bpf_jit_comp.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802
  1. #include <linux/moduleloader.h>
  2. #include <linux/workqueue.h>
  3. #include <linux/netdevice.h>
  4. #include <linux/filter.h>
  5. #include <linux/cache.h>
  6. #include <asm/cacheflush.h>
  7. #include <asm/ptrace.h>
  8. #include "bpf_jit.h"
  9. int bpf_jit_enable __read_mostly;
  10. static inline bool is_simm13(unsigned int value)
  11. {
  12. return value + 0x1000 < 0x2000;
  13. }
  14. static void bpf_flush_icache(void *start_, void *end_)
  15. {
  16. #ifdef CONFIG_SPARC64
  17. /* Cheetah's I-cache is fully coherent. */
  18. if (tlb_type == spitfire) {
  19. unsigned long start = (unsigned long) start_;
  20. unsigned long end = (unsigned long) end_;
  21. start &= ~7UL;
  22. end = (end + 7UL) & ~7UL;
  23. while (start < end) {
  24. flushi(start);
  25. start += 32;
  26. }
  27. }
  28. #endif
  29. }
  30. #define SEEN_DATAREF 1 /* might call external helpers */
  31. #define SEEN_XREG 2 /* ebx is used */
  32. #define SEEN_MEM 4 /* use mem[] for temporary storage */
  33. #define S13(X) ((X) & 0x1fff)
  34. #define IMMED 0x00002000
  35. #define RD(X) ((X) << 25)
  36. #define RS1(X) ((X) << 14)
  37. #define RS2(X) ((X))
  38. #define OP(X) ((X) << 30)
  39. #define OP2(X) ((X) << 22)
  40. #define OP3(X) ((X) << 19)
  41. #define COND(X) ((X) << 25)
  42. #define F1(X) OP(X)
  43. #define F2(X, Y) (OP(X) | OP2(Y))
  44. #define F3(X, Y) (OP(X) | OP3(Y))
  45. #define CONDN COND(0x0)
  46. #define CONDE COND(0x1)
  47. #define CONDLE COND(0x2)
  48. #define CONDL COND(0x3)
  49. #define CONDLEU COND(0x4)
  50. #define CONDCS COND(0x5)
  51. #define CONDNEG COND(0x6)
  52. #define CONDVC COND(0x7)
  53. #define CONDA COND(0x8)
  54. #define CONDNE COND(0x9)
  55. #define CONDG COND(0xa)
  56. #define CONDGE COND(0xb)
  57. #define CONDGU COND(0xc)
  58. #define CONDCC COND(0xd)
  59. #define CONDPOS COND(0xe)
  60. #define CONDVS COND(0xf)
  61. #define CONDGEU CONDCC
  62. #define CONDLU CONDCS
  63. #define WDISP22(X) (((X) >> 2) & 0x3fffff)
  64. #define BA (F2(0, 2) | CONDA)
  65. #define BGU (F2(0, 2) | CONDGU)
  66. #define BLEU (F2(0, 2) | CONDLEU)
  67. #define BGEU (F2(0, 2) | CONDGEU)
  68. #define BLU (F2(0, 2) | CONDLU)
  69. #define BE (F2(0, 2) | CONDE)
  70. #define BNE (F2(0, 2) | CONDNE)
  71. #ifdef CONFIG_SPARC64
  72. #define BNE_PTR (F2(0, 1) | CONDNE | (2 << 20))
  73. #else
  74. #define BNE_PTR BNE
