if (!sbridge_dev)
  348. return NULL;
  349. sbridge_dev->pdev = kzalloc(sizeof(*sbridge_dev->pdev) * table->n_devs,
  350. GFP_KERNEL);
  351. if (!sbridge_dev->pdev) {
  352. kfree(sbridge_dev);
  353. return NULL;
  354. }
  355. sbridge_dev->bus = bus;
  356. sbridge_dev->n_devs = table->n_devs;
  357. list_add_tail(&sbridge_dev->list, &sbridge_edac_list);
  358. return sbridge_dev;
  359. }
  360. static void free_sbridge_dev(struct sbridge_dev *sbridge_dev)
  361. {
  362. list_del(&sbridge_dev->list);
  363. kfree(sbridge_dev->pdev);
  364. kfree(sbridge_dev);
  365. }
  366. /****************************************************************************
  367. Memory check routines
  368. ****************************************************************************/
  369. static struct pci_dev *get_pdev_slot_func(u8 bus, unsigned slot,
  370. unsigned func)
  371. {
  372. struct sbridge_dev *sbridge_dev = get_sbridge_dev(bus);
  373. int i;
  374. if (!sbridge_dev)
  375. return NULL;
  376. for (i = 0; i < sbridge_dev->n_devs; i++) {
  377. if (!sbridge_dev->pdev[i])
  378. continue;
  379. if (PCI_SLOT(sbridge_dev->pdev[i]->devfn) == slot &&
  380. PCI_FUNC(sbridge_dev->pdev[i]->devfn) == func) {
  381. debugf1("Associated %02x.%02x.%d with %p\n",
  382. bus, slot, func, sbridge_dev->pdev[i]);
  383. return sbridge_dev->pdev[i];
  384. }
  385. }
  386. return NULL;
  387. }
  388. /**
  389. * check_if_ecc_is_active() - Checks if ECC is active
  390. * bus: Device bus
  391. */
  392. static int check_if_ecc_is_active(const u8 bus)
  393. {
  394. struct pci_dev *pdev = NULL;
  395. u32 mcmtr;
  396. pdev = get_pdev_slot_func(bus, 15, 0);
  397. if (!pdev) {
  398. sbridge_printk(KERN_ERR, "Couldn't find PCI device "
  399. "%2x.%02d.%d!!!\n",
  400. bus, 15, 0);
  401. return -ENODEV;
  402. }
  403. pci_read_config_dword(pdev, MCMTR, &mcmtr);
  404. if (!IS_ECC_ENABLED(mcmtr)) {
  405. sbridge_printk(KERN_ERR, "ECC is disabled. Aborting\n");
  406. return -ENODEV;
  407. }
  408. return 0;
  409. }
  410. static int get_dimm_config(struct mem_ctl_info *mci)
  411. {
  412. struct sbridge_pvt *pvt = mci->pvt_info;
  413. struct dimm_info *dimm;
  414. int i, j, banks, ranks, rows, cols, size, npages;
  415. u32 reg;
  416. enum edac_type mode;
  417. enum mem_type mtype;
  418. pci_read_config_dword(pvt->pci_br, SAD_TARGET, &reg);
  419. pvt->sbridge_dev->source_id = SOURCE_ID(reg);
  420. pci_read_config_dword(pvt->pci_br, SAD_CONTROL, &reg);
  421. pvt->sbridge_dev->node_id = NODE_ID(reg);
  422. debugf0("mc#%d: Node ID: %d, source ID: %d\n",
  423. pvt->sbridge_dev->mc,
  424. pvt->sbridge_dev->node_id,
  425. pvt->sbridge_dev->source_id);
  426. pci_read_config_dword(pvt->pci_ras, RASENABLES, &reg);
  427. if (IS_MIRROR_ENABLED(reg)) {
  428. debugf0("Memory mirror is enabled\n");
  429. pvt->is_mirrored = true;
  430. } else {
  431. debugf0("Memory mirror is disabled\n");
  432. pvt->is_mirrored = false;
  433. }
  434. pci_read_config_dword(pvt->pci_ta, MCMTR, &pvt->info.mcmtr);
  435. if (IS_LOCKSTEP_ENABLED(pvt->info.mcmtr)) {
  436. debugf0("Lockstep is enabled\n");
  437. mode = EDAC_S8ECD8ED;
  438. pvt->is_lockstep = true;
  439. } else {
  440. debugf0("Lockstep is disabled\n");
  441. mode = EDAC_S4ECD4ED;
  442. pvt->is_lockstep = false;
  443. }
  444. if (IS_CLOSE_PG(pvt->info.mcmtr)) {
  445. debugf0("address map is on closed page mode\n");
  446. pvt->is_close_pg = true;
  447. } else {
  448. debugf0("address map is on open page mode\n");
  449. pvt->is_close_pg = false;
  450. }
  451. pci_read_config_dword(pvt->pci_ta, RANK_CFG_A, &reg);
  452. if (IS_RDIMM_ENABLED(reg)) {
  453. /* FIXME: Can also be LRDIMM */
  454. debugf0("Memory is registered\n");
  455. mtype = MEM_RDDR3;
  456. } else {
  457. debugf0("Memory is unregistered\n");
  458. mtype = MEM_DDR3;
  459. }
  460. /* On all supported DDR3 DIMM types, there are 8 banks available */
  461. banks = 8;
  462. for (i = 0; i < NUM_CHANNELS; i++) {
  463. u32 mtr;
  464. for (j = 0; j < ARRAY_SIZE(mtr_regs); j++) {
  465. dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms, mci->n_layers,
  466. i, j, 0);
  467. pci_read_config_dword(pvt->pci_tad[i],
  468. mtr_regs[j], &mtr);
  469. debugf4("Channel #%d MTR%d = %x\n", i, j, mtr);
  470. if (IS_DIMM_PRESENT(mtr)) {
  471. pvt->channel[i].dimms++;
  472. ranks = numrank(mtr);
  473. rows = numrow(mtr);
  474. cols = numcol(mtr);
  475. /* DDR3 has 8 I/O banks */
  476. size = (rows * cols * banks * ranks) >> (20 - 3);
  477. npages = MiB_TO_PAGES(size);
  478. debugf0("mc#%d: channel %d, dimm %d, %d Mb (%d pages) bank: %d, rank: %d, row: %#x, col: %#x\n",
  479. pvt->sbridge_dev->mc, i, j,
  480. size, npages,
  481. banks, ranks, rows, cols);
