vmx.c 207 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  9. *
  10. * Authors:
  11. * Avi Kivity <avi@qumranet.com>
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. *
  14. * This work is licensed under the terms of the GNU GPL, version 2. See
  15. * the COPYING file in the top-level directory.
  16. *
  17. */
  18. #include "irq.h"
  19. #include "mmu.h"
  20. #include "cpuid.h"
  21. #include <linux/kvm_host.h>
  22. #include <linux/module.h>
  23. #include <linux/kernel.h>
  24. #include <linux/mm.h>
  25. #include <linux/highmem.h>
  26. #include <linux/sched.h>
  27. #include <linux/moduleparam.h>
  28. #include <linux/mod_devicetable.h>
  29. #include <linux/ftrace_event.h>
  30. #include <linux/slab.h>
  31. #include <linux/tboot.h>
  32. #include "kvm_cache_regs.h"
  33. #include "x86.h"
  34. #include <asm/io.h>
  35. #include <asm/desc.h>
  36. #include <asm/vmx.h>
  37. #include <asm/virtext.h>
  38. #include <asm/mce.h>
  39. #include <asm/i387.h>
  40. #include <asm/xcr.h>
  41. #include <asm/perf_event.h>
  42. #include "trace.h"
  43. #define __ex(x) __kvm_handle_fault_on_reboot(x)
  44. #define __ex_clear(x, reg) \
  45. ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
  46. MODULE_AUTHOR("Qumranet");
  47. MODULE_LICENSE("GPL");
  48. static const struct x86_cpu_id vmx_cpu_id[] = {
  49. X86_FEATURE_MATCH(X86_FEATURE_VMX),
  50. {}
  51. };
  52. MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
  53. static bool __read_mostly enable_vpid = 1;
  54. module_param_named(vpid, enable_vpid, bool, 0444);
  55. static bool __read_mostly flexpriority_enabled = 1;
  56. module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
  57. static bool __read_mostly enable_ept = 1;
  58. module_param_named(ept, enable_ept, bool, S_IRUGO);
  59. static bool __read_mostly enable_unrestricted_guest = 1;
  60. module_param_named(unrestricted_guest,
  61. enable_unrestricted_guest, bool, S_IRUGO);
  62. static bool __read_mostly emulate_invalid_guest_state = 0;
  63. module_param(emulate_invalid_guest_state, bool, S_IRUGO);
  64. static bool __read_mostly vmm_exclusive = 1;
  65. module_param(vmm_exclusive, bool, S_IRUGO);
  66. static bool __read_mostly fasteoi = 1;
  67. module_param(fasteoi, bool, S_IRUGO);
  68. /*
  69. * If nested=1, nested virtualization is supported, i.e., guests may use
  70. * VMX and be a hypervisor for its own guests. If nested=0, guests may not
  71. * use VMX instructions.
  72. */
  73. static bool __read_mostly nested = 0;
  74. module_param(nested, bool, S_IRUGO);
  75. #define KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST \
  76. (X86_CR0_WP | X86_CR0_NE | X86_CR0_NW | X86_CR0_CD)
  77. #define KVM_GUEST_CR0_MASK \
  78. (KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
  79. #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST \
  80. (X86_CR0_WP | X86_CR0_NE)
  81. #define KVM_VM_CR0_ALWAYS_ON \
  82. (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
  83. #define KVM_CR4_GUEST_OWNED_BITS \
  84. (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
  85. | X86_CR4_OSXMMEXCPT)
  86. #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
  87. #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
  88. #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
  89. /*
  90. * These 2 parameters are used to config the controls for Pause-Loop Exiting:
  91. * ple_gap: upper bound on the amount of time between two successive
  92. * executions of PAUSE in a loop. Also indicate if ple enabled.
  93. * According to test, this time is usually smaller than 128 cycles.
  94. * ple_window: upper bound on the amount of time a guest is allowed to execute
  95. * in a PAUSE loop. Tests indicate that most spinlocks are held for
  96. * less than 2^12 cycles
  97. * Time is measured based on a counter that runs at the same rate as the TSC,
  98. * refer SDM volume 3b section 21.6.13 & 22.1.3.
  99. */
  100. #define KVM_VMX_DEFAULT_PLE_GAP 128
  101. #define KVM_VMX_DEFAULT_PLE_WINDOW 4096
  102. static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
  103. module_param(ple_gap, int, S_IRUGO);
  104. static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
  105. module_param(ple_window, int, S_IRUGO);
  106. #define NR_AUTOLOAD_MSRS 8
  107. #define VMCS02_POOL_SIZE 1
  108. struct vmcs {
  109. u32 revision_id;
  110. u32 abort;
  111. char data[0];
  112. };
  113. /*
  114. * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
  115. * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
  116. * loaded on this CPU (so we can clear them if the CPU goes down).
  117. */
  118. struct loaded_vmcs {
  119. struct vmcs *vmcs;
  120. int cpu;
  121. int launched;
  122. struct list_head loaded_vmcss_on_cpu_link;
  123. };
  124. struct shared_msr_entry {
  125. unsigned index;
  126. u64 data;
  127. u64 mask;
  128. };
  129. /*
  130. * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
  131. * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
  132. * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
  133. * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
  134. * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
  135. * More than one of these structures may exist, if L1 runs multiple L2 guests.
  136. * nested_vmx_run() will use the data here to build a vmcs02: a VMCS for the
  137. * underlying hardware which will be used to run L2.
  138. * This structure is packed to ensure that its layout is identical across
  139. * machines (necessary for live migration).
  140. * If there are changes in this struct, VMCS12_REVISION must be changed.
  141. */
  142. typedef u64 natural_width;
  143. struct __packed vmcs12 {
  144. /* According to the Intel spec, a VMCS region must start with the
  145. * following two fields. Then follow implementation-specific data.
  146. */
  147. u32 revision_id;
  148. u32 abort;
  149. u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
  150. u32 padding[7]; /* room for future expansion */
  151. u64 io_bitmap_a;
  152. u64 io_bitmap_b;
  153. u64 msr_bitmap;
  154. u64 vm_exit_msr_store_addr;
  155. u64 vm_exit_msr_load_addr;
  156. u64 vm_entry_msr_load_addr;
  157. u64 tsc_offset;
  158. u64 virtual_apic_page_addr;
  159. u64 apic_access_addr;
  160. u64 ept_pointer;
  161. u64 guest_physical_address;
  162. u64 vmcs_link_pointer;
  163. u64 guest_ia32_debugctl;
  164. u64 guest_ia32_pat;
  165. u64 guest_ia32_efer;
  166. u64 guest_ia32_perf_global_ctrl;
  167. u64 guest_pdptr0;
  168. u64 guest_pdptr1;
  169. u64 guest_pdptr2;
  170. u64 guest_pdptr3;
  171. u64 host_ia32_pat;
  172. u64 host_ia32_efer;
  173. u64 host_ia32_perf_global_ctrl;
  174. u64 padding64[8]; /* room for future expansion */
  175. /*
  176. * To allow migration of L1 (complete with its L2 guests) between
  177. * machines of different natural widths (32 or 64 bit), we cannot have
  178. * unsigned long fields with no explict size. We use u64 (aliased
  179. * natural_width) instead. Luckily, x86 is little-endian.
  180. */
  181. natural_width cr0_guest_host_mask;
  182. natural_width cr4_guest_host_mask;
  183. natural_width cr0_read_shadow;
  184. natural_width cr4_read_shadow;
  185. natural_width cr3_target_value0;
  186. natural_width cr3_target_value1;
  187. natural_width cr3_target_value2;
  188. natural_width cr3_target_value3;
  189. natural_width exit_qualification;
  190. natural_width guest_linear_address;
  191. natural_width guest_cr0;
  192. natural_width guest_cr3;
  193. natural_width guest_cr4;
  194. natural_width guest_es_base;
  195. natural_width guest_cs_base;
  196. natural_width guest_ss_base;
  197. natural_width guest_ds_base;
  198. natural_width guest_fs_base;
  199. natural_width guest_gs_base;
  200. natural_width guest_ldtr_base;
  201. natural_width guest_tr_base;
  202. natural_width guest_gdtr_base;
  203. natural_width guest_idtr_base;
  204. natural_width guest_dr7;
  205. natural_width guest_rsp;
  206. natural_width guest_rip;
  207. natural_width guest_rflags;
  208. natural_width guest_pending_dbg_exceptions;
  209. natural_width guest_sysenter_esp;
  210. natural_width guest_sysenter_eip;
  211. natural_width host_cr0;
  212. natural_width host_cr3;
  213. natural_width host_cr4;
  214. natural_width host_fs_base;
  215. natural_width host_gs_base;
  216. natural_width host_tr_base;
  217. natural_width host_gdtr_base;
  218. natural_width host_idtr_base;
  219. natural_width host_ia32_sysenter_esp;
  220. natural_width host_ia32_sysenter_eip;
  221. natural_width host_rsp;
  222. natural_width host_rip;
  223. natural_width paddingl[8]; /* room for future expansion */
  224. u32 pin_based_vm_exec_control;
  225. u32 cpu_based_vm_exec_control;
  226. u32 exception_bitmap;
  227. u32 page_fault_error_code_mask;
  228. u32 page_fault_error_code_match;
  229. u32 cr3_target_count;
  230. u32 vm_exit_controls;
  231. u32 vm_exit_msr_store_count;
  232. u32 vm_exit_msr_load_count;
  233. u32 vm_entry_controls;
  234. u32 vm_entry_msr_load_count;
  235. u32 vm_entry_intr_info_field;
  236. u32 vm_entry_exception_error_code;
  237. u32 vm_entry_instruction_len;
  238. u32 tpr_threshold;
  239. u32 secondary_vm_exec_control;
  240. u32 vm_instruction_error;
  241. u32 vm_exit_reason;
  242. u32 vm_exit_intr_info;
  243. u32 vm_exit_intr_error_code;
  244. u32 idt_vectoring_info_field;
  245. u32 idt_vectoring_error_code;
  246. u32 vm_exit_instruction_len;
  247. u32 vmx_instruction_info;
  248. u32 guest_es_limit;
  249. u32 guest_cs_limit;
  250. u32 guest_ss_limit;
  251. u32 guest_ds_limit;
  252. u32 guest_fs_limit;
  253. u32 guest_gs_limit;
  254. u32 guest_ldtr_limit;
  255. u32 guest_tr_limit;
  256. u32 guest_gdtr_limit;
  257. u32 guest_idtr_limit;
  258. u32 guest_es_ar_bytes;
  259. u32 guest_cs_ar_bytes;
  260. u32 guest_ss_ar_bytes;
  261. u32 guest_ds_ar_bytes;
  262. u32 guest_fs_ar_bytes;
  263. u32 guest_gs_ar_bytes;
  264. u32 guest_ldtr_ar_bytes;
  265. u32 guest_tr_ar_bytes;
  266. u32 guest_interruptibility_info;
  267. u32 guest_activity_state;
  268. u32 guest_sysenter_cs;
  269. u32 host_ia32_sysenter_cs;
  270. u32 padding32[8]; /* room for future expansion */
  271. u16 virtual_processor_id;
  272. u16 guest_es_selector;
  273. u16 guest_cs_selector;
  274. u16 guest_ss_selector;
  275. u16 guest_ds_selector;
  276. u16 guest_fs_selector;
  277. u16 guest_gs_selector;
  278. u16 guest_ldtr_selector;
  279. u16 guest_tr_selector;
  280. u16 host_es_selector;
  281. u16 host_cs_selector;
  282. u16 host_ss_selector;
  283. u16 host_ds_selector;
  284. u16 host_fs_selector;
  285. u16 host_gs_selector;
  286. u16 host_tr_selector;
  287. };
  288. /*
  289. * VMCS12_REVISION is an arbitrary id that should be changed if the content or
  290. * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
  291. * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
  292. */
  293. #define VMCS12_REVISION 0x11e57ed0
  294. /*
  295. * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
  296. * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
  297. * current implementation, 4K are reserved to avoid future complications.
  298. */
  299. #define VMCS12_SIZE 0x1000
  300. /* Used to remember the last vmcs02 used for some recently used vmcs12s */
  301. struct vmcs02_list {
  302. struct list_head list;
  303. gpa_t vmptr;
  304. struct loaded_vmcs vmcs02;
  305. };
  306. /*
  307. * The nested_vmx structure is part of vcpu_vmx, and holds information we need
  308. * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
  309. */
  310. struct nested_vmx {
  311. /* Has the level1 guest done vmxon? */
  312. bool vmxon;
  313. /* The guest-physical address of the current VMCS L1 keeps for L2 */
  314. gpa_t current_vmptr;
  315. /* The host-usable pointer to the above */
  316. struct page *current_vmcs12_page;
  317. struct vmcs12 *current_vmcs12;
  318. /* vmcs02_list cache of VMCSs recently used to run L2 guests */
  319. struct list_head vmcs02_pool;
  320. int vmcs02_num;
  321. u64 vmcs01_tsc_offset;
  322. /* L2 must run next, and mustn't decide to exit to L1. */
  323. bool nested_run_pending;
  324. /*
  325. * Guest pages referred to in vmcs02 with host-physical pointers, so
  326. * we must keep them pinned while L2 runs.
  327. */
  328. struct page *apic_access_page;
  329. };
  330. struct vcpu_vmx {
  331. struct kvm_vcpu vcpu;
  332. unsigned long host_rsp;
  333. u8 fail;
  334. u8 cpl;
  335. bool nmi_known_unmasked;
  336. u32 exit_intr_info;
  337. u32 idt_vectoring_info;
  338. ulong rflags;
  339. struct shared_msr_entry *guest_msrs;
  340. int nmsrs;
  341. int save_nmsrs;
  342. #ifdef CONFIG_X86_64
  343. u64 msr_host_kernel_gs_base;
  344. u64 msr_guest_kernel_gs_base;
  345. #endif
  346. /*
  347. * loaded_vmcs points to the VMCS currently used in this vcpu. For a
  348. * non-nested (L1) guest, it always points to vmcs01. For a nested
  349. * guest (L2), it points to a different VMCS.
  350. */
  351. struct loaded_vmcs vmcs01;
  352. struct loaded_vmcs *loaded_vmcs;
  353. bool __launched; /* temporary, used in vmx_vcpu_run */
  354. struct msr_autoload {
  355. unsigned nr;
  356. struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
  357. struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
  358. } msr_autoload;
  359. struct {
  360. int loaded;
  361. u16 fs_sel, gs_sel, ldt_sel;
  362. #ifdef CONFIG_X86_64
  363. u16 ds_sel, es_sel;
  364. #endif
  365. int gs_ldt_reload_needed;
  366. int fs_reload_needed;
  367. } host_state;
  368. struct {
  369. int vm86_active;
  370. ulong save_rflags;
  371. struct kvm_save_segment {
  372. u16 selector;
  373. unsigned long base;
  374. u32 limit;
  375. u32 ar;
  376. } tr, es, ds, fs, gs;
  377. } rmode;
  378. struct {
  379. u32 bitmask; /* 4 bits per segment (1 bit per field) */
  380. struct kvm_save_segment seg[8];
  381. } segment_cache;
  382. int vpid;
  383. bool emulation_required;
  384. /* Support for vnmi-less CPUs */
  385. int soft_vnmi_blocked;
  386. ktime_t entry_time;
  387. s64 vnmi_blocked_time;
  388. u32 exit_reason;
  389. bool rdtscp_enabled;
  390. /* Support for a guest hypervisor (nested VMX) */
  391. struct nested_vmx nested;
  392. };
  393. enum segment_cache_field {
  394. SEG_FIELD_SEL = 0,
  395. SEG_FIELD_BASE = 1,
  396. SEG_FIELD_LIMIT = 2,
  397. SEG_FIELD_AR = 3,
  398. SEG_FIELD_NR = 4
  399. };
  400. static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
  401. {
  402. return container_of(vcpu, struct vcpu_vmx, vcpu);
  403. }
  404. #define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
  405. #define FIELD(number, name) [number] = VMCS12_OFFSET(name)
  406. #define FIELD64(number, name) [number] = VMCS12_OFFSET(name), \
  407. [number##_HIGH] = VMCS12_OFFSET(name)+4
  408. static unsigned short vmcs_field_to_offset_table[] = {
  409. FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
  410. FIELD(GUEST_ES_SELECTOR, guest_es_selector),
  411. FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
  412. FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
  413. FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
  414. FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
  415. FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
  416. FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
  417. FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
  418. FIELD(HOST_ES_SELECTOR, host_es_selector),
  419. FIELD(HOST_CS_SELECTOR, host_cs_selector),
  420. FIELD(HOST_SS_SELECTOR, host_ss_selector),
  421. FIELD(HOST_DS_SELECTOR, host_ds_selector),
  422. FIELD(HOST_FS_SELECTOR, host_fs_selector),
  423. FIELD(HOST_GS_SELECTOR, host_gs_selector),
  424. FIELD(HOST_TR_SELECTOR, host_tr_selector),
  425. FIELD64(IO_BITMAP_A, io_bitmap_a),
  426. FIELD64(IO_BITMAP_B, io_bitmap_b),
  427. FIELD64(MSR_BITMAP, msr_bitmap),
  428. FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
  429. FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
  430. FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
  431. FIELD64(TSC_OFFSET, tsc_offset),
  432. FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
  433. FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
  434. FIELD64(EPT_POINTER, ept_pointer),
  435. FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
  436. FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
  437. FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
  438. FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
  439. FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
  440. FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
  441. FIELD64(GUEST_PDPTR0, guest_pdptr0),
  442. FIELD64(GUEST_PDPTR1, guest_pdptr1),
  443. FIELD64(GUEST_PDPTR2, guest_pdptr2),
  444. FIELD64(GUEST_PDPTR3, guest_pdptr3),
  445. FIELD64(HOST_IA32_PAT, host_ia32_pat),
  446. FIELD64(HOST_IA32_EFER, host_ia32_efer),
  447. FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
  448. FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
  449. FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
  450. FIELD(EXCEPTION_BITMAP, exception_bitmap),
  451. FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
  452. FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
  453. FIELD(CR3_TARGET_COUNT, cr3_target_count),
  454. FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
  455. FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
  456. FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
  457. FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
  458. FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
  459. FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
  460. FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
  461. FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
  462. FIELD(TPR_THRESHOLD, tpr_threshold),
  463. FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
  464. FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
  465. FIELD(VM_EXIT_REASON, vm_exit_reason),
  466. FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
  467. FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
  468. FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
  469. FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
  470. FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
  471. FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
  472. FIELD(GUEST_ES_LIMIT, guest_es_limit),
  473. FIELD(GUEST_CS_LIMIT, guest_cs_limit),
  474. FIELD(GUEST_SS_LIMIT, guest_ss_limit),
  475. FIELD(GUEST_DS_LIMIT, guest_ds_limit),
  476. FIELD(GUEST_FS_LIMIT, guest_fs_limit),
  477. FIELD(GUEST_GS_LIMIT, guest_gs_limit),
  478. FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
  479. FIELD(GUEST_TR_LIMIT, guest_tr_limit),
  480. FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
  481. FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
  482. FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
  483. FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
  484. FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
  485. FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
  486. FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
  487. FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
  488. FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
  489. FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
  490. FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
  491. FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
  492. FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
  493. FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
  494. FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
  495. FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
  496. FIELD(CR0_READ_SHADOW, cr0_read_shadow),
  497. FIELD(CR4_READ_SHADOW, cr4_read_shadow),
  498. FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
  499. FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
  500. FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
  501. FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
  502. FIELD(EXIT_QUALIFICATION, exit_qualification),
  503. FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
  504. FIELD(GUEST_CR0, guest_cr0),
  505. FIELD(GUEST_CR3, guest_cr3),
  506. FIELD(GUEST_CR4, guest_cr4),
  507. FIELD(GUEST_ES_BASE, guest_es_base),
  508. FIELD(GUEST_CS_BASE, guest_cs_base),
  509. FIELD(GUEST_SS_BASE, guest_ss_base),
  510. FIELD(GUEST_DS_BASE, guest_ds_base),
  511. FIELD(GUEST_FS_BASE, guest_fs_base),
  512. FIELD(GUEST_GS_BASE, guest_gs_base),
  513. FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
  514. FIELD(GUEST_TR_BASE, guest_tr_base),
  515. FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
  516. FIELD(GUEST_IDTR_BASE, guest_idtr_base),
  517. FIELD(GUEST_DR7, guest_dr7),
  518. FIELD(GUEST_RSP, guest_rsp),
  519. FIELD(GUEST_RIP, guest_rip),
  520. FIELD(GUEST_RFLAGS, guest_rflags),
  521. FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
  522. FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
  523. FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
  524. FIELD(HOST_CR0, host_cr0),
  525. FIELD(HOST_CR3, host_cr3),
  526. FIELD(HOST_CR4, host_cr4),
  527. FIELD(HOST_FS_BASE, host_fs_base),
  528. FIELD(HOST_GS_BASE, host_gs_base),
  529. FIELD(HOST_TR_BASE, host_tr_base),
  530. FIELD(HOST_GDTR_BASE, host_gdtr_base),
  531. FIELD(HOST_IDTR_BASE, host_idtr_base),
  532. FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
  533. FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
  534. FIELD(HOST_RSP, host_rsp),
  535. FIELD(HOST_RIP, host_rip),
  536. };
  537. static const int max_vmcs_field = ARRAY_SIZE(vmcs_field_to_offset_table);
  538. static inline short vmcs_field_to_offset(unsigned long field)
  539. {
  540. if (field >= max_vmcs_field || vmcs_field_to_offset_table[field] == 0)
  541. return -1;
  542. return vmcs_field_to_offset_table[field];
  543. }
  544. static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
  545. {
  546. return to_vmx(vcpu)->nested.current_vmcs12;
  547. }
  548. static struct page *nested_get_page(struct kvm_vcpu *vcpu, gpa_t addr)
  549. {
  550. struct page *page = gfn_to_page(vcpu->kvm, addr >> PAGE_SHIFT);
  551. if (is_error_page(page)) {
  552. kvm_release_page_clean(page);
  553. return NULL;
  554. }
  555. return page;
  556. }
  557. static void nested_release_page(struct page *page)
  558. {
  559. kvm_release_page_dirty(page);
  560. }
  561. static void nested_release_page_clean(struct page *page)
  562. {
  563. kvm_release_page_clean(page);
  564. }
  565. static u64 construct_eptp(unsigned long root_hpa);
  566. static void kvm_cpu_vmxon(u64 addr);
  567. static void kvm_cpu_vmxoff(void);
  568. static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3);
  569. static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr);
  570. static DEFINE_PER_CPU(struct vmcs *, vmxarea);
  571. static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
  572. /*
  573. * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
  574. * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
  575. */
  576. static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
  577. static DEFINE_PER_CPU(struct desc_ptr, host_gdt);
  578. static unsigned long *vmx_io_bitmap_a;
  579. static unsigned long *vmx_io_bitmap_b;
  580. static unsigned long *vmx_msr_bitmap_legacy;
  581. static unsigned long *vmx_msr_bitmap_longmode;
  582. static bool cpu_has_load_ia32_efer;
  583. static bool cpu_has_load_perf_global_ctrl;
  584. static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
  585. static DEFINE_SPINLOCK(vmx_vpid_lock);
  586. static struct vmcs_config {
  587. int size;
  588. int order;
  589. u32 revision_id;
  590. u32 pin_based_exec_ctrl;
  591. u32 cpu_based_exec_ctrl;
  592. u32 cpu_based_2nd_exec_ctrl;
  593. u32 vmexit_ctrl;
  594. u32 vmentry_ctrl;
  595. } vmcs_config;
  596. static struct vmx_capability {
  597. u32 ept;
  598. u32 vpid;
  599. } vmx_capability;
  600. #define VMX_SEGMENT_FIELD(seg) \
  601. [VCPU_SREG_##seg] = { \
  602. .selector = GUEST_##seg##_SELECTOR, \
  603. .base = GUEST_##seg##_BASE, \
  604. .limit = GUEST_##seg##_LIMIT, \
  605. .ar_bytes = GUEST_##seg##_AR_BYTES, \
  606. }
  607. static struct kvm_vmx_segment_field {
  608. unsigned selector;
  609. unsigned base;
  610. unsigned limit;
  611. unsigned ar_bytes;
  612. } kvm_vmx_segment_fields[] = {
  613. VMX_SEGMENT_FIELD(CS),
  614. VMX_SEGMENT_FIELD(DS),
  615. VMX_SEGMENT_FIELD(ES),
  616. VMX_SEGMENT_FIELD(FS),
  617. VMX_SEGMENT_FIELD(GS),
  618. VMX_SEGMENT_FIELD(SS),
  619. VMX_SEGMENT_FIELD(TR),
  620. VMX_SEGMENT_FIELD(LDTR),
  621. };
  622. static u64 host_efer;
  623. static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
  624. /*
  625. * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
  626. * away by decrementing the array size.