  75. #endif
  76. #define SETHI(K, REG) \
  77. (F2(0, 0x4) | RD(REG) | (((K) >> 10) & 0x3fffff))
  78. #define OR_LO(K, REG) \
  79. (F3(2, 0x02) | IMMED | RS1(REG) | ((K) & 0x3ff) | RD(REG))
  80. #define ADD F3(2, 0x00)
  81. #define AND F3(2, 0x01)
  82. #define ANDCC F3(2, 0x11)
  83. #define OR F3(2, 0x02)
  84. #define SUB F3(2, 0x04)
  85. #define SUBCC F3(2, 0x14)
  86. #define MUL F3(2, 0x0a) /* umul */
  87. #define DIV F3(2, 0x0e) /* udiv */
  88. #define SLL F3(2, 0x25)
  89. #define SRL F3(2, 0x26)
  90. #define JMPL F3(2, 0x38)
  91. #define CALL F1(1)
  92. #define BR F2(0, 0x01)
  93. #define RD_Y F3(2, 0x28)
  94. #define WR_Y F3(2, 0x30)
  95. #define LD32 F3(3, 0x00)
  96. #define LD8 F3(3, 0x01)
  97. #define LD16 F3(3, 0x02)
  98. #define LD64 F3(3, 0x0b)
  99. #define ST32 F3(3, 0x04)
  100. #ifdef CONFIG_SPARC64
  101. #define LDPTR LD64
  102. #define BASE_STACKFRAME 176
  103. #else
  104. #define LDPTR LD32
  105. #define BASE_STACKFRAME 96
  106. #endif
  107. #define LD32I (LD32 | IMMED)
  108. #define LD8I (LD8 | IMMED)
  109. #define LD16I (LD16 | IMMED)
  110. #define LD64I (LD64 | IMMED)
  111. #define LDPTRI (LDPTR | IMMED)
  112. #define ST32I (ST32 | IMMED)
  113. #define emit_nop() \
  114. do { \
  115. *prog++ = SETHI(0, G0); \
  116. } while (0)
  117. #define emit_neg() \
  118. do { /* sub %g0, r_A, r_A */ \
  119. *prog++ = SUB | RS1(G0) | RS2(r_A) | RD(r_A); \
  120. } while (0)
  121. #define emit_reg_move(FROM, TO) \
  122. do { /* or %g0, FROM, TO */ \
  123. *prog++ = OR | RS1(G0) | RS2(FROM) | RD(TO); \
  124. } while (0)
  125. #define emit_clear(REG) \
  126. do { /* or %g0, %g0, REG */ \
  127. *prog++ = OR | RS1(G0) | RS2(G0) | RD(REG); \
  128. } while (0)
  129. #define emit_set_const(K, REG) \
  130. do { /* sethi %hi(K), REG */ \
  131. *prog++ = SETHI(K, REG); \
  132. /* or REG, %lo(K), REG */ \
  133. *prog++ = OR_LO(K, REG); \
  134. } while (0)
  135. /* Emit
  136. *
  137. * OP r_A, r_X, r_A
  138. */
  139. #define emit_alu_X(OPCODE) \
  140. do { \
  141. seen |= SEEN_XREG; \
  142. *prog++ = OPCODE | RS1(r_A) | RS2(r_X) | RD(r_A); \
  143. } while (0)
  144. /* Emit either:
  145. *
  146. * OP r_A, K, r_A
  147. *
  148. * or
  149. *
  150. * sethi %hi(K), r_TMP
  151. * or r_TMP, %lo(K), r_TMP
  152. * OP r_A, r_TMP, r_A
  153. *
  154. * depending upon whether K fits in a signed 13-bit
  155. * immediate instruction field. Emit nothing if K
  156. * is zero.
