dw_dmac.c 41 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629
  1. /*
  2. * Driver for the Synopsys DesignWare DMA Controller (aka DMACA on
  3. * AVR32 systems.)
  4. *
  5. * Copyright (C) 2007-2008 Atmel Corporation
  6. * Copyright (C) 2010-2011 ST Microelectronics
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License version 2 as
  10. * published by the Free Software Foundation.
  11. */
  12. #include <linux/bitops.h>
  13. #include <linux/clk.h>
  14. #include <linux/delay.h>
  15. #include <linux/dmaengine.h>
  16. #include <linux/dma-mapping.h>
  17. #include <linux/init.h>
  18. #include <linux/interrupt.h>
  19. #include <linux/io.h>
  20. #include <linux/of.h>
  21. #include <linux/mm.h>
  22. #include <linux/module.h>
  23. #include <linux/platform_device.h>
  24. #include <linux/slab.h>
  25. #include "dw_dmac_regs.h"
  26. #include "dmaengine.h"
  27. /*
  28. * This supports the Synopsys "DesignWare AHB Central DMA Controller",
  29. * (DW_ahb_dmac) which is used with various AMBA 2.0 systems (not all
  30. * of which use ARM any more). See the "Databook" from Synopsys for
  31. * information beyond what licensees probably provide.
  32. *
  33. * The driver has currently been tested only with the Atmel AT32AP7000,
  34. * which does not support descriptor writeback.
  35. */
  36. #define DWC_DEFAULT_CTLLO(_chan) ({ \
  37. struct dw_dma_slave *__slave = (_chan->private); \
  38. struct dw_dma_chan *_dwc = to_dw_dma_chan(_chan); \
  39. struct dma_slave_config *_sconfig = &_dwc->dma_sconfig; \
  40. int _dms = __slave ? __slave->dst_master : 0; \
  41. int _sms = __slave ? __slave->src_master : 1; \
  42. u8 _smsize = __slave ? _sconfig->src_maxburst : \
  43. DW_DMA_MSIZE_16; \
  44. u8 _dmsize = __slave ? _sconfig->dst_maxburst : \
  45. DW_DMA_MSIZE_16; \
  46. \
  47. (DWC_CTLL_DST_MSIZE(_dmsize) \
  48. | DWC_CTLL_SRC_MSIZE(_smsize) \
  49. | DWC_CTLL_LLP_D_EN \
  50. | DWC_CTLL_LLP_S_EN \
  51. | DWC_CTLL_DMS(_dms) \
  52. | DWC_CTLL_SMS(_sms)); \
  53. })
  54. /*
  55. * This is configuration-dependent and usually a funny size like 4095.
  56. *
  57. * Note that this is a transfer count, i.e. if we transfer 32-bit
  58. * words, we can do 16380 bytes per descriptor.
  59. *
  60. * This parameter is also system-specific.
  61. */
  62. #define DWC_MAX_COUNT 4095U
  63. /*
  64. * Number of descriptors to allocate for each channel. This should be
  65. * made configurable somehow; preferably, the clients (at least the
  66. * ones using slave transfers) should be able to give us a hint.
  67. */
  68. #define NR_DESCS_PER_CHANNEL 64
  69. /*----------------------------------------------------------------------*/
  70. /*
  71. * Because we're not relying on writeback from the controller (it may not
  72. * even be configured into the core!) we don't need to use dma_pool. These
  73. * descriptors -- and associated data -- are cacheable. We do need to make
  74. * sure their dcache entries are written back before handing them off to
  75. * the controller, though.
  76. */
  77. static struct device *chan2dev(struct dma_chan *chan)
  78. {
  79. return &chan->dev->device;
  80. }
  81. static struct device *chan2parent(struct dma_chan *chan)
  82. {
  83. return chan->dev->device.parent;
  84. }
  85. static struct dw_desc *dwc_first_active(struct dw_dma_chan *dwc)
  86. {
  87. return list_entry(dwc->active_list.next, struct dw_desc, desc_node);
  88. }
  89. static struct dw_desc *dwc_desc_get(struct dw_dma_chan *dwc)
  90. {
  91. struct dw_desc *desc, *_desc;
  92. struct dw_desc *ret = NULL;
  93. unsigned int i = 0;
  94. unsigned long flags;
  95. spin_lock_irqsave(&dwc->lock, flags);
  96. list_for_each_entry_safe(desc, _desc, &dwc->free_list, desc_node) {
  97. if (async_tx_test_ack(&desc->txd)) {
  98. list_del(&desc->desc_node);
  99. ret = desc;
  100. break;
  101. }
  102. dev_dbg(chan2dev(&dwc->chan), "desc %p not ACKed\n", desc);
  103. i++;
  104. }
  105. spin_unlock_irqrestore(&dwc->lock, flags);
  106. dev_vdbg(chan2dev(&dwc->chan), "scanned %u descriptors on freelist\n", i);
  107. return ret;
  108. }
  109. static void dwc_sync_desc_for_cpu(struct dw_dma_chan *dwc, struct dw_desc *desc)
  110. {
  111. struct dw_desc *child;
  112. list_for_each_entry(child, &desc->tx_list, desc_node)
  113. dma_sync_single_for_cpu(chan2parent(&dwc->chan),
  114. child->txd.phys, sizeof(child->lli),
  115. DMA_TO_DEVICE);
  116. dma_sync_single_for_cpu(chan2parent(&dwc->chan),
  117. desc->txd.phys, sizeof(desc->lli),
  118. DMA_TO_DEVICE);
  119. }
  120. /*
  121. * Move a descriptor, including any children, to the free list.
  122. * `desc' must not be on any lists.
  123. */
  124. static void dwc_desc_put(struct dw_dma_chan *dwc, struct dw_desc *desc)
  125. {
  126. unsigned long flags;
  127. if (desc) {
  128. struct dw_desc *child;
  129. dwc_sync_desc_for_cpu(dwc, desc);
  130. spin_lock_irqsave(&dwc->lock, flags);
  131. list_for_each_entry(child, &desc->tx_list, desc_node)
  132. dev_vdbg(chan2dev(&dwc->chan),
  133. "moving child desc %p to freelist\n",
  134. child);
  135. list_splice_init(&desc->tx_list, &dwc->free_list);
  136. dev_vdbg(chan2dev(&dwc->chan), "moving desc %p to freelist\n", desc);
  137. list_add(&desc->desc_node, &dwc->free_list);
  138. spin_unlock_irqrestore(&dwc->lock, flags);
  139. }
  140. }
  141. static void dwc_initialize(struct dw_dma_chan *dwc)
  142. {
  143. struct dw_dma *dw = to_dw_dma(dwc->chan.device);
  144. struct dw_dma_slave *dws = dwc->chan.private;
  145. u32 cfghi = DWC_CFGH_FIFO_MODE;
  146. u32 cfglo = DWC_CFGL_CH_PRIOR(dwc->priority);
  147. if (dwc->initialized == true)
  148. return;
  149. if (dws) {
  150. /*
  151. * We need controller-specific data to set up slave
  152. * transfers.