  627. */
  628. static const u32 vmx_msr_index[] = {
  629. #ifdef CONFIG_X86_64
  630. MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
  631. #endif
  632. MSR_EFER, MSR_TSC_AUX, MSR_STAR,
  633. };
  634. #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
  635. static inline bool is_page_fault(u32 intr_info)
  636. {
  637. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  638. INTR_INFO_VALID_MASK)) ==
  639. (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
  640. }
  641. static inline bool is_no_device(u32 intr_info)
  642. {
  643. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  644. INTR_INFO_VALID_MASK)) ==
  645. (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
  646. }
  647. static inline bool is_invalid_opcode(u32 intr_info)
  648. {
  649. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  650. INTR_INFO_VALID_MASK)) ==
  651. (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
  652. }
  653. static inline bool is_external_interrupt(u32 intr_info)
  654. {
  655. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
  656. == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  657. }
  658. static inline bool is_machine_check(u32 intr_info)
  659. {
  660. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  661. INTR_INFO_VALID_MASK)) ==
  662. (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
  663. }
  664. static inline bool cpu_has_vmx_msr_bitmap(void)
  665. {
  666. return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
  667. }
  668. static inline bool cpu_has_vmx_tpr_shadow(void)
  669. {
  670. return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
  671. }
  672. static inline bool vm_need_tpr_shadow(struct kvm *kvm)
  673. {
  674. return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
  675. }
  676. static inline bool cpu_has_secondary_exec_ctrls(void)
  677. {
  678. return vmcs_config.cpu_based_exec_ctrl &
  679. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
  680. }
  681. static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
  682. {
  683. return vmcs_config.cpu_based_2nd_exec_ctrl &
  684. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  685. }
  686. static inline bool cpu_has_vmx_flexpriority(void)
  687. {
  688. return cpu_has_vmx_tpr_shadow() &&
  689. cpu_has_vmx_virtualize_apic_accesses();
  690. }
  691. static inline bool cpu_has_vmx_ept_execute_only(void)
  692. {
  693. return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
  694. }
  695. static inline bool cpu_has_vmx_eptp_uncacheable(void)
  696. {
  697. return vmx_capability.ept & VMX_EPTP_UC_BIT;
  698. }
  699. static inline bool cpu_has_vmx_eptp_writeback(void)
  700. {
  701. return vmx_capability.ept & VMX_EPTP_WB_BIT;
  702. }
  703. static inline bool cpu_has_vmx_ept_2m_page(void)
  704. {
  705. return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
  706. }
  707. static inline bool cpu_has_vmx_ept_1g_page(void)
  708. {
  709. return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
  710. }
  711. static inline bool cpu_has_vmx_ept_4levels(void)
  712. {
  713. return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
  714. }
  715. static inline bool cpu_has_vmx_invept_individual_addr(void)
  716. {
  717. return vmx_capability.ept & VMX_EPT_EXTENT_INDIVIDUAL_BIT;
  718. }
  719. static inline bool cpu_has_vmx_invept_context(void)
  720. {
  721. return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
  722. }
  723. static inline bool cpu_has_vmx_invept_global(void)
  724. {
  725. return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
  726. }
  727. static inline bool cpu_has_vmx_invvpid_single(void)
  728. {
  729. return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
  730. }
  731. static inline bool cpu_has_vmx_invvpid_global(void)
  732. {
  733. return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
  734. }
  735. static inline bool cpu_has_vmx_ept(void)
  736. {
  737. return vmcs_config.cpu_based_2nd_exec_ctrl &
  738. SECONDARY_EXEC_ENABLE_EPT;
  739. }
  740. static inline bool cpu_has_vmx_unrestricted_guest(void)
  741. {
  742. return vmcs_config.cpu_based_2nd_exec_ctrl &
  743. SECONDARY_EXEC_UNRESTRICTED_GUEST;
  744. }
  745. static inline bool cpu_has_vmx_ple(void)
  746. {
  747. return vmcs_config.cpu_based_2nd_exec_ctrl &
  748. SECONDARY_EXEC_PAUSE_LOOP_EXITING;
  749. }
  750. static inline bool vm_need_virtualize_apic_accesses(struct kvm *kvm)
  751. {
  752. return flexpriority_enabled && irqchip_in_kernel(kvm);
  753. }
  754. static inline bool cpu_has_vmx_vpid(void)
  755. {
  756. return vmcs_config.cpu_based_2nd_exec_ctrl &
  757. SECONDARY_EXEC_ENABLE_VPID;
  758. }
  759. static inline bool cpu_has_vmx_rdtscp(void)
  760. {
  761. return vmcs_config.cpu_based_2nd_exec_ctrl &
  762. SECONDARY_EXEC_RDTSCP;
  763. }
  764. static inline bool cpu_has_virtual_nmis(void)
  765. {
  766. return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
  767. }
  768. static inline bool cpu_has_vmx_wbinvd_exit(void)
  769. {
  770. return vmcs_config.cpu_based_2nd_exec_ctrl &
  771. SECONDARY_EXEC_WBINVD_EXITING;
  772. }
  773. static inline bool report_flexpriority(void)
  774. {
  775. return flexpriority_enabled;
  776. }
  777. static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
  778. {
  779. return vmcs12->cpu_based_vm_exec_control & bit;
  780. }
  781. static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
  782. {
  783. return (vmcs12->cpu_based_vm_exec_control &
  784. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
  785. (vmcs12->secondary_vm_exec_control & bit);
  786. }
  787. static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12,
  788. struct kvm_vcpu *vcpu)
  789. {
  790. return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS;
  791. }
  792. static inline bool is_exception(u32 intr_info)
  793. {
  794. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
  795. == (INTR_TYPE_HARD_EXCEPTION | INTR_INFO_VALID_MASK);
  796. }
  797. static void nested_vmx_vmexit(struct kvm_vcpu *vcpu);
  798. static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
  799. struct vmcs12 *vmcs12,
  800. u32 reason, unsigned long qualification);
  801. static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
  802. {
  803. int i;
  804. for (i = 0; i < vmx->nmsrs; ++i)
  805. if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
  806. return i;
  807. return -1;
  808. }
  809. static inline void __invvpid(int ext, u16 vpid, gva_t gva)
  810. {
  811. struct {
  812. u64 vpid : 16;
  813. u64 rsvd : 48;
  814. u64 gva;
  815. } operand = { vpid, 0, gva };
  816. asm volatile (__ex(ASM_VMX_INVVPID)
  817. /* CF==1 or ZF==1 --> rc = -1 */
  818. "; ja 1f ; ud2 ; 1:"
  819. : : "a"(&operand), "c"(ext) : "cc", "memory");
  820. }
  821. static inline void __invept(int ext, u64 eptp, gpa_t gpa)
  822. {
  823. struct {
  824. u64 eptp, gpa;
  825. } operand = {eptp, gpa};
  826. asm volatile (__ex(ASM_VMX_INVEPT)
  827. /* CF==1 or ZF==1 --> rc = -1 */
  828. "; ja 1f ; ud2 ; 1:\n"
  829. : : "a" (&operand), "c" (ext) : "cc", "memory");
  830. }
  831. static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
  832. {
  833. int i;
  834. i = __find_msr_index(vmx, msr);
  835. if (i >= 0)
  836. return &vmx->guest_msrs[i];
  837. return NULL;
  838. }
  839. static void vmcs_clear(struct vmcs *vmcs)
  840. {
  841. u64 phys_addr = __pa(vmcs);
  842. u8 error;
  843. asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
  844. : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
  845. : "cc", "memory");
  846. if (error)
  847. printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
  848. vmcs, phys_addr);
  849. }
  850. static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
  851. {
  852. vmcs_clear(loaded_vmcs->vmcs);
  853. loaded_vmcs->cpu = -1;
  854. loaded_vmcs->launched = 0;
  855. }
  856. static void vmcs_load(struct vmcs *vmcs)
  857. {
  858. u64 phys_addr = __pa(vmcs);
  859. u8 error;
  860. asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
  861. : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
  862. : "cc", "memory");
  863. if (error)
  864. printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
  865. vmcs, phys_addr);
  866. }
  867. static void __loaded_vmcs_clear(void *arg)
  868. {
  869. struct loaded_vmcs *loaded_vmcs = arg;
  870. int cpu = raw_smp_processor_id();
  871. if (loaded_vmcs->cpu != cpu)
  872. return; /* vcpu migration can race with cpu offline */
  873. if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
  874. per_cpu(current_vmcs, cpu) = NULL;
  875. list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
  876. loaded_vmcs_init(loaded_vmcs);
  877. }
  878. static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
  879. {
  880. if (loaded_vmcs->cpu != -1)
  881. smp_call_function_single(
  882. loaded_vmcs->cpu, __loaded_vmcs_clear, loaded_vmcs, 1);
  883. }
  884. static inline void vpid_sync_vcpu_single(struct vcpu_vmx *vmx)
  885. {
  886. if (vmx->vpid == 0)
  887. return;
  888. if (cpu_has_vmx_invvpid_single())
  889. __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
  890. }
  891. static inline void vpid_sync_vcpu_global(void)
  892. {
  893. if (cpu_has_vmx_invvpid_global())
  894. __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
  895. }
  896. static inline void vpid_sync_context(struct vcpu_vmx *vmx)
  897. {
  898. if (cpu_has_vmx_invvpid_single())
  899. vpid_sync_vcpu_single(vmx);
  900. else
  901. vpid_sync_vcpu_global();
  902. }
  903. static inline void ept_sync_global(void)
  904. {
  905. if (cpu_has_vmx_invept_global())
  906. __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
  907. }
  908. static inline void ept_sync_context(u64 eptp)
  909. {
  910. if (enable_ept) {
  911. if (cpu_has_vmx_invept_context())
  912. __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
  913. else
  914. ept_sync_global();
  915. }
  916. }
  917. static inline void ept_sync_individual_addr(u64 eptp, gpa_t gpa)
  918. {
  919. if (enable_ept) {
  920. if (cpu_has_vmx_invept_individual_addr())
  921. __invept(VMX_EPT_EXTENT_INDIVIDUAL_ADDR,
  922. eptp, gpa);
  923. else
  924. ept_sync_context(eptp);
  925. }
  926. }
  927. static __always_inline unsigned long vmcs_readl(unsigned long field)
  928. {
  929. unsigned long value;
  930. asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
  931. : "=a"(value) : "d"(field) : "cc");
  932. return value;
  933. }
  934. static __always_inline u16 vmcs_read16(unsigned long field)
  935. {
  936. return vmcs_readl(field);
  937. }
  938. static __always_inline u32 vmcs_read32(unsigned long field)
  939. {
  940. return vmcs_readl(field);
  941. }
  942. static __always_inline u64 vmcs_read64(unsigned long field)
  943. {
  944. #ifdef CONFIG_X86_64
  945. return vmcs_readl(field);
  946. #else
  947. return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
  948. #endif
  949. }
  950. static noinline void vmwrite_error(unsigned long field, unsigned long value)
  951. {
  952. printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
  953. field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
  954. dump_stack();
  955. }
  956. static void vmcs_writel(unsigned long field, unsigned long value)
  957. {
  958. u8 error;
  959. asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
  960. : "=q"(error) : "a"(value), "d"(field) : "cc");
  961. if (unlikely(error))
  962. vmwrite_error(field, value);
  963. }
  964. static void vmcs_write16(unsigned long field, u16 value)
  965. {
  966. vmcs_writel(field, value);
  967. }
  968. static void vmcs_write32(unsigned long field, u32 value)
  969. {
  970. vmcs_writel(field, value);
  971. }
  972. static void vmcs_write64(unsigned long field, u64 value)
  973. {
  974. vmcs_writel(field, value);
  975. #ifndef CONFIG_X86_64
  976. asm volatile ("");
  977. vmcs_writel(field+1, value >> 32);
  978. #endif
  979. }
  980. static void vmcs_clear_bits(unsigned long field, u32 mask)
  981. {
  982. vmcs_writel(field, vmcs_readl(field) & ~mask);
  983. }
  984. static void vmcs_set_bits(unsigned long field, u32 mask)
  985. {
  986. vmcs_writel(field, vmcs_readl(field) | mask);
  987. }
  988. static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
  989. {
  990. vmx->segment_cache.bitmask = 0;
  991. }
  992. static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
  993. unsigned field)
  994. {
  995. bool ret;
  996. u32 mask = 1 << (seg * SEG_FIELD_NR + field);
  997. if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
  998. vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
  999. vmx->segment_cache.bitmask = 0;
  1000. }
  1001. ret = vmx->segment_cache.bitmask & mask;
  1002. vmx->segment_cache.bitmask |= mask;
  1003. return ret;
  1004. }
  1005. static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
  1006. {
  1007. u16 *p = &vmx->segment_cache.seg[seg].selector;
  1008. if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
  1009. *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
  1010. return *p;
  1011. }
  1012. static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
  1013. {
  1014. ulong *p = &vmx->segment_cache.seg[seg].base;
  1015. if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
  1016. *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
  1017. return *p;
  1018. }
  1019. static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
  1020. {
  1021. u32 *p = &vmx->segment_cache.seg[seg].limit;
  1022. if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
  1023. *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
  1024. return *p;
  1025. }
  1026. static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
  1027. {
  1028. u32 *p = &vmx->segment_cache.seg[seg].ar;
  1029. if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
  1030. *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
  1031. return *p;
  1032. }
  1033. static void update_exception_bitmap(struct kvm_vcpu *vcpu)
  1034. {
  1035. u32 eb;
  1036. eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
  1037. (1u << NM_VECTOR) | (1u << DB_VECTOR);
  1038. if ((vcpu->guest_debug &
  1039. (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
  1040. (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
  1041. eb |= 1u << BP_VECTOR;
  1042. if (to_vmx(vcpu)->rmode.vm86_active)
  1043. eb = ~0;
  1044. if (enable_ept)
  1045. eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
  1046. if (vcpu->fpu_active)
  1047. eb &= ~(1u << NM_VECTOR);
  1048. /* When we are running a nested L2 guest and L1 specified for it a
  1049. * certain exception bitmap, we must trap the same exceptions and pass
  1050. * them to L1. When running L2, we will only handle the exceptions
  1051. * specified above if L1 did not want them.
  1052. */
  1053. if (is_guest_mode(vcpu))
  1054. eb |= get_vmcs12(vcpu)->exception_bitmap;
  1055. vmcs_write32(EXCEPTION_BITMAP, eb);
  1056. }
  1057. static void clear_atomic_switch_msr_special(unsigned long entry,
  1058. unsigned long exit)
  1059. {
  1060. vmcs_clear_bits(VM_ENTRY_CONTROLS, entry);
  1061. vmcs_clear_bits(VM_EXIT_CONTROLS, exit);
  1062. }
  1063. static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
  1064. {
  1065. unsigned i;
  1066. struct msr_autoload *m = &vmx->msr_autoload;
  1067. switch (msr) {
  1068. case MSR_EFER:
  1069. if (cpu_has_load_ia32_efer) {
  1070. clear_atomic_switch_msr_special(VM_ENTRY_LOAD_IA32_EFER,
  1071. VM_EXIT_LOAD_IA32_EFER);
  1072. return;
  1073. }
  1074. break;
  1075. case MSR_CORE_PERF_GLOBAL_CTRL:
  1076. if (cpu_has_load_perf_global_ctrl) {
  1077. clear_atomic_switch_msr_special(
  1078. VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
  1079. VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
  1080. return;
  1081. }
  1082. break;
  1083. }
  1084. for (i = 0; i < m->nr; ++i)
  1085. if (m->guest[i].index == msr)
  1086. break;
  1087. if (i == m->nr)
  1088. return;
  1089. --m->nr;
  1090. m->guest[i] = m->guest[m->nr];
  1091. m->host[i] = m->host[m->nr];
  1092. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
  1093. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
  1094. }
  1095. static void add_atomic_switch_msr_special(unsigned long entry,
  1096. unsigned long exit, unsigned long guest_val_vmcs,
  1097. unsigned long host_val_vmcs, u64 guest_val, u64 host_val)
  1098. {
  1099. vmcs_write64(guest_val_vmcs, guest_val);
  1100. vmcs_write64(host_val_vmcs, host_val);
  1101. vmcs_set_bits(VM_ENTRY_CONTROLS, entry);
  1102. vmcs_set_bits(VM_EXIT_CONTROLS, exit);
  1103. }
  1104. static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
  1105. u64 guest_val, u64 host_val)
  1106. {
  1107. unsigned i;
  1108. struct msr_autoload *m = &vmx->msr_autoload;
  1109. switch (msr) {
  1110. case MSR_EFER:
  1111. if (cpu_has_load_ia32_efer) {
  1112. add_atomic_switch_msr_special(VM_ENTRY_LOAD_IA32_EFER,
  1113. VM_EXIT_LOAD_IA32_EFER,
  1114. GUEST_IA32_EFER,
  1115. HOST_IA32_EFER,
  1116. guest_val, host_val);
  1117. return;
  1118. }
  1119. break;
  1120. case MSR_CORE_PERF_GLOBAL_CTRL:
  1121. if (cpu_has_load_perf_global_ctrl) {
  1122. add_atomic_switch_msr_special(
  1123. VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
  1124. VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
  1125. GUEST_IA32_PERF_GLOBAL_CTRL,
  1126. HOST_IA32_PERF_GLOBAL_CTRL,
  1127. guest_val, host_val);
  1128. return;
  1129. }
  1130. break;
  1131. }
  1132. for (i = 0; i < m->nr; ++i)
  1133. if (m->guest[i].index == msr)
  1134. break;
  1135. if (i == NR_AUTOLOAD_MSRS) {
  1136. printk_once(KERN_WARNING"Not enough mst switch entries. "
  1137. "Can't add msr %x\n", msr);
  1138. return;
  1139. } else if (i == m->nr) {
  1140. ++m->nr;
  1141. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
  1142. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
  1143. }
  1144. m->guest[i].index = msr;
  1145. m->guest[i].value = guest_val;
  1146. m->host[i].index = msr;
  1147. m->host[i].value = host_val;
  1148. }
  1149. static void reload_tss(void)
  1150. {
  1151. /*
  1152. * VT restores TR but not its size. Useless.
  1153. */
  1154. struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
  1155. struct desc_struct *descs;
  1156. descs = (void *)gdt->address;
  1157. descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
  1158. load_TR_desc();
  1159. }
  1160. static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
  1161. {
  1162. u64 guest_efer;
  1163. u64 ignore_bits;
  1164. guest_efer = vmx->vcpu.arch.efer;
  1165. /*
  1166. * NX is emulated; LMA and LME handled by hardware; SCE meaninless
  1167. * outside long mode
  1168. */
  1169. ignore_bits = EFER_NX | EFER_SCE;
  1170. #ifdef CONFIG_X86_64
  1171. ignore_bits |= EFER_LMA | EFER_LME;
  1172. /* SCE is meaningful only in long mode on Intel */
  1173. if (guest_efer & EFER_LMA)
  1174. ignore_bits &= ~(u64)EFER_SCE;
  1175. #endif
  1176. guest_efer &= ~ignore_bits;
  1177. guest_efer |= host_efer & ignore_bits;
  1178. vmx->guest_msrs[efer_offset].data = guest_efer;
  1179. vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
  1180. clear_atomic_switch_msr(vmx, MSR_EFER);
  1181. /* On ept, can't emulate nx, and must switch nx atomically */
  1182. if (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX)) {
  1183. guest_efer = vmx->vcpu.arch.efer;
  1184. if (!(guest_efer & EFER_LMA))
  1185. guest_efer &= ~EFER_LME;
  1186. add_atomic_switch_msr(vmx, MSR_EFER, guest_efer, host_efer);
  1187. return false;
  1188. }
  1189. return true;
  1190. }
  1191. static unsigned long segment_base(u16 selector)
  1192. {
  1193. struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
  1194. struct desc_struct *d;
  1195. unsigned long table_base;
  1196. unsigned long v;
  1197. if (!(selector & ~3))
  1198. return 0;
  1199. table_base = gdt->address;
  1200. if (selector & 4) { /* from ldt */
  1201. u16 ldt_selector = kvm_read_ldt();
  1202. if (!(ldt_selector & ~3))
  1203. return 0;
  1204. table_base = segment_base(ldt_selector);
  1205. }
  1206. d = (struct desc_struct *)(table_base + (selector & ~7));
  1207. v = get_desc_base(d);
  1208. #ifdef CONFIG_X86_64
  1209. if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
  1210. v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
  1211. #endif
  1212. return v;
  1213. }
  1214. static inline unsigned long kvm_read_tr_base(void)
  1215. {
  1216. u16 tr;
  1217. asm("str %0" : "=g"(tr));
  1218. return segment_base(tr);
  1219. }
  1220. static void vmx_save_host_state(struct kvm_vcpu *vcpu)
  1221. {
  1222. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1223. int i;
  1224. if (vmx->host_state.loaded)
  1225. return;
  1226. vmx->host_state.loaded = 1;
  1227. /*
  1228. * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
  1229. * allow segment selectors with cpl > 0 or ti == 1.
  1230. */
  1231. vmx->host_state.ldt_sel = kvm_read_ldt();
  1232. vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
  1233. savesegment(fs, vmx->host_state.fs_sel);
  1234. if (!(vmx->host_state.fs_sel & 7)) {
  1235. vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
  1236. vmx->host_state.fs_reload_needed = 0;
  1237. } else {
  1238. vmcs_write16(HOST_FS_SELECTOR, 0);
  1239. vmx->host_state.fs_reload_needed = 1;
  1240. }
  1241. savesegment(gs, vmx->host_state.gs_sel);
  1242. if (!(vmx->host_state.gs_sel & 7))
  1243. vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
  1244. else {
  1245. vmcs_write16(HOST_GS_SELECTOR, 0);
  1246. vmx->host_state.gs_ldt_reload_needed = 1;
  1247. }
  1248. #ifdef CONFIG_X86_64
  1249. savesegment(ds, vmx->host_state.ds_sel);
  1250. savesegment(es, vmx->host_state.es_sel);
  1251. #endif
  1252. #ifdef CONFIG_X86_64
  1253. vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
  1254. vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
  1255. #else
  1256. vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
  1257. vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
  1258. #endif
  1259. #ifdef CONFIG_X86_64
  1260. rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
  1261. if (is_long_mode(&vmx->vcpu))
  1262. wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
  1263. #endif
  1264. for (i = 0; i < vmx->save_nmsrs; ++i)
  1265. kvm_set_shared_msr(vmx->guest_msrs[i].index,
  1266. vmx->guest_msrs[i].data,
  1267. vmx->guest_msrs[i].mask);
  1268. }
  1269. static void __vmx_load_host_state(struct vcpu_vmx *vmx)
  1270. {
  1271. if (!vmx->host_state.loaded)
  1272. return;
  1273. ++vmx->vcpu.stat.host_state_reload;
  1274. vmx->host_state.loaded = 0;
  1275. #ifdef CONFIG_X86_64
  1276. if (is_long_mode(&vmx->vcpu))
  1277. rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
  1278. #endif
  1279. if (vmx->host_state.gs_ldt_reload_needed) {
  1280. kvm_load_ldt(vmx->host_state.ldt_sel);
  1281. #ifdef CONFIG_X86_64
  1282. load_gs_index(vmx->host_state.gs_sel);
  1283. #else
  1284. loadsegment(gs, vmx->host_state.gs_sel);
  1285. #endif
  1286. }
  1287. if (vmx->host_state.fs_reload_needed)
  1288. loadsegment(fs, vmx->host_state.fs_sel);
  1289. #ifdef CONFIG_X86_64
  1290. if (unlikely(vmx->host_state.ds_sel | vmx->host_state.es_sel)) {
  1291. loadsegment(ds, vmx->host_state.ds_sel);
  1292. loadsegment(es, vmx->host_state.es_sel);
  1293. }
  1294. #else
  1295. /*
  1296. * The sysexit path does not restore ds/es, so we must set them to
  1297. * a reasonable value ourselves.
  1298. */
  1299. loadsegment(ds, __USER_DS);
  1300. loadsegment(es, __USER_DS);
  1301. #endif
  1302. reload_tss();
  1303. #ifdef CONFIG_X86_64
  1304. wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
  1305. #endif
  1306. if (user_has_fpu())
  1307. clts();
  1308. load_gdt(&__get_cpu_var(host_gdt));
  1309. }
  1310. static void vmx_load_host_state(struct vcpu_vmx *vmx)
  1311. {
  1312. preempt_disable();
  1313. __vmx_load_host_state(vmx);
  1314. preempt_enable();
  1315. }
  1316. /*
  1317. * Switches to specified vcpu, until a matching vcpu_put(), but assumes
  1318. * vcpu mutex is already taken.
  1319. */
  1320. static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  1321. {
  1322. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1323. u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
  1324. if (!vmm_exclusive)
  1325. kvm_cpu_vmxon(phys_addr);
  1326. else if (vmx->loaded_vmcs->cpu != cpu)
  1327. loaded_vmcs_clear(vmx->loaded_vmcs);
  1328. if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
  1329. per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
  1330. vmcs_load(vmx->loaded_vmcs->vmcs);
  1331. }
  1332. if (vmx->loaded_vmcs->cpu != cpu) {
  1333. struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
  1334. unsigned long sysenter_esp;
  1335. kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
  1336. local_irq_disable();
  1337. list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
  1338. &per_cpu(loaded_vmcss_on_cpu, cpu));
  1339. local_irq_enable();
  1340. /*
  1341. * Linux uses per-cpu TSS and GDT, so set these when switching
  1342. * processors.
  1343. */
  1344. vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
  1345. vmcs_writel(HOST_GDTR_BASE, gdt->address); /* 22.2.4 */
  1346. rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
  1347. vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
  1348. vmx->loaded_vmcs->cpu = cpu;
  1349. }
  1350. }
  1351. static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
  1352. {
  1353. __vmx_load_host_state(to_vmx(vcpu));
  1354. if (!vmm_exclusive) {
  1355. __loaded_vmcs_clear(to_vmx(vcpu)->loaded_vmcs);
  1356. vcpu->cpu = -1;
  1357. kvm_cpu_vmxoff();
  1358. }
  1359. }
  1360. static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
  1361. {
  1362. ulong cr0;
  1363. if (vcpu->fpu_active)
  1364. return;
  1365. vcpu->fpu_active = 1;
  1366. cr0 = vmcs_readl(GUEST_CR0);
  1367. cr0 &= ~(X86_CR0_TS | X86_CR0_MP);
  1368. cr0 |= kvm_read_cr0_bits(vcpu, X86_CR0_TS | X86_CR0_MP);
  1369. vmcs_writel(GUEST_CR0, cr0);
  1370. update_exception_bitmap(vcpu);
  1371. vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
  1372. if (is_guest_mode(vcpu))
  1373. vcpu->arch.cr0_guest_owned_bits &=
  1374. ~get_vmcs12(vcpu)->cr0_guest_host_mask;
  1375. vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
  1376. }
  1377. static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
  1378. /*
  1379. * Return the cr0 value that a nested guest would read. This is a combination
  1380. * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
  1381. * its hypervisor (cr0_read_shadow).
  1382. */
  1383. static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
  1384. {
  1385. return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
  1386. (fields->cr0_read_shadow & fields->cr0_guest_host_mask);
  1387. }
  1388. static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
  1389. {
  1390. return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
  1391. (fields->cr4_read_shadow & fields->cr4_guest_host_mask);
  1392. }
  1393. static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
  1394. {
  1395. /* Note that there is no vcpu->fpu_active = 0 here. The caller must
  1396. * set this *before* calling this function.
  1397. */
  1398. vmx_decache_cr0_guest_bits(vcpu);
  1399. vmcs_set_bits(GUEST_CR0, X86_CR0_TS | X86_CR0_MP);
  1400. update_exception_bitmap(vcpu);
  1401. vcpu->arch.cr0_guest_owned_bits = 0;
  1402. vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
  1403. if (is_guest_mode(vcpu)) {
  1404. /*
  1405. * L1's specified read shadow might not contain the TS bit,
  1406. * so now that we turned on shadowing of this bit, we need to
  1407. * set this bit of the shadow. Like in nested_vmx_run we need
  1408. * nested_read_cr0(vmcs12), but vmcs12->guest_cr0 is not yet
  1409. * up-to-date here because we just decached cr0.TS (and we'll
  1410. * only update vmcs12->guest_cr0 on nested exit).
  1411. */
  1412. struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
  1413. vmcs12->guest_cr0 = (vmcs12->guest_cr0 & ~X86_CR0_TS) |
  1414. (vcpu->arch.cr0 & X86_CR0_TS);
  1415. vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
  1416. } else
  1417. vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
  1418. }
  1419. static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
  1420. {
  1421. unsigned long rflags, save_rflags;
  1422. if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
  1423. __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
  1424. rflags = vmcs_readl(GUEST_RFLAGS);
  1425. if (to_vmx(vcpu)->rmode.vm86_active) {
  1426. rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
  1427. save_rflags = to_vmx(vcpu)->rmode.save_rflags;
  1428. rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
  1429. }
  1430. to_vmx(vcpu)->rflags = rflags;
  1431. }
  1432. return to_vmx(vcpu)->rflags;
  1433. }
  1434. static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  1435. {
  1436. __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
  1437. __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
  1438. to_vmx(vcpu)->rflags = rflags;
  1439. if (to_vmx(vcpu)->rmode.vm86_active) {
  1440. to_vmx(vcpu)->rmode.save_rflags = rflags;
  1441. rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  1442. }
  1443. vmcs_writel(GUEST_RFLAGS, rflags);
  1444. }
  1445. static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
  1446. {
  1447. u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  1448. int ret = 0;
  1449. if (interruptibility & GUEST_INTR_STATE_STI)
  1450. ret |= KVM_X86_SHADOW_INT_STI;
  1451. if (interruptibility & GUEST_INTR_STATE_MOV_SS)
  1452. ret |= KVM_X86_SHADOW_INT_MOV_SS;
  1453. return ret & mask;
  1454. }
  1455. static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
  1456. {
  1457. u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  1458. u32 interruptibility = interruptibility_old;
  1459. interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
  1460. if (mask & KVM_X86_SHADOW_INT_MOV_SS)
  1461. interruptibility |= GUEST_INTR_STATE_MOV_SS;
  1462. else if (mask & KVM_X86_SHADOW_INT_STI)
  1463. interruptibility |= GUEST_INTR_STATE_STI;
  1464. if ((interruptibility != interruptibility_old))
  1465. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
  1466. }
  1467. static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
  1468. {
  1469. unsigned long rip;
  1470. rip = kvm_rip_read(vcpu);
  1471. rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  1472. kvm_rip_write(vcpu, rip);
  1473. /* skipping an emulated instruction also counts */
  1474. vmx_set_interrupt_shadow(vcpu, 0);
  1475. }
  1476. /*
  1477. * KVM wants to inject page-faults which it got to the guest. This function
  1478. * checks whether in a nested guest, we need to inject them to L1 or L2.
  1479. * This function assumes it is called with the exit reason in vmcs02 being
  1480. * a #PF exception (this is the only case in which KVM injects a #PF when L2
  1481. * is running).
  1482. */
  1483. static int nested_pf_handled(struct kvm_vcpu *vcpu)
  1484. {
  1485. struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
  1486. /* TODO: also check PFEC_MATCH/MASK, not just EB.PF. */
  1487. if (!(vmcs12->exception_bitmap & (1u << PF_VECTOR)))
  1488. return 0;
  1489. nested_vmx_vmexit(vcpu);
  1490. return 1;
  1491. }
  1492. static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
  1493. bool has_error_code, u32 error_code,
  1494. bool reinject)
  1495. {
  1496. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1497. u32 intr_info = nr | INTR_INFO_VALID_MASK;
  1498. if (nr == PF_VECTOR && is_guest_mode(vcpu) &&
  1499. nested_pf_handled(vcpu))
  1500. return;
  1501. if (has_error_code) {
  1502. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
  1503. intr_info |= INTR_INFO_DELIVER_CODE_MASK;
  1504. }
  1505. if (vmx->rmode.vm86_active) {
  1506. int inc_eip = 0;
  1507. if (kvm_exception_is_soft(nr))
  1508. inc_eip = vcpu->arch.event_exit_inst_len;
  1509. if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
  1510. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  1511. return;
  1512. }
  1513. if (kvm_exception_is_soft(nr)) {
  1514. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
  1515. vmx->vcpu.arch.event_exit_inst_len);
  1516. intr_info |= INTR_TYPE_SOFT_EXCEPTION;
  1517. } else
  1518. intr_info |= INTR_TYPE_HARD_EXCEPTION;
  1519. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
  1520. }
  1521. static bool vmx_rdtscp_supported(void)
  1522. {
  1523. return cpu_has_vmx_rdtscp();
  1524. }
  1525. /*
  1526. * Swap MSR entry in host/guest MSR entry array.
  1527. */
  1528. static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
  1529. {
  1530. struct shared_msr_entry tmp;
  1531. tmp = vmx->guest_msrs[to];
  1532. vmx->guest_msrs[to] = vmx->guest_msrs[from];
  1533. vmx->guest_msrs[from] = tmp;
  1534. }
  1535. /*
  1536. * Set up the vmcs to automatically save and restore system
  1537. * msrs. Don't touch the 64-bit msrs if the guest is in legacy
  1538. * mode, as fiddling with msrs is very expensive.
  1539. */
  1540. static void setup_msrs(struct vcpu_vmx *vmx)
  1541. {
  1542. int save_nmsrs, index;
  1543. unsigned long *msr_bitmap;
  1544. save_nmsrs = 0;
  1545. #ifdef CONFIG_X86_64
  1546. if (is_long_mode(&vmx->vcpu)) {
  1547. index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
  1548. if (index >= 0)
  1549. move_msr_up(vmx, index, save_nmsrs++);
  1550. index = __find_msr_index(vmx, MSR_LSTAR);
  1551. if (index >= 0)
  1552. move_msr_up(vmx, index, save_nmsrs++);
  1553. index = __find_msr_index(vmx, MSR_CSTAR);
  1554. if (index >= 0)
  1555. move_msr_up(vmx, index, save_nmsrs++);
  1556. index = __find_msr_index(vmx, MSR_TSC_AUX);
  1557. if (index >= 0 && vmx->rdtscp_enabled)
  1558. move_msr_up(vmx, index, save_nmsrs++);
  1559. /*
  1560. * MSR_STAR is only needed on long mode guests, and only
  1561. * if efer.sce is enabled.
  1562. */
  1563. index = __find_msr_index(vmx, MSR_STAR);
  1564. if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
  1565. move_msr_up(vmx, index, save_nmsrs++);
  1566. }
  1567. #endif
  1568. index = __find_msr_index(vmx, MSR_EFER);
  1569. if (index >= 0 && update_transition_efer(vmx, index))
  1570. move_msr_up(vmx, index, save_nmsrs++);
  1571. vmx->save_nmsrs = save_nmsrs;
  1572. if (cpu_has_vmx_msr_bitmap()) {
  1573. if (is_long_mode(&vmx->vcpu))
  1574. msr_bitmap = vmx_msr_bitmap_longmode;
  1575. else
  1576. msr_bitmap = vmx_msr_bitmap_legacy;
  1577. vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
  1578. }
  1579. }
  1580. /*
  1581. * reads and returns guest's timestamp counter "register"
  1582. * guest_tsc = host_tsc + tsc_offset -- 21.3
  1583. */
  1584. static u64 guest_read_tsc(void)
  1585. {
  1586. u64 host_tsc, tsc_offset;
  1587. rdtscll(host_tsc);
  1588. tsc_offset = vmcs_read64(TSC_OFFSET);
  1589. return host_tsc + tsc_offset;
  1590. }
  1591. /*
  1592. * Like guest_read_tsc, but always returns L1's notion of the timestamp
  1593. * counter, even if a nested guest (L2) is currently running.
  1594. */
  1595. u64 vmx_read_l1_tsc(struct kvm_vcpu *vcpu)
  1596. {
  1597. u64 host_tsc, tsc_offset;
  1598. rdtscll(host_tsc);
  1599. tsc_offset = is_guest_mode(vcpu) ?
  1600. to_vmx(vcpu)->nested.vmcs01_tsc_offset :
  1601. vmcs_read64(TSC_OFFSET);
  1602. return host_tsc + tsc_offset;
  1603. }
  1604. /*
  1605. * Engage any workarounds for mis-matched TSC rates. Currently limited to
  1606. * software catchup for faster rates on slower CPUs.
  1607. */
  1608. static void vmx_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
  1609. {
  1610. if (!scale)
  1611. return;
  1612. if (user_tsc_khz > tsc_khz) {
  1613. vcpu->arch.tsc_catchup = 1;
  1614. vcpu->arch.tsc_always_catchup = 1;
  1615. } else
  1616. WARN(1, "user requested TSC rate below hardware speed\n");
  1617. }
  1618. /*
  1619. * writes 'offset' into guest's timestamp counter offset register
  1620. */
  1621. static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
  1622. {
  1623. if (is_guest_mode(vcpu)) {
  1624. /*
  1625. * We're here if L1 chose not to trap WRMSR to TSC. According
  1626. * to the spec, this should set L1's TSC; The offset that L1
  1627. * set for L2 remains unchanged, and still needs to be added
  1628. * to the newly set TSC to get L2's TSC.
  1629. */
  1630. struct vmcs12 *vmcs12;
  1631. to_vmx(vcpu)->nested.vmcs01_tsc_offset = offset;
  1632. /* recalculate vmcs02.TSC_OFFSET: */
  1633. vmcs12 = get_vmcs12(vcpu);
  1634. vmcs_write64(TSC_OFFSET, offset +
  1635. (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING) ?
  1636. vmcs12->tsc_offset : 0));
  1637. } else {
  1638. vmcs_write64(TSC_OFFSET, offset);
  1639. }
  1640. }
  1641. static void vmx_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment, bool host)
  1642. {
  1643. u64 offset = vmcs_read64(TSC_OFFSET);
  1644. vmcs_write64(TSC_OFFSET, offset + adjustment);
  1645. if (is_guest_mode(vcpu)) {
  1646. /* Even when running L2, the adjustment needs to apply to L1 */
  1647. to_vmx(vcpu)->nested.vmcs01_tsc_offset += adjustment;
  1648. }
  1649. }
  1650. static u64 vmx_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
  1651. {
  1652. return target_tsc - native_read_tsc();
  1653. }
  1654. static bool guest_cpuid_has_vmx(struct kvm_vcpu *vcpu)
  1655. {
  1656. struct kvm_cpuid_entry2 *best = kvm_find_cpuid_entry(vcpu, 1, 0);
  1657. return best && (best->ecx & (1 << (X86_FEATURE_VMX & 31)));
  1658. }
  1659. /*
  1660. * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
  1661. * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
  1662. * all guests if the "nested" module option is off, and can also be disabled
  1663. * for a single guest by disabling its VMX cpuid bit.
