amd64_edac.c 73 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871
  1. #include "amd64_edac.h"
  2. #include <asm/amd_nb.h>
  3. static struct edac_pci_ctl_info *amd64_ctl_pci;
  4. static int report_gart_errors;
  5. module_param(report_gart_errors, int, 0644);
  6. /*
  7. * Set by command line parameter. If BIOS has enabled the ECC, this override is
  8. * cleared to prevent re-enabling the hardware by this driver.
  9. */
  10. static int ecc_enable_override;
  11. module_param(ecc_enable_override, int, 0644);
  12. static struct msr __percpu *msrs;
  13. /*
  14. * count successfully initialized driver instances for setup_pci_device()
  15. */
  16. static atomic_t drv_instances = ATOMIC_INIT(0);
  17. /* Per-node driver instances */
  18. static struct mem_ctl_info **mcis;
  19. static struct ecc_settings **ecc_stngs;
  20. /*
  21. * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
  22. * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
  23. * or higher value'.
  24. *
  25. *FIXME: Produce a better mapping/linearisation.
  26. */
  27. struct scrubrate {
  28. u32 scrubval; /* bit pattern for scrub rate */
  29. u32 bandwidth; /* bandwidth consumed (bytes/sec) */
  30. } scrubrates[] = {
  31. { 0x01, 1600000000UL},
  32. { 0x02, 800000000UL},
  33. { 0x03, 400000000UL},
  34. { 0x04, 200000000UL},
  35. { 0x05, 100000000UL},
  36. { 0x06, 50000000UL},
  37. { 0x07, 25000000UL},
  38. { 0x08, 12284069UL},
  39. { 0x09, 6274509UL},
  40. { 0x0A, 3121951UL},
  41. { 0x0B, 1560975UL},
  42. { 0x0C, 781440UL},
  43. { 0x0D, 390720UL},
  44. { 0x0E, 195300UL},
  45. { 0x0F, 97650UL},
  46. { 0x10, 48854UL},
  47. { 0x11, 24427UL},
  48. { 0x12, 12213UL},
  49. { 0x13, 6101UL},
  50. { 0x14, 3051UL},
  51. { 0x15, 1523UL},
  52. { 0x16, 761UL},
  53. { 0x00, 0UL}, /* scrubbing off */
  54. };
  55. static int __amd64_read_pci_cfg_dword(struct pci_dev *pdev, int offset,
  56. u32 *val, const char *func)
  57. {
  58. int err = 0;
  59. err = pci_read_config_dword(pdev, offset, val);
  60. if (err)
  61. amd64_warn("%s: error reading F%dx%03x.\n",
  62. func, PCI_FUNC(pdev->devfn), offset);
  63. return err;
  64. }
  65. int __amd64_write_pci_cfg_dword(struct pci_dev *pdev, int offset,
  66. u32 val, const char *func)
  67. {
  68. int err = 0;
  69. err = pci_write_config_dword(pdev, offset, val);
  70. if (err)
  71. amd64_warn("%s: error writing to F%dx%03x.\n",
  72. func, PCI_FUNC(pdev->devfn), offset);
  73. return err;
  74. }
  75. /*
  76. *
  77. * Depending on the family, F2 DCT reads need special handling:
  78. *
  79. * K8: has a single DCT only
  80. *
  81. * F10h: each DCT has its own set of regs
  82. * DCT0 -> F2x040..
  83. * DCT1 -> F2x140..
  84. *
  85. * F15h: we select which DCT we access using F1x10C[DctCfgSel]
  86. *
  87. */
  88. static int k8_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
  89. const char *func)
  90. {
  91. if (addr >= 0x100)
  92. return -EINVAL;
  93. return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
  94. }
  95. static int f10_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
  96. const char *func)
  97. {
  98. return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
  99. }
  100. /*
  101. * Select DCT to which PCI cfg accesses are routed
  102. */
  103. static void f15h_select_dct(struct amd64_pvt *pvt, u8 dct)
  104. {
  105. u32 reg = 0;
  106. amd64_read_pci_cfg(pvt->F1, DCT_CFG_SEL, &reg);
  107. reg &= 0xfffffffe;
  108. reg |= dct;
  109. amd64_write_pci_cfg(pvt->F1, DCT_CFG_SEL, reg);
  110. }
  111. static int f15_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
  112. const char *func)
  113. {
  114. u8 dct = 0;
  115. if (addr >= 0x140 && addr <= 0x1a0) {
  116. dct = 1;
  117. addr -= 0x100;
  118. }
  119. f15h_select_dct(pvt, dct);
  120. return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
  121. }
  122. /*
  123. * Memory scrubber control interface. For K8, memory scrubbing is handled by
  124. * hardware and can involve L2 cache, dcache as well as the main memory. With
  125. * F10, this is extended to L3 cache scrubbing on CPU models sporting that
  126. * functionality.
  127. *
  128. * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
  129. * (dram) over to cache lines. This is nasty, so we will use bandwidth in
  130. * bytes/sec for the setting.
  131. *
  132. * Currently, we only do dram scrubbing. If the scrubbing is done in software on
  133. * other archs, we might not have access to the caches directly.
  134. */
  135. /*
  136. * scan the scrub rate mapping table for a close or matching bandwidth value to
  137. * issue. If requested is too big, then use last maximum value found.
  138. */
  139. static int __amd64_set_scrub_rate(struct pci_dev *ctl, u32 new_bw, u32 min_rate)
  140. {
  141. u32 scrubval;
  142. int i;
  143. /*
  144. * map the configured rate (new_bw) to a value specific to the AMD64
  145. * memory controller and apply to register. Search for the first
  146. * bandwidth entry that is greater or equal than the setting requested
  147. * and program that. If at last entry, turn off DRAM scrubbing.
  148. */
  149. for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
  150. /*
  151. * skip scrub rates which aren't recommended
  152. * (see F10 BKDG, F3x58)
  153. */
  154. if (scrubrates[i].scrubval < min_rate)
  155. continue;
  156. if (scrubrates[i].bandwidth <= new_bw)
  157. break;
  158. /*
  159. * if no suitable bandwidth found, turn off DRAM scrubbing
  160. * entirely by falling back to the last element in the
  161. * scrubrates array.
  162. */
  163. }
  164. scrubval = scrubrates[i].scrubval;
  165. pci_write_bits32(ctl, SCRCTRL, scrubval, 0x001F);
  166. if (scrubval)
  167. return scrubrates[i].bandwidth;
  168. return 0;
  169. }
  170. static int amd64_set_scrub_rate(struct mem_ctl_info *mci, u32 bw)
  171. {
  172. struct amd64_pvt *pvt = mci->pvt_info;
  173. u32 min_scrubrate = 0x5;
  174. if (boot_cpu_data.x86 == 0xf)
  175. min_scrubrate = 0x0;
  176. /* F15h Erratum #505 */
  177. if (boot_cpu_data.x86 == 0x15)
  178. f15h_select_dct(pvt, 0);
  179. return __amd64_set_scrub_rate(pvt->F3, bw, min_scrubrate);
  180. }
  181. static int amd64_get_scrub_rate(struct mem_ctl_info *mci)
  182. {
  183. struct amd64_pvt *pvt = mci->pvt_info;
  184. u32 scrubval = 0;
  185. int i, retval = -EINVAL;
  186. /* F15h Erratum #505 */
  187. if (boot_cpu_data.x86 == 0x15)
  188. f15h_select_dct(pvt, 0);
  189. amd64_read_pci_cfg(pvt->F3, SCRCTRL, &scrubval);
  190. scrubval = scrubval & 0x001F;
  191. for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
  192. if (scrubrates[i].scrubval == scrubval) {
  193. retval = scrubrates[i].bandwidth;
  194. break;
  195. }
  196. }
  197. return retval;
  198. }
  199. /*
  200. * returns true if the SysAddr given by sys_addr matches the
  201. * DRAM base/limit associated with node_id
  202. */
  203. static bool amd64_base_limit_match(struct amd64_pvt *pvt, u64 sys_addr,
  204. unsigned nid)
  205. {
  206. u64 addr;
  207. /* The K8 treats this as a 40-bit value. However, bits 63-40 will be
  208. * all ones if the most significant implemented address bit is 1.
  209. * Here we discard bits 63-40. See section 3.4.2 of AMD publication
  210. * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
  211. * Application Programming.
  212. */
  213. addr = sys_addr & 0x000000ffffffffffull;
  214. return ((addr >= get_dram_base(pvt, nid)) &&
  215. (addr <= get_dram_limit(pvt, nid)));
  216. }
  217. /*
  218. * Attempt to map a SysAddr to a node. On success, return a pointer to the
  219. * mem_ctl_info structure for the node that the SysAddr maps to.
  220. *
  221. * On failure, return NULL.
  222. */
  223. static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
  224. u64 sys_addr)
  225. {
  226. struct amd64_pvt *pvt;
  227. unsigned node_id;
  228. u32 intlv_en, bits;
  229. /*
  230. * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
  231. * 3.4.4.2) registers to map the SysAddr to a node ID.
  232. */
  233. pvt = mci->pvt_info;
  234. /*
  235. * The value of this field should be the same for all DRAM Base
  236. * registers. Therefore we arbitrarily choose to read it from the
  237. * register for node 0.
  238. */
  239. intlv_en = dram_intlv_en(pvt, 0);
  240. if (intlv_en == 0) {
  241. for (node_id = 0; node_id < DRAM_RANGES; node_id++) {
  242. if (amd64_base_limit_match(pvt, sys_addr, node_id))
  243. goto found;
  244. }
  245. goto err_no_match;
  246. }
  247. if (unlikely((intlv_en != 0x01) &&
  248. (intlv_en != 0x03) &&
  249. (intlv_en != 0x07))) {
  250. amd64_warn("DRAM Base[IntlvEn] junk value: 0x%x, BIOS bug?\n", intlv_en);
  251. return NULL;
  252. }
  253. bits = (((u32) sys_addr) >> 12) & intlv_en;
  254. for (node_id = 0; ; ) {
  255. if ((dram_intlv_sel(pvt, node_id) & intlv_en) == bits)
  256. break; /* intlv_sel field matches */
  257. if (++node_id >= DRAM_RANGES)
  258. goto err_no_match;
  259. }
  260. /* sanity test for sys_addr */
  261. if (unlikely(!amd64_base_limit_match(pvt, sys_addr, node_id))) {
  262. amd64_warn("%s: sys_addr 0x%llx falls outside base/limit address"
  263. "range for node %d with node interleaving enabled.\n",
  264. __func__, sys_addr, node_id);
  265. return NULL;
  266. }
  267. found:
  268. return edac_mc_find((int)node_id);
  269. err_no_match:
  270. debugf2("sys_addr 0x%lx doesn't match any node\n",
  271. (unsigned long)sys_addr);
  272. return NULL;
  273. }
  274. /*
  275. * compute the CS base address of the @csrow on the DRAM controller @dct.
  276. * For details see F2x[5C:40] in the processor's BKDG
  277. */
  278. static void get_cs_base_and_mask(struct amd64_pvt *pvt, int csrow, u8 dct,
  279. u64 *base, u64 *mask)
  280. {
  281. u64 csbase, csmask, base_bits, mask_bits;
  282. u8 addr_shift;
  283. if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
  284. csbase = pvt->csels[dct].csbases[csrow];
  285. csmask = pvt->csels[dct].csmasks[csrow];
  286. base_bits = GENMASK(21, 31) | GENMASK(9, 15);
  287. mask_bits = GENMASK(21, 29) | GENMASK(9, 15);
  288. addr_shift = 4;
  289. } else {
  290. csbase = pvt->csels[dct].csbases[csrow];
  291. csmask = pvt->csels[dct].csmasks[csrow >> 1];
  292. addr_shift = 8;
  293. if (boot_cpu_data.x86 == 0x15)
  294. base_bits = mask_bits = GENMASK(19,30) | GENMASK(5,13);
  295. else
  296. base_bits = mask_bits = GENMASK(19,28) | GENMASK(5,13);
  297. }
  298. *base = (csbase & base_bits) << addr_shift;
  299. *mask = ~0ULL;
  300. /* poke holes for the csmask */
  301. *mask &= ~(mask_bits << addr_shift);
  302. /* OR them in */
  303. *mask |= (csmask & mask_bits) << addr_shift;
  304. }
  305. #define for_each_chip_select(i, dct, pvt) \
  306. for (i = 0; i < pvt->csels[dct].b_cnt; i++)
  307. #define chip_select_base(i, dct, pvt) \
  308. pvt->csels[dct].csbases[i]
  309. #define for_each_chip_select_mask(i, dct, pvt) \
  310. for (i = 0; i < pvt->csels[dct].m_cnt; i++)
  311. /*
  312. * @input_addr is an InputAddr associated with the node given by mci. Return the
  313. * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
  314. */
  315. static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
  316. {
  317. struct amd64_pvt *pvt;
  318. int csrow;
  319. u64 base, mask;
  320. pvt = mci->pvt_info;
  321. for_each_chip_select(csrow, 0, pvt) {
  322. if (!csrow_enabled(csrow, 0, pvt))
  323. continue;
  324. get_cs_base_and_mask(pvt, csrow, 0, &base, &mask);
  325. mask = ~mask;
  326. if ((input_addr & mask) == (base & mask)) {
  327. debugf2("InputAddr 0x%lx matches csrow %d (node %d)\n",
  328. (unsigned long)input_addr, csrow,
  329. pvt->mc_node_id);
  330. return csrow;
  331. }
  332. }
  333. debugf2("no matching csrow for InputAddr 0x%lx (MC node %d)\n",
  334. (unsigned long)input_addr, pvt->mc_node_id);
  335. return -1;
  336. }
  337. /*
  338. * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
  339. * for the node represented by mci. Info is passed back in *hole_base,
  340. * *hole_offset, and *hole_size. Function returns 0 if info is valid or 1 if
  341. * info is invalid. Info may be invalid for either of the following reasons:
  342. *
  343. * - The revision of the node is not E or greater. In this case, the DRAM Hole
  344. * Address Register does not exist.