  153. */
  154. BUG_ON(!dws->dma_dev || dws->dma_dev != dw->dma.dev);
  155. cfghi = dws->cfg_hi;
  156. cfglo |= dws->cfg_lo & ~DWC_CFGL_CH_PRIOR_MASK;
  157. }
  158. channel_writel(dwc, CFG_LO, cfglo);
  159. channel_writel(dwc, CFG_HI, cfghi);
  160. /* Enable interrupts */
  161. channel_set_bit(dw, MASK.XFER, dwc->mask);
  162. channel_set_bit(dw, MASK.ERROR, dwc->mask);
  163. dwc->initialized = true;
  164. }
  165. /*----------------------------------------------------------------------*/
  166. /* Called with dwc->lock held and bh disabled */
  167. static void dwc_dostart(struct dw_dma_chan *dwc, struct dw_desc *first)
  168. {
  169. struct dw_dma *dw = to_dw_dma(dwc->chan.device);
  170. /* ASSERT: channel is idle */
  171. if (dma_readl(dw, CH_EN) & dwc->mask) {
  172. dev_err(chan2dev(&dwc->chan),
  173. "BUG: Attempted to start non-idle channel\n");
  174. dev_err(chan2dev(&dwc->chan),
  175. " SAR: 0x%x DAR: 0x%x LLP: 0x%x CTL: 0x%x:%08x\n",
  176. channel_readl(dwc, SAR),
  177. channel_readl(dwc, DAR),
  178. channel_readl(dwc, LLP),
  179. channel_readl(dwc, CTL_HI),
  180. channel_readl(dwc, CTL_LO));
  181. /* The tasklet will hopefully advance the queue... */
  182. return;
  183. }
  184. dwc_initialize(dwc);
  185. channel_writel(dwc, LLP, first->txd.phys);
  186. channel_writel(dwc, CTL_LO,
  187. DWC_CTLL_LLP_D_EN | DWC_CTLL_LLP_S_EN);
  188. channel_writel(dwc, CTL_HI, 0);
  189. channel_set_bit(dw, CH_EN, dwc->mask);
  190. }
  191. /*----------------------------------------------------------------------*/
  192. static void
  193. dwc_descriptor_complete(struct dw_dma_chan *dwc, struct dw_desc *desc,
  194. bool callback_required)
  195. {
  196. dma_async_tx_callback callback = NULL;
  197. void *param = NULL;
  198. struct dma_async_tx_descriptor *txd = &desc->txd;
  199. struct dw_desc *child;
  200. unsigned long flags;
  201. dev_vdbg(chan2dev(&dwc->chan), "descriptor %u complete\n", txd->cookie);
  202. spin_lock_irqsave(&dwc->lock, flags);
  203. dma_cookie_complete(txd);
  204. if (callback_required) {
  205. callback = txd->callback;
  206. param = txd->callback_param;
  207. }
  208. dwc_sync_desc_for_cpu(dwc, desc);
  209. /* async_tx_ack */
  210. list_for_each_entry(child, &desc->tx_list, desc_node)
  211. async_tx_ack(&child->txd);
  212. async_tx_ack(&desc->txd);
  213. list_splice_init(&desc->tx_list, &dwc->free_list);
  214. list_move(&desc->desc_node, &dwc->free_list);
  215. if (!dwc->chan.private) {
  216. struct device *parent = chan2parent(&dwc->chan);
  217. if (!(txd->flags & DMA_COMPL_SKIP_DEST_UNMAP)) {
  218. if (txd->flags & DMA_COMPL_DEST_UNMAP_SINGLE)
  219. dma_unmap_single(parent, desc->lli.dar,
  220. desc->len, DMA_FROM_DEVICE);
  221. else
  222. dma_unmap_page(parent, desc->lli.dar,
  223. desc->len, DMA_FROM_DEVICE);
  224. }
  225. if (!(txd->flags & DMA_COMPL_SKIP_SRC_UNMAP)) {
  226. if (txd->flags & DMA_COMPL_SRC_UNMAP_SINGLE)
  227. dma_unmap_single(parent, desc->lli.sar,
  228. desc->len, DMA_TO_DEVICE);
  229. else
  230. dma_unmap_page(parent, desc->lli.sar,
  231. desc->len, DMA_TO_DEVICE);
  232. }
  233. }
  234. spin_unlock_irqrestore(&dwc->lock, flags);
  235. if (callback_required && callback)
  236. callback(param);
  237. }
  238. static void dwc_complete_all(struct dw_dma *dw, struct dw_dma_chan *dwc)
  239. {
  240. struct dw_desc *desc, *_desc;
  241. LIST_HEAD(list);
  242. unsigned long flags;
  243. spin_lock_irqsave(&dwc->lock, flags);
  244. if (dma_readl(dw, CH_EN) & dwc->mask) {
  245. dev_err(chan2dev(&dwc->chan),
  246. "BUG: XFER bit set, but channel not idle!\n");
  247. /* Try to continue after resetting the channel... */
  248. channel_clear_bit(dw, CH_EN, dwc->mask);
  249. while (dma_readl(dw, CH_EN) & dwc->mask)
  250. cpu_relax();
  251. }
  252. /*
  253. * Submit queued descriptors ASAP, i.e. before we go through
  254. * the completed ones.
  255. */
  256. list_splice_init(&dwc->active_list, &list);
  257. if (!list_empty(&dwc->queue)) {
  258. list_move(dwc->queue.next, &dwc->active_list);
  259. dwc_dostart(dwc, dwc_first_active(dwc));
  260. }
  261. spin_unlock_irqrestore(&dwc->lock, flags);
  262. list_for_each_entry_safe(desc, _desc, &list, desc_node)
  263. dwc_descriptor_complete(dwc, desc, true);
  264. }
  265. static void dwc_scan_descriptors(struct dw_dma *dw, struct dw_dma_chan *dwc)
  266. {
  267. dma_addr_t llp;
  268. struct dw_desc *desc, *_desc;
  269. struct dw_desc *child;
  270. u32 status_xfer;
  271. unsigned long flags;
  272. spin_lock_irqsave(&dwc->lock, flags);
  273. llp = channel_readl(dwc, LLP);
  274. status_xfer = dma_readl(dw, RAW.XFER);
  275. if (status_xfer & dwc->mask) {
  276. /* Everything we've submitted is done */
  277. dma_writel(dw, CLEAR.XFER, dwc->mask);
  278. spin_unlock_irqrestore(&dwc->lock, flags);
  279. dwc_complete_all(dw, dwc);
  280. return;
  281. }
  282. if (list_empty(&dwc->active_list)) {
  283. spin_unlock_irqrestore(&dwc->lock, flags);
  284. return;
  285. }
  286. dev_vdbg(chan2dev(&dwc->chan), "scan_descriptors: llp=0x%x\n", llp);
  287. list_for_each_entry_safe(desc, _desc, &dwc->active_list, desc_node) {
  288. /* check first descriptors addr */
  289. if (desc->txd.phys == llp) {
  290. spin_unlock_irqrestore(&dwc->lock, flags);
  291. return;
  292. }
  293. /* check first descriptors llp */
  294. if (desc->lli.llp == llp) {
  295. /* This one is currently in progress */
  296. spin_unlock_irqrestore(&dwc->lock, flags);
  297. return;
  298. }
  299. list_for_each_entry(child, &desc->tx_list, desc_node)
  300. if (child->lli.llp == llp) {
  301. /* Currently in progress */
  302. spin_unlock_irqrestore(&dwc->lock, flags);
  303. return;
  304. }
  305. /*
  306. * No descriptors so far seem to be in progress, i.e.
  307. * this one must be done.
  308. */
  309. spin_unlock_irqrestore(&dwc->lock, flags);
  310. dwc_descriptor_complete(dwc, desc, true);
  311. spin_lock_irqsave(&dwc->lock, flags);
  312. }
  313. dev_err(chan2dev(&dwc->chan),
  314. "BUG: All descriptors done, but channel not idle!\n");
  315. /* Try to continue after resetting the channel... */
  316. channel_clear_bit(dw, CH_EN, dwc->mask);
  317. while (dma_readl(dw, CH_EN) & dwc->mask)
  318. cpu_relax();
  319. if (!list_empty(&dwc->queue)) {
  320. list_move(dwc->queue.next, &dwc->active_list);
  321. dwc_dostart(dwc, dwc_first_active(dwc));
  322. }
  323. spin_unlock_irqrestore(&dwc->lock, flags);
  324. }
  325. static void dwc_dump_lli(struct dw_dma_chan *dwc, struct dw_lli *lli)
  326. {
  327. dev_printk(KERN_CRIT, chan2dev(&dwc->chan),
  328. " desc: s0x%x d0x%x l0x%x c0x%x:%x\n",
  329. lli->sar, lli->dar, lli->llp,
  330. lli->ctlhi, lli->ctllo);
  331. }
  332. static void dwc_handle_error(struct dw_dma *dw, struct dw_dma_chan *dwc)
  333. {
  334. struct dw_desc *bad_desc;
  335. struct dw_desc *child;
  336. unsigned long flags;
  337. dwc_scan_descriptors(dw, dwc);
  338. spin_lock_irqsave(&dwc->lock, flags);
  339. /*
  340. * The descriptor currently at the head of the active list is
  341. * borked. Since we don't have any way to report errors, we'll
  342. * just have to scream loudly and try to carry on.
