integrator_ap.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480
  1. /*
  2. * linux/arch/arm/mach-integrator/integrator_ap.c
  3. *
  4. * Copyright (C) 2000-2003 Deep Blue Solutions Ltd
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation; either version 2 of the License, or
  9. * (at your option) any later version.
  10. *
  11. * This program is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU General Public License
  17. * along with this program; if not, write to the Free Software
  18. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  19. */
  20. #include <linux/types.h>
  21. #include <linux/kernel.h>
  22. #include <linux/init.h>
  23. #include <linux/list.h>
  24. #include <linux/platform_device.h>
  25. #include <linux/slab.h>
  26. #include <linux/string.h>
  27. #include <linux/syscore_ops.h>
  28. #include <linux/amba/bus.h>
  29. #include <linux/amba/kmi.h>
  30. #include <linux/clocksource.h>
  31. #include <linux/clockchips.h>
  32. #include <linux/interrupt.h>
  33. #include <linux/io.h>
  34. #include <linux/mtd/physmap.h>
  35. #include <linux/clk.h>
  36. #include <video/vga.h>
  37. #include <mach/hardware.h>
  38. #include <mach/platform.h>
  39. #include <asm/hardware/arm_timer.h>
  40. #include <asm/setup.h>
  41. #include <asm/param.h> /* HZ */
  42. #include <asm/mach-types.h>
  43. #include <asm/sched_clock.h>
  44. #include <mach/lm.h>
  45. #include <mach/irqs.h>
  46. #include <asm/mach/arch.h>
  47. #include <asm/mach/irq.h>
  48. #include <asm/mach/map.h>
  49. #include <asm/mach/time.h>
  50. #include <plat/fpga-irq.h>
  51. #include "common.h"
  52. /*
  53. * All IO addresses are mapped onto VA 0xFFFx.xxxx, where x.xxxx
  54. * is the (PA >> 12).
  55. *
  56. * Setup a VA for the Integrator interrupt controller (for header #0,
  57. * just for now).
  58. */
  59. #define VA_IC_BASE __io_address(INTEGRATOR_IC_BASE)
  60. #define VA_SC_BASE __io_address(INTEGRATOR_SC_BASE)
  61. #define VA_EBI_BASE __io_address(INTEGRATOR_EBI_BASE)
  62. #define VA_CMIC_BASE __io_address(INTEGRATOR_HDR_IC)
  63. /*
  64. * Logical Physical
  65. * e8000000 40000000 PCI memory PHYS_PCI_MEM_BASE (max 512M)
  66. * ec000000 61000000 PCI config space PHYS_PCI_CONFIG_BASE (max 16M)
  67. * ed000000 62000000 PCI V3 regs PHYS_PCI_V3_BASE (max 64k)
  68. * ee000000 60000000 PCI IO PHYS_PCI_IO_BASE (max 16M)
  69. * ef000000 Cache flush
  70. * f1000000 10000000 Core module registers
  71. * f1100000 11000000 System controller registers
  72. * f1200000 12000000 EBI registers
  73. * f1300000 13000000 Counter/Timer
  74. * f1400000 14000000 Interrupt controller
  75. * f1600000 16000000 UART 0
  76. * f1700000 17000000 UART 1
  77. * f1a00000 1a000000 Debug LEDs
  78. * f1b00000 1b000000 GPIO
  79. */
  80. static struct map_desc ap_io_desc[] __initdata = {
  81. {
  82. .virtual = IO_ADDRESS(INTEGRATOR_HDR_BASE),
  83. .pfn = __phys_to_pfn(INTEGRATOR_HDR_BASE),
  84. .length = SZ_4K,
  85. .type = MT_DEVICE
  86. }, {
  87. .virtual = IO_ADDRESS(INTEGRATOR_SC_BASE),
  88. .pfn = __phys_to_pfn(INTEGRATOR_SC_BASE),
  89. .length = SZ_4K,
  90. .type = MT_DEVICE
  91. }, {
  92. .virtual = IO_ADDRESS(INTEGRATOR_EBI_BASE),
