ar9003_phy.c 55 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894
  1. /*
  2. * Copyright (c) 2010-2011 Atheros Communications Inc.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. #include <linux/export.h>
  17. #include "hw.h"
  18. #include "ar9003_phy.h"
  19. static const int firstep_table[] =
  20. /* level: 0 1 2 3 4 5 6 7 8 */
  21. { -4, -2, 0, 2, 4, 6, 8, 10, 12 }; /* lvl 0-8, default 2 */
  22. static const int cycpwrThr1_table[] =
  23. /* level: 0 1 2 3 4 5 6 7 8 */
  24. { -6, -4, -2, 0, 2, 4, 6, 8 }; /* lvl 0-7, default 3 */
  25. /*
  26. * register values to turn OFDM weak signal detection OFF
  27. */
  28. static const int m1ThreshLow_off = 127;
  29. static const int m2ThreshLow_off = 127;
  30. static const int m1Thresh_off = 127;
  31. static const int m2Thresh_off = 127;
  32. static const int m2CountThr_off = 31;
  33. static const int m2CountThrLow_off = 63;
  34. static const int m1ThreshLowExt_off = 127;
  35. static const int m2ThreshLowExt_off = 127;
  36. static const int m1ThreshExt_off = 127;
  37. static const int m2ThreshExt_off = 127;
  38. /**
  39. * ar9003_hw_set_channel - set channel on single-chip device
  40. * @ah: atheros hardware structure
  41. * @chan:
  42. *
  43. * This is the function to change channel on single-chip devices, that is
  44. * for AR9300 family of chipsets.
  45. *
  46. * This function takes the channel value in MHz and sets
  47. * hardware channel value. Assumes writes have been enabled to analog bus.
  48. *
  49. * Actual Expression,
  50. *
  51. * For 2GHz channel,
  52. * Channel Frequency = (3/4) * freq_ref * (chansel[8:0] + chanfrac[16:0]/2^17)
  53. * (freq_ref = 40MHz)
  54. *
  55. * For 5GHz channel,
  56. * Channel Frequency = (3/2) * freq_ref * (chansel[8:0] + chanfrac[16:0]/2^10)
  57. * (freq_ref = 40MHz/(24>>amodeRefSel))
  58. *
  59. * For 5GHz channels which are 5MHz spaced,
  60. * Channel Frequency = (3/2) * freq_ref * (chansel[8:0] + chanfrac[16:0]/2^17)
  61. * (freq_ref = 40MHz)
  62. */
  63. static int ar9003_hw_set_channel(struct ath_hw *ah, struct ath9k_channel *chan)
  64. {
  65. u16 bMode, fracMode = 0, aModeRefSel = 0;
  66. u32 freq, chan_frac, div, channelSel = 0, reg32 = 0;
  67. struct chan_centers centers;
  68. int loadSynthChannel;
  69. ath9k_hw_get_channel_centers(ah, chan, &centers);
  70. freq = centers.synth_center;
  71. if (freq < 4800) { /* 2 GHz, fractional mode */
  72. if (AR_SREV_9330(ah)) {
  73. if (ah->is_clk_25mhz)
  74. div = 75;
  75. else
  76. div = 120;
  77. channelSel = (freq * 4) / div;
  78. chan_frac = (((freq * 4) % div) * 0x20000) / div;
  79. channelSel = (channelSel << 17) | chan_frac;
  80. } else if (AR_SREV_9485(ah) || AR_SREV_9565(ah)) {
  81. /*
  82. * freq_ref = 40 / (refdiva >> amoderefsel);
  83. * where refdiva=1 and amoderefsel=0
  84. * ndiv = ((chan_mhz * 4) / 3) / freq_ref;
  85. * chansel = int(ndiv), chanfrac = (ndiv - chansel) * 0x20000
  86. */
  87. channelSel = (freq * 4) / 120;
  88. chan_frac = (((freq * 4) % 120) * 0x20000) / 120;
  89. channelSel = (channelSel << 17) | chan_frac;
  90. } else if (AR_SREV_9340(ah)) {
  91. if (ah->is_clk_25mhz) {
  92. channelSel = (freq * 2) / 75;
  93. chan_frac = (((freq * 2) % 75) * 0x20000) / 75;
  94. channelSel = (channelSel << 17) | chan_frac;
  95. } else {
  96. channelSel = CHANSEL_2G(freq) >> 1;
  97. }
  98. } else if (AR_SREV_9550(ah)) {
  99. if (ah->is_clk_25mhz)
  100. div = 75;
  101. else
  102. div = 120;
  103. channelSel = (freq * 4) / div;
  104. chan_frac = (((freq * 4) % div) * 0x20000) / div;
  105. channelSel = (channelSel << 17) | chan_frac;
  106. } else {
  107. channelSel = CHANSEL_2G(freq);
  108. }
  109. /* Set to 2G mode */
  110. bMode = 1;
  111. } else {
  112. if ((AR_SREV_9340(ah) || AR_SREV_9550(ah)) &&
  113. ah->is_clk_25mhz) {
  114. channelSel = freq / 75;
  115. chan_frac = ((freq % 75) * 0x20000) / 75;
  116. channelSel = (channelSel << 17) | chan_frac;
  117. } else {
  118. channelSel = CHANSEL_5G(freq);
  119. /* Doubler is ON, so, divide channelSel by 2. */
  120. channelSel >>= 1;
  121. }
  122. /* Set to 5G mode */
  123. bMode = 0;
  124. }
  125. /* Enable fractional mode for all channels */
  126. fracMode = 1;
  127. aModeRefSel = 0;
  128. loadSynthChannel = 0;
  129. reg32 = (bMode << 29);
  130. REG_WRITE(ah, AR_PHY_SYNTH_CONTROL, reg32);
  131. /* Enable Long shift Select for Synthesizer */
  132. REG_RMW_FIELD(ah, AR_PHY_65NM_CH0_SYNTH4,
  133. AR_PHY_SYNTH4_LONG_SHIFT_SELECT, 1);
  134. /* Program Synth. setting */
  135. reg32 = (channelSel << 2) | (fracMode << 30) |
  136. (aModeRefSel << 28) | (loadSynthChannel << 31);
  137. REG_WRITE(ah, AR_PHY_65NM_CH0_SYNTH7, reg32);
  138. /* Toggle Load Synth channel bit */
  139. loadSynthChannel = 1;
  140. reg32 = (channelSel << 2) | (fracMode << 30) |
  141. (aModeRefSel << 28) | (loadSynthChannel << 31);
  142. REG_WRITE(ah, AR_PHY_65NM_CH0_SYNTH7, reg32);
  143. ah->curchan = chan;
  144. return 0;
  145. }
  146. /**
  147. * ar9003_hw_spur_mitigate_mrc_cck - convert baseband spur frequency
  148. * @ah: atheros hardware structure
  149. * @chan:
  150. *
  151. * For single-chip solutions. Converts to baseband spur frequency given the
  152. * input channel frequency and compute register settings below.
  153. *
  154. * Spur mitigation for MRC CCK
  155. */
  156. static void ar9003_hw_spur_mitigate_mrc_cck(struct ath_hw *ah,
  157. struct ath9k_channel *chan)
  158. {
  159. static const u32 spur_freq[4] = { 2420, 2440, 2464, 2480 };
  160. int cur_bb_spur, negative = 0, cck_spur_freq;
  161. int i;
  162. int range, max_spur_cnts, synth_freq;
  163. u8 *spur_fbin_ptr = ar9003_get_spur_chan_ptr(ah, IS_CHAN_2GHZ(chan));
  164. /*
  165. * Need to verify range +/- 10 MHz in control channel, otherwise spur
  166. * is out-of-band and can be ignored.
