sysctrl.c 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371
  1. /*
  2. * This program is free software; you can redistribute it and/or modify it
  3. * under the terms of the GNU General Public License version 2 as published
  4. * by the Free Software Foundation.
  5. *
  6. * Copyright (C) 2011-2012 John Crispin <blogic@openwrt.org>
  7. */
  8. #include <linux/ioport.h>
  9. #include <linux/export.h>
  10. #include <linux/clkdev.h>
  11. #include <linux/of.h>
  12. #include <linux/of_platform.h>
  13. #include <linux/of_address.h>
  14. #include <lantiq_soc.h>
  15. #include "../clk.h"
  16. #include "../prom.h"
  17. /* clock control register */
  18. #define CGU_IFCCR 0x0018
  19. /* system clock register */
  20. #define CGU_SYS 0x0010
  21. /* pci control register */
  22. #define CGU_PCICR 0x0034
  23. /* ephy configuration register */
  24. #define CGU_EPHY 0x10
  25. /* power control register */
  26. #define PMU_PWDCR 0x1C
  27. /* power status register */
  28. #define PMU_PWDSR 0x20
  29. /* power control register */
  30. #define PMU_PWDCR1 0x24
  31. /* power status register */
  32. #define PMU_PWDSR1 0x28
  33. /* power control register */
  34. #define PWDCR(x) ((x) ? (PMU_PWDCR1) : (PMU_PWDCR))
  35. /* power status register */
  36. #define PWDSR(x) ((x) ? (PMU_PWDSR1) : (PMU_PWDSR))
  37. /* clock gates that we can en/disable */
  38. #define PMU_USB0_P BIT(0)
  39. #define PMU_PCI BIT(4)
  40. #define PMU_DMA BIT(5)
  41. #define PMU_USB0 BIT(6)
  42. #define PMU_ASC0 BIT(7)
  43. #define PMU_EPHY BIT(7) /* ase */
  44. #define PMU_SPI BIT(8)
  45. #define PMU_DFE BIT(9)
  46. #define PMU_EBU BIT(10)
  47. #define PMU_STP BIT(11)
  48. #define PMU_GPT BIT(12)
  49. #define PMU_AHBS BIT(13) /* vr9 */
  50. #define PMU_FPI BIT(14)
  51. #define PMU_AHBM BIT(15)
  52. #define PMU_ASC1 BIT(17)
  53. #define PMU_PPE_QSB BIT(18)
  54. #define PMU_PPE_SLL01 BIT(19)
  55. #define PMU_PPE_TC BIT(21)
  56. #define PMU_PPE_EMA BIT(22)
  57. #define PMU_PPE_DPLUM BIT(23)
  58. #define PMU_PPE_DPLUS BIT(24)
  59. #define PMU_USB1_P BIT(26)
  60. #define PMU_USB1 BIT(27)
  61. #define PMU_SWITCH BIT(28)
  62. #define PMU_PPE_TOP BIT(29)
  63. #define PMU_GPHY BIT(30)
  64. #define PMU_PCIE_CLK BIT(31)
  65. #define PMU1_PCIE_PHY BIT(0)
  66. #define PMU1_PCIE_CTL BIT(1)
  67. #define PMU1_PCIE_PDI BIT(4)
  68. #define PMU1_PCIE_MSI BIT(5)
  69. #define pmu_w32(x, y) ltq_w32((x), pmu_membase + (y))
  70. #define pmu_r32(x) ltq_r32(pmu_membase + (x))
  71. static void __iomem *pmu_membase;
  72. void __iomem *ltq_cgu_membase;
  73. void __iomem *ltq_ebu_membase;
  74. /* legacy function kept alive to ease clkdev transition */
  75. void ltq_pmu_enable(unsigned int module)
  76. {
  77. int err = 1000000;
  78. pmu_w32(pmu_r32(PMU_PWDCR) & ~module, PMU_PWDCR);
  79. do {} while (--err && (pmu_r32(PMU_PWDSR) & module));
  80. if (!err)
  81. panic("activating PMU module failed!");
  82. }
  83. EXPORT_SYMBOL(ltq_pmu_enable);
  84. /* legacy function kept alive to ease clkdev transition */