  1664. */
  1665. static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
  1666. {
  1667. return nested && guest_cpuid_has_vmx(vcpu);
  1668. }
  1669. /*
  1670. * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
  1671. * returned for the various VMX controls MSRs when nested VMX is enabled.
  1672. * The same values should also be used to verify that vmcs12 control fields are
  1673. * valid during nested entry from L1 to L2.
  1674. * Each of these control msrs has a low and high 32-bit half: A low bit is on
  1675. * if the corresponding bit in the (32-bit) control field *must* be on, and a
  1676. * bit in the high half is on if the corresponding bit in the control field
  1677. * may be on. See also vmx_control_verify().
  1678. * TODO: allow these variables to be modified (downgraded) by module options
  1679. * or other means.
  1680. */
  1681. static u32 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high;
  1682. static u32 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high;
  1683. static u32 nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high;
  1684. static u32 nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high;
  1685. static u32 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high;
  1686. static __init void nested_vmx_setup_ctls_msrs(void)
  1687. {
  1688. /*
  1689. * Note that as a general rule, the high half of the MSRs (bits in
  1690. * the control fields which may be 1) should be initialized by the
  1691. * intersection of the underlying hardware's MSR (i.e., features which
  1692. * can be supported) and the list of features we want to expose -
  1693. * because they are known to be properly supported in our code.
  1694. * Also, usually, the low half of the MSRs (bits which must be 1) can
  1695. * be set to 0, meaning that L1 may turn off any of these bits. The
  1696. * reason is that if one of these bits is necessary, it will appear
  1697. * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
  1698. * fields of vmcs01 and vmcs02, will turn these bits off - and
  1699. * nested_vmx_exit_handled() will not pass related exits to L1.
  1700. * These rules have exceptions below.
  1701. */
  1702. /* pin-based controls */
  1703. /*
  1704. * According to the Intel spec, if bit 55 of VMX_BASIC is off (as it is
  1705. * in our case), bits 1, 2 and 4 (i.e., 0x16) must be 1 in this MSR.
  1706. */
  1707. nested_vmx_pinbased_ctls_low = 0x16 ;
  1708. nested_vmx_pinbased_ctls_high = 0x16 |
  1709. PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING |
  1710. PIN_BASED_VIRTUAL_NMIS;
  1711. /* exit controls */
  1712. nested_vmx_exit_ctls_low = 0;
  1713. /* Note that guest use of VM_EXIT_ACK_INTR_ON_EXIT is not supported. */
  1714. #ifdef CONFIG_X86_64
  1715. nested_vmx_exit_ctls_high = VM_EXIT_HOST_ADDR_SPACE_SIZE;
  1716. #else
  1717. nested_vmx_exit_ctls_high = 0;
  1718. #endif
  1719. /* entry controls */
  1720. rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
  1721. nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high);
  1722. nested_vmx_entry_ctls_low = 0;
  1723. nested_vmx_entry_ctls_high &=
  1724. VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_IA32E_MODE;
  1725. /* cpu-based controls */
  1726. rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
  1727. nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high);
  1728. nested_vmx_procbased_ctls_low = 0;
  1729. nested_vmx_procbased_ctls_high &=
  1730. CPU_BASED_VIRTUAL_INTR_PENDING | CPU_BASED_USE_TSC_OFFSETING |
  1731. CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
  1732. CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
  1733. CPU_BASED_CR3_STORE_EXITING |
  1734. #ifdef CONFIG_X86_64
  1735. CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
  1736. #endif
  1737. CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
  1738. CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_EXITING |
  1739. CPU_BASED_RDPMC_EXITING |
  1740. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
  1741. /*
  1742. * We can allow some features even when not supported by the
  1743. * hardware. For example, L1 can specify an MSR bitmap - and we
  1744. * can use it to avoid exits to L1 - even when L0 runs L2
  1745. * without MSR bitmaps.
  1746. */
  1747. nested_vmx_procbased_ctls_high |= CPU_BASED_USE_MSR_BITMAPS;
  1748. /* secondary cpu-based controls */
  1749. rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
  1750. nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high);
  1751. nested_vmx_secondary_ctls_low = 0;
  1752. nested_vmx_secondary_ctls_high &=
  1753. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  1754. }
  1755. static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
  1756. {
  1757. /*
  1758. * Bits 0 in high must be 0, and bits 1 in low must be 1.
  1759. */
  1760. return ((control & high) | low) == control;
  1761. }
  1762. static inline u64 vmx_control_msr(u32 low, u32 high)
  1763. {
  1764. return low | ((u64)high << 32);
  1765. }
  1766. /*
  1767. * If we allow our guest to use VMX instructions (i.e., nested VMX), we should
  1768. * also let it use VMX-specific MSRs.
  1769. * vmx_get_vmx_msr() and vmx_set_vmx_msr() return 1 when we handled a
  1770. * VMX-specific MSR, or 0 when we haven't (and the caller should handle it
  1771. * like all other MSRs).
  1772. */
  1773. static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  1774. {
  1775. if (!nested_vmx_allowed(vcpu) && msr_index >= MSR_IA32_VMX_BASIC &&
  1776. msr_index <= MSR_IA32_VMX_TRUE_ENTRY_CTLS) {
  1777. /*
  1778. * According to the spec, processors which do not support VMX
  1779. * should throw a #GP(0) when VMX capability MSRs are read.
  1780. */
  1781. kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
  1782. return 1;
  1783. }
  1784. switch (msr_index) {
  1785. case MSR_IA32_FEATURE_CONTROL:
  1786. *pdata = 0;
  1787. break;
  1788. case MSR_IA32_VMX_BASIC:
  1789. /*
  1790. * This MSR reports some information about VMX support. We
  1791. * should return information about the VMX we emulate for the
  1792. * guest, and the VMCS structure we give it - not about the
  1793. * VMX support of the underlying hardware.
  1794. */
  1795. *pdata = VMCS12_REVISION |
  1796. ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
  1797. (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
  1798. break;
  1799. case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
  1800. case MSR_IA32_VMX_PINBASED_CTLS:
  1801. *pdata = vmx_control_msr(nested_vmx_pinbased_ctls_low,
  1802. nested_vmx_pinbased_ctls_high);
  1803. break;
  1804. case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
  1805. case MSR_IA32_VMX_PROCBASED_CTLS:
  1806. *pdata = vmx_control_msr(nested_vmx_procbased_ctls_low,
  1807. nested_vmx_procbased_ctls_high);
  1808. break;
  1809. case MSR_IA32_VMX_TRUE_EXIT_CTLS:
  1810. case MSR_IA32_VMX_EXIT_CTLS:
  1811. *pdata = vmx_control_msr(nested_vmx_exit_ctls_low,
  1812. nested_vmx_exit_ctls_high);
  1813. break;
  1814. case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
  1815. case MSR_IA32_VMX_ENTRY_CTLS:
  1816. *pdata = vmx_control_msr(nested_vmx_entry_ctls_low,
  1817. nested_vmx_entry_ctls_high);
  1818. break;
  1819. case MSR_IA32_VMX_MISC:
  1820. *pdata = 0;
  1821. break;
  1822. /*
  1823. * These MSRs specify bits which the guest must keep fixed (on or off)
  1824. * while L1 is in VMXON mode (in L1's root mode, or running an L2).
  1825. * We picked the standard core2 setting.
  1826. */
  1827. #define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
  1828. #define VMXON_CR4_ALWAYSON X86_CR4_VMXE
  1829. case MSR_IA32_VMX_CR0_FIXED0:
  1830. *pdata = VMXON_CR0_ALWAYSON;
  1831. break;
  1832. case MSR_IA32_VMX_CR0_FIXED1:
  1833. *pdata = -1ULL;
  1834. break;
  1835. case MSR_IA32_VMX_CR4_FIXED0:
  1836. *pdata = VMXON_CR4_ALWAYSON;
  1837. break;
  1838. case MSR_IA32_VMX_CR4_FIXED1:
  1839. *pdata = -1ULL;
  1840. break;
  1841. case MSR_IA32_VMX_VMCS_ENUM:
  1842. *pdata = 0x1f;
  1843. break;
  1844. case MSR_IA32_VMX_PROCBASED_CTLS2:
  1845. *pdata = vmx_control_msr(nested_vmx_secondary_ctls_low,
  1846. nested_vmx_secondary_ctls_high);
  1847. break;
  1848. case MSR_IA32_VMX_EPT_VPID_CAP:
  1849. /* Currently, no nested ept or nested vpid */
  1850. *pdata = 0;
  1851. break;
  1852. default:
  1853. return 0;
  1854. }
  1855. return 1;
  1856. }
  1857. static int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  1858. {
  1859. if (!nested_vmx_allowed(vcpu))
  1860. return 0;
  1861. if (msr_index == MSR_IA32_FEATURE_CONTROL)
  1862. /* TODO: the right thing. */
  1863. return 1;
  1864. /*
  1865. * No need to treat VMX capability MSRs specially: If we don't handle
  1866. * them, handle_wrmsr will #GP(0), which is correct (they are readonly)
  1867. */
  1868. return 0;
  1869. }
  1870. /*
  1871. * Reads an msr value (of 'msr_index') into 'pdata'.
  1872. * Returns 0 on success, non-0 otherwise.
  1873. * Assumes vcpu_load() was already called.
  1874. */
  1875. static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  1876. {
  1877. u64 data;
  1878. struct shared_msr_entry *msr;
  1879. if (!pdata) {
  1880. printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
  1881. return -EINVAL;
  1882. }
  1883. switch (msr_index) {
  1884. #ifdef CONFIG_X86_64
  1885. case MSR_FS_BASE:
  1886. data = vmcs_readl(GUEST_FS_BASE);
  1887. break;
  1888. case MSR_GS_BASE:
  1889. data = vmcs_readl(GUEST_GS_BASE);
  1890. break;
  1891. case MSR_KERNEL_GS_BASE:
  1892. vmx_load_host_state(to_vmx(vcpu));
  1893. data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
  1894. break;
  1895. #endif
  1896. case MSR_EFER:
  1897. return kvm_get_msr_common(vcpu, msr_index, pdata);
  1898. case MSR_IA32_TSC:
  1899. data = guest_read_tsc();
  1900. break;
  1901. case MSR_IA32_SYSENTER_CS:
  1902. data = vmcs_read32(GUEST_SYSENTER_CS);
  1903. break;
  1904. case MSR_IA32_SYSENTER_EIP:
  1905. data = vmcs_readl(GUEST_SYSENTER_EIP);
  1906. break;
  1907. case MSR_IA32_SYSENTER_ESP:
  1908. data = vmcs_readl(GUEST_SYSENTER_ESP);
  1909. break;
  1910. case MSR_TSC_AUX:
  1911. if (!to_vmx(vcpu)->rdtscp_enabled)
  1912. return 1;
  1913. /* Otherwise falls through */
  1914. default:
  1915. if (vmx_get_vmx_msr(vcpu, msr_index, pdata))
  1916. return 0;
  1917. msr = find_msr_entry(to_vmx(vcpu), msr_index);
  1918. if (msr) {
  1919. data = msr->data;
  1920. break;
  1921. }
  1922. return kvm_get_msr_common(vcpu, msr_index, pdata);
  1923. }
  1924. *pdata = data;
  1925. return 0;
  1926. }
  1927. /*
  1928. * Writes msr value into into the appropriate "register".
  1929. * Returns 0 on success, non-0 otherwise.
  1930. * Assumes vcpu_load() was already called.
  1931. */
  1932. static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  1933. {
  1934. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1935. struct shared_msr_entry *msr;
  1936. int ret = 0;
  1937. switch (msr_index) {
  1938. case MSR_EFER:
  1939. ret = kvm_set_msr_common(vcpu, msr_index, data);
  1940. break;
  1941. #ifdef CONFIG_X86_64
  1942. case MSR_FS_BASE:
  1943. vmx_segment_cache_clear(vmx);
  1944. vmcs_writel(GUEST_FS_BASE, data);
  1945. break;
  1946. case MSR_GS_BASE:
  1947. vmx_segment_cache_clear(vmx);
  1948. vmcs_writel(GUEST_GS_BASE, data);
  1949. break;
  1950. case MSR_KERNEL_GS_BASE:
  1951. vmx_load_host_state(vmx);
  1952. vmx->msr_guest_kernel_gs_base = data;
  1953. break;
  1954. #endif
  1955. case MSR_IA32_SYSENTER_CS:
  1956. vmcs_write32(GUEST_SYSENTER_CS, data);
  1957. break;
  1958. case MSR_IA32_SYSENTER_EIP:
  1959. vmcs_writel(GUEST_SYSENTER_EIP, data);
  1960. break;
  1961. case MSR_IA32_SYSENTER_ESP:
  1962. vmcs_writel(GUEST_SYSENTER_ESP, data);
  1963. break;
  1964. case MSR_IA32_TSC:
  1965. kvm_write_tsc(vcpu, data);
  1966. break;
  1967. case MSR_IA32_CR_PAT:
  1968. if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
  1969. vmcs_write64(GUEST_IA32_PAT, data);
  1970. vcpu->arch.pat = data;
  1971. break;
  1972. }
  1973. ret = kvm_set_msr_common(vcpu, msr_index, data);
  1974. break;
  1975. case MSR_TSC_AUX:
  1976. if (!vmx->rdtscp_enabled)
  1977. return 1;
  1978. /* Check reserved bit, higher 32 bits should be zero */
  1979. if ((data >> 32) != 0)
  1980. return 1;
  1981. /* Otherwise falls through */
  1982. default:
  1983. if (vmx_set_vmx_msr(vcpu, msr_index, data))
  1984. break;
  1985. msr = find_msr_entry(vmx, msr_index);
  1986. if (msr) {
  1987. msr->data = data;
  1988. if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
  1989. preempt_disable();
  1990. kvm_set_shared_msr(msr->index, msr->data,
  1991. msr->mask);
  1992. preempt_enable();
  1993. }
  1994. break;
  1995. }
  1996. ret = kvm_set_msr_common(vcpu, msr_index, data);
  1997. }
  1998. return ret;
  1999. }
  2000. static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
  2001. {
  2002. __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
  2003. switch (reg) {
  2004. case VCPU_REGS_RSP:
  2005. vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
  2006. break;
  2007. case VCPU_REGS_RIP:
  2008. vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
  2009. break;
  2010. case VCPU_EXREG_PDPTR:
  2011. if (enable_ept)
  2012. ept_save_pdptrs(vcpu);
  2013. break;
  2014. default:
  2015. break;
  2016. }
  2017. }
  2018. static void set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
  2019. {
  2020. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
  2021. vmcs_writel(GUEST_DR7, dbg->arch.debugreg[7]);
  2022. else
  2023. vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
  2024. update_exception_bitmap(vcpu);
  2025. }
  2026. static __init int cpu_has_kvm_support(void)
  2027. {
  2028. return cpu_has_vmx();
  2029. }
  2030. static __init int vmx_disabled_by_bios(void)
  2031. {
  2032. u64 msr;
  2033. rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
  2034. if (msr & FEATURE_CONTROL_LOCKED) {
  2035. /* launched w/ TXT and VMX disabled */
  2036. if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
  2037. && tboot_enabled())
  2038. return 1;
  2039. /* launched w/o TXT and VMX only enabled w/ TXT */
  2040. if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
  2041. && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
  2042. && !tboot_enabled()) {
  2043. printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
  2044. "activate TXT before enabling KVM\n");
  2045. return 1;
  2046. }
  2047. /* launched w/o TXT and VMX disabled */
  2048. if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
  2049. && !tboot_enabled())
  2050. return 1;
  2051. }
  2052. return 0;
  2053. }
  2054. static void kvm_cpu_vmxon(u64 addr)
  2055. {
  2056. asm volatile (ASM_VMX_VMXON_RAX
  2057. : : "a"(&addr), "m"(addr)
  2058. : "memory", "cc");
  2059. }
  2060. static int hardware_enable(void *garbage)
  2061. {
  2062. int cpu = raw_smp_processor_id();
  2063. u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
  2064. u64 old, test_bits;
  2065. if (read_cr4() & X86_CR4_VMXE)
  2066. return -EBUSY;
  2067. INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
  2068. rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
  2069. test_bits = FEATURE_CONTROL_LOCKED;
  2070. test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
  2071. if (tboot_enabled())
  2072. test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
  2073. if ((old & test_bits) != test_bits) {
  2074. /* enable and lock */
  2075. wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
  2076. }
  2077. write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
  2078. if (vmm_exclusive) {
  2079. kvm_cpu_vmxon(phys_addr);
  2080. ept_sync_global();
  2081. }
  2082. store_gdt(&__get_cpu_var(host_gdt));
  2083. return 0;
  2084. }
  2085. static void vmclear_local_loaded_vmcss(void)
  2086. {
  2087. int cpu = raw_smp_processor_id();
  2088. struct loaded_vmcs *v, *n;
  2089. list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
  2090. loaded_vmcss_on_cpu_link)
  2091. __loaded_vmcs_clear(v);
  2092. }
  2093. /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
  2094. * tricks.
  2095. */
  2096. static void kvm_cpu_vmxoff(void)
  2097. {
  2098. asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
  2099. }
  2100. static void hardware_disable(void *garbage)
  2101. {
  2102. if (vmm_exclusive) {
  2103. vmclear_local_loaded_vmcss();
  2104. kvm_cpu_vmxoff();
  2105. }
  2106. write_cr4(read_cr4() & ~X86_CR4_VMXE);
  2107. }
  2108. static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
  2109. u32 msr, u32 *result)
  2110. {
  2111. u32 vmx_msr_low, vmx_msr_high;
  2112. u32 ctl = ctl_min | ctl_opt;
  2113. rdmsr(msr, vmx_msr_low, vmx_msr_high);
  2114. ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
  2115. ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
  2116. /* Ensure minimum (required) set of control bits are supported. */
  2117. if (ctl_min & ~ctl)
  2118. return -EIO;
  2119. *result = ctl;
  2120. return 0;
  2121. }
  2122. static __init bool allow_1_setting(u32 msr, u32 ctl)
  2123. {
  2124. u32 vmx_msr_low, vmx_msr_high;
  2125. rdmsr(msr, vmx_msr_low, vmx_msr_high);
  2126. return vmx_msr_high & ctl;
  2127. }
  2128. static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
  2129. {
  2130. u32 vmx_msr_low, vmx_msr_high;
  2131. u32 min, opt, min2, opt2;
  2132. u32 _pin_based_exec_control = 0;
  2133. u32 _cpu_based_exec_control = 0;
  2134. u32 _cpu_based_2nd_exec_control = 0;
  2135. u32 _vmexit_control = 0;
  2136. u32 _vmentry_control = 0;
  2137. min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
  2138. opt = PIN_BASED_VIRTUAL_NMIS;
  2139. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
  2140. &_pin_based_exec_control) < 0)
  2141. return -EIO;
  2142. min = CPU_BASED_HLT_EXITING |
  2143. #ifdef CONFIG_X86_64
  2144. CPU_BASED_CR8_LOAD_EXITING |
  2145. CPU_BASED_CR8_STORE_EXITING |
  2146. #endif
  2147. CPU_BASED_CR3_LOAD_EXITING |
  2148. CPU_BASED_CR3_STORE_EXITING |
  2149. CPU_BASED_USE_IO_BITMAPS |
  2150. CPU_BASED_MOV_DR_EXITING |
  2151. CPU_BASED_USE_TSC_OFFSETING |
  2152. CPU_BASED_MWAIT_EXITING |
  2153. CPU_BASED_MONITOR_EXITING |
  2154. CPU_BASED_INVLPG_EXITING |
  2155. CPU_BASED_RDPMC_EXITING;
  2156. opt = CPU_BASED_TPR_SHADOW |
  2157. CPU_BASED_USE_MSR_BITMAPS |
  2158. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
  2159. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
  2160. &_cpu_based_exec_control) < 0)
  2161. return -EIO;
  2162. #ifdef CONFIG_X86_64
  2163. if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
  2164. _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
  2165. ~CPU_BASED_CR8_STORE_EXITING;
  2166. #endif
  2167. if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
  2168. min2 = 0;
  2169. opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
  2170. SECONDARY_EXEC_WBINVD_EXITING |
  2171. SECONDARY_EXEC_ENABLE_VPID |
  2172. SECONDARY_EXEC_ENABLE_EPT |
  2173. SECONDARY_EXEC_UNRESTRICTED_GUEST |
  2174. SECONDARY_EXEC_PAUSE_LOOP_EXITING |
  2175. SECONDARY_EXEC_RDTSCP;
  2176. if (adjust_vmx_controls(min2, opt2,
  2177. MSR_IA32_VMX_PROCBASED_CTLS2,
  2178. &_cpu_based_2nd_exec_control) < 0)
  2179. return -EIO;
  2180. }
  2181. #ifndef CONFIG_X86_64
  2182. if (!(_cpu_based_2nd_exec_control &
  2183. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
  2184. _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
  2185. #endif
  2186. if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
  2187. /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
  2188. enabled */
  2189. _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
  2190. CPU_BASED_CR3_STORE_EXITING |
  2191. CPU_BASED_INVLPG_EXITING);
  2192. rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
  2193. vmx_capability.ept, vmx_capability.vpid);
  2194. }
  2195. min = 0;
  2196. #ifdef CONFIG_X86_64
  2197. min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
  2198. #endif
  2199. opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT;
  2200. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
  2201. &_vmexit_control) < 0)
  2202. return -EIO;
  2203. min = 0;
  2204. opt = VM_ENTRY_LOAD_IA32_PAT;
  2205. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
  2206. &_vmentry_control) < 0)
  2207. return -EIO;
  2208. rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
  2209. /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
  2210. if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
  2211. return -EIO;
  2212. #ifdef CONFIG_X86_64
  2213. /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
  2214. if (vmx_msr_high & (1u<<16))
  2215. return -EIO;
  2216. #endif
  2217. /* Require Write-Back (WB) memory type for VMCS accesses. */
  2218. if (((vmx_msr_high >> 18) & 15) != 6)
  2219. return -EIO;
  2220. vmcs_conf->size = vmx_msr_high & 0x1fff;
  2221. vmcs_conf->order = get_order(vmcs_config.size);
  2222. vmcs_conf->revision_id = vmx_msr_low;
  2223. vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
  2224. vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
  2225. vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
  2226. vmcs_conf->vmexit_ctrl = _vmexit_control;
  2227. vmcs_conf->vmentry_ctrl = _vmentry_control;
  2228. cpu_has_load_ia32_efer =
  2229. allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
  2230. VM_ENTRY_LOAD_IA32_EFER)
  2231. && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
  2232. VM_EXIT_LOAD_IA32_EFER);
  2233. cpu_has_load_perf_global_ctrl =
  2234. allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
  2235. VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
  2236. && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
  2237. VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
  2238. /*
  2239. * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL
  2240. * but due to arrata below it can't be used. Workaround is to use
  2241. * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL.
  2242. *
  2243. * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32]
  2244. *
  2245. * AAK155 (model 26)
  2246. * AAP115 (model 30)
  2247. * AAT100 (model 37)
  2248. * BC86,AAY89,BD102 (model 44)
  2249. * BA97 (model 46)
  2250. *
  2251. */
  2252. if (cpu_has_load_perf_global_ctrl && boot_cpu_data.x86 == 0x6) {
  2253. switch (boot_cpu_data.x86_model) {
  2254. case 26:
  2255. case 30:
  2256. case 37:
  2257. case 44:
  2258. case 46:
  2259. cpu_has_load_perf_global_ctrl = false;
  2260. printk_once(KERN_WARNING"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
  2261. "does not work properly. Using workaround\n");
  2262. break;
  2263. default:
  2264. break;
  2265. }
  2266. }
  2267. return 0;
  2268. }
  2269. static struct vmcs *alloc_vmcs_cpu(int cpu)
  2270. {
  2271. int node = cpu_to_node(cpu);
  2272. struct page *pages;
  2273. struct vmcs *vmcs;
  2274. pages = alloc_pages_exact_node(node, GFP_KERNEL, vmcs_config.order);
  2275. if (!pages)
  2276. return NULL;
  2277. vmcs = page_address(pages);
  2278. memset(vmcs, 0, vmcs_config.size);
  2279. vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
  2280. return vmcs;
  2281. }
  2282. static struct vmcs *alloc_vmcs(void)
  2283. {
  2284. return alloc_vmcs_cpu(raw_smp_processor_id());
  2285. }
  2286. static void free_vmcs(struct vmcs *vmcs)
  2287. {
  2288. free_pages((unsigned long)vmcs, vmcs_config.order);
  2289. }
  2290. /*
  2291. * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
  2292. */
  2293. static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
  2294. {
  2295. if (!loaded_vmcs->vmcs)
  2296. return;
  2297. loaded_vmcs_clear(loaded_vmcs);
  2298. free_vmcs(loaded_vmcs->vmcs);
  2299. loaded_vmcs->vmcs = NULL;
  2300. }
  2301. static void free_kvm_area(void)
  2302. {
  2303. int cpu;
  2304. for_each_possible_cpu(cpu) {
  2305. free_vmcs(per_cpu(vmxarea, cpu));
  2306. per_cpu(vmxarea, cpu) = NULL;
  2307. }
  2308. }
  2309. static __init int alloc_kvm_area(void)
  2310. {
  2311. int cpu;
  2312. for_each_possible_cpu(cpu) {
  2313. struct vmcs *vmcs;
  2314. vmcs = alloc_vmcs_cpu(cpu);
  2315. if (!vmcs) {
  2316. free_kvm_area();
  2317. return -ENOMEM;
  2318. }
  2319. per_cpu(vmxarea, cpu) = vmcs;
  2320. }
  2321. return 0;
  2322. }
  2323. static __init int hardware_setup(void)
  2324. {
  2325. if (setup_vmcs_config(&vmcs_config) < 0)
  2326. return -EIO;
  2327. if (boot_cpu_has(X86_FEATURE_NX))
  2328. kvm_enable_efer_bits(EFER_NX);
  2329. if (!cpu_has_vmx_vpid())
  2330. enable_vpid = 0;
  2331. if (!cpu_has_vmx_ept() ||
  2332. !cpu_has_vmx_ept_4levels()) {
  2333. enable_ept = 0;
  2334. enable_unrestricted_guest = 0;
  2335. }
  2336. if (!cpu_has_vmx_unrestricted_guest())
  2337. enable_unrestricted_guest = 0;
  2338. if (!cpu_has_vmx_flexpriority())
  2339. flexpriority_enabled = 0;
  2340. if (!cpu_has_vmx_tpr_shadow())
  2341. kvm_x86_ops->update_cr8_intercept = NULL;
  2342. if (enable_ept && !cpu_has_vmx_ept_2m_page())
  2343. kvm_disable_largepages();
  2344. if (!cpu_has_vmx_ple())
  2345. ple_gap = 0;
  2346. if (nested)
  2347. nested_vmx_setup_ctls_msrs();
  2348. return alloc_kvm_area();
  2349. }
  2350. static __exit void hardware_unsetup(void)
  2351. {
  2352. free_kvm_area();
  2353. }
  2354. static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
  2355. {
  2356. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  2357. if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
  2358. vmcs_write16(sf->selector, save->selector);
  2359. vmcs_writel(sf->base, save->base);
  2360. vmcs_write32(sf->limit, save->limit);
  2361. vmcs_write32(sf->ar_bytes, save->ar);
  2362. } else {
  2363. u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
  2364. << AR_DPL_SHIFT;
  2365. vmcs_write32(sf->ar_bytes, 0x93 | dpl);
  2366. }
  2367. }
  2368. static void enter_pmode(struct kvm_vcpu *vcpu)
  2369. {
  2370. unsigned long flags;
  2371. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2372. vmx->emulation_required = 1;
  2373. vmx->rmode.vm86_active = 0;
  2374. vmx_segment_cache_clear(vmx);
  2375. vmcs_write16(GUEST_TR_SELECTOR, vmx->rmode.tr.selector);
  2376. vmcs_writel(GUEST_TR_BASE, vmx->rmode.tr.base);
  2377. vmcs_write32(GUEST_TR_LIMIT, vmx->rmode.tr.limit);
  2378. vmcs_write32(GUEST_TR_AR_BYTES, vmx->rmode.tr.ar);
  2379. flags = vmcs_readl(GUEST_RFLAGS);
  2380. flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
  2381. flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
  2382. vmcs_writel(GUEST_RFLAGS, flags);
  2383. vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
  2384. (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
  2385. update_exception_bitmap(vcpu);
  2386. if (emulate_invalid_guest_state)
  2387. return;
  2388. fix_pmode_dataseg(VCPU_SREG_ES, &vmx->rmode.es);
  2389. fix_pmode_dataseg(VCPU_SREG_DS, &vmx->rmode.ds);
  2390. fix_pmode_dataseg(VCPU_SREG_GS, &vmx->rmode.gs);
  2391. fix_pmode_dataseg(VCPU_SREG_FS, &vmx->rmode.fs);
  2392. vmx_segment_cache_clear(vmx);
  2393. vmcs_write16(GUEST_SS_SELECTOR, 0);
  2394. vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
  2395. vmcs_write16(GUEST_CS_SELECTOR,
  2396. vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
  2397. vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
  2398. }
  2399. static gva_t rmode_tss_base(struct kvm *kvm)
  2400. {
  2401. if (!kvm->arch.tss_addr) {
  2402. struct kvm_memslots *slots;
  2403. struct kvm_memory_slot *slot;
  2404. gfn_t base_gfn;
  2405. slots = kvm_memslots(kvm);
  2406. slot = id_to_memslot(slots, 0);
  2407. base_gfn = slot->base_gfn + slot->npages - 3;
  2408. return base_gfn << PAGE_SHIFT;
  2409. }
  2410. return kvm->arch.tss_addr;
  2411. }
  2412. static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
  2413. {
  2414. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  2415. save->selector = vmcs_read16(sf->selector);
  2416. save->base = vmcs_readl(sf->base);
  2417. save->limit = vmcs_read32(sf->limit);
  2418. save->ar = vmcs_read32(sf->ar_bytes);
  2419. vmcs_write16(sf->selector, save->base >> 4);
  2420. vmcs_write32(sf->base, save->base & 0xffff0);
  2421. vmcs_write32(sf->limit, 0xffff);
  2422. vmcs_write32(sf->ar_bytes, 0xf3);
  2423. if (save->base & 0xf)
  2424. printk_once(KERN_WARNING "kvm: segment base is not paragraph"
  2425. " aligned when entering protected mode (seg=%d)",
  2426. seg);
  2427. }
  2428. static void enter_rmode(struct kvm_vcpu *vcpu)
  2429. {
  2430. unsigned long flags;
  2431. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2432. if (enable_unrestricted_guest)
  2433. return;
  2434. vmx->emulation_required = 1;
  2435. vmx->rmode.vm86_active = 1;
  2436. /*
  2437. * Very old userspace does not call KVM_SET_TSS_ADDR before entering
  2438. * vcpu. Call it here with phys address pointing 16M below 4G.