  167. */
  168. if (AR_SREV_9485(ah) || AR_SREV_9340(ah) || AR_SREV_9330(ah) ||
  169. AR_SREV_9550(ah)) {
  170. if (spur_fbin_ptr[0] == 0) /* No spur */
  171. return;
  172. max_spur_cnts = 5;
  173. if (IS_CHAN_HT40(chan)) {
  174. range = 19;
  175. if (REG_READ_FIELD(ah, AR_PHY_GEN_CTRL,
  176. AR_PHY_GC_DYN2040_PRI_CH) == 0)
  177. synth_freq = chan->channel + 10;
  178. else
  179. synth_freq = chan->channel - 10;
  180. } else {
  181. range = 10;
  182. synth_freq = chan->channel;
  183. }
  184. } else {
  185. range = AR_SREV_9462(ah) ? 5 : 10;
  186. max_spur_cnts = 4;
  187. synth_freq = chan->channel;
  188. }
  189. for (i = 0; i < max_spur_cnts; i++) {
  190. if (AR_SREV_9462(ah) && (i == 0 || i == 3))
  191. continue;
  192. negative = 0;
  193. if (AR_SREV_9485(ah) || AR_SREV_9340(ah) || AR_SREV_9330(ah) ||
  194. AR_SREV_9550(ah))
  195. cur_bb_spur = ath9k_hw_fbin2freq(spur_fbin_ptr[i],
  196. IS_CHAN_2GHZ(chan));
  197. else
  198. cur_bb_spur = spur_freq[i];
  199. cur_bb_spur -= synth_freq;
  200. if (cur_bb_spur < 0) {
  201. negative = 1;
  202. cur_bb_spur = -cur_bb_spur;
  203. }
  204. if (cur_bb_spur < range) {
  205. cck_spur_freq = (int)((cur_bb_spur << 19) / 11);
  206. if (negative == 1)
  207. cck_spur_freq = -cck_spur_freq;
  208. cck_spur_freq = cck_spur_freq & 0xfffff;
  209. REG_RMW_FIELD(ah, AR_PHY_AGC_CONTROL,
  210. AR_PHY_AGC_CONTROL_YCOK_MAX, 0x7);
  211. REG_RMW_FIELD(ah, AR_PHY_CCK_SPUR_MIT,
  212. AR_PHY_CCK_SPUR_MIT_SPUR_RSSI_THR, 0x7f);
  213. REG_RMW_FIELD(ah, AR_PHY_CCK_SPUR_MIT,
  214. AR_PHY_CCK_SPUR_MIT_SPUR_FILTER_TYPE,
  215. 0x2);
  216. REG_RMW_FIELD(ah, AR_PHY_CCK_SPUR_MIT,
  217. AR_PHY_CCK_SPUR_MIT_USE_CCK_SPUR_MIT,
  218. 0x1);
  219. REG_RMW_FIELD(ah, AR_PHY_CCK_SPUR_MIT,
  220. AR_PHY_CCK_SPUR_MIT_CCK_SPUR_FREQ,
  221. cck_spur_freq);
  222. return;
  223. }
  224. }
  225. REG_RMW_FIELD(ah, AR_PHY_AGC_CONTROL,
  226. AR_PHY_AGC_CONTROL_YCOK_MAX, 0x5);
  227. REG_RMW_FIELD(ah, AR_PHY_CCK_SPUR_MIT,
  228. AR_PHY_CCK_SPUR_MIT_USE_CCK_SPUR_MIT, 0x0);
  229. REG_RMW_FIELD(ah, AR_PHY_CCK_SPUR_MIT,
  230. AR_PHY_CCK_SPUR_MIT_CCK_SPUR_FREQ, 0x0);
  231. }
  232. /* Clean all spur register fields */
  233. static void ar9003_hw_spur_ofdm_clear(struct ath_hw *ah)
  234. {
  235. REG_RMW_FIELD(ah, AR_PHY_TIMING4,
  236. AR_PHY_TIMING4_ENABLE_SPUR_FILTER, 0);
  237. REG_RMW_FIELD(ah, AR_PHY_TIMING11,
  238. AR_PHY_TIMING11_SPUR_FREQ_SD, 0);
  239. REG_RMW_FIELD(ah, AR_PHY_TIMING11,
  240. AR_PHY_TIMING11_SPUR_DELTA_PHASE, 0);
  241. REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
  242. AR_PHY_SFCORR_EXT_SPUR_SUBCHANNEL_SD, 0);
  243. REG_RMW_FIELD(ah, AR_PHY_TIMING11,
  244. AR_PHY_TIMING11_USE_SPUR_FILTER_IN_AGC, 0);
  245. REG_RMW_FIELD(ah, AR_PHY_TIMING11,
  246. AR_PHY_TIMING11_USE_SPUR_FILTER_IN_SELFCOR, 0);
  247. REG_RMW_FIELD(ah, AR_PHY_TIMING4,
  248. AR_PHY_TIMING4_ENABLE_SPUR_RSSI, 0);
  249. REG_RMW_FIELD(ah, AR_PHY_SPUR_REG,
  250. AR_PHY_SPUR_REG_EN_VIT_SPUR_RSSI, 0);
  251. REG_RMW_FIELD(ah, AR_PHY_SPUR_REG,
  252. AR_PHY_SPUR_REG_ENABLE_NF_RSSI_SPUR_MIT, 0);
  253. REG_RMW_FIELD(ah, AR_PHY_SPUR_REG,
  254. AR_PHY_SPUR_REG_ENABLE_MASK_PPM, 0);
  255. REG_RMW_FIELD(ah, AR_PHY_TIMING4,
  256. AR_PHY_TIMING4_ENABLE_PILOT_MASK, 0);
  257. REG_RMW_FIELD(ah, AR_PHY_TIMING4,
  258. AR_PHY_TIMING4_ENABLE_CHAN_MASK, 0);
  259. REG_RMW_FIELD(ah, AR_PHY_PILOT_SPUR_MASK,
  260. AR_PHY_PILOT_SPUR_MASK_CF_PILOT_MASK_IDX_A, 0);
  261. REG_RMW_FIELD(ah, AR_PHY_SPUR_MASK_A,
  262. AR_PHY_SPUR_MASK_A_CF_PUNC_MASK_IDX_A, 0);
  263. REG_RMW_FIELD(ah, AR_PHY_CHAN_SPUR_MASK,
  264. AR_PHY_CHAN_SPUR_MASK_CF_CHAN_MASK_IDX_A, 0);
  265. REG_RMW_FIELD(ah, AR_PHY_PILOT_SPUR_MASK,
  266. AR_PHY_PILOT_SPUR_MASK_CF_PILOT_MASK_A, 0);
  267. REG_RMW_FIELD(ah, AR_PHY_CHAN_SPUR_MASK,
  268. AR_PHY_CHAN_SPUR_MASK_CF_CHAN_MASK_A, 0);
  269. REG_RMW_FIELD(ah, AR_PHY_SPUR_MASK_A,
  270. AR_PHY_SPUR_MASK_A_CF_PUNC_MASK_A, 0);
  271. REG_RMW_FIELD(ah, AR_PHY_SPUR_REG,
  272. AR_PHY_SPUR_REG_MASK_RATE_CNTL, 0);
  273. }
  274. static void ar9003_hw_spur_ofdm(struct ath_hw *ah,
  275. int freq_offset,
  276. int spur_freq_sd,
  277. int spur_delta_phase,
  278. int spur_subchannel_sd,
  279. int range,
  280. int synth_freq)
  281. {
  282. int mask_index = 0;
  283. /* OFDM Spur mitigation */
  284. REG_RMW_FIELD(ah, AR_PHY_TIMING4,
  285. AR_PHY_TIMING4_ENABLE_SPUR_FILTER, 0x1);
  286. REG_RMW_FIELD(ah, AR_PHY_TIMING11,
  287. AR_PHY_TIMING11_SPUR_FREQ_SD, spur_freq_sd);
  288. REG_RMW_FIELD(ah, AR_PHY_TIMING11,
  289. AR_PHY_TIMING11_SPUR_DELTA_PHASE, spur_delta_phase);
  290. REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
  291. AR_PHY_SFCORR_EXT_SPUR_SUBCHANNEL_SD, spur_subchannel_sd);
  292. REG_RMW_FIELD(ah, AR_PHY_TIMING11,
  293. AR_PHY_TIMING11_USE_SPUR_FILTER_IN_AGC, 0x1);
  294. if (!(AR_SREV_9565(ah) && range == 10 && synth_freq == 2437))
  295. REG_RMW_FIELD(ah, AR_PHY_TIMING11,
  296. AR_PHY_TIMING11_USE_SPUR_FILTER_IN_SELFCOR, 0x1);
  297. REG_RMW_FIELD(ah, AR_PHY_TIMING4,
  298. AR_PHY_TIMING4_ENABLE_SPUR_RSSI, 0x1);
  299. REG_RMW_FIELD(ah, AR_PHY_SPUR_REG,
  300. AR_PHY_SPUR_REG_SPUR_RSSI_THRESH, 34);
  301. REG_RMW_FIELD(ah, AR_PHY_SPUR_REG,
  302. AR_PHY_SPUR_REG_EN_VIT_SPUR_RSSI, 1);
  303. if (!AR_SREV_9340(ah) &&
  304. REG_READ_FIELD(ah, AR_PHY_MODE,
  305. AR_PHY_MODE_DYNAMIC) == 0x1)
  306. REG_RMW_FIELD(ah, AR_PHY_SPUR_REG,
  307. AR_PHY_SPUR_REG_ENABLE_NF_RSSI_SPUR_MIT, 1);
  308. mask_index = (freq_offset << 4) / 5;
  309. if (mask_index < 0)
  310. mask_index = mask_index - 1;
  311. mask_index = mask_index & 0x7f;
  312. REG_RMW_FIELD(ah, AR_PHY_SPUR_REG,
  313. AR_PHY_SPUR_REG_ENABLE_MASK_PPM, 0x1);
  314. REG_RMW_FIELD(ah, AR_PHY_TIMING4,
  315. AR_PHY_TIMING4_ENABLE_PILOT_MASK, 0x1);
  316. REG_RMW_FIELD(ah, AR_PHY_TIMING4,
  317. AR_PHY_TIMING4_ENABLE_CHAN_MASK, 0x1);
  318. REG_RMW_FIELD(ah, AR_PHY_PILOT_SPUR_MASK,
  319. AR_PHY_PILOT_SPUR_MASK_CF_PILOT_MASK_IDX_A, mask_index);
  320. REG_RMW_FIELD(ah, AR_PHY_SPUR_MASK_A,
  321. AR_PHY_SPUR_MASK_A_CF_PUNC_MASK_IDX_A, mask_index);
  322. REG_RMW_FIELD(ah, AR_PHY_CHAN_SPUR_MASK,
  323. AR_PHY_CHAN_SPUR_MASK_CF_CHAN_MASK_IDX_A, mask_index);
  324. REG_RMW_FIELD(ah, AR_PHY_PILOT_SPUR_MASK,
  325. AR_PHY_PILOT_SPUR_MASK_CF_PILOT_MASK_A, 0xc);
  326. REG_RMW_FIELD(ah, AR_PHY_CHAN_SPUR_MASK,
  327. AR_PHY_CHAN_SPUR_MASK_CF_CHAN_MASK_A, 0xc);
  328. REG_RMW_FIELD(ah, AR_PHY_SPUR_MASK_A,
  329. AR_PHY_SPUR_MASK_A_CF_PUNC_MASK_A, 0xa0);
  330. REG_RMW_FIELD(ah, AR_PHY_SPUR_REG,
  331. AR_PHY_SPUR_REG_MASK_RATE_CNTL, 0xff);
  332. }
  333. static void ar9003_hw_spur_ofdm_9565(struct ath_hw *ah,
  334. int freq_offset)
  335. {
  336. int mask_index = 0;
  337. mask_index = (freq_offset << 4) / 5;
  338. if (mask_index < 0)
  339. mask_index = mask_index - 1;
  340. mask_index = mask_index & 0x7f;
  341. REG_RMW_FIELD(ah, AR_PHY_PILOT_SPUR_MASK,
  342. AR_PHY_PILOT_SPUR_MASK_CF_PILOT_MASK_IDX_B,
  343. mask_index);
  344. /* A == B */
  345. REG_RMW_FIELD(ah, AR_PHY_SPUR_MASK_B,
  346. AR_PHY_SPUR_MASK_A_CF_PUNC_MASK_IDX_A,
  347. mask_index);
  348. REG_RMW_FIELD(ah, AR_PHY_CHAN_SPUR_MASK,
  349. AR_PHY_CHAN_SPUR_MASK_CF_CHAN_MASK_IDX_B,
  350. mask_index);
  351. REG_RMW_FIELD(ah, AR_PHY_PILOT_SPUR_MASK,
  352. AR_PHY_PILOT_SPUR_MASK_CF_PILOT_MASK_B, 0xe);
  353. REG_RMW_FIELD(ah, AR_PHY_CHAN_SPUR_MASK,
  354. AR_PHY_CHAN_SPUR_MASK_CF_CHAN_MASK_B, 0xe);
  355. /* A == B */
  356. REG_RMW_FIELD(ah, AR_PHY_SPUR_MASK_B,
  357. AR_PHY_SPUR_MASK_A_CF_PUNC_MASK_A, 0xa0);
  358. }
  359. static void ar9003_hw_spur_ofdm_work(struct ath_hw *ah,
  360. struct ath9k_channel *chan,
  361. int freq_offset,
  362. int range,
  363. int synth_freq)
  364. {
  365. int spur_freq_sd = 0;
  366. int spur_subchannel_sd = 0;
  367. int spur_delta_phase = 0;
  368. if (IS_CHAN_HT40(chan)) {
  369. if (freq_offset < 0) {
  370. if (REG_READ_FIELD(ah, AR_PHY_GEN_CTRL,
  371. AR_PHY_GC_DYN2040_PRI_CH) == 0x0)
  372. spur_subchannel_sd = 1;
  373. else
  374. spur_subchannel_sd = 0;
  375. spur_freq_sd = ((freq_offset + 10) << 9) / 11;
  376. } else {
  377. if (REG_READ_FIELD(ah, AR_PHY_GEN_CTRL,
  378. AR_PHY_GC_DYN2040_PRI_CH) == 0x0)
  379. spur_subchannel_sd = 0;
  380. else