  157. */
  158. #define emit_alu_K(OPCODE, K) \
  159. do { \
  160. if (K) { \
  161. unsigned int _insn = OPCODE; \
  162. _insn |= RS1(r_A) | RD(r_A); \
  163. if (is_simm13(K)) { \
  164. *prog++ = _insn | IMMED | S13(K); \
  165. } else { \
  166. emit_set_const(K, r_TMP); \
  167. *prog++ = _insn | RS2(r_TMP); \
  168. } \
  169. } \
  170. } while (0)
  171. #define emit_loadimm(K, DEST) \
  172. do { \
  173. if (is_simm13(K)) { \
  174. /* or %g0, K, DEST */ \
  175. *prog++ = OR | IMMED | RS1(G0) | S13(K) | RD(DEST); \
  176. } else { \
  177. emit_set_const(K, DEST); \
  178. } \
  179. } while (0)
  180. #define emit_loadptr(BASE, STRUCT, FIELD, DEST) \
  181. do { unsigned int _off = offsetof(STRUCT, FIELD); \
  182. BUILD_BUG_ON(FIELD_SIZEOF(STRUCT, FIELD) != sizeof(void *)); \
  183. *prog++ = LDPTRI | RS1(BASE) | S13(_off) | RD(DEST); \
  184. } while (0)
  185. #define emit_load32(BASE, STRUCT, FIELD, DEST) \
  186. do { unsigned int _off = offsetof(STRUCT, FIELD); \
  187. BUILD_BUG_ON(FIELD_SIZEOF(STRUCT, FIELD) != sizeof(u32)); \
  188. *prog++ = LD32I | RS1(BASE) | S13(_off) | RD(DEST); \
  189. } while (0)
  190. #define emit_load16(BASE, STRUCT, FIELD, DEST) \
  191. do { unsigned int _off = offsetof(STRUCT, FIELD); \
  192. BUILD_BUG_ON(FIELD_SIZEOF(STRUCT, FIELD) != sizeof(u16)); \
  193. *prog++ = LD16I | RS1(BASE) | S13(_off) | RD(DEST); \
  194. } while (0)
  195. #define __emit_load8(BASE, STRUCT, FIELD, DEST) \
  196. do { unsigned int _off = offsetof(STRUCT, FIELD); \
  197. *prog++ = LD8I | RS1(BASE) | S13(_off) | RD(DEST); \
  198. } while (0)
  199. #define emit_load8(BASE, STRUCT, FIELD, DEST) \
  200. do { BUILD_BUG_ON(FIELD_SIZEOF(STRUCT, FIELD) != sizeof(u8)); \
  201. __emit_load8(BASE, STRUCT, FIELD, DEST); \
  202. } while (0)
  203. #define emit_ldmem(OFF, DEST) \
  204. do { *prog++ = LD32I | RS1(FP) | S13(-(OFF)) | RD(DEST); \
  205. } while (0)
  206. #define emit_stmem(OFF, SRC) \
  207. do { *prog++ = LD32I | RS1(FP) | S13(-(OFF)) | RD(SRC); \
  208. } while (0)
  209. #ifdef CONFIG_SMP
  210. #ifdef CONFIG_SPARC64
  211. #define emit_load_cpu(REG) \
  212. emit_load16(G6, struct thread_info, cpu, REG)
  213. #else
  214. #define emit_load_cpu(REG) \
  215. emit_load32(G6, struct thread_info, cpu, REG)
  216. #endif
  217. #else
  218. #define emit_load_cpu(REG) emit_clear(REG)
  219. #endif
  220. #define emit_skb_loadptr(FIELD, DEST) \
  221. emit_loadptr(r_SKB, struct sk_buff, FIELD, DEST)
  222. #define emit_skb_load32(FIELD, DEST) \
  223. emit_load32(r_SKB, struct sk_buff, FIELD, DEST)
  224. #define emit_skb_load16(FIELD, DEST) \
  225. emit_load16(r_SKB, struct sk_buff, FIELD, DEST)
  226. #define __emit_skb_load8(FIELD, DEST) \
  227. __emit_load8(r_SKB, struct sk_buff, FIELD, DEST)
  228. #define emit_skb_load8(FIELD, DEST) \
  229. emit_load8(r_SKB, struct sk_buff, FIELD, DEST)
  230. #define emit_jmpl(BASE, IMM_OFF, LREG) \
  231. *prog++ = (JMPL | IMMED | RS1(BASE) | S13(IMM_OFF) | RD(LREG))
  232. #define emit_call(FUNC) \
  233. do { void *_here = image + addrs[i] - 8; \
  234. unsigned int _off = (void *)(FUNC) - _here; \
  235. *prog++ = CALL | (((_off) >> 2) & 0x3fffffff); \
  236. emit_nop(); \
  237. } while (0)
  238. #define emit_branch(BR_OPC, DEST) \
  239. do { unsigned int _here = addrs[i] - 8; \
  240. *prog++ = BR_OPC | WDISP22((DEST) - _here); \
  241. } while (0)
  242. #define emit_branch_off(BR_OPC, OFF) \
  243. do { *prog++ = BR_OPC | WDISP22(OFF); \
  244. } while (0)
  245. #define emit_jump(DEST) emit_branch(BA, DEST)
  246. #define emit_read_y(REG) *prog++ = RD_Y | RD(REG)
  247. #define emit_write_y(REG) *prog++ = WR_Y | IMMED | RS1(REG) | S13(0)
  248. #define emit_cmp(R1, R2) \
  249. *prog++ = (SUBCC | RS1(R1) | RS2(R2) | RD(G0))