  85. void ltq_pmu_disable(unsigned int module)
  86. {
  87. pmu_w32(pmu_r32(PMU_PWDCR) | module, PMU_PWDCR);
  88. }
  89. EXPORT_SYMBOL(ltq_pmu_disable);
  90. /* enable a hw clock */
  91. static int cgu_enable(struct clk *clk)
  92. {
  93. ltq_cgu_w32(ltq_cgu_r32(CGU_IFCCR) | clk->bits, CGU_IFCCR);
  94. return 0;
  95. }
  96. /* disable a hw clock */
  97. static void cgu_disable(struct clk *clk)
  98. {
  99. ltq_cgu_w32(ltq_cgu_r32(CGU_IFCCR) & ~clk->bits, CGU_IFCCR);
  100. }
  101. /* enable a clock gate */
  102. static int pmu_enable(struct clk *clk)
  103. {
  104. int retry = 1000000;
  105. pmu_w32(pmu_r32(PWDCR(clk->module)) & ~clk->bits,
  106. PWDCR(clk->module));
  107. do {} while (--retry && (pmu_r32(PWDSR(clk->module)) & clk->bits));
  108. if (!retry)
  109. panic("activating PMU module failed!\n");
  110. return 0;
  111. }
  112. /* disable a clock gate */
  113. static void pmu_disable(struct clk *clk)
  114. {
  115. pmu_w32(pmu_r32(PWDCR(clk->module)) | clk->bits,
  116. PWDCR(clk->module));
  117. }
  118. /* the pci enable helper */
  119. static int pci_enable(struct clk *clk)
  120. {
  121. unsigned int ifccr = ltq_cgu_r32(CGU_IFCCR);
  122. /* set bus clock speed */
  123. if (of_machine_is_compatible("lantiq,ar9")) {
  124. ifccr &= ~0x1f00000;
  125. if (clk->rate == CLOCK_33M)
  126. ifccr |= 0xe00000;
  127. else
  128. ifccr |= 0x700000; /* 62.5M */
  129. } else {
  130. ifccr &= ~0xf00000;
  131. if (clk->rate == CLOCK_33M)
  132. ifccr |= 0x800000;
  133. else
  134. ifccr |= 0x400000; /* 62.5M */
  135. }
  136. ltq_cgu_w32(ifccr, CGU_IFCCR);
  137. pmu_enable(clk);
  138. return 0;
  139. }
  140. /* enable the external clock as a source */
  141. static int pci_ext_enable(struct clk *clk)
  142. {
  143. ltq_cgu_w32(ltq_cgu_r32(CGU_IFCCR) & ~(1 << 16),
  144. CGU_IFCCR);
  145. ltq_cgu_w32((1 << 30), CGU_PCICR);
  146. return 0;
  147. }
  148. /* disable the external clock as a source */
  149. static void pci_ext_disable(struct clk *clk)
  150. {
  151. ltq_cgu_w32(ltq_cgu_r32(CGU_IFCCR) | (1 << 16),
  152. CGU_IFCCR);
  153. ltq_cgu_w32((1 << 31) | (1 << 30), CGU_PCICR);
  154. }
  155. /* enable a clockout source */
  156. static int clkout_enable(struct clk *clk)
  157. {
  158. int i;
  159. /* get the correct rate */
  160. for (i = 0; i < 4; i++) {
  161. if (clk->rates[i] == clk->rate) {
  162. int shift = 14 - (2 * clk->module);
  163. unsigned int ifccr = ltq_cgu_r32(CGU_IFCCR);
  164. ifccr &= ~(3 << shift);
  165. ifccr |= i << shift;
  166. ltq_cgu_w32(ifccr, CGU_IFCCR);
  167. return 0;
  168. }
  169. }
  170. return -1;
  171. }
  172. /* manage the clock gates via PMU */
  173. static void clkdev_add_pmu(const char *dev, const char *con,
  174. unsigned int module, unsigned int bits)
  175. {
  176. struct clk *clk = kzalloc(sizeof(struct clk), GFP_KERNEL);
  177. clk->cl.dev_id = dev;
  178. clk->cl.con_id = con;
  179. clk->cl.clk = clk;
  180. clk->enable = pmu_enable;
  181. clk->disable = pmu_disable;
  182. clk->module = module;