  93. .pfn = __phys_to_pfn(INTEGRATOR_EBI_BASE),
  94. .length = SZ_4K,
  95. .type = MT_DEVICE
  96. }, {
  97. .virtual = IO_ADDRESS(INTEGRATOR_CT_BASE),
  98. .pfn = __phys_to_pfn(INTEGRATOR_CT_BASE),
  99. .length = SZ_4K,
  100. .type = MT_DEVICE
  101. }, {
  102. .virtual = IO_ADDRESS(INTEGRATOR_IC_BASE),
  103. .pfn = __phys_to_pfn(INTEGRATOR_IC_BASE),
  104. .length = SZ_4K,
  105. .type = MT_DEVICE
  106. }, {
  107. .virtual = IO_ADDRESS(INTEGRATOR_UART0_BASE),
  108. .pfn = __phys_to_pfn(INTEGRATOR_UART0_BASE),
  109. .length = SZ_4K,
  110. .type = MT_DEVICE
  111. }, {
  112. .virtual = IO_ADDRESS(INTEGRATOR_UART1_BASE),
  113. .pfn = __phys_to_pfn(INTEGRATOR_UART1_BASE),
  114. .length = SZ_4K,
  115. .type = MT_DEVICE
  116. }, {
  117. .virtual = IO_ADDRESS(INTEGRATOR_DBG_BASE),
  118. .pfn = __phys_to_pfn(INTEGRATOR_DBG_BASE),
  119. .length = SZ_4K,
  120. .type = MT_DEVICE
  121. }, {
  122. .virtual = IO_ADDRESS(INTEGRATOR_AP_GPIO_BASE),
  123. .pfn = __phys_to_pfn(INTEGRATOR_AP_GPIO_BASE),
  124. .length = SZ_4K,
  125. .type = MT_DEVICE
  126. }, {
  127. .virtual = PCI_MEMORY_VADDR,
  128. .pfn = __phys_to_pfn(PHYS_PCI_MEM_BASE),
  129. .length = SZ_16M,
  130. .type = MT_DEVICE
  131. }, {
  132. .virtual = PCI_CONFIG_VADDR,
  133. .pfn = __phys_to_pfn(PHYS_PCI_CONFIG_BASE),
  134. .length = SZ_16M,
  135. .type = MT_DEVICE
  136. }, {
  137. .virtual = PCI_V3_VADDR,
  138. .pfn = __phys_to_pfn(PHYS_PCI_V3_BASE),
  139. .length = SZ_64K,
  140. .type = MT_DEVICE
  141. }, {
  142. .virtual = PCI_IO_VADDR,
  143. .pfn = __phys_to_pfn(PHYS_PCI_IO_BASE),
  144. .length = SZ_64K,
  145. .type = MT_DEVICE
  146. }
  147. };
  148. static void __init ap_map_io(void)
  149. {
  150. iotable_init(ap_io_desc, ARRAY_SIZE(ap_io_desc));
  151. vga_base = PCI_MEMORY_VADDR;
  152. }
  153. #define INTEGRATOR_SC_VALID_INT 0x003fffff
  154. static void __init ap_init_irq(void)
  155. {
  156. /* Disable all interrupts initially. */
  157. /* Do the core module ones */
  158. writel(-1, VA_CMIC_BASE + IRQ_ENABLE_CLEAR);
  159. /* do the header card stuff next */
  160. writel(-1, VA_IC_BASE + IRQ_ENABLE_CLEAR);
  161. writel(-1, VA_IC_BASE + FIQ_ENABLE_CLEAR);
  162. fpga_irq_init(VA_IC_BASE, "SC", IRQ_PIC_START,
  163. -1, INTEGRATOR_SC_VALID_INT, NULL);
  164. }
  165. #ifdef CONFIG_PM
  166. static unsigned long ic_irq_enable;
  167. static int irq_suspend(void)
  168. {
  169. ic_irq_enable = readl(VA_IC_BASE + IRQ_ENABLE);
  170. return 0;
  171. }
  172. static void irq_resume(void)
  173. {
  174. /* disable all irq sources */
  175. writel(-1, VA_CMIC_BASE + IRQ_ENABLE_CLEAR);
  176. writel(-1, VA_IC_BASE + IRQ_ENABLE_CLEAR);
  177. writel(-1, VA_IC_BASE + FIQ_ENABLE_CLEAR);
  178. writel(ic_irq_enable, VA_IC_BASE + IRQ_ENABLE_SET);
  179. }
  180. #else
  181. #define irq_suspend NULL
  182. #define irq_resume NULL
  183. #endif
  184. static struct syscore_ops irq_syscore_ops = {
  185. .suspend = irq_suspend,
  186. .resume = irq_resume,
  187. };
  188. static int __init irq_syscore_init(void)
  189. {
  190. register_syscore_ops(&irq_syscore_ops);
  191. return 0;
  192. }
  193. device_initcall(irq_syscore_init);
  194. /*
  195. * Flash handling.