  345. *
  346. * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
  347. * indicating that its contents are not valid.
  348. *
  349. * The values passed back in *hole_base, *hole_offset, and *hole_size are
  350. * complete 32-bit values despite the fact that the bitfields in the DHAR
  351. * only represent bits 31-24 of the base and offset values.
  352. */
  353. int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
  354. u64 *hole_offset, u64 *hole_size)
  355. {
  356. struct amd64_pvt *pvt = mci->pvt_info;
  357. u64 base;
  358. /* only revE and later have the DRAM Hole Address Register */
  359. if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_E) {
  360. debugf1(" revision %d for node %d does not support DHAR\n",
  361. pvt->ext_model, pvt->mc_node_id);
  362. return 1;
  363. }
  364. /* valid for Fam10h and above */
  365. if (boot_cpu_data.x86 >= 0x10 && !dhar_mem_hoist_valid(pvt)) {
  366. debugf1(" Dram Memory Hoisting is DISABLED on this system\n");
  367. return 1;
  368. }
  369. if (!dhar_valid(pvt)) {
  370. debugf1(" Dram Memory Hoisting is DISABLED on this node %d\n",
  371. pvt->mc_node_id);
  372. return 1;
  373. }
  374. /* This node has Memory Hoisting */
  375. /* +------------------+--------------------+--------------------+-----
  376. * | memory | DRAM hole | relocated |
  377. * | [0, (x - 1)] | [x, 0xffffffff] | addresses from |
  378. * | | | DRAM hole |
  379. * | | | [0x100000000, |
  380. * | | | (0x100000000+ |
  381. * | | | (0xffffffff-x))] |
  382. * +------------------+--------------------+--------------------+-----
  383. *
  384. * Above is a diagram of physical memory showing the DRAM hole and the
  385. * relocated addresses from the DRAM hole. As shown, the DRAM hole
  386. * starts at address x (the base address) and extends through address
  387. * 0xffffffff. The DRAM Hole Address Register (DHAR) relocates the
  388. * addresses in the hole so that they start at 0x100000000.
  389. */
  390. base = dhar_base(pvt);
  391. *hole_base = base;
  392. *hole_size = (0x1ull << 32) - base;
  393. if (boot_cpu_data.x86 > 0xf)
  394. *hole_offset = f10_dhar_offset(pvt);
  395. else
  396. *hole_offset = k8_dhar_offset(pvt);
  397. debugf1(" DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
  398. pvt->mc_node_id, (unsigned long)*hole_base,
  399. (unsigned long)*hole_offset, (unsigned long)*hole_size);
  400. return 0;
  401. }
  402. EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);
  403. /*
  404. * Return the DramAddr that the SysAddr given by @sys_addr maps to. It is
  405. * assumed that sys_addr maps to the node given by mci.
  406. *
  407. * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
  408. * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
  409. * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
  410. * then it is also involved in translating a SysAddr to a DramAddr. Sections
  411. * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
  412. * These parts of the documentation are unclear. I interpret them as follows:
  413. *
  414. * When node n receives a SysAddr, it processes the SysAddr as follows:
  415. *
  416. * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
  417. * Limit registers for node n. If the SysAddr is not within the range
  418. * specified by the base and limit values, then node n ignores the Sysaddr
  419. * (since it does not map to node n). Otherwise continue to step 2 below.
  420. *
  421. * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
  422. * disabled so skip to step 3 below. Otherwise see if the SysAddr is within
  423. * the range of relocated addresses (starting at 0x100000000) from the DRAM
  424. * hole. If not, skip to step 3 below. Else get the value of the
  425. * DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
  426. * offset defined by this value from the SysAddr.
  427. *
  428. * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
  429. * Base register for node n. To obtain the DramAddr, subtract the base
  430. * address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
  431. */
  432. static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
  433. {
  434. struct amd64_pvt *pvt = mci->pvt_info;
  435. u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
  436. int ret = 0;
  437. dram_base = get_dram_base(pvt, pvt->mc_node_id);
  438. ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
  439. &hole_size);
  440. if (!ret) {
  441. if ((sys_addr >= (1ull << 32)) &&
  442. (sys_addr < ((1ull << 32) + hole_size))) {
  443. /* use DHAR to translate SysAddr to DramAddr */
  444. dram_addr = sys_addr - hole_offset;
  445. debugf2("using DHAR to translate SysAddr 0x%lx to "
  446. "DramAddr 0x%lx\n",
  447. (unsigned long)sys_addr,
  448. (unsigned long)dram_addr);
  449. return dram_addr;
  450. }
  451. }
  452. /*
  453. * Translate the SysAddr to a DramAddr as shown near the start of
  454. * section 3.4.4 (p. 70). Although sys_addr is a 64-bit value, the k8
  455. * only deals with 40-bit values. Therefore we discard bits 63-40 of
  456. * sys_addr below. If bit 39 of sys_addr is 1 then the bits we
  457. * discard are all 1s. Otherwise the bits we discard are all 0s. See
  458. * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
  459. * Programmer's Manual Volume 1 Application Programming.
  460. */
  461. dram_addr = (sys_addr & GENMASK(0, 39)) - dram_base;
  462. debugf2("using DRAM Base register to translate SysAddr 0x%lx to "
  463. "DramAddr 0x%lx\n", (unsigned long)sys_addr,
  464. (unsigned long)dram_addr);
  465. return dram_addr;
  466. }
  467. /*
  468. * @intlv_en is the value of the IntlvEn field from a DRAM Base register
  469. * (section 3.4.4.1). Return the number of bits from a SysAddr that are used
  470. * for node interleaving.
  471. */
  472. static int num_node_interleave_bits(unsigned intlv_en)
  473. {
  474. static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
  475. int n;
  476. BUG_ON(intlv_en > 7);
  477. n = intlv_shift_table[intlv_en];
  478. return n;
  479. }
  480. /* Translate the DramAddr given by @dram_addr to an InputAddr. */
  481. static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
  482. {
  483. struct amd64_pvt *pvt;
  484. int intlv_shift;
  485. u64 input_addr;
  486. pvt = mci->pvt_info;
  487. /*
  488. * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
  489. * concerning translating a DramAddr to an InputAddr.
  490. */
  491. intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
  492. input_addr = ((dram_addr >> intlv_shift) & GENMASK(12, 35)) +
  493. (dram_addr & 0xfff);
  494. debugf2(" Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
  495. intlv_shift, (unsigned long)dram_addr,
  496. (unsigned long)input_addr);
  497. return input_addr;
  498. }
  499. /*
  500. * Translate the SysAddr represented by @sys_addr to an InputAddr. It is
  501. * assumed that @sys_addr maps to the node given by mci.
  502. */
  503. static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
  504. {
  505. u64 input_addr;
  506. input_addr =
  507. dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));
  508. debugf2("SysAdddr 0x%lx translates to InputAddr 0x%lx\n",
  509. (unsigned long)sys_addr, (unsigned long)input_addr);
  510. return input_addr;
  511. }
  512. /*
  513. * @input_addr is an InputAddr associated with the node represented by mci.
  514. * Translate @input_addr to a DramAddr and return the result.
  515. */
  516. static u64 input_addr_to_dram_addr(struct mem_ctl_info *mci, u64 input_addr)
  517. {
  518. struct amd64_pvt *pvt;
  519. unsigned node_id, intlv_shift;
  520. u64 bits, dram_addr;
  521. u32 intlv_sel;
  522. /*
  523. * Near the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
  524. * shows how to translate a DramAddr to an InputAddr. Here we reverse
  525. * this procedure. When translating from a DramAddr to an InputAddr, the
  526. * bits used for node interleaving are discarded. Here we recover these
  527. * bits from the IntlvSel field of the DRAM Limit register (section
  528. * 3.4.4.2) for the node that input_addr is associated with.
  529. */
  530. pvt = mci->pvt_info;
  531. node_id = pvt->mc_node_id;
  532. BUG_ON(node_id > 7);
  533. intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
  534. if (intlv_shift == 0) {
  535. debugf1(" InputAddr 0x%lx translates to DramAddr of "
  536. "same value\n", (unsigned long)input_addr);
  537. return input_addr;
  538. }
  539. bits = ((input_addr & GENMASK(12, 35)) << intlv_shift) +
  540. (input_addr & 0xfff);
  541. intlv_sel = dram_intlv_sel(pvt, node_id) & ((1 << intlv_shift) - 1);
  542. dram_addr = bits + (intlv_sel << 12);
  543. debugf1("InputAddr 0x%lx translates to DramAddr 0x%lx "
  544. "(%d node interleave bits)\n", (unsigned long)input_addr,
  545. (unsigned long)dram_addr, intlv_shift);
  546. return dram_addr;
  547. }
  548. /*
  549. * @dram_addr is a DramAddr that maps to the node represented by mci. Convert
  550. * @dram_addr to a SysAddr.
  551. */
  552. static u64 dram_addr_to_sys_addr(struct mem_ctl_info *mci, u64 dram_addr)
  553. {
  554. struct amd64_pvt *pvt = mci->pvt_info;
  555. u64 hole_base, hole_offset, hole_size, base, sys_addr;
  556. int ret = 0;
  557. ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
  558. &hole_size);
  559. if (!ret) {
  560. if ((dram_addr >= hole_base) &&
  561. (dram_addr < (hole_base + hole_size))) {
  562. sys_addr = dram_addr + hole_offset;
  563. debugf1("using DHAR to translate DramAddr 0x%lx to "
  564. "SysAddr 0x%lx\n", (unsigned long)dram_addr,
  565. (unsigned long)sys_addr);
  566. return sys_addr;
  567. }
  568. }
  569. base = get_dram_base(pvt, pvt->mc_node_id);
  570. sys_addr = dram_addr + base;
  571. /*
  572. * The sys_addr we have computed up to this point is a 40-bit value
  573. * because the k8 deals with 40-bit values. However, the value we are
  574. * supposed to return is a full 64-bit physical address. The AMD
  575. * x86-64 architecture specifies that the most significant implemented
  576. * address bit through bit 63 of a physical address must be either all
  577. * 0s or all 1s. Therefore we sign-extend the 40-bit sys_addr to a
  578. * 64-bit value below. See section 3.4.2 of AMD publication 24592:
  579. * AMD x86-64 Architecture Programmer's Manual Volume 1 Application
  580. * Programming.
  581. */
  582. sys_addr |= ~((sys_addr & (1ull << 39)) - 1);
  583. debugf1(" Node %d, DramAddr 0x%lx to SysAddr 0x%lx\n",
  584. pvt->mc_node_id, (unsigned long)dram_addr,
  585. (unsigned long)sys_addr);
  586. return sys_addr;
  587. }
  588. /*
  589. * @input_addr is an InputAddr associated with the node given by mci. Translate
  590. * @input_addr to a SysAddr.
  591. */
  592. static inline u64 input_addr_to_sys_addr(struct mem_ctl_info *mci,
  593. u64 input_addr)
  594. {
  595. return dram_addr_to_sys_addr(mci,
  596. input_addr_to_dram_addr(mci, input_addr));
  597. }
  598. /* Map the Error address to a PAGE and PAGE OFFSET. */
  599. static inline void error_address_to_page_and_offset(u64 error_address,
  600. u32 *page, u32 *offset)
  601. {
  602. *page = (u32) (error_address >> PAGE_SHIFT);
  603. *offset = ((u32) error_address) & ~PAGE_MASK;
  604. }
  605. /*
  606. * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
  607. * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
  608. * of a node that detected an ECC memory error. mci represents the node that
  609. * the error address maps to (possibly different from the node that detected
  610. * the error). Return the number of the csrow that sys_addr maps to, or -1 on
  611. * error.
  612. */
  613. static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
  614. {
  615. int csrow;
  616. csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));
  617. if (csrow == -1)
  618. amd64_mc_err(mci, "Failed to translate InputAddr to csrow for "
  619. "address 0x%lx\n", (unsigned long)sys_addr);
  620. return csrow;
  621. }
  622. static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16);
  623. /*
  624. * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
  625. * are ECC capable.