  343. */
  344. bad_desc = dwc_first_active(dwc);
  345. list_del_init(&bad_desc->desc_node);
  346. list_move(dwc->queue.next, dwc->active_list.prev);
  347. /* Clear the error flag and try to restart the controller */
  348. dma_writel(dw, CLEAR.ERROR, dwc->mask);
  349. if (!list_empty(&dwc->active_list))
  350. dwc_dostart(dwc, dwc_first_active(dwc));
  351. /*
  352. * KERN_CRITICAL may seem harsh, but since this only happens
  353. * when someone submits a bad physical address in a
  354. * descriptor, we should consider ourselves lucky that the
  355. * controller flagged an error instead of scribbling over
  356. * random memory locations.
  357. */
  358. dev_printk(KERN_CRIT, chan2dev(&dwc->chan),
  359. "Bad descriptor submitted for DMA!\n");
  360. dev_printk(KERN_CRIT, chan2dev(&dwc->chan),
  361. " cookie: %d\n", bad_desc->txd.cookie);
  362. dwc_dump_lli(dwc, &bad_desc->lli);
  363. list_for_each_entry(child, &bad_desc->tx_list, desc_node)
  364. dwc_dump_lli(dwc, &child->lli);
  365. spin_unlock_irqrestore(&dwc->lock, flags);
  366. /* Pretend the descriptor completed successfully */
  367. dwc_descriptor_complete(dwc, bad_desc, true);
  368. }
  369. /* --------------------- Cyclic DMA API extensions -------------------- */
  370. inline dma_addr_t dw_dma_get_src_addr(struct dma_chan *chan)
  371. {
  372. struct dw_dma_chan *dwc = to_dw_dma_chan(chan);
  373. return channel_readl(dwc, SAR);
  374. }
  375. EXPORT_SYMBOL(dw_dma_get_src_addr);
  376. inline dma_addr_t dw_dma_get_dst_addr(struct dma_chan *chan)
  377. {
  378. struct dw_dma_chan *dwc = to_dw_dma_chan(chan);
  379. return channel_readl(dwc, DAR);
  380. }
  381. EXPORT_SYMBOL(dw_dma_get_dst_addr);
  382. /* called with dwc->lock held and all DMAC interrupts disabled */
  383. static void dwc_handle_cyclic(struct dw_dma *dw, struct dw_dma_chan *dwc,
  384. u32 status_err, u32 status_xfer)
  385. {
  386. unsigned long flags;
  387. if (dwc->mask) {
  388. void (*callback)(void *param);
  389. void *callback_param;
  390. dev_vdbg(chan2dev(&dwc->chan), "new cyclic period llp 0x%08x\n",
  391. channel_readl(dwc, LLP));
  392. callback = dwc->cdesc->period_callback;
  393. callback_param = dwc->cdesc->period_callback_param;
  394. if (callback)
  395. callback(callback_param);
  396. }
  397. /*
  398. * Error and transfer complete are highly unlikely, and will most
  399. * likely be due to a configuration error by the user.
  400. */
  401. if (unlikely(status_err & dwc->mask) ||
  402. unlikely(status_xfer & dwc->mask)) {
  403. int i;
  404. dev_err(chan2dev(&dwc->chan), "cyclic DMA unexpected %s "
  405. "interrupt, stopping DMA transfer\n",
  406. status_xfer ? "xfer" : "error");
  407. spin_lock_irqsave(&dwc->lock, flags);
  408. dev_err(chan2dev(&dwc->chan),
  409. " SAR: 0x%x DAR: 0x%x LLP: 0x%x CTL: 0x%x:%08x\n",
  410. channel_readl(dwc, SAR),
  411. channel_readl(dwc, DAR),
  412. channel_readl(dwc, LLP),
  413. channel_readl(dwc, CTL_HI),
  414. channel_readl(dwc, CTL_LO));
  415. channel_clear_bit(dw, CH_EN, dwc->mask);
  416. while (dma_readl(dw, CH_EN) & dwc->mask)
  417. cpu_relax();
  418. /* make sure DMA does not restart by loading a new list */
  419. channel_writel(dwc, LLP, 0);
  420. channel_writel(dwc, CTL_LO, 0);
  421. channel_writel(dwc, CTL_HI, 0);
  422. dma_writel(dw, CLEAR.ERROR, dwc->mask);
  423. dma_writel(dw, CLEAR.XFER, dwc->mask);
  424. for (i = 0; i < dwc->cdesc->periods; i++)
  425. dwc_dump_lli(dwc, &dwc->cdesc->desc[i]->lli);
  426. spin_unlock_irqrestore(&dwc->lock, flags);
  427. }
  428. }
  429. /* ------------------------------------------------------------------------- */
  430. static void dw_dma_tasklet(unsigned long data)
  431. {
  432. struct dw_dma *dw = (struct dw_dma *)data;
  433. struct dw_dma_chan *dwc;
  434. u32 status_xfer;
  435. u32 status_err;
  436. int i;
  437. status_xfer = dma_readl(dw, RAW.XFER);
  438. status_err = dma_readl(dw, RAW.ERROR);
  439. dev_vdbg(dw->dma.dev, "tasklet: status_err=%x\n", status_err);
  440. for (i = 0; i < dw->dma.chancnt; i++) {
  441. dwc = &dw->chan[i];
  442. if (test_bit(DW_DMA_IS_CYCLIC, &dwc->flags))
  443. dwc_handle_cyclic(dw, dwc, status_err, status_xfer);
  444. else if (status_err & (1 << i))
  445. dwc_handle_error(dw, dwc);
  446. else if (status_xfer & (1 << i))
  447. dwc_scan_descriptors(dw, dwc);
  448. }
  449. /*
  450. * Re-enable interrupts.
  451. */
  452. channel_set_bit(dw, MASK.XFER, dw->all_chan_mask);
  453. channel_set_bit(dw, MASK.ERROR, dw->all_chan_mask);
  454. }
  455. static irqreturn_t dw_dma_interrupt(int irq, void *dev_id)
  456. {
  457. struct dw_dma *dw = dev_id;
  458. u32 status;
  459. dev_vdbg(dw->dma.dev, "interrupt: status=0x%x\n",
  460. dma_readl(dw, STATUS_INT));
  461. /*
  462. * Just disable the interrupts. We'll turn them back on in the
  463. * softirq handler.
  464. */
  465. channel_clear_bit(dw, MASK.XFER, dw->all_chan_mask);
  466. channel_clear_bit(dw, MASK.ERROR, dw->all_chan_mask);
  467. status = dma_readl(dw, STATUS_INT);
  468. if (status) {
  469. dev_err(dw->dma.dev,
  470. "BUG: Unexpected interrupts pending: 0x%x\n",
  471. status);
  472. /* Try to recover */
  473. channel_clear_bit(dw, MASK.XFER, (1 << 8) - 1);
  474. channel_clear_bit(dw, MASK.SRC_TRAN, (1 << 8) - 1);
  475. channel_clear_bit(dw, MASK.DST_TRAN, (1 << 8) - 1);
  476. channel_clear_bit(dw, MASK.ERROR, (1 << 8) - 1);
  477. }
  478. tasklet_schedule(&dw->tasklet);
  479. return IRQ_HANDLED;
  480. }
  481. /*----------------------------------------------------------------------*/
  482. static dma_cookie_t dwc_tx_submit(struct dma_async_tx_descriptor *tx)
  483. {
  484. struct dw_desc *desc = txd_to_dw_desc(tx);
  485. struct dw_dma_chan *dwc = to_dw_dma_chan(tx->chan);
  486. dma_cookie_t cookie;
  487. unsigned long flags;
  488. spin_lock_irqsave(&dwc->lock, flags);
  489. cookie = dma_cookie_assign(tx);
  490. /*
  491. * REVISIT: We should attempt to chain as many descriptors as
  492. * possible, perhaps even appending to those already submitted
  493. * for DMA. But this is hard to do in a race-free manner.