  482. dimm->nr_pages = npages;
  483. dimm->grain = 32;
  484. dimm->dtype = (banks == 8) ? DEV_X8 : DEV_X4;
  485. dimm->mtype = mtype;
  486. dimm->edac_mode = mode;
  487. snprintf(dimm->label, sizeof(dimm->label),
  488. "CPU_SrcID#%u_Channel#%u_DIMM#%u",
  489. pvt->sbridge_dev->source_id, i, j);
  490. }
  491. }
  492. }
  493. return 0;
  494. }
  495. static void get_memory_layout(const struct mem_ctl_info *mci)
  496. {
  497. struct sbridge_pvt *pvt = mci->pvt_info;
  498. int i, j, k, n_sads, n_tads, sad_interl;
  499. u32 reg;
  500. u64 limit, prv = 0;
  501. u64 tmp_mb;
  502. u32 mb, kb;
  503. u32 rir_way;
  504. /*
  505. * Step 1) Get TOLM/TOHM ranges
  506. */
  507. /* Address range is 32:28 */
  508. pci_read_config_dword(pvt->pci_sad1, TOLM,
  509. &reg);
  510. pvt->tolm = GET_TOLM(reg);
  511. tmp_mb = (1 + pvt->tolm) >> 20;
  512. mb = div_u64_rem(tmp_mb, 1000, &kb);
  513. debugf0("TOLM: %u.%03u GB (0x%016Lx)\n",
  514. mb, kb, (u64)pvt->tolm);
  515. /* Address range is already 45:25 */
  516. pci_read_config_dword(pvt->pci_sad1, TOHM,
  517. &reg);
  518. pvt->tohm = GET_TOHM(reg);
  519. tmp_mb = (1 + pvt->tohm) >> 20;
  520. mb = div_u64_rem(tmp_mb, 1000, &kb);
  521. debugf0("TOHM: %u.%03u GB (0x%016Lx)",
  522. mb, kb, (u64)pvt->tohm);
  523. /*
  524. * Step 2) Get SAD range and SAD Interleave list
  525. * TAD registers contain the interleave wayness. However, it
  526. * seems simpler to just discover it indirectly, with the
  527. * algorithm bellow.
  528. */
  529. prv = 0;
  530. for (n_sads = 0; n_sads < MAX_SAD; n_sads++) {
  531. /* SAD_LIMIT Address range is 45:26 */
  532. pci_read_config_dword(pvt->pci_sad0, dram_rule[n_sads],
  533. &reg);
  534. limit = SAD_LIMIT(reg);
  535. if (!DRAM_RULE_ENABLE(reg))
  536. continue;
  537. if (limit <= prv)
  538. break;
  539. tmp_mb = (limit + 1) >> 20;
  540. mb = div_u64_rem(tmp_mb, 1000, &kb);
  541. debugf0("SAD#%d %s up to %u.%03u GB (0x%016Lx) %s reg=0x%08x\n",
  542. n_sads,
  543. get_dram_attr(reg),
  544. mb, kb,
  545. ((u64)tmp_mb) << 20L,
  546. INTERLEAVE_MODE(reg) ? "Interleave: 8:6" : "Interleave: [8:6]XOR[18:16]",
  547. reg);
  548. prv = limit;
  549. pci_read_config_dword(pvt->pci_sad0, interleave_list[n_sads],
  550. &reg);
  551. sad_interl = sad_pkg(reg, 0);
  552. for (j = 0; j < 8; j++) {
  553. if (j > 0 && sad_interl == sad_pkg(reg, j))
  554. break;
  555. debugf0("SAD#%d, interleave #%d: %d\n",
  556. n_sads, j, sad_pkg(reg, j));
  557. }
  558. }
  559. /*
  560. * Step 3) Get TAD range
  561. */
  562. prv = 0;
  563. for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
  564. pci_read_config_dword(pvt->pci_ha0, tad_dram_rule[n_tads],
  565. &reg);
  566. limit = TAD_LIMIT(reg);
  567. if (limit <= prv)
  568. break;
  569. tmp_mb = (limit + 1) >> 20;
  570. mb = div_u64_rem(tmp_mb, 1000, &kb);
  571. debugf0("TAD#%d: up to %u.%03u GB (0x%016Lx), socket interleave %d, memory interleave %d, TGT: %d, %d, %d, %d, reg=0x%08x\n",
  572. n_tads, mb, kb,
  573. ((u64)tmp_mb) << 20L,
  574. (u32)TAD_SOCK(reg),
  575. (u32)TAD_CH(reg),
  576. (u32)TAD_TGT0(reg),
  577. (u32)TAD_TGT1(reg),
  578. (u32)TAD_TGT2(reg),
  579. (u32)TAD_TGT3(reg),
  580. reg);
  581. prv = limit;
  582. }
  583. /*
  584. * Step 4) Get TAD offsets, per each channel
  585. */
  586. for (i = 0; i < NUM_CHANNELS; i++) {
  587. if (!pvt->channel[i].dimms)
  588. continue;
  589. for (j = 0; j < n_tads; j++) {
  590. pci_read_config_dword(pvt->pci_tad[i],
  591. tad_ch_nilv_offset[j],
  592. &reg);
  593. tmp_mb = TAD_OFFSET(reg) >> 20;
  594. mb = div_u64_rem(tmp_mb, 1000, &kb);
  595. debugf0("TAD CH#%d, offset #%d: %u.%03u GB (0x%016Lx), reg=0x%08x\n",
  596. i, j,
  597. mb, kb,
  598. ((u64)tmp_mb) << 20L,
  599. reg);
  600. }
  601. }
  602. /*
  603. * Step 6) Get RIR Wayness/Limit, per each channel
  604. */
  605. for (i = 0; i < NUM_CHANNELS; i++) {
  606. if (!pvt->channel[i].dimms)
  607. continue;
  608. for (j = 0; j < MAX_RIR_RANGES; j++) {
  609. pci_read_config_dword(pvt->pci_tad[i],
  610. rir_way_limit[j],
  611. &reg);
  612. if (!IS_RIR_VALID(reg))
  613. continue;
  614. tmp_mb = RIR_LIMIT(reg) >> 20;
  615. rir_way = 1 << RIR_WAY(reg);
  616. mb = div_u64_rem(tmp_mb, 1000, &kb);
  617. debugf0("CH#%d RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d, reg=0x%08x\n",
  618. i, j,
  619. mb, kb,
  620. ((u64)tmp_mb) << 20L,
  621. rir_way,
  622. reg);
  623. for (k = 0; k < rir_way; k++) {
  624. pci_read_config_dword(pvt->pci_tad[i],
  625. rir_offset[j][k],
  626. &reg);
  627. tmp_mb = RIR_OFFSET(reg) << 6;
  628. mb = div_u64_rem(tmp_mb, 1000, &kb);
  629. debugf0("CH#%d RIR#%d INTL#%d, offset %u.%03u GB (0x%016Lx), tgt: %d, reg=0x%08x\n",
  630. i, j, k,