  626. */
  627. static unsigned long amd64_determine_edac_cap(struct amd64_pvt *pvt)
  628. {
  629. u8 bit;
  630. unsigned long edac_cap = EDAC_FLAG_NONE;
  631. bit = (boot_cpu_data.x86 > 0xf || pvt->ext_model >= K8_REV_F)
  632. ? 19
  633. : 17;
  634. if (pvt->dclr0 & BIT(bit))
  635. edac_cap = EDAC_FLAG_SECDED;
  636. return edac_cap;
  637. }
  638. static void amd64_debug_display_dimm_sizes(struct amd64_pvt *, u8);
  639. static void amd64_dump_dramcfg_low(u32 dclr, int chan)
  640. {
  641. debugf1("F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr);
  642. debugf1(" DIMM type: %sbuffered; all DIMMs support ECC: %s\n",
  643. (dclr & BIT(16)) ? "un" : "",
  644. (dclr & BIT(19)) ? "yes" : "no");
  645. debugf1(" PAR/ERR parity: %s\n",
  646. (dclr & BIT(8)) ? "enabled" : "disabled");
  647. if (boot_cpu_data.x86 == 0x10)
  648. debugf1(" DCT 128bit mode width: %s\n",
  649. (dclr & BIT(11)) ? "128b" : "64b");
  650. debugf1(" x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
  651. (dclr & BIT(12)) ? "yes" : "no",
  652. (dclr & BIT(13)) ? "yes" : "no",
  653. (dclr & BIT(14)) ? "yes" : "no",
  654. (dclr & BIT(15)) ? "yes" : "no");
  655. }
  656. /* Display and decode various NB registers for debug purposes. */
  657. static void dump_misc_regs(struct amd64_pvt *pvt)
  658. {
  659. debugf1("F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap);
  660. debugf1(" NB two channel DRAM capable: %s\n",
  661. (pvt->nbcap & NBCAP_DCT_DUAL) ? "yes" : "no");
  662. debugf1(" ECC capable: %s, ChipKill ECC capable: %s\n",
  663. (pvt->nbcap & NBCAP_SECDED) ? "yes" : "no",
  664. (pvt->nbcap & NBCAP_CHIPKILL) ? "yes" : "no");
  665. amd64_dump_dramcfg_low(pvt->dclr0, 0);
  666. debugf1("F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare);
  667. debugf1("F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, "
  668. "offset: 0x%08x\n",
  669. pvt->dhar, dhar_base(pvt),
  670. (boot_cpu_data.x86 == 0xf) ? k8_dhar_offset(pvt)
  671. : f10_dhar_offset(pvt));
  672. debugf1(" DramHoleValid: %s\n", dhar_valid(pvt) ? "yes" : "no");
  673. amd64_debug_display_dimm_sizes(pvt, 0);
  674. /* everything below this point is Fam10h and above */
  675. if (boot_cpu_data.x86 == 0xf)
  676. return;
  677. amd64_debug_display_dimm_sizes(pvt, 1);
  678. amd64_info("using %s syndromes.\n", ((pvt->ecc_sym_sz == 8) ? "x8" : "x4"));
  679. /* Only if NOT ganged does dclr1 have valid info */
  680. if (!dct_ganging_enabled(pvt))
  681. amd64_dump_dramcfg_low(pvt->dclr1, 1);
  682. }
  683. /*
  684. * see BKDG, F2x[1,0][5C:40], F2[1,0][6C:60]
  685. */
  686. static void prep_chip_selects(struct amd64_pvt *pvt)
  687. {
  688. if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
  689. pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
  690. pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 8;
  691. } else {
  692. pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
  693. pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 4;
  694. }
  695. }
  696. /*
  697. * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask registers
  698. */
  699. static void read_dct_base_mask(struct amd64_pvt *pvt)
  700. {
  701. int cs;
  702. prep_chip_selects(pvt);
  703. for_each_chip_select(cs, 0, pvt) {
  704. int reg0 = DCSB0 + (cs * 4);
  705. int reg1 = DCSB1 + (cs * 4);
  706. u32 *base0 = &pvt->csels[0].csbases[cs];
  707. u32 *base1 = &pvt->csels[1].csbases[cs];
  708. if (!amd64_read_dct_pci_cfg(pvt, reg0, base0))
  709. debugf0(" DCSB0[%d]=0x%08x reg: F2x%x\n",
  710. cs, *base0, reg0);
  711. if (boot_cpu_data.x86 == 0xf || dct_ganging_enabled(pvt))
  712. continue;
  713. if (!amd64_read_dct_pci_cfg(pvt, reg1, base1))
  714. debugf0(" DCSB1[%d]=0x%08x reg: F2x%x\n",
  715. cs, *base1, reg1);
  716. }
  717. for_each_chip_select_mask(cs, 0, pvt) {
  718. int reg0 = DCSM0 + (cs * 4);
  719. int reg1 = DCSM1 + (cs * 4);
  720. u32 *mask0 = &pvt->csels[0].csmasks[cs];
  721. u32 *mask1 = &pvt->csels[1].csmasks[cs];
  722. if (!amd64_read_dct_pci_cfg(pvt, reg0, mask0))
  723. debugf0(" DCSM0[%d]=0x%08x reg: F2x%x\n",
  724. cs, *mask0, reg0);
  725. if (boot_cpu_data.x86 == 0xf || dct_ganging_enabled(pvt))
  726. continue;
  727. if (!amd64_read_dct_pci_cfg(pvt, reg1, mask1))
  728. debugf0(" DCSM1[%d]=0x%08x reg: F2x%x\n",
  729. cs, *mask1, reg1);
  730. }
  731. }
  732. static enum mem_type amd64_determine_memory_type(struct amd64_pvt *pvt, int cs)
  733. {
  734. enum mem_type type;
  735. /* F15h supports only DDR3 */
  736. if (boot_cpu_data.x86 >= 0x15)
  737. type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
  738. else if (boot_cpu_data.x86 == 0x10 || pvt->ext_model >= K8_REV_F) {
  739. if (pvt->dchr0 & DDR3_MODE)
  740. type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
  741. else
  742. type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
  743. } else {
  744. type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
  745. }
  746. amd64_info("CS%d: %s\n", cs, edac_mem_types[type]);
  747. return type;
  748. }
  749. /* Get the number of DCT channels the memory controller is using. */
  750. static int k8_early_channel_count(struct amd64_pvt *pvt)
  751. {
  752. int flag;
  753. if (pvt->ext_model >= K8_REV_F)
  754. /* RevF (NPT) and later */
  755. flag = pvt->dclr0 & WIDTH_128;
  756. else
  757. /* RevE and earlier */
  758. flag = pvt->dclr0 & REVE_WIDTH_128;
  759. /* not used */
  760. pvt->dclr1 = 0;
  761. return (flag) ? 2 : 1;
  762. }
  763. /* On F10h and later ErrAddr is MC4_ADDR[47:1] */
  764. static u64 get_error_address(struct mce *m)
  765. {
  766. struct cpuinfo_x86 *c = &boot_cpu_data;
  767. u64 addr;
  768. u8 start_bit = 1;
  769. u8 end_bit = 47;
  770. if (c->x86 == 0xf) {
  771. start_bit = 3;
  772. end_bit = 39;
  773. }
  774. addr = m->addr & GENMASK(start_bit, end_bit);
  775. /*
  776. * Erratum 637 workaround
  777. */
  778. if (c->x86 == 0x15) {
  779. struct amd64_pvt *pvt;
  780. u64 cc6_base, tmp_addr;
  781. u32 tmp;
  782. u8 mce_nid, intlv_en;
  783. if ((addr & GENMASK(24, 47)) >> 24 != 0x00fdf7)
  784. return addr;
  785. mce_nid = amd_get_nb_id(m->extcpu);
  786. pvt = mcis[mce_nid]->pvt_info;
  787. amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_LIM, &tmp);
  788. intlv_en = tmp >> 21 & 0x7;
  789. /* add [47:27] + 3 trailing bits */
  790. cc6_base = (tmp & GENMASK(0, 20)) << 3;
  791. /* reverse and add DramIntlvEn */
  792. cc6_base |= intlv_en ^ 0x7;
  793. /* pin at [47:24] */
  794. cc6_base <<= 24;
  795. if (!intlv_en)
  796. return cc6_base | (addr & GENMASK(0, 23));
  797. amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_BASE, &tmp);
  798. /* faster log2 */
  799. tmp_addr = (addr & GENMASK(12, 23)) << __fls(intlv_en + 1);
  800. /* OR DramIntlvSel into bits [14:12] */
  801. tmp_addr |= (tmp & GENMASK(21, 23)) >> 9;
  802. /* add remaining [11:0] bits from original MC4_ADDR */
  803. tmp_addr |= addr & GENMASK(0, 11);
  804. return cc6_base | tmp_addr;
  805. }
  806. return addr;
  807. }
  808. static void read_dram_base_limit_regs(struct amd64_pvt *pvt, unsigned range)
  809. {
  810. struct cpuinfo_x86 *c = &boot_cpu_data;
  811. int off = range << 3;
  812. amd64_read_pci_cfg(pvt->F1, DRAM_BASE_LO + off, &pvt->ranges[range].base.lo);
  813. amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_LO + off, &pvt->ranges[range].lim.lo);
  814. if (c->x86 == 0xf)
  815. return;
  816. if (!dram_rw(pvt, range))
  817. return;
  818. amd64_read_pci_cfg(pvt->F1, DRAM_BASE_HI + off, &pvt->ranges[range].base.hi);
  819. amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_HI + off, &pvt->ranges[range].lim.hi);
  820. /* Factor in CC6 save area by reading dst node's limit reg */
  821. if (c->x86 == 0x15) {
  822. struct pci_dev *f1 = NULL;
  823. u8 nid = dram_dst_node(pvt, range);
  824. u32 llim;
  825. f1 = pci_get_domain_bus_and_slot(0, 0, PCI_DEVFN(0x18 + nid, 1));
  826. if (WARN_ON(!f1))
  827. return;
  828. amd64_read_pci_cfg(f1, DRAM_LOCAL_NODE_LIM, &llim);
  829. pvt->ranges[range].lim.lo &= GENMASK(0, 15);
  830. /* {[39:27],111b} */
  831. pvt->ranges[range].lim.lo |= ((llim & 0x1fff) << 3 | 0x7) << 16;
  832. pvt->ranges[range].lim.hi &= GENMASK(0, 7);
  833. /* [47:40] */
  834. pvt->ranges[range].lim.hi |= llim >> 13;
  835. pci_dev_put(f1);
  836. }
  837. }
  838. static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
  839. u16 syndrome)
  840. {
  841. struct mem_ctl_info *src_mci;
  842. struct amd64_pvt *pvt = mci->pvt_info;
  843. int channel, csrow;
  844. u32 page, offset;
  845. error_address_to_page_and_offset(sys_addr, &page, &offset);
  846. /*
  847. * Find out which node the error address belongs to. This may be
  848. * different from the node that detected the error.
  849. */
  850. src_mci = find_mc_by_sys_addr(mci, sys_addr);
  851. if (!src_mci) {
  852. amd64_mc_err(mci, "failed to map error addr 0x%lx to a node\n",
  853. (unsigned long)sys_addr);
  854. edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci,
  855. page, offset, syndrome,
  856. -1, -1, -1,
  857. EDAC_MOD_STR,
  858. "failed to map error addr to a node",
  859. NULL);
  860. return;
  861. }
  862. /* Now map the sys_addr to a CSROW */
  863. csrow = sys_addr_to_csrow(src_mci, sys_addr);
  864. if (csrow < 0) {
  865. edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci,
  866. page, offset, syndrome,
  867. -1, -1, -1,
  868. EDAC_MOD_STR,
  869. "failed to map error addr to a csrow",
  870. NULL);
  871. return;
  872. }
  873. /* CHIPKILL enabled */
  874. if (pvt->nbcfg & NBCFG_CHIPKILL) {
  875. channel = get_channel_from_ecc_syndrome(mci, syndrome);
  876. if (channel < 0) {
  877. /*
  878. * Syndrome didn't map, so we don't know which of the
  879. * 2 DIMMs is in error. So we need to ID 'both' of them
  880. * as suspect.
  881. */
  882. amd64_mc_warn(src_mci, "unknown syndrome 0x%04x - "
  883. "possible error reporting race\n",
  884. syndrome);
  885. edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci,
  886. page, offset, syndrome,
  887. csrow, -1, -1,
  888. EDAC_MOD_STR,
  889. "unknown syndrome - possible error reporting race",
  890. NULL);
  891. return;
  892. }
  893. } else {
  894. /*
  895. * non-chipkill ecc mode
  896. *
  897. * The k8 documentation is unclear about how to determine the
  898. * channel number when using non-chipkill memory. This method
  899. * was obtained from email communication with someone at AMD.