  494. */
  495. if (list_empty(&dwc->active_list)) {
  496. dev_vdbg(chan2dev(tx->chan), "tx_submit: started %u\n",
  497. desc->txd.cookie);
  498. list_add_tail(&desc->desc_node, &dwc->active_list);
  499. dwc_dostart(dwc, dwc_first_active(dwc));
  500. } else {
  501. dev_vdbg(chan2dev(tx->chan), "tx_submit: queued %u\n",
  502. desc->txd.cookie);
  503. list_add_tail(&desc->desc_node, &dwc->queue);
  504. }
  505. spin_unlock_irqrestore(&dwc->lock, flags);
  506. return cookie;
  507. }
  508. static struct dma_async_tx_descriptor *
  509. dwc_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
  510. size_t len, unsigned long flags)
  511. {
  512. struct dw_dma_chan *dwc = to_dw_dma_chan(chan);
  513. struct dw_desc *desc;
  514. struct dw_desc *first;
  515. struct dw_desc *prev;
  516. size_t xfer_count;
  517. size_t offset;
  518. unsigned int src_width;
  519. unsigned int dst_width;
  520. u32 ctllo;
  521. dev_vdbg(chan2dev(chan), "prep_dma_memcpy d0x%x s0x%x l0x%zx f0x%lx\n",
  522. dest, src, len, flags);
  523. if (unlikely(!len)) {
  524. dev_dbg(chan2dev(chan), "prep_dma_memcpy: length is zero!\n");
  525. return NULL;
  526. }
  527. /*
  528. * We can be a lot more clever here, but this should take care
  529. * of the most common optimization.
  530. */
  531. if (!((src | dest | len) & 7))
  532. src_width = dst_width = 3;
  533. else if (!((src | dest | len) & 3))
  534. src_width = dst_width = 2;
  535. else if (!((src | dest | len) & 1))
  536. src_width = dst_width = 1;
  537. else
  538. src_width = dst_width = 0;
  539. ctllo = DWC_DEFAULT_CTLLO(chan)
  540. | DWC_CTLL_DST_WIDTH(dst_width)
  541. | DWC_CTLL_SRC_WIDTH(src_width)
  542. | DWC_CTLL_DST_INC
  543. | DWC_CTLL_SRC_INC
  544. | DWC_CTLL_FC_M2M;
  545. prev = first = NULL;
  546. for (offset = 0; offset < len; offset += xfer_count << src_width) {
  547. xfer_count = min_t(size_t, (len - offset) >> src_width,
  548. DWC_MAX_COUNT);
  549. desc = dwc_desc_get(dwc);
  550. if (!desc)
  551. goto err_desc_get;
  552. desc->lli.sar = src + offset;
  553. desc->lli.dar = dest + offset;
  554. desc->lli.ctllo = ctllo;
  555. desc->lli.ctlhi = xfer_count;
  556. if (!first) {
  557. first = desc;
  558. } else {
  559. prev->lli.llp = desc->txd.phys;
  560. dma_sync_single_for_device(chan2parent(chan),
  561. prev->txd.phys, sizeof(prev->lli),
  562. DMA_TO_DEVICE);
  563. list_add_tail(&desc->desc_node,
  564. &first->tx_list);
  565. }
  566. prev = desc;
  567. }
  568. if (flags & DMA_PREP_INTERRUPT)
  569. /* Trigger interrupt after last block */
  570. prev->lli.ctllo |= DWC_CTLL_INT_EN;
  571. prev->lli.llp = 0;
  572. dma_sync_single_for_device(chan2parent(chan),
  573. prev->txd.phys, sizeof(prev->lli),
  574. DMA_TO_DEVICE);
  575. first->txd.flags = flags;
  576. first->len = len;
  577. return &first->txd;
  578. err_desc_get:
  579. dwc_desc_put(dwc, first);
  580. return NULL;
  581. }
  582. static struct dma_async_tx_descriptor *
  583. dwc_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
  584. unsigned int sg_len, enum dma_transfer_direction direction,
  585. unsigned long flags, void *context)
  586. {
  587. struct dw_dma_chan *dwc = to_dw_dma_chan(chan);
  588. struct dw_dma_slave *dws = chan->private;
  589. struct dma_slave_config *sconfig = &dwc->dma_sconfig;
  590. struct dw_desc *prev;
  591. struct dw_desc *first;
  592. u32 ctllo;
  593. dma_addr_t reg;
  594. unsigned int reg_width;
  595. unsigned int mem_width;
  596. unsigned int i;
  597. struct scatterlist *sg;
  598. size_t total_len = 0;
  599. dev_vdbg(chan2dev(chan), "prep_dma_slave\n");
  600. if (unlikely(!dws || !sg_len))
  601. return NULL;
  602. prev = first = NULL;
  603. switch (direction) {
  604. case DMA_MEM_TO_DEV:
  605. reg_width = __fls(sconfig->dst_addr_width);
  606. reg = sconfig->dst_addr;
  607. ctllo = (DWC_DEFAULT_CTLLO(chan)
  608. | DWC_CTLL_DST_WIDTH(reg_width)
  609. | DWC_CTLL_DST_FIX
  610. | DWC_CTLL_SRC_INC);
  611. ctllo |= sconfig->device_fc ? DWC_CTLL_FC(DW_DMA_FC_P_M2P) :
  612. DWC_CTLL_FC(DW_DMA_FC_D_M2P);
  613. for_each_sg(sgl, sg, sg_len, i) {
  614. struct dw_desc *desc;
  615. u32 len, dlen, mem;
  616. mem = sg_dma_address(sg);
  617. len = sg_dma_len(sg);
  618. if (!((mem | len) & 7))
  619. mem_width = 3;
  620. else if (!((mem | len) & 3))
  621. mem_width = 2;
  622. else if (!((mem | len) & 1))
  623. mem_width = 1;
  624. else
  625. mem_width = 0;
  626. slave_sg_todev_fill_desc:
  627. desc = dwc_desc_get(dwc);
  628. if (!desc) {
  629. dev_err(chan2dev(chan),
  630. "not enough descriptors available\n");
  631. goto err_desc_get;
  632. }
  633. desc->lli.sar = mem;
  634. desc->lli.dar = reg;
  635. desc->lli.ctllo = ctllo | DWC_CTLL_SRC_WIDTH(mem_width);
  636. if ((len >> mem_width) > DWC_MAX_COUNT) {
  637. dlen = DWC_MAX_COUNT << mem_width;
  638. mem += dlen;
  639. len -= dlen;
  640. } else {
  641. dlen = len;
  642. len = 0;
  643. }
  644. desc->lli.ctlhi = dlen >> mem_width;
  645. if (!first) {
  646. first = desc;
  647. } else {
  648. prev->lli.llp = desc->txd.phys;
  649. dma_sync_single_for_device(chan2parent(chan),
  650. prev->txd.phys,
  651. sizeof(prev->lli),
  652. DMA_TO_DEVICE);
  653. list_add_tail(&desc->desc_node,
  654. &first->tx_list);
  655. }
  656. prev = desc;
  657. total_len += dlen;
  658. if (len)
  659. goto slave_sg_todev_fill_desc;
  660. }
  661. break;
  662. case DMA_DEV_TO_MEM:
  663. reg_width = __fls(sconfig->src_addr_width);
  664. reg = sconfig->src_addr;
  665. ctllo = (DWC_DEFAULT_CTLLO(chan)
  666. | DWC_CTLL_SRC_WIDTH(reg_width)
  667. | DWC_CTLL_DST_INC
  668. | DWC_CTLL_SRC_FIX);
  669. ctllo |= sconfig->device_fc ? DWC_CTLL_FC(DW_DMA_FC_P_P2M) :
  670. DWC_CTLL_FC(DW_DMA_FC_D_P2M);
  671. for_each_sg(sgl, sg, sg_len, i) {
  672. struct dw_desc *desc;
  673. u32 len, dlen, mem;
  674. mem = sg_dma_address(sg);
  675. len = sg_dma_len(sg);
  676. if (!((mem | len) & 7))
  677. mem_width = 3;
  678. else if (!((mem | len) & 3))
  679. mem_width = 2;
  680. else if (!((mem | len) & 1))
  681. mem_width = 1;
  682. else
  683. mem_width = 0;
  684. slave_sg_fromdev_fill_desc:
  685. desc = dwc_desc_get(dwc);
  686. if (!desc) {
  687. dev_err(chan2dev(chan),
  688. "not enough descriptors available\n");
  689. goto err_desc_get;
  690. }
  691. desc->lli.sar = reg;
  692. desc->lli.dar = mem;
  693. desc->lli.ctllo = ctllo | DWC_CTLL_DST_WIDTH(mem_width);
  694. if ((len >> reg_width) > DWC_MAX_COUNT) {
  695. dlen = DWC_MAX_COUNT << reg_width;
  696. mem += dlen;
  697. len -= dlen;
  698. } else {
  699. dlen = len;
  700. len = 0;
  701. }
  702. desc->lli.ctlhi = dlen >> reg_width;
  703. if (!first) {
  704. first = desc;
  705. } else {
  706. prev->lli.llp = desc->txd.phys;
  707. dma_sync_single_for_device(chan2parent(chan),
  708. prev->txd.phys,
  709. sizeof(prev->lli),
  710. DMA_TO_DEVICE);
  711. list_add_tail(&desc->desc_node,
  712. &first->tx_list);
  713. }
  714. prev = desc;
  715. total_len += dlen;
  716. if (len)
  717. goto slave_sg_fromdev_fill_desc;
  718. }
  719. break;
  720. default:
  721. return NULL;
  722. }
  723. if (flags & DMA_PREP_INTERRUPT)
  724. /* Trigger interrupt after last block */
  725. prev->lli.ctllo |= DWC_CTLL_INT_EN;
  726. prev->lli.llp = 0;
  727. dma_sync_single_for_device(chan2parent(chan),
  728. prev->txd.phys, sizeof(prev->lli),
  729. DMA_TO_DEVICE);
  730. first->len = total_len;
  731. return &first->txd;
  732. err_desc_get:
  733. dwc_desc_put(dwc, first);
  734. return NULL;
  735. }
  736. /*
  737. * Fix sconfig's burst size according to dw_dmac. We need to convert them as:
  738. * 1 -> 0, 4 -> 1, 8 -> 2, 16 -> 3.