  196. */
  197. #define SC_CTRLC (VA_SC_BASE + INTEGRATOR_SC_CTRLC_OFFSET)
  198. #define SC_CTRLS (VA_SC_BASE + INTEGRATOR_SC_CTRLS_OFFSET)
  199. #define EBI_CSR1 (VA_EBI_BASE + INTEGRATOR_EBI_CSR1_OFFSET)
  200. #define EBI_LOCK (VA_EBI_BASE + INTEGRATOR_EBI_LOCK_OFFSET)
  201. static int ap_flash_init(struct platform_device *dev)
  202. {
  203. u32 tmp;
  204. writel(INTEGRATOR_SC_CTRL_nFLVPPEN | INTEGRATOR_SC_CTRL_nFLWP, SC_CTRLC);
  205. tmp = readl(EBI_CSR1) | INTEGRATOR_EBI_WRITE_ENABLE;
  206. writel(tmp, EBI_CSR1);
  207. if (!(readl(EBI_CSR1) & INTEGRATOR_EBI_WRITE_ENABLE)) {
  208. writel(0xa05f, EBI_LOCK);
  209. writel(tmp, EBI_CSR1);
  210. writel(0, EBI_LOCK);
  211. }
  212. return 0;
  213. }
  214. static void ap_flash_exit(struct platform_device *dev)
  215. {
  216. u32 tmp;
  217. writel(INTEGRATOR_SC_CTRL_nFLVPPEN | INTEGRATOR_SC_CTRL_nFLWP, SC_CTRLC);
  218. tmp = readl(EBI_CSR1) & ~INTEGRATOR_EBI_WRITE_ENABLE;
  219. writel(tmp, EBI_CSR1);
  220. if (readl(EBI_CSR1) & INTEGRATOR_EBI_WRITE_ENABLE) {
  221. writel(0xa05f, EBI_LOCK);
  222. writel(tmp, EBI_CSR1);
  223. writel(0, EBI_LOCK);
  224. }
  225. }
  226. static void ap_flash_set_vpp(struct platform_device *pdev, int on)
  227. {
  228. void __iomem *reg = on ? SC_CTRLS : SC_CTRLC;
  229. writel(INTEGRATOR_SC_CTRL_nFLVPPEN, reg);
  230. }
  231. static struct physmap_flash_data ap_flash_data = {
  232. .width = 4,
  233. .init = ap_flash_init,
  234. .exit = ap_flash_exit,
  235. .set_vpp = ap_flash_set_vpp,
  236. };
  237. static struct resource cfi_flash_resource = {
  238. .start = INTEGRATOR_FLASH_BASE,
  239. .end = INTEGRATOR_FLASH_BASE + INTEGRATOR_FLASH_SIZE - 1,
  240. .flags = IORESOURCE_MEM,
  241. };
  242. static struct platform_device cfi_flash_device = {
  243. .name = "physmap-flash",
  244. .id = 0,
  245. .dev = {
  246. .platform_data = &ap_flash_data,
  247. },
  248. .num_resources = 1,
  249. .resource = &cfi_flash_resource,
  250. };
  251. static void __init ap_init(void)
  252. {
  253. unsigned long sc_dec;
  254. int i;
  255. platform_device_register(&cfi_flash_device);
  256. sc_dec = readl(VA_SC_BASE + INTEGRATOR_SC_DEC_OFFSET);
  257. for (i = 0; i < 4; i++) {
  258. struct lm_device *lmdev;
  259. if ((sc_dec & (16 << i)) == 0)
  260. continue;
  261. lmdev = kzalloc(sizeof(struct lm_device), GFP_KERNEL);
  262. if (!lmdev)
  263. continue;
  264. lmdev->resource.start = 0xc0000000 + 0x10000000 * i;
  265. lmdev->resource.end = lmdev->resource.start + 0x0fffffff;
  266. lmdev->resource.flags = IORESOURCE_MEM;