  631. mb, kb,
  632. ((u64)tmp_mb) << 20L,
  633. (u32)RIR_RNK_TGT(reg),
  634. reg);
  635. }
  636. }
  637. }
  638. }
  639. struct mem_ctl_info *get_mci_for_node_id(u8 node_id)
  640. {
  641. struct sbridge_dev *sbridge_dev;
  642. list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
  643. if (sbridge_dev->node_id == node_id)
  644. return sbridge_dev->mci;
  645. }
  646. return NULL;
  647. }
  648. static int get_memory_error_data(struct mem_ctl_info *mci,
  649. u64 addr,
  650. u8 *socket,
  651. long *channel_mask,
  652. u8 *rank,
  653. char **area_type, char *msg)
  654. {
  655. struct mem_ctl_info *new_mci;
  656. struct sbridge_pvt *pvt = mci->pvt_info;
  657. int n_rir, n_sads, n_tads, sad_way, sck_xch;
  658. int sad_interl, idx, base_ch;
  659. int interleave_mode;
  660. unsigned sad_interleave[MAX_INTERLEAVE];
  661. u32 reg;
  662. u8 ch_way,sck_way;
  663. u32 tad_offset;
  664. u32 rir_way;
  665. u32 mb, kb;
  666. u64 ch_addr, offset, limit, prv = 0;
  667. /*
  668. * Step 0) Check if the address is at special memory ranges
  669. * The check bellow is probably enough to fill all cases where
  670. * the error is not inside a memory, except for the legacy
  671. * range (e. g. VGA addresses). It is unlikely, however, that the
  672. * memory controller would generate an error on that range.
  673. */
  674. if ((addr > (u64) pvt->tolm) && (addr < (1LL << 32))) {
  675. sprintf(msg, "Error at TOLM area, on addr 0x%08Lx", addr);
  676. return -EINVAL;
  677. }
  678. if (addr >= (u64)pvt->tohm) {
  679. sprintf(msg, "Error at MMIOH area, on addr 0x%016Lx", addr);
  680. return -EINVAL;
  681. }
  682. /*
  683. * Step 1) Get socket
  684. */
  685. for (n_sads = 0; n_sads < MAX_SAD; n_sads++) {
  686. pci_read_config_dword(pvt->pci_sad0, dram_rule[n_sads],
  687. &reg);
  688. if (!DRAM_RULE_ENABLE(reg))
  689. continue;
  690. limit = SAD_LIMIT(reg);
  691. if (limit <= prv) {
  692. sprintf(msg, "Can't discover the memory socket");
  693. return -EINVAL;
  694. }
  695. if (addr <= limit)
  696. break;
  697. prv = limit;
  698. }
  699. if (n_sads == MAX_SAD) {
  700. sprintf(msg, "Can't discover the memory socket");
  701. return -EINVAL;
  702. }
  703. *area_type = get_dram_attr(reg);
  704. interleave_mode = INTERLEAVE_MODE(reg);
  705. pci_read_config_dword(pvt->pci_sad0, interleave_list[n_sads],
  706. &reg);
  707. sad_interl = sad_pkg(reg, 0);
  708. for (sad_way = 0; sad_way < 8; sad_way++) {
  709. if (sad_way > 0 && sad_interl == sad_pkg(reg, sad_way))
  710. break;
  711. sad_interleave[sad_way] = sad_pkg(reg, sad_way);
  712. debugf0("SAD interleave #%d: %d\n",
  713. sad_way, sad_interleave[sad_way]);
  714. }
  715. debugf0("mc#%d: Error detected on SAD#%d: address 0x%016Lx < 0x%016Lx, Interleave [%d:6]%s\n",
  716. pvt->sbridge_dev->mc,
  717. n_sads,
  718. addr,
  719. limit,
  720. sad_way + 7,
  721. interleave_mode ? "" : "XOR[18:16]");
  722. if (interleave_mode)
  723. idx = ((addr >> 6) ^ (addr >> 16)) & 7;
  724. else
  725. idx = (addr >> 6) & 7;
  726. switch (sad_way) {
  727. case 1:
  728. idx = 0;
  729. break;
  730. case 2:
  731. idx = idx & 1;
  732. break;
  733. case 4:
  734. idx = idx & 3;
  735. break;
  736. case 8:
  737. break;
  738. default:
  739. sprintf(msg, "Can't discover socket interleave");
  740. return -EINVAL;
  741. }
  742. *socket = sad_interleave[idx];
  743. debugf0("SAD interleave index: %d (wayness %d) = CPU socket %d\n",
  744. idx, sad_way, *socket);
  745. /*
  746. * Move to the proper node structure, in order to access the
  747. * right PCI registers
  748. */
  749. new_mci = get_mci_for_node_id(*socket);
  750. if (!new_mci) {
  751. sprintf(msg, "Struct for socket #%u wasn't initialized",
  752. *socket);
  753. return -EINVAL;
  754. }
  755. mci = new_mci;
  756. pvt = mci->pvt_info;
  757. /*
  758. * Step 2) Get memory channel
  759. */
  760. prv = 0;
  761. for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
  762. pci_read_config_dword(pvt->pci_ha0, tad_dram_rule[n_tads],
  763. &reg);
  764. limit = TAD_LIMIT(reg);
  765. if (limit <= prv) {
  766. sprintf(msg, "Can't discover the memory channel");
  767. return -EINVAL;
  768. }
  769. if (addr <= limit)
  770. break;
  771. prv = limit;
  772. }
  773. ch_way = TAD_CH(reg) + 1;
  774. sck_way = TAD_SOCK(reg) + 1;
  775. /*
  776. * FIXME: Is it right to always use channel 0 for offsets?
  777. */
  778. pci_read_config_dword(pvt->pci_tad[0],
  779. tad_ch_nilv_offset[n_tads],
  780. &tad_offset);
  781. if (ch_way == 3)
  782. idx = addr >> 6;
  783. else
  784. idx = addr >> (6 + sck_way);
  785. idx = idx % ch_way;
  786. /*
  787. * FIXME: Shouldn't we use CHN_IDX_OFFSET() here, when ch_way == 3 ???