  739. *
  740. * NOTE: burst size 2 is not supported by controller.
  741. *
  742. * This can be done by finding least significant bit set: n & (n - 1)
  743. */
  744. static inline void convert_burst(u32 *maxburst)
  745. {
  746. if (*maxburst > 1)
  747. *maxburst = fls(*maxburst) - 2;
  748. else
  749. *maxburst = 0;
  750. }
  751. static int
  752. set_runtime_config(struct dma_chan *chan, struct dma_slave_config *sconfig)
  753. {
  754. struct dw_dma_chan *dwc = to_dw_dma_chan(chan);
  755. /* Check if it is chan is configured for slave transfers */
  756. if (!chan->private)
  757. return -EINVAL;
  758. memcpy(&dwc->dma_sconfig, sconfig, sizeof(*sconfig));
  759. convert_burst(&dwc->dma_sconfig.src_maxburst);
  760. convert_burst(&dwc->dma_sconfig.dst_maxburst);
  761. return 0;
  762. }
  763. static int dwc_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
  764. unsigned long arg)
  765. {
  766. struct dw_dma_chan *dwc = to_dw_dma_chan(chan);
  767. struct dw_dma *dw = to_dw_dma(chan->device);
  768. struct dw_desc *desc, *_desc;
  769. unsigned long flags;
  770. u32 cfglo;
  771. LIST_HEAD(list);
  772. if (cmd == DMA_PAUSE) {
  773. spin_lock_irqsave(&dwc->lock, flags);
  774. cfglo = channel_readl(dwc, CFG_LO);
  775. channel_writel(dwc, CFG_LO, cfglo | DWC_CFGL_CH_SUSP);
  776. while (!(channel_readl(dwc, CFG_LO) & DWC_CFGL_FIFO_EMPTY))
  777. cpu_relax();
  778. dwc->paused = true;
  779. spin_unlock_irqrestore(&dwc->lock, flags);
  780. } else if (cmd == DMA_RESUME) {
  781. if (!dwc->paused)
  782. return 0;
  783. spin_lock_irqsave(&dwc->lock, flags);
  784. cfglo = channel_readl(dwc, CFG_LO);
  785. channel_writel(dwc, CFG_LO, cfglo & ~DWC_CFGL_CH_SUSP);
  786. dwc->paused = false;
  787. spin_unlock_irqrestore(&dwc->lock, flags);
  788. } else if (cmd == DMA_TERMINATE_ALL) {
  789. spin_lock_irqsave(&dwc->lock, flags);
  790. channel_clear_bit(dw, CH_EN, dwc->mask);
  791. while (dma_readl(dw, CH_EN) & dwc->mask)
  792. cpu_relax();
  793. dwc->paused = false;
  794. /* active_list entries will end up before queued entries */
  795. list_splice_init(&dwc->queue, &list);
  796. list_splice_init(&dwc->active_list, &list);
  797. spin_unlock_irqrestore(&dwc->lock, flags);
  798. /* Flush all pending and queued descriptors */
  799. list_for_each_entry_safe(desc, _desc, &list, desc_node)
  800. dwc_descriptor_complete(dwc, desc, false);
  801. } else if (cmd == DMA_SLAVE_CONFIG) {
  802. return set_runtime_config(chan, (struct dma_slave_config *)arg);
  803. } else {
  804. return -ENXIO;
  805. }
  806. return 0;
  807. }
  808. static enum dma_status
  809. dwc_tx_status(struct dma_chan *chan,
  810. dma_cookie_t cookie,
  811. struct dma_tx_state *txstate)
  812. {
  813. struct dw_dma_chan *dwc = to_dw_dma_chan(chan);
  814. enum dma_status ret;
  815. ret = dma_cookie_status(chan, cookie, txstate);
  816. if (ret != DMA_SUCCESS) {
  817. dwc_scan_descriptors(to_dw_dma(chan->device), dwc);
  818. ret = dma_cookie_status(chan, cookie, txstate);
  819. }
  820. if (ret != DMA_SUCCESS)
  821. dma_set_residue(txstate, dwc_first_active(dwc)->len);
  822. if (dwc->paused)
  823. return DMA_PAUSED;
  824. return ret;
  825. }
  826. static void dwc_issue_pending(struct dma_chan *chan)
  827. {
  828. struct dw_dma_chan *dwc = to_dw_dma_chan(chan);
  829. if (!list_empty(&dwc->queue))
  830. dwc_scan_descriptors(to_dw_dma(chan->device), dwc);
  831. }
  832. static int dwc_alloc_chan_resources(struct dma_chan *chan)
  833. {
  834. struct dw_dma_chan *dwc = to_dw_dma_chan(chan);
  835. struct dw_dma *dw = to_dw_dma(chan->device);
  836. struct dw_desc *desc;
  837. int i;
  838. unsigned long flags;
  839. dev_vdbg(chan2dev(chan), "alloc_chan_resources\n");
  840. /* ASSERT: channel is idle */
  841. if (dma_readl(dw, CH_EN) & dwc->mask) {
  842. dev_dbg(chan2dev(chan), "DMA channel not idle?\n");
  843. return -EIO;
  844. }
  845. dma_cookie_init(chan);
  846. /*
  847. * NOTE: some controllers may have additional features that we
  848. * need to initialize here, like "scatter-gather" (which
  849. * doesn't mean what you think it means), and status writeback.