  900. * (Wish the email was placed in this comment - norsk)
  901. */
  902. channel = ((sys_addr & BIT(3)) != 0);
  903. }
  904. edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, src_mci,
  905. page, offset, syndrome,
  906. csrow, channel, -1,
  907. EDAC_MOD_STR, "", NULL);
  908. }
  909. static int ddr2_cs_size(unsigned i, bool dct_width)
  910. {
  911. unsigned shift = 0;
  912. if (i <= 2)
  913. shift = i;
  914. else if (!(i & 0x1))
  915. shift = i >> 1;
  916. else
  917. shift = (i + 1) >> 1;
  918. return 128 << (shift + !!dct_width);
  919. }
  920. static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
  921. unsigned cs_mode)
  922. {
  923. u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;
  924. if (pvt->ext_model >= K8_REV_F) {
  925. WARN_ON(cs_mode > 11);
  926. return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
  927. }
  928. else if (pvt->ext_model >= K8_REV_D) {
  929. unsigned diff;
  930. WARN_ON(cs_mode > 10);
  931. /*
  932. * the below calculation, besides trying to win an obfuscated C
  933. * contest, maps cs_mode values to DIMM chip select sizes. The
  934. * mappings are:
  935. *
  936. * cs_mode CS size (mb)
  937. * ======= ============
  938. * 0 32
  939. * 1 64
  940. * 2 128
  941. * 3 128
  942. * 4 256
  943. * 5 512
  944. * 6 256
  945. * 7 512
  946. * 8 1024
  947. * 9 1024
  948. * 10 2048
  949. *
  950. * Basically, it calculates a value with which to shift the
  951. * smallest CS size of 32MB.
  952. *
  953. * ddr[23]_cs_size have a similar purpose.
  954. */
  955. diff = cs_mode/3 + (unsigned)(cs_mode > 5);
  956. return 32 << (cs_mode - diff);
  957. }
  958. else {
  959. WARN_ON(cs_mode > 6);
  960. return 32 << cs_mode;
  961. }
  962. }
  963. /*
  964. * Get the number of DCT channels in use.
  965. *
  966. * Return:
  967. * number of Memory Channels in operation
  968. * Pass back:
  969. * contents of the DCL0_LOW register
  970. */
  971. static int f1x_early_channel_count(struct amd64_pvt *pvt)
  972. {
  973. int i, j, channels = 0;
  974. /* On F10h, if we are in 128 bit mode, then we are using 2 channels */
  975. if (boot_cpu_data.x86 == 0x10 && (pvt->dclr0 & WIDTH_128))
  976. return 2;
  977. /*
  978. * Need to check if in unganged mode: In such, there are 2 channels,
  979. * but they are not in 128 bit mode and thus the above 'dclr0' status
  980. * bit will be OFF.
  981. *
  982. * Need to check DCT0[0] and DCT1[0] to see if only one of them has
  983. * their CSEnable bit on. If so, then SINGLE DIMM case.
  984. */
  985. debugf0("Data width is not 128 bits - need more decoding\n");
  986. /*
  987. * Check DRAM Bank Address Mapping values for each DIMM to see if there
  988. * is more than just one DIMM present in unganged mode. Need to check
  989. * both controllers since DIMMs can be placed in either one.
  990. */
  991. for (i = 0; i < 2; i++) {
  992. u32 dbam = (i ? pvt->dbam1 : pvt->dbam0);
  993. for (j = 0; j < 4; j++) {
  994. if (DBAM_DIMM(j, dbam) > 0) {
  995. channels++;
  996. break;
  997. }
  998. }
  999. }
  1000. if (channels > 2)
  1001. channels = 2;
  1002. amd64_info("MCT channel count: %d\n", channels);
  1003. return channels;
  1004. }
  1005. static int ddr3_cs_size(unsigned i, bool dct_width)
  1006. {
  1007. unsigned shift = 0;
  1008. int cs_size = 0;
  1009. if (i == 0 || i == 3 || i == 4)
  1010. cs_size = -1;
  1011. else if (i <= 2)
  1012. shift = i;
  1013. else if (i == 12)
  1014. shift = 7;
  1015. else if (!(i & 0x1))
  1016. shift = i >> 1;
  1017. else
  1018. shift = (i + 1) >> 1;
  1019. if (cs_size != -1)
  1020. cs_size = (128 * (1 << !!dct_width)) << shift;
  1021. return cs_size;
  1022. }
  1023. static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
  1024. unsigned cs_mode)
  1025. {
  1026. u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;
  1027. WARN_ON(cs_mode > 11);
  1028. if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE)
  1029. return ddr3_cs_size(cs_mode, dclr & WIDTH_128);
  1030. else
  1031. return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
  1032. }
  1033. /*
  1034. * F15h supports only 64bit DCT interfaces
  1035. */
  1036. static int f15_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
  1037. unsigned cs_mode)
  1038. {
  1039. WARN_ON(cs_mode > 12);
  1040. return ddr3_cs_size(cs_mode, false);
  1041. }
  1042. static void read_dram_ctl_register(struct amd64_pvt *pvt)
  1043. {
  1044. if (boot_cpu_data.x86 == 0xf)
  1045. return;
  1046. if (!amd64_read_dct_pci_cfg(pvt, DCT_SEL_LO, &pvt->dct_sel_lo)) {
  1047. debugf0("F2x110 (DCTSelLow): 0x%08x, High range addrs at: 0x%x\n",
  1048. pvt->dct_sel_lo, dct_sel_baseaddr(pvt));
  1049. debugf0(" DCTs operate in %s mode.\n",
  1050. (dct_ganging_enabled(pvt) ? "ganged" : "unganged"));
  1051. if (!dct_ganging_enabled(pvt))
  1052. debugf0(" Address range split per DCT: %s\n",
  1053. (dct_high_range_enabled(pvt) ? "yes" : "no"));
  1054. debugf0(" data interleave for ECC: %s, "
  1055. "DRAM cleared since last warm reset: %s\n",
  1056. (dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"),
  1057. (dct_memory_cleared(pvt) ? "yes" : "no"));
  1058. debugf0(" channel interleave: %s, "
  1059. "interleave bits selector: 0x%x\n",
  1060. (dct_interleave_enabled(pvt) ? "enabled" : "disabled"),
  1061. dct_sel_interleave_addr(pvt));
  1062. }
  1063. amd64_read_dct_pci_cfg(pvt, DCT_SEL_HI, &pvt->dct_sel_hi);
  1064. }
  1065. /*
  1066. * Determine channel (DCT) based on the interleaving mode: F10h BKDG, 2.8.9 Memory
  1067. * Interleaving Modes.
  1068. */
  1069. static u8 f1x_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
  1070. bool hi_range_sel, u8 intlv_en)
  1071. {
  1072. u8 dct_sel_high = (pvt->dct_sel_lo >> 1) & 1;
  1073. if (dct_ganging_enabled(pvt))
  1074. return 0;
  1075. if (hi_range_sel)
  1076. return dct_sel_high;
  1077. /*
  1078. * see F2x110[DctSelIntLvAddr] - channel interleave mode
  1079. */
  1080. if (dct_interleave_enabled(pvt)) {
  1081. u8 intlv_addr = dct_sel_interleave_addr(pvt);
  1082. /* return DCT select function: 0=DCT0, 1=DCT1 */
  1083. if (!intlv_addr)
  1084. return sys_addr >> 6 & 1;
  1085. if (intlv_addr & 0x2) {
  1086. u8 shift = intlv_addr & 0x1 ? 9 : 6;
  1087. u32 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2;
  1088. return ((sys_addr >> shift) & 1) ^ temp;
  1089. }
  1090. return (sys_addr >> (12 + hweight8(intlv_en))) & 1;
  1091. }
  1092. if (dct_high_range_enabled(pvt))
  1093. return ~dct_sel_high & 1;
  1094. return 0;
  1095. }
  1096. /* Convert the sys_addr to the normalized DCT address */
  1097. static u64 f1x_get_norm_dct_addr(struct amd64_pvt *pvt, unsigned range,
  1098. u64 sys_addr, bool hi_rng,
  1099. u32 dct_sel_base_addr)
  1100. {
  1101. u64 chan_off;
  1102. u64 dram_base = get_dram_base(pvt, range);
  1103. u64 hole_off = f10_dhar_offset(pvt);
  1104. u64 dct_sel_base_off = (pvt->dct_sel_hi & 0xFFFFFC00) << 16;
  1105. if (hi_rng) {
  1106. /*
  1107. * if
  1108. * base address of high range is below 4Gb
  1109. * (bits [47:27] at [31:11])
  1110. * DRAM address space on this DCT is hoisted above 4Gb &&
  1111. * sys_addr > 4Gb
  1112. *
  1113. * remove hole offset from sys_addr
  1114. * else
  1115. * remove high range offset from sys_addr
  1116. */
  1117. if ((!(dct_sel_base_addr >> 16) ||
  1118. dct_sel_base_addr < dhar_base(pvt)) &&
  1119. dhar_valid(pvt) &&
  1120. (sys_addr >= BIT_64(32)))
  1121. chan_off = hole_off;
  1122. else
  1123. chan_off = dct_sel_base_off;
  1124. } else {
  1125. /*
  1126. * if
  1127. * we have a valid hole &&
  1128. * sys_addr > 4Gb
  1129. *
  1130. * remove hole
  1131. * else
  1132. * remove dram base to normalize to DCT address
  1133. */
  1134. if (dhar_valid(pvt) && (sys_addr >= BIT_64(32)))
  1135. chan_off = hole_off;
  1136. else
  1137. chan_off = dram_base;
  1138. }
  1139. return (sys_addr & GENMASK(6,47)) - (chan_off & GENMASK(23,47));
  1140. }
  1141. /*
  1142. * checks if the csrow passed in is marked as SPARED, if so returns the new
  1143. * spare row
  1144. */
  1145. static int f10_process_possible_spare(struct amd64_pvt *pvt, u8 dct, int csrow)
  1146. {
  1147. int tmp_cs;
  1148. if (online_spare_swap_done(pvt, dct) &&
  1149. csrow == online_spare_bad_dramcs(pvt, dct)) {
  1150. for_each_chip_select(tmp_cs, dct, pvt) {
  1151. if (chip_select_base(tmp_cs, dct, pvt) & 0x2) {
  1152. csrow = tmp_cs;
  1153. break;
  1154. }
  1155. }
  1156. }
  1157. return csrow;
  1158. }
  1159. /*
  1160. * Iterate over the DRAM DCT "base" and "mask" registers looking for a
  1161. * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
  1162. *
  1163. * Return:
  1164. * -EINVAL: NOT FOUND
  1165. * 0..csrow = Chip-Select Row
  1166. */
  1167. static int f1x_lookup_addr_in_dct(u64 in_addr, u32 nid, u8 dct)
  1168. {
  1169. struct mem_ctl_info *mci;
  1170. struct amd64_pvt *pvt;
  1171. u64 cs_base, cs_mask;
  1172. int cs_found = -EINVAL;
  1173. int csrow;
  1174. mci = mcis[nid];
  1175. if (!mci)
  1176. return cs_found;
  1177. pvt = mci->pvt_info;
  1178. debugf1("input addr: 0x%llx, DCT: %d\n", in_addr, dct);
  1179. for_each_chip_select(csrow, dct, pvt) {
  1180. if (!csrow_enabled(csrow, dct, pvt))
  1181. continue;
  1182. get_cs_base_and_mask(pvt, csrow, dct, &cs_base, &cs_mask);
  1183. debugf1(" CSROW=%d CSBase=0x%llx CSMask=0x%llx\n",
  1184. csrow, cs_base, cs_mask);
  1185. cs_mask = ~cs_mask;
  1186. debugf1(" (InputAddr & ~CSMask)=0x%llx "
  1187. "(CSBase & ~CSMask)=0x%llx\n",
  1188. (in_addr & cs_mask), (cs_base & cs_mask));
  1189. if ((in_addr & cs_mask) == (cs_base & cs_mask)) {
  1190. cs_found = f10_process_possible_spare(pvt, dct, csrow);
  1191. debugf1(" MATCH csrow=%d\n", cs_found);
  1192. break;
  1193. }
  1194. }
  1195. return cs_found;
  1196. }
  1197. /*
  1198. * See F2x10C. Non-interleaved graphics framebuffer memory under the 16G is
  1199. * swapped with a region located at the bottom of memory so that the GPU can use
  1200. * the interleaved region and thus two channels.