  2439. */
  2440. if (!vcpu->kvm->arch.tss_addr) {
  2441. printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
  2442. "called before entering vcpu\n");
  2443. srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
  2444. vmx_set_tss_addr(vcpu->kvm, 0xfeffd000);
  2445. vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
  2446. }
  2447. vmx_segment_cache_clear(vmx);
  2448. vmx->rmode.tr.selector = vmcs_read16(GUEST_TR_SELECTOR);
  2449. vmx->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
  2450. vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
  2451. vmx->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
  2452. vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
  2453. vmx->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
  2454. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  2455. flags = vmcs_readl(GUEST_RFLAGS);
  2456. vmx->rmode.save_rflags = flags;
  2457. flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  2458. vmcs_writel(GUEST_RFLAGS, flags);
  2459. vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
  2460. update_exception_bitmap(vcpu);
  2461. if (emulate_invalid_guest_state)
  2462. goto continue_rmode;
  2463. vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
  2464. vmcs_write32(GUEST_SS_LIMIT, 0xffff);
  2465. vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
  2466. vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
  2467. vmcs_write32(GUEST_CS_LIMIT, 0xffff);
  2468. if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
  2469. vmcs_writel(GUEST_CS_BASE, 0xf0000);
  2470. vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
  2471. fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.es);
  2472. fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.ds);
  2473. fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.gs);
  2474. fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.fs);
  2475. continue_rmode:
  2476. kvm_mmu_reset_context(vcpu);
  2477. }
  2478. static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
  2479. {
  2480. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2481. struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
  2482. if (!msr)
  2483. return;
  2484. /*
  2485. * Force kernel_gs_base reloading before EFER changes, as control
  2486. * of this msr depends on is_long_mode().
  2487. */
  2488. vmx_load_host_state(to_vmx(vcpu));
  2489. vcpu->arch.efer = efer;
  2490. if (efer & EFER_LMA) {
  2491. vmcs_write32(VM_ENTRY_CONTROLS,
  2492. vmcs_read32(VM_ENTRY_CONTROLS) |
  2493. VM_ENTRY_IA32E_MODE);
  2494. msr->data = efer;
  2495. } else {
  2496. vmcs_write32(VM_ENTRY_CONTROLS,
  2497. vmcs_read32(VM_ENTRY_CONTROLS) &
  2498. ~VM_ENTRY_IA32E_MODE);
  2499. msr->data = efer & ~EFER_LME;
  2500. }
  2501. setup_msrs(vmx);
  2502. }
  2503. #ifdef CONFIG_X86_64
  2504. static void enter_lmode(struct kvm_vcpu *vcpu)
  2505. {
  2506. u32 guest_tr_ar;
  2507. vmx_segment_cache_clear(to_vmx(vcpu));
  2508. guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
  2509. if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
  2510. pr_debug_ratelimited("%s: tss fixup for long mode. \n",
  2511. __func__);
  2512. vmcs_write32(GUEST_TR_AR_BYTES,
  2513. (guest_tr_ar & ~AR_TYPE_MASK)
  2514. | AR_TYPE_BUSY_64_TSS);
  2515. }
  2516. vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
  2517. }
  2518. static void exit_lmode(struct kvm_vcpu *vcpu)
  2519. {
  2520. vmcs_write32(VM_ENTRY_CONTROLS,
  2521. vmcs_read32(VM_ENTRY_CONTROLS)
  2522. & ~VM_ENTRY_IA32E_MODE);
  2523. vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
  2524. }
  2525. #endif
  2526. static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
  2527. {
  2528. vpid_sync_context(to_vmx(vcpu));
  2529. if (enable_ept) {
  2530. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2531. return;
  2532. ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
  2533. }
  2534. }
  2535. static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
  2536. {
  2537. ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
  2538. vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
  2539. vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
  2540. }
  2541. static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
  2542. {
  2543. if (enable_ept && is_paging(vcpu))
  2544. vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
  2545. __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
  2546. }
  2547. static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
  2548. {
  2549. ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
  2550. vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
  2551. vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
  2552. }
  2553. static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
  2554. {
  2555. if (!test_bit(VCPU_EXREG_PDPTR,
  2556. (unsigned long *)&vcpu->arch.regs_dirty))
  2557. return;
  2558. if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
  2559. vmcs_write64(GUEST_PDPTR0, vcpu->arch.mmu.pdptrs[0]);
  2560. vmcs_write64(GUEST_PDPTR1, vcpu->arch.mmu.pdptrs[1]);
  2561. vmcs_write64(GUEST_PDPTR2, vcpu->arch.mmu.pdptrs[2]);
  2562. vmcs_write64(GUEST_PDPTR3, vcpu->arch.mmu.pdptrs[3]);
  2563. }
  2564. }
  2565. static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
  2566. {
  2567. if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
  2568. vcpu->arch.mmu.pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
  2569. vcpu->arch.mmu.pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
  2570. vcpu->arch.mmu.pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
  2571. vcpu->arch.mmu.pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
  2572. }
  2573. __set_bit(VCPU_EXREG_PDPTR,
  2574. (unsigned long *)&vcpu->arch.regs_avail);
  2575. __set_bit(VCPU_EXREG_PDPTR,
  2576. (unsigned long *)&vcpu->arch.regs_dirty);
  2577. }
  2578. static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
  2579. static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
  2580. unsigned long cr0,
  2581. struct kvm_vcpu *vcpu)
  2582. {
  2583. if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
  2584. vmx_decache_cr3(vcpu);
  2585. if (!(cr0 & X86_CR0_PG)) {
  2586. /* From paging/starting to nonpaging */
  2587. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
  2588. vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
  2589. (CPU_BASED_CR3_LOAD_EXITING |
  2590. CPU_BASED_CR3_STORE_EXITING));
  2591. vcpu->arch.cr0 = cr0;
  2592. vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
  2593. } else if (!is_paging(vcpu)) {
  2594. /* From nonpaging to paging */
  2595. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
  2596. vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
  2597. ~(CPU_BASED_CR3_LOAD_EXITING |
  2598. CPU_BASED_CR3_STORE_EXITING));
  2599. vcpu->arch.cr0 = cr0;
  2600. vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
  2601. }
  2602. if (!(cr0 & X86_CR0_WP))
  2603. *hw_cr0 &= ~X86_CR0_WP;
  2604. }
  2605. static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  2606. {
  2607. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2608. unsigned long hw_cr0;
  2609. if (enable_unrestricted_guest)
  2610. hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST)
  2611. | KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
  2612. else
  2613. hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON;
  2614. if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
  2615. enter_pmode(vcpu);
  2616. if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
  2617. enter_rmode(vcpu);
  2618. #ifdef CONFIG_X86_64
  2619. if (vcpu->arch.efer & EFER_LME) {
  2620. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
  2621. enter_lmode(vcpu);
  2622. if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
  2623. exit_lmode(vcpu);
  2624. }
  2625. #endif
  2626. if (enable_ept)
  2627. ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
  2628. if (!vcpu->fpu_active)
  2629. hw_cr0 |= X86_CR0_TS | X86_CR0_MP;
  2630. vmcs_writel(CR0_READ_SHADOW, cr0);
  2631. vmcs_writel(GUEST_CR0, hw_cr0);
  2632. vcpu->arch.cr0 = cr0;
  2633. __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
  2634. }
  2635. static u64 construct_eptp(unsigned long root_hpa)
  2636. {
  2637. u64 eptp;
  2638. /* TODO write the value reading from MSR */
  2639. eptp = VMX_EPT_DEFAULT_MT |
  2640. VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
  2641. eptp |= (root_hpa & PAGE_MASK);
  2642. return eptp;
  2643. }
  2644. static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  2645. {
  2646. unsigned long guest_cr3;
  2647. u64 eptp;
  2648. guest_cr3 = cr3;
  2649. if (enable_ept) {
  2650. eptp = construct_eptp(cr3);
  2651. vmcs_write64(EPT_POINTER, eptp);
  2652. guest_cr3 = is_paging(vcpu) ? kvm_read_cr3(vcpu) :
  2653. vcpu->kvm->arch.ept_identity_map_addr;
  2654. ept_load_pdptrs(vcpu);
  2655. }
  2656. vmx_flush_tlb(vcpu);
  2657. vmcs_writel(GUEST_CR3, guest_cr3);
  2658. }
  2659. static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  2660. {
  2661. unsigned long hw_cr4 = cr4 | (to_vmx(vcpu)->rmode.vm86_active ?
  2662. KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
  2663. if (cr4 & X86_CR4_VMXE) {
  2664. /*
  2665. * To use VMXON (and later other VMX instructions), a guest
  2666. * must first be able to turn on cr4.VMXE (see handle_vmon()).
  2667. * So basically the check on whether to allow nested VMX
  2668. * is here.
  2669. */
  2670. if (!nested_vmx_allowed(vcpu))
  2671. return 1;
  2672. } else if (to_vmx(vcpu)->nested.vmxon)
  2673. return 1;
  2674. vcpu->arch.cr4 = cr4;
  2675. if (enable_ept) {
  2676. if (!is_paging(vcpu)) {
  2677. hw_cr4 &= ~X86_CR4_PAE;
  2678. hw_cr4 |= X86_CR4_PSE;
  2679. } else if (!(cr4 & X86_CR4_PAE)) {
  2680. hw_cr4 &= ~X86_CR4_PAE;
  2681. }
  2682. }
  2683. vmcs_writel(CR4_READ_SHADOW, cr4);
  2684. vmcs_writel(GUEST_CR4, hw_cr4);
  2685. return 0;
  2686. }
  2687. static void vmx_get_segment(struct kvm_vcpu *vcpu,
  2688. struct kvm_segment *var, int seg)
  2689. {
  2690. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2691. struct kvm_save_segment *save;
  2692. u32 ar;
  2693. if (vmx->rmode.vm86_active
  2694. && (seg == VCPU_SREG_TR || seg == VCPU_SREG_ES
  2695. || seg == VCPU_SREG_DS || seg == VCPU_SREG_FS
  2696. || seg == VCPU_SREG_GS)
  2697. && !emulate_invalid_guest_state) {
  2698. switch (seg) {
  2699. case VCPU_SREG_TR: save = &vmx->rmode.tr; break;
  2700. case VCPU_SREG_ES: save = &vmx->rmode.es; break;
  2701. case VCPU_SREG_DS: save = &vmx->rmode.ds; break;
  2702. case VCPU_SREG_FS: save = &vmx->rmode.fs; break;
  2703. case VCPU_SREG_GS: save = &vmx->rmode.gs; break;
  2704. default: BUG();
  2705. }
  2706. var->selector = save->selector;
  2707. var->base = save->base;
  2708. var->limit = save->limit;
  2709. ar = save->ar;
  2710. if (seg == VCPU_SREG_TR
  2711. || var->selector == vmx_read_guest_seg_selector(vmx, seg))
  2712. goto use_saved_rmode_seg;
  2713. }
  2714. var->base = vmx_read_guest_seg_base(vmx, seg);
  2715. var->limit = vmx_read_guest_seg_limit(vmx, seg);
  2716. var->selector = vmx_read_guest_seg_selector(vmx, seg);
  2717. ar = vmx_read_guest_seg_ar(vmx, seg);
  2718. use_saved_rmode_seg:
  2719. if ((ar & AR_UNUSABLE_MASK) && !emulate_invalid_guest_state)
  2720. ar = 0;
  2721. var->type = ar & 15;
  2722. var->s = (ar >> 4) & 1;
  2723. var->dpl = (ar >> 5) & 3;
  2724. var->present = (ar >> 7) & 1;
  2725. var->avl = (ar >> 12) & 1;
  2726. var->l = (ar >> 13) & 1;
  2727. var->db = (ar >> 14) & 1;
  2728. var->g = (ar >> 15) & 1;
  2729. var->unusable = (ar >> 16) & 1;
  2730. }
  2731. static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
  2732. {
  2733. struct kvm_segment s;
  2734. if (to_vmx(vcpu)->rmode.vm86_active) {
  2735. vmx_get_segment(vcpu, &s, seg);
  2736. return s.base;
  2737. }
  2738. return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
  2739. }
  2740. static int __vmx_get_cpl(struct kvm_vcpu *vcpu)
  2741. {
  2742. if (!is_protmode(vcpu))
  2743. return 0;
  2744. if (!is_long_mode(vcpu)
  2745. && (kvm_get_rflags(vcpu) & X86_EFLAGS_VM)) /* if virtual 8086 */
  2746. return 3;
  2747. return vmx_read_guest_seg_selector(to_vmx(vcpu), VCPU_SREG_CS) & 3;
  2748. }
  2749. static int vmx_get_cpl(struct kvm_vcpu *vcpu)
  2750. {
  2751. if (!test_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail)) {
  2752. __set_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
  2753. to_vmx(vcpu)->cpl = __vmx_get_cpl(vcpu);
  2754. }
  2755. return to_vmx(vcpu)->cpl;
  2756. }
  2757. static u32 vmx_segment_access_rights(struct kvm_segment *var)
  2758. {
  2759. u32 ar;
  2760. if (var->unusable)
  2761. ar = 1 << 16;
  2762. else {
  2763. ar = var->type & 15;
  2764. ar |= (var->s & 1) << 4;
  2765. ar |= (var->dpl & 3) << 5;
  2766. ar |= (var->present & 1) << 7;
  2767. ar |= (var->avl & 1) << 12;
  2768. ar |= (var->l & 1) << 13;
  2769. ar |= (var->db & 1) << 14;
  2770. ar |= (var->g & 1) << 15;
  2771. }
  2772. if (ar == 0) /* a 0 value means unusable */
  2773. ar = AR_UNUSABLE_MASK;
  2774. return ar;
  2775. }
  2776. static void vmx_set_segment(struct kvm_vcpu *vcpu,
  2777. struct kvm_segment *var, int seg)
  2778. {
  2779. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2780. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  2781. u32 ar;
  2782. vmx_segment_cache_clear(vmx);
  2783. if (vmx->rmode.vm86_active && seg == VCPU_SREG_TR) {
  2784. vmcs_write16(sf->selector, var->selector);
  2785. vmx->rmode.tr.selector = var->selector;
  2786. vmx->rmode.tr.base = var->base;
  2787. vmx->rmode.tr.limit = var->limit;
  2788. vmx->rmode.tr.ar = vmx_segment_access_rights(var);
  2789. return;
  2790. }
  2791. vmcs_writel(sf->base, var->base);
  2792. vmcs_write32(sf->limit, var->limit);
  2793. vmcs_write16(sf->selector, var->selector);
  2794. if (vmx->rmode.vm86_active && var->s) {
  2795. /*
  2796. * Hack real-mode segments into vm86 compatibility.
  2797. */
  2798. if (var->base == 0xffff0000 && var->selector == 0xf000)
  2799. vmcs_writel(sf->base, 0xf0000);
  2800. ar = 0xf3;
  2801. } else
  2802. ar = vmx_segment_access_rights(var);
  2803. /*
  2804. * Fix the "Accessed" bit in AR field of segment registers for older
  2805. * qemu binaries.
  2806. * IA32 arch specifies that at the time of processor reset the
  2807. * "Accessed" bit in the AR field of segment registers is 1. And qemu
  2808. * is setting it to 0 in the usedland code. This causes invalid guest
  2809. * state vmexit when "unrestricted guest" mode is turned on.
  2810. * Fix for this setup issue in cpu_reset is being pushed in the qemu
  2811. * tree. Newer qemu binaries with that qemu fix would not need this
  2812. * kvm hack.
  2813. */
  2814. if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
  2815. ar |= 0x1; /* Accessed */
  2816. vmcs_write32(sf->ar_bytes, ar);
  2817. __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
  2818. }
  2819. static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  2820. {
  2821. u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
  2822. *db = (ar >> 14) & 1;
  2823. *l = (ar >> 13) & 1;
  2824. }
  2825. static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
  2826. {
  2827. dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
  2828. dt->address = vmcs_readl(GUEST_IDTR_BASE);
  2829. }
  2830. static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
  2831. {
  2832. vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
  2833. vmcs_writel(GUEST_IDTR_BASE, dt->address);
  2834. }
  2835. static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
  2836. {
  2837. dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
  2838. dt->address = vmcs_readl(GUEST_GDTR_BASE);
  2839. }
  2840. static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
  2841. {
  2842. vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
  2843. vmcs_writel(GUEST_GDTR_BASE, dt->address);
  2844. }
  2845. static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
  2846. {
  2847. struct kvm_segment var;
  2848. u32 ar;
  2849. vmx_get_segment(vcpu, &var, seg);
  2850. ar = vmx_segment_access_rights(&var);
  2851. if (var.base != (var.selector << 4))
  2852. return false;
  2853. if (var.limit != 0xffff)
  2854. return false;
  2855. if (ar != 0xf3)
  2856. return false;
  2857. return true;
  2858. }
  2859. static bool code_segment_valid(struct kvm_vcpu *vcpu)
  2860. {
  2861. struct kvm_segment cs;
  2862. unsigned int cs_rpl;
  2863. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  2864. cs_rpl = cs.selector & SELECTOR_RPL_MASK;
  2865. if (cs.unusable)
  2866. return false;
  2867. if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
  2868. return false;
  2869. if (!cs.s)
  2870. return false;
  2871. if (cs.type & AR_TYPE_WRITEABLE_MASK) {
  2872. if (cs.dpl > cs_rpl)
  2873. return false;
  2874. } else {
  2875. if (cs.dpl != cs_rpl)
  2876. return false;
  2877. }
  2878. if (!cs.present)
  2879. return false;
  2880. /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
  2881. return true;
  2882. }
  2883. static bool stack_segment_valid(struct kvm_vcpu *vcpu)
  2884. {
  2885. struct kvm_segment ss;
  2886. unsigned int ss_rpl;
  2887. vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
  2888. ss_rpl = ss.selector & SELECTOR_RPL_MASK;
  2889. if (ss.unusable)
  2890. return true;
  2891. if (ss.type != 3 && ss.type != 7)
  2892. return false;
  2893. if (!ss.s)
  2894. return false;
  2895. if (ss.dpl != ss_rpl) /* DPL != RPL */
  2896. return false;
  2897. if (!ss.present)
  2898. return false;
  2899. return true;
  2900. }
  2901. static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
  2902. {
  2903. struct kvm_segment var;
  2904. unsigned int rpl;
  2905. vmx_get_segment(vcpu, &var, seg);
  2906. rpl = var.selector & SELECTOR_RPL_MASK;
  2907. if (var.unusable)
  2908. return true;
  2909. if (!var.s)
  2910. return false;
  2911. if (!var.present)
  2912. return false;
  2913. if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
  2914. if (var.dpl < rpl) /* DPL < RPL */
  2915. return false;
  2916. }
  2917. /* TODO: Add other members to kvm_segment_field to allow checking for other access
  2918. * rights flags
  2919. */
  2920. return true;
  2921. }
  2922. static bool tr_valid(struct kvm_vcpu *vcpu)
  2923. {
  2924. struct kvm_segment tr;
  2925. vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
  2926. if (tr.unusable)
  2927. return false;
  2928. if (tr.selector & SELECTOR_TI_MASK) /* TI = 1 */
  2929. return false;
  2930. if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
  2931. return false;
  2932. if (!tr.present)
  2933. return false;
  2934. return true;
  2935. }
  2936. static bool ldtr_valid(struct kvm_vcpu *vcpu)
  2937. {
  2938. struct kvm_segment ldtr;
  2939. vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
  2940. if (ldtr.unusable)
  2941. return true;
  2942. if (ldtr.selector & SELECTOR_TI_MASK) /* TI = 1 */
  2943. return false;
  2944. if (ldtr.type != 2)
  2945. return false;
  2946. if (!ldtr.present)
  2947. return false;
  2948. return true;
  2949. }
  2950. static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
  2951. {
  2952. struct kvm_segment cs, ss;
  2953. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  2954. vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
  2955. return ((cs.selector & SELECTOR_RPL_MASK) ==
  2956. (ss.selector & SELECTOR_RPL_MASK));
  2957. }
  2958. /*
  2959. * Check if guest state is valid. Returns true if valid, false if
  2960. * not.
  2961. * We assume that registers are always usable
  2962. */
  2963. static bool guest_state_valid(struct kvm_vcpu *vcpu)
  2964. {
  2965. /* real mode guest state checks */
  2966. if (!is_protmode(vcpu)) {
  2967. if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
  2968. return false;
  2969. if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
  2970. return false;
  2971. if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
  2972. return false;
  2973. if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
  2974. return false;
  2975. if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
  2976. return false;
  2977. if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
  2978. return false;
  2979. } else {
  2980. /* protected mode guest state checks */
  2981. if (!cs_ss_rpl_check(vcpu))
  2982. return false;
  2983. if (!code_segment_valid(vcpu))
  2984. return false;
  2985. if (!stack_segment_valid(vcpu))
  2986. return false;
  2987. if (!data_segment_valid(vcpu, VCPU_SREG_DS))
  2988. return false;
  2989. if (!data_segment_valid(vcpu, VCPU_SREG_ES))
  2990. return false;
  2991. if (!data_segment_valid(vcpu, VCPU_SREG_FS))
  2992. return false;
  2993. if (!data_segment_valid(vcpu, VCPU_SREG_GS))
  2994. return false;
  2995. if (!tr_valid(vcpu))
  2996. return false;
  2997. if (!ldtr_valid(vcpu))
  2998. return false;
  2999. }
  3000. /* TODO:
  3001. * - Add checks on RIP
  3002. * - Add checks on RFLAGS
  3003. */
  3004. return true;
  3005. }
  3006. static int init_rmode_tss(struct kvm *kvm)
  3007. {
  3008. gfn_t fn;
  3009. u16 data = 0;
  3010. int r, idx, ret = 0;
  3011. idx = srcu_read_lock(&kvm->srcu);
  3012. fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
  3013. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  3014. if (r < 0)
  3015. goto out;
  3016. data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
  3017. r = kvm_write_guest_page(kvm, fn++, &data,
  3018. TSS_IOPB_BASE_OFFSET, sizeof(u16));
  3019. if (r < 0)
  3020. goto out;
  3021. r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
  3022. if (r < 0)
  3023. goto out;
  3024. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  3025. if (r < 0)
  3026. goto out;
  3027. data = ~0;
  3028. r = kvm_write_guest_page(kvm, fn, &data,
  3029. RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
  3030. sizeof(u8));
  3031. if (r < 0)
  3032. goto out;
  3033. ret = 1;
  3034. out:
  3035. srcu_read_unlock(&kvm->srcu, idx);
  3036. return ret;
  3037. }
  3038. static int init_rmode_identity_map(struct kvm *kvm)
  3039. {
  3040. int i, idx, r, ret;
  3041. pfn_t identity_map_pfn;
  3042. u32 tmp;
  3043. if (!enable_ept)
  3044. return 1;
  3045. if (unlikely(!kvm->arch.ept_identity_pagetable)) {
  3046. printk(KERN_ERR "EPT: identity-mapping pagetable "
  3047. "haven't been allocated!\n");
  3048. return 0;
  3049. }
  3050. if (likely(kvm->arch.ept_identity_pagetable_done))
  3051. return 1;
  3052. ret = 0;
  3053. identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
  3054. idx = srcu_read_lock(&kvm->srcu);
  3055. r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
  3056. if (r < 0)
  3057. goto out;
  3058. /* Set up identity-mapping pagetable for EPT in real mode */
  3059. for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
  3060. tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
  3061. _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
  3062. r = kvm_write_guest_page(kvm, identity_map_pfn,
  3063. &tmp, i * sizeof(tmp), sizeof(tmp));
  3064. if (r < 0)
  3065. goto out;
  3066. }
  3067. kvm->arch.ept_identity_pagetable_done = true;
  3068. ret = 1;
  3069. out:
  3070. srcu_read_unlock(&kvm->srcu, idx);
  3071. return ret;
  3072. }
  3073. static void seg_setup(int seg)
  3074. {
  3075. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  3076. unsigned int ar;
  3077. vmcs_write16(sf->selector, 0);
  3078. vmcs_writel(sf->base, 0);
  3079. vmcs_write32(sf->limit, 0xffff);
  3080. if (enable_unrestricted_guest) {
  3081. ar = 0x93;
  3082. if (seg == VCPU_SREG_CS)
  3083. ar |= 0x08; /* code segment */
  3084. } else
  3085. ar = 0xf3;
  3086. vmcs_write32(sf->ar_bytes, ar);
  3087. }
  3088. static int alloc_apic_access_page(struct kvm *kvm)
  3089. {
  3090. struct kvm_userspace_memory_region kvm_userspace_mem;
  3091. int r = 0;
  3092. mutex_lock(&kvm->slots_lock);
  3093. if (kvm->arch.apic_access_page)
  3094. goto out;
  3095. kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
  3096. kvm_userspace_mem.flags = 0;
  3097. kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
  3098. kvm_userspace_mem.memory_size = PAGE_SIZE;
  3099. r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
  3100. if (r)
  3101. goto out;
  3102. kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00);
  3103. out:
  3104. mutex_unlock(&kvm->slots_lock);
  3105. return r;
  3106. }
  3107. static int alloc_identity_pagetable(struct kvm *kvm)
  3108. {
  3109. struct kvm_userspace_memory_region kvm_userspace_mem;
  3110. int r = 0;
  3111. mutex_lock(&kvm->slots_lock);
  3112. if (kvm->arch.ept_identity_pagetable)
  3113. goto out;
  3114. kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
  3115. kvm_userspace_mem.flags = 0;
  3116. kvm_userspace_mem.guest_phys_addr =
  3117. kvm->arch.ept_identity_map_addr;
  3118. kvm_userspace_mem.memory_size = PAGE_SIZE;
  3119. r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
  3120. if (r)
  3121. goto out;
  3122. kvm->arch.ept_identity_pagetable = gfn_to_page(kvm,
  3123. kvm->arch.ept_identity_map_addr >> PAGE_SHIFT);
  3124. out:
  3125. mutex_unlock(&kvm->slots_lock);
  3126. return r;
  3127. }
  3128. static void allocate_vpid(struct vcpu_vmx *vmx)
  3129. {
  3130. int vpid;
  3131. vmx->vpid = 0;
  3132. if (!enable_vpid)
  3133. return;
  3134. spin_lock(&vmx_vpid_lock);
  3135. vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
  3136. if (vpid < VMX_NR_VPIDS) {
  3137. vmx->vpid = vpid;
  3138. __set_bit(vpid, vmx_vpid_bitmap);
  3139. }
  3140. spin_unlock(&vmx_vpid_lock);
  3141. }
  3142. static void free_vpid(struct vcpu_vmx *vmx)
  3143. {
  3144. if (!enable_vpid)
  3145. return;
  3146. spin_lock(&vmx_vpid_lock);
  3147. if (vmx->vpid != 0)
  3148. __clear_bit(vmx->vpid, vmx_vpid_bitmap);
  3149. spin_unlock(&vmx_vpid_lock);
  3150. }
  3151. static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap, u32 msr)
  3152. {
  3153. int f = sizeof(unsigned long);
  3154. if (!cpu_has_vmx_msr_bitmap())
  3155. return;
  3156. /*
  3157. * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
  3158. * have the write-low and read-high bitmap offsets the wrong way round.
  3159. * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
  3160. */
  3161. if (msr <= 0x1fff) {
  3162. __clear_bit(msr, msr_bitmap + 0x000 / f); /* read-low */
  3163. __clear_bit(msr, msr_bitmap + 0x800 / f); /* write-low */
  3164. } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
  3165. msr &= 0x1fff;
  3166. __clear_bit(msr, msr_bitmap + 0x400 / f); /* read-high */
  3167. __clear_bit(msr, msr_bitmap + 0xc00 / f); /* write-high */
  3168. }
  3169. }
  3170. static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
  3171. {
  3172. if (!longmode_only)
  3173. __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy, msr);
  3174. __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode, msr);
  3175. }
  3176. /*
  3177. * Set up the vmcs's constant host-state fields, i.e., host-state fields that
  3178. * will not change in the lifetime of the guest.
  3179. * Note that host-state that does change is set elsewhere. E.g., host-state
  3180. * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
  3181. */
  3182. static void vmx_set_constant_host_state(void)
  3183. {
  3184. u32 low32, high32;
  3185. unsigned long tmpl;
  3186. struct desc_ptr dt;
  3187. vmcs_writel(HOST_CR0, read_cr0() | X86_CR0_TS); /* 22.2.3 */
  3188. vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
  3189. vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
  3190. vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
  3191. #ifdef CONFIG_X86_64
  3192. /*
  3193. * Load null selectors, so we can avoid reloading them in
  3194. * __vmx_load_host_state(), in case userspace uses the null selectors
  3195. * too (the expected case).
  3196. */
  3197. vmcs_write16(HOST_DS_SELECTOR, 0);
  3198. vmcs_write16(HOST_ES_SELECTOR, 0);
  3199. #else
  3200. vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  3201. vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  3202. #endif
  3203. vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  3204. vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
  3205. native_store_idt(&dt);
  3206. vmcs_writel(HOST_IDTR_BASE, dt.address); /* 22.2.4 */
  3207. asm("mov $.Lkvm_vmx_return, %0" : "=r"(tmpl));
  3208. vmcs_writel(HOST_RIP, tmpl); /* 22.2.5 */
  3209. rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
  3210. vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
  3211. rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
  3212. vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */
  3213. if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
  3214. rdmsr(MSR_IA32_CR_PAT, low32, high32);
  3215. vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
  3216. }
  3217. }
  3218. static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
  3219. {
  3220. vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
  3221. if (enable_ept)
  3222. vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
  3223. if (is_guest_mode(&vmx->vcpu))
  3224. vmx->vcpu.arch.cr4_guest_owned_bits &=
  3225. ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
  3226. vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
  3227. }
  3228. static u32 vmx_exec_control(struct vcpu_vmx *vmx)
  3229. {
  3230. u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
  3231. if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
  3232. exec_control &= ~CPU_BASED_TPR_SHADOW;
  3233. #ifdef CONFIG_X86_64
  3234. exec_control |= CPU_BASED_CR8_STORE_EXITING |
  3235. CPU_BASED_CR8_LOAD_EXITING;
  3236. #endif
  3237. }
  3238. if (!enable_ept)
  3239. exec_control |= CPU_BASED_CR3_STORE_EXITING |
  3240. CPU_BASED_CR3_LOAD_EXITING |
  3241. CPU_BASED_INVLPG_EXITING;
  3242. return exec_control;
  3243. }
  3244. static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
  3245. {
  3246. u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
  3247. if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  3248. exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  3249. if (vmx->vpid == 0)
  3250. exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
  3251. if (!enable_ept) {
  3252. exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
  3253. enable_unrestricted_guest = 0;
  3254. }
  3255. if (!enable_unrestricted_guest)
  3256. exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
  3257. if (!ple_gap)
  3258. exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
  3259. return exec_control;
  3260. }
  3261. static void ept_set_mmio_spte_mask(void)
  3262. {
  3263. /*
  3264. * EPT Misconfigurations can be generated if the value of bits 2:0
  3265. * of an EPT paging-structure entry is 110b (write/execute).
  3266. * Also, magic bits (0xffull << 49) is set to quickly identify mmio
  3267. * spte.
  3268. */
  3269. kvm_mmu_set_mmio_spte_mask(0xffull << 49 | 0x6ull);
  3270. }
  3271. /*
  3272. * Sets up the vmcs for emulated real mode.