  850. */
  851. spin_lock_irqsave(&dwc->lock, flags);
  852. i = dwc->descs_allocated;
  853. while (dwc->descs_allocated < NR_DESCS_PER_CHANNEL) {
  854. spin_unlock_irqrestore(&dwc->lock, flags);
  855. desc = kzalloc(sizeof(struct dw_desc), GFP_KERNEL);
  856. if (!desc) {
  857. dev_info(chan2dev(chan),
  858. "only allocated %d descriptors\n", i);
  859. spin_lock_irqsave(&dwc->lock, flags);
  860. break;
  861. }
  862. INIT_LIST_HEAD(&desc->tx_list);
  863. dma_async_tx_descriptor_init(&desc->txd, chan);
  864. desc->txd.tx_submit = dwc_tx_submit;
  865. desc->txd.flags = DMA_CTRL_ACK;
  866. desc->txd.phys = dma_map_single(chan2parent(chan), &desc->lli,
  867. sizeof(desc->lli), DMA_TO_DEVICE);
  868. dwc_desc_put(dwc, desc);
  869. spin_lock_irqsave(&dwc->lock, flags);
  870. i = ++dwc->descs_allocated;
  871. }
  872. spin_unlock_irqrestore(&dwc->lock, flags);
  873. dev_dbg(chan2dev(chan),
  874. "alloc_chan_resources allocated %d descriptors\n", i);
  875. return i;
  876. }
  877. static void dwc_free_chan_resources(struct dma_chan *chan)
  878. {
  879. struct dw_dma_chan *dwc = to_dw_dma_chan(chan);
  880. struct dw_dma *dw = to_dw_dma(chan->device);
  881. struct dw_desc *desc, *_desc;
  882. unsigned long flags;
  883. LIST_HEAD(list);
  884. dev_dbg(chan2dev(chan), "free_chan_resources (descs allocated=%u)\n",
  885. dwc->descs_allocated);
  886. /* ASSERT: channel is idle */
  887. BUG_ON(!list_empty(&dwc->active_list));
  888. BUG_ON(!list_empty(&dwc->queue));
  889. BUG_ON(dma_readl(to_dw_dma(chan->device), CH_EN) & dwc->mask);
  890. spin_lock_irqsave(&dwc->lock, flags);
  891. list_splice_init(&dwc->free_list, &list);
  892. dwc->descs_allocated = 0;
  893. dwc->initialized = false;
  894. /* Disable interrupts */
  895. channel_clear_bit(dw, MASK.XFER, dwc->mask);
  896. channel_clear_bit(dw, MASK.ERROR, dwc->mask);
  897. spin_unlock_irqrestore(&dwc->lock, flags);
  898. list_for_each_entry_safe(desc, _desc, &list, desc_node) {
  899. dev_vdbg(chan2dev(chan), " freeing descriptor %p\n", desc);
  900. dma_unmap_single(chan2parent(chan), desc->txd.phys,
  901. sizeof(desc->lli), DMA_TO_DEVICE);
  902. kfree(desc);
  903. }
  904. dev_vdbg(chan2dev(chan), "free_chan_resources done\n");
  905. }
  906. /* --------------------- Cyclic DMA API extensions -------------------- */
  907. /**
  908. * dw_dma_cyclic_start - start the cyclic DMA transfer
  909. * @chan: the DMA channel to start
  910. *
  911. * Must be called with soft interrupts disabled. Returns zero on success or
  912. * -errno on failure.
  913. */
  914. int dw_dma_cyclic_start(struct dma_chan *chan)
  915. {
  916. struct dw_dma_chan *dwc = to_dw_dma_chan(chan);
  917. struct dw_dma *dw = to_dw_dma(dwc->chan.device);
  918. unsigned long flags;
  919. if (!test_bit(DW_DMA_IS_CYCLIC, &dwc->flags)) {
  920. dev_err(chan2dev(&dwc->chan), "missing prep for cyclic DMA\n");
  921. return -ENODEV;
  922. }
  923. spin_lock_irqsave(&dwc->lock, flags);
  924. /* assert channel is idle */
  925. if (dma_readl(dw, CH_EN) & dwc->mask) {
  926. dev_err(chan2dev(&dwc->chan),
  927. "BUG: Attempted to start non-idle channel\n");
  928. dev_err(chan2dev(&dwc->chan),
  929. " SAR: 0x%x DAR: 0x%x LLP: 0x%x CTL: 0x%x:%08x\n",
  930. channel_readl(dwc, SAR),
  931. channel_readl(dwc, DAR),
  932. channel_readl(dwc, LLP),
  933. channel_readl(dwc, CTL_HI),
  934. channel_readl(dwc, CTL_LO));
  935. spin_unlock_irqrestore(&dwc->lock, flags);
  936. return -EBUSY;
  937. }
  938. dma_writel(dw, CLEAR.ERROR, dwc->mask);
  939. dma_writel(dw, CLEAR.XFER, dwc->mask);
  940. /* setup DMAC channel registers */
  941. channel_writel(dwc, LLP, dwc->cdesc->desc[0]->txd.phys);
  942. channel_writel(dwc, CTL_LO, DWC_CTLL_LLP_D_EN | DWC_CTLL_LLP_S_EN);
  943. channel_writel(dwc, CTL_HI, 0);
  944. channel_set_bit(dw, CH_EN, dwc->mask);
  945. spin_unlock_irqrestore(&dwc->lock, flags);
  946. return 0;
  947. }
  948. EXPORT_SYMBOL(dw_dma_cyclic_start);
  949. /**
  950. * dw_dma_cyclic_stop - stop the cyclic DMA transfer
  951. * @chan: the DMA channel to stop
  952. *
  953. * Must be called with soft interrupts disabled.
  954. */
  955. void dw_dma_cyclic_stop(struct dma_chan *chan)
  956. {
  957. struct dw_dma_chan *dwc = to_dw_dma_chan(chan);
  958. struct dw_dma *dw = to_dw_dma(dwc->chan.device);
  959. unsigned long flags;
  960. spin_lock_irqsave(&dwc->lock, flags);
  961. channel_clear_bit(dw, CH_EN, dwc->mask);
  962. while (dma_readl(dw, CH_EN) & dwc->mask)
  963. cpu_relax();
  964. spin_unlock_irqrestore(&dwc->lock, flags);
  965. }
  966. EXPORT_SYMBOL(dw_dma_cyclic_stop);
  967. /**
  968. * dw_dma_cyclic_prep - prepare the cyclic DMA transfer
  969. * @chan: the DMA channel to prepare
  970. * @buf_addr: physical DMA address where the buffer starts
  971. * @buf_len: total number of bytes for the entire buffer
  972. * @period_len: number of bytes for each period
  973. * @direction: transfer direction, to or from device
  974. *
  975. * Must be called before trying to start the transfer. Returns a valid struct
  976. * dw_cyclic_desc if successful or an ERR_PTR(-errno) if not successful.
  977. */
  978. struct dw_cyclic_desc *dw_dma_cyclic_prep(struct dma_chan *chan,
  979. dma_addr_t buf_addr, size_t buf_len, size_t period_len,
  980. enum dma_transfer_direction direction)
  981. {
  982. struct dw_dma_chan *dwc = to_dw_dma_chan(chan);
  983. struct dma_slave_config *sconfig = &dwc->dma_sconfig;
  984. struct dw_cyclic_desc *cdesc;
  985. struct dw_cyclic_desc *retval = NULL;
  986. struct dw_desc *desc;
  987. struct dw_desc *last = NULL;
  988. unsigned long was_cyclic;
  989. unsigned int reg_width;
  990. unsigned int periods;
  991. unsigned int i;
  992. unsigned long flags;
  993. spin_lock_irqsave(&dwc->lock, flags);
  994. if (!list_empty(&dwc->queue) || !list_empty(&dwc->active_list)) {
  995. spin_unlock_irqrestore(&dwc->lock, flags);
  996. dev_dbg(chan2dev(&dwc->chan),
  997. "queue and/or active list are not empty\n");
  998. return ERR_PTR(-EBUSY);
  999. }
  1000. was_cyclic = test_and_set_bit(DW_DMA_IS_CYCLIC, &dwc->flags);
  1001. spin_unlock_irqrestore(&dwc->lock, flags);
  1002. if (was_cyclic) {
  1003. dev_dbg(chan2dev(&dwc->chan),
  1004. "channel already prepared for cyclic DMA\n");
  1005. return ERR_PTR(-EBUSY);
  1006. }
  1007. retval = ERR_PTR(-EINVAL);
  1008. if (direction == DMA_MEM_TO_DEV)
  1009. reg_width = __ffs(sconfig->dst_addr_width);
  1010. else
  1011. reg_width = __ffs(sconfig->src_addr_width);
  1012. periods = buf_len / period_len;
  1013. /* Check for too big/unaligned periods and unaligned DMA buffer. */
  1014. if (period_len > (DWC_MAX_COUNT << reg_width))
  1015. goto out_err;
  1016. if (unlikely(period_len & ((1 << reg_width) - 1)))
  1017. goto out_err;
  1018. if (unlikely(buf_addr & ((1 << reg_width) - 1)))
  1019. goto out_err;
  1020. if (unlikely(!(direction & (DMA_MEM_TO_DEV | DMA_DEV_TO_MEM))))
  1021. goto out_err;
  1022. retval = ERR_PTR(-ENOMEM);
  1023. if (periods > NR_DESCS_PER_CHANNEL)
  1024. goto out_err;
  1025. cdesc = kzalloc(sizeof(struct dw_cyclic_desc), GFP_KERNEL);
  1026. if (!cdesc)
  1027. goto out_err;
  1028. cdesc->desc = kzalloc(sizeof(struct dw_desc *) * periods, GFP_KERNEL);
  1029. if (!cdesc->desc)
  1030. goto out_err_alloc;
  1031. for (i = 0; i < periods; i++) {
  1032. desc = dwc_desc_get(dwc);
  1033. if (!desc)
  1034. goto out_err_desc_get;
  1035. switch (direction) {
  1036. case DMA_MEM_TO_DEV:
  1037. desc->lli.dar = sconfig->dst_addr;
  1038. desc->lli.sar = buf_addr + (period_len * i);
  1039. desc->lli.ctllo = (DWC_DEFAULT_CTLLO(chan)
  1040. | DWC_CTLL_DST_WIDTH(reg_width)
  1041. | DWC_CTLL_SRC_WIDTH(reg_width)
  1042. | DWC_CTLL_DST_FIX
  1043. | DWC_CTLL_SRC_INC
  1044. | DWC_CTLL_INT_EN);
  1045. desc->lli.ctllo |= sconfig->device_fc ?