  381. spur_subchannel_sd = 1;
  382. spur_freq_sd = ((freq_offset - 10) << 9) / 11;
  383. }
  384. spur_delta_phase = (freq_offset << 17) / 5;
  385. } else {
  386. spur_subchannel_sd = 0;
  387. spur_freq_sd = (freq_offset << 9) /11;
  388. spur_delta_phase = (freq_offset << 18) / 5;
  389. }
  390. spur_freq_sd = spur_freq_sd & 0x3ff;
  391. spur_delta_phase = spur_delta_phase & 0xfffff;
  392. ar9003_hw_spur_ofdm(ah,
  393. freq_offset,
  394. spur_freq_sd,
  395. spur_delta_phase,
  396. spur_subchannel_sd,
  397. range, synth_freq);
  398. }
  399. /* Spur mitigation for OFDM */
  400. static void ar9003_hw_spur_mitigate_ofdm(struct ath_hw *ah,
  401. struct ath9k_channel *chan)
  402. {
  403. int synth_freq;
  404. int range = 10;
  405. int freq_offset = 0;
  406. int mode;
  407. u8* spurChansPtr;
  408. unsigned int i;
  409. struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
  410. if (IS_CHAN_5GHZ(chan)) {
  411. spurChansPtr = &(eep->modalHeader5G.spurChans[0]);
  412. mode = 0;
  413. }
  414. else {
  415. spurChansPtr = &(eep->modalHeader2G.spurChans[0]);
  416. mode = 1;
  417. }
  418. if (spurChansPtr[0] == 0)
  419. return; /* No spur in the mode */
  420. if (IS_CHAN_HT40(chan)) {
  421. range = 19;
  422. if (REG_READ_FIELD(ah, AR_PHY_GEN_CTRL,
  423. AR_PHY_GC_DYN2040_PRI_CH) == 0x0)
  424. synth_freq = chan->channel - 10;
  425. else
  426. synth_freq = chan->channel + 10;
  427. } else {
  428. range = 10;
  429. synth_freq = chan->channel;
  430. }
  431. ar9003_hw_spur_ofdm_clear(ah);
  432. for (i = 0; i < AR_EEPROM_MODAL_SPURS && spurChansPtr[i]; i++) {
  433. freq_offset = ath9k_hw_fbin2freq(spurChansPtr[i], mode);
  434. freq_offset -= synth_freq;
  435. if (abs(freq_offset) < range) {
  436. ar9003_hw_spur_ofdm_work(ah, chan, freq_offset,
  437. range, synth_freq);
  438. if (AR_SREV_9565(ah) && (i < 4)) {
  439. freq_offset = ath9k_hw_fbin2freq(spurChansPtr[i + 1],
  440. mode);
  441. freq_offset -= synth_freq;
  442. if (abs(freq_offset) < range)
  443. ar9003_hw_spur_ofdm_9565(ah, freq_offset);
  444. }
  445. break;
  446. }
  447. }
  448. }
  449. static void ar9003_hw_spur_mitigate(struct ath_hw *ah,
  450. struct ath9k_channel *chan)
  451. {
  452. if (!AR_SREV_9565(ah))
  453. ar9003_hw_spur_mitigate_mrc_cck(ah, chan);
  454. ar9003_hw_spur_mitigate_ofdm(ah, chan);
  455. }
  456. static u32 ar9003_hw_compute_pll_control(struct ath_hw *ah,
  457. struct ath9k_channel *chan)
  458. {
  459. u32 pll;
  460. pll = SM(0x5, AR_RTC_9300_PLL_REFDIV);
  461. if (chan && IS_CHAN_HALF_RATE(chan))
  462. pll |= SM(0x1, AR_RTC_9300_PLL_CLKSEL);
  463. else if (chan && IS_CHAN_QUARTER_RATE(chan))
  464. pll |= SM(0x2, AR_RTC_9300_PLL_CLKSEL);
  465. pll |= SM(0x2c, AR_RTC_9300_PLL_DIV);
  466. return pll;
  467. }
  468. static void ar9003_hw_set_channel_regs(struct ath_hw *ah,
  469. struct ath9k_channel *chan)
  470. {
  471. u32 phymode;
  472. u32 enableDacFifo = 0;
  473. enableDacFifo =
  474. (REG_READ(ah, AR_PHY_GEN_CTRL) & AR_PHY_GC_ENABLE_DAC_FIFO);
  475. /* Enable 11n HT, 20 MHz */
  476. phymode = AR_PHY_GC_HT_EN | AR_PHY_GC_SINGLE_HT_LTF1 |
  477. AR_PHY_GC_SHORT_GI_40 | enableDacFifo;
  478. /* Configure baseband for dynamic 20/40 operation */
  479. if (IS_CHAN_HT40(chan)) {
  480. phymode |= AR_PHY_GC_DYN2040_EN;
  481. /* Configure control (primary) channel at +-10MHz */
  482. if (IS_CHAN_HT40PLUS(chan))
  483. phymode |= AR_PHY_GC_DYN2040_PRI_CH;
  484. }
  485. /* make sure we preserve INI settings */
  486. phymode |= REG_READ(ah, AR_PHY_GEN_CTRL);
  487. /* turn off Green Field detection for STA for now */
  488. phymode &= ~AR_PHY_GC_GF_DETECT_EN;
  489. REG_WRITE(ah, AR_PHY_GEN_CTRL, phymode);
  490. /* Configure MAC for 20/40 operation */
  491. ath9k_hw_set11nmac2040(ah, chan);
  492. /* global transmit timeout (25 TUs default)*/
  493. REG_WRITE(ah, AR_GTXTO, 25 << AR_GTXTO_TIMEOUT_LIMIT_S);
  494. /* carrier sense timeout */
  495. REG_WRITE(ah, AR_CST, 0xF << AR_CST_TIMEOUT_LIMIT_S);
  496. }
  497. static void ar9003_hw_init_bb(struct ath_hw *ah,
  498. struct ath9k_channel *chan)
  499. {
  500. u32 synthDelay;
  501. /*
  502. * Wait for the frequency synth to settle (synth goes on
  503. * via AR_PHY_ACTIVE_EN). Read the phy active delay register.
  504. * Value is in 100ns increments.
  505. */
  506. synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
  507. /* Activate the PHY (includes baseband activate + synthesizer on) */
  508. REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
  509. ath9k_hw_synth_delay(ah, chan, synthDelay);
  510. }
  511. void ar9003_hw_set_chain_masks(struct ath_hw *ah, u8 rx, u8 tx)
  512. {
  513. if (ah->caps.tx_chainmask == 5 || ah->caps.rx_chainmask == 5)
  514. REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP,
  515. AR_PHY_SWAP_ALT_CHAIN);
  516. REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx);
  517. REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx);
  518. if ((ah->caps.hw_caps & ATH9K_HW_CAP_APM) && (tx == 0x7))
  519. tx = 3;
  520. REG_WRITE(ah, AR_SELFGEN_MASK, tx);
  521. }
  522. /*
  523. * Override INI values with chip specific configuration.
  524. */
  525. static void ar9003_hw_override_ini(struct ath_hw *ah)
  526. {
  527. u32 val;
  528. /*
  529. * Set the RX_ABORT and RX_DIS and clear it only after
  530. * RXE is set for MAC. This prevents frames with
  531. * corrupted descriptor status.
  532. */
  533. REG_SET_BIT(ah, AR_DIAG_SW, (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
  534. /*
  535. * For AR9280 and above, there is a new feature that allows
  536. * Multicast search based on both MAC Address and Key ID. By default,
  537. * this feature is enabled. But since the driver is not using this
  538. * feature, we switch it off; otherwise multicast search based on
  539. * MAC addr only will fail.
  540. */
  541. val = REG_READ(ah, AR_PCU_MISC_MODE2) & (~AR_ADHOC_MCAST_KEYID_ENABLE);
  542. val |= AR_AGG_WEP_ENABLE_FIX |
  543. AR_AGG_WEP_ENABLE |
  544. AR_PCU_MISC_MODE2_CFP_IGNORE;
  545. REG_WRITE(ah, AR_PCU_MISC_MODE2, val);
  546. if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
  547. REG_WRITE(ah, AR_GLB_SWREG_DISCONT_MODE,
  548. AR_GLB_SWREG_DISCONT_EN_BT_WLAN);
  549. if (REG_READ_FIELD(ah, AR_PHY_TX_IQCAL_CONTROL_0,
  550. AR_PHY_TX_IQCAL_CONTROL_0_ENABLE_TXIQ_CAL))
  551. ah->enabled_cals |= TX_IQ_CAL;
  552. else
  553. ah->enabled_cals &= ~TX_IQ_CAL;
  554. if (REG_READ(ah, AR_PHY_CL_CAL_CTL) & AR_PHY_CL_CAL_ENABLE)
  555. ah->enabled_cals |= TX_CL_CAL;
  556. else
  557. ah->enabled_cals &= ~TX_CL_CAL;
  558. }
  559. }
  560. static void ar9003_hw_prog_ini(struct ath_hw *ah,
  561. struct ar5416IniArray *iniArr,
  562. int column)
  563. {
  564. unsigned int i, regWrites = 0;
  565. /* New INI format: Array may be undefined (pre, core, post arrays) */
  566. if (!iniArr->ia_array)
  567. return;
  568. /*
  569. * New INI format: Pre, core, and post arrays for a given subsystem
  570. * may be modal (> 2 columns) or non-modal (2 columns). Determine if
  571. * the array is non-modal and force the column to 1.
  572. */
  573. if (column >= iniArr->ia_columns)
  574. column = 1;
  575. for (i = 0; i < iniArr->ia_rows; i++) {
  576. u32 reg = INI_RA(iniArr, i, 0);
  577. u32 val = INI_RA(iniArr, i, column);
  578. REG_WRITE(ah, reg, val);
  579. DO_DELAY(regWrites);
  580. }
  581. }
  582. static int ar9550_hw_get_modes_txgain_index(struct ath_hw *ah,
  583. struct ath9k_channel *chan)
  584. {
  585. int ret;
  586. if (IS_CHAN_2GHZ(chan)) {
  587. if (IS_CHAN_HT40(chan))
  588. return 7;
  589. else
  590. return 8;
  591. }
  592. if (chan->channel <= 5350)
  593. ret = 1;
  594. else if ((chan->channel > 5350) && (chan->channel <= 5600))
  595. ret = 3;
  596. else
  597. ret = 5;
  598. if (IS_CHAN_HT40(chan))
  599. ret++;
  600. return ret;
  601. }
  602. static int ar9003_hw_process_ini(struct ath_hw *ah,
  603. struct ath9k_channel *chan)
  604. {
  605. unsigned int regWrites = 0, i;
  606. u32 modesIndex;
  607. if (IS_CHAN_5GHZ(chan))
  608. modesIndex = IS_CHAN_HT40(chan) ? 2 : 1;
  609. else
  610. modesIndex = IS_CHAN_HT40(chan) ? 3 : 4;
  611. /*
  612. * SOC, MAC, BB, RADIO initvals.