  3273. */
  3274. static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
  3275. {
  3276. #ifdef CONFIG_X86_64
  3277. unsigned long a;
  3278. #endif
  3279. int i;
  3280. /* I/O */
  3281. vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
  3282. vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
  3283. if (cpu_has_vmx_msr_bitmap())
  3284. vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
  3285. vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
  3286. /* Control */
  3287. vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
  3288. vmcs_config.pin_based_exec_ctrl);
  3289. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
  3290. if (cpu_has_secondary_exec_ctrls()) {
  3291. vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
  3292. vmx_secondary_exec_control(vmx));
  3293. }
  3294. if (ple_gap) {
  3295. vmcs_write32(PLE_GAP, ple_gap);
  3296. vmcs_write32(PLE_WINDOW, ple_window);
  3297. }
  3298. vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
  3299. vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
  3300. vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
  3301. vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */
  3302. vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */
  3303. vmx_set_constant_host_state();
  3304. #ifdef CONFIG_X86_64
  3305. rdmsrl(MSR_FS_BASE, a);
  3306. vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
  3307. rdmsrl(MSR_GS_BASE, a);
  3308. vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
  3309. #else
  3310. vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
  3311. vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
  3312. #endif
  3313. vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
  3314. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
  3315. vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
  3316. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
  3317. vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
  3318. if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
  3319. u32 msr_low, msr_high;
  3320. u64 host_pat;
  3321. rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
  3322. host_pat = msr_low | ((u64) msr_high << 32);
  3323. /* Write the default value follow host pat */
  3324. vmcs_write64(GUEST_IA32_PAT, host_pat);
  3325. /* Keep arch.pat sync with GUEST_IA32_PAT */
  3326. vmx->vcpu.arch.pat = host_pat;
  3327. }
  3328. for (i = 0; i < NR_VMX_MSR; ++i) {
  3329. u32 index = vmx_msr_index[i];
  3330. u32 data_low, data_high;
  3331. int j = vmx->nmsrs;
  3332. if (rdmsr_safe(index, &data_low, &data_high) < 0)
  3333. continue;
  3334. if (wrmsr_safe(index, data_low, data_high) < 0)
  3335. continue;
  3336. vmx->guest_msrs[j].index = i;
  3337. vmx->guest_msrs[j].data = 0;
  3338. vmx->guest_msrs[j].mask = -1ull;
  3339. ++vmx->nmsrs;
  3340. }
  3341. vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
  3342. /* 22.2.1, 20.8.1 */
  3343. vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
  3344. vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
  3345. set_cr4_guest_host_mask(vmx);
  3346. kvm_write_tsc(&vmx->vcpu, 0);
  3347. return 0;
  3348. }
  3349. static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
  3350. {
  3351. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3352. u64 msr;
  3353. int ret;
  3354. vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
  3355. vmx->rmode.vm86_active = 0;
  3356. vmx->soft_vnmi_blocked = 0;
  3357. vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
  3358. kvm_set_cr8(&vmx->vcpu, 0);
  3359. msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
  3360. if (kvm_vcpu_is_bsp(&vmx->vcpu))
  3361. msr |= MSR_IA32_APICBASE_BSP;
  3362. kvm_set_apic_base(&vmx->vcpu, msr);
  3363. ret = fx_init(&vmx->vcpu);
  3364. if (ret != 0)
  3365. goto out;
  3366. vmx_segment_cache_clear(vmx);
  3367. seg_setup(VCPU_SREG_CS);
  3368. /*
  3369. * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
  3370. * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
  3371. */
  3372. if (kvm_vcpu_is_bsp(&vmx->vcpu)) {
  3373. vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
  3374. vmcs_writel(GUEST_CS_BASE, 0x000f0000);
  3375. } else {
  3376. vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
  3377. vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
  3378. }
  3379. seg_setup(VCPU_SREG_DS);
  3380. seg_setup(VCPU_SREG_ES);
  3381. seg_setup(VCPU_SREG_FS);
  3382. seg_setup(VCPU_SREG_GS);
  3383. seg_setup(VCPU_SREG_SS);
  3384. vmcs_write16(GUEST_TR_SELECTOR, 0);
  3385. vmcs_writel(GUEST_TR_BASE, 0);
  3386. vmcs_write32(GUEST_TR_LIMIT, 0xffff);
  3387. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  3388. vmcs_write16(GUEST_LDTR_SELECTOR, 0);
  3389. vmcs_writel(GUEST_LDTR_BASE, 0);
  3390. vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
  3391. vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
  3392. vmcs_write32(GUEST_SYSENTER_CS, 0);
  3393. vmcs_writel(GUEST_SYSENTER_ESP, 0);
  3394. vmcs_writel(GUEST_SYSENTER_EIP, 0);
  3395. vmcs_writel(GUEST_RFLAGS, 0x02);
  3396. if (kvm_vcpu_is_bsp(&vmx->vcpu))
  3397. kvm_rip_write(vcpu, 0xfff0);
  3398. else
  3399. kvm_rip_write(vcpu, 0);
  3400. kvm_register_write(vcpu, VCPU_REGS_RSP, 0);
  3401. vmcs_writel(GUEST_DR7, 0x400);
  3402. vmcs_writel(GUEST_GDTR_BASE, 0);
  3403. vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
  3404. vmcs_writel(GUEST_IDTR_BASE, 0);
  3405. vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
  3406. vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
  3407. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
  3408. vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
  3409. /* Special registers */
  3410. vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
  3411. setup_msrs(vmx);
  3412. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
  3413. if (cpu_has_vmx_tpr_shadow()) {
  3414. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
  3415. if (vm_need_tpr_shadow(vmx->vcpu.kvm))
  3416. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
  3417. __pa(vmx->vcpu.arch.apic->regs));
  3418. vmcs_write32(TPR_THRESHOLD, 0);
  3419. }
  3420. if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  3421. vmcs_write64(APIC_ACCESS_ADDR,
  3422. page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
  3423. if (vmx->vpid != 0)
  3424. vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
  3425. vmx->vcpu.arch.cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
  3426. vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
  3427. vmx_set_cr0(&vmx->vcpu, kvm_read_cr0(vcpu)); /* enter rmode */
  3428. srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
  3429. vmx_set_cr4(&vmx->vcpu, 0);
  3430. vmx_set_efer(&vmx->vcpu, 0);
  3431. vmx_fpu_activate(&vmx->vcpu);
  3432. update_exception_bitmap(&vmx->vcpu);
  3433. vpid_sync_context(vmx);
  3434. ret = 0;
  3435. /* HACK: Don't enable emulation on guest boot/reset */
  3436. vmx->emulation_required = 0;
  3437. out:
  3438. return ret;
  3439. }
  3440. /*
  3441. * In nested virtualization, check if L1 asked to exit on external interrupts.
  3442. * For most existing hypervisors, this will always return true.
  3443. */
  3444. static bool nested_exit_on_intr(struct kvm_vcpu *vcpu)
  3445. {
  3446. return get_vmcs12(vcpu)->pin_based_vm_exec_control &
  3447. PIN_BASED_EXT_INTR_MASK;
  3448. }
  3449. static void enable_irq_window(struct kvm_vcpu *vcpu)
  3450. {
  3451. u32 cpu_based_vm_exec_control;
  3452. if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu)) {
  3453. /*
  3454. * We get here if vmx_interrupt_allowed() said we can't
  3455. * inject to L1 now because L2 must run. Ask L2 to exit
  3456. * right after entry, so we can inject to L1 more promptly.
  3457. */
  3458. kvm_make_request(KVM_REQ_IMMEDIATE_EXIT, vcpu);
  3459. return;
  3460. }
  3461. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  3462. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
  3463. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  3464. }
  3465. static void enable_nmi_window(struct kvm_vcpu *vcpu)
  3466. {
  3467. u32 cpu_based_vm_exec_control;
  3468. if (!cpu_has_virtual_nmis()) {
  3469. enable_irq_window(vcpu);
  3470. return;
  3471. }
  3472. if (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
  3473. enable_irq_window(vcpu);
  3474. return;
  3475. }
  3476. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  3477. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
  3478. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  3479. }
  3480. static void vmx_inject_irq(struct kvm_vcpu *vcpu)
  3481. {
  3482. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3483. uint32_t intr;
  3484. int irq = vcpu->arch.interrupt.nr;
  3485. trace_kvm_inj_virq(irq);
  3486. ++vcpu->stat.irq_injections;
  3487. if (vmx->rmode.vm86_active) {
  3488. int inc_eip = 0;
  3489. if (vcpu->arch.interrupt.soft)
  3490. inc_eip = vcpu->arch.event_exit_inst_len;
  3491. if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
  3492. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  3493. return;
  3494. }
  3495. intr = irq | INTR_INFO_VALID_MASK;
  3496. if (vcpu->arch.interrupt.soft) {
  3497. intr |= INTR_TYPE_SOFT_INTR;
  3498. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
  3499. vmx->vcpu.arch.event_exit_inst_len);
  3500. } else
  3501. intr |= INTR_TYPE_EXT_INTR;
  3502. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
  3503. }
  3504. static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
  3505. {
  3506. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3507. if (is_guest_mode(vcpu))
  3508. return;
  3509. if (!cpu_has_virtual_nmis()) {
  3510. /*
  3511. * Tracking the NMI-blocked state in software is built upon
  3512. * finding the next open IRQ window. This, in turn, depends on
  3513. * well-behaving guests: They have to keep IRQs disabled at
  3514. * least as long as the NMI handler runs. Otherwise we may
  3515. * cause NMI nesting, maybe breaking the guest. But as this is
  3516. * highly unlikely, we can live with the residual risk.
  3517. */
  3518. vmx->soft_vnmi_blocked = 1;
  3519. vmx->vnmi_blocked_time = 0;
  3520. }
  3521. ++vcpu->stat.nmi_injections;
  3522. vmx->nmi_known_unmasked = false;
  3523. if (vmx->rmode.vm86_active) {
  3524. if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
  3525. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  3526. return;
  3527. }
  3528. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  3529. INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
  3530. }
  3531. static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
  3532. {
  3533. if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
  3534. return 0;
  3535. return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
  3536. (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
  3537. | GUEST_INTR_STATE_NMI));
  3538. }
  3539. static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
  3540. {
  3541. if (!cpu_has_virtual_nmis())
  3542. return to_vmx(vcpu)->soft_vnmi_blocked;
  3543. if (to_vmx(vcpu)->nmi_known_unmasked)
  3544. return false;
  3545. return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
  3546. }
  3547. static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
  3548. {
  3549. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3550. if (!cpu_has_virtual_nmis()) {
  3551. if (vmx->soft_vnmi_blocked != masked) {
  3552. vmx->soft_vnmi_blocked = masked;
  3553. vmx->vnmi_blocked_time = 0;
  3554. }
  3555. } else {
  3556. vmx->nmi_known_unmasked = !masked;
  3557. if (masked)
  3558. vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
  3559. GUEST_INTR_STATE_NMI);
  3560. else
  3561. vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
  3562. GUEST_INTR_STATE_NMI);
  3563. }
  3564. }
  3565. static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
  3566. {
  3567. if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu)) {
  3568. struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
  3569. if (to_vmx(vcpu)->nested.nested_run_pending ||
  3570. (vmcs12->idt_vectoring_info_field &
  3571. VECTORING_INFO_VALID_MASK))
  3572. return 0;
  3573. nested_vmx_vmexit(vcpu);
  3574. vmcs12->vm_exit_reason = EXIT_REASON_EXTERNAL_INTERRUPT;
  3575. vmcs12->vm_exit_intr_info = 0;
  3576. /* fall through to normal code, but now in L1, not L2 */
  3577. }
  3578. return (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
  3579. !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
  3580. (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
  3581. }
  3582. static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
  3583. {
  3584. int ret;
  3585. struct kvm_userspace_memory_region tss_mem = {
  3586. .slot = TSS_PRIVATE_MEMSLOT,
  3587. .guest_phys_addr = addr,
  3588. .memory_size = PAGE_SIZE * 3,
  3589. .flags = 0,
  3590. };
  3591. ret = kvm_set_memory_region(kvm, &tss_mem, 0);
  3592. if (ret)
  3593. return ret;
  3594. kvm->arch.tss_addr = addr;
  3595. if (!init_rmode_tss(kvm))
  3596. return -ENOMEM;
  3597. return 0;
  3598. }
  3599. static int handle_rmode_exception(struct kvm_vcpu *vcpu,
  3600. int vec, u32 err_code)
  3601. {
  3602. /*
  3603. * Instruction with address size override prefix opcode 0x67
  3604. * Cause the #SS fault with 0 error code in VM86 mode.
  3605. */
  3606. if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
  3607. if (emulate_instruction(vcpu, 0) == EMULATE_DONE)
  3608. return 1;
  3609. /*
  3610. * Forward all other exceptions that are valid in real mode.
  3611. * FIXME: Breaks guest debugging in real mode, needs to be fixed with
  3612. * the required debugging infrastructure rework.
  3613. */
  3614. switch (vec) {
  3615. case DB_VECTOR:
  3616. if (vcpu->guest_debug &
  3617. (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
  3618. return 0;
  3619. kvm_queue_exception(vcpu, vec);
  3620. return 1;
  3621. case BP_VECTOR:
  3622. /*
  3623. * Update instruction length as we may reinject the exception
  3624. * from user space while in guest debugging mode.
  3625. */
  3626. to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
  3627. vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  3628. if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
  3629. return 0;
  3630. /* fall through */
  3631. case DE_VECTOR:
  3632. case OF_VECTOR:
  3633. case BR_VECTOR:
  3634. case UD_VECTOR:
  3635. case DF_VECTOR:
  3636. case SS_VECTOR:
  3637. case GP_VECTOR:
  3638. case MF_VECTOR:
  3639. kvm_queue_exception(vcpu, vec);
  3640. return 1;
  3641. }
  3642. return 0;
  3643. }
  3644. /*
  3645. * Trigger machine check on the host. We assume all the MSRs are already set up
  3646. * by the CPU and that we still run on the same CPU as the MCE occurred on.
  3647. * We pass a fake environment to the machine check handler because we want
  3648. * the guest to be always treated like user space, no matter what context
  3649. * it used internally.
  3650. */
  3651. static void kvm_machine_check(void)
  3652. {
  3653. #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
  3654. struct pt_regs regs = {
  3655. .cs = 3, /* Fake ring 3 no matter what the guest ran on */
  3656. .flags = X86_EFLAGS_IF,
  3657. };
  3658. do_machine_check(&regs, 0);
  3659. #endif
  3660. }
  3661. static int handle_machine_check(struct kvm_vcpu *vcpu)
  3662. {
  3663. /* already handled by vcpu_run */
  3664. return 1;
  3665. }
  3666. static int handle_exception(struct kvm_vcpu *vcpu)
  3667. {
  3668. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3669. struct kvm_run *kvm_run = vcpu->run;
  3670. u32 intr_info, ex_no, error_code;
  3671. unsigned long cr2, rip, dr6;
  3672. u32 vect_info;
  3673. enum emulation_result er;
  3674. vect_info = vmx->idt_vectoring_info;
  3675. intr_info = vmx->exit_intr_info;
  3676. if (is_machine_check(intr_info))
  3677. return handle_machine_check(vcpu);
  3678. if ((vect_info & VECTORING_INFO_VALID_MASK) &&
  3679. !is_page_fault(intr_info)) {
  3680. vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  3681. vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
  3682. vcpu->run->internal.ndata = 2;
  3683. vcpu->run->internal.data[0] = vect_info;
  3684. vcpu->run->internal.data[1] = intr_info;
  3685. return 0;
  3686. }
  3687. if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
  3688. return 1; /* already handled by vmx_vcpu_run() */
  3689. if (is_no_device(intr_info)) {
  3690. vmx_fpu_activate(vcpu);
  3691. return 1;
  3692. }
  3693. if (is_invalid_opcode(intr_info)) {
  3694. er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
  3695. if (er != EMULATE_DONE)
  3696. kvm_queue_exception(vcpu, UD_VECTOR);
  3697. return 1;
  3698. }
  3699. error_code = 0;
  3700. if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
  3701. error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
  3702. if (is_page_fault(intr_info)) {
  3703. /* EPT won't cause page fault directly */
  3704. BUG_ON(enable_ept);
  3705. cr2 = vmcs_readl(EXIT_QUALIFICATION);
  3706. trace_kvm_page_fault(cr2, error_code);
  3707. if (kvm_event_needs_reinjection(vcpu))
  3708. kvm_mmu_unprotect_page_virt(vcpu, cr2);
  3709. return kvm_mmu_page_fault(vcpu, cr2, error_code, NULL, 0);
  3710. }
  3711. if (vmx->rmode.vm86_active &&
  3712. handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
  3713. error_code)) {
  3714. if (vcpu->arch.halt_request) {
  3715. vcpu->arch.halt_request = 0;
  3716. return kvm_emulate_halt(vcpu);
  3717. }
  3718. return 1;
  3719. }
  3720. ex_no = intr_info & INTR_INFO_VECTOR_MASK;
  3721. switch (ex_no) {
  3722. case DB_VECTOR:
  3723. dr6 = vmcs_readl(EXIT_QUALIFICATION);
  3724. if (!(vcpu->guest_debug &
  3725. (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
  3726. vcpu->arch.dr6 = dr6 | DR6_FIXED_1;
  3727. kvm_queue_exception(vcpu, DB_VECTOR);
  3728. return 1;
  3729. }
  3730. kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
  3731. kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
  3732. /* fall through */
  3733. case BP_VECTOR:
  3734. /*
  3735. * Update instruction length as we may reinject #BP from
  3736. * user space while in guest debugging mode. Reading it for
  3737. * #DB as well causes no harm, it is not used in that case.
  3738. */
  3739. vmx->vcpu.arch.event_exit_inst_len =
  3740. vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  3741. kvm_run->exit_reason = KVM_EXIT_DEBUG;
  3742. rip = kvm_rip_read(vcpu);
  3743. kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
  3744. kvm_run->debug.arch.exception = ex_no;
  3745. break;
  3746. default:
  3747. kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
  3748. kvm_run->ex.exception = ex_no;
  3749. kvm_run->ex.error_code = error_code;
  3750. break;
  3751. }
  3752. return 0;
  3753. }
  3754. static int handle_external_interrupt(struct kvm_vcpu *vcpu)
  3755. {
  3756. ++vcpu->stat.irq_exits;
  3757. return 1;
  3758. }
  3759. static int handle_triple_fault(struct kvm_vcpu *vcpu)
  3760. {
  3761. vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
  3762. return 0;
  3763. }
  3764. static int handle_io(struct kvm_vcpu *vcpu)
  3765. {
  3766. unsigned long exit_qualification;
  3767. int size, in, string;
  3768. unsigned port;
  3769. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  3770. string = (exit_qualification & 16) != 0;
  3771. in = (exit_qualification & 8) != 0;
  3772. ++vcpu->stat.io_exits;
  3773. if (string || in)
  3774. return emulate_instruction(vcpu, 0) == EMULATE_DONE;
  3775. port = exit_qualification >> 16;
  3776. size = (exit_qualification & 7) + 1;
  3777. skip_emulated_instruction(vcpu);
  3778. return kvm_fast_pio_out(vcpu, size, port);
  3779. }
  3780. static void
  3781. vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
  3782. {
  3783. /*
  3784. * Patch in the VMCALL instruction:
  3785. */
  3786. hypercall[0] = 0x0f;
  3787. hypercall[1] = 0x01;
  3788. hypercall[2] = 0xc1;
  3789. }
  3790. /* called to set cr0 as approriate for a mov-to-cr0 exit. */
  3791. static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
  3792. {
  3793. if (to_vmx(vcpu)->nested.vmxon &&
  3794. ((val & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON))
  3795. return 1;
  3796. if (is_guest_mode(vcpu)) {
  3797. /*
  3798. * We get here when L2 changed cr0 in a way that did not change
  3799. * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
  3800. * but did change L0 shadowed bits. This can currently happen
  3801. * with the TS bit: L0 may want to leave TS on (for lazy fpu
  3802. * loading) while pretending to allow the guest to change it.
  3803. */
  3804. if (kvm_set_cr0(vcpu, (val & vcpu->arch.cr0_guest_owned_bits) |
  3805. (vcpu->arch.cr0 & ~vcpu->arch.cr0_guest_owned_bits)))
  3806. return 1;
  3807. vmcs_writel(CR0_READ_SHADOW, val);
  3808. return 0;
  3809. } else
  3810. return kvm_set_cr0(vcpu, val);
  3811. }
  3812. static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
  3813. {
  3814. if (is_guest_mode(vcpu)) {
  3815. if (kvm_set_cr4(vcpu, (val & vcpu->arch.cr4_guest_owned_bits) |
  3816. (vcpu->arch.cr4 & ~vcpu->arch.cr4_guest_owned_bits)))
  3817. return 1;
  3818. vmcs_writel(CR4_READ_SHADOW, val);
  3819. return 0;
  3820. } else
  3821. return kvm_set_cr4(vcpu, val);
  3822. }
  3823. /* called to set cr0 as approriate for clts instruction exit. */
  3824. static void handle_clts(struct kvm_vcpu *vcpu)
  3825. {
  3826. if (is_guest_mode(vcpu)) {
  3827. /*
  3828. * We get here when L2 did CLTS, and L1 didn't shadow CR0.TS
  3829. * but we did (!fpu_active). We need to keep GUEST_CR0.TS on,
  3830. * just pretend it's off (also in arch.cr0 for fpu_activate).
  3831. */
  3832. vmcs_writel(CR0_READ_SHADOW,
  3833. vmcs_readl(CR0_READ_SHADOW) & ~X86_CR0_TS);
  3834. vcpu->arch.cr0 &= ~X86_CR0_TS;
  3835. } else
  3836. vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
  3837. }
  3838. static int handle_cr(struct kvm_vcpu *vcpu)
  3839. {
  3840. unsigned long exit_qualification, val;
  3841. int cr;
  3842. int reg;
  3843. int err;
  3844. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  3845. cr = exit_qualification & 15;
  3846. reg = (exit_qualification >> 8) & 15;
  3847. switch ((exit_qualification >> 4) & 3) {
  3848. case 0: /* mov to cr */
  3849. val = kvm_register_read(vcpu, reg);
  3850. trace_kvm_cr_write(cr, val);
  3851. switch (cr) {
  3852. case 0:
  3853. err = handle_set_cr0(vcpu, val);
  3854. kvm_complete_insn_gp(vcpu, err);
  3855. return 1;
  3856. case 3:
  3857. err = kvm_set_cr3(vcpu, val);
  3858. kvm_complete_insn_gp(vcpu, err);
  3859. return 1;
  3860. case 4:
  3861. err = handle_set_cr4(vcpu, val);
  3862. kvm_complete_insn_gp(vcpu, err);
  3863. return 1;
  3864. case 8: {
  3865. u8 cr8_prev = kvm_get_cr8(vcpu);
  3866. u8 cr8 = kvm_register_read(vcpu, reg);
  3867. err = kvm_set_cr8(vcpu, cr8);
  3868. kvm_complete_insn_gp(vcpu, err);
  3869. if (irqchip_in_kernel(vcpu->kvm))
  3870. return 1;
  3871. if (cr8_prev <= cr8)
  3872. return 1;
  3873. vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
  3874. return 0;
  3875. }
  3876. };
  3877. break;
  3878. case 2: /* clts */
  3879. handle_clts(vcpu);
  3880. trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
  3881. skip_emulated_instruction(vcpu);
  3882. vmx_fpu_activate(vcpu);
  3883. return 1;
  3884. case 1: /*mov from cr*/
  3885. switch (cr) {
  3886. case 3:
  3887. val = kvm_read_cr3(vcpu);
  3888. kvm_register_write(vcpu, reg, val);
  3889. trace_kvm_cr_read(cr, val);
  3890. skip_emulated_instruction(vcpu);
  3891. return 1;
  3892. case 8:
  3893. val = kvm_get_cr8(vcpu);
  3894. kvm_register_write(vcpu, reg, val);
  3895. trace_kvm_cr_read(cr, val);
  3896. skip_emulated_instruction(vcpu);
  3897. return 1;
  3898. }
  3899. break;
  3900. case 3: /* lmsw */
  3901. val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
  3902. trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
  3903. kvm_lmsw(vcpu, val);
  3904. skip_emulated_instruction(vcpu);
  3905. return 1;
  3906. default:
  3907. break;
  3908. }
  3909. vcpu->run->exit_reason = 0;
  3910. pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
  3911. (int)(exit_qualification >> 4) & 3, cr);
  3912. return 0;
  3913. }
  3914. static int handle_dr(struct kvm_vcpu *vcpu)
  3915. {
  3916. unsigned long exit_qualification;
  3917. int dr, reg;
  3918. /* Do not handle if the CPL > 0, will trigger GP on re-entry */
  3919. if (!kvm_require_cpl(vcpu, 0))
  3920. return 1;
  3921. dr = vmcs_readl(GUEST_DR7);
  3922. if (dr & DR7_GD) {
  3923. /*
  3924. * As the vm-exit takes precedence over the debug trap, we
  3925. * need to emulate the latter, either for the host or the
  3926. * guest debugging itself.
  3927. */
  3928. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
  3929. vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
  3930. vcpu->run->debug.arch.dr7 = dr;
  3931. vcpu->run->debug.arch.pc =
  3932. vmcs_readl(GUEST_CS_BASE) +
  3933. vmcs_readl(GUEST_RIP);
  3934. vcpu->run->debug.arch.exception = DB_VECTOR;
  3935. vcpu->run->exit_reason = KVM_EXIT_DEBUG;
  3936. return 0;
  3937. } else {
  3938. vcpu->arch.dr7 &= ~DR7_GD;
  3939. vcpu->arch.dr6 |= DR6_BD;
  3940. vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
  3941. kvm_queue_exception(vcpu, DB_VECTOR);
  3942. return 1;
  3943. }
  3944. }
  3945. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  3946. dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
  3947. reg = DEBUG_REG_ACCESS_REG(exit_qualification);
  3948. if (exit_qualification & TYPE_MOV_FROM_DR) {
  3949. unsigned long val;
  3950. if (!kvm_get_dr(vcpu, dr, &val))
  3951. kvm_register_write(vcpu, reg, val);
  3952. } else
  3953. kvm_set_dr(vcpu, dr, vcpu->arch.regs[reg]);
  3954. skip_emulated_instruction(vcpu);
  3955. return 1;
  3956. }
  3957. static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
  3958. {
  3959. vmcs_writel(GUEST_DR7, val);
  3960. }
  3961. static int handle_cpuid(struct kvm_vcpu *vcpu)
  3962. {
  3963. kvm_emulate_cpuid(vcpu);
  3964. return 1;
  3965. }
  3966. static int handle_rdmsr(struct kvm_vcpu *vcpu)
  3967. {
  3968. u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  3969. u64 data;
  3970. if (vmx_get_msr(vcpu, ecx, &data)) {
  3971. trace_kvm_msr_read_ex(ecx);
  3972. kvm_inject_gp(vcpu, 0);
  3973. return 1;
  3974. }
  3975. trace_kvm_msr_read(ecx, data);
  3976. /* FIXME: handling of bits 32:63 of rax, rdx */
  3977. vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
  3978. vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
  3979. skip_emulated_instruction(vcpu);
  3980. return 1;
  3981. }
  3982. static int handle_wrmsr(struct kvm_vcpu *vcpu)
  3983. {
  3984. u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  3985. u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
  3986. | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
  3987. if (vmx_set_msr(vcpu, ecx, data) != 0) {
  3988. trace_kvm_msr_write_ex(ecx, data);
  3989. kvm_inject_gp(vcpu, 0);
  3990. return 1;
  3991. }
  3992. trace_kvm_msr_write(ecx, data);
  3993. skip_emulated_instruction(vcpu);
  3994. return 1;
  3995. }
  3996. static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
  3997. {
  3998. kvm_make_request(KVM_REQ_EVENT, vcpu);
  3999. return 1;
  4000. }
  4001. static int handle_interrupt_window(struct kvm_vcpu *vcpu)
  4002. {
  4003. u32 cpu_based_vm_exec_control;
  4004. /* clear pending irq */
  4005. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  4006. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
  4007. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  4008. kvm_make_request(KVM_REQ_EVENT, vcpu);
  4009. ++vcpu->stat.irq_window_exits;
  4010. /*
  4011. * If the user space waits to inject interrupts, exit as soon as
  4012. * possible
  4013. */
  4014. if (!irqchip_in_kernel(vcpu->kvm) &&
  4015. vcpu->run->request_interrupt_window &&
  4016. !kvm_cpu_has_interrupt(vcpu)) {
  4017. vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
  4018. return 0;
  4019. }
  4020. return 1;
  4021. }
  4022. static int handle_halt(struct kvm_vcpu *vcpu)
  4023. {
  4024. skip_emulated_instruction(vcpu);
  4025. return kvm_emulate_halt(vcpu);
  4026. }
  4027. static int handle_vmcall(struct kvm_vcpu *vcpu)
  4028. {
  4029. skip_emulated_instruction(vcpu);
  4030. kvm_emulate_hypercall(vcpu);
  4031. return 1;
  4032. }
  4033. static int handle_invd(struct kvm_vcpu *vcpu)
  4034. {
  4035. return emulate_instruction(vcpu, 0) == EMULATE_DONE;
  4036. }
  4037. static int handle_invlpg(struct kvm_vcpu *vcpu)
  4038. {
  4039. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  4040. kvm_mmu_invlpg(vcpu, exit_qualification);
  4041. skip_emulated_instruction(vcpu);
  4042. return 1;
  4043. }
  4044. static int handle_rdpmc(struct kvm_vcpu *vcpu)
  4045. {
  4046. int err;
  4047. err = kvm_rdpmc(vcpu);
  4048. kvm_complete_insn_gp(vcpu, err);
  4049. return 1;
  4050. }
  4051. static int handle_wbinvd(struct kvm_vcpu *vcpu)
  4052. {
  4053. skip_emulated_instruction(vcpu);
  4054. kvm_emulate_wbinvd(vcpu);
  4055. return 1;
  4056. }
  4057. static int handle_xsetbv(struct kvm_vcpu *vcpu)
  4058. {
  4059. u64 new_bv = kvm_read_edx_eax(vcpu);
  4060. u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
  4061. if (kvm_set_xcr(vcpu, index, new_bv) == 0)
  4062. skip_emulated_instruction(vcpu);
  4063. return 1;
  4064. }
  4065. static int handle_apic_access(struct kvm_vcpu *vcpu)
  4066. {
  4067. if (likely(fasteoi)) {
  4068. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  4069. int access_type, offset;
  4070. access_type = exit_qualification & APIC_ACCESS_TYPE;
  4071. offset = exit_qualification & APIC_ACCESS_OFFSET;
  4072. /*
  4073. * Sane guest uses MOV to write EOI, with written value
  4074. * not cared. So make a short-circuit here by avoiding
  4075. * heavy instruction emulation.
  4076. */
  4077. if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
  4078. (offset == APIC_EOI)) {
  4079. kvm_lapic_set_eoi(vcpu);
  4080. skip_emulated_instruction(vcpu);
  4081. return 1;
  4082. }
  4083. }
  4084. return emulate_instruction(vcpu, 0) == EMULATE_DONE;
  4085. }
  4086. static int handle_task_switch(struct kvm_vcpu *vcpu)
  4087. {
  4088. struct vcpu_vmx *vmx = to_vmx(vcpu);
  4089. unsigned long exit_qualification;
  4090. bool has_error_code = false;
  4091. u32 error_code = 0;
  4092. u16 tss_selector;
  4093. int reason, type, idt_v, idt_index;
  4094. idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
  4095. idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
  4096. type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
  4097. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  4098. reason = (u32)exit_qualification >> 30;
  4099. if (reason == TASK_SWITCH_GATE && idt_v) {
  4100. switch (type) {
  4101. case INTR_TYPE_NMI_INTR:
  4102. vcpu->arch.nmi_injected = false;
  4103. vmx_set_nmi_mask(vcpu, true);
  4104. break;
  4105. case INTR_TYPE_EXT_INTR:
  4106. case INTR_TYPE_SOFT_INTR:
  4107. kvm_clear_interrupt_queue(vcpu);
  4108. break;
  4109. case INTR_TYPE_HARD_EXCEPTION:
  4110. if (vmx->idt_vectoring_info &
  4111. VECTORING_INFO_DELIVER_CODE_MASK) {
  4112. has_error_code = true;
  4113. error_code =
  4114. vmcs_read32(IDT_VECTORING_ERROR_CODE);
  4115. }
  4116. /* fall through */
  4117. case INTR_TYPE_SOFT_EXCEPTION:
  4118. kvm_clear_exception_queue(vcpu);
  4119. break;
  4120. default:
  4121. break;
  4122. }
  4123. }
  4124. tss_selector = exit_qualification;
  4125. if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
  4126. type != INTR_TYPE_EXT_INTR &&
  4127. type != INTR_TYPE_NMI_INTR))
  4128. skip_emulated_instruction(vcpu);
  4129. if (kvm_task_switch(vcpu, tss_selector,
  4130. type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason,
  4131. has_error_code, error_code) == EMULATE_FAIL) {
  4132. vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  4133. vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
  4134. vcpu->run->internal.ndata = 0;
  4135. return 0;
  4136. }
  4137. /* clear all local breakpoint enable flags */
  4138. vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~55);
  4139. /*
  4140. * TODO: What about debug traps on tss switch?