  1046. DWC_CTLL_FC(DW_DMA_FC_P_M2P) :
  1047. DWC_CTLL_FC(DW_DMA_FC_D_M2P);
  1048. break;
  1049. case DMA_DEV_TO_MEM:
  1050. desc->lli.dar = buf_addr + (period_len * i);
  1051. desc->lli.sar = sconfig->src_addr;
  1052. desc->lli.ctllo = (DWC_DEFAULT_CTLLO(chan)
  1053. | DWC_CTLL_SRC_WIDTH(reg_width)
  1054. | DWC_CTLL_DST_WIDTH(reg_width)
  1055. | DWC_CTLL_DST_INC
  1056. | DWC_CTLL_SRC_FIX
  1057. | DWC_CTLL_INT_EN);
  1058. desc->lli.ctllo |= sconfig->device_fc ?
  1059. DWC_CTLL_FC(DW_DMA_FC_P_P2M) :
  1060. DWC_CTLL_FC(DW_DMA_FC_D_P2M);
  1061. break;
  1062. default:
  1063. break;
  1064. }
  1065. desc->lli.ctlhi = (period_len >> reg_width);
  1066. cdesc->desc[i] = desc;
  1067. if (last) {
  1068. last->lli.llp = desc->txd.phys;
  1069. dma_sync_single_for_device(chan2parent(chan),
  1070. last->txd.phys, sizeof(last->lli),
  1071. DMA_TO_DEVICE);
  1072. }
  1073. last = desc;
  1074. }
  1075. /* lets make a cyclic list */
  1076. last->lli.llp = cdesc->desc[0]->txd.phys;
  1077. dma_sync_single_for_device(chan2parent(chan), last->txd.phys,
  1078. sizeof(last->lli), DMA_TO_DEVICE);
  1079. dev_dbg(chan2dev(&dwc->chan), "cyclic prepared buf 0x%08x len %zu "
  1080. "period %zu periods %d\n", buf_addr, buf_len,
  1081. period_len, periods);
  1082. cdesc->periods = periods;
  1083. dwc->cdesc = cdesc;
  1084. return cdesc;
  1085. out_err_desc_get:
  1086. while (i--)
  1087. dwc_desc_put(dwc, cdesc->desc[i]);
  1088. out_err_alloc:
  1089. kfree(cdesc);
  1090. out_err:
  1091. clear_bit(DW_DMA_IS_CYCLIC, &dwc->flags);
  1092. return (struct dw_cyclic_desc *)retval;
  1093. }
  1094. EXPORT_SYMBOL(dw_dma_cyclic_prep);
  1095. /**
  1096. * dw_dma_cyclic_free - free a prepared cyclic DMA transfer
  1097. * @chan: the DMA channel to free
  1098. */
  1099. void dw_dma_cyclic_free(struct dma_chan *chan)
  1100. {
  1101. struct dw_dma_chan *dwc = to_dw_dma_chan(chan);
  1102. struct dw_dma *dw = to_dw_dma(dwc->chan.device);
  1103. struct dw_cyclic_desc *cdesc = dwc->cdesc;
  1104. int i;
  1105. unsigned long flags;
  1106. dev_dbg(chan2dev(&dwc->chan), "cyclic free\n");
  1107. if (!cdesc)
  1108. return;
  1109. spin_lock_irqsave(&dwc->lock, flags);
  1110. channel_clear_bit(dw, CH_EN, dwc->mask);
  1111. while (dma_readl(dw, CH_EN) & dwc->mask)
  1112. cpu_relax();
  1113. dma_writel(dw, CLEAR.ERROR, dwc->mask);
  1114. dma_writel(dw, CLEAR.XFER, dwc->mask);
  1115. spin_unlock_irqrestore(&dwc->lock, flags);
  1116. for (i = 0; i < cdesc->periods; i++)
  1117. dwc_desc_put(dwc, cdesc->desc[i]);
  1118. kfree(cdesc->desc);
  1119. kfree(cdesc);
  1120. clear_bit(DW_DMA_IS_CYCLIC, &dwc->flags);
  1121. }
  1122. EXPORT_SYMBOL(dw_dma_cyclic_free);
  1123. /*----------------------------------------------------------------------*/
  1124. static void dw_dma_off(struct dw_dma *dw)
  1125. {
  1126. int i;
  1127. dma_writel(dw, CFG, 0);
  1128. channel_clear_bit(dw, MASK.XFER, dw->all_chan_mask);
  1129. channel_clear_bit(dw, MASK.SRC_TRAN, dw->all_chan_mask);
  1130. channel_clear_bit(dw, MASK.DST_TRAN, dw->all_chan_mask);
  1131. channel_clear_bit(dw, MASK.ERROR, dw->all_chan_mask);
  1132. while (dma_readl(dw, CFG) & DW_CFG_DMA_EN)
  1133. cpu_relax();
  1134. for (i = 0; i < dw->dma.chancnt; i++)
  1135. dw->chan[i].initialized = false;
  1136. }
  1137. static int __init dw_probe(struct platform_device *pdev)
  1138. {
  1139. struct dw_dma_platform_data *pdata;
  1140. struct resource *io;
  1141. struct dw_dma *dw;
  1142. size_t size;
  1143. int irq;
  1144. int err;
  1145. int i;
  1146. pdata = dev_get_platdata(&pdev->dev);
  1147. if (!pdata || pdata->nr_channels > DW_DMA_MAX_NR_CHANNELS)
  1148. return -EINVAL;
  1149. io = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1150. if (!io)
  1151. return -EINVAL;
  1152. irq = platform_get_irq(pdev, 0);
  1153. if (irq < 0)
  1154. return irq;
  1155. size = sizeof(struct dw_dma);
  1156. size += pdata->nr_channels * sizeof(struct dw_dma_chan);
  1157. dw = kzalloc(size, GFP_KERNEL);
  1158. if (!dw)
  1159. return -ENOMEM;
  1160. if (!request_mem_region(io->start, DW_REGLEN, pdev->dev.driver->name)) {
  1161. err = -EBUSY;
  1162. goto err_kfree;
  1163. }
  1164. dw->regs = ioremap(io->start, DW_REGLEN);
  1165. if (!dw->regs) {
  1166. err = -ENOMEM;
  1167. goto err_release_r;
  1168. }
  1169. dw->clk = clk_get(&pdev->dev, "hclk");
  1170. if (IS_ERR(dw->clk)) {
  1171. err = PTR_ERR(dw->clk);
  1172. goto err_clk;
  1173. }
  1174. clk_prepare_enable(dw->clk);
  1175. /* force dma off, just in case */
  1176. dw_dma_off(dw);
  1177. err = request_irq(irq, dw_dma_interrupt, 0, "dw_dmac", dw);
  1178. if (err)
  1179. goto err_irq;
  1180. platform_set_drvdata(pdev, dw);
  1181. tasklet_init(&dw->tasklet, dw_dma_tasklet, (unsigned long)dw);
  1182. dw->all_chan_mask = (1 << pdata->nr_channels) - 1;
  1183. INIT_LIST_HEAD(&dw->dma.channels);
  1184. for (i = 0; i < pdata->nr_channels; i++) {
  1185. struct dw_dma_chan *dwc = &dw->chan[i];
  1186. dwc->chan.device = &dw->dma;
  1187. dma_cookie_init(&dwc->chan);
  1188. if (pdata->chan_allocation_order == CHAN_ALLOCATION_ASCENDING)
  1189. list_add_tail(&dwc->chan.device_node,
  1190. &dw->dma.channels);