  613. */
  614. for (i = 0; i < ATH_INI_NUM_SPLIT; i++) {
  615. ar9003_hw_prog_ini(ah, &ah->iniSOC[i], modesIndex);
  616. ar9003_hw_prog_ini(ah, &ah->iniMac[i], modesIndex);
  617. ar9003_hw_prog_ini(ah, &ah->iniBB[i], modesIndex);
  618. ar9003_hw_prog_ini(ah, &ah->iniRadio[i], modesIndex);
  619. if (i == ATH_INI_POST && AR_SREV_9462_20_OR_LATER(ah))
  620. ar9003_hw_prog_ini(ah,
  621. &ah->ini_radio_post_sys2ant,
  622. modesIndex);
  623. }
  624. /*
  625. * RXGAIN initvals.
  626. */
  627. REG_WRITE_ARRAY(&ah->iniModesRxGain, 1, regWrites);
  628. if (AR_SREV_9462_20_OR_LATER(ah)) {
  629. /*
  630. * CUS217 mix LNA mode.
  631. */
  632. if (ar9003_hw_get_rx_gain_idx(ah) == 2) {
  633. REG_WRITE_ARRAY(&ah->ini_modes_rxgain_bb_core,
  634. 1, regWrites);
  635. REG_WRITE_ARRAY(&ah->ini_modes_rxgain_bb_postamble,
  636. modesIndex, regWrites);
  637. }
  638. /*
  639. * 5G-XLNA
  640. */
  641. if ((ar9003_hw_get_rx_gain_idx(ah) == 2) ||
  642. (ar9003_hw_get_rx_gain_idx(ah) == 3)) {
  643. REG_WRITE_ARRAY(&ah->ini_modes_rxgain_5g_xlna,
  644. modesIndex, regWrites);
  645. }
  646. }
  647. if (AR_SREV_9550(ah))
  648. REG_WRITE_ARRAY(&ah->ini_modes_rx_gain_bounds, modesIndex,
  649. regWrites);
  650. /*
  651. * TXGAIN initvals.
  652. */
  653. if (AR_SREV_9550(ah)) {
  654. int modes_txgain_index;
  655. modes_txgain_index = ar9550_hw_get_modes_txgain_index(ah, chan);
  656. if (modes_txgain_index < 0)
  657. return -EINVAL;
  658. REG_WRITE_ARRAY(&ah->iniModesTxGain, modes_txgain_index,
  659. regWrites);
  660. } else {
  661. REG_WRITE_ARRAY(&ah->iniModesTxGain, modesIndex, regWrites);
  662. }
  663. /*
  664. * For 5GHz channels requiring Fast Clock, apply
  665. * different modal values.
  666. */
  667. if (IS_CHAN_A_FAST_CLOCK(ah, chan))
  668. REG_WRITE_ARRAY(&ah->iniModesFastClock,
  669. modesIndex, regWrites);
  670. /*
  671. * Clock frequency initvals.
  672. */
  673. REG_WRITE_ARRAY(&ah->iniAdditional, 1, regWrites);
  674. /*
  675. * JAPAN regulatory.
  676. */
  677. if (chan->channel == 2484)
  678. ar9003_hw_prog_ini(ah, &ah->iniCckfirJapan2484, 1);
  679. ah->modes_index = modesIndex;
  680. ar9003_hw_override_ini(ah);
  681. ar9003_hw_set_channel_regs(ah, chan);
  682. ar9003_hw_set_chain_masks(ah, ah->rxchainmask, ah->txchainmask);
  683. ath9k_hw_apply_txpower(ah, chan, false);
  684. return 0;
  685. }
  686. static void ar9003_hw_set_rfmode(struct ath_hw *ah,
  687. struct ath9k_channel *chan)
  688. {
  689. u32 rfMode = 0;
  690. if (chan == NULL)
  691. return;
  692. if (IS_CHAN_2GHZ(chan))
  693. rfMode |= AR_PHY_MODE_DYNAMIC;
  694. else
  695. rfMode |= AR_PHY_MODE_OFDM;
  696. if (IS_CHAN_A_FAST_CLOCK(ah, chan))
  697. rfMode |= (AR_PHY_MODE_DYNAMIC | AR_PHY_MODE_DYN_CCK_DISABLE);
  698. if (IS_CHAN_QUARTER_RATE(chan))
  699. rfMode |= AR_PHY_MODE_QUARTER;
  700. if (IS_CHAN_HALF_RATE(chan))
  701. rfMode |= AR_PHY_MODE_HALF;
  702. if (rfMode & (AR_PHY_MODE_QUARTER | AR_PHY_MODE_HALF))
  703. REG_RMW_FIELD(ah, AR_PHY_FRAME_CTL,
  704. AR_PHY_FRAME_CTL_CF_OVERLAP_WINDOW, 3);
  705. REG_WRITE(ah, AR_PHY_MODE, rfMode);
  706. }
  707. static void ar9003_hw_mark_phy_inactive(struct ath_hw *ah)
  708. {
  709. REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS);
  710. }
  711. static void ar9003_hw_set_delta_slope(struct ath_hw *ah,
  712. struct ath9k_channel *chan)
  713. {
  714. u32 coef_scaled, ds_coef_exp, ds_coef_man;
  715. u32 clockMhzScaled = 0x64000000;
  716. struct chan_centers centers;
  717. /*
  718. * half and quarter rate can divide the scaled clock by 2 or 4
  719. * scale for selected channel bandwidth
  720. */
  721. if (IS_CHAN_HALF_RATE(chan))
  722. clockMhzScaled = clockMhzScaled >> 1;
  723. else if (IS_CHAN_QUARTER_RATE(chan))
  724. clockMhzScaled = clockMhzScaled >> 2;
  725. /*
  726. * ALGO -> coef = 1e8/fcarrier*fclock/40;
  727. * scaled coef to provide precision for this floating calculation
  728. */
  729. ath9k_hw_get_channel_centers(ah, chan, &centers);
  730. coef_scaled = clockMhzScaled / centers.synth_center;
  731. ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
  732. &ds_coef_exp);
  733. REG_RMW_FIELD(ah, AR_PHY_TIMING3,
  734. AR_PHY_TIMING3_DSC_MAN, ds_coef_man);
  735. REG_RMW_FIELD(ah, AR_PHY_TIMING3,
  736. AR_PHY_TIMING3_DSC_EXP, ds_coef_exp);
  737. /*
  738. * For Short GI,
  739. * scaled coeff is 9/10 that of normal coeff
  740. */
  741. coef_scaled = (9 * coef_scaled) / 10;
  742. ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
  743. &ds_coef_exp);
  744. /* for short gi */
  745. REG_RMW_FIELD(ah, AR_PHY_SGI_DELTA,
  746. AR_PHY_SGI_DSC_MAN, ds_coef_man);
  747. REG_RMW_FIELD(ah, AR_PHY_SGI_DELTA,
  748. AR_PHY_SGI_DSC_EXP, ds_coef_exp);
  749. }
  750. static bool ar9003_hw_rfbus_req(struct ath_hw *ah)
  751. {
  752. REG_WRITE(ah, AR_PHY_RFBUS_REQ, AR_PHY_RFBUS_REQ_EN);
  753. return ath9k_hw_wait(ah, AR_PHY_RFBUS_GRANT, AR_PHY_RFBUS_GRANT_EN,
  754. AR_PHY_RFBUS_GRANT_EN, AH_WAIT_TIMEOUT);
  755. }
  756. /*
  757. * Wait for the frequency synth to settle (synth goes on via PHY_ACTIVE_EN).
  758. * Read the phy active delay register. Value is in 100ns increments.
  759. */
  760. static void ar9003_hw_rfbus_done(struct ath_hw *ah)
  761. {
  762. u32 synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
  763. ath9k_hw_synth_delay(ah, ah->curchan, synthDelay);
  764. REG_WRITE(ah, AR_PHY_RFBUS_REQ, 0);
  765. }
  766. static bool ar9003_hw_ani_control(struct ath_hw *ah,
  767. enum ath9k_ani_cmd cmd, int param)
  768. {
  769. struct ath_common *common = ath9k_hw_common(ah);
  770. struct ath9k_channel *chan = ah->curchan;
  771. struct ar5416AniState *aniState = &ah->ani;
  772. int m1ThreshLow, m2ThreshLow;
  773. int m1Thresh, m2Thresh;
  774. int m2CountThr, m2CountThrLow;
  775. int m1ThreshLowExt, m2ThreshLowExt;
  776. int m1ThreshExt, m2ThreshExt;
  777. s32 value, value2;
  778. switch (cmd & ah->ani_function) {
  779. case ATH9K_ANI_OFDM_WEAK_SIGNAL_DETECTION:{
  780. /*
  781. * on == 1 means ofdm weak signal detection is ON
  782. * on == 1 is the default, for less noise immunity
  783. *
  784. * on == 0 means ofdm weak signal detection is OFF
  785. * on == 0 means more noise imm
  786. */
  787. u32 on = param ? 1 : 0;
  788. if (AR_SREV_9462(ah) || AR_SREV_9565(ah))
  789. goto skip_ws_det;
  790. m1ThreshLow = on ?
  791. aniState->iniDef.m1ThreshLow : m1ThreshLow_off;
  792. m2ThreshLow = on ?
  793. aniState->iniDef.m2ThreshLow : m2ThreshLow_off;
  794. m1Thresh = on ?
  795. aniState->iniDef.m1Thresh : m1Thresh_off;
  796. m2Thresh = on ?
  797. aniState->iniDef.m2Thresh : m2Thresh_off;
  798. m2CountThr = on ?
  799. aniState->iniDef.m2CountThr : m2CountThr_off;
  800. m2CountThrLow = on ?
  801. aniState->iniDef.m2CountThrLow : m2CountThrLow_off;
  802. m1ThreshLowExt = on ?
  803. aniState->iniDef.m1ThreshLowExt : m1ThreshLowExt_off;
  804. m2ThreshLowExt = on ?
  805. aniState->iniDef.m2ThreshLowExt : m2ThreshLowExt_off;
  806. m1ThreshExt = on ?
  807. aniState->iniDef.m1ThreshExt : m1ThreshExt_off;
  808. m2ThreshExt = on ?