  267. lmdev->irq = IRQ_AP_EXPINT0 + i;
  268. lmdev->id = i;
  269. lm_device_register(lmdev);
  270. }
  271. }
  272. /*
  273. * Where is the timer (VA)?
  274. */
  275. #define TIMER0_VA_BASE IO_ADDRESS(INTEGRATOR_TIMER0_BASE)
  276. #define TIMER1_VA_BASE IO_ADDRESS(INTEGRATOR_TIMER1_BASE)
  277. #define TIMER2_VA_BASE IO_ADDRESS(INTEGRATOR_TIMER2_BASE)
  278. static unsigned long timer_reload;
  279. static u32 notrace integrator_read_sched_clock(void)
  280. {
  281. return -readl((void __iomem *) TIMER2_VA_BASE + TIMER_VALUE);
  282. }
  283. static void integrator_clocksource_init(unsigned long inrate)
  284. {
  285. void __iomem *base = (void __iomem *)TIMER2_VA_BASE;
  286. u32 ctrl = TIMER_CTRL_ENABLE | TIMER_CTRL_PERIODIC;
  287. unsigned long rate = inrate;
  288. if (rate >= 1500000) {
  289. rate /= 16;
  290. ctrl |= TIMER_CTRL_DIV16;
  291. }
  292. writel(0xffff, base + TIMER_LOAD);
  293. writel(ctrl, base + TIMER_CTRL);
  294. clocksource_mmio_init(base + TIMER_VALUE, "timer2",
  295. rate, 200, 16, clocksource_mmio_readl_down);
  296. setup_sched_clock(integrator_read_sched_clock, 16, rate);
  297. }
  298. static void __iomem * const clkevt_base = (void __iomem *)TIMER1_VA_BASE;
  299. /*
  300. * IRQ handler for the timer
  301. */
  302. static irqreturn_t integrator_timer_interrupt(int irq, void *dev_id)
  303. {
  304. struct clock_event_device *evt = dev_id;
  305. /* clear the interrupt */
  306. writel(1, clkevt_base + TIMER_INTCLR);
  307. evt->event_handler(evt);
  308. return IRQ_HANDLED;
  309. }
  310. static void clkevt_set_mode(enum clock_event_mode mode, struct clock_event_device *evt)
  311. {
  312. u32 ctrl = readl(clkevt_base + TIMER_CTRL) & ~TIMER_CTRL_ENABLE;
  313. /* Disable timer */
  314. writel(ctrl, clkevt_base + TIMER_CTRL);
  315. switch (mode) {
  316. case CLOCK_EVT_MODE_PERIODIC:
  317. /* Enable the timer and start the periodic tick */
  318. writel(timer_reload, clkevt_base + TIMER_LOAD);
  319. ctrl |= TIMER_CTRL_PERIODIC | TIMER_CTRL_ENABLE;
  320. writel(ctrl, clkevt_base + TIMER_CTRL);
  321. break;
  322. case CLOCK_EVT_MODE_ONESHOT:
  323. /* Leave the timer disabled, .set_next_event will enable it */
  324. ctrl &= ~TIMER_CTRL_PERIODIC;
  325. writel(ctrl, clkevt_base + TIMER_CTRL);
  326. break;
  327. case CLOCK_EVT_MODE_UNUSED:
  328. case CLOCK_EVT_MODE_SHUTDOWN:
  329. case CLOCK_EVT_MODE_RESUME:
  330. default:
  331. /* Just leave in disabled state */
  332. break;
  333. }
  334. }