  1191. else
  1192. list_add(&dwc->chan.device_node, &dw->dma.channels);
  1193. /* 7 is highest priority & 0 is lowest. */
  1194. if (pdata->chan_priority == CHAN_PRIORITY_ASCENDING)
  1195. dwc->priority = pdata->nr_channels - i - 1;
  1196. else
  1197. dwc->priority = i;
  1198. dwc->ch_regs = &__dw_regs(dw)->CHAN[i];
  1199. spin_lock_init(&dwc->lock);
  1200. dwc->mask = 1 << i;
  1201. INIT_LIST_HEAD(&dwc->active_list);
  1202. INIT_LIST_HEAD(&dwc->queue);
  1203. INIT_LIST_HEAD(&dwc->free_list);
  1204. channel_clear_bit(dw, CH_EN, dwc->mask);
  1205. }
  1206. /* Clear/disable all interrupts on all channels. */
  1207. dma_writel(dw, CLEAR.XFER, dw->all_chan_mask);
  1208. dma_writel(dw, CLEAR.SRC_TRAN, dw->all_chan_mask);
  1209. dma_writel(dw, CLEAR.DST_TRAN, dw->all_chan_mask);
  1210. dma_writel(dw, CLEAR.ERROR, dw->all_chan_mask);
  1211. channel_clear_bit(dw, MASK.XFER, dw->all_chan_mask);
  1212. channel_clear_bit(dw, MASK.SRC_TRAN, dw->all_chan_mask);
  1213. channel_clear_bit(dw, MASK.DST_TRAN, dw->all_chan_mask);
  1214. channel_clear_bit(dw, MASK.ERROR, dw->all_chan_mask);
  1215. dma_cap_set(DMA_MEMCPY, dw->dma.cap_mask);
  1216. dma_cap_set(DMA_SLAVE, dw->dma.cap_mask);
  1217. if (pdata->is_private)
  1218. dma_cap_set(DMA_PRIVATE, dw->dma.cap_mask);
  1219. dw->dma.dev = &pdev->dev;
  1220. dw->dma.device_alloc_chan_resources = dwc_alloc_chan_resources;
  1221. dw->dma.device_free_chan_resources = dwc_free_chan_resources;
  1222. dw->dma.device_prep_dma_memcpy = dwc_prep_dma_memcpy;
  1223. dw->dma.device_prep_slave_sg = dwc_prep_slave_sg;
  1224. dw->dma.device_control = dwc_control;
  1225. dw->dma.device_tx_status = dwc_tx_status;
  1226. dw->dma.device_issue_pending = dwc_issue_pending;
  1227. dma_writel(dw, CFG, DW_CFG_DMA_EN);
  1228. printk(KERN_INFO "%s: DesignWare DMA Controller, %d channels\n",
  1229. dev_name(&pdev->dev), pdata->nr_channels);
  1230. dma_async_device_register(&dw->dma);
  1231. return 0;
  1232. err_irq:
  1233. clk_disable_unprepare(dw->clk);
  1234. clk_put(dw->clk);
  1235. err_clk:
  1236. iounmap(dw->regs);
  1237. dw->regs = NULL;
  1238. err_release_r:
  1239. release_resource(io);
  1240. err_kfree:
  1241. kfree(dw);
  1242. return err;
  1243. }
  1244. static int __exit dw_remove(struct platform_device *pdev)
  1245. {
  1246. struct dw_dma *dw = platform_get_drvdata(pdev);
  1247. struct dw_dma_chan *dwc, *_dwc;
  1248. struct resource *io;
  1249. dw_dma_off(dw);
  1250. dma_async_device_unregister(&dw->dma);
  1251. free_irq(platform_get_irq(pdev, 0), dw);
  1252. tasklet_kill(&dw->tasklet);
  1253. list_for_each_entry_safe(dwc, _dwc, &dw->dma.channels,
  1254. chan.device_node) {
  1255. list_del(&dwc->chan.device_node);
  1256. channel_clear_bit(dw, CH_EN, dwc->mask);
  1257. }
  1258. clk_disable_unprepare(dw->clk);
  1259. clk_put(dw->clk);
  1260. iounmap(dw->regs);
  1261. dw->regs = NULL;
  1262. io = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1263. release_mem_region(io->start, DW_REGLEN);
  1264. kfree(dw);
  1265. return 0;
  1266. }
  1267. static void dw_shutdown(struct platform_device *pdev)
  1268. {
  1269. struct dw_dma *dw = platform_get_drvdata(pdev);
  1270. dw_dma_off(platform_get_drvdata(pdev));
  1271. clk_disable_unprepare(dw->clk);
  1272. }
  1273. static int dw_suspend_noirq(struct device *dev)
  1274. {
  1275. struct platform_device *pdev = to_platform_device(dev);
  1276. struct dw_dma *dw = platform_get_drvdata(pdev);
  1277. dw_dma_off(platform_get_drvdata(pdev));
  1278. clk_disable_unprepare(dw->clk);
  1279. return 0;
  1280. }
  1281. static int dw_resume_noirq(struct device *dev)
  1282. {
  1283. struct platform_device *pdev = to_platform_device(dev);
  1284. struct dw_dma *dw = platform_get_drvdata(pdev);
  1285. clk_prepare_enable(dw->clk);
  1286. dma_writel(dw, CFG, DW_CFG_DMA_EN);
  1287. return 0;
  1288. }
  1289. static const struct dev_pm_ops dw_dev_pm_ops = {
  1290. .suspend_noirq = dw_suspend_noirq,
  1291. .resume_noirq = dw_resume_noirq,
  1292. .freeze_noirq = dw_suspend_noirq,
  1293. .thaw_noirq = dw_resume_noirq,
  1294. .restore_noirq = dw_resume_noirq,
  1295. .poweroff_noirq = dw_suspend_noirq,
  1296. };
  1297. #ifdef CONFIG_OF
  1298. static const struct of_device_id dw_dma_id_table[] = {
  1299. { .compatible = "snps,dma-spear1340" },
  1300. {}
  1301. };
  1302. MODULE_DEVICE_TABLE(of, dw_dma_id_table);
  1303. #endif
  1304. static struct platform_driver dw_driver = {
  1305. .remove = __exit_p(dw_remove),
  1306. .shutdown = dw_shutdown,
  1307. .driver = {
  1308. .name = "dw_dmac",
  1309. .pm = &dw_dev_pm_ops,
  1310. .of_match_table = of_match_ptr(dw_dma_id_table),
  1311. },
  1312. };
  1313. static int __init dw_init(void)
  1314. {
  1315. return platform_driver_probe(&dw_driver, dw_probe);
  1316. }
  1317. subsys_initcall(dw_init);
  1318. static void __exit dw_exit(void)
  1319. {
  1320. platform_driver_unregister(&dw_driver);
  1321. }
  1322. module_exit(dw_exit);
  1323. MODULE_LICENSE("GPL v2");
  1324. MODULE_DESCRIPTION("Synopsys DesignWare DMA Controller driver");
  1325. MODULE_AUTHOR("Haavard Skinnemoen (Atmel)");
  1326. MODULE_AUTHOR("Viresh Kumar <viresh.kumar@st.com>");