  4141. * Are we supposed to inject them and update dr6?
  4142. */
  4143. return 1;
  4144. }
  4145. static int handle_ept_violation(struct kvm_vcpu *vcpu)
  4146. {
  4147. unsigned long exit_qualification;
  4148. gpa_t gpa;
  4149. int gla_validity;
  4150. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  4151. if (exit_qualification & (1 << 6)) {
  4152. printk(KERN_ERR "EPT: GPA exceeds GAW!\n");
  4153. return -EINVAL;
  4154. }
  4155. gla_validity = (exit_qualification >> 7) & 0x3;
  4156. if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
  4157. printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
  4158. printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
  4159. (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
  4160. vmcs_readl(GUEST_LINEAR_ADDRESS));
  4161. printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
  4162. (long unsigned int)exit_qualification);
  4163. vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
  4164. vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
  4165. return 0;
  4166. }
  4167. gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
  4168. trace_kvm_page_fault(gpa, exit_qualification);
  4169. return kvm_mmu_page_fault(vcpu, gpa, exit_qualification & 0x3, NULL, 0);
  4170. }
  4171. static u64 ept_rsvd_mask(u64 spte, int level)
  4172. {
  4173. int i;
  4174. u64 mask = 0;
  4175. for (i = 51; i > boot_cpu_data.x86_phys_bits; i--)
  4176. mask |= (1ULL << i);
  4177. if (level > 2)
  4178. /* bits 7:3 reserved */
  4179. mask |= 0xf8;
  4180. else if (level == 2) {
  4181. if (spte & (1ULL << 7))
  4182. /* 2MB ref, bits 20:12 reserved */
  4183. mask |= 0x1ff000;
  4184. else
  4185. /* bits 6:3 reserved */
  4186. mask |= 0x78;
  4187. }
  4188. return mask;
  4189. }
  4190. static void ept_misconfig_inspect_spte(struct kvm_vcpu *vcpu, u64 spte,
  4191. int level)
  4192. {
  4193. printk(KERN_ERR "%s: spte 0x%llx level %d\n", __func__, spte, level);
  4194. /* 010b (write-only) */
  4195. WARN_ON((spte & 0x7) == 0x2);
  4196. /* 110b (write/execute) */
  4197. WARN_ON((spte & 0x7) == 0x6);
  4198. /* 100b (execute-only) and value not supported by logical processor */
  4199. if (!cpu_has_vmx_ept_execute_only())
  4200. WARN_ON((spte & 0x7) == 0x4);
  4201. /* not 000b */
  4202. if ((spte & 0x7)) {
  4203. u64 rsvd_bits = spte & ept_rsvd_mask(spte, level);
  4204. if (rsvd_bits != 0) {
  4205. printk(KERN_ERR "%s: rsvd_bits = 0x%llx\n",
  4206. __func__, rsvd_bits);
  4207. WARN_ON(1);
  4208. }
  4209. if (level == 1 || (level == 2 && (spte & (1ULL << 7)))) {
  4210. u64 ept_mem_type = (spte & 0x38) >> 3;
  4211. if (ept_mem_type == 2 || ept_mem_type == 3 ||
  4212. ept_mem_type == 7) {
  4213. printk(KERN_ERR "%s: ept_mem_type=0x%llx\n",
  4214. __func__, ept_mem_type);
  4215. WARN_ON(1);
  4216. }
  4217. }
  4218. }
  4219. }
  4220. static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
  4221. {
  4222. u64 sptes[4];
  4223. int nr_sptes, i, ret;
  4224. gpa_t gpa;
  4225. gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
  4226. ret = handle_mmio_page_fault_common(vcpu, gpa, true);
  4227. if (likely(ret == 1))
  4228. return x86_emulate_instruction(vcpu, gpa, 0, NULL, 0) ==
  4229. EMULATE_DONE;
  4230. if (unlikely(!ret))
  4231. return 1;
  4232. /* It is the real ept misconfig */
  4233. printk(KERN_ERR "EPT: Misconfiguration.\n");
  4234. printk(KERN_ERR "EPT: GPA: 0x%llx\n", gpa);
  4235. nr_sptes = kvm_mmu_get_spte_hierarchy(vcpu, gpa, sptes);
  4236. for (i = PT64_ROOT_LEVEL; i > PT64_ROOT_LEVEL - nr_sptes; --i)
  4237. ept_misconfig_inspect_spte(vcpu, sptes[i-1], i);
  4238. vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
  4239. vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
  4240. return 0;
  4241. }
  4242. static int handle_nmi_window(struct kvm_vcpu *vcpu)
  4243. {
  4244. u32 cpu_based_vm_exec_control;
  4245. /* clear pending NMI */
  4246. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  4247. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
  4248. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  4249. ++vcpu->stat.nmi_window_exits;
  4250. kvm_make_request(KVM_REQ_EVENT, vcpu);
  4251. return 1;
  4252. }
  4253. static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
  4254. {
  4255. struct vcpu_vmx *vmx = to_vmx(vcpu);
  4256. enum emulation_result err = EMULATE_DONE;
  4257. int ret = 1;
  4258. u32 cpu_exec_ctrl;
  4259. bool intr_window_requested;
  4260. cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  4261. intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
  4262. while (!guest_state_valid(vcpu)) {
  4263. if (intr_window_requested
  4264. && (kvm_get_rflags(&vmx->vcpu) & X86_EFLAGS_IF))
  4265. return handle_interrupt_window(&vmx->vcpu);
  4266. err = emulate_instruction(vcpu, 0);
  4267. if (err == EMULATE_DO_MMIO) {
  4268. ret = 0;
  4269. goto out;
  4270. }
  4271. if (err != EMULATE_DONE)
  4272. return 0;
  4273. if (signal_pending(current))
  4274. goto out;
  4275. if (need_resched())
  4276. schedule();
  4277. }
  4278. vmx->emulation_required = 0;
  4279. out:
  4280. return ret;
  4281. }
  4282. /*
  4283. * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
  4284. * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
  4285. */
  4286. static int handle_pause(struct kvm_vcpu *vcpu)
  4287. {
  4288. skip_emulated_instruction(vcpu);
  4289. kvm_vcpu_on_spin(vcpu);
  4290. return 1;
  4291. }
  4292. static int handle_invalid_op(struct kvm_vcpu *vcpu)
  4293. {
  4294. kvm_queue_exception(vcpu, UD_VECTOR);
  4295. return 1;
  4296. }
  4297. /*
  4298. * To run an L2 guest, we need a vmcs02 based on the L1-specified vmcs12.
  4299. * We could reuse a single VMCS for all the L2 guests, but we also want the
  4300. * option to allocate a separate vmcs02 for each separate loaded vmcs12 - this
  4301. * allows keeping them loaded on the processor, and in the future will allow
  4302. * optimizations where prepare_vmcs02 doesn't need to set all the fields on
  4303. * every entry if they never change.
  4304. * So we keep, in vmx->nested.vmcs02_pool, a cache of size VMCS02_POOL_SIZE
  4305. * (>=0) with a vmcs02 for each recently loaded vmcs12s, most recent first.
  4306. *
  4307. * The following functions allocate and free a vmcs02 in this pool.
  4308. */
  4309. /* Get a VMCS from the pool to use as vmcs02 for the current vmcs12. */
  4310. static struct loaded_vmcs *nested_get_current_vmcs02(struct vcpu_vmx *vmx)
  4311. {
  4312. struct vmcs02_list *item;
  4313. list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
  4314. if (item->vmptr == vmx->nested.current_vmptr) {
  4315. list_move(&item->list, &vmx->nested.vmcs02_pool);
  4316. return &item->vmcs02;
  4317. }
  4318. if (vmx->nested.vmcs02_num >= max(VMCS02_POOL_SIZE, 1)) {
  4319. /* Recycle the least recently used VMCS. */
  4320. item = list_entry(vmx->nested.vmcs02_pool.prev,
  4321. struct vmcs02_list, list);
  4322. item->vmptr = vmx->nested.current_vmptr;
  4323. list_move(&item->list, &vmx->nested.vmcs02_pool);
  4324. return &item->vmcs02;
  4325. }
  4326. /* Create a new VMCS */
  4327. item = (struct vmcs02_list *)
  4328. kmalloc(sizeof(struct vmcs02_list), GFP_KERNEL);
  4329. if (!item)
  4330. return NULL;
  4331. item->vmcs02.vmcs = alloc_vmcs();
  4332. if (!item->vmcs02.vmcs) {
  4333. kfree(item);
  4334. return NULL;
  4335. }
  4336. loaded_vmcs_init(&item->vmcs02);
  4337. item->vmptr = vmx->nested.current_vmptr;
  4338. list_add(&(item->list), &(vmx->nested.vmcs02_pool));
  4339. vmx->nested.vmcs02_num++;
  4340. return &item->vmcs02;
  4341. }
  4342. /* Free and remove from pool a vmcs02 saved for a vmcs12 (if there is one) */
  4343. static void nested_free_vmcs02(struct vcpu_vmx *vmx, gpa_t vmptr)
  4344. {
  4345. struct vmcs02_list *item;
  4346. list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
  4347. if (item->vmptr == vmptr) {
  4348. free_loaded_vmcs(&item->vmcs02);
  4349. list_del(&item->list);
  4350. kfree(item);
  4351. vmx->nested.vmcs02_num--;
  4352. return;
  4353. }
  4354. }
  4355. /*
  4356. * Free all VMCSs saved for this vcpu, except the one pointed by
  4357. * vmx->loaded_vmcs. These include the VMCSs in vmcs02_pool (except the one
  4358. * currently used, if running L2), and vmcs01 when running L2.
  4359. */
  4360. static void nested_free_all_saved_vmcss(struct vcpu_vmx *vmx)
  4361. {
  4362. struct vmcs02_list *item, *n;
  4363. list_for_each_entry_safe(item, n, &vmx->nested.vmcs02_pool, list) {
  4364. if (vmx->loaded_vmcs != &item->vmcs02)
  4365. free_loaded_vmcs(&item->vmcs02);
  4366. list_del(&item->list);
  4367. kfree(item);
  4368. }
  4369. vmx->nested.vmcs02_num = 0;
  4370. if (vmx->loaded_vmcs != &vmx->vmcs01)
  4371. free_loaded_vmcs(&vmx->vmcs01);
  4372. }
  4373. /*
  4374. * Emulate the VMXON instruction.
  4375. * Currently, we just remember that VMX is active, and do not save or even
  4376. * inspect the argument to VMXON (the so-called "VMXON pointer") because we
  4377. * do not currently need to store anything in that guest-allocated memory
  4378. * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
  4379. * argument is different from the VMXON pointer (which the spec says they do).
  4380. */
  4381. static int handle_vmon(struct kvm_vcpu *vcpu)
  4382. {
  4383. struct kvm_segment cs;
  4384. struct vcpu_vmx *vmx = to_vmx(vcpu);
  4385. /* The Intel VMX Instruction Reference lists a bunch of bits that
  4386. * are prerequisite to running VMXON, most notably cr4.VMXE must be
  4387. * set to 1 (see vmx_set_cr4() for when we allow the guest to set this).
  4388. * Otherwise, we should fail with #UD. We test these now:
  4389. */
  4390. if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE) ||
  4391. !kvm_read_cr0_bits(vcpu, X86_CR0_PE) ||
  4392. (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
  4393. kvm_queue_exception(vcpu, UD_VECTOR);
  4394. return 1;
  4395. }
  4396. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  4397. if (is_long_mode(vcpu) && !cs.l) {
  4398. kvm_queue_exception(vcpu, UD_VECTOR);
  4399. return 1;
  4400. }
  4401. if (vmx_get_cpl(vcpu)) {
  4402. kvm_inject_gp(vcpu, 0);
  4403. return 1;
  4404. }
  4405. INIT_LIST_HEAD(&(vmx->nested.vmcs02_pool));
  4406. vmx->nested.vmcs02_num = 0;
  4407. vmx->nested.vmxon = true;
  4408. skip_emulated_instruction(vcpu);
  4409. return 1;
  4410. }
  4411. /*
  4412. * Intel's VMX Instruction Reference specifies a common set of prerequisites
  4413. * for running VMX instructions (except VMXON, whose prerequisites are
  4414. * slightly different). It also specifies what exception to inject otherwise.
  4415. */
  4416. static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
  4417. {
  4418. struct kvm_segment cs;
  4419. struct vcpu_vmx *vmx = to_vmx(vcpu);
  4420. if (!vmx->nested.vmxon) {
  4421. kvm_queue_exception(vcpu, UD_VECTOR);
  4422. return 0;
  4423. }
  4424. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  4425. if ((vmx_get_rflags(vcpu) & X86_EFLAGS_VM) ||
  4426. (is_long_mode(vcpu) && !cs.l)) {
  4427. kvm_queue_exception(vcpu, UD_VECTOR);
  4428. return 0;
  4429. }
  4430. if (vmx_get_cpl(vcpu)) {
  4431. kvm_inject_gp(vcpu, 0);
  4432. return 0;
  4433. }
  4434. return 1;
  4435. }
  4436. /*
  4437. * Free whatever needs to be freed from vmx->nested when L1 goes down, or
  4438. * just stops using VMX.
  4439. */
  4440. static void free_nested(struct vcpu_vmx *vmx)
  4441. {
  4442. if (!vmx->nested.vmxon)
  4443. return;
  4444. vmx->nested.vmxon = false;
  4445. if (vmx->nested.current_vmptr != -1ull) {
  4446. kunmap(vmx->nested.current_vmcs12_page);
  4447. nested_release_page(vmx->nested.current_vmcs12_page);
  4448. vmx->nested.current_vmptr = -1ull;
  4449. vmx->nested.current_vmcs12 = NULL;
  4450. }
  4451. /* Unpin physical memory we referred to in current vmcs02 */
  4452. if (vmx->nested.apic_access_page) {
  4453. nested_release_page(vmx->nested.apic_access_page);
  4454. vmx->nested.apic_access_page = 0;
  4455. }
  4456. nested_free_all_saved_vmcss(vmx);
  4457. }
  4458. /* Emulate the VMXOFF instruction */
  4459. static int handle_vmoff(struct kvm_vcpu *vcpu)
  4460. {
  4461. if (!nested_vmx_check_permission(vcpu))
  4462. return 1;
  4463. free_nested(to_vmx(vcpu));
  4464. skip_emulated_instruction(vcpu);
  4465. return 1;
  4466. }
  4467. /*
  4468. * Decode the memory-address operand of a vmx instruction, as recorded on an
  4469. * exit caused by such an instruction (run by a guest hypervisor).
  4470. * On success, returns 0. When the operand is invalid, returns 1 and throws
  4471. * #UD or #GP.
  4472. */
  4473. static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
  4474. unsigned long exit_qualification,
  4475. u32 vmx_instruction_info, gva_t *ret)
  4476. {
  4477. /*
  4478. * According to Vol. 3B, "Information for VM Exits Due to Instruction
  4479. * Execution", on an exit, vmx_instruction_info holds most of the
  4480. * addressing components of the operand. Only the displacement part
  4481. * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
  4482. * For how an actual address is calculated from all these components,
  4483. * refer to Vol. 1, "Operand Addressing".
  4484. */
  4485. int scaling = vmx_instruction_info & 3;
  4486. int addr_size = (vmx_instruction_info >> 7) & 7;
  4487. bool is_reg = vmx_instruction_info & (1u << 10);
  4488. int seg_reg = (vmx_instruction_info >> 15) & 7;
  4489. int index_reg = (vmx_instruction_info >> 18) & 0xf;
  4490. bool index_is_valid = !(vmx_instruction_info & (1u << 22));
  4491. int base_reg = (vmx_instruction_info >> 23) & 0xf;
  4492. bool base_is_valid = !(vmx_instruction_info & (1u << 27));
  4493. if (is_reg) {
  4494. kvm_queue_exception(vcpu, UD_VECTOR);
  4495. return 1;
  4496. }
  4497. /* Addr = segment_base + offset */
  4498. /* offset = base + [index * scale] + displacement */
  4499. *ret = vmx_get_segment_base(vcpu, seg_reg);
  4500. if (base_is_valid)
  4501. *ret += kvm_register_read(vcpu, base_reg);
  4502. if (index_is_valid)
  4503. *ret += kvm_register_read(vcpu, index_reg)<<scaling;
  4504. *ret += exit_qualification; /* holds the displacement */
  4505. if (addr_size == 1) /* 32 bit */
  4506. *ret &= 0xffffffff;
  4507. /*
  4508. * TODO: throw #GP (and return 1) in various cases that the VM*
  4509. * instructions require it - e.g., offset beyond segment limit,
  4510. * unusable or unreadable/unwritable segment, non-canonical 64-bit
  4511. * address, and so on. Currently these are not checked.
  4512. */
  4513. return 0;
  4514. }
  4515. /*
  4516. * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
  4517. * set the success or error code of an emulated VMX instruction, as specified
  4518. * by Vol 2B, VMX Instruction Reference, "Conventions".
  4519. */
  4520. static void nested_vmx_succeed(struct kvm_vcpu *vcpu)
  4521. {
  4522. vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
  4523. & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
  4524. X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
  4525. }
  4526. static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
  4527. {
  4528. vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
  4529. & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
  4530. X86_EFLAGS_SF | X86_EFLAGS_OF))
  4531. | X86_EFLAGS_CF);
  4532. }
  4533. static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
  4534. u32 vm_instruction_error)
  4535. {
  4536. if (to_vmx(vcpu)->nested.current_vmptr == -1ull) {
  4537. /*
  4538. * failValid writes the error number to the current VMCS, which
  4539. * can't be done there isn't a current VMCS.
  4540. */
  4541. nested_vmx_failInvalid(vcpu);
  4542. return;
  4543. }
  4544. vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
  4545. & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
  4546. X86_EFLAGS_SF | X86_EFLAGS_OF))
  4547. | X86_EFLAGS_ZF);
  4548. get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
  4549. }
  4550. /* Emulate the VMCLEAR instruction */
  4551. static int handle_vmclear(struct kvm_vcpu *vcpu)
  4552. {
  4553. struct vcpu_vmx *vmx = to_vmx(vcpu);
  4554. gva_t gva;
  4555. gpa_t vmptr;
  4556. struct vmcs12 *vmcs12;
  4557. struct page *page;
  4558. struct x86_exception e;
  4559. if (!nested_vmx_check_permission(vcpu))
  4560. return 1;
  4561. if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
  4562. vmcs_read32(VMX_INSTRUCTION_INFO), &gva))
  4563. return 1;
  4564. if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
  4565. sizeof(vmptr), &e)) {
  4566. kvm_inject_page_fault(vcpu, &e);
  4567. return 1;
  4568. }
  4569. if (!IS_ALIGNED(vmptr, PAGE_SIZE)) {
  4570. nested_vmx_failValid(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS);
  4571. skip_emulated_instruction(vcpu);
  4572. return 1;
  4573. }
  4574. if (vmptr == vmx->nested.current_vmptr) {
  4575. kunmap(vmx->nested.current_vmcs12_page);
  4576. nested_release_page(vmx->nested.current_vmcs12_page);
  4577. vmx->nested.current_vmptr = -1ull;
  4578. vmx->nested.current_vmcs12 = NULL;
  4579. }
  4580. page = nested_get_page(vcpu, vmptr);
  4581. if (page == NULL) {
  4582. /*
  4583. * For accurate processor emulation, VMCLEAR beyond available
  4584. * physical memory should do nothing at all. However, it is
  4585. * possible that a nested vmx bug, not a guest hypervisor bug,
  4586. * resulted in this case, so let's shut down before doing any
  4587. * more damage:
  4588. */
  4589. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  4590. return 1;
  4591. }
  4592. vmcs12 = kmap(page);
  4593. vmcs12->launch_state = 0;
  4594. kunmap(page);
  4595. nested_release_page(page);
  4596. nested_free_vmcs02(vmx, vmptr);
  4597. skip_emulated_instruction(vcpu);
  4598. nested_vmx_succeed(vcpu);
  4599. return 1;
  4600. }
  4601. static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
  4602. /* Emulate the VMLAUNCH instruction */
  4603. static int handle_vmlaunch(struct kvm_vcpu *vcpu)
  4604. {
  4605. return nested_vmx_run(vcpu, true);
  4606. }
  4607. /* Emulate the VMRESUME instruction */
  4608. static int handle_vmresume(struct kvm_vcpu *vcpu)
  4609. {
  4610. return nested_vmx_run(vcpu, false);
  4611. }
  4612. enum vmcs_field_type {
  4613. VMCS_FIELD_TYPE_U16 = 0,
  4614. VMCS_FIELD_TYPE_U64 = 1,
  4615. VMCS_FIELD_TYPE_U32 = 2,
  4616. VMCS_FIELD_TYPE_NATURAL_WIDTH = 3
  4617. };
  4618. static inline int vmcs_field_type(unsigned long field)
  4619. {
  4620. if (0x1 & field) /* the *_HIGH fields are all 32 bit */
  4621. return VMCS_FIELD_TYPE_U32;
  4622. return (field >> 13) & 0x3 ;
  4623. }
  4624. static inline int vmcs_field_readonly(unsigned long field)
  4625. {
  4626. return (((field >> 10) & 0x3) == 1);
  4627. }
  4628. /*
  4629. * Read a vmcs12 field. Since these can have varying lengths and we return
  4630. * one type, we chose the biggest type (u64) and zero-extend the return value
  4631. * to that size. Note that the caller, handle_vmread, might need to use only
  4632. * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
  4633. * 64-bit fields are to be returned).
  4634. */
  4635. static inline bool vmcs12_read_any(struct kvm_vcpu *vcpu,
  4636. unsigned long field, u64 *ret)
  4637. {
  4638. short offset = vmcs_field_to_offset(field);
  4639. char *p;
  4640. if (offset < 0)
  4641. return 0;
  4642. p = ((char *)(get_vmcs12(vcpu))) + offset;
  4643. switch (vmcs_field_type(field)) {
  4644. case VMCS_FIELD_TYPE_NATURAL_WIDTH:
  4645. *ret = *((natural_width *)p);
  4646. return 1;
  4647. case VMCS_FIELD_TYPE_U16:
  4648. *ret = *((u16 *)p);
  4649. return 1;
  4650. case VMCS_FIELD_TYPE_U32:
  4651. *ret = *((u32 *)p);
  4652. return 1;
  4653. case VMCS_FIELD_TYPE_U64:
  4654. *ret = *((u64 *)p);
  4655. return 1;
  4656. default:
  4657. return 0; /* can never happen. */
  4658. }
  4659. }
  4660. /*
  4661. * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
  4662. * used before) all generate the same failure when it is missing.
  4663. */
  4664. static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu)
  4665. {
  4666. struct vcpu_vmx *vmx = to_vmx(vcpu);
  4667. if (vmx->nested.current_vmptr == -1ull) {
  4668. nested_vmx_failInvalid(vcpu);
  4669. skip_emulated_instruction(vcpu);
  4670. return 0;
  4671. }
  4672. return 1;
  4673. }
  4674. static int handle_vmread(struct kvm_vcpu *vcpu)
  4675. {
  4676. unsigned long field;
  4677. u64 field_value;
  4678. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  4679. u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
  4680. gva_t gva = 0;
  4681. if (!nested_vmx_check_permission(vcpu) ||
  4682. !nested_vmx_check_vmcs12(vcpu))
  4683. return 1;
  4684. /* Decode instruction info and find the field to read */
  4685. field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
  4686. /* Read the field, zero-extended to a u64 field_value */
  4687. if (!vmcs12_read_any(vcpu, field, &field_value)) {
  4688. nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
  4689. skip_emulated_instruction(vcpu);
  4690. return 1;
  4691. }
  4692. /*
  4693. * Now copy part of this value to register or memory, as requested.
  4694. * Note that the number of bits actually copied is 32 or 64 depending
  4695. * on the guest's mode (32 or 64 bit), not on the given field's length.
  4696. */
  4697. if (vmx_instruction_info & (1u << 10)) {
  4698. kvm_register_write(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
  4699. field_value);
  4700. } else {
  4701. if (get_vmx_mem_address(vcpu, exit_qualification,
  4702. vmx_instruction_info, &gva))
  4703. return 1;
  4704. /* _system ok, as nested_vmx_check_permission verified cpl=0 */
  4705. kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, gva,
  4706. &field_value, (is_long_mode(vcpu) ? 8 : 4), NULL);
  4707. }
  4708. nested_vmx_succeed(vcpu);
  4709. skip_emulated_instruction(vcpu);
  4710. return 1;
  4711. }
  4712. static int handle_vmwrite(struct kvm_vcpu *vcpu)
  4713. {
  4714. unsigned long field;
  4715. gva_t gva;
  4716. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  4717. u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
  4718. char *p;
  4719. short offset;
  4720. /* The value to write might be 32 or 64 bits, depending on L1's long
  4721. * mode, and eventually we need to write that into a field of several
  4722. * possible lengths. The code below first zero-extends the value to 64
  4723. * bit (field_value), and then copies only the approriate number of
  4724. * bits into the vmcs12 field.
  4725. */
  4726. u64 field_value = 0;
  4727. struct x86_exception e;
  4728. if (!nested_vmx_check_permission(vcpu) ||
  4729. !nested_vmx_check_vmcs12(vcpu))
  4730. return 1;
  4731. if (vmx_instruction_info & (1u << 10))
  4732. field_value = kvm_register_read(vcpu,
  4733. (((vmx_instruction_info) >> 3) & 0xf));
  4734. else {
  4735. if (get_vmx_mem_address(vcpu, exit_qualification,
  4736. vmx_instruction_info, &gva))
  4737. return 1;
  4738. if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva,
  4739. &field_value, (is_long_mode(vcpu) ? 8 : 4), &e)) {
  4740. kvm_inject_page_fault(vcpu, &e);
  4741. return 1;
  4742. }
  4743. }
  4744. field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
  4745. if (vmcs_field_readonly(field)) {
  4746. nested_vmx_failValid(vcpu,
  4747. VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
  4748. skip_emulated_instruction(vcpu);
  4749. return 1;
  4750. }
  4751. offset = vmcs_field_to_offset(field);
  4752. if (offset < 0) {
  4753. nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
  4754. skip_emulated_instruction(vcpu);
  4755. return 1;
  4756. }
  4757. p = ((char *) get_vmcs12(vcpu)) + offset;
  4758. switch (vmcs_field_type(field)) {
  4759. case VMCS_FIELD_TYPE_U16:
  4760. *(u16 *)p = field_value;
  4761. break;
  4762. case VMCS_FIELD_TYPE_U32:
  4763. *(u32 *)p = field_value;
  4764. break;
  4765. case VMCS_FIELD_TYPE_U64:
  4766. *(u64 *)p = field_value;
  4767. break;
  4768. case VMCS_FIELD_TYPE_NATURAL_WIDTH:
  4769. *(natural_width *)p = field_value;
  4770. break;
  4771. default:
  4772. nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
  4773. skip_emulated_instruction(vcpu);
  4774. return 1;
  4775. }
  4776. nested_vmx_succeed(vcpu);
  4777. skip_emulated_instruction(vcpu);
  4778. return 1;
  4779. }
  4780. /* Emulate the VMPTRLD instruction */
  4781. static int handle_vmptrld(struct kvm_vcpu *vcpu)
  4782. {
  4783. struct vcpu_vmx *vmx = to_vmx(vcpu);
  4784. gva_t gva;
  4785. gpa_t vmptr;
  4786. struct x86_exception e;
  4787. if (!nested_vmx_check_permission(vcpu))
  4788. return 1;
  4789. if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
  4790. vmcs_read32(VMX_INSTRUCTION_INFO), &gva))
  4791. return 1;
  4792. if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
  4793. sizeof(vmptr), &e)) {
  4794. kvm_inject_page_fault(vcpu, &e);
  4795. return 1;
  4796. }
  4797. if (!IS_ALIGNED(vmptr, PAGE_SIZE)) {
  4798. nested_vmx_failValid(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS);
  4799. skip_emulated_instruction(vcpu);
  4800. return 1;
  4801. }
  4802. if (vmx->nested.current_vmptr != vmptr) {
  4803. struct vmcs12 *new_vmcs12;
  4804. struct page *page;
  4805. page = nested_get_page(vcpu, vmptr);
  4806. if (page == NULL) {
  4807. nested_vmx_failInvalid(vcpu);
  4808. skip_emulated_instruction(vcpu);
  4809. return 1;
  4810. }
  4811. new_vmcs12 = kmap(page);
  4812. if (new_vmcs12->revision_id != VMCS12_REVISION) {
  4813. kunmap(page);
  4814. nested_release_page_clean(page);
  4815. nested_vmx_failValid(vcpu,
  4816. VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
  4817. skip_emulated_instruction(vcpu);
  4818. return 1;
  4819. }
  4820. if (vmx->nested.current_vmptr != -1ull) {
  4821. kunmap(vmx->nested.current_vmcs12_page);
  4822. nested_release_page(vmx->nested.current_vmcs12_page);
  4823. }
  4824. vmx->nested.current_vmptr = vmptr;
  4825. vmx->nested.current_vmcs12 = new_vmcs12;
  4826. vmx->nested.current_vmcs12_page = page;
  4827. }
  4828. nested_vmx_succeed(vcpu);
  4829. skip_emulated_instruction(vcpu);
  4830. return 1;
  4831. }
  4832. /* Emulate the VMPTRST instruction */
  4833. static int handle_vmptrst(struct kvm_vcpu *vcpu)
  4834. {
  4835. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  4836. u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
  4837. gva_t vmcs_gva;
  4838. struct x86_exception e;
  4839. if (!nested_vmx_check_permission(vcpu))
  4840. return 1;
  4841. if (get_vmx_mem_address(vcpu, exit_qualification,
  4842. vmx_instruction_info, &vmcs_gva))
  4843. return 1;
  4844. /* ok to use *_system, as nested_vmx_check_permission verified cpl=0 */
  4845. if (kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, vmcs_gva,
  4846. (void *)&to_vmx(vcpu)->nested.current_vmptr,
  4847. sizeof(u64), &e)) {
  4848. kvm_inject_page_fault(vcpu, &e);
  4849. return 1;
  4850. }
  4851. nested_vmx_succeed(vcpu);
  4852. skip_emulated_instruction(vcpu);
  4853. return 1;
  4854. }
  4855. /*
  4856. * The exit handlers return 1 if the exit was handled fully and guest execution
  4857. * may resume. Otherwise they set the kvm_run parameter to indicate what needs
  4858. * to be done to userspace and return 0.