  1201. */
  1202. static u64 f1x_swap_interleaved_region(struct amd64_pvt *pvt, u64 sys_addr)
  1203. {
  1204. u32 swap_reg, swap_base, swap_limit, rgn_size, tmp_addr;
  1205. if (boot_cpu_data.x86 == 0x10) {
  1206. /* only revC3 and revE have that feature */
  1207. if (boot_cpu_data.x86_model < 4 ||
  1208. (boot_cpu_data.x86_model < 0xa &&
  1209. boot_cpu_data.x86_mask < 3))
  1210. return sys_addr;
  1211. }
  1212. amd64_read_dct_pci_cfg(pvt, SWAP_INTLV_REG, &swap_reg);
  1213. if (!(swap_reg & 0x1))
  1214. return sys_addr;
  1215. swap_base = (swap_reg >> 3) & 0x7f;
  1216. swap_limit = (swap_reg >> 11) & 0x7f;
  1217. rgn_size = (swap_reg >> 20) & 0x7f;
  1218. tmp_addr = sys_addr >> 27;
  1219. if (!(sys_addr >> 34) &&
  1220. (((tmp_addr >= swap_base) &&
  1221. (tmp_addr <= swap_limit)) ||
  1222. (tmp_addr < rgn_size)))
  1223. return sys_addr ^ (u64)swap_base << 27;
  1224. return sys_addr;
  1225. }
  1226. /* For a given @dram_range, check if @sys_addr falls within it. */
  1227. static int f1x_match_to_this_node(struct amd64_pvt *pvt, unsigned range,
  1228. u64 sys_addr, int *nid, int *chan_sel)
  1229. {
  1230. int cs_found = -EINVAL;
  1231. u64 chan_addr;
  1232. u32 dct_sel_base;
  1233. u8 channel;
  1234. bool high_range = false;
  1235. u8 node_id = dram_dst_node(pvt, range);
  1236. u8 intlv_en = dram_intlv_en(pvt, range);
  1237. u32 intlv_sel = dram_intlv_sel(pvt, range);
  1238. debugf1("(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
  1239. range, sys_addr, get_dram_limit(pvt, range));
  1240. if (dhar_valid(pvt) &&
  1241. dhar_base(pvt) <= sys_addr &&
  1242. sys_addr < BIT_64(32)) {
  1243. amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
  1244. sys_addr);
  1245. return -EINVAL;
  1246. }
  1247. if (intlv_en && (intlv_sel != ((sys_addr >> 12) & intlv_en)))
  1248. return -EINVAL;
  1249. sys_addr = f1x_swap_interleaved_region(pvt, sys_addr);
  1250. dct_sel_base = dct_sel_baseaddr(pvt);
  1251. /*
  1252. * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
  1253. * select between DCT0 and DCT1.
  1254. */
  1255. if (dct_high_range_enabled(pvt) &&
  1256. !dct_ganging_enabled(pvt) &&
  1257. ((sys_addr >> 27) >= (dct_sel_base >> 11)))
  1258. high_range = true;
  1259. channel = f1x_determine_channel(pvt, sys_addr, high_range, intlv_en);
  1260. chan_addr = f1x_get_norm_dct_addr(pvt, range, sys_addr,
  1261. high_range, dct_sel_base);
  1262. /* Remove node interleaving, see F1x120 */
  1263. if (intlv_en)
  1264. chan_addr = ((chan_addr >> (12 + hweight8(intlv_en))) << 12) |
  1265. (chan_addr & 0xfff);
  1266. /* remove channel interleave */
  1267. if (dct_interleave_enabled(pvt) &&
  1268. !dct_high_range_enabled(pvt) &&
  1269. !dct_ganging_enabled(pvt)) {
  1270. if (dct_sel_interleave_addr(pvt) != 1) {
  1271. if (dct_sel_interleave_addr(pvt) == 0x3)
  1272. /* hash 9 */
  1273. chan_addr = ((chan_addr >> 10) << 9) |
  1274. (chan_addr & 0x1ff);
  1275. else
  1276. /* A[6] or hash 6 */
  1277. chan_addr = ((chan_addr >> 7) << 6) |
  1278. (chan_addr & 0x3f);
  1279. } else
  1280. /* A[12] */
  1281. chan_addr = ((chan_addr >> 13) << 12) |
  1282. (chan_addr & 0xfff);
  1283. }
  1284. debugf1(" Normalized DCT addr: 0x%llx\n", chan_addr);
  1285. cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, channel);
  1286. if (cs_found >= 0) {
  1287. *nid = node_id;
  1288. *chan_sel = channel;
  1289. }
  1290. return cs_found;
  1291. }
  1292. static int f1x_translate_sysaddr_to_cs(struct amd64_pvt *pvt, u64 sys_addr,
  1293. int *node, int *chan_sel)
  1294. {
  1295. int cs_found = -EINVAL;
  1296. unsigned range;
  1297. for (range = 0; range < DRAM_RANGES; range++) {
  1298. if (!dram_rw(pvt, range))
  1299. continue;
  1300. if ((get_dram_base(pvt, range) <= sys_addr) &&
  1301. (get_dram_limit(pvt, range) >= sys_addr)) {
  1302. cs_found = f1x_match_to_this_node(pvt, range,
  1303. sys_addr, node,
  1304. chan_sel);
  1305. if (cs_found >= 0)
  1306. break;
  1307. }
  1308. }
  1309. return cs_found;
  1310. }
  1311. /*
  1312. * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps
  1313. * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW).
  1314. *
  1315. * The @sys_addr is usually an error address received from the hardware
  1316. * (MCX_ADDR).
  1317. */
  1318. static void f1x_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
  1319. u16 syndrome)
  1320. {
  1321. struct amd64_pvt *pvt = mci->pvt_info;
  1322. u32 page, offset;
  1323. int nid, csrow, chan = 0;
  1324. error_address_to_page_and_offset(sys_addr, &page, &offset);
  1325. csrow = f1x_translate_sysaddr_to_cs(pvt, sys_addr, &nid, &chan);
  1326. if (csrow < 0) {
  1327. edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci,
  1328. page, offset, syndrome,
  1329. -1, -1, -1,
  1330. EDAC_MOD_STR,
  1331. "failed to map error addr to a csrow",
  1332. NULL);
  1333. return;
  1334. }
  1335. /*
  1336. * We need the syndromes for channel detection only when we're
  1337. * ganged. Otherwise @chan should already contain the channel at
  1338. * this point.
  1339. */
  1340. if (dct_ganging_enabled(pvt))
  1341. chan = get_channel_from_ecc_syndrome(mci, syndrome);
  1342. edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci,
  1343. page, offset, syndrome,
  1344. csrow, chan, -1,
  1345. EDAC_MOD_STR, "", NULL);
  1346. }
  1347. /*
  1348. * debug routine to display the memory sizes of all logical DIMMs and its
  1349. * CSROWs
  1350. */
  1351. static void amd64_debug_display_dimm_sizes(struct amd64_pvt *pvt, u8 ctrl)
  1352. {
  1353. int dimm, size0, size1, factor = 0;
  1354. u32 *dcsb = ctrl ? pvt->csels[1].csbases : pvt->csels[0].csbases;
  1355. u32 dbam = ctrl ? pvt->dbam1 : pvt->dbam0;
  1356. if (boot_cpu_data.x86 == 0xf) {
  1357. if (pvt->dclr0 & WIDTH_128)
  1358. factor = 1;
  1359. /* K8 families < revF not supported yet */
  1360. if (pvt->ext_model < K8_REV_F)
  1361. return;
  1362. else
  1363. WARN_ON(ctrl != 0);
  1364. }
  1365. dbam = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->dbam1 : pvt->dbam0;
  1366. dcsb = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->csels[1].csbases
  1367. : pvt->csels[0].csbases;
  1368. debugf1("F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n", ctrl, dbam);
  1369. edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl);
  1370. /* Dump memory sizes for DIMM and its CSROWs */
  1371. for (dimm = 0; dimm < 4; dimm++) {
  1372. size0 = 0;
  1373. if (dcsb[dimm*2] & DCSB_CS_ENABLE)
  1374. size0 = pvt->ops->dbam_to_cs(pvt, ctrl,
  1375. DBAM_DIMM(dimm, dbam));
  1376. size1 = 0;
  1377. if (dcsb[dimm*2 + 1] & DCSB_CS_ENABLE)
  1378. size1 = pvt->ops->dbam_to_cs(pvt, ctrl,
  1379. DBAM_DIMM(dimm, dbam));
  1380. amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n",
  1381. dimm * 2, size0 << factor,
  1382. dimm * 2 + 1, size1 << factor);
  1383. }
  1384. }
  1385. static struct amd64_family_type amd64_family_types[] = {
  1386. [K8_CPUS] = {
  1387. .ctl_name = "K8",
  1388. .f1_id = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
  1389. .f3_id = PCI_DEVICE_ID_AMD_K8_NB_MISC,
  1390. .ops = {
  1391. .early_channel_count = k8_early_channel_count,
  1392. .map_sysaddr_to_csrow = k8_map_sysaddr_to_csrow,
  1393. .dbam_to_cs = k8_dbam_to_chip_select,
  1394. .read_dct_pci_cfg = k8_read_dct_pci_cfg,
  1395. }
  1396. },
  1397. [F10_CPUS] = {
  1398. .ctl_name = "F10h",
  1399. .f1_id = PCI_DEVICE_ID_AMD_10H_NB_MAP,
  1400. .f3_id = PCI_DEVICE_ID_AMD_10H_NB_MISC,
  1401. .ops = {
  1402. .early_channel_count = f1x_early_channel_count,
  1403. .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
  1404. .dbam_to_cs = f10_dbam_to_chip_select,
  1405. .read_dct_pci_cfg = f10_read_dct_pci_cfg,
  1406. }
  1407. },
  1408. [F15_CPUS] = {
  1409. .ctl_name = "F15h",
  1410. .f1_id = PCI_DEVICE_ID_AMD_15H_NB_F1,
  1411. .f3_id = PCI_DEVICE_ID_AMD_15H_NB_F3,
  1412. .ops = {
  1413. .early_channel_count = f1x_early_channel_count,
  1414. .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
  1415. .dbam_to_cs = f15_dbam_to_chip_select,
  1416. .read_dct_pci_cfg = f15_read_dct_pci_cfg,
  1417. }
  1418. },
  1419. };
  1420. static struct pci_dev *pci_get_related_function(unsigned int vendor,
  1421. unsigned int device,
  1422. struct pci_dev *related)
  1423. {
  1424. struct pci_dev *dev = NULL;
  1425. dev = pci_get_device(vendor, device, dev);
  1426. while (dev) {
  1427. if ((dev->bus->number == related->bus->number) &&
  1428. (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
  1429. break;
  1430. dev = pci_get_device(vendor, device, dev);
  1431. }
  1432. return dev;
  1433. }
  1434. /*
  1435. * These are tables of eigenvectors (one per line) which can be used for the
  1436. * construction of the syndrome tables. The modified syndrome search algorithm
  1437. * uses those to find the symbol in error and thus the DIMM.
  1438. *
  1439. * Algorithm courtesy of Ross LaFetra from AMD.