  250. #define emit_cmpi(R1, IMM) \
  251. *prog++ = (SUBCC | IMMED | RS1(R1) | S13(IMM) | RD(G0));
  252. #define emit_btst(R1, R2) \
  253. *prog++ = (ANDCC | RS1(R1) | RS2(R2) | RD(G0))
  254. #define emit_btsti(R1, IMM) \
  255. *prog++ = (ANDCC | IMMED | RS1(R1) | S13(IMM) | RD(G0));
  256. #define emit_sub(R1, R2, R3) \
  257. *prog++ = (SUB | RS1(R1) | RS2(R2) | RD(R3))
  258. #define emit_subi(R1, IMM, R3) \
  259. *prog++ = (SUB | IMMED | RS1(R1) | S13(IMM) | RD(R3))
  260. #define emit_add(R1, R2, R3) \
  261. *prog++ = (ADD | RS1(R1) | RS2(R2) | RD(R3))
  262. #define emit_addi(R1, IMM, R3) \
  263. *prog++ = (ADD | IMMED | RS1(R1) | S13(IMM) | RD(R3))
  264. #define emit_alloc_stack(SZ) \
  265. *prog++ = (SUB | IMMED | RS1(SP) | S13(SZ) | RD(SP))
  266. #define emit_release_stack(SZ) \
  267. *prog++ = (ADD | IMMED | RS1(SP) | S13(SZ) | RD(SP))
  268. /* A note about branch offset calculations. The addrs[] array,
  269. * indexed by BPF instruction, records the address after all the
  270. * sparc instructions emitted for that BPF instruction.
  271. *
  272. * The most common case is to emit a branch at the end of such
  273. * a code sequence. So this would be two instructions, the
  274. * branch and it's delay slot.
  275. *
  276. * Therefore by default the branch emitters calculate the branch
  277. * offset field as:
  278. *
  279. * destination - (addrs[i] - 8)
  280. *
  281. * This "addrs[i] - 8" is the address of the branch itself or
  282. * what "." would be in assembler notation. The "8" part is
  283. * how we take into consideration the branch and it's delay
  284. * slot mentioned above.
  285. *
  286. * Sometimes we need to emit a branch earlier in the code
  287. * sequence. And in these situations we adjust "destination"
  288. * to accomodate this difference. For example, if we needed
  289. * to emit a branch (and it's delay slot) right before the
  290. * final instruction emitted for a BPF opcode, we'd use
  291. * "destination + 4" instead of just plain "destination" above.
  292. *
  293. * This is why you see all of these funny emit_branch() and
  294. * emit_jump() calls with adjusted offsets.
  295. */
  296. void bpf_jit_compile(struct sk_filter *fp)
  297. {
  298. unsigned int cleanup_addr, proglen, oldproglen = 0;
  299. u32 temp[8], *prog, *func, seen = 0, pass;
  300. const struct sock_filter *filter = fp->insns;
  301. int i, flen = fp->len, pc_ret0 = -1;
  302. unsigned int *addrs;
  303. void *image;
  304. if (!bpf_jit_enable)
  305. return;
  306. addrs = kmalloc(flen * sizeof(*addrs), GFP_KERNEL);
  307. if (addrs == NULL)
  308. return;
  309. /* Before first pass, make a rough estimation of addrs[]
  310. * each bpf instruction is translated to less than 64 bytes
  311. */
  312. for (proglen = 0, i = 0; i < flen; i++) {
  313. proglen += 64;
  314. addrs[i] = proglen;
  315. }
  316. cleanup_addr = proglen; /* epilogue address */
  317. image = NULL;
  318. for (pass = 0; pass < 10; pass++) {
  319. u8 seen_or_pass0 = (pass == 0) ? (SEEN_XREG | SEEN_DATAREF | SEEN_MEM) : seen;
  320. /* no prologue/epilogue for trivial filters (RET something) */
  321. proglen = 0;
  322. prog = temp;
  323. /* Prologue */
  324. if (seen_or_pass0) {
  325. if (seen_or_pass0 & SEEN_MEM) {
  326. unsigned int sz = BASE_STACKFRAME;
  327. sz += BPF_MEMWORDS * sizeof(u32);
  328. emit_alloc_stack(sz);
  329. }
  330. /* Make sure we dont leek kernel memory. */
  331. if (seen_or_pass0 & SEEN_XREG)
  332. emit_clear(r_X);
  333. /* If this filter needs to access skb data,
  334. * load %o4 and %o5 with:
  335. * %o4 = skb->len - skb->data_len
  336. * %o5 = skb->data
  337. * And also back up %o7 into r_saved_O7 so we can
  338. * invoke the stubs using 'call'.