  809. aniState->iniDef.m2ThreshExt : m2ThreshExt_off;
  810. REG_RMW_FIELD(ah, AR_PHY_SFCORR_LOW,
  811. AR_PHY_SFCORR_LOW_M1_THRESH_LOW,
  812. m1ThreshLow);
  813. REG_RMW_FIELD(ah, AR_PHY_SFCORR_LOW,
  814. AR_PHY_SFCORR_LOW_M2_THRESH_LOW,
  815. m2ThreshLow);
  816. REG_RMW_FIELD(ah, AR_PHY_SFCORR,
  817. AR_PHY_SFCORR_M1_THRESH,
  818. m1Thresh);
  819. REG_RMW_FIELD(ah, AR_PHY_SFCORR,
  820. AR_PHY_SFCORR_M2_THRESH,
  821. m2Thresh);
  822. REG_RMW_FIELD(ah, AR_PHY_SFCORR,
  823. AR_PHY_SFCORR_M2COUNT_THR,
  824. m2CountThr);
  825. REG_RMW_FIELD(ah, AR_PHY_SFCORR_LOW,
  826. AR_PHY_SFCORR_LOW_M2COUNT_THR_LOW,
  827. m2CountThrLow);
  828. REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
  829. AR_PHY_SFCORR_EXT_M1_THRESH_LOW,
  830. m1ThreshLowExt);
  831. REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
  832. AR_PHY_SFCORR_EXT_M2_THRESH_LOW,
  833. m2ThreshLowExt);
  834. REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
  835. AR_PHY_SFCORR_EXT_M1_THRESH,
  836. m1ThreshExt);
  837. REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
  838. AR_PHY_SFCORR_EXT_M2_THRESH,
  839. m2ThreshExt);
  840. skip_ws_det:
  841. if (on)
  842. REG_SET_BIT(ah, AR_PHY_SFCORR_LOW,
  843. AR_PHY_SFCORR_LOW_USE_SELF_CORR_LOW);
  844. else
  845. REG_CLR_BIT(ah, AR_PHY_SFCORR_LOW,
  846. AR_PHY_SFCORR_LOW_USE_SELF_CORR_LOW);
  847. if (on != aniState->ofdmWeakSigDetect) {
  848. ath_dbg(common, ANI,
  849. "** ch %d: ofdm weak signal: %s=>%s\n",
  850. chan->channel,
  851. aniState->ofdmWeakSigDetect ?
  852. "on" : "off",
  853. on ? "on" : "off");
  854. if (on)
  855. ah->stats.ast_ani_ofdmon++;
  856. else
  857. ah->stats.ast_ani_ofdmoff++;
  858. aniState->ofdmWeakSigDetect = on;
  859. }
  860. break;
  861. }
  862. case ATH9K_ANI_FIRSTEP_LEVEL:{
  863. u32 level = param;
  864. if (level >= ARRAY_SIZE(firstep_table)) {
  865. ath_dbg(common, ANI,
  866. "ATH9K_ANI_FIRSTEP_LEVEL: level out of range (%u > %zu)\n",
  867. level, ARRAY_SIZE(firstep_table));
  868. return false;
  869. }
  870. /*
  871. * make register setting relative to default
  872. * from INI file & cap value
  873. */
  874. value = firstep_table[level] -
  875. firstep_table[ATH9K_ANI_FIRSTEP_LVL] +
  876. aniState->iniDef.firstep;
  877. if (value < ATH9K_SIG_FIRSTEP_SETTING_MIN)
  878. value = ATH9K_SIG_FIRSTEP_SETTING_MIN;
  879. if (value > ATH9K_SIG_FIRSTEP_SETTING_MAX)
  880. value = ATH9K_SIG_FIRSTEP_SETTING_MAX;
  881. REG_RMW_FIELD(ah, AR_PHY_FIND_SIG,
  882. AR_PHY_FIND_SIG_FIRSTEP,
  883. value);
  884. /*
  885. * we need to set first step low register too
  886. * make register setting relative to default
  887. * from INI file & cap value
  888. */
  889. value2 = firstep_table[level] -
  890. firstep_table[ATH9K_ANI_FIRSTEP_LVL] +
  891. aniState->iniDef.firstepLow;
  892. if (value2 < ATH9K_SIG_FIRSTEP_SETTING_MIN)
  893. value2 = ATH9K_SIG_FIRSTEP_SETTING_MIN;
  894. if (value2 > ATH9K_SIG_FIRSTEP_SETTING_MAX)
  895. value2 = ATH9K_SIG_FIRSTEP_SETTING_MAX;
  896. REG_RMW_FIELD(ah, AR_PHY_FIND_SIG_LOW,
  897. AR_PHY_FIND_SIG_LOW_FIRSTEP_LOW, value2);
  898. if (level != aniState->firstepLevel) {
  899. ath_dbg(common, ANI,
  900. "** ch %d: level %d=>%d[def:%d] firstep[level]=%d ini=%d\n",
  901. chan->channel,
  902. aniState->firstepLevel,
  903. level,
  904. ATH9K_ANI_FIRSTEP_LVL,
  905. value,
  906. aniState->iniDef.firstep);
  907. ath_dbg(common, ANI,
  908. "** ch %d: level %d=>%d[def:%d] firstep_low[level]=%d ini=%d\n",
  909. chan->channel,
  910. aniState->firstepLevel,
  911. level,
  912. ATH9K_ANI_FIRSTEP_LVL,
  913. value2,
  914. aniState->iniDef.firstepLow);
  915. if (level > aniState->firstepLevel)
  916. ah->stats.ast_ani_stepup++;
  917. else if (level < aniState->firstepLevel)
  918. ah->stats.ast_ani_stepdown++;
  919. aniState->firstepLevel = level;
  920. }
  921. break;
  922. }
  923. case ATH9K_ANI_SPUR_IMMUNITY_LEVEL:{
  924. u32 level = param;
  925. if (level >= ARRAY_SIZE(cycpwrThr1_table)) {
  926. ath_dbg(common, ANI,
  927. "ATH9K_ANI_SPUR_IMMUNITY_LEVEL: level out of range (%u > %zu)\n",
  928. level, ARRAY_SIZE(cycpwrThr1_table));
  929. return false;
  930. }
  931. /*
  932. * make register setting relative to default
  933. * from INI file & cap value
  934. */
  935. value = cycpwrThr1_table[level] -
  936. cycpwrThr1_table[ATH9K_ANI_SPUR_IMMUNE_LVL] +
  937. aniState->iniDef.cycpwrThr1;
  938. if (value < ATH9K_SIG_SPUR_IMM_SETTING_MIN)
  939. value = ATH9K_SIG_SPUR_IMM_SETTING_MIN;
  940. if (value > ATH9K_SIG_SPUR_IMM_SETTING_MAX)
  941. value = ATH9K_SIG_SPUR_IMM_SETTING_MAX;
  942. REG_RMW_FIELD(ah, AR_PHY_TIMING5,
  943. AR_PHY_TIMING5_CYCPWR_THR1,
  944. value);
  945. /*
  946. * set AR_PHY_EXT_CCA for extension channel
  947. * make register setting relative to default
  948. * from INI file & cap value
  949. */
  950. value2 = cycpwrThr1_table[level] -
  951. cycpwrThr1_table[ATH9K_ANI_SPUR_IMMUNE_LVL] +
  952. aniState->iniDef.cycpwrThr1Ext;
  953. if (value2 < ATH9K_SIG_SPUR_IMM_SETTING_MIN)
  954. value2 = ATH9K_SIG_SPUR_IMM_SETTING_MIN;
  955. if (value2 > ATH9K_SIG_SPUR_IMM_SETTING_MAX)
  956. value2 = ATH9K_SIG_SPUR_IMM_SETTING_MAX;
  957. REG_RMW_FIELD(ah, AR_PHY_EXT_CCA,
  958. AR_PHY_EXT_CYCPWR_THR1, value2);
  959. if (level != aniState->spurImmunityLevel) {
  960. ath_dbg(common, ANI,
  961. "** ch %d: level %d=>%d[def:%d] cycpwrThr1[level]=%d ini=%d\n",
  962. chan->channel,
  963. aniState->spurImmunityLevel,
  964. level,
  965. ATH9K_ANI_SPUR_IMMUNE_LVL,
  966. value,
  967. aniState->iniDef.cycpwrThr1);
  968. ath_dbg(common, ANI,
  969. "** ch %d: level %d=>%d[def:%d] cycpwrThr1Ext[level]=%d ini=%d\n",
  970. chan->channel,
  971. aniState->spurImmunityLevel,
  972. level,
  973. ATH9K_ANI_SPUR_IMMUNE_LVL,
  974. value2,
  975. aniState->iniDef.cycpwrThr1Ext);
  976. if (level > aniState->spurImmunityLevel)
  977. ah->stats.ast_ani_spurup++;
  978. else if (level < aniState->spurImmunityLevel)
  979. ah->stats.ast_ani_spurdown++;
  980. aniState->spurImmunityLevel = level;
  981. }
  982. break;
  983. }
  984. case ATH9K_ANI_MRC_CCK:{
  985. /*
  986. * is_on == 1 means MRC CCK ON (default, less noise imm)
  987. * is_on == 0 means MRC CCK is OFF (more noise imm)
  988. */
  989. bool is_on = param ? 1 : 0;
  990. if (ah->caps.rx_chainmask == 1)
  991. break;
  992. REG_RMW_FIELD(ah, AR_PHY_MRC_CCK_CTRL,
  993. AR_PHY_MRC_CCK_ENABLE, is_on);
  994. REG_RMW_FIELD(ah, AR_PHY_MRC_CCK_CTRL,
  995. AR_PHY_MRC_CCK_MUX_REG, is_on);
  996. if (is_on != aniState->mrcCCK) {
  997. ath_dbg(common, ANI, "** ch %d: MRC CCK: %s=>%s\n",
  998. chan->channel,
  999. aniState->mrcCCK ? "on" : "off",
  1000. is_on ? "on" : "off");
  1001. if (is_on)
  1002. ah->stats.ast_ani_ccklow++;
  1003. else
  1004. ah->stats.ast_ani_cckhigh++;
  1005. aniState->mrcCCK = is_on;
  1006. }
  1007. break;
  1008. }
  1009. default:
  1010. ath_dbg(common, ANI, "invalid cmd %u\n", cmd);
  1011. return false;
  1012. }
  1013. ath_dbg(common, ANI,
  1014. "ANI parameters: SI=%d, ofdmWS=%s FS=%d MRCcck=%s listenTime=%d ofdmErrs=%d cckErrs=%d\n",
  1015. aniState->spurImmunityLevel,
  1016. aniState->ofdmWeakSigDetect ? "on" : "off",
  1017. aniState->firstepLevel,
  1018. aniState->mrcCCK ? "on" : "off",
  1019. aniState->listenTime,
  1020. aniState->ofdmPhyErrCount,
  1021. aniState->cckPhyErrCount);
  1022. return true;
  1023. }
  1024. static void ar9003_hw_do_getnf(struct ath_hw *ah,
  1025. int16_t nfarray[NUM_NF_READINGS])
  1026. {
  1027. #define AR_PHY_CH_MINCCA_PWR 0x1FF00000
  1028. #define AR_PHY_CH_MINCCA_PWR_S 20
  1029. #define AR_PHY_CH_EXT_MINCCA_PWR 0x01FF0000
  1030. #define AR_PHY_CH_EXT_MINCCA_PWR_S 16
  1031. int16_t nf;
  1032. int i;
  1033. for (i = 0; i < AR9300_MAX_CHAINS; i++) {
  1034. if (ah->rxchainmask & BIT(i)) {
  1035. nf = MS(REG_READ(ah, ah->nf_regs[i]),
  1036. AR_PHY_CH_MINCCA_PWR);
  1037. nfarray[i] = sign_extend32(nf, 8);
  1038. if (IS_CHAN_HT40(ah->curchan)) {
  1039. u8 ext_idx = AR9300_MAX_CHAINS + i;
  1040. nf = MS(REG_READ(ah, ah->nf_regs[ext_idx]),
  1041. AR_PHY_CH_EXT_MINCCA_PWR);
  1042. nfarray[ext_idx] = sign_extend32(nf, 8);
  1043. }
  1044. }
  1045. }
  1046. }
  1047. static void ar9003_hw_set_nf_limits(struct ath_hw *ah)
  1048. {
  1049. ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9300_2GHZ;
  1050. ah->nf_2g.min = AR_PHY_CCA_MIN_GOOD_VAL_9300_2GHZ;
  1051. ah->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_9300_2GHZ;
  1052. ah->nf_5g.max = AR_PHY_CCA_MAX_GOOD_VAL_9300_5GHZ;
  1053. ah->nf_5g.min = AR_PHY_CCA_MIN_GOOD_VAL_9300_5GHZ;
  1054. ah->nf_5g.nominal = AR_PHY_CCA_NOM_VAL_9300_5GHZ;
  1055. if (AR_SREV_9330(ah))
  1056. ah->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_9330_2GHZ;
  1057. if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
  1058. ah->nf_2g.min = AR_PHY_CCA_MIN_GOOD_VAL_9462_2GHZ;
  1059. ah->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_9462_2GHZ;
  1060. ah->nf_5g.min = AR_PHY_CCA_MIN_GOOD_VAL_9462_5GHZ;
  1061. ah->nf_5g.nominal = AR_PHY_CCA_NOM_VAL_9462_5GHZ;
  1062. }
  1063. }
  1064. /*
  1065. * Initialize the ANI register values with default (ini) values.