  788. */
  789. switch (idx) {
  790. case 0:
  791. base_ch = TAD_TGT0(reg);
  792. break;
  793. case 1:
  794. base_ch = TAD_TGT1(reg);
  795. break;
  796. case 2:
  797. base_ch = TAD_TGT2(reg);
  798. break;
  799. case 3:
  800. base_ch = TAD_TGT3(reg);
  801. break;
  802. default:
  803. sprintf(msg, "Can't discover the TAD target");
  804. return -EINVAL;
  805. }
  806. *channel_mask = 1 << base_ch;
  807. if (pvt->is_mirrored) {
  808. *channel_mask |= 1 << ((base_ch + 2) % 4);
  809. switch(ch_way) {
  810. case 2:
  811. case 4:
  812. sck_xch = 1 << sck_way * (ch_way >> 1);
  813. break;
  814. default:
  815. sprintf(msg, "Invalid mirror set. Can't decode addr");
  816. return -EINVAL;
  817. }
  818. } else
  819. sck_xch = (1 << sck_way) * ch_way;
  820. if (pvt->is_lockstep)
  821. *channel_mask |= 1 << ((base_ch + 1) % 4);
  822. offset = TAD_OFFSET(tad_offset);
  823. debugf0("TAD#%d: address 0x%016Lx < 0x%016Lx, socket interleave %d, channel interleave %d (offset 0x%08Lx), index %d, base ch: %d, ch mask: 0x%02lx\n",
  824. n_tads,
  825. addr,
  826. limit,
  827. (u32)TAD_SOCK(reg),
  828. ch_way,
  829. offset,
  830. idx,
  831. base_ch,
  832. *channel_mask);
  833. /* Calculate channel address */
  834. /* Remove the TAD offset */
  835. if (offset > addr) {
  836. sprintf(msg, "Can't calculate ch addr: TAD offset 0x%08Lx is too high for addr 0x%08Lx!",
  837. offset, addr);
  838. return -EINVAL;
  839. }
  840. addr -= offset;
  841. /* Store the low bits [0:6] of the addr */
  842. ch_addr = addr & 0x7f;
  843. /* Remove socket wayness and remove 6 bits */
  844. addr >>= 6;
  845. addr = div_u64(addr, sck_xch);
  846. #if 0
  847. /* Divide by channel way */
  848. addr = addr / ch_way;
  849. #endif
  850. /* Recover the last 6 bits */
  851. ch_addr |= addr << 6;
  852. /*
  853. * Step 3) Decode rank
  854. */
  855. for (n_rir = 0; n_rir < MAX_RIR_RANGES; n_rir++) {
  856. pci_read_config_dword(pvt->pci_tad[base_ch],
  857. rir_way_limit[n_rir],
  858. &reg);
  859. if (!IS_RIR_VALID(reg))
  860. continue;
  861. limit = RIR_LIMIT(reg);
  862. mb = div_u64_rem(limit >> 20, 1000, &kb);
  863. debugf0("RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d\n",
  864. n_rir,
  865. mb, kb,
  866. limit,
  867. 1 << RIR_WAY(reg));
  868. if (ch_addr <= limit)
  869. break;
  870. }
  871. if (n_rir == MAX_RIR_RANGES) {
  872. sprintf(msg, "Can't discover the memory rank for ch addr 0x%08Lx",
  873. ch_addr);
  874. return -EINVAL;
  875. }
  876. rir_way = RIR_WAY(reg);
  877. if (pvt->is_close_pg)
  878. idx = (ch_addr >> 6);
  879. else
  880. idx = (ch_addr >> 13); /* FIXME: Datasheet says to shift by 15 */
  881. idx %= 1 << rir_way;
  882. pci_read_config_dword(pvt->pci_tad[base_ch],
  883. rir_offset[n_rir][idx],
  884. &reg);
  885. *rank = RIR_RNK_TGT(reg);
  886. debugf0("RIR#%d: channel address 0x%08Lx < 0x%08Lx, RIR interleave %d, index %d\n",
  887. n_rir,
  888. ch_addr,
  889. limit,
  890. rir_way,
  891. idx);
  892. return 0;
  893. }
  894. /****************************************************************************
  895. Device initialization routines: put/get, init/exit
  896. ****************************************************************************/
  897. /*
  898. * sbridge_put_all_devices 'put' all the devices that we have
  899. * reserved via 'get'
  900. */
  901. static void sbridge_put_devices(struct sbridge_dev *sbridge_dev)
  902. {
  903. int i;
  904. debugf0(__FILE__ ": %s()\n", __func__);
  905. for (i = 0; i < sbridge_dev->n_devs; i++) {
  906. struct pci_dev *pdev = sbridge_dev->pdev[i];
  907. if (!pdev)
  908. continue;
  909. debugf0("Removing dev %02x:%02x.%d\n",
  910. pdev->bus->number,
  911. PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
  912. pci_dev_put(pdev);
  913. }
  914. }
  915. static void sbridge_put_all_devices(void)
  916. {
  917. struct sbridge_dev *sbridge_dev, *tmp;
  918. list_for_each_entry_safe(sbridge_dev, tmp, &sbridge_edac_list, list) {
  919. sbridge_put_devices(sbridge_dev);
  920. free_sbridge_dev(sbridge_dev);
  921. }
  922. }
  923. /*
  924. * sbridge_get_all_devices Find and perform 'get' operation on the MCH's
  925. * device/functions we want to reference for this driver
  926. *
  927. * Need to 'get' device 16 func 1 and func 2
  928. */
  929. static int sbridge_get_onedevice(struct pci_dev **prev,
  930. u8 *num_mc,
  931. const struct pci_id_table *table,
  932. const unsigned devno)
  933. {
  934. struct sbridge_dev *sbridge_dev;
  935. const struct pci_id_descr *dev_descr = &table->descr[devno];
  936. struct pci_dev *pdev = NULL;
  937. u8 bus = 0;
  938. sbridge_printk(KERN_INFO,
  939. "Seeking for: dev %02x.%d PCI ID %04x:%04x\n",
  940. dev_descr->dev, dev_descr->func,
  941. PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
  942. pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
  943. dev_descr->dev_id, *prev);
  944. if (!pdev) {
  945. if (*prev) {
  946. *prev = pdev;
  947. return 0;
  948. }
  949. if (dev_descr->optional)
  950. return 0;
  951. if (devno == 0)
  952. return -ENODEV;
  953. sbridge_printk(KERN_INFO,
  954. "Device not found: dev %02x.%d PCI ID %04x:%04x\n",
  955. dev_descr->dev, dev_descr->func,
  956. PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
  957. /* End of list, leave */
  958. return -ENODEV;
  959. }