  183. clk->bits = bits;
  184. clkdev_add(&clk->cl);
  185. }
  186. /* manage the clock generator */
  187. static void clkdev_add_cgu(const char *dev, const char *con,
  188. unsigned int bits)
  189. {
  190. struct clk *clk = kzalloc(sizeof(struct clk), GFP_KERNEL);
  191. clk->cl.dev_id = dev;
  192. clk->cl.con_id = con;
  193. clk->cl.clk = clk;
  194. clk->enable = cgu_enable;
  195. clk->disable = cgu_disable;
  196. clk->bits = bits;
  197. clkdev_add(&clk->cl);
  198. }
  199. /* pci needs its own enable function as the setup is a bit more complex */
  200. static unsigned long valid_pci_rates[] = {CLOCK_33M, CLOCK_62_5M, 0};
  201. static void clkdev_add_pci(void)
  202. {
  203. struct clk *clk = kzalloc(sizeof(struct clk), GFP_KERNEL);
  204. struct clk *clk_ext = kzalloc(sizeof(struct clk), GFP_KERNEL);
  205. /* main pci clock */
  206. clk->cl.dev_id = "17000000.pci";
  207. clk->cl.con_id = NULL;
  208. clk->cl.clk = clk;
  209. clk->rate = CLOCK_33M;
  210. clk->rates = valid_pci_rates;
  211. clk->enable = pci_enable;
  212. clk->disable = pmu_disable;
  213. clk->module = 0;
  214. clk->bits = PMU_PCI;
  215. clkdev_add(&clk->cl);
  216. /* use internal/external bus clock */
  217. clk_ext->cl.dev_id = "17000000.pci";
  218. clk_ext->cl.con_id = "external";
  219. clk_ext->cl.clk = clk_ext;
  220. clk_ext->enable = pci_ext_enable;
  221. clk_ext->disable = pci_ext_disable;
  222. clkdev_add(&clk_ext->cl);
  223. }
  224. /* xway socs can generate clocks on gpio pins */
  225. static unsigned long valid_clkout_rates[4][5] = {
  226. {CLOCK_32_768K, CLOCK_1_536M, CLOCK_2_5M, CLOCK_12M, 0},
  227. {CLOCK_40M, CLOCK_12M, CLOCK_24M, CLOCK_48M, 0},
  228. {CLOCK_25M, CLOCK_40M, CLOCK_30M, CLOCK_60M, 0},
  229. {CLOCK_12M, CLOCK_50M, CLOCK_32_768K, CLOCK_25M, 0},
  230. };
  231. static void clkdev_add_clkout(void)
  232. {
  233. int i;
  234. for (i = 0; i < 4; i++) {
  235. struct clk *clk;
  236. char *name;
  237. name = kzalloc(sizeof("clkout0"), GFP_KERNEL);
  238. sprintf(name, "clkout%d", i);
  239. clk = kzalloc(sizeof(struct clk), GFP_KERNEL);
  240. clk->cl.dev_id = "1f103000.cgu";
  241. clk->cl.con_id = name;
  242. clk->cl.clk = clk;
  243. clk->rate = 0;
  244. clk->rates = valid_clkout_rates[i];
  245. clk->enable = clkout_enable;
  246. clk->module = i;
  247. clkdev_add(&clk->cl);
  248. }
  249. }
  250. /* bring up all register ranges that we need for basic system control */
  251. void __init ltq_soc_init(void)
  252. {
  253. struct resource res_pmu, res_cgu, res_ebu;
  254. struct device_node *np_pmu =
  255. of_find_compatible_node(NULL, NULL, "lantiq,pmu-xway");
  256. struct device_node *np_cgu =
  257. of_find_compatible_node(NULL, NULL, "lantiq,cgu-xway");
  258. struct device_node *np_ebu =
  259. of_find_compatible_node(NULL, NULL, "lantiq,ebu-xway");
  260. /* check if all the core register ranges are available */
  261. if (!np_pmu || !np_cgu || !np_ebu)
  262. panic("Failed to load core nodess from devicetree");
  263. if (of_address_to_resource(np_pmu, 0, &res_pmu) ||