  1440. */
  1441. static u16 x4_vectors[] = {
  1442. 0x2f57, 0x1afe, 0x66cc, 0xdd88,
  1443. 0x11eb, 0x3396, 0x7f4c, 0xeac8,
  1444. 0x0001, 0x0002, 0x0004, 0x0008,
  1445. 0x1013, 0x3032, 0x4044, 0x8088,
  1446. 0x106b, 0x30d6, 0x70fc, 0xe0a8,
  1447. 0x4857, 0xc4fe, 0x13cc, 0x3288,
  1448. 0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
  1449. 0x1f39, 0x251e, 0xbd6c, 0x6bd8,
  1450. 0x15c1, 0x2a42, 0x89ac, 0x4758,
  1451. 0x2b03, 0x1602, 0x4f0c, 0xca08,
  1452. 0x1f07, 0x3a0e, 0x6b04, 0xbd08,
  1453. 0x8ba7, 0x465e, 0x244c, 0x1cc8,
  1454. 0x2b87, 0x164e, 0x642c, 0xdc18,
  1455. 0x40b9, 0x80de, 0x1094, 0x20e8,
  1456. 0x27db, 0x1eb6, 0x9dac, 0x7b58,
  1457. 0x11c1, 0x2242, 0x84ac, 0x4c58,
  1458. 0x1be5, 0x2d7a, 0x5e34, 0xa718,
  1459. 0x4b39, 0x8d1e, 0x14b4, 0x28d8,
  1460. 0x4c97, 0xc87e, 0x11fc, 0x33a8,
  1461. 0x8e97, 0x497e, 0x2ffc, 0x1aa8,
  1462. 0x16b3, 0x3d62, 0x4f34, 0x8518,
  1463. 0x1e2f, 0x391a, 0x5cac, 0xf858,
  1464. 0x1d9f, 0x3b7a, 0x572c, 0xfe18,
  1465. 0x15f5, 0x2a5a, 0x5264, 0xa3b8,
  1466. 0x1dbb, 0x3b66, 0x715c, 0xe3f8,
  1467. 0x4397, 0xc27e, 0x17fc, 0x3ea8,
  1468. 0x1617, 0x3d3e, 0x6464, 0xb8b8,
  1469. 0x23ff, 0x12aa, 0xab6c, 0x56d8,
  1470. 0x2dfb, 0x1ba6, 0x913c, 0x7328,
  1471. 0x185d, 0x2ca6, 0x7914, 0x9e28,
  1472. 0x171b, 0x3e36, 0x7d7c, 0xebe8,
  1473. 0x4199, 0x82ee, 0x19f4, 0x2e58,
  1474. 0x4807, 0xc40e, 0x130c, 0x3208,
  1475. 0x1905, 0x2e0a, 0x5804, 0xac08,
  1476. 0x213f, 0x132a, 0xadfc, 0x5ba8,
  1477. 0x19a9, 0x2efe, 0xb5cc, 0x6f88,
  1478. };
  1479. static u16 x8_vectors[] = {
  1480. 0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
  1481. 0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
  1482. 0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
  1483. 0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
  1484. 0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
  1485. 0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
  1486. 0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
  1487. 0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
  1488. 0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
  1489. 0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
  1490. 0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
  1491. 0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
  1492. 0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
  1493. 0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
  1494. 0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
  1495. 0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
  1496. 0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
  1497. 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
  1498. 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
  1499. };
  1500. static int decode_syndrome(u16 syndrome, u16 *vectors, unsigned num_vecs,
  1501. unsigned v_dim)
  1502. {
  1503. unsigned int i, err_sym;
  1504. for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) {
  1505. u16 s = syndrome;
  1506. unsigned v_idx = err_sym * v_dim;
  1507. unsigned v_end = (err_sym + 1) * v_dim;
  1508. /* walk over all 16 bits of the syndrome */
  1509. for (i = 1; i < (1U << 16); i <<= 1) {
  1510. /* if bit is set in that eigenvector... */
  1511. if (v_idx < v_end && vectors[v_idx] & i) {
  1512. u16 ev_comp = vectors[v_idx++];
  1513. /* ... and bit set in the modified syndrome, */
  1514. if (s & i) {
  1515. /* remove it. */
  1516. s ^= ev_comp;
  1517. if (!s)
  1518. return err_sym;
  1519. }
  1520. } else if (s & i)
  1521. /* can't get to zero, move to next symbol */
  1522. break;
  1523. }
  1524. }
  1525. debugf0("syndrome(%x) not found\n", syndrome);
  1526. return -1;
  1527. }
  1528. static int map_err_sym_to_channel(int err_sym, int sym_size)
  1529. {
  1530. if (sym_size == 4)
  1531. switch (err_sym) {
  1532. case 0x20:
  1533. case 0x21:
  1534. return 0;
  1535. break;
  1536. case 0x22:
  1537. case 0x23:
  1538. return 1;
  1539. break;
  1540. default:
  1541. return err_sym >> 4;
  1542. break;
  1543. }
  1544. /* x8 symbols */
  1545. else
  1546. switch (err_sym) {
  1547. /* imaginary bits not in a DIMM */
  1548. case 0x10:
  1549. WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n",
  1550. err_sym);
  1551. return -1;
  1552. break;
  1553. case 0x11:
  1554. return 0;
  1555. break;
  1556. case 0x12:
  1557. return 1;
  1558. break;
  1559. default:
  1560. return err_sym >> 3;
  1561. break;
  1562. }
  1563. return -1;
  1564. }
  1565. static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome)
  1566. {
  1567. struct amd64_pvt *pvt = mci->pvt_info;
  1568. int err_sym = -1;
  1569. if (pvt->ecc_sym_sz == 8)
  1570. err_sym = decode_syndrome(syndrome, x8_vectors,
  1571. ARRAY_SIZE(x8_vectors),
  1572. pvt->ecc_sym_sz);
  1573. else if (pvt->ecc_sym_sz == 4)
  1574. err_sym = decode_syndrome(syndrome, x4_vectors,
  1575. ARRAY_SIZE(x4_vectors),
  1576. pvt->ecc_sym_sz);
  1577. else {
  1578. amd64_warn("Illegal syndrome type: %u\n", pvt->ecc_sym_sz);
  1579. return err_sym;
  1580. }
  1581. return map_err_sym_to_channel(err_sym, pvt->ecc_sym_sz);
  1582. }
  1583. /*
  1584. * Handle any Correctable Errors (CEs) that have occurred. Check for valid ERROR
  1585. * ADDRESS and process.
  1586. */
  1587. static void amd64_handle_ce(struct mem_ctl_info *mci, struct mce *m)
  1588. {
  1589. struct amd64_pvt *pvt = mci->pvt_info;
  1590. u64 sys_addr;
  1591. u16 syndrome;
  1592. /* Ensure that the Error Address is VALID */
  1593. if (!(m->status & MCI_STATUS_ADDRV)) {
  1594. amd64_mc_err(mci, "HW has no ERROR_ADDRESS available\n");
  1595. edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci,
  1596. 0, 0, 0,
  1597. -1, -1, -1,
  1598. EDAC_MOD_STR,
  1599. "HW has no ERROR_ADDRESS available",
  1600. NULL);
  1601. return;
  1602. }
  1603. sys_addr = get_error_address(m);
  1604. syndrome = extract_syndrome(m->status);
  1605. amd64_mc_err(mci, "CE ERROR_ADDRESS= 0x%llx\n", sys_addr);
  1606. pvt->ops->map_sysaddr_to_csrow(mci, sys_addr, syndrome);
  1607. }
  1608. /* Handle any Un-correctable Errors (UEs) */
  1609. static void amd64_handle_ue(struct mem_ctl_info *mci, struct mce *m)
  1610. {
  1611. struct mem_ctl_info *log_mci, *src_mci = NULL;
  1612. int csrow;
  1613. u64 sys_addr;
  1614. u32 page, offset;
  1615. log_mci = mci;
  1616. if (!(m->status & MCI_STATUS_ADDRV)) {
  1617. amd64_mc_err(mci, "HW has no ERROR_ADDRESS available\n");
  1618. edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci,
  1619. 0, 0, 0,
  1620. -1, -1, -1,
  1621. EDAC_MOD_STR,
  1622. "HW has no ERROR_ADDRESS available",
  1623. NULL);
  1624. return;
  1625. }
  1626. sys_addr = get_error_address(m);
  1627. error_address_to_page_and_offset(sys_addr, &page, &offset);
  1628. /*
  1629. * Find out which node the error address belongs to. This may be
  1630. * different from the node that detected the error.
  1631. */
  1632. src_mci = find_mc_by_sys_addr(mci, sys_addr);
  1633. if (!src_mci) {
  1634. amd64_mc_err(mci, "ERROR ADDRESS (0x%lx) NOT mapped to a MC\n",
  1635. (unsigned long)sys_addr);
  1636. edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci,
  1637. page, offset, 0,
  1638. -1, -1, -1,
  1639. EDAC_MOD_STR,
  1640. "ERROR ADDRESS NOT mapped to a MC", NULL);
  1641. return;
  1642. }
  1643. log_mci = src_mci;
  1644. csrow = sys_addr_to_csrow(log_mci, sys_addr);
  1645. if (csrow < 0) {
  1646. amd64_mc_err(mci, "ERROR_ADDRESS (0x%lx) NOT mapped to CS\n",
  1647. (unsigned long)sys_addr);
  1648. edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci,
  1649. page, offset, 0,
  1650. -1, -1, -1,
  1651. EDAC_MOD_STR,
  1652. "ERROR ADDRESS NOT mapped to CS",
  1653. NULL);
  1654. } else {
  1655. edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci,
  1656. page, offset, 0,
  1657. csrow, -1, -1,
  1658. EDAC_MOD_STR, "", NULL);
  1659. }
  1660. }
  1661. static inline void __amd64_decode_bus_error(struct mem_ctl_info *mci,
  1662. struct mce *m)
  1663. {
  1664. u16 ec = EC(m->status);
  1665. u8 xec = XEC(m->status, 0x1f);
  1666. u8 ecc_type = (m->status >> 45) & 0x3;
  1667. /* Bail early out if this was an 'observed' error */
  1668. if (PP(ec) == NBSL_PP_OBS)
  1669. return;
  1670. /* Do only ECC errors */
  1671. if (xec && xec != F10_NBSL_EXT_ERR_ECC)
  1672. return;
  1673. if (ecc_type == 2)
  1674. amd64_handle_ce(mci, m);
  1675. else if (ecc_type == 1)
  1676. amd64_handle_ue(mci, m);
  1677. }
  1678. void amd64_decode_bus_error(int node_id, struct mce *m)
  1679. {
  1680. __amd64_decode_bus_error(mcis[node_id], m);
  1681. }
  1682. /*
  1683. * Use pvt->F2 which contains the F2 CPU PCI device to get the related
  1684. * F1 (AddrMap) and F3 (Misc) devices. Return negative value on error.
  1685. */
  1686. static int reserve_mc_sibling_devs(struct amd64_pvt *pvt, u16 f1_id, u16 f3_id)
  1687. {
  1688. /* Reserve the ADDRESS MAP Device */
  1689. pvt->F1 = pci_get_related_function(pvt->F2->vendor, f1_id, pvt->F2);
  1690. if (!pvt->F1) {
  1691. amd64_err("error address map device not found: "
  1692. "vendor %x device 0x%x (broken BIOS?)\n",
  1693. PCI_VENDOR_ID_AMD, f1_id);
  1694. return -ENODEV;
  1695. }
  1696. /* Reserve the MISC Device */
  1697. pvt->F3 = pci_get_related_function(pvt->F2->vendor, f3_id, pvt->F2);
  1698. if (!pvt->F3) {
  1699. pci_dev_put(pvt->F1);
  1700. pvt->F1 = NULL;
  1701. amd64_err("error F3 device not found: "
  1702. "vendor %x device 0x%x (broken BIOS?)\n",
  1703. PCI_VENDOR_ID_AMD, f3_id);
  1704. return -ENODEV;
  1705. }
  1706. debugf1("F1: %s\n", pci_name(pvt->F1));
  1707. debugf1("F2: %s\n", pci_name(pvt->F2));
  1708. debugf1("F3: %s\n", pci_name(pvt->F3));
  1709. return 0;
  1710. }
  1711. static void free_mc_sibling_devs(struct amd64_pvt *pvt)
  1712. {
  1713. pci_dev_put(pvt->F1);
  1714. pci_dev_put(pvt->F3);
  1715. }
  1716. /*
  1717. * Retrieve the hardware registers of the memory controller (this includes the
  1718. * 'Address Map' and 'Misc' device regs)
  1719. */
  1720. static void read_mc_regs(struct amd64_pvt *pvt)
  1721. {
  1722. struct cpuinfo_x86 *c = &boot_cpu_data;
  1723. u64 msr_val;
  1724. u32 tmp;
  1725. unsigned range;
  1726. /*
  1727. * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
  1728. * those are Read-As-Zero
  1729. */
  1730. rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem);
  1731. debugf0(" TOP_MEM: 0x%016llx\n", pvt->top_mem);
  1732. /* check first whether TOP_MEM2 is enabled */
  1733. rdmsrl(MSR_K8_SYSCFG, msr_val);
  1734. if (msr_val & (1U << 21)) {
  1735. rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2);
  1736. debugf0(" TOP_MEM2: 0x%016llx\n", pvt->top_mem2);
  1737. } else
  1738. debugf0(" TOP_MEM2 disabled.\n");
  1739. amd64_read_pci_cfg(pvt->F3, NBCAP, &pvt->nbcap);
  1740. read_dram_ctl_register(pvt);
  1741. for (range = 0; range < DRAM_RANGES; range++) {
  1742. u8 rw;
  1743. /* read settings for this DRAM range */
  1744. read_dram_base_limit_regs(pvt, range);
  1745. rw = dram_rw(pvt, range);
  1746. if (!rw)
  1747. continue;
  1748. debugf1(" DRAM range[%d], base: 0x%016llx; limit: 0x%016llx\n",
  1749. range,
  1750. get_dram_base(pvt, range),
  1751. get_dram_limit(pvt, range));
  1752. debugf1(" IntlvEn=%s; Range access: %s%s IntlvSel=%d DstNode=%d\n",
  1753. dram_intlv_en(pvt, range) ? "Enabled" : "Disabled",
  1754. (rw & 0x1) ? "R" : "-",
  1755. (rw & 0x2) ? "W" : "-",
  1756. dram_intlv_sel(pvt, range),
  1757. dram_dst_node(pvt, range));
  1758. }
  1759. read_dct_base_mask(pvt);
  1760. amd64_read_pci_cfg(pvt->F1, DHAR, &pvt->dhar);
  1761. amd64_read_dct_pci_cfg(pvt, DBAM0, &pvt->dbam0);
  1762. amd64_read_pci_cfg(pvt->F3, F10_ONLINE_SPARE, &pvt->online_spare);
  1763. amd64_read_dct_pci_cfg(pvt, DCLR0, &pvt->dclr0);
  1764. amd64_read_dct_pci_cfg(pvt, DCHR0, &pvt->dchr0);
  1765. if (!dct_ganging_enabled(pvt)) {
  1766. amd64_read_dct_pci_cfg(pvt, DCLR1, &pvt->dclr1);
  1767. amd64_read_dct_pci_cfg(pvt, DCHR1, &pvt->dchr1);
  1768. }
  1769. pvt->ecc_sym_sz = 4;
  1770. if (c->x86 >= 0x10) {
  1771. amd64_read_pci_cfg(pvt->F3, EXT_NB_MCA_CFG, &tmp);
  1772. amd64_read_dct_pci_cfg(pvt, DBAM1, &pvt->dbam1);
  1773. /* F10h, revD and later can do x8 ECC too */
  1774. if ((c->x86 > 0x10 || c->x86_model > 7) && tmp & BIT(25))
  1775. pvt->ecc_sym_sz = 8;
  1776. }
  1777. dump_misc_regs(pvt);
  1778. }
  1779. /*
  1780. * NOTE: CPU Revision Dependent code
  1781. *
  1782. * Input:
  1783. * @csrow_nr ChipSelect Row Number (0..NUM_CHIPSELECTS-1)
  1784. * k8 private pointer to -->
  1785. * DRAM Bank Address mapping register
  1786. * node_id
  1787. * DCL register where dual_channel_active is
  1788. *
  1789. * The DBAM register consists of 4 sets of 4 bits each definitions:
  1790. *
  1791. * Bits: CSROWs
  1792. * 0-3 CSROWs 0 and 1
  1793. * 4-7 CSROWs 2 and 3
  1794. * 8-11 CSROWs 4 and 5
  1795. * 12-15 CSROWs 6 and 7
  1796. *
  1797. * Values range from: 0 to 15
  1798. * The meaning of the values depends on CPU revision and dual-channel state,
  1799. * see relevant BKDG more info.