  339. */
  340. if (seen_or_pass0 & SEEN_DATAREF) {
  341. emit_load32(r_SKB, struct sk_buff, len, r_HEADLEN);
  342. emit_load32(r_SKB, struct sk_buff, data_len, r_TMP);
  343. emit_sub(r_HEADLEN, r_TMP, r_HEADLEN);
  344. emit_loadptr(r_SKB, struct sk_buff, data, r_SKB_DATA);
  345. }
  346. }
  347. emit_reg_move(O7, r_saved_O7);
  348. switch (filter[0].code) {
  349. case BPF_S_RET_K:
  350. case BPF_S_LD_W_LEN:
  351. case BPF_S_ANC_PROTOCOL:
  352. case BPF_S_ANC_PKTTYPE:
  353. case BPF_S_ANC_IFINDEX:
  354. case BPF_S_ANC_MARK:
  355. case BPF_S_ANC_RXHASH:
  356. case BPF_S_ANC_CPU:
  357. case BPF_S_ANC_QUEUE:
  358. case BPF_S_LD_W_ABS:
  359. case BPF_S_LD_H_ABS:
  360. case BPF_S_LD_B_ABS:
  361. /* The first instruction sets the A register (or is
  362. * a "RET 'constant'")
  363. */
  364. break;
  365. default:
  366. /* Make sure we dont leak kernel information to the
  367. * user.
  368. */
  369. emit_clear(r_A); /* A = 0 */
  370. }
  371. for (i = 0; i < flen; i++) {
  372. unsigned int K = filter[i].k;
  373. unsigned int t_offset;
  374. unsigned int f_offset;
  375. u32 t_op, f_op;
  376. int ilen;
  377. switch (filter[i].code) {
  378. case BPF_S_ALU_ADD_X: /* A += X; */
  379. emit_alu_X(ADD);
  380. break;
  381. case BPF_S_ALU_ADD_K: /* A += K; */
  382. emit_alu_K(ADD, K);
  383. break;
  384. case BPF_S_ALU_SUB_X: /* A -= X; */
  385. emit_alu_X(SUB);
  386. break;
  387. case BPF_S_ALU_SUB_K: /* A -= K */
  388. emit_alu_K(SUB, K);
  389. break;
  390. case BPF_S_ALU_AND_X: /* A &= X */
  391. emit_alu_X(AND);
  392. break;
  393. case BPF_S_ALU_AND_K: /* A &= K */
  394. emit_alu_K(AND, K);
  395. break;
  396. case BPF_S_ALU_OR_X: /* A |= X */
  397. emit_alu_X(OR);
  398. break;
  399. case BPF_S_ALU_OR_K: /* A |= K */
  400. emit_alu_K(OR, K);
  401. break;
  402. case BPF_S_ALU_LSH_X: /* A <<= X */
  403. emit_alu_X(SLL);
  404. break;
  405. case BPF_S_ALU_LSH_K: /* A <<= K */
  406. emit_alu_K(SLL, K);
  407. break;
  408. case BPF_S_ALU_RSH_X: /* A >>= X */
  409. emit_alu_X(SRL);
  410. break;
  411. case BPF_S_ALU_RSH_K: /* A >>= K */
  412. emit_alu_K(SRL, K);
  413. break;
  414. case BPF_S_ALU_MUL_X: /* A *= X; */
  415. emit_alu_X(MUL);
  416. break;