  264. of_address_to_resource(np_cgu, 0, &res_cgu) ||
  265. of_address_to_resource(np_ebu, 0, &res_ebu))
  266. panic("Failed to get core resources");
  267. if ((request_mem_region(res_pmu.start, resource_size(&res_pmu),
  268. res_pmu.name) < 0) ||
  269. (request_mem_region(res_cgu.start, resource_size(&res_cgu),
  270. res_cgu.name) < 0) ||
  271. (request_mem_region(res_ebu.start, resource_size(&res_ebu),
  272. res_ebu.name) < 0))
  273. pr_err("Failed to request core reources");
  274. pmu_membase = ioremap_nocache(res_pmu.start, resource_size(&res_pmu));
  275. ltq_cgu_membase = ioremap_nocache(res_cgu.start,
  276. resource_size(&res_cgu));
  277. ltq_ebu_membase = ioremap_nocache(res_ebu.start,
  278. resource_size(&res_ebu));
  279. if (!pmu_membase || !ltq_cgu_membase || !ltq_ebu_membase)
  280. panic("Failed to remap core resources");
  281. /* make sure to unprotect the memory region where flash is located */
  282. ltq_ebu_w32(ltq_ebu_r32(LTQ_EBU_BUSCON0) & ~EBU_WRDIS, LTQ_EBU_BUSCON0);
  283. /* add our generic xway clocks */
  284. clkdev_add_pmu("10000000.fpi", NULL, 0, PMU_FPI);
  285. clkdev_add_pmu("1e100400.serial", NULL, 0, PMU_ASC0);
  286. clkdev_add_pmu("1e100a00.gptu", NULL, 0, PMU_GPT);
  287. clkdev_add_pmu("1e100bb0.stp", NULL, 0, PMU_STP);
  288. clkdev_add_pmu("1e104100.dma", NULL, 0, PMU_DMA);
  289. clkdev_add_pmu("1e100800.spi", NULL, 0, PMU_SPI);
  290. clkdev_add_pmu("1e105300.ebu", NULL, 0, PMU_EBU);
  291. clkdev_add_clkout();
  292. /* add the soc dependent clocks */
  293. if (!of_machine_is_compatible("lantiq,vr9"))
  294. clkdev_add_pmu("1e180000.etop", NULL, 0, PMU_PPE);
  295. if (!of_machine_is_compatible("lantiq,ase")) {
  296. clkdev_add_pmu("1e100c00.serial", NULL, 0, PMU_ASC1);
  297. clkdev_add_pci();
  298. }
  299. if (of_machine_is_compatible("lantiq,ase")) {
  300. if (ltq_cgu_r32(CGU_SYS) & (1 << 5))
  301. clkdev_add_static(CLOCK_266M, CLOCK_133M, CLOCK_133M);
  302. else
  303. clkdev_add_static(CLOCK_133M, CLOCK_133M, CLOCK_133M);
  304. clkdev_add_cgu("1e180000.etop", "ephycgu", CGU_EPHY),
  305. clkdev_add_pmu("1e180000.etop", "ephy", 0, PMU_EPHY);
  306. } else if (of_machine_is_compatible("lantiq,vr9")) {
  307. clkdev_add_static(ltq_vr9_cpu_hz(), ltq_vr9_fpi_hz(),
  308. ltq_vr9_fpi_hz());
  309. clkdev_add_pmu("1d900000.pcie", "phy", 1, PMU1_PCIE_PHY);
  310. clkdev_add_pmu("1d900000.pcie", "bus", 0, PMU_PCIE_CLK);
  311. clkdev_add_pmu("1d900000.pcie", "msi", 1, PMU1_PCIE_MSI);
  312. clkdev_add_pmu("1d900000.pcie", "pdi", 1, PMU1_PCIE_PDI);
  313. clkdev_add_pmu("1d900000.pcie", "ctl", 1, PMU1_PCIE_CTL);
  314. clkdev_add_pmu("1d900000.pcie", "ahb", 0, PMU_AHBM | PMU_AHBS);
  315. } else if (of_machine_is_compatible("lantiq,ar9")) {
  316. clkdev_add_static(ltq_ar9_cpu_hz(), ltq_ar9_fpi_hz(),
  317. ltq_ar9_fpi_hz());
  318. clkdev_add_pmu("1e180000.etop", "switch", 0, PMU_SWITCH);
  319. } else {
  320. clkdev_add_static(ltq_danube_cpu_hz(), ltq_danube_fpi_hz(),
  321. ltq_danube_fpi_hz());
  322. }
  323. }