  4859. */
  4860. static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
  4861. [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
  4862. [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
  4863. [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
  4864. [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
  4865. [EXIT_REASON_IO_INSTRUCTION] = handle_io,
  4866. [EXIT_REASON_CR_ACCESS] = handle_cr,
  4867. [EXIT_REASON_DR_ACCESS] = handle_dr,
  4868. [EXIT_REASON_CPUID] = handle_cpuid,
  4869. [EXIT_REASON_MSR_READ] = handle_rdmsr,
  4870. [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
  4871. [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
  4872. [EXIT_REASON_HLT] = handle_halt,
  4873. [EXIT_REASON_INVD] = handle_invd,
  4874. [EXIT_REASON_INVLPG] = handle_invlpg,
  4875. [EXIT_REASON_RDPMC] = handle_rdpmc,
  4876. [EXIT_REASON_VMCALL] = handle_vmcall,
  4877. [EXIT_REASON_VMCLEAR] = handle_vmclear,
  4878. [EXIT_REASON_VMLAUNCH] = handle_vmlaunch,
  4879. [EXIT_REASON_VMPTRLD] = handle_vmptrld,
  4880. [EXIT_REASON_VMPTRST] = handle_vmptrst,
  4881. [EXIT_REASON_VMREAD] = handle_vmread,
  4882. [EXIT_REASON_VMRESUME] = handle_vmresume,
  4883. [EXIT_REASON_VMWRITE] = handle_vmwrite,
  4884. [EXIT_REASON_VMOFF] = handle_vmoff,
  4885. [EXIT_REASON_VMON] = handle_vmon,
  4886. [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
  4887. [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
  4888. [EXIT_REASON_WBINVD] = handle_wbinvd,
  4889. [EXIT_REASON_XSETBV] = handle_xsetbv,
  4890. [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
  4891. [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
  4892. [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
  4893. [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
  4894. [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
  4895. [EXIT_REASON_MWAIT_INSTRUCTION] = handle_invalid_op,
  4896. [EXIT_REASON_MONITOR_INSTRUCTION] = handle_invalid_op,
  4897. };
  4898. static const int kvm_vmx_max_exit_handlers =
  4899. ARRAY_SIZE(kvm_vmx_exit_handlers);
  4900. /*
  4901. * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
  4902. * rather than handle it ourselves in L0. I.e., check whether L1 expressed
  4903. * disinterest in the current event (read or write a specific MSR) by using an
  4904. * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
  4905. */
  4906. static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
  4907. struct vmcs12 *vmcs12, u32 exit_reason)
  4908. {
  4909. u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
  4910. gpa_t bitmap;
  4911. if (!nested_cpu_has(get_vmcs12(vcpu), CPU_BASED_USE_MSR_BITMAPS))
  4912. return 1;
  4913. /*
  4914. * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
  4915. * for the four combinations of read/write and low/high MSR numbers.
  4916. * First we need to figure out which of the four to use:
  4917. */
  4918. bitmap = vmcs12->msr_bitmap;
  4919. if (exit_reason == EXIT_REASON_MSR_WRITE)
  4920. bitmap += 2048;
  4921. if (msr_index >= 0xc0000000) {
  4922. msr_index -= 0xc0000000;
  4923. bitmap += 1024;
  4924. }
  4925. /* Then read the msr_index'th bit from this bitmap: */
  4926. if (msr_index < 1024*8) {
  4927. unsigned char b;
  4928. kvm_read_guest(vcpu->kvm, bitmap + msr_index/8, &b, 1);
  4929. return 1 & (b >> (msr_index & 7));
  4930. } else
  4931. return 1; /* let L1 handle the wrong parameter */
  4932. }
  4933. /*
  4934. * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
  4935. * rather than handle it ourselves in L0. I.e., check if L1 wanted to
  4936. * intercept (via guest_host_mask etc.) the current event.
  4937. */
  4938. static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
  4939. struct vmcs12 *vmcs12)
  4940. {
  4941. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  4942. int cr = exit_qualification & 15;
  4943. int reg = (exit_qualification >> 8) & 15;
  4944. unsigned long val = kvm_register_read(vcpu, reg);
  4945. switch ((exit_qualification >> 4) & 3) {
  4946. case 0: /* mov to cr */
  4947. switch (cr) {
  4948. case 0:
  4949. if (vmcs12->cr0_guest_host_mask &
  4950. (val ^ vmcs12->cr0_read_shadow))
  4951. return 1;
  4952. break;
  4953. case 3:
  4954. if ((vmcs12->cr3_target_count >= 1 &&
  4955. vmcs12->cr3_target_value0 == val) ||
  4956. (vmcs12->cr3_target_count >= 2 &&
  4957. vmcs12->cr3_target_value1 == val) ||
  4958. (vmcs12->cr3_target_count >= 3 &&
  4959. vmcs12->cr3_target_value2 == val) ||
  4960. (vmcs12->cr3_target_count >= 4 &&
  4961. vmcs12->cr3_target_value3 == val))
  4962. return 0;
  4963. if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
  4964. return 1;
  4965. break;
  4966. case 4:
  4967. if (vmcs12->cr4_guest_host_mask &
  4968. (vmcs12->cr4_read_shadow ^ val))
  4969. return 1;
  4970. break;
  4971. case 8:
  4972. if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
  4973. return 1;
  4974. break;
  4975. }
  4976. break;
  4977. case 2: /* clts */
  4978. if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
  4979. (vmcs12->cr0_read_shadow & X86_CR0_TS))
  4980. return 1;
  4981. break;
  4982. case 1: /* mov from cr */
  4983. switch (cr) {
  4984. case 3:
  4985. if (vmcs12->cpu_based_vm_exec_control &
  4986. CPU_BASED_CR3_STORE_EXITING)
  4987. return 1;
  4988. break;
  4989. case 8:
  4990. if (vmcs12->cpu_based_vm_exec_control &
  4991. CPU_BASED_CR8_STORE_EXITING)
  4992. return 1;
  4993. break;
  4994. }
  4995. break;
  4996. case 3: /* lmsw */
  4997. /*
  4998. * lmsw can change bits 1..3 of cr0, and only set bit 0 of
  4999. * cr0. Other attempted changes are ignored, with no exit.
  5000. */
  5001. if (vmcs12->cr0_guest_host_mask & 0xe &
  5002. (val ^ vmcs12->cr0_read_shadow))
  5003. return 1;
  5004. if ((vmcs12->cr0_guest_host_mask & 0x1) &&
  5005. !(vmcs12->cr0_read_shadow & 0x1) &&
  5006. (val & 0x1))
  5007. return 1;
  5008. break;
  5009. }
  5010. return 0;
  5011. }
  5012. /*
  5013. * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
  5014. * should handle it ourselves in L0 (and then continue L2). Only call this
  5015. * when in is_guest_mode (L2).
  5016. */
  5017. static bool nested_vmx_exit_handled(struct kvm_vcpu *vcpu)
  5018. {
  5019. u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
  5020. u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  5021. struct vcpu_vmx *vmx = to_vmx(vcpu);
  5022. struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
  5023. if (vmx->nested.nested_run_pending)
  5024. return 0;
  5025. if (unlikely(vmx->fail)) {
  5026. pr_info_ratelimited("%s failed vm entry %x\n", __func__,
  5027. vmcs_read32(VM_INSTRUCTION_ERROR));
  5028. return 1;
  5029. }
  5030. switch (exit_reason) {
  5031. case EXIT_REASON_EXCEPTION_NMI:
  5032. if (!is_exception(intr_info))
  5033. return 0;
  5034. else if (is_page_fault(intr_info))
  5035. return enable_ept;
  5036. return vmcs12->exception_bitmap &
  5037. (1u << (intr_info & INTR_INFO_VECTOR_MASK));
  5038. case EXIT_REASON_EXTERNAL_INTERRUPT:
  5039. return 0;
  5040. case EXIT_REASON_TRIPLE_FAULT:
  5041. return 1;
  5042. case EXIT_REASON_PENDING_INTERRUPT:
  5043. case EXIT_REASON_NMI_WINDOW:
  5044. /*
  5045. * prepare_vmcs02() set the CPU_BASED_VIRTUAL_INTR_PENDING bit
  5046. * (aka Interrupt Window Exiting) only when L1 turned it on,
  5047. * so if we got a PENDING_INTERRUPT exit, this must be for L1.
  5048. * Same for NMI Window Exiting.
  5049. */
  5050. return 1;
  5051. case EXIT_REASON_TASK_SWITCH:
  5052. return 1;
  5053. case EXIT_REASON_CPUID:
  5054. return 1;
  5055. case EXIT_REASON_HLT:
  5056. return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
  5057. case EXIT_REASON_INVD:
  5058. return 1;
  5059. case EXIT_REASON_INVLPG:
  5060. return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
  5061. case EXIT_REASON_RDPMC:
  5062. return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
  5063. case EXIT_REASON_RDTSC:
  5064. return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
  5065. case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
  5066. case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
  5067. case EXIT_REASON_VMPTRST: case EXIT_REASON_VMREAD:
  5068. case EXIT_REASON_VMRESUME: case EXIT_REASON_VMWRITE:
  5069. case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
  5070. /*
  5071. * VMX instructions trap unconditionally. This allows L1 to
  5072. * emulate them for its L2 guest, i.e., allows 3-level nesting!
  5073. */
  5074. return 1;
  5075. case EXIT_REASON_CR_ACCESS:
  5076. return nested_vmx_exit_handled_cr(vcpu, vmcs12);
  5077. case EXIT_REASON_DR_ACCESS:
  5078. return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
  5079. case EXIT_REASON_IO_INSTRUCTION:
  5080. /* TODO: support IO bitmaps */
  5081. return 1;
  5082. case EXIT_REASON_MSR_READ:
  5083. case EXIT_REASON_MSR_WRITE:
  5084. return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
  5085. case EXIT_REASON_INVALID_STATE:
  5086. return 1;
  5087. case EXIT_REASON_MWAIT_INSTRUCTION:
  5088. return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
  5089. case EXIT_REASON_MONITOR_INSTRUCTION:
  5090. return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
  5091. case EXIT_REASON_PAUSE_INSTRUCTION:
  5092. return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
  5093. nested_cpu_has2(vmcs12,
  5094. SECONDARY_EXEC_PAUSE_LOOP_EXITING);
  5095. case EXIT_REASON_MCE_DURING_VMENTRY:
  5096. return 0;
  5097. case EXIT_REASON_TPR_BELOW_THRESHOLD:
  5098. return 1;
  5099. case EXIT_REASON_APIC_ACCESS:
  5100. return nested_cpu_has2(vmcs12,
  5101. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
  5102. case EXIT_REASON_EPT_VIOLATION:
  5103. case EXIT_REASON_EPT_MISCONFIG:
  5104. return 0;
  5105. case EXIT_REASON_WBINVD:
  5106. return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
  5107. case EXIT_REASON_XSETBV:
  5108. return 1;
  5109. default:
  5110. return 1;
  5111. }
  5112. }
  5113. static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
  5114. {
  5115. *info1 = vmcs_readl(EXIT_QUALIFICATION);
  5116. *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
  5117. }
  5118. /*
  5119. * The guest has exited. See if we can fix it or if we need userspace
  5120. * assistance.
  5121. */
  5122. static int vmx_handle_exit(struct kvm_vcpu *vcpu)
  5123. {
  5124. struct vcpu_vmx *vmx = to_vmx(vcpu);
  5125. u32 exit_reason = vmx->exit_reason;
  5126. u32 vectoring_info = vmx->idt_vectoring_info;
  5127. /* If guest state is invalid, start emulating */
  5128. if (vmx->emulation_required && emulate_invalid_guest_state)
  5129. return handle_invalid_guest_state(vcpu);
  5130. /*
  5131. * the KVM_REQ_EVENT optimization bit is only on for one entry, and if
  5132. * we did not inject a still-pending event to L1 now because of
  5133. * nested_run_pending, we need to re-enable this bit.
  5134. */
  5135. if (vmx->nested.nested_run_pending)
  5136. kvm_make_request(KVM_REQ_EVENT, vcpu);
  5137. if (!is_guest_mode(vcpu) && (exit_reason == EXIT_REASON_VMLAUNCH ||
  5138. exit_reason == EXIT_REASON_VMRESUME))
  5139. vmx->nested.nested_run_pending = 1;
  5140. else
  5141. vmx->nested.nested_run_pending = 0;
  5142. if (is_guest_mode(vcpu) && nested_vmx_exit_handled(vcpu)) {
  5143. nested_vmx_vmexit(vcpu);
  5144. return 1;
  5145. }
  5146. if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
  5147. vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  5148. vcpu->run->fail_entry.hardware_entry_failure_reason
  5149. = exit_reason;
  5150. return 0;
  5151. }
  5152. if (unlikely(vmx->fail)) {
  5153. vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  5154. vcpu->run->fail_entry.hardware_entry_failure_reason
  5155. = vmcs_read32(VM_INSTRUCTION_ERROR);
  5156. return 0;
  5157. }
  5158. if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
  5159. (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
  5160. exit_reason != EXIT_REASON_EPT_VIOLATION &&
  5161. exit_reason != EXIT_REASON_TASK_SWITCH))
  5162. printk(KERN_WARNING "%s: unexpected, valid vectoring info "
  5163. "(0x%x) and exit reason is 0x%x\n",
  5164. __func__, vectoring_info, exit_reason);
  5165. if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked &&
  5166. !(is_guest_mode(vcpu) && nested_cpu_has_virtual_nmis(
  5167. get_vmcs12(vcpu), vcpu)))) {
  5168. if (vmx_interrupt_allowed(vcpu)) {
  5169. vmx->soft_vnmi_blocked = 0;
  5170. } else if (vmx->vnmi_blocked_time > 1000000000LL &&
  5171. vcpu->arch.nmi_pending) {
  5172. /*
  5173. * This CPU don't support us in finding the end of an
  5174. * NMI-blocked window if the guest runs with IRQs
  5175. * disabled. So we pull the trigger after 1 s of
  5176. * futile waiting, but inform the user about this.
  5177. */
  5178. printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
  5179. "state on VCPU %d after 1 s timeout\n",
  5180. __func__, vcpu->vcpu_id);
  5181. vmx->soft_vnmi_blocked = 0;
  5182. }
  5183. }
  5184. if (exit_reason < kvm_vmx_max_exit_handlers
  5185. && kvm_vmx_exit_handlers[exit_reason])
  5186. return kvm_vmx_exit_handlers[exit_reason](vcpu);
  5187. else {
  5188. vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
  5189. vcpu->run->hw.hardware_exit_reason = exit_reason;
  5190. }
  5191. return 0;
  5192. }
  5193. static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
  5194. {
  5195. if (irr == -1 || tpr < irr) {
  5196. vmcs_write32(TPR_THRESHOLD, 0);
  5197. return;
  5198. }
  5199. vmcs_write32(TPR_THRESHOLD, irr);
  5200. }
  5201. static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
  5202. {
  5203. u32 exit_intr_info;
  5204. if (!(vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
  5205. || vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI))
  5206. return;
  5207. vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  5208. exit_intr_info = vmx->exit_intr_info;
  5209. /* Handle machine checks before interrupts are enabled */
  5210. if (is_machine_check(exit_intr_info))
  5211. kvm_machine_check();
  5212. /* We need to handle NMIs before interrupts are enabled */
  5213. if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
  5214. (exit_intr_info & INTR_INFO_VALID_MASK)) {
  5215. kvm_before_handle_nmi(&vmx->vcpu);
  5216. asm("int $2");
  5217. kvm_after_handle_nmi(&vmx->vcpu);
  5218. }
  5219. }
  5220. static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
  5221. {
  5222. u32 exit_intr_info;
  5223. bool unblock_nmi;
  5224. u8 vector;
  5225. bool idtv_info_valid;
  5226. idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
  5227. if (cpu_has_virtual_nmis()) {
  5228. if (vmx->nmi_known_unmasked)
  5229. return;
  5230. /*
  5231. * Can't use vmx->exit_intr_info since we're not sure what
  5232. * the exit reason is.
  5233. */
  5234. exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  5235. unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
  5236. vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
  5237. /*
  5238. * SDM 3: 27.7.1.2 (September 2008)
  5239. * Re-set bit "block by NMI" before VM entry if vmexit caused by
  5240. * a guest IRET fault.
  5241. * SDM 3: 23.2.2 (September 2008)
  5242. * Bit 12 is undefined in any of the following cases:
  5243. * If the VM exit sets the valid bit in the IDT-vectoring
  5244. * information field.
  5245. * If the VM exit is due to a double fault.
  5246. */
  5247. if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
  5248. vector != DF_VECTOR && !idtv_info_valid)
  5249. vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
  5250. GUEST_INTR_STATE_NMI);
  5251. else
  5252. vmx->nmi_known_unmasked =
  5253. !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
  5254. & GUEST_INTR_STATE_NMI);
  5255. } else if (unlikely(vmx->soft_vnmi_blocked))
  5256. vmx->vnmi_blocked_time +=
  5257. ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
  5258. }
  5259. static void __vmx_complete_interrupts(struct vcpu_vmx *vmx,
  5260. u32 idt_vectoring_info,
  5261. int instr_len_field,
  5262. int error_code_field)
  5263. {
  5264. u8 vector;
  5265. int type;
  5266. bool idtv_info_valid;
  5267. idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
  5268. vmx->vcpu.arch.nmi_injected = false;
  5269. kvm_clear_exception_queue(&vmx->vcpu);
  5270. kvm_clear_interrupt_queue(&vmx->vcpu);
  5271. if (!idtv_info_valid)
  5272. return;
  5273. kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
  5274. vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
  5275. type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
  5276. switch (type) {
  5277. case INTR_TYPE_NMI_INTR:
  5278. vmx->vcpu.arch.nmi_injected = true;
  5279. /*
  5280. * SDM 3: 27.7.1.2 (September 2008)
  5281. * Clear bit "block by NMI" before VM entry if a NMI
  5282. * delivery faulted.
  5283. */
  5284. vmx_set_nmi_mask(&vmx->vcpu, false);
  5285. break;
  5286. case INTR_TYPE_SOFT_EXCEPTION:
  5287. vmx->vcpu.arch.event_exit_inst_len =
  5288. vmcs_read32(instr_len_field);
  5289. /* fall through */
  5290. case INTR_TYPE_HARD_EXCEPTION:
  5291. if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
  5292. u32 err = vmcs_read32(error_code_field);
  5293. kvm_queue_exception_e(&vmx->vcpu, vector, err);
  5294. } else
  5295. kvm_queue_exception(&vmx->vcpu, vector);
  5296. break;
  5297. case INTR_TYPE_SOFT_INTR:
  5298. vmx->vcpu.arch.event_exit_inst_len =
  5299. vmcs_read32(instr_len_field);
  5300. /* fall through */
  5301. case INTR_TYPE_EXT_INTR:
  5302. kvm_queue_interrupt(&vmx->vcpu, vector,
  5303. type == INTR_TYPE_SOFT_INTR);
  5304. break;
  5305. default:
  5306. break;
  5307. }
  5308. }
  5309. static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
  5310. {
  5311. if (is_guest_mode(&vmx->vcpu))
  5312. return;
  5313. __vmx_complete_interrupts(vmx, vmx->idt_vectoring_info,
  5314. VM_EXIT_INSTRUCTION_LEN,
  5315. IDT_VECTORING_ERROR_CODE);
  5316. }
  5317. static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
  5318. {
  5319. if (is_guest_mode(vcpu))
  5320. return;
  5321. __vmx_complete_interrupts(to_vmx(vcpu),
  5322. vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
  5323. VM_ENTRY_INSTRUCTION_LEN,
  5324. VM_ENTRY_EXCEPTION_ERROR_CODE);
  5325. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
  5326. }
  5327. static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
  5328. {
  5329. int i, nr_msrs;
  5330. struct perf_guest_switch_msr *msrs;
  5331. msrs = perf_guest_get_msrs(&nr_msrs);
  5332. if (!msrs)
  5333. return;
  5334. for (i = 0; i < nr_msrs; i++)
  5335. if (msrs[i].host == msrs[i].guest)
  5336. clear_atomic_switch_msr(vmx, msrs[i].msr);
  5337. else
  5338. add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
  5339. msrs[i].host);
  5340. }
  5341. #ifdef CONFIG_X86_64
  5342. #define R "r"
  5343. #define Q "q"
  5344. #else
  5345. #define R "e"
  5346. #define Q "l"
  5347. #endif
  5348. static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
  5349. {
  5350. struct vcpu_vmx *vmx = to_vmx(vcpu);
  5351. if (is_guest_mode(vcpu) && !vmx->nested.nested_run_pending) {
  5352. struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
  5353. if (vmcs12->idt_vectoring_info_field &
  5354. VECTORING_INFO_VALID_MASK) {
  5355. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  5356. vmcs12->idt_vectoring_info_field);
  5357. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
  5358. vmcs12->vm_exit_instruction_len);
  5359. if (vmcs12->idt_vectoring_info_field &
  5360. VECTORING_INFO_DELIVER_CODE_MASK)
  5361. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
  5362. vmcs12->idt_vectoring_error_code);
  5363. }
  5364. }
  5365. /* Record the guest's net vcpu time for enforced NMI injections. */
  5366. if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
  5367. vmx->entry_time = ktime_get();
  5368. /* Don't enter VMX if guest state is invalid, let the exit handler
  5369. start emulation until we arrive back to a valid state */
  5370. if (vmx->emulation_required && emulate_invalid_guest_state)
  5371. return;
  5372. if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
  5373. vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
  5374. if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
  5375. vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
  5376. /* When single-stepping over STI and MOV SS, we must clear the
  5377. * corresponding interruptibility bits in the guest state. Otherwise
  5378. * vmentry fails as it then expects bit 14 (BS) in pending debug
  5379. * exceptions being set, but that's not correct for the guest debugging
  5380. * case. */
  5381. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  5382. vmx_set_interrupt_shadow(vcpu, 0);
  5383. atomic_switch_perf_msrs(vmx);
  5384. vmx->__launched = vmx->loaded_vmcs->launched;
  5385. asm(
  5386. /* Store host registers */
  5387. "push %%"R"dx; push %%"R"bp;"
  5388. "push %%"R"cx \n\t" /* placeholder for guest rcx */
  5389. "push %%"R"cx \n\t"
  5390. "cmp %%"R"sp, %c[host_rsp](%0) \n\t"
  5391. "je 1f \n\t"
  5392. "mov %%"R"sp, %c[host_rsp](%0) \n\t"
  5393. __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
  5394. "1: \n\t"
  5395. /* Reload cr2 if changed */
  5396. "mov %c[cr2](%0), %%"R"ax \n\t"
  5397. "mov %%cr2, %%"R"dx \n\t"
  5398. "cmp %%"R"ax, %%"R"dx \n\t"
  5399. "je 2f \n\t"
  5400. "mov %%"R"ax, %%cr2 \n\t"
  5401. "2: \n\t"
  5402. /* Check if vmlaunch of vmresume is needed */
  5403. "cmpl $0, %c[launched](%0) \n\t"
  5404. /* Load guest registers. Don't clobber flags. */
  5405. "mov %c[rax](%0), %%"R"ax \n\t"
  5406. "mov %c[rbx](%0), %%"R"bx \n\t"
  5407. "mov %c[rdx](%0), %%"R"dx \n\t"
  5408. "mov %c[rsi](%0), %%"R"si \n\t"
  5409. "mov %c[rdi](%0), %%"R"di \n\t"
  5410. "mov %c[rbp](%0), %%"R"bp \n\t"
  5411. #ifdef CONFIG_X86_64
  5412. "mov %c[r8](%0), %%r8 \n\t"
  5413. "mov %c[r9](%0), %%r9 \n\t"
  5414. "mov %c[r10](%0), %%r10 \n\t"
  5415. "mov %c[r11](%0), %%r11 \n\t"
  5416. "mov %c[r12](%0), %%r12 \n\t"
  5417. "mov %c[r13](%0), %%r13 \n\t"
  5418. "mov %c[r14](%0), %%r14 \n\t"
  5419. "mov %c[r15](%0), %%r15 \n\t"
  5420. #endif
  5421. "mov %c[rcx](%0), %%"R"cx \n\t" /* kills %0 (ecx) */
  5422. /* Enter guest mode */
  5423. "jne .Llaunched \n\t"
  5424. __ex(ASM_VMX_VMLAUNCH) "\n\t"
  5425. "jmp .Lkvm_vmx_return \n\t"
  5426. ".Llaunched: " __ex(ASM_VMX_VMRESUME) "\n\t"
  5427. ".Lkvm_vmx_return: "
  5428. /* Save guest registers, load host registers, keep flags */
  5429. "mov %0, %c[wordsize](%%"R"sp) \n\t"
  5430. "pop %0 \n\t"
  5431. "mov %%"R"ax, %c[rax](%0) \n\t"
  5432. "mov %%"R"bx, %c[rbx](%0) \n\t"
  5433. "pop"Q" %c[rcx](%0) \n\t"
  5434. "mov %%"R"dx, %c[rdx](%0) \n\t"
  5435. "mov %%"R"si, %c[rsi](%0) \n\t"
  5436. "mov %%"R"di, %c[rdi](%0) \n\t"
  5437. "mov %%"R"bp, %c[rbp](%0) \n\t"
  5438. #ifdef CONFIG_X86_64
  5439. "mov %%r8, %c[r8](%0) \n\t"
  5440. "mov %%r9, %c[r9](%0) \n\t"
  5441. "mov %%r10, %c[r10](%0) \n\t"
  5442. "mov %%r11, %c[r11](%0) \n\t"
  5443. "mov %%r12, %c[r12](%0) \n\t"
  5444. "mov %%r13, %c[r13](%0) \n\t"
  5445. "mov %%r14, %c[r14](%0) \n\t"
  5446. "mov %%r15, %c[r15](%0) \n\t"
  5447. #endif
  5448. "mov %%cr2, %%"R"ax \n\t"
  5449. "mov %%"R"ax, %c[cr2](%0) \n\t"
  5450. "pop %%"R"bp; pop %%"R"dx \n\t"
  5451. "setbe %c[fail](%0) \n\t"
  5452. : : "c"(vmx), "d"((unsigned long)HOST_RSP),
  5453. [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
  5454. [fail]"i"(offsetof(struct vcpu_vmx, fail)),
  5455. [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
  5456. [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
  5457. [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
  5458. [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
  5459. [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
  5460. [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
  5461. [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
  5462. [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
  5463. #ifdef CONFIG_X86_64
  5464. [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
  5465. [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
  5466. [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
  5467. [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
  5468. [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
  5469. [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
  5470. [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
  5471. [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
  5472. #endif
  5473. [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
  5474. [wordsize]"i"(sizeof(ulong))
  5475. : "cc", "memory"
  5476. , R"ax", R"bx", R"di", R"si"
  5477. #ifdef CONFIG_X86_64
  5478. , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
  5479. #endif
  5480. );
  5481. vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
  5482. | (1 << VCPU_EXREG_RFLAGS)
  5483. | (1 << VCPU_EXREG_CPL)
  5484. | (1 << VCPU_EXREG_PDPTR)
  5485. | (1 << VCPU_EXREG_SEGMENTS)
  5486. | (1 << VCPU_EXREG_CR3));
  5487. vcpu->arch.regs_dirty = 0;
  5488. vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  5489. if (is_guest_mode(vcpu)) {
  5490. struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
  5491. vmcs12->idt_vectoring_info_field = vmx->idt_vectoring_info;
  5492. if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) {
  5493. vmcs12->idt_vectoring_error_code =
  5494. vmcs_read32(IDT_VECTORING_ERROR_CODE);
  5495. vmcs12->vm_exit_instruction_len =
  5496. vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  5497. }
  5498. }
  5499. vmx->loaded_vmcs->launched = 1;
  5500. vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
  5501. trace_kvm_exit(vmx->exit_reason, vcpu, KVM_ISA_VMX);
  5502. vmx_complete_atomic_exit(vmx);
  5503. vmx_recover_nmi_blocking(vmx);
  5504. vmx_complete_interrupts(vmx);
  5505. }
  5506. #undef R
  5507. #undef Q
  5508. static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
  5509. {
  5510. struct vcpu_vmx *vmx = to_vmx(vcpu);
  5511. free_vpid(vmx);
  5512. free_nested(vmx);
  5513. free_loaded_vmcs(vmx->loaded_vmcs);
  5514. kfree(vmx->guest_msrs);
  5515. kvm_vcpu_uninit(vcpu);
  5516. kmem_cache_free(kvm_vcpu_cache, vmx);
  5517. }
  5518. static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
  5519. {
  5520. int err;
  5521. struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
  5522. int cpu;
  5523. if (!vmx)
  5524. return ERR_PTR(-ENOMEM);
  5525. allocate_vpid(vmx);
  5526. err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
  5527. if (err)
  5528. goto free_vcpu;
  5529. vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  5530. err = -ENOMEM;
  5531. if (!vmx->guest_msrs) {
  5532. goto uninit_vcpu;
  5533. }
  5534. vmx->loaded_vmcs = &vmx->vmcs01;
  5535. vmx->loaded_vmcs->vmcs = alloc_vmcs();
  5536. if (!vmx->loaded_vmcs->vmcs)
  5537. goto free_msrs;
  5538. if (!vmm_exclusive)
  5539. kvm_cpu_vmxon(__pa(per_cpu(vmxarea, raw_smp_processor_id())));
  5540. loaded_vmcs_init(vmx->loaded_vmcs);
  5541. if (!vmm_exclusive)
  5542. kvm_cpu_vmxoff();
  5543. cpu = get_cpu();
  5544. vmx_vcpu_load(&vmx->vcpu, cpu);
  5545. vmx->vcpu.cpu = cpu;
  5546. err = vmx_vcpu_setup(vmx);
  5547. vmx_vcpu_put(&vmx->vcpu);
  5548. put_cpu();
  5549. if (err)
  5550. goto free_vmcs;
  5551. if (vm_need_virtualize_apic_accesses(kvm))
  5552. err = alloc_apic_access_page(kvm);
  5553. if (err)
  5554. goto free_vmcs;
  5555. if (enable_ept) {
  5556. if (!kvm->arch.ept_identity_map_addr)
  5557. kvm->arch.ept_identity_map_addr =
  5558. VMX_EPT_IDENTITY_PAGETABLE_ADDR;
  5559. err = -ENOMEM;
  5560. if (alloc_identity_pagetable(kvm) != 0)
  5561. goto free_vmcs;
  5562. if (!init_rmode_identity_map(kvm))
  5563. goto free_vmcs;
  5564. }
  5565. vmx->nested.current_vmptr = -1ull;
  5566. vmx->nested.current_vmcs12 = NULL;
  5567. return &vmx->vcpu;
  5568. free_vmcs:
  5569. free_loaded_vmcs(vmx->loaded_vmcs);
  5570. free_msrs:
  5571. kfree(vmx->guest_msrs);
  5572. uninit_vcpu:
  5573. kvm_vcpu_uninit(&vmx->vcpu);
  5574. free_vcpu:
  5575. free_vpid(vmx);
  5576. kmem_cache_free(kvm_vcpu_cache, vmx);
  5577. return ERR_PTR(err);
  5578. }
  5579. static void __init vmx_check_processor_compat(void *rtn)
  5580. {
  5581. struct vmcs_config vmcs_conf;
  5582. *(int *)rtn = 0;
  5583. if (setup_vmcs_config(&vmcs_conf) < 0)
  5584. *(int *)rtn = -EIO;
  5585. if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
  5586. printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
  5587. smp_processor_id());
  5588. *(int *)rtn = -EIO;
  5589. }
  5590. }
  5591. static int get_ept_level(void)
  5592. {
  5593. return VMX_EPT_DEFAULT_GAW + 1;
  5594. }
  5595. static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
  5596. {
  5597. u64 ret;
  5598. /* For VT-d and EPT combination
  5599. * 1. MMIO: always map as UC
  5600. * 2. EPT with VT-d:
  5601. * a. VT-d without snooping control feature: can't guarantee the
  5602. * result, try to trust guest.
  5603. * b. VT-d with snooping control feature: snooping control feature of
  5604. * VT-d engine can guarantee the cache correctness. Just set it
  5605. * to WB to keep consistent with host. So the same as item 3.