  417. case BPF_S_ALU_MUL_K: /* A *= K */
  418. emit_alu_K(MUL, K);
  419. break;
  420. case BPF_S_ALU_DIV_K: /* A /= K */
  421. emit_alu_K(MUL, K);
  422. emit_read_y(r_A);
  423. break;
  424. case BPF_S_ALU_DIV_X: /* A /= X; */
  425. emit_cmpi(r_X, 0);
  426. if (pc_ret0 > 0) {
  427. t_offset = addrs[pc_ret0 - 1];
  428. #ifdef CONFIG_SPARC32
  429. emit_branch(BE, t_offset + 20);
  430. #else
  431. emit_branch(BE, t_offset + 8);
  432. #endif
  433. emit_nop(); /* delay slot */
  434. } else {
  435. emit_branch_off(BNE, 16);
  436. emit_nop();
  437. #ifdef CONFIG_SPARC32
  438. emit_jump(cleanup_addr + 20);
  439. #else
  440. emit_jump(cleanup_addr + 8);
  441. #endif
  442. emit_clear(r_A);
  443. }
  444. emit_write_y(G0);
  445. #ifdef CONFIG_SPARC32
  446. /* The Sparc v8 architecture requires
  447. * three instructions between a %y
  448. * register write and the first use.
  449. */
  450. emit_nop();
  451. emit_nop();
  452. emit_nop();
  453. #endif
  454. emit_alu_X(DIV);
  455. break;
  456. case BPF_S_ALU_NEG:
  457. emit_neg();
  458. break;
  459. case BPF_S_RET_K:
  460. if (!K) {
  461. if (pc_ret0 == -1)
  462. pc_ret0 = i;
  463. emit_clear(r_A);
  464. } else {
  465. emit_loadimm(K, r_A);
  466. }
  467. /* Fallthrough */
  468. case BPF_S_RET_A:
  469. if (seen_or_pass0) {
  470. if (i != flen - 1) {
  471. emit_jump(cleanup_addr);
  472. emit_nop();
  473. break;
  474. }
  475. if (seen_or_pass0 & SEEN_MEM) {
  476. unsigned int sz = BASE_STACKFRAME;
  477. sz += BPF_MEMWORDS * sizeof(u32);
  478. emit_release_stack(sz);
  479. }
  480. }
  481. /* jmpl %r_saved_O7 + 8, %g0 */
  482. emit_jmpl(r_saved_O7, 8, G0);
  483. emit_reg_move(r_A, O0); /* delay slot */
  484. break;
  485. case BPF_S_MISC_TAX:
  486. seen |= SEEN_XREG;
  487. emit_reg_move(r_A, r_X);
  488. break;
  489. case BPF_S_MISC_TXA:
  490. seen |= SEEN_XREG;
  491. emit_reg_move(r_X, r_A);
  492. break;
  493. case BPF_S_ANC_CPU:
  494. emit_load_cpu(r_A);
  495. break;
  496. case BPF_S_ANC_PROTOCOL:
  497. emit_skb_load16(protocol, r_A);
  498. break;
  499. #if 0
  500. /* GCC won't let us take the address of
  501. * a bit field even though we very much
  502. * know what we are doing here.
