regmap-irq.c 8.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351
  1. /*
  2. * regmap based irq_chip
  3. *
  4. * Copyright 2011 Wolfson Microelectronics plc
  5. *
  6. * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License version 2 as
  10. * published by the Free Software Foundation.
  11. */
  12. #include <linux/export.h>
  13. #include <linux/device.h>
  14. #include <linux/regmap.h>
  15. #include <linux/irq.h>
  16. #include <linux/interrupt.h>
  17. #include <linux/irqdomain.h>
  18. #include <linux/slab.h>
  19. #include "internal.h"
  20. struct regmap_irq_chip_data {
  21. struct mutex lock;
  22. struct regmap *map;
  23. struct regmap_irq_chip *chip;
  24. int irq_base;
  25. struct irq_domain *domain;
  26. unsigned int *status_buf;
  27. unsigned int *mask_buf;
  28. unsigned int *mask_buf_def;
  29. unsigned int irq_reg_stride;
  30. };
  31. static inline const
  32. struct regmap_irq *irq_to_regmap_irq(struct regmap_irq_chip_data *data,
  33. int irq)
  34. {
  35. return &data->chip->irqs[irq];
  36. }
  37. static void regmap_irq_lock(struct irq_data *data)
  38. {
  39. struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
  40. mutex_lock(&d->lock);
  41. }
  42. static void regmap_irq_sync_unlock(struct irq_data *data)
  43. {
  44. struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
  45. struct regmap *map = d->map;
  46. int i, ret;
  47. /*
  48. * If there's been a change in the mask write it back to the
  49. * hardware. We rely on the use of the regmap core cache to
  50. * suppress pointless writes.
  51. */
  52. for (i = 0; i < d->chip->num_regs; i++) {
  53. ret = regmap_update_bits(d->map, d->chip->mask_base +
  54. (i * map->reg_stride *
  55. d->irq_reg_stride),
  56. d->mask_buf_def[i], d->mask_buf[i]);
  57. if (ret != 0)
  58. dev_err(d->map->dev, "Failed to sync masks in %x\n",
  59. d->chip->mask_base + (i * map->reg_stride));
  60. }
  61. mutex_unlock(&d->lock);
  62. }
  63. static void regmap_irq_enable(struct irq_data *data)
  64. {
  65. struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
  66. struct regmap *map = d->map;
  67. const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
  68. d->mask_buf[irq_data->reg_offset / map->reg_stride] &= ~irq_data->mask;
  69. }
  70. static void regmap_irq_disable(struct irq_data *data)
  71. {
  72. struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
  73. struct regmap *map = d->map;
  74. const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
  75. d->mask_buf[irq_data->reg_offset / map->reg_stride] |= irq_data->mask;
  76. }
  77. static struct irq_chip regmap_irq_chip = {
  78. .name = "regmap",
  79. .irq_bus_lock = regmap_irq_lock,
  80. .irq_bus_sync_unlock = regmap_irq_sync_unlock,
  81. .irq_disable = regmap_irq_disable,
  82. .irq_enable = regmap_irq_enable,
  83. };
  84. static irqreturn_t regmap_irq_thread(int irq, void *d)
  85. {
  86. struct regmap_irq_chip_data *data = d;
  87. struct regmap_irq_chip *chip = data->chip;
  88. struct regmap *map = data->map;
  89. int ret, i;
  90. bool handled = false;
  91. /*
  92. * Ignore masked IRQs and ack if we need to; we ack early so
  93. * there is no race between handling and acknowleding the
  94. * interrupt. We assume that typically few of the interrupts
  95. * will fire simultaneously so don't worry about overhead from
  96. * doing a write per register.