  960. bus = pdev->bus->number;
  961. sbridge_dev = get_sbridge_dev(bus);
  962. if (!sbridge_dev) {
  963. sbridge_dev = alloc_sbridge_dev(bus, table);
  964. if (!sbridge_dev) {
  965. pci_dev_put(pdev);
  966. return -ENOMEM;
  967. }
  968. (*num_mc)++;
  969. }
  970. if (sbridge_dev->pdev[devno]) {
  971. sbridge_printk(KERN_ERR,
  972. "Duplicated device for "
  973. "dev %02x:%d.%d PCI ID %04x:%04x\n",
  974. bus, dev_descr->dev, dev_descr->func,
  975. PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
  976. pci_dev_put(pdev);
  977. return -ENODEV;
  978. }
  979. sbridge_dev->pdev[devno] = pdev;
  980. /* Sanity check */
  981. if (unlikely(PCI_SLOT(pdev->devfn) != dev_descr->dev ||
  982. PCI_FUNC(pdev->devfn) != dev_descr->func)) {
  983. sbridge_printk(KERN_ERR,
  984. "Device PCI ID %04x:%04x "
  985. "has dev %02x:%d.%d instead of dev %02x:%02x.%d\n",
  986. PCI_VENDOR_ID_INTEL, dev_descr->dev_id,
  987. bus, PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
  988. bus, dev_descr->dev, dev_descr->func);
  989. return -ENODEV;
  990. }
  991. /* Be sure that the device is enabled */
  992. if (unlikely(pci_enable_device(pdev) < 0)) {
  993. sbridge_printk(KERN_ERR,
  994. "Couldn't enable "
  995. "dev %02x:%d.%d PCI ID %04x:%04x\n",
  996. bus, dev_descr->dev, dev_descr->func,
  997. PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
  998. return -ENODEV;
  999. }
  1000. debugf0("Detected dev %02x:%d.%d PCI ID %04x:%04x\n",
  1001. bus, dev_descr->dev,
  1002. dev_descr->func,
  1003. PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
  1004. /*
  1005. * As stated on drivers/pci/search.c, the reference count for
  1006. * @from is always decremented if it is not %NULL. So, as we need
  1007. * to get all devices up to null, we need to do a get for the device
  1008. */
  1009. pci_dev_get(pdev);
  1010. *prev = pdev;
  1011. return 0;
  1012. }
  1013. static int sbridge_get_all_devices(u8 *num_mc)
  1014. {
  1015. int i, rc;
  1016. struct pci_dev *pdev = NULL;
  1017. const struct pci_id_table *table = pci_dev_descr_sbridge_table;
  1018. while (table && table->descr) {
  1019. for (i = 0; i < table->n_devs; i++) {
  1020. pdev = NULL;
  1021. do {
  1022. rc = sbridge_get_onedevice(&pdev, num_mc,
  1023. table, i);
  1024. if (rc < 0) {
  1025. if (i == 0) {
  1026. i = table->n_devs;
  1027. break;
  1028. }
  1029. sbridge_put_all_devices();
  1030. return -ENODEV;
  1031. }
  1032. } while (pdev);
  1033. }
  1034. table++;
  1035. }
  1036. return 0;
  1037. }
  1038. static int mci_bind_devs(struct mem_ctl_info *mci,
  1039. struct sbridge_dev *sbridge_dev)
  1040. {
  1041. struct sbridge_pvt *pvt = mci->pvt_info;
  1042. struct pci_dev *pdev;
  1043. int i, func, slot;
  1044. for (i = 0; i < sbridge_dev->n_devs; i++) {
  1045. pdev = sbridge_dev->pdev[i];
  1046. if (!pdev)
  1047. continue;
  1048. slot = PCI_SLOT(pdev->devfn);
  1049. func = PCI_FUNC(pdev->devfn);
  1050. switch (slot) {
  1051. case 12:
  1052. switch (func) {
  1053. case 6:
  1054. pvt->pci_sad0 = pdev;
  1055. break;
  1056. case 7:
  1057. pvt->pci_sad1 = pdev;
  1058. break;
  1059. default:
  1060. goto error;
  1061. }
  1062. break;
  1063. case 13:
  1064. switch (func) {
  1065. case 6:
  1066. pvt->pci_br = pdev;
  1067. break;
  1068. default:
  1069. goto error;
  1070. }
  1071. break;
  1072. case 14:
  1073. switch (func) {
  1074. case 0:
  1075. pvt->pci_ha0 = pdev;
  1076. break;
  1077. default:
  1078. goto error;
  1079. }
  1080. break;
  1081. case 15:
  1082. switch (func) {
  1083. case 0:
  1084. pvt->pci_ta = pdev;
  1085. break;
  1086. case 1:
  1087. pvt->pci_ras = pdev;
  1088. break;
  1089. case 2:
  1090. case 3:
  1091. case 4:
  1092. case 5:
  1093. pvt->pci_tad[func - 2] = pdev;
  1094. break;
  1095. default:
  1096. goto error;
  1097. }
  1098. break;
  1099. case 17:
  1100. switch (func) {
  1101. case 0:
  1102. pvt->pci_ddrio = pdev;
  1103. break;
  1104. default:
  1105. goto error;
  1106. }
  1107. break;
  1108. default:
  1109. goto error;
  1110. }
  1111. debugf0("Associated PCI %02x.%02d.%d with dev = %p\n",
  1112. sbridge_dev->bus,
  1113. PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
  1114. pdev);
  1115. }
  1116. /* Check if everything were registered */
  1117. if (!pvt->pci_sad0 || !pvt->pci_sad1 || !pvt->pci_ha0 ||
  1118. !pvt-> pci_tad || !pvt->pci_ras || !pvt->pci_ta ||
  1119. !pvt->pci_ddrio)
  1120. goto enodev;
  1121. for (i = 0; i < NUM_CHANNELS; i++) {
  1122. if (!pvt->pci_tad[i])
  1123. goto enodev;
  1124. }
  1125. return 0;
  1126. enodev:
  1127. sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
  1128. return -ENODEV;
  1129. error:
  1130. sbridge_printk(KERN_ERR, "Device %d, function %d "
  1131. "is out of the expected range\n",
  1132. slot, func);
  1133. return -EINVAL;
  1134. }
  1135. /****************************************************************************
  1136. Error check routines
  1137. ****************************************************************************/
  1138. /*
  1139. * While Sandy Bridge has error count registers, SMI BIOS read values from
  1140. * and resets the counters. So, they are not reliable for the OS to read
  1141. * from them. So, we have no option but to just trust on whatever MCE is
  1142. * telling us about the errors.