  1066. * This routine is called during a (full) hardware reset after
  1067. * all the registers are initialised from the INI.
  1068. */
  1069. static void ar9003_hw_ani_cache_ini_regs(struct ath_hw *ah)
  1070. {
  1071. struct ar5416AniState *aniState;
  1072. struct ath_common *common = ath9k_hw_common(ah);
  1073. struct ath9k_channel *chan = ah->curchan;
  1074. struct ath9k_ani_default *iniDef;
  1075. u32 val;
  1076. aniState = &ah->ani;
  1077. iniDef = &aniState->iniDef;
  1078. ath_dbg(common, ANI, "ver %d.%d opmode %u chan %d Mhz\n",
  1079. ah->hw_version.macVersion,
  1080. ah->hw_version.macRev,
  1081. ah->opmode,
  1082. chan->channel);
  1083. val = REG_READ(ah, AR_PHY_SFCORR);
  1084. iniDef->m1Thresh = MS(val, AR_PHY_SFCORR_M1_THRESH);
  1085. iniDef->m2Thresh = MS(val, AR_PHY_SFCORR_M2_THRESH);
  1086. iniDef->m2CountThr = MS(val, AR_PHY_SFCORR_M2COUNT_THR);
  1087. val = REG_READ(ah, AR_PHY_SFCORR_LOW);
  1088. iniDef->m1ThreshLow = MS(val, AR_PHY_SFCORR_LOW_M1_THRESH_LOW);
  1089. iniDef->m2ThreshLow = MS(val, AR_PHY_SFCORR_LOW_M2_THRESH_LOW);
  1090. iniDef->m2CountThrLow = MS(val, AR_PHY_SFCORR_LOW_M2COUNT_THR_LOW);
  1091. val = REG_READ(ah, AR_PHY_SFCORR_EXT);
  1092. iniDef->m1ThreshExt = MS(val, AR_PHY_SFCORR_EXT_M1_THRESH);
  1093. iniDef->m2ThreshExt = MS(val, AR_PHY_SFCORR_EXT_M2_THRESH);
  1094. iniDef->m1ThreshLowExt = MS(val, AR_PHY_SFCORR_EXT_M1_THRESH_LOW);
  1095. iniDef->m2ThreshLowExt = MS(val, AR_PHY_SFCORR_EXT_M2_THRESH_LOW);
  1096. iniDef->firstep = REG_READ_FIELD(ah,
  1097. AR_PHY_FIND_SIG,
  1098. AR_PHY_FIND_SIG_FIRSTEP);
  1099. iniDef->firstepLow = REG_READ_FIELD(ah,
  1100. AR_PHY_FIND_SIG_LOW,
  1101. AR_PHY_FIND_SIG_LOW_FIRSTEP_LOW);
  1102. iniDef->cycpwrThr1 = REG_READ_FIELD(ah,
  1103. AR_PHY_TIMING5,
  1104. AR_PHY_TIMING5_CYCPWR_THR1);
  1105. iniDef->cycpwrThr1Ext = REG_READ_FIELD(ah,
  1106. AR_PHY_EXT_CCA,
  1107. AR_PHY_EXT_CYCPWR_THR1);
  1108. /* these levels just got reset to defaults by the INI */
  1109. aniState->spurImmunityLevel = ATH9K_ANI_SPUR_IMMUNE_LVL;
  1110. aniState->firstepLevel = ATH9K_ANI_FIRSTEP_LVL;
  1111. aniState->ofdmWeakSigDetect = true;
  1112. aniState->mrcCCK = true;
  1113. }
  1114. static void ar9003_hw_set_radar_params(struct ath_hw *ah,
  1115. struct ath_hw_radar_conf *conf)
  1116. {
  1117. u32 radar_0 = 0, radar_1 = 0;
  1118. if (!conf) {
  1119. REG_CLR_BIT(ah, AR_PHY_RADAR_0, AR_PHY_RADAR_0_ENA);
  1120. return;
  1121. }
  1122. radar_0 |= AR_PHY_RADAR_0_ENA | AR_PHY_RADAR_0_FFT_ENA;
  1123. radar_0 |= SM(conf->fir_power, AR_PHY_RADAR_0_FIRPWR);
  1124. radar_0 |= SM(conf->radar_rssi, AR_PHY_RADAR_0_RRSSI);
  1125. radar_0 |= SM(conf->pulse_height, AR_PHY_RADAR_0_HEIGHT);
  1126. radar_0 |= SM(conf->pulse_rssi, AR_PHY_RADAR_0_PRSSI);
  1127. radar_0 |= SM(conf->pulse_inband, AR_PHY_RADAR_0_INBAND);
  1128. radar_1 |= AR_PHY_RADAR_1_MAX_RRSSI;
  1129. radar_1 |= AR_PHY_RADAR_1_BLOCK_CHECK;
  1130. radar_1 |= SM(conf->pulse_maxlen, AR_PHY_RADAR_1_MAXLEN);
  1131. radar_1 |= SM(conf->pulse_inband_step, AR_PHY_RADAR_1_RELSTEP_THRESH);
  1132. radar_1 |= SM(conf->radar_inband, AR_PHY_RADAR_1_RELPWR_THRESH);
  1133. REG_WRITE(ah, AR_PHY_RADAR_0, radar_0);
  1134. REG_WRITE(ah, AR_PHY_RADAR_1, radar_1);
  1135. if (conf->ext_channel)
  1136. REG_SET_BIT(ah, AR_PHY_RADAR_EXT, AR_PHY_RADAR_EXT_ENA);
  1137. else
  1138. REG_CLR_BIT(ah, AR_PHY_RADAR_EXT, AR_PHY_RADAR_EXT_ENA);
  1139. }
  1140. static void ar9003_hw_set_radar_conf(struct ath_hw *ah)
  1141. {
  1142. struct ath_hw_radar_conf *conf = &ah->radar_conf;
  1143. conf->fir_power = -28;
  1144. conf->radar_rssi = 0;
  1145. conf->pulse_height = 10;
  1146. conf->pulse_rssi = 24;
  1147. conf->pulse_inband = 8;
  1148. conf->pulse_maxlen = 255;
  1149. conf->pulse_inband_step = 12;
  1150. conf->radar_inband = 8;
  1151. }
  1152. static void ar9003_hw_antdiv_comb_conf_get(struct ath_hw *ah,
  1153. struct ath_hw_antcomb_conf *antconf)
  1154. {
  1155. u32 regval;
  1156. regval = REG_READ(ah, AR_PHY_MC_GAIN_CTRL);
  1157. antconf->main_lna_conf = (regval & AR_PHY_ANT_DIV_MAIN_LNACONF) >>
  1158. AR_PHY_ANT_DIV_MAIN_LNACONF_S;
  1159. antconf->alt_lna_conf = (regval & AR_PHY_ANT_DIV_ALT_LNACONF) >>
  1160. AR_PHY_ANT_DIV_ALT_LNACONF_S;
  1161. antconf->fast_div_bias = (regval & AR_PHY_ANT_FAST_DIV_BIAS) >>
  1162. AR_PHY_ANT_FAST_DIV_BIAS_S;
  1163. if (AR_SREV_9330_11(ah)) {
  1164. antconf->lna1_lna2_switch_delta = -1;
  1165. antconf->lna1_lna2_delta = -9;
  1166. antconf->div_group = 1;
  1167. } else if (AR_SREV_9485(ah)) {
  1168. antconf->lna1_lna2_switch_delta = -1;
  1169. antconf->lna1_lna2_delta = -9;
  1170. antconf->div_group = 2;
  1171. } else if (AR_SREV_9565(ah)) {
  1172. antconf->lna1_lna2_switch_delta = 3;
  1173. antconf->lna1_lna2_delta = -9;
  1174. antconf->div_group = 3;
  1175. } else {
  1176. antconf->lna1_lna2_switch_delta = -1;
  1177. antconf->lna1_lna2_delta = -3;
  1178. antconf->div_group = 0;
  1179. }
  1180. }
  1181. static void ar9003_hw_antdiv_comb_conf_set(struct ath_hw *ah,
  1182. struct ath_hw_antcomb_conf *antconf)
  1183. {
  1184. u32 regval;
  1185. regval = REG_READ(ah, AR_PHY_MC_GAIN_CTRL);
  1186. regval &= ~(AR_PHY_ANT_DIV_MAIN_LNACONF |
  1187. AR_PHY_ANT_DIV_ALT_LNACONF |
  1188. AR_PHY_ANT_FAST_DIV_BIAS |
  1189. AR_PHY_ANT_DIV_MAIN_GAINTB |
  1190. AR_PHY_ANT_DIV_ALT_GAINTB);
  1191. regval |= ((antconf->main_lna_conf << AR_PHY_ANT_DIV_MAIN_LNACONF_S)
  1192. & AR_PHY_ANT_DIV_MAIN_LNACONF);
  1193. regval |= ((antconf->alt_lna_conf << AR_PHY_ANT_DIV_ALT_LNACONF_S)
  1194. & AR_PHY_ANT_DIV_ALT_LNACONF);
  1195. regval |= ((antconf->fast_div_bias << AR_PHY_ANT_FAST_DIV_BIAS_S)
  1196. & AR_PHY_ANT_FAST_DIV_BIAS);
  1197. regval |= ((antconf->main_gaintb << AR_PHY_ANT_DIV_MAIN_GAINTB_S)
  1198. & AR_PHY_ANT_DIV_MAIN_GAINTB);
  1199. regval |= ((antconf->alt_gaintb << AR_PHY_ANT_DIV_ALT_GAINTB_S)
  1200. & AR_PHY_ANT_DIV_ALT_GAINTB);
  1201. REG_WRITE(ah, AR_PHY_MC_GAIN_CTRL, regval);
  1202. }
  1203. #ifdef CONFIG_ATH9K_BTCOEX_SUPPORT
  1204. static void ar9003_hw_set_bt_ant_diversity(struct ath_hw *ah, bool enable)
  1205. {
  1206. struct ath9k_hw_capabilities *pCap = &ah->caps;
  1207. u8 ant_div_ctl1;
  1208. u32 regval;
  1209. if (!AR_SREV_9485(ah) && !AR_SREV_9565(ah))
  1210. return;
  1211. if (AR_SREV_9485(ah)) {
  1212. regval = ar9003_hw_ant_ctrl_common_2_get(ah,
  1213. IS_CHAN_2GHZ(ah->curchan));
  1214. if (enable) {
  1215. regval &= ~AR_SWITCH_TABLE_COM2_ALL;
  1216. regval |= ah->config.ant_ctrl_comm2g_switch_enable;
  1217. }
  1218. REG_RMW_FIELD(ah, AR_PHY_SWITCH_COM_2,
  1219. AR_SWITCH_TABLE_COM2_ALL, regval);
  1220. }
  1221. ant_div_ctl1 = ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
  1222. /*
  1223. * Set MAIN/ALT LNA conf.