  97. */
  98. for (i = 0; i < data->chip->num_regs; i++) {
  99. ret = regmap_read(map, chip->status_base + (i * map->reg_stride
  100. * data->irq_reg_stride),
  101. &data->status_buf[i]);
  102. if (ret != 0) {
  103. dev_err(map->dev, "Failed to read IRQ status: %d\n",
  104. ret);
  105. return IRQ_NONE;
  106. }
  107. data->status_buf[i] &= ~data->mask_buf[i];
  108. if (data->status_buf[i] && chip->ack_base) {
  109. ret = regmap_write(map, chip->ack_base +
  110. (i * map->reg_stride *
  111. data->irq_reg_stride),
  112. data->status_buf[i]);
  113. if (ret != 0)
  114. dev_err(map->dev, "Failed to ack 0x%x: %d\n",
  115. chip->ack_base + (i * map->reg_stride),
  116. ret);
  117. }
  118. }
  119. for (i = 0; i < chip->num_irqs; i++) {
  120. if (data->status_buf[chip->irqs[i].reg_offset /
  121. map->reg_stride] & chip->irqs[i].mask) {
  122. handle_nested_irq(irq_find_mapping(data->domain, i));
  123. handled = true;
  124. }
  125. }
  126. if (handled)
  127. return IRQ_HANDLED;
  128. else
  129. return IRQ_NONE;
  130. }
  131. static int regmap_irq_map(struct irq_domain *h, unsigned int virq,
  132. irq_hw_number_t hw)
  133. {
  134. struct regmap_irq_chip_data *data = h->host_data;
  135. irq_set_chip_data(virq, data);
  136. irq_set_chip_and_handler(virq, &regmap_irq_chip, handle_edge_irq);
  137. irq_set_nested_thread(virq, 1);
  138. /* ARM needs us to explicitly flag the IRQ as valid
  139. * and will set them noprobe when we do so. */
  140. #ifdef CONFIG_ARM
  141. set_irq_flags(virq, IRQF_VALID);
  142. #else
  143. irq_set_noprobe(virq);
  144. #endif
  145. return 0;
  146. }
  147. static struct irq_domain_ops regmap_domain_ops = {
  148. .map = regmap_irq_map,
  149. .xlate = irq_domain_xlate_twocell,
  150. };
  151. /**
  152. * regmap_add_irq_chip(): Use standard regmap IRQ controller handling
  153. *
  154. * map: The regmap for the device.
  155. * irq: The IRQ the device uses to signal interrupts
  156. * irq_flags: The IRQF_ flags to use for the primary interrupt.
  157. * chip: Configuration for the interrupt controller.
  158. * data: Runtime data structure for the controller, allocated on success
  159. *
  160. * Returns 0 on success or an errno on failure.
  161. *
  162. * In order for this to be efficient the chip really should use a
  163. * register cache. The chip driver is responsible for restoring the
  164. * register values used by the IRQ controller over suspend and resume.
  165. */
  166. int regmap_add_irq_chip(struct regmap *map, int irq, int irq_flags,
  167. int irq_base, struct regmap_irq_chip *chip,
  168. struct regmap_irq_chip_data **data)
  169. {
  170. struct regmap_irq_chip_data *d;
  171. int i;
  172. int ret = -ENOMEM;
  173. for (i = 0; i < chip->num_irqs; i++) {
  174. if (chip->irqs[i].reg_offset % map->reg_stride)
  175. return -EINVAL;
  176. if (chip->irqs[i].reg_offset / map->reg_stride >=
  177. chip->num_regs)
  178. return -EINVAL;
  179. }
  180. if (irq_base) {
  181. irq_base = irq_alloc_descs(irq_base, 0, chip->num_irqs, 0);
  182. if (irq_base < 0) {
  183. dev_warn(map->dev, "Failed to allocate IRQs: %d\n",
  184. irq_base);
  185. return irq_base;
  186. }
  187. }
  188. d = kzalloc(sizeof(*d), GFP_KERNEL);
  189. if (!d)
  190. return -ENOMEM;
  191. *data = d;
  192. d->status_buf = kzalloc(sizeof(unsigned int) * chip->num_regs,
  193. GFP_KERNEL);
  194. if (!d->status_buf)
  195. goto err_alloc;