  1143. */
  1144. static void sbridge_mce_output_error(struct mem_ctl_info *mci,
  1145. const struct mce *m)
  1146. {
  1147. struct mem_ctl_info *new_mci;
  1148. struct sbridge_pvt *pvt = mci->pvt_info;
  1149. enum hw_event_mc_err_type tp_event;
  1150. char *type, *optype, msg[256];
  1151. bool ripv = GET_BITFIELD(m->mcgstatus, 0, 0);
  1152. bool overflow = GET_BITFIELD(m->status, 62, 62);
  1153. bool uncorrected_error = GET_BITFIELD(m->status, 61, 61);
  1154. bool recoverable = GET_BITFIELD(m->status, 56, 56);
  1155. u32 core_err_cnt = GET_BITFIELD(m->status, 38, 52);
  1156. u32 mscod = GET_BITFIELD(m->status, 16, 31);
  1157. u32 errcode = GET_BITFIELD(m->status, 0, 15);
  1158. u32 channel = GET_BITFIELD(m->status, 0, 3);
  1159. u32 optypenum = GET_BITFIELD(m->status, 4, 6);
  1160. long channel_mask, first_channel;
  1161. u8 rank, socket;
  1162. int rc, dimm;
  1163. char *area_type = NULL;
  1164. if (uncorrected_error) {
  1165. if (ripv) {
  1166. type = "FATAL";
  1167. tp_event = HW_EVENT_ERR_FATAL;
  1168. } else {
  1169. type = "NON_FATAL";
  1170. tp_event = HW_EVENT_ERR_UNCORRECTED;
  1171. }
  1172. } else {
  1173. type = "CORRECTED";
  1174. tp_event = HW_EVENT_ERR_CORRECTED;
  1175. }
  1176. /*
  1177. * According with Table 15-9 of the Intel Architecture spec vol 3A,
  1178. * memory errors should fit in this mask:
  1179. * 000f 0000 1mmm cccc (binary)
  1180. * where:
  1181. * f = Correction Report Filtering Bit. If 1, subsequent errors
  1182. * won't be shown
  1183. * mmm = error type
  1184. * cccc = channel
  1185. * If the mask doesn't match, report an error to the parsing logic
  1186. */
  1187. if (! ((errcode & 0xef80) == 0x80)) {
  1188. optype = "Can't parse: it is not a mem";
  1189. } else {
  1190. switch (optypenum) {
  1191. case 0:
  1192. optype = "generic undef request error";
  1193. break;
  1194. case 1:
  1195. optype = "memory read error";
  1196. break;
  1197. case 2:
  1198. optype = "memory write error";
  1199. break;
  1200. case 3:
  1201. optype = "addr/cmd error";
  1202. break;
  1203. case 4:
  1204. optype = "memory scrubbing error";
  1205. break;
  1206. default:
  1207. optype = "reserved";
  1208. break;
  1209. }
  1210. }
  1211. rc = get_memory_error_data(mci, m->addr, &socket,
  1212. &channel_mask, &rank, &area_type, msg);
  1213. if (rc < 0)
  1214. goto err_parsing;
  1215. new_mci = get_mci_for_node_id(socket);
  1216. if (!new_mci) {
  1217. strcpy(msg, "Error: socket got corrupted!");
  1218. goto err_parsing;
  1219. }
  1220. mci = new_mci;
  1221. pvt = mci->pvt_info;
  1222. first_channel = find_first_bit(&channel_mask, NUM_CHANNELS);
  1223. if (rank < 4)
  1224. dimm = 0;
  1225. else if (rank < 8)
  1226. dimm = 1;
  1227. else
  1228. dimm = 2;
  1229. /*
  1230. * FIXME: On some memory configurations (mirror, lockstep), the
  1231. * Memory Controller can't point the error to a single DIMM. The
  1232. * EDAC core should be handling the channel mask, in order to point
  1233. * to the group of dimm's where the error may be happening.
  1234. */
  1235. snprintf(msg, sizeof(msg),
  1236. "count:%d%s%s area:%s err_code:%04x:%04x socket:%d channel_mask:%ld rank:%d",
  1237. core_err_cnt,
  1238. overflow ? " OVERFLOW" : "",
  1239. (uncorrected_error && recoverable) ? " recoverable" : "",
  1240. area_type,
  1241. mscod, errcode,
  1242. socket,
  1243. channel_mask,
  1244. rank);
  1245. debugf0("%s", msg);
  1246. /* FIXME: need support for channel mask */
  1247. /* Call the helper to output message */
  1248. edac_mc_handle_error(tp_event, mci,
  1249. m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0,
  1250. channel, dimm, -1,
  1251. optype, msg, m);
  1252. return;
  1253. err_parsing:
  1254. edac_mc_handle_error(tp_event, mci, 0, 0, 0,
  1255. -1, -1, -1,
  1256. msg, "", m);
  1257. }
  1258. /*
  1259. * sbridge_check_error Retrieve and process errors reported by the
  1260. * hardware. Called by the Core module.
  1261. */
  1262. static void sbridge_check_error(struct mem_ctl_info *mci)
  1263. {
  1264. struct sbridge_pvt *pvt = mci->pvt_info;
  1265. int i;
  1266. unsigned count = 0;
  1267. struct mce *m;
  1268. /*
  1269. * MCE first step: Copy all mce errors into a temporary buffer
  1270. * We use a double buffering here, to reduce the risk of
  1271. * loosing an error.
  1272. */
  1273. smp_rmb();
  1274. count = (pvt->mce_out + MCE_LOG_LEN - pvt->mce_in)
  1275. % MCE_LOG_LEN;
  1276. if (!count)
  1277. return;
  1278. m = pvt->mce_outentry;
  1279. if (pvt->mce_in + count > MCE_LOG_LEN) {
  1280. unsigned l = MCE_LOG_LEN - pvt->mce_in;
  1281. memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * l);
  1282. smp_wmb();
  1283. pvt->mce_in = 0;
  1284. count -= l;
  1285. m += l;
  1286. }
  1287. memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * count);
  1288. smp_wmb();
  1289. pvt->mce_in += count;
  1290. smp_rmb();
  1291. if (pvt->mce_overrun) {
  1292. sbridge_printk(KERN_ERR, "Lost %d memory errors\n",
  1293. pvt->mce_overrun);
  1294. smp_wmb();
  1295. pvt->mce_overrun = 0;
  1296. }
  1297. /*
  1298. * MCE second step: parse errors and display
  1299. */
  1300. for (i = 0; i < count; i++)
  1301. sbridge_mce_output_error(mci, &pvt->mce_outentry[i]);
  1302. }
  1303. /*
  1304. * sbridge_mce_check_error Replicates mcelog routine to get errors
  1305. * This routine simply queues mcelog errors, and
  1306. * return. The error itself should be handled later
  1307. * by sbridge_check_error.