  335. static int clkevt_set_next_event(unsigned long next, struct clock_event_device *evt)
  336. {
  337. unsigned long ctrl = readl(clkevt_base + TIMER_CTRL);
  338. writel(ctrl & ~TIMER_CTRL_ENABLE, clkevt_base + TIMER_CTRL);
  339. writel(next, clkevt_base + TIMER_LOAD);
  340. writel(ctrl | TIMER_CTRL_ENABLE, clkevt_base + TIMER_CTRL);
  341. return 0;
  342. }
  343. static struct clock_event_device integrator_clockevent = {
  344. .name = "timer1",
  345. .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
  346. .set_mode = clkevt_set_mode,
  347. .set_next_event = clkevt_set_next_event,
  348. .rating = 300,
  349. };
  350. static struct irqaction integrator_timer_irq = {
  351. .name = "timer",
  352. .flags = IRQF_DISABLED | IRQF_TIMER | IRQF_IRQPOLL,
  353. .handler = integrator_timer_interrupt,
  354. .dev_id = &integrator_clockevent,
  355. };
  356. static void integrator_clockevent_init(unsigned long inrate)
  357. {
  358. unsigned long rate = inrate;
  359. unsigned int ctrl = 0;
  360. /* Calculate and program a divisor */
  361. if (rate > 0x100000 * HZ) {
  362. rate /= 256;
  363. ctrl |= TIMER_CTRL_DIV256;
  364. } else if (rate > 0x10000 * HZ) {
  365. rate /= 16;
  366. ctrl |= TIMER_CTRL_DIV16;
  367. }
  368. timer_reload = rate / HZ;
  369. writel(ctrl, clkevt_base + TIMER_CTRL);
  370. setup_irq(IRQ_TIMERINT1, &integrator_timer_irq);
  371. clockevents_config_and_register(&integrator_clockevent,
  372. rate,
  373. 1,
  374. 0xffffU);
  375. }
  376. /*
  377. * Set up timer(s).
  378. */
  379. static void __init ap_init_timer(void)
  380. {
  381. struct clk *clk;
  382. unsigned long rate;
  383. clk = clk_get_sys("ap_timer", NULL);
  384. BUG_ON(IS_ERR(clk));
  385. clk_enable(clk);
  386. rate = clk_get_rate(clk);
  387. writel(0, TIMER0_VA_BASE + TIMER_CTRL);
  388. writel(0, TIMER1_VA_BASE + TIMER_CTRL);
  389. writel(0, TIMER2_VA_BASE + TIMER_CTRL);
  390. integrator_clocksource_init(rate);
  391. integrator_clockevent_init(rate);
  392. }
  393. static struct sys_timer ap_timer = {
  394. .init = ap_init_timer,
  395. };
  396. MACHINE_START(INTEGRATOR, "ARM-Integrator")
  397. /* Maintainer: ARM Ltd/Deep Blue Solutions Ltd */
  398. .atag_offset = 0x100,
  399. .reserve = integrator_reserve,
  400. .map_io = ap_map_io,
  401. .nr_irqs = NR_IRQS_INTEGRATOR_AP,
  402. .init_early = integrator_init_early,
  403. .init_irq = ap_init_irq,
  404. .handle_irq = fpga_handle_irq,
  405. .timer = &ap_timer,
  406. .init_machine = ap_init,
  407. .restart = integrator_restart,
  408. MACHINE_END