  5606. * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
  5607. * consistent with host MTRR
  5608. */
  5609. if (is_mmio)
  5610. ret = MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
  5611. else if (vcpu->kvm->arch.iommu_domain &&
  5612. !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY))
  5613. ret = kvm_get_guest_memory_type(vcpu, gfn) <<
  5614. VMX_EPT_MT_EPTE_SHIFT;
  5615. else
  5616. ret = (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT)
  5617. | VMX_EPT_IPAT_BIT;
  5618. return ret;
  5619. }
  5620. static int vmx_get_lpage_level(void)
  5621. {
  5622. if (enable_ept && !cpu_has_vmx_ept_1g_page())
  5623. return PT_DIRECTORY_LEVEL;
  5624. else
  5625. /* For shadow and EPT supported 1GB page */
  5626. return PT_PDPE_LEVEL;
  5627. }
  5628. static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
  5629. {
  5630. struct kvm_cpuid_entry2 *best;
  5631. struct vcpu_vmx *vmx = to_vmx(vcpu);
  5632. u32 exec_control;
  5633. vmx->rdtscp_enabled = false;
  5634. if (vmx_rdtscp_supported()) {
  5635. exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
  5636. if (exec_control & SECONDARY_EXEC_RDTSCP) {
  5637. best = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
  5638. if (best && (best->edx & bit(X86_FEATURE_RDTSCP)))
  5639. vmx->rdtscp_enabled = true;
  5640. else {
  5641. exec_control &= ~SECONDARY_EXEC_RDTSCP;
  5642. vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
  5643. exec_control);
  5644. }
  5645. }
  5646. }
  5647. }
  5648. static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
  5649. {
  5650. if (func == 1 && nested)
  5651. entry->ecx |= bit(X86_FEATURE_VMX);
  5652. }
  5653. /*
  5654. * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
  5655. * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
  5656. * with L0's requirements for its guest (a.k.a. vmsc01), so we can run the L2
  5657. * guest in a way that will both be appropriate to L1's requests, and our
  5658. * needs. In addition to modifying the active vmcs (which is vmcs02), this
  5659. * function also has additional necessary side-effects, like setting various
  5660. * vcpu->arch fields.
  5661. */
  5662. static void prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
  5663. {
  5664. struct vcpu_vmx *vmx = to_vmx(vcpu);
  5665. u32 exec_control;
  5666. vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
  5667. vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
  5668. vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
  5669. vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
  5670. vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
  5671. vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
  5672. vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
  5673. vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
  5674. vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
  5675. vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
  5676. vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
  5677. vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
  5678. vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
  5679. vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
  5680. vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
  5681. vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
  5682. vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
  5683. vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
  5684. vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
  5685. vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
  5686. vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
  5687. vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
  5688. vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
  5689. vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
  5690. vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
  5691. vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
  5692. vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
  5693. vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
  5694. vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
  5695. vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
  5696. vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
  5697. vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
  5698. vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
  5699. vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
  5700. vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
  5701. vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
  5702. vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
  5703. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  5704. vmcs12->vm_entry_intr_info_field);
  5705. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
  5706. vmcs12->vm_entry_exception_error_code);
  5707. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
  5708. vmcs12->vm_entry_instruction_len);
  5709. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
  5710. vmcs12->guest_interruptibility_info);
  5711. vmcs_write32(GUEST_ACTIVITY_STATE, vmcs12->guest_activity_state);
  5712. vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
  5713. vmcs_writel(GUEST_DR7, vmcs12->guest_dr7);
  5714. vmcs_writel(GUEST_RFLAGS, vmcs12->guest_rflags);
  5715. vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
  5716. vmcs12->guest_pending_dbg_exceptions);
  5717. vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
  5718. vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
  5719. vmcs_write64(VMCS_LINK_POINTER, -1ull);
  5720. vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
  5721. (vmcs_config.pin_based_exec_ctrl |
  5722. vmcs12->pin_based_vm_exec_control));
  5723. /*
  5724. * Whether page-faults are trapped is determined by a combination of
  5725. * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
  5726. * If enable_ept, L0 doesn't care about page faults and we should
  5727. * set all of these to L1's desires. However, if !enable_ept, L0 does
  5728. * care about (at least some) page faults, and because it is not easy
  5729. * (if at all possible?) to merge L0 and L1's desires, we simply ask
  5730. * to exit on each and every L2 page fault. This is done by setting
  5731. * MASK=MATCH=0 and (see below) EB.PF=1.
  5732. * Note that below we don't need special code to set EB.PF beyond the
  5733. * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
  5734. * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
  5735. * !enable_ept, EB.PF is 1, so the "or" will always be 1.
  5736. *
  5737. * A problem with this approach (when !enable_ept) is that L1 may be
  5738. * injected with more page faults than it asked for. This could have
  5739. * caused problems, but in practice existing hypervisors don't care.
  5740. * To fix this, we will need to emulate the PFEC checking (on the L1
  5741. * page tables), using walk_addr(), when injecting PFs to L1.
  5742. */
  5743. vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
  5744. enable_ept ? vmcs12->page_fault_error_code_mask : 0);
  5745. vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
  5746. enable_ept ? vmcs12->page_fault_error_code_match : 0);
  5747. if (cpu_has_secondary_exec_ctrls()) {
  5748. u32 exec_control = vmx_secondary_exec_control(vmx);
  5749. if (!vmx->rdtscp_enabled)
  5750. exec_control &= ~SECONDARY_EXEC_RDTSCP;
  5751. /* Take the following fields only from vmcs12 */
  5752. exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  5753. if (nested_cpu_has(vmcs12,
  5754. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
  5755. exec_control |= vmcs12->secondary_vm_exec_control;
  5756. if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) {
  5757. /*
  5758. * Translate L1 physical address to host physical
  5759. * address for vmcs02. Keep the page pinned, so this
  5760. * physical address remains valid. We keep a reference
  5761. * to it so we can release it later.
  5762. */
  5763. if (vmx->nested.apic_access_page) /* shouldn't happen */
  5764. nested_release_page(vmx->nested.apic_access_page);
  5765. vmx->nested.apic_access_page =
  5766. nested_get_page(vcpu, vmcs12->apic_access_addr);
  5767. /*
  5768. * If translation failed, no matter: This feature asks
  5769. * to exit when accessing the given address, and if it
  5770. * can never be accessed, this feature won't do
  5771. * anything anyway.
  5772. */
  5773. if (!vmx->nested.apic_access_page)
  5774. exec_control &=
  5775. ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  5776. else
  5777. vmcs_write64(APIC_ACCESS_ADDR,
  5778. page_to_phys(vmx->nested.apic_access_page));
  5779. }
  5780. vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
  5781. }
  5782. /*
  5783. * Set host-state according to L0's settings (vmcs12 is irrelevant here)
  5784. * Some constant fields are set here by vmx_set_constant_host_state().
  5785. * Other fields are different per CPU, and will be set later when
  5786. * vmx_vcpu_load() is called, and when vmx_save_host_state() is called.
  5787. */
  5788. vmx_set_constant_host_state();
  5789. /*
  5790. * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
  5791. * entry, but only if the current (host) sp changed from the value
  5792. * we wrote last (vmx->host_rsp). This cache is no longer relevant
  5793. * if we switch vmcs, and rather than hold a separate cache per vmcs,
  5794. * here we just force the write to happen on entry.
  5795. */
  5796. vmx->host_rsp = 0;
  5797. exec_control = vmx_exec_control(vmx); /* L0's desires */
  5798. exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
  5799. exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
  5800. exec_control &= ~CPU_BASED_TPR_SHADOW;
  5801. exec_control |= vmcs12->cpu_based_vm_exec_control;
  5802. /*
  5803. * Merging of IO and MSR bitmaps not currently supported.
  5804. * Rather, exit every time.
  5805. */
  5806. exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
  5807. exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
  5808. exec_control |= CPU_BASED_UNCOND_IO_EXITING;
  5809. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
  5810. /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
  5811. * bitwise-or of what L1 wants to trap for L2, and what we want to
  5812. * trap. Note that CR0.TS also needs updating - we do this later.
  5813. */
  5814. update_exception_bitmap(vcpu);
  5815. vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
  5816. vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
  5817. /* Note: IA32_MODE, LOAD_IA32_EFER are modified by vmx_set_efer below */
  5818. vmcs_write32(VM_EXIT_CONTROLS,
  5819. vmcs12->vm_exit_controls | vmcs_config.vmexit_ctrl);
  5820. vmcs_write32(VM_ENTRY_CONTROLS, vmcs12->vm_entry_controls |
  5821. (vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE));
  5822. if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)
  5823. vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
  5824. else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
  5825. vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
  5826. set_cr4_guest_host_mask(vmx);
  5827. if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
  5828. vmcs_write64(TSC_OFFSET,
  5829. vmx->nested.vmcs01_tsc_offset + vmcs12->tsc_offset);
  5830. else
  5831. vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
  5832. if (enable_vpid) {
  5833. /*
  5834. * Trivially support vpid by letting L2s share their parent
  5835. * L1's vpid. TODO: move to a more elaborate solution, giving
  5836. * each L2 its own vpid and exposing the vpid feature to L1.
  5837. */
  5838. vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
  5839. vmx_flush_tlb(vcpu);
  5840. }
  5841. if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)
  5842. vcpu->arch.efer = vmcs12->guest_ia32_efer;
  5843. if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
  5844. vcpu->arch.efer |= (EFER_LMA | EFER_LME);
  5845. else
  5846. vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
  5847. /* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
  5848. vmx_set_efer(vcpu, vcpu->arch.efer);
  5849. /*
  5850. * This sets GUEST_CR0 to vmcs12->guest_cr0, with possibly a modified
  5851. * TS bit (for lazy fpu) and bits which we consider mandatory enabled.
  5852. * The CR0_READ_SHADOW is what L2 should have expected to read given
  5853. * the specifications by L1; It's not enough to take
  5854. * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
  5855. * have more bits than L1 expected.
  5856. */
  5857. vmx_set_cr0(vcpu, vmcs12->guest_cr0);
  5858. vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
  5859. vmx_set_cr4(vcpu, vmcs12->guest_cr4);
  5860. vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
  5861. /* shadow page tables on either EPT or shadow page tables */
  5862. kvm_set_cr3(vcpu, vmcs12->guest_cr3);
  5863. kvm_mmu_reset_context(vcpu);
  5864. kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
  5865. kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
  5866. }
  5867. /*
  5868. * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
  5869. * for running an L2 nested guest.
  5870. */
  5871. static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
  5872. {
  5873. struct vmcs12 *vmcs12;
  5874. struct vcpu_vmx *vmx = to_vmx(vcpu);
  5875. int cpu;
  5876. struct loaded_vmcs *vmcs02;
  5877. if (!nested_vmx_check_permission(vcpu) ||
  5878. !nested_vmx_check_vmcs12(vcpu))
  5879. return 1;
  5880. skip_emulated_instruction(vcpu);
  5881. vmcs12 = get_vmcs12(vcpu);
  5882. /*
  5883. * The nested entry process starts with enforcing various prerequisites
  5884. * on vmcs12 as required by the Intel SDM, and act appropriately when
  5885. * they fail: As the SDM explains, some conditions should cause the
  5886. * instruction to fail, while others will cause the instruction to seem
  5887. * to succeed, but return an EXIT_REASON_INVALID_STATE.
  5888. * To speed up the normal (success) code path, we should avoid checking
  5889. * for misconfigurations which will anyway be caught by the processor
  5890. * when using the merged vmcs02.
  5891. */
  5892. if (vmcs12->launch_state == launch) {
  5893. nested_vmx_failValid(vcpu,
  5894. launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
  5895. : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
  5896. return 1;
  5897. }
  5898. if ((vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_MSR_BITMAPS) &&
  5899. !IS_ALIGNED(vmcs12->msr_bitmap, PAGE_SIZE)) {
  5900. /*TODO: Also verify bits beyond physical address width are 0*/
  5901. nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
  5902. return 1;
  5903. }
  5904. if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
  5905. !IS_ALIGNED(vmcs12->apic_access_addr, PAGE_SIZE)) {
  5906. /*TODO: Also verify bits beyond physical address width are 0*/
  5907. nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
  5908. return 1;
  5909. }
  5910. if (vmcs12->vm_entry_msr_load_count > 0 ||
  5911. vmcs12->vm_exit_msr_load_count > 0 ||
  5912. vmcs12->vm_exit_msr_store_count > 0) {
  5913. pr_warn_ratelimited("%s: VMCS MSR_{LOAD,STORE} unsupported\n",
  5914. __func__);
  5915. nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
  5916. return 1;
  5917. }
  5918. if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
  5919. nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high) ||
  5920. !vmx_control_verify(vmcs12->secondary_vm_exec_control,
  5921. nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high) ||
  5922. !vmx_control_verify(vmcs12->pin_based_vm_exec_control,
  5923. nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high) ||
  5924. !vmx_control_verify(vmcs12->vm_exit_controls,
  5925. nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high) ||
  5926. !vmx_control_verify(vmcs12->vm_entry_controls,
  5927. nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high))
  5928. {
  5929. nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
  5930. return 1;
  5931. }
  5932. if (((vmcs12->host_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
  5933. ((vmcs12->host_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
  5934. nested_vmx_failValid(vcpu,
  5935. VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
  5936. return 1;
  5937. }
  5938. if (((vmcs12->guest_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
  5939. ((vmcs12->guest_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
  5940. nested_vmx_entry_failure(vcpu, vmcs12,
  5941. EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
  5942. return 1;
  5943. }
  5944. if (vmcs12->vmcs_link_pointer != -1ull) {
  5945. nested_vmx_entry_failure(vcpu, vmcs12,
  5946. EXIT_REASON_INVALID_STATE, ENTRY_FAIL_VMCS_LINK_PTR);
  5947. return 1;
  5948. }
  5949. /*
  5950. * We're finally done with prerequisite checking, and can start with
  5951. * the nested entry.
  5952. */
  5953. vmcs02 = nested_get_current_vmcs02(vmx);
  5954. if (!vmcs02)
  5955. return -ENOMEM;
  5956. enter_guest_mode(vcpu);
  5957. vmx->nested.vmcs01_tsc_offset = vmcs_read64(TSC_OFFSET);
  5958. cpu = get_cpu();
  5959. vmx->loaded_vmcs = vmcs02;
  5960. vmx_vcpu_put(vcpu);
  5961. vmx_vcpu_load(vcpu, cpu);
  5962. vcpu->cpu = cpu;
  5963. put_cpu();
  5964. vmcs12->launch_state = 1;
  5965. prepare_vmcs02(vcpu, vmcs12);
  5966. /*
  5967. * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
  5968. * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
  5969. * returned as far as L1 is concerned. It will only return (and set
  5970. * the success flag) when L2 exits (see nested_vmx_vmexit()).
  5971. */
  5972. return 1;
  5973. }
  5974. /*
  5975. * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
  5976. * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
  5977. * This function returns the new value we should put in vmcs12.guest_cr0.
  5978. * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
  5979. * 1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
  5980. * available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
  5981. * didn't trap the bit, because if L1 did, so would L0).
  5982. * 2. Bits that L1 asked to trap (and therefore L0 also did) could not have
  5983. * been modified by L2, and L1 knows it. So just leave the old value of
  5984. * the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
  5985. * isn't relevant, because if L0 traps this bit it can set it to anything.
  5986. * 3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
  5987. * changed these bits, and therefore they need to be updated, but L0
  5988. * didn't necessarily allow them to be changed in GUEST_CR0 - and rather
  5989. * put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
  5990. */
  5991. static inline unsigned long
  5992. vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
  5993. {
  5994. return
  5995. /*1*/ (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
  5996. /*2*/ (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
  5997. /*3*/ (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
  5998. vcpu->arch.cr0_guest_owned_bits));
  5999. }
  6000. static inline unsigned long
  6001. vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
  6002. {
  6003. return
  6004. /*1*/ (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
  6005. /*2*/ (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
  6006. /*3*/ (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
  6007. vcpu->arch.cr4_guest_owned_bits));
  6008. }
  6009. /*
  6010. * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
  6011. * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
  6012. * and this function updates it to reflect the changes to the guest state while
  6013. * L2 was running (and perhaps made some exits which were handled directly by L0
  6014. * without going back to L1), and to reflect the exit reason.
  6015. * Note that we do not have to copy here all VMCS fields, just those that
  6016. * could have changed by the L2 guest or the exit - i.e., the guest-state and
  6017. * exit-information fields only. Other fields are modified by L1 with VMWRITE,
  6018. * which already writes to vmcs12 directly.
  6019. */
  6020. void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
  6021. {
  6022. /* update guest state fields: */
  6023. vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
  6024. vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
  6025. kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
  6026. vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  6027. vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
  6028. vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
  6029. vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
  6030. vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
  6031. vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
  6032. vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
  6033. vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
  6034. vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
  6035. vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
  6036. vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
  6037. vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
  6038. vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
  6039. vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
  6040. vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
  6041. vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
  6042. vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
  6043. vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
  6044. vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
  6045. vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
  6046. vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
  6047. vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
  6048. vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
  6049. vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
  6050. vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
  6051. vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
  6052. vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
  6053. vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
  6054. vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
  6055. vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
  6056. vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
  6057. vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
  6058. vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
  6059. vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
  6060. vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
  6061. vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
  6062. vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
  6063. vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
  6064. vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
  6065. vmcs12->guest_activity_state = vmcs_read32(GUEST_ACTIVITY_STATE);
  6066. vmcs12->guest_interruptibility_info =
  6067. vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  6068. vmcs12->guest_pending_dbg_exceptions =
  6069. vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
  6070. /* TODO: These cannot have changed unless we have MSR bitmaps and
  6071. * the relevant bit asks not to trap the change */
  6072. vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
  6073. if (vmcs12->vm_entry_controls & VM_EXIT_SAVE_IA32_PAT)
  6074. vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
  6075. vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
  6076. vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
  6077. vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
  6078. /* update exit information fields: */
  6079. vmcs12->vm_exit_reason = vmcs_read32(VM_EXIT_REASON);
  6080. vmcs12->exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  6081. vmcs12->vm_exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  6082. vmcs12->vm_exit_intr_error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
  6083. vmcs12->idt_vectoring_info_field =
  6084. vmcs_read32(IDT_VECTORING_INFO_FIELD);
  6085. vmcs12->idt_vectoring_error_code =
  6086. vmcs_read32(IDT_VECTORING_ERROR_CODE);
  6087. vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  6088. vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
  6089. /* clear vm-entry fields which are to be cleared on exit */
  6090. if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY))
  6091. vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
  6092. }
  6093. /*
  6094. * A part of what we need to when the nested L2 guest exits and we want to
  6095. * run its L1 parent, is to reset L1's guest state to the host state specified
  6096. * in vmcs12.
  6097. * This function is to be called not only on normal nested exit, but also on
  6098. * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
  6099. * Failures During or After Loading Guest State").
  6100. * This function should be called when the active VMCS is L1's (vmcs01).
  6101. */
  6102. void load_vmcs12_host_state(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
  6103. {
  6104. if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
  6105. vcpu->arch.efer = vmcs12->host_ia32_efer;
  6106. if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
  6107. vcpu->arch.efer |= (EFER_LMA | EFER_LME);
  6108. else
  6109. vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
  6110. vmx_set_efer(vcpu, vcpu->arch.efer);
  6111. kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
  6112. kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
  6113. /*
  6114. * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
  6115. * actually changed, because it depends on the current state of
  6116. * fpu_active (which may have changed).
  6117. * Note that vmx_set_cr0 refers to efer set above.
  6118. */
  6119. kvm_set_cr0(vcpu, vmcs12->host_cr0);
  6120. /*
  6121. * If we did fpu_activate()/fpu_deactivate() during L2's run, we need
  6122. * to apply the same changes to L1's vmcs. We just set cr0 correctly,
  6123. * but we also need to update cr0_guest_host_mask and exception_bitmap.
  6124. */
  6125. update_exception_bitmap(vcpu);
  6126. vcpu->arch.cr0_guest_owned_bits = (vcpu->fpu_active ? X86_CR0_TS : 0);
  6127. vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
  6128. /*
  6129. * Note that CR4_GUEST_HOST_MASK is already set in the original vmcs01
  6130. * (KVM doesn't change it)- no reason to call set_cr4_guest_host_mask();
  6131. */
  6132. vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
  6133. kvm_set_cr4(vcpu, vmcs12->host_cr4);
  6134. /* shadow page tables on either EPT or shadow page tables */
  6135. kvm_set_cr3(vcpu, vmcs12->host_cr3);
  6136. kvm_mmu_reset_context(vcpu);
  6137. if (enable_vpid) {
  6138. /*
  6139. * Trivially support vpid by letting L2s share their parent
  6140. * L1's vpid. TODO: move to a more elaborate solution, giving
  6141. * each L2 its own vpid and exposing the vpid feature to L1.
  6142. */
  6143. vmx_flush_tlb(vcpu);
  6144. }
  6145. vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
  6146. vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
  6147. vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
  6148. vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
  6149. vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
  6150. vmcs_writel(GUEST_TR_BASE, vmcs12->host_tr_base);
  6151. vmcs_writel(GUEST_GS_BASE, vmcs12->host_gs_base);
  6152. vmcs_writel(GUEST_FS_BASE, vmcs12->host_fs_base);
  6153. vmcs_write16(GUEST_ES_SELECTOR, vmcs12->host_es_selector);
  6154. vmcs_write16(GUEST_CS_SELECTOR, vmcs12->host_cs_selector);
  6155. vmcs_write16(GUEST_SS_SELECTOR, vmcs12->host_ss_selector);
  6156. vmcs_write16(GUEST_DS_SELECTOR, vmcs12->host_ds_selector);
  6157. vmcs_write16(GUEST_FS_SELECTOR, vmcs12->host_fs_selector);
  6158. vmcs_write16(GUEST_GS_SELECTOR, vmcs12->host_gs_selector);
  6159. vmcs_write16(GUEST_TR_SELECTOR, vmcs12->host_tr_selector);
  6160. if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT)
  6161. vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
  6162. if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
  6163. vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
  6164. vmcs12->host_ia32_perf_global_ctrl);
  6165. }
  6166. /*
  6167. * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
  6168. * and modify vmcs12 to make it see what it would expect to see there if
  6169. * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
  6170. */
  6171. static void nested_vmx_vmexit(struct kvm_vcpu *vcpu)
  6172. {
  6173. struct vcpu_vmx *vmx = to_vmx(vcpu);
  6174. int cpu;
  6175. struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
  6176. leave_guest_mode(vcpu);
  6177. prepare_vmcs12(vcpu, vmcs12);
  6178. cpu = get_cpu();
  6179. vmx->loaded_vmcs = &vmx->vmcs01;
  6180. vmx_vcpu_put(vcpu);
  6181. vmx_vcpu_load(vcpu, cpu);
  6182. vcpu->cpu = cpu;
  6183. put_cpu();
  6184. /* if no vmcs02 cache requested, remove the one we used */
  6185. if (VMCS02_POOL_SIZE == 0)
  6186. nested_free_vmcs02(vmx, vmx->nested.current_vmptr);
  6187. load_vmcs12_host_state(vcpu, vmcs12);
  6188. /* Update TSC_OFFSET if TSC was changed while L2 ran */
  6189. vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
  6190. /* This is needed for same reason as it was needed in prepare_vmcs02 */
  6191. vmx->host_rsp = 0;
  6192. /* Unpin physical memory we referred to in vmcs02 */
  6193. if (vmx->nested.apic_access_page) {
  6194. nested_release_page(vmx->nested.apic_access_page);
  6195. vmx->nested.apic_access_page = 0;
  6196. }
  6197. /*
  6198. * Exiting from L2 to L1, we're now back to L1 which thinks it just
  6199. * finished a VMLAUNCH or VMRESUME instruction, so we need to set the
  6200. * success or failure flag accordingly.
  6201. */
  6202. if (unlikely(vmx->fail)) {
  6203. vmx->fail = 0;
  6204. nested_vmx_failValid(vcpu, vmcs_read32(VM_INSTRUCTION_ERROR));
  6205. } else
  6206. nested_vmx_succeed(vcpu);
  6207. }
  6208. /*
  6209. * L1's failure to enter L2 is a subset of a normal exit, as explained in
  6210. * 23.7 "VM-entry failures during or after loading guest state" (this also
  6211. * lists the acceptable exit-reason and exit-qualification parameters).
  6212. * It should only be called before L2 actually succeeded to run, and when
  6213. * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
  6214. */
  6215. static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
  6216. struct vmcs12 *vmcs12,
  6217. u32 reason, unsigned long qualification)
  6218. {
  6219. load_vmcs12_host_state(vcpu, vmcs12);
  6220. vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
  6221. vmcs12->exit_qualification = qualification;
  6222. nested_vmx_succeed(vcpu);
  6223. }
  6224. static int vmx_check_intercept(struct kvm_vcpu *vcpu,
  6225. struct x86_instruction_info *info,
  6226. enum x86_intercept_stage stage)
  6227. {
  6228. return X86EMUL_CONTINUE;
  6229. }
  6230. static struct kvm_x86_ops vmx_x86_ops = {
  6231. .cpu_has_kvm_support = cpu_has_kvm_support,
  6232. .disabled_by_bios = vmx_disabled_by_bios,
  6233. .hardware_setup = hardware_setup,
  6234. .hardware_unsetup = hardware_unsetup,
  6235. .check_processor_compatibility = vmx_check_processor_compat,
  6236. .hardware_enable = hardware_enable,
  6237. .hardware_disable = hardware_disable,
  6238. .cpu_has_accelerated_tpr = report_flexpriority,
  6239. .vcpu_create = vmx_create_vcpu,
  6240. .vcpu_free = vmx_free_vcpu,
  6241. .vcpu_reset = vmx_vcpu_reset,
  6242. .prepare_guest_switch = vmx_save_host_state,
  6243. .vcpu_load = vmx_vcpu_load,
  6244. .vcpu_put = vmx_vcpu_put,
  6245. .set_guest_debug = set_guest_debug,
  6246. .get_msr = vmx_get_msr,
  6247. .set_msr = vmx_set_msr,
  6248. .get_segment_base = vmx_get_segment_base,
  6249. .get_segment = vmx_get_segment,
  6250. .set_segment = vmx_set_segment,
  6251. .get_cpl = vmx_get_cpl,
  6252. .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
  6253. .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
  6254. .decache_cr3 = vmx_decache_cr3,
  6255. .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
  6256. .set_cr0 = vmx_set_cr0,
  6257. .set_cr3 = vmx_set_cr3,
  6258. .set_cr4 = vmx_set_cr4,
  6259. .set_efer = vmx_set_efer,
  6260. .get_idt = vmx_get_idt,
  6261. .set_idt = vmx_set_idt,
  6262. .get_gdt = vmx_get_gdt,
  6263. .set_gdt = vmx_set_gdt,
  6264. .set_dr7 = vmx_set_dr7,
  6265. .cache_reg = vmx_cache_reg,
  6266. .get_rflags = vmx_get_rflags,
  6267. .set_rflags = vmx_set_rflags,
  6268. .fpu_activate = vmx_fpu_activate,
  6269. .fpu_deactivate = vmx_fpu_deactivate,
  6270. .tlb_flush = vmx_flush_tlb,
  6271. .run = vmx_vcpu_run,
  6272. .handle_exit = vmx_handle_exit,
  6273. .skip_emulated_instruction = skip_emulated_instruction,
  6274. .set_interrupt_shadow = vmx_set_interrupt_shadow,
  6275. .get_interrupt_shadow = vmx_get_interrupt_shadow,
  6276. .patch_hypercall = vmx_patch_hypercall,
  6277. .set_irq = vmx_inject_irq,
  6278. .set_nmi = vmx_inject_nmi,
  6279. .queue_exception = vmx_queue_exception,
  6280. .cancel_injection = vmx_cancel_injection,
  6281. .interrupt_allowed = vmx_interrupt_allowed,
  6282. .nmi_allowed = vmx_nmi_allowed,
  6283. .get_nmi_mask = vmx_get_nmi_mask,
  6284. .set_nmi_mask = vmx_set_nmi_mask,
  6285. .enable_nmi_window = enable_nmi_window,
  6286. .enable_irq_window = enable_irq_window,
  6287. .update_cr8_intercept = update_cr8_intercept,
  6288. .set_tss_addr = vmx_set_tss_addr,
  6289. .get_tdp_level = get_ept_level,
  6290. .get_mt_mask = vmx_get_mt_mask,
  6291. .get_exit_info = vmx_get_exit_info,
  6292. .get_lpage_level = vmx_get_lpage_level,
  6293. .cpuid_update = vmx_cpuid_update,
  6294. .rdtscp_supported = vmx_rdtscp_supported,
  6295. .set_supported_cpuid = vmx_set_supported_cpuid,
  6296. .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
  6297. .set_tsc_khz = vmx_set_tsc_khz,
  6298. .write_tsc_offset = vmx_write_tsc_offset,
  6299. .adjust_tsc_offset = vmx_adjust_tsc_offset,
  6300. .compute_tsc_offset = vmx_compute_tsc_offset,
  6301. .read_l1_tsc = vmx_read_l1_tsc,
  6302. .set_tdp_cr3 = vmx_set_cr3,
  6303. .check_intercept = vmx_check_intercept,
  6304. };
  6305. static int __init vmx_init(void)
  6306. {
  6307. int r, i;
  6308. rdmsrl_safe(MSR_EFER, &host_efer);
  6309. for (i = 0; i < NR_VMX_MSR; ++i)
  6310. kvm_define_shared_msr(i, vmx_msr_index[i]);
  6311. vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
  6312. if (!vmx_io_bitmap_a)
  6313. return -ENOMEM;
  6314. vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
  6315. if (!vmx_io_bitmap_b) {
  6316. r = -ENOMEM;
  6317. goto out;
  6318. }
  6319. vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
  6320. if (!vmx_msr_bitmap_legacy) {
  6321. r = -ENOMEM;
  6322. goto out1;
  6323. }
  6324. vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
  6325. if (!vmx_msr_bitmap_longmode) {
  6326. r = -ENOMEM;
  6327. goto out2;
  6328. }
  6329. /*
  6330. * Allow direct access to the PC debug port (it is often used for I/O
  6331. * delays, but the vmexits simply slow things down).
  6332. */
  6333. memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
  6334. clear_bit(0x80, vmx_io_bitmap_a);
  6335. memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
  6336. memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
  6337. memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
  6338. set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
  6339. r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
  6340. __alignof__(struct vcpu_vmx), THIS_MODULE);
  6341. if (r)
  6342. goto out3;
  6343. vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
  6344. vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
  6345. vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
  6346. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
  6347. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
  6348. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
  6349. if (enable_ept) {
  6350. kvm_mmu_set_mask_ptes(0ull, 0ull, 0ull, 0ull,
  6351. VMX_EPT_EXECUTABLE_MASK);
  6352. ept_set_mmio_spte_mask();
  6353. kvm_enable_tdp();
  6354. } else
  6355. kvm_disable_tdp();
  6356. return 0;
  6357. out3:
  6358. free_page((unsigned long)vmx_msr_bitmap_longmode);
  6359. out2:
  6360. free_page((unsigned long)vmx_msr_bitmap_legacy);
  6361. out1:
  6362. free_page((unsigned long)vmx_io_bitmap_b);
  6363. out:
  6364. free_page((unsigned long)vmx_io_bitmap_a);
  6365. return r;
  6366. }
  6367. static void __exit vmx_exit(void)
  6368. {
  6369. free_page((unsigned long)vmx_msr_bitmap_legacy);
  6370. free_page((unsigned long)vmx_msr_bitmap_longmode);
  6371. free_page((unsigned long)vmx_io_bitmap_b);
  6372. free_page((unsigned long)vmx_io_bitmap_a);
  6373. kvm_exit();
  6374. }
  6375. module_init(vmx_init)
  6376. module_exit(vmx_exit)