  1308. * WARNING: As this routine should be called at NMI time, extra care should
  1309. * be taken to avoid deadlocks, and to be as fast as possible.
  1310. */
  1311. static int sbridge_mce_check_error(struct notifier_block *nb, unsigned long val,
  1312. void *data)
  1313. {
  1314. struct mce *mce = (struct mce *)data;
  1315. struct mem_ctl_info *mci;
  1316. struct sbridge_pvt *pvt;
  1317. mci = get_mci_for_node_id(mce->socketid);
  1318. if (!mci)
  1319. return NOTIFY_BAD;
  1320. pvt = mci->pvt_info;
  1321. /*
  1322. * Just let mcelog handle it if the error is
  1323. * outside the memory controller. A memory error
  1324. * is indicated by bit 7 = 1 and bits = 8-11,13-15 = 0.
  1325. * bit 12 has an special meaning.
  1326. */
  1327. if ((mce->status & 0xefff) >> 7 != 1)
  1328. return NOTIFY_DONE;
  1329. printk("sbridge: HANDLING MCE MEMORY ERROR\n");
  1330. printk("CPU %d: Machine Check Exception: %Lx Bank %d: %016Lx\n",
  1331. mce->extcpu, mce->mcgstatus, mce->bank, mce->status);
  1332. printk("TSC %llx ", mce->tsc);
  1333. printk("ADDR %llx ", mce->addr);
  1334. printk("MISC %llx ", mce->misc);
  1335. printk("PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x\n",
  1336. mce->cpuvendor, mce->cpuid, mce->time,
  1337. mce->socketid, mce->apicid);
  1338. /* Only handle if it is the right mc controller */
  1339. if (cpu_data(mce->cpu).phys_proc_id != pvt->sbridge_dev->mc)
  1340. return NOTIFY_DONE;
  1341. smp_rmb();
  1342. if ((pvt->mce_out + 1) % MCE_LOG_LEN == pvt->mce_in) {
  1343. smp_wmb();
  1344. pvt->mce_overrun++;
  1345. return NOTIFY_DONE;
  1346. }
  1347. /* Copy memory error at the ringbuffer */
  1348. memcpy(&pvt->mce_entry[pvt->mce_out], mce, sizeof(*mce));
  1349. smp_wmb();
  1350. pvt->mce_out = (pvt->mce_out + 1) % MCE_LOG_LEN;
  1351. /* Handle fatal errors immediately */
  1352. if (mce->mcgstatus & 1)
  1353. sbridge_check_error(mci);
  1354. /* Advice mcelog that the error were handled */
  1355. return NOTIFY_STOP;
  1356. }
  1357. static struct notifier_block sbridge_mce_dec = {
  1358. .notifier_call = sbridge_mce_check_error,
  1359. };
  1360. /****************************************************************************
  1361. EDAC register/unregister logic
  1362. ****************************************************************************/
  1363. static void sbridge_unregister_mci(struct sbridge_dev *sbridge_dev)
  1364. {
  1365. struct mem_ctl_info *mci = sbridge_dev->mci;
  1366. struct sbridge_pvt *pvt;
  1367. if (unlikely(!mci || !mci->pvt_info)) {
  1368. debugf0("MC: " __FILE__ ": %s(): dev = %p\n",
  1369. __func__, &sbridge_dev->pdev[0]->dev);
  1370. sbridge_printk(KERN_ERR, "Couldn't find mci handler\n");
  1371. return;
  1372. }
  1373. pvt = mci->pvt_info;
  1374. debugf0("MC: " __FILE__ ": %s(): mci = %p, dev = %p\n",
  1375. __func__, mci, &sbridge_dev->pdev[0]->dev);
  1376. mce_unregister_decode_chain(&sbridge_mce_dec);
  1377. /* Remove MC sysfs nodes */
  1378. edac_mc_del_mc(mci->dev);
  1379. debugf1("%s: free mci struct\n", mci->ctl_name);
  1380. kfree(mci->ctl_name);
  1381. edac_mc_free(mci);
  1382. sbridge_dev->mci = NULL;
  1383. }
  1384. static int sbridge_register_mci(struct sbridge_dev *sbridge_dev)
  1385. {
  1386. struct mem_ctl_info *mci;
  1387. struct edac_mc_layer layers[2];
  1388. struct sbridge_pvt *pvt;
  1389. int rc;
  1390. /* Check the number of active and not disabled channels */
  1391. rc = check_if_ecc_is_active(sbridge_dev->bus);
  1392. if (unlikely(rc < 0))
  1393. return rc;
  1394. /* allocate a new MC control structure */
  1395. layers[0].type = EDAC_MC_LAYER_CHANNEL;
  1396. layers[0].size = NUM_CHANNELS;
  1397. layers[0].is_virt_csrow = false;
  1398. layers[1].type = EDAC_MC_LAYER_SLOT;
  1399. layers[1].size = MAX_DIMMS;
  1400. layers[1].is_virt_csrow = true;
  1401. mci = edac_mc_alloc(sbridge_dev->mc, ARRAY_SIZE(layers), layers,
  1402. sizeof(*pvt));
  1403. if (unlikely(!mci))
  1404. return -ENOMEM;
  1405. debugf0("MC: " __FILE__ ": %s(): mci = %p, dev = %p\n",
  1406. __func__, mci, &sbridge_dev->pdev[0]->dev);
  1407. pvt = mci->pvt_info;
  1408. memset(pvt, 0, sizeof(*pvt));
  1409. /* Associate sbridge_dev and mci for future usage */
  1410. pvt->sbridge_dev = sbridge_dev;
  1411. sbridge_dev->mci = mci;
  1412. mci->mtype_cap = MEM_FLAG_DDR3;
  1413. mci->edac_ctl_cap = EDAC_FLAG_NONE;
  1414. mci->edac_cap = EDAC_FLAG_NONE;
  1415. mci->mod_name = "sbridge_edac.c";
  1416. mci->mod_ver = SBRIDGE_REVISION;
  1417. mci->ctl_name = kasprintf(GFP_KERNEL, "Sandy Bridge Socket#%d", mci->mc_idx);
  1418. mci->dev_name = pci_name(sbridge_dev->pdev[0]);
  1419. mci->ctl_page_to_phys = NULL;
  1420. /* Set the function pointer to an actual operation function */
  1421. mci->edac_check = sbridge_check_error;
  1422. /* Store pci devices at mci for faster access */
  1423. rc = mci_bind_devs(mci, sbridge_dev);
  1424. if (unlikely(rc < 0))
  1425. goto fail0;
  1426. /* Get dimm basic config and the memory layout */
  1427. get_dimm_config(mci);
  1428. get_memory_layout(mci);
  1429. /* record ptr to the generic device */
  1430. mci->dev = &sbridge_dev->pdev[0]->dev;
  1431. /* add this new MC control structure to EDAC's list of MCs */
  1432. if (unlikely(edac_mc_add_mc(mci))) {
  1433. debugf0("MC: " __FILE__
  1434. ": %s(): failed edac_mc_add_mc()\n", __func__);
  1435. rc = -EINVAL;
  1436. goto fail0;
  1437. }
  1438. mce_register_decode_chain(&sbridge_mce_dec);
  1439. return 0;
  1440. fail0:
  1441. kfree(mci->ctl_name);
  1442. edac_mc_free(mci);
  1443. sbridge_dev->mci = NULL;
  1444. return rc;
  1445. }
  1446. /*
  1447. * sbridge_probe Probe for ONE instance of device to see if it is
  1448. * present.