  503. */
  504. case BPF_S_ANC_PKTTYPE:
  505. __emit_skb_load8(pkt_type, r_A);
  506. emit_alu_K(SRL, 5);
  507. break;
  508. #endif
  509. case BPF_S_ANC_IFINDEX:
  510. emit_skb_loadptr(dev, r_A);
  511. emit_cmpi(r_A, 0);
  512. emit_branch(BNE_PTR, cleanup_addr + 4);
  513. emit_nop();
  514. emit_load32(r_A, struct net_device, ifindex, r_A);
  515. break;
  516. case BPF_S_ANC_MARK:
  517. emit_skb_load32(mark, r_A);
  518. break;
  519. case BPF_S_ANC_QUEUE:
  520. emit_skb_load16(queue_mapping, r_A);
  521. break;
  522. case BPF_S_ANC_HATYPE:
  523. emit_skb_loadptr(dev, r_A);
  524. emit_cmpi(r_A, 0);
  525. emit_branch(BNE_PTR, cleanup_addr + 4);
  526. emit_nop();
  527. emit_load16(r_A, struct net_device, type, r_A);
  528. break;
  529. case BPF_S_ANC_RXHASH:
  530. emit_skb_load32(rxhash, r_A);
  531. break;
  532. case BPF_S_LD_IMM:
  533. emit_loadimm(K, r_A);
  534. break;
  535. case BPF_S_LDX_IMM:
  536. emit_loadimm(K, r_X);
  537. break;
  538. case BPF_S_LD_MEM:
  539. emit_ldmem(K * 4, r_A);
  540. break;
  541. case BPF_S_LDX_MEM:
  542. emit_ldmem(K * 4, r_X);
  543. break;
  544. case BPF_S_ST:
  545. emit_stmem(K * 4, r_A);
  546. break;
  547. case BPF_S_STX:
  548. emit_stmem(K * 4, r_X);
  549. break;
  550. #define CHOOSE_LOAD_FUNC(K, func) \
  551. ((int)K < 0 ? ((int)K >= SKF_LL_OFF ? func##_negative_offset : func) : func##_positive_offset)
  552. case BPF_S_LD_W_ABS:
  553. func = CHOOSE_LOAD_FUNC(K, bpf_jit_load_word);
  554. common_load: seen |= SEEN_DATAREF;
  555. emit_loadimm(K, r_OFF);
  556. emit_call(func);
  557. break;
  558. case BPF_S_LD_H_ABS:
  559. func = CHOOSE_LOAD_FUNC(K, bpf_jit_load_half);
  560. goto common_load;
  561. case BPF_S_LD_B_ABS:
  562. func = CHOOSE_LOAD_FUNC(K, bpf_jit_load_byte);
  563. goto common_load;
  564. case BPF_S_LDX_B_MSH:
  565. func = CHOOSE_LOAD_FUNC(K, bpf_jit_load_byte_msh);
  566. goto common_load;
  567. case BPF_S_LD_W_IND:
  568. func = bpf_jit_load_word;
  569. common_load_ind: seen |= SEEN_DATAREF | SEEN_XREG;
  570. if (K) {
  571. if (is_simm13(K)) {
  572. emit_addi(r_X, K, r_OFF);
  573. } else {
  574. emit_loadimm(K, r_TMP);
  575. emit_add(r_X, r_TMP, r_OFF);
  576. }
  577. } else {
  578. emit_reg_move(r_X, r_OFF);
  579. }
  580. emit_call(func);
  581. break;
  582. case BPF_S_LD_H_IND:
  583. func = bpf_jit_load_half;
  584. goto common_load_ind;
  585. case BPF_S_LD_B_IND:
  586. func = bpf_jit_load_byte;
  587. goto common_load_ind;
  588. case BPF_S_JMP_JA:
  589. emit_jump(addrs[i + K]);
  590. emit_nop();
  591. break;
  592. #define COND_SEL(CODE, TOP, FOP) \
  593. case CODE: \
  594. t_op = TOP; \
  595. f_op = FOP; \
  596. goto cond_branch
  597. COND_SEL(BPF_S_JMP_JGT_K, BGU, BLEU);
  598. COND_SEL(BPF_S_JMP_JGE_K, BGEU, BLU);
  599. COND_SEL(BPF_S_JMP_JEQ_K, BE, BNE);
  600. COND_SEL(BPF_S_JMP_JSET_K, BNE, BE);
  601. COND_SEL(BPF_S_JMP_JGT_X, BGU, BLEU);
  602. COND_SEL(BPF_S_JMP_JGE_X, BGEU, BLU);
  603. COND_SEL(BPF_S_JMP_JEQ_X, BE, BNE);
  604. COND_SEL(BPF_S_JMP_JSET_X, BNE, BE);
  605. cond_branch: f_offset = addrs[i + filter[i].jf];
  606. t_offset = addrs[i + filter[i].jt];
  607. /* same targets, can avoid doing the test :) */