  1224. * Set MAIN/ALT gain_tb.
  1225. */
  1226. regval = REG_READ(ah, AR_PHY_MC_GAIN_CTRL);
  1227. regval &= (~AR_ANT_DIV_CTRL_ALL);
  1228. regval |= (ant_div_ctl1 & 0x3f) << AR_ANT_DIV_CTRL_ALL_S;
  1229. REG_WRITE(ah, AR_PHY_MC_GAIN_CTRL, regval);
  1230. if (AR_SREV_9485_11_OR_LATER(ah)) {
  1231. /*
  1232. * Enable LNA diversity.
  1233. */
  1234. regval = REG_READ(ah, AR_PHY_MC_GAIN_CTRL);
  1235. regval &= ~AR_PHY_ANT_DIV_LNADIV;
  1236. regval |= ((ant_div_ctl1 >> 6) & 0x1) << AR_PHY_ANT_DIV_LNADIV_S;
  1237. if (enable)
  1238. regval |= AR_ANT_DIV_ENABLE;
  1239. REG_WRITE(ah, AR_PHY_MC_GAIN_CTRL, regval);
  1240. /*
  1241. * Enable fast antenna diversity.
  1242. */
  1243. regval = REG_READ(ah, AR_PHY_CCK_DETECT);
  1244. regval &= ~AR_FAST_DIV_ENABLE;
  1245. regval |= ((ant_div_ctl1 >> 7) & 0x1) << AR_FAST_DIV_ENABLE_S;
  1246. if (enable)
  1247. regval |= AR_FAST_DIV_ENABLE;
  1248. REG_WRITE(ah, AR_PHY_CCK_DETECT, regval);
  1249. if (pCap->hw_caps & ATH9K_HW_CAP_ANT_DIV_COMB) {
  1250. regval = REG_READ(ah, AR_PHY_MC_GAIN_CTRL);
  1251. regval &= (~(AR_PHY_ANT_DIV_MAIN_LNACONF |
  1252. AR_PHY_ANT_DIV_ALT_LNACONF |
  1253. AR_PHY_ANT_DIV_ALT_GAINTB |
  1254. AR_PHY_ANT_DIV_MAIN_GAINTB));
  1255. /*
  1256. * Set MAIN to LNA1 and ALT to LNA2 at the
  1257. * beginning.
  1258. */
  1259. regval |= (ATH_ANT_DIV_COMB_LNA1 <<
  1260. AR_PHY_ANT_DIV_MAIN_LNACONF_S);
  1261. regval |= (ATH_ANT_DIV_COMB_LNA2 <<
  1262. AR_PHY_ANT_DIV_ALT_LNACONF_S);
  1263. REG_WRITE(ah, AR_PHY_MC_GAIN_CTRL, regval);
  1264. }
  1265. } else if (AR_SREV_9565(ah)) {
  1266. if (enable) {
  1267. REG_SET_BIT(ah, AR_PHY_MC_GAIN_CTRL,
  1268. AR_ANT_DIV_ENABLE);
  1269. REG_SET_BIT(ah, AR_PHY_MC_GAIN_CTRL,
  1270. (1 << AR_PHY_ANT_SW_RX_PROT_S));
  1271. REG_SET_BIT(ah, AR_PHY_CCK_DETECT,
  1272. AR_FAST_DIV_ENABLE);
  1273. REG_SET_BIT(ah, AR_PHY_RESTART,
  1274. AR_PHY_RESTART_ENABLE_DIV_M2FLAG);
  1275. REG_SET_BIT(ah, AR_BTCOEX_WL_LNADIV,
  1276. AR_BTCOEX_WL_LNADIV_FORCE_ON);
  1277. } else {
  1278. REG_CLR_BIT(ah, AR_PHY_MC_GAIN_CTRL,
  1279. AR_ANT_DIV_ENABLE);
  1280. REG_CLR_BIT(ah, AR_PHY_MC_GAIN_CTRL,
  1281. (1 << AR_PHY_ANT_SW_RX_PROT_S));
  1282. REG_CLR_BIT(ah, AR_PHY_CCK_DETECT,
  1283. AR_FAST_DIV_ENABLE);
  1284. REG_CLR_BIT(ah, AR_PHY_RESTART,
  1285. AR_PHY_RESTART_ENABLE_DIV_M2FLAG);
  1286. REG_CLR_BIT(ah, AR_BTCOEX_WL_LNADIV,
  1287. AR_BTCOEX_WL_LNADIV_FORCE_ON);
  1288. regval = REG_READ(ah, AR_PHY_MC_GAIN_CTRL);
  1289. regval &= ~(AR_PHY_ANT_DIV_MAIN_LNACONF |
  1290. AR_PHY_ANT_DIV_ALT_LNACONF |
  1291. AR_PHY_ANT_DIV_MAIN_GAINTB |
  1292. AR_PHY_ANT_DIV_ALT_GAINTB);
  1293. regval |= (ATH_ANT_DIV_COMB_LNA1 <<
  1294. AR_PHY_ANT_DIV_MAIN_LNACONF_S);
  1295. regval |= (ATH_ANT_DIV_COMB_LNA2 <<
  1296. AR_PHY_ANT_DIV_ALT_LNACONF_S);
  1297. REG_WRITE(ah, AR_PHY_MC_GAIN_CTRL, regval);
  1298. }
  1299. }
  1300. }
  1301. #endif
  1302. static int ar9003_hw_fast_chan_change(struct ath_hw *ah,
  1303. struct ath9k_channel *chan,
  1304. u8 *ini_reloaded)
  1305. {
  1306. unsigned int regWrites = 0;
  1307. u32 modesIndex;
  1308. if (IS_CHAN_5GHZ(chan))
  1309. modesIndex = IS_CHAN_HT40(chan) ? 2 : 1;
  1310. else
  1311. modesIndex = IS_CHAN_HT40(chan) ? 3 : 4;
  1312. if (modesIndex == ah->modes_index) {
  1313. *ini_reloaded = false;
  1314. goto set_rfmode;
  1315. }
  1316. ar9003_hw_prog_ini(ah, &ah->iniSOC[ATH_INI_POST], modesIndex);
  1317. ar9003_hw_prog_ini(ah, &ah->iniMac[ATH_INI_POST], modesIndex);
  1318. ar9003_hw_prog_ini(ah, &ah->iniBB[ATH_INI_POST], modesIndex);
  1319. ar9003_hw_prog_ini(ah, &ah->iniRadio[ATH_INI_POST], modesIndex);
  1320. if (AR_SREV_9462_20_OR_LATER(ah))
  1321. ar9003_hw_prog_ini(ah, &ah->ini_radio_post_sys2ant,
  1322. modesIndex);
  1323. REG_WRITE_ARRAY(&ah->iniModesTxGain, modesIndex, regWrites);
  1324. if (AR_SREV_9462_20_OR_LATER(ah)) {
  1325. /*
  1326. * CUS217 mix LNA mode.
  1327. */
  1328. if (ar9003_hw_get_rx_gain_idx(ah) == 2) {
  1329. REG_WRITE_ARRAY(&ah->ini_modes_rxgain_bb_core,
  1330. 1, regWrites);
  1331. REG_WRITE_ARRAY(&ah->ini_modes_rxgain_bb_postamble,
  1332. modesIndex, regWrites);
  1333. }
  1334. }
  1335. /*
  1336. * For 5GHz channels requiring Fast Clock, apply
  1337. * different modal values.
  1338. */
  1339. if (IS_CHAN_A_FAST_CLOCK(ah, chan))
  1340. REG_WRITE_ARRAY(&ah->iniModesFastClock, modesIndex, regWrites);
  1341. if (AR_SREV_9565(ah))
  1342. REG_WRITE_ARRAY(&ah->iniModesFastClock, 1, regWrites);
  1343. /*
  1344. * JAPAN regulatory.