  196. d->mask_buf = kzalloc(sizeof(unsigned int) * chip->num_regs,
  197. GFP_KERNEL);
  198. if (!d->mask_buf)
  199. goto err_alloc;
  200. d->mask_buf_def = kzalloc(sizeof(unsigned int) * chip->num_regs,
  201. GFP_KERNEL);
  202. if (!d->mask_buf_def)
  203. goto err_alloc;
  204. d->map = map;
  205. d->chip = chip;
  206. d->irq_base = irq_base;
  207. if (chip->irq_reg_stride)
  208. d->irq_reg_stride = chip->irq_reg_stride;
  209. else
  210. d->irq_reg_stride = 1;
  211. mutex_init(&d->lock);
  212. for (i = 0; i < chip->num_irqs; i++)
  213. d->mask_buf_def[chip->irqs[i].reg_offset / map->reg_stride]
  214. |= chip->irqs[i].mask;
  215. /* Mask all the interrupts by default */
  216. for (i = 0; i < chip->num_regs; i++) {
  217. d->mask_buf[i] = d->mask_buf_def[i];
  218. ret = regmap_write(map, chip->mask_base + (i * map->reg_stride
  219. * d->irq_reg_stride),
  220. d->mask_buf[i]);
  221. if (ret != 0) {
  222. dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
  223. chip->mask_base + (i * map->reg_stride), ret);
  224. goto err_alloc;
  225. }
  226. }
  227. if (irq_base)
  228. d->domain = irq_domain_add_legacy(map->dev->of_node,
  229. chip->num_irqs, irq_base, 0,
  230. &regmap_domain_ops, d);
  231. else
  232. d->domain = irq_domain_add_linear(map->dev->of_node,
  233. chip->num_irqs,
  234. &regmap_domain_ops, d);
  235. if (!d->domain) {
  236. dev_err(map->dev, "Failed to create IRQ domain\n");
  237. ret = -ENOMEM;
  238. goto err_alloc;
  239. }
  240. ret = request_threaded_irq(irq, NULL, regmap_irq_thread, irq_flags,
  241. chip->name, d);
  242. if (ret != 0) {
  243. dev_err(map->dev, "Failed to request IRQ %d: %d\n", irq, ret);
  244. goto err_domain;
  245. }
  246. return 0;
  247. err_domain:
  248. /* Should really dispose of the domain but... */
  249. err_alloc:
  250. kfree(d->mask_buf_def);
  251. kfree(d->mask_buf);
  252. kfree(d->status_buf);
  253. kfree(d);
  254. return ret;
  255. }
  256. EXPORT_SYMBOL_GPL(regmap_add_irq_chip);
  257. /**
  258. * regmap_del_irq_chip(): Stop interrupt handling for a regmap IRQ chip
  259. *
  260. * @irq: Primary IRQ for the device
  261. * @d: regmap_irq_chip_data allocated by regmap_add_irq_chip()
  262. */
  263. void regmap_del_irq_chip(int irq, struct regmap_irq_chip_data *d)
  264. {
  265. if (!d)
  266. return;
  267. free_irq(irq, d);
  268. /* We should unmap the domain but... */
  269. kfree(d->mask_buf_def);
  270. kfree(d->mask_buf);
  271. kfree(d->status_buf);
  272. kfree(d);
  273. }
  274. EXPORT_SYMBOL_GPL(regmap_del_irq_chip);
  275. /**
  276. * regmap_irq_chip_get_base(): Retrieve interrupt base for a regmap IRQ chip
  277. *
  278. * Useful for drivers to request their own IRQs.
  279. *
  280. * @data: regmap_irq controller to operate on.
  281. */
  282. int regmap_irq_chip_get_base(struct regmap_irq_chip_data *data)
  283. {
  284. WARN_ON(!data->irq_base);
  285. return data->irq_base;
  286. }
  287. EXPORT_SYMBOL_GPL(regmap_irq_chip_get_base);
  288. /**
  289. * regmap_irq_get_virq(): Map an interrupt on a chip to a virtual IRQ
  290. *
  291. * Useful for drivers to request their own IRQs.
  292. *
  293. * @data: regmap_irq controller to operate on.
  294. * @irq: index of the interrupt requested in the chip IRQs
  295. */
  296. int regmap_irq_get_virq(struct regmap_irq_chip_data *data, int irq)
  297. {
  298. return irq_create_mapping(data->domain, irq);
  299. }
  300. EXPORT_SYMBOL_GPL(regmap_irq_get_virq);