  608. if (filter[i].jt == filter[i].jf) {
  609. emit_jump(t_offset);
  610. emit_nop();
  611. break;
  612. }
  613. switch (filter[i].code) {
  614. case BPF_S_JMP_JGT_X:
  615. case BPF_S_JMP_JGE_X:
  616. case BPF_S_JMP_JEQ_X:
  617. seen |= SEEN_XREG;
  618. emit_cmp(r_A, r_X);
  619. break;
  620. case BPF_S_JMP_JSET_X:
  621. seen |= SEEN_XREG;
  622. emit_btst(r_A, r_X);
  623. break;
  624. case BPF_S_JMP_JEQ_K:
  625. case BPF_S_JMP_JGT_K:
  626. case BPF_S_JMP_JGE_K:
  627. if (is_simm13(K)) {
  628. emit_cmpi(r_A, K);
  629. } else {
  630. emit_loadimm(K, r_TMP);
  631. emit_cmp(r_A, r_TMP);
  632. }
  633. break;
  634. case BPF_S_JMP_JSET_K:
  635. if (is_simm13(K)) {
  636. emit_btsti(r_A, K);
  637. } else {
  638. emit_loadimm(K, r_TMP);
  639. emit_btst(r_A, r_TMP);
  640. }
  641. break;
  642. }
  643. if (filter[i].jt != 0) {
  644. if (filter[i].jf)
  645. t_offset += 8;
  646. emit_branch(t_op, t_offset);
  647. emit_nop(); /* delay slot */
  648. if (filter[i].jf) {
  649. emit_jump(f_offset);
  650. emit_nop();
  651. }
  652. break;
  653. }
  654. emit_branch(f_op, f_offset);
  655. emit_nop(); /* delay slot */
  656. break;
  657. default:
  658. /* hmm, too complex filter, give up with jit compiler */
  659. goto out;
  660. }
  661. ilen = (void *) prog - (void *) temp;
  662. if (image) {
  663. if (unlikely(proglen + ilen > oldproglen)) {
  664. pr_err("bpb_jit_compile fatal error\n");
  665. kfree(addrs);
  666. module_free(NULL, image);
  667. return;
  668. }
  669. memcpy(image + proglen, temp, ilen);
  670. }
  671. proglen += ilen;
  672. addrs[i] = proglen;
  673. prog = temp;
  674. }
  675. /* last bpf instruction is always a RET :
  676. * use it to give the cleanup instruction(s) addr
  677. */
  678. cleanup_addr = proglen - 8; /* jmpl; mov r_A,%o0; */
  679. if (seen_or_pass0 & SEEN_MEM)
  680. cleanup_addr -= 4; /* add %sp, X, %sp; */
  681. if (image) {
  682. if (proglen != oldproglen)
  683. pr_err("bpb_jit_compile proglen=%u != oldproglen=%u\n",
  684. proglen, oldproglen);
  685. break;
  686. }
  687. if (proglen == oldproglen) {
  688. image = module_alloc(max_t(unsigned int,
  689. proglen,
  690. sizeof(struct work_struct)));
  691. if (!image)
  692. goto out;
  693. }
  694. oldproglen = proglen;
  695. }
  696. if (bpf_jit_enable > 1)
  697. pr_err("flen=%d proglen=%u pass=%d image=%p\n",
  698. flen, proglen, pass, image);
  699. if (image) {
  700. if (bpf_jit_enable > 1)
  701. print_hex_dump(KERN_ERR, "JIT code: ", DUMP_PREFIX_ADDRESS,
  702. 16, 1, image, proglen, false);
  703. bpf_flush_icache(image, image + proglen);
  704. fp->bpf_func = (void *)image;
  705. }
  706. out:
  707. kfree(addrs);
  708. return;
  709. }
  710. static void jit_free_defer(struct work_struct *arg)
  711. {
  712. module_free(NULL, arg);
  713. }
  714. /* run from softirq, we must use a work_struct to call
  715. * module_free() from process context
  716. */
  717. void bpf_jit_free(struct sk_filter *fp)
  718. {
  719. if (fp->bpf_func != sk_run_filter) {
  720. struct work_struct *work = (struct work_struct *)fp->bpf_func;
  721. INIT_WORK(work, jit_free_defer);
  722. schedule_work(work);
  723. }
  724. }