  1449. * return:
  1450. * 0 for FOUND a device
  1451. * < 0 for error code
  1452. */
  1453. static int __devinit sbridge_probe(struct pci_dev *pdev,
  1454. const struct pci_device_id *id)
  1455. {
  1456. int rc;
  1457. u8 mc, num_mc = 0;
  1458. struct sbridge_dev *sbridge_dev;
  1459. /* get the pci devices we want to reserve for our use */
  1460. mutex_lock(&sbridge_edac_lock);
  1461. /*
  1462. * All memory controllers are allocated at the first pass.
  1463. */
  1464. if (unlikely(probed >= 1)) {
  1465. mutex_unlock(&sbridge_edac_lock);
  1466. return -ENODEV;
  1467. }
  1468. probed++;
  1469. rc = sbridge_get_all_devices(&num_mc);
  1470. if (unlikely(rc < 0))
  1471. goto fail0;
  1472. mc = 0;
  1473. list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
  1474. debugf0("Registering MC#%d (%d of %d)\n", mc, mc + 1, num_mc);
  1475. sbridge_dev->mc = mc++;
  1476. rc = sbridge_register_mci(sbridge_dev);
  1477. if (unlikely(rc < 0))
  1478. goto fail1;
  1479. }
  1480. sbridge_printk(KERN_INFO, "Driver loaded.\n");
  1481. mutex_unlock(&sbridge_edac_lock);
  1482. return 0;
  1483. fail1:
  1484. list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
  1485. sbridge_unregister_mci(sbridge_dev);
  1486. sbridge_put_all_devices();
  1487. fail0:
  1488. mutex_unlock(&sbridge_edac_lock);
  1489. return rc;
  1490. }
  1491. /*
  1492. * sbridge_remove destructor for one instance of device
  1493. *
  1494. */
  1495. static void __devexit sbridge_remove(struct pci_dev *pdev)
  1496. {
  1497. struct sbridge_dev *sbridge_dev;
  1498. debugf0(__FILE__ ": %s()\n", __func__);
  1499. /*
  1500. * we have a trouble here: pdev value for removal will be wrong, since
  1501. * it will point to the X58 register used to detect that the machine
  1502. * is a Nehalem or upper design. However, due to the way several PCI
  1503. * devices are grouped together to provide MC functionality, we need
  1504. * to use a different method for releasing the devices
  1505. */
  1506. mutex_lock(&sbridge_edac_lock);
  1507. if (unlikely(!probed)) {
  1508. mutex_unlock(&sbridge_edac_lock);
  1509. return;
  1510. }
  1511. list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
  1512. sbridge_unregister_mci(sbridge_dev);
  1513. /* Release PCI resources */
  1514. sbridge_put_all_devices();
  1515. probed--;
  1516. mutex_unlock(&sbridge_edac_lock);
  1517. }
  1518. MODULE_DEVICE_TABLE(pci, sbridge_pci_tbl);
  1519. /*
  1520. * sbridge_driver pci_driver structure for this module
  1521. *
  1522. */
  1523. static struct pci_driver sbridge_driver = {
  1524. .name = "sbridge_edac",
  1525. .probe = sbridge_probe,
  1526. .remove = __devexit_p(sbridge_remove),
  1527. .id_table = sbridge_pci_tbl,
  1528. };
  1529. /*
  1530. * sbridge_init Module entry function
  1531. * Try to initialize this module for its devices
  1532. */
  1533. static int __init sbridge_init(void)
  1534. {
  1535. int pci_rc;
  1536. debugf2("MC: " __FILE__ ": %s()\n", __func__);
  1537. /* Ensure that the OPSTATE is set correctly for POLL or NMI */
  1538. opstate_init();
  1539. pci_rc = pci_register_driver(&sbridge_driver);
  1540. if (pci_rc >= 0)
  1541. return 0;
  1542. sbridge_printk(KERN_ERR, "Failed to register device with error %d.\n",
  1543. pci_rc);
  1544. return pci_rc;
  1545. }
  1546. /*
  1547. * sbridge_exit() Module exit function
  1548. * Unregister the driver
  1549. */
  1550. static void __exit sbridge_exit(void)
  1551. {
  1552. debugf2("MC: " __FILE__ ": %s()\n", __func__);
  1553. pci_unregister_driver(&sbridge_driver);
  1554. }
  1555. module_init(sbridge_init);
  1556. module_exit(sbridge_exit);
  1557. module_param(edac_op_state, int, 0444);
  1558. MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
  1559. MODULE_LICENSE("GPL");
  1560. MODULE_AUTHOR("Mauro Carvalho Chehab <mchehab@redhat.com>");
  1561. MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)");
  1562. MODULE_DESCRIPTION("MC Driver for Intel Sandy Bridge memory controllers - "
  1563. SBRIDGE_REVISION);