  1800. *
  1801. * The memory controller provides for total of only 8 CSROWs in its current
  1802. * architecture. Each "pair" of CSROWs normally represents just one DIMM in
  1803. * single channel or two (2) DIMMs in dual channel mode.
  1804. *
  1805. * The following code logic collapses the various tables for CSROW based on CPU
  1806. * revision.
  1807. *
  1808. * Returns:
  1809. * The number of PAGE_SIZE pages on the specified CSROW number it
  1810. * encompasses
  1811. *
  1812. */
  1813. static u32 amd64_csrow_nr_pages(struct amd64_pvt *pvt, u8 dct, int csrow_nr)
  1814. {
  1815. u32 cs_mode, nr_pages;
  1816. u32 dbam = dct ? pvt->dbam1 : pvt->dbam0;
  1817. /*
  1818. * The math on this doesn't look right on the surface because x/2*4 can
  1819. * be simplified to x*2 but this expression makes use of the fact that
  1820. * it is integral math where 1/2=0. This intermediate value becomes the
  1821. * number of bits to shift the DBAM register to extract the proper CSROW
  1822. * field.
  1823. */
  1824. cs_mode = (dbam >> ((csrow_nr / 2) * 4)) & 0xF;
  1825. nr_pages = pvt->ops->dbam_to_cs(pvt, dct, cs_mode) << (20 - PAGE_SHIFT);
  1826. debugf0(" (csrow=%d) DBAM map index= %d\n", csrow_nr, cs_mode);
  1827. debugf0(" nr_pages/channel= %u channel-count = %d\n",
  1828. nr_pages, pvt->channel_count);
  1829. return nr_pages;
  1830. }
  1831. /*
  1832. * Initialize the array of csrow attribute instances, based on the values
  1833. * from pci config hardware registers.
  1834. */
  1835. static int init_csrows(struct mem_ctl_info *mci)
  1836. {
  1837. struct csrow_info *csrow;
  1838. struct amd64_pvt *pvt = mci->pvt_info;
  1839. u64 base, mask;
  1840. u32 val;
  1841. int i, j, empty = 1;
  1842. enum mem_type mtype;
  1843. enum edac_type edac_mode;
  1844. int nr_pages = 0;
  1845. amd64_read_pci_cfg(pvt->F3, NBCFG, &val);
  1846. pvt->nbcfg = val;
  1847. debugf0("node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n",
  1848. pvt->mc_node_id, val,
  1849. !!(val & NBCFG_CHIPKILL), !!(val & NBCFG_ECC_ENABLE));
  1850. for_each_chip_select(i, 0, pvt) {
  1851. csrow = &mci->csrows[i];
  1852. if (!csrow_enabled(i, 0, pvt) && !csrow_enabled(i, 1, pvt)) {
  1853. debugf1("----CSROW %d EMPTY for node %d\n", i,
  1854. pvt->mc_node_id);
  1855. continue;
  1856. }
  1857. debugf1("----CSROW %d VALID for MC node %d\n",
  1858. i, pvt->mc_node_id);
  1859. empty = 0;
  1860. if (csrow_enabled(i, 0, pvt))
  1861. nr_pages = amd64_csrow_nr_pages(pvt, 0, i);
  1862. if (csrow_enabled(i, 1, pvt))
  1863. nr_pages += amd64_csrow_nr_pages(pvt, 1, i);
  1864. get_cs_base_and_mask(pvt, i, 0, &base, &mask);
  1865. /* 8 bytes of resolution */
  1866. mtype = amd64_determine_memory_type(pvt, i);
  1867. debugf1(" for MC node %d csrow %d:\n", pvt->mc_node_id, i);
  1868. debugf1(" nr_pages: %u\n", nr_pages * pvt->channel_count);
  1869. /*
  1870. * determine whether CHIPKILL or JUST ECC or NO ECC is operating
  1871. */
  1872. if (pvt->nbcfg & NBCFG_ECC_ENABLE)
  1873. edac_mode = (pvt->nbcfg & NBCFG_CHIPKILL) ?
  1874. EDAC_S4ECD4ED : EDAC_SECDED;
  1875. else
  1876. edac_mode = EDAC_NONE;
  1877. for (j = 0; j < pvt->channel_count; j++) {
  1878. csrow->channels[j].dimm->mtype = mtype;
  1879. csrow->channels[j].dimm->edac_mode = edac_mode;
  1880. csrow->channels[j].dimm->nr_pages = nr_pages;
  1881. }
  1882. }
  1883. return empty;
  1884. }
  1885. /* get all cores on this DCT */
  1886. static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, unsigned nid)
  1887. {
  1888. int cpu;
  1889. for_each_online_cpu(cpu)
  1890. if (amd_get_nb_id(cpu) == nid)
  1891. cpumask_set_cpu(cpu, mask);
  1892. }
  1893. /* check MCG_CTL on all the cpus on this node */
  1894. static bool amd64_nb_mce_bank_enabled_on_node(unsigned nid)
  1895. {
  1896. cpumask_var_t mask;
  1897. int cpu, nbe;
  1898. bool ret = false;
  1899. if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
  1900. amd64_warn("%s: Error allocating mask\n", __func__);
  1901. return false;
  1902. }
  1903. get_cpus_on_this_dct_cpumask(mask, nid);
  1904. rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs);
  1905. for_each_cpu(cpu, mask) {
  1906. struct msr *reg = per_cpu_ptr(msrs, cpu);
  1907. nbe = reg->l & MSR_MCGCTL_NBE;
  1908. debugf0("core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
  1909. cpu, reg->q,
  1910. (nbe ? "enabled" : "disabled"));
  1911. if (!nbe)
  1912. goto out;
  1913. }
  1914. ret = true;
  1915. out:
  1916. free_cpumask_var(mask);
  1917. return ret;
  1918. }
  1919. static int toggle_ecc_err_reporting(struct ecc_settings *s, u8 nid, bool on)
  1920. {
  1921. cpumask_var_t cmask;
  1922. int cpu;
  1923. if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) {
  1924. amd64_warn("%s: error allocating mask\n", __func__);
  1925. return false;
  1926. }
  1927. get_cpus_on_this_dct_cpumask(cmask, nid);
  1928. rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
  1929. for_each_cpu(cpu, cmask) {
  1930. struct msr *reg = per_cpu_ptr(msrs, cpu);
  1931. if (on) {
  1932. if (reg->l & MSR_MCGCTL_NBE)
  1933. s->flags.nb_mce_enable = 1;
  1934. reg->l |= MSR_MCGCTL_NBE;
  1935. } else {
  1936. /*
  1937. * Turn off NB MCE reporting only when it was off before
  1938. */
  1939. if (!s->flags.nb_mce_enable)
  1940. reg->l &= ~MSR_MCGCTL_NBE;
  1941. }
  1942. }
  1943. wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
  1944. free_cpumask_var(cmask);
  1945. return 0;
  1946. }
  1947. static bool enable_ecc_error_reporting(struct ecc_settings *s, u8 nid,
  1948. struct pci_dev *F3)
  1949. {
  1950. bool ret = true;
  1951. u32 value, mask = 0x3; /* UECC/CECC enable */
  1952. if (toggle_ecc_err_reporting(s, nid, ON)) {
  1953. amd64_warn("Error enabling ECC reporting over MCGCTL!\n");
  1954. return false;
  1955. }
  1956. amd64_read_pci_cfg(F3, NBCTL, &value);
  1957. s->old_nbctl = value & mask;
  1958. s->nbctl_valid = true;
  1959. value |= mask;
  1960. amd64_write_pci_cfg(F3, NBCTL, value);
  1961. amd64_read_pci_cfg(F3, NBCFG, &value);
  1962. debugf0("1: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
  1963. nid, value, !!(value & NBCFG_ECC_ENABLE));
  1964. if (!(value & NBCFG_ECC_ENABLE)) {
  1965. amd64_warn("DRAM ECC disabled on this node, enabling...\n");
  1966. s->flags.nb_ecc_prev = 0;
  1967. /* Attempt to turn on DRAM ECC Enable */
  1968. value |= NBCFG_ECC_ENABLE;
  1969. amd64_write_pci_cfg(F3, NBCFG, value);
  1970. amd64_read_pci_cfg(F3, NBCFG, &value);
  1971. if (!(value & NBCFG_ECC_ENABLE)) {
  1972. amd64_warn("Hardware rejected DRAM ECC enable,"
  1973. "check memory DIMM configuration.\n");
  1974. ret = false;
  1975. } else {
  1976. amd64_info("Hardware accepted DRAM ECC Enable\n");
  1977. }
  1978. } else {
  1979. s->flags.nb_ecc_prev = 1;
  1980. }
  1981. debugf0("2: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
  1982. nid, value, !!(value & NBCFG_ECC_ENABLE));
  1983. return ret;
  1984. }
  1985. static void restore_ecc_error_reporting(struct ecc_settings *s, u8 nid,
  1986. struct pci_dev *F3)
  1987. {
  1988. u32 value, mask = 0x3; /* UECC/CECC enable */
  1989. if (!s->nbctl_valid)
  1990. return;
  1991. amd64_read_pci_cfg(F3, NBCTL, &value);
  1992. value &= ~mask;
  1993. value |= s->old_nbctl;
  1994. amd64_write_pci_cfg(F3, NBCTL, value);
  1995. /* restore previous BIOS DRAM ECC "off" setting we force-enabled */
  1996. if (!s->flags.nb_ecc_prev) {
  1997. amd64_read_pci_cfg(F3, NBCFG, &value);
  1998. value &= ~NBCFG_ECC_ENABLE;
  1999. amd64_write_pci_cfg(F3, NBCFG, value);
  2000. }
  2001. /* restore the NB Enable MCGCTL bit */
  2002. if (toggle_ecc_err_reporting(s, nid, OFF))
  2003. amd64_warn("Error restoring NB MCGCTL settings!\n");
  2004. }
  2005. /*
  2006. * EDAC requires that the BIOS have ECC enabled before
  2007. * taking over the processing of ECC errors. A command line
  2008. * option allows to force-enable hardware ECC later in
  2009. * enable_ecc_error_reporting().
  2010. */
  2011. static const char *ecc_msg =
  2012. "ECC disabled in the BIOS or no ECC capability, module will not load.\n"
  2013. " Either enable ECC checking or force module loading by setting "
  2014. "'ecc_enable_override'.\n"
  2015. " (Note that use of the override may cause unknown side effects.)\n";
  2016. static bool ecc_enabled(struct pci_dev *F3, u8 nid)
  2017. {
  2018. u32 value;
  2019. u8 ecc_en = 0;
  2020. bool nb_mce_en = false;
  2021. amd64_read_pci_cfg(F3, NBCFG, &value);
  2022. ecc_en = !!(value & NBCFG_ECC_ENABLE);
  2023. amd64_info("DRAM ECC %s.\n", (ecc_en ? "enabled" : "disabled"));
  2024. nb_mce_en = amd64_nb_mce_bank_enabled_on_node(nid);
  2025. if (!nb_mce_en)
  2026. amd64_notice("NB MCE bank disabled, set MSR "
  2027. "0x%08x[4] on node %d to enable.\n",
  2028. MSR_IA32_MCG_CTL, nid);
  2029. if (!ecc_en || !nb_mce_en) {
  2030. amd64_notice("%s", ecc_msg);
  2031. return false;
  2032. }
  2033. return true;
  2034. }
  2035. struct mcidev_sysfs_attribute sysfs_attrs[ARRAY_SIZE(amd64_dbg_attrs) +
  2036. ARRAY_SIZE(amd64_inj_attrs) +
  2037. 1];
  2038. struct mcidev_sysfs_attribute terminator = { .attr = { .name = NULL } };
  2039. static void set_mc_sysfs_attrs(struct mem_ctl_info *mci)
  2040. {
  2041. unsigned int i = 0, j = 0;
  2042. for (; i < ARRAY_SIZE(amd64_dbg_attrs); i++)
  2043. sysfs_attrs[i] = amd64_dbg_attrs[i];
  2044. if (boot_cpu_data.x86 >= 0x10)
  2045. for (j = 0; j < ARRAY_SIZE(amd64_inj_attrs); j++, i++)
  2046. sysfs_attrs[i] = amd64_inj_attrs[j];
  2047. sysfs_attrs[i] = terminator;
  2048. mci->mc_driver_sysfs_attributes = sysfs_attrs;
  2049. }
  2050. static void setup_mci_misc_attrs(struct mem_ctl_info *mci,
  2051. struct amd64_family_type *fam)
  2052. {
  2053. struct amd64_pvt *pvt = mci->pvt_info;
  2054. mci->mtype_cap = MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
  2055. mci->edac_ctl_cap = EDAC_FLAG_NONE;
  2056. if (pvt->nbcap & NBCAP_SECDED)
  2057. mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
  2058. if (pvt->nbcap & NBCAP_CHIPKILL)
  2059. mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
  2060. mci->edac_cap = amd64_determine_edac_cap(pvt);
  2061. mci->mod_name = EDAC_MOD_STR;
  2062. mci->mod_ver = EDAC_AMD64_VERSION;
  2063. mci->ctl_name = fam->ctl_name;
  2064. mci->dev_name = pci_name(pvt->F2);
  2065. mci->ctl_page_to_phys = NULL;
  2066. /* memory scrubber interface */
  2067. mci->set_sdram_scrub_rate = amd64_set_scrub_rate;
  2068. mci->get_sdram_scrub_rate = amd64_get_scrub_rate;
  2069. }
  2070. /*
  2071. * returns a pointer to the family descriptor on success, NULL otherwise.
  2072. */
  2073. static struct amd64_family_type *amd64_per_family_init(struct amd64_pvt *pvt)
  2074. {
  2075. u8 fam = boot_cpu_data.x86;
  2076. struct amd64_family_type *fam_type = NULL;
  2077. switch (fam) {
  2078. case 0xf:
  2079. fam_type = &amd64_family_types[K8_CPUS];
  2080. pvt->ops = &amd64_family_types[K8_CPUS].ops;
  2081. break;
  2082. case 0x10:
  2083. fam_type = &amd64_family_types[F10_CPUS];
  2084. pvt->ops = &amd64_family_types[F10_CPUS].ops;
  2085. break;
  2086. case 0x15:
  2087. fam_type = &amd64_family_types[F15_CPUS];
  2088. pvt->ops = &amd64_family_types[F15_CPUS].ops;
  2089. break;
  2090. default:
  2091. amd64_err("Unsupported family!\n");
  2092. return NULL;
  2093. }
  2094. pvt->ext_model = boot_cpu_data.x86_model >> 4;
  2095. amd64_info("%s %sdetected (node %d).\n", fam_type->ctl_name,
  2096. (fam == 0xf ?
  2097. (pvt->ext_model >= K8_REV_F ? "revF or later "
  2098. : "revE or earlier ")
  2099. : ""), pvt->mc_node_id);
  2100. return fam_type;
  2101. }
  2102. static int amd64_init_one_instance(struct pci_dev *F2)
  2103. {
  2104. struct amd64_pvt *pvt = NULL;
  2105. struct amd64_family_type *fam_type = NULL;
  2106. struct mem_ctl_info *mci = NULL;
  2107. struct edac_mc_layer layers[2];
  2108. int err = 0, ret;
  2109. u8 nid = get_node_id(F2);
  2110. ret = -ENOMEM;
  2111. pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
  2112. if (!pvt)
  2113. goto err_ret;
  2114. pvt->mc_node_id = nid;
  2115. pvt->F2 = F2;
  2116. ret = -EINVAL;
  2117. fam_type = amd64_per_family_init(pvt);
  2118. if (!fam_type)
  2119. goto err_free;
  2120. ret = -ENODEV;
  2121. err = reserve_mc_sibling_devs(pvt, fam_type->f1_id, fam_type->f3_id);
  2122. if (err)
  2123. goto err_free;
  2124. read_mc_regs(pvt);
  2125. /*
  2126. * We need to determine how many memory channels there are. Then use
  2127. * that information for calculating the size of the dynamic instance
  2128. * tables in the 'mci' structure.
  2129. */
  2130. ret = -EINVAL;
  2131. pvt->channel_count = pvt->ops->early_channel_count(pvt);
  2132. if (pvt->channel_count < 0)
  2133. goto err_siblings;
  2134. ret = -ENOMEM;
  2135. layers[0].type = EDAC_MC_LAYER_CHIP_SELECT;
  2136. layers[0].size = pvt->csels[0].b_cnt;
  2137. layers[0].is_virt_csrow = true;
  2138. layers[1].type = EDAC_MC_LAYER_CHANNEL;
  2139. layers[1].size = pvt->channel_count;
  2140. layers[1].is_virt_csrow = false;
  2141. mci = edac_mc_alloc(nid, ARRAY_SIZE(layers), layers, 0);
  2142. if (!mci)
  2143. goto err_siblings;
  2144. mci->pvt_info = pvt;
  2145. mci->dev = &pvt->F2->dev;
  2146. setup_mci_misc_attrs(mci, fam_type);
  2147. if (init_csrows(mci))
  2148. mci->edac_cap = EDAC_FLAG_NONE;
  2149. set_mc_sysfs_attrs(mci);
  2150. ret = -ENODEV;
  2151. if (edac_mc_add_mc(mci)) {
  2152. debugf1("failed edac_mc_add_mc()\n");
  2153. goto err_add_mc;
  2154. }
  2155. /* register stuff with EDAC MCE */
  2156. if (report_gart_errors)
  2157. amd_report_gart_errors(true);
  2158. amd_register_ecc_decoder(amd64_decode_bus_error);
  2159. mcis[nid] = mci;
  2160. atomic_inc(&drv_instances);
  2161. return 0;
  2162. err_add_mc:
  2163. edac_mc_free(mci);
  2164. err_siblings:
  2165. free_mc_sibling_devs(pvt);
  2166. err_free:
  2167. kfree(pvt);
  2168. err_ret:
  2169. return ret;
  2170. }
  2171. static int __devinit amd64_probe_one_instance(struct pci_dev *pdev,
  2172. const struct pci_device_id *mc_type)
  2173. {
  2174. u8 nid = get_node_id(pdev);
  2175. struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
  2176. struct ecc_settings *s;
  2177. int ret = 0;
  2178. ret = pci_enable_device(pdev);
  2179. if (ret < 0) {
  2180. debugf0("ret=%d\n", ret);
  2181. return -EIO;
  2182. }
  2183. ret = -ENOMEM;
  2184. s = kzalloc(sizeof(struct ecc_settings), GFP_KERNEL);
  2185. if (!s)
  2186. goto err_out;
  2187. ecc_stngs[nid] = s;
  2188. if (!ecc_enabled(F3, nid)) {
  2189. ret = -ENODEV;
  2190. if (!ecc_enable_override)
  2191. goto err_enable;
  2192. amd64_warn("Forcing ECC on!\n");
  2193. if (!enable_ecc_error_reporting(s, nid, F3))
  2194. goto err_enable;
  2195. }
  2196. ret = amd64_init_one_instance(pdev);
  2197. if (ret < 0) {
  2198. amd64_err("Error probing instance: %d\n", nid);
  2199. restore_ecc_error_reporting(s, nid, F3);
  2200. }
  2201. return ret;
  2202. err_enable:
  2203. kfree(s);
  2204. ecc_stngs[nid] = NULL;
  2205. err_out:
  2206. return ret;
  2207. }
  2208. static void __devexit amd64_remove_one_instance(struct pci_dev *pdev)
  2209. {
  2210. struct mem_ctl_info *mci;
  2211. struct amd64_pvt *pvt;
  2212. u8 nid = get_node_id(pdev);
  2213. struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
  2214. struct ecc_settings *s = ecc_stngs[nid];
  2215. /* Remove from EDAC CORE tracking list */
  2216. mci = edac_mc_del_mc(&pdev->dev);
  2217. if (!mci)
  2218. return;
  2219. pvt = mci->pvt_info;
  2220. restore_ecc_error_reporting(s, nid, F3);
  2221. free_mc_sibling_devs(pvt);
  2222. /* unregister from EDAC MCE */
  2223. amd_report_gart_errors(false);
  2224. amd_unregister_ecc_decoder(amd64_decode_bus_error);
  2225. kfree(ecc_stngs[nid]);
  2226. ecc_stngs[nid] = NULL;
  2227. /* Free the EDAC CORE resources */
  2228. mci->pvt_info = NULL;
  2229. mcis[nid] = NULL;
  2230. kfree(pvt);
  2231. edac_mc_free(mci);
  2232. }
  2233. /*
  2234. * This table is part of the interface for loading drivers for PCI devices. The
  2235. * PCI core identifies what devices are on a system during boot, and then
  2236. * inquiry this table to see if this driver is for a given device found.
  2237. */
  2238. static DEFINE_PCI_DEVICE_TABLE(amd64_pci_table) = {
  2239. {
  2240. .vendor = PCI_VENDOR_ID_AMD,
  2241. .device = PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
  2242. .subvendor = PCI_ANY_ID,
  2243. .subdevice = PCI_ANY_ID,
  2244. .class = 0,
  2245. .class_mask = 0,
  2246. },
  2247. {
  2248. .vendor = PCI_VENDOR_ID_AMD,
  2249. .device = PCI_DEVICE_ID_AMD_10H_NB_DRAM,
  2250. .subvendor = PCI_ANY_ID,
  2251. .subdevice = PCI_ANY_ID,
  2252. .class = 0,
  2253. .class_mask = 0,
  2254. },
  2255. {
  2256. .vendor = PCI_VENDOR_ID_AMD,
  2257. .device = PCI_DEVICE_ID_AMD_15H_NB_F2,
  2258. .subvendor = PCI_ANY_ID,
  2259. .subdevice = PCI_ANY_ID,
  2260. .class = 0,
  2261. .class_mask = 0,
  2262. },
  2263. {0, }
  2264. };
  2265. MODULE_DEVICE_TABLE(pci, amd64_pci_table);
  2266. static struct pci_driver amd64_pci_driver = {
  2267. .name = EDAC_MOD_STR,
  2268. .probe = amd64_probe_one_instance,
  2269. .remove = __devexit_p(amd64_remove_one_instance),
  2270. .id_table = amd64_pci_table,
  2271. };
  2272. static void setup_pci_device(void)
  2273. {
  2274. struct mem_ctl_info *mci;
  2275. struct amd64_pvt *pvt;
  2276. if (amd64_ctl_pci)
  2277. return;
  2278. mci = mcis[0];
  2279. if (mci) {
  2280. pvt = mci->pvt_info;
  2281. amd64_ctl_pci =
  2282. edac_pci_create_generic_ctl(&pvt->F2->dev, EDAC_MOD_STR);
  2283. if (!amd64_ctl_pci) {
  2284. pr_warning("%s(): Unable to create PCI control\n",
  2285. __func__);
  2286. pr_warning("%s(): PCI error report via EDAC not set\n",
  2287. __func__);
  2288. }
  2289. }
  2290. }
  2291. static int __init amd64_edac_init(void)
  2292. {
  2293. int err = -ENODEV;
  2294. printk(KERN_INFO "AMD64 EDAC driver v%s\n", EDAC_AMD64_VERSION);
  2295. opstate_init();
  2296. if (amd_cache_northbridges() < 0)
  2297. goto err_ret;
  2298. err = -ENOMEM;
  2299. mcis = kzalloc(amd_nb_num() * sizeof(mcis[0]), GFP_KERNEL);
  2300. ecc_stngs = kzalloc(amd_nb_num() * sizeof(ecc_stngs[0]), GFP_KERNEL);
  2301. if (!(mcis && ecc_stngs))
  2302. goto err_free;
  2303. msrs = msrs_alloc();
  2304. if (!msrs)
  2305. goto err_free;
  2306. err = pci_register_driver(&amd64_pci_driver);
  2307. if (err)
  2308. goto err_pci;
  2309. err = -ENODEV;
  2310. if (!atomic_read(&drv_instances))
  2311. goto err_no_instances;
  2312. setup_pci_device();
  2313. return 0;
  2314. err_no_instances:
  2315. pci_unregister_driver(&amd64_pci_driver);
  2316. err_pci:
  2317. msrs_free(msrs);
  2318. msrs = NULL;
  2319. err_free:
  2320. kfree(mcis);
  2321. mcis = NULL;
  2322. kfree(ecc_stngs);
  2323. ecc_stngs = NULL;
  2324. err_ret:
  2325. return err;
  2326. }
  2327. static void __exit amd64_edac_exit(void)
  2328. {
  2329. if (amd64_ctl_pci)
  2330. edac_pci_release_generic_ctl(amd64_ctl_pci);
  2331. pci_unregister_driver(&amd64_pci_driver);
  2332. kfree(ecc_stngs);
  2333. ecc_stngs = NULL;
  2334. kfree(mcis);
  2335. mcis = NULL;
  2336. msrs_free(msrs);
  2337. msrs = NULL;
  2338. }
  2339. module_init(amd64_edac_init);
  2340. module_exit(amd64_edac_exit);
  2341. MODULE_LICENSE("GPL");
  2342. MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
  2343. "Dave Peterson, Thayne Harbaugh");
  2344. MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
  2345. EDAC_AMD64_VERSION);
  2346. module_param(edac_op_state, int, 0444);
  2347. MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");