  1345. */
  1346. if (chan->channel == 2484)
  1347. ar9003_hw_prog_ini(ah, &ah->iniCckfirJapan2484, 1);
  1348. ah->modes_index = modesIndex;
  1349. *ini_reloaded = true;
  1350. set_rfmode:
  1351. ar9003_hw_set_rfmode(ah, chan);
  1352. return 0;
  1353. }
  1354. static void ar9003_hw_spectral_scan_config(struct ath_hw *ah,
  1355. struct ath_spec_scan *param)
  1356. {
  1357. u8 count;
  1358. if (!param->enabled) {
  1359. REG_CLR_BIT(ah, AR_PHY_SPECTRAL_SCAN,
  1360. AR_PHY_SPECTRAL_SCAN_ENABLE);
  1361. return;
  1362. }
  1363. REG_SET_BIT(ah, AR_PHY_RADAR_0, AR_PHY_RADAR_0_FFT_ENA);
  1364. REG_SET_BIT(ah, AR_PHY_SPECTRAL_SCAN, AR_PHY_SPECTRAL_SCAN_ENABLE);
  1365. /* on AR93xx and newer, count = 0 will make the the chip send
  1366. * spectral samples endlessly. Check if this really was intended,
  1367. * and fix otherwise.
  1368. */
  1369. count = param->count;
  1370. if (param->endless)
  1371. count = 0;
  1372. else if (param->count == 0)
  1373. count = 1;
  1374. if (param->short_repeat)
  1375. REG_SET_BIT(ah, AR_PHY_SPECTRAL_SCAN,
  1376. AR_PHY_SPECTRAL_SCAN_SHORT_REPEAT);
  1377. else
  1378. REG_CLR_BIT(ah, AR_PHY_SPECTRAL_SCAN,
  1379. AR_PHY_SPECTRAL_SCAN_SHORT_REPEAT);
  1380. REG_RMW_FIELD(ah, AR_PHY_SPECTRAL_SCAN,
  1381. AR_PHY_SPECTRAL_SCAN_COUNT, count);
  1382. REG_RMW_FIELD(ah, AR_PHY_SPECTRAL_SCAN,
  1383. AR_PHY_SPECTRAL_SCAN_PERIOD, param->period);
  1384. REG_RMW_FIELD(ah, AR_PHY_SPECTRAL_SCAN,
  1385. AR_PHY_SPECTRAL_SCAN_FFT_PERIOD, param->fft_period);
  1386. return;
  1387. }
  1388. static void ar9003_hw_spectral_scan_trigger(struct ath_hw *ah)
  1389. {
  1390. /* Activate spectral scan */
  1391. REG_SET_BIT(ah, AR_PHY_SPECTRAL_SCAN,
  1392. AR_PHY_SPECTRAL_SCAN_ACTIVE);
  1393. }
  1394. static void ar9003_hw_spectral_scan_wait(struct ath_hw *ah)
  1395. {
  1396. struct ath_common *common = ath9k_hw_common(ah);
  1397. /* Poll for spectral scan complete */
  1398. if (!ath9k_hw_wait(ah, AR_PHY_SPECTRAL_SCAN,
  1399. AR_PHY_SPECTRAL_SCAN_ACTIVE,
  1400. 0, AH_WAIT_TIMEOUT)) {
  1401. ath_err(common, "spectral scan wait failed\n");
  1402. return;
  1403. }
  1404. }
  1405. static void ar9003_hw_tx99_start(struct ath_hw *ah, u32 qnum)
  1406. {
  1407. REG_SET_BIT(ah, AR_PHY_TEST, PHY_AGC_CLR);
  1408. REG_SET_BIT(ah, 0x9864, 0x7f000);
  1409. REG_SET_BIT(ah, 0x9924, 0x7f00fe);
  1410. REG_CLR_BIT(ah, AR_DIAG_SW, AR_DIAG_RX_DIS);
  1411. REG_WRITE(ah, AR_CR, AR_CR_RXD);
  1412. REG_WRITE(ah, AR_DLCL_IFS(qnum), 0);
  1413. REG_WRITE(ah, AR_D_GBL_IFS_SIFS, 20); /* 50 OK */
  1414. REG_WRITE(ah, AR_D_GBL_IFS_EIFS, 20);
  1415. REG_WRITE(ah, AR_TIME_OUT, 0x00000400);
  1416. REG_WRITE(ah, AR_DRETRY_LIMIT(qnum), 0xffffffff);
  1417. REG_SET_BIT(ah, AR_QMISC(qnum), AR_Q_MISC_DCU_EARLY_TERM_REQ);
  1418. }
  1419. static void ar9003_hw_tx99_stop(struct ath_hw *ah)
  1420. {
  1421. REG_CLR_BIT(ah, AR_PHY_TEST, PHY_AGC_CLR);
  1422. REG_SET_BIT(ah, AR_DIAG_SW, AR_DIAG_RX_DIS);
  1423. }
  1424. static void ar9003_hw_tx99_set_txpower(struct ath_hw *ah, u8 txpower)
  1425. {
  1426. static s16 p_pwr_array[ar9300RateSize] = { 0 };
  1427. unsigned int i;
  1428. if (txpower <= MAX_RATE_POWER) {
  1429. for (i = 0; i < ar9300RateSize; i++)
  1430. p_pwr_array[i] = txpower;
  1431. } else {
  1432. for (i = 0; i < ar9300RateSize; i++)
  1433. p_pwr_array[i] = MAX_RATE_POWER;
  1434. }
  1435. REG_WRITE(ah, 0xa458, 0);
  1436. REG_WRITE(ah, 0xa3c0,
  1437. ATH9K_POW_SM(p_pwr_array[ALL_TARGET_LEGACY_6_24], 24) |
  1438. ATH9K_POW_SM(p_pwr_array[ALL_TARGET_LEGACY_6_24], 16) |
  1439. ATH9K_POW_SM(p_pwr_array[ALL_TARGET_LEGACY_6_24], 8) |
  1440. ATH9K_POW_SM(p_pwr_array[ALL_TARGET_LEGACY_6_24], 0));
  1441. REG_WRITE(ah, 0xa3c4,
  1442. ATH9K_POW_SM(p_pwr_array[ALL_TARGET_LEGACY_54], 24) |
  1443. ATH9K_POW_SM(p_pwr_array[ALL_TARGET_LEGACY_48], 16) |
  1444. ATH9K_POW_SM(p_pwr_array[ALL_TARGET_LEGACY_36], 8) |
  1445. ATH9K_POW_SM(p_pwr_array[ALL_TARGET_LEGACY_6_24], 0));
  1446. REG_WRITE(ah, 0xa3c8,
  1447. ATH9K_POW_SM(p_pwr_array[ALL_TARGET_LEGACY_1L_5L], 24) |
  1448. ATH9K_POW_SM(p_pwr_array[ALL_TARGET_LEGACY_1L_5L], 16) |
  1449. ATH9K_POW_SM(p_pwr_array[ALL_TARGET_LEGACY_1L_5L], 0));
  1450. REG_WRITE(ah, 0xa3cc,
  1451. ATH9K_POW_SM(p_pwr_array[ALL_TARGET_LEGACY_11S], 24) |
  1452. ATH9K_POW_SM(p_pwr_array[ALL_TARGET_LEGACY_11L], 16) |
  1453. ATH9K_POW_SM(p_pwr_array[ALL_TARGET_LEGACY_5S], 8) |
  1454. ATH9K_POW_SM(p_pwr_array[ALL_TARGET_LEGACY_1L_5L], 0));
  1455. REG_WRITE(ah, 0xa3d0,
  1456. ATH9K_POW_SM(p_pwr_array[ALL_TARGET_HT20_5], 24) |
  1457. ATH9K_POW_SM(p_pwr_array[ALL_TARGET_HT20_4], 16) |
  1458. ATH9K_POW_SM(p_pwr_array[ALL_TARGET_HT20_1_3_9_11_17_19], 8)|
  1459. ATH9K_POW_SM(p_pwr_array[ALL_TARGET_HT20_0_8_16], 0));
  1460. REG_WRITE(ah, 0xa3d4,
  1461. ATH9K_POW_SM(p_pwr_array[ALL_TARGET_HT20_13], 24) |
  1462. ATH9K_POW_SM(p_pwr_array[ALL_TARGET_HT20_12], 16) |
  1463. ATH9K_POW_SM(p_pwr_array[ALL_TARGET_HT20_7], 8) |
  1464. ATH9K_POW_SM(p_pwr_array[ALL_TARGET_HT20_6], 0));
  1465. REG_WRITE(ah, 0xa3e4,
  1466. ATH9K_POW_SM(p_pwr_array[ALL_TARGET_HT20_21], 24) |
  1467. ATH9K_POW_SM(p_pwr_array[ALL_TARGET_HT20_20], 16) |
  1468. ATH9K_POW_SM(p_pwr_array[ALL_TARGET_HT20_15], 8) |
  1469. ATH9K_POW_SM(p_pwr_array[ALL_TARGET_HT20_14], 0));
  1470. REG_WRITE(ah, 0xa3e8,
  1471. ATH9K_POW_SM(p_pwr_array[ALL_TARGET_HT40_23], 24) |
  1472. ATH9K_POW_SM(p_pwr_array[ALL_TARGET_HT40_22], 16) |
  1473. ATH9K_POW_SM(p_pwr_array[ALL_TARGET_HT20_23], 8) |
  1474. ATH9K_POW_SM(p_pwr_array[ALL_TARGET_HT20_22], 0));
  1475. REG_WRITE(ah, 0xa3d8,
  1476. ATH9K_POW_SM(p_pwr_array[ALL_TARGET_HT40_5], 24) |
  1477. ATH9K_POW_SM(p_pwr_array[ALL_TARGET_HT40_4], 16) |
  1478. ATH9K_POW_SM(p_pwr_array[ALL_TARGET_HT40_1_3_9_11_17_19], 8) |
  1479. ATH9K_POW_SM(p_pwr_array[ALL_TARGET_HT40_0_8_16], 0));
  1480. REG_WRITE(ah, 0xa3dc,
  1481. ATH9K_POW_SM(p_pwr_array[ALL_TARGET_HT40_13], 24) |
  1482. ATH9K_POW_SM(p_pwr_array[ALL_TARGET_HT40_12], 16) |
  1483. ATH9K_POW_SM(p_pwr_array[ALL_TARGET_HT40_7], 8) |
  1484. ATH9K_POW_SM(p_pwr_array[ALL_TARGET_HT40_6], 0));
  1485. REG_WRITE(ah, 0xa3ec,
  1486. ATH9K_POW_SM(p_pwr_array[ALL_TARGET_HT40_21], 24) |
  1487. ATH9K_POW_SM(p_pwr_array[ALL_TARGET_HT40_20], 16) |
  1488. ATH9K_POW_SM(p_pwr_array[ALL_TARGET_HT40_15], 8) |
  1489. ATH9K_POW_SM(p_pwr_array[ALL_TARGET_HT40_14], 0));
  1490. }
  1491. void ar9003_hw_attach_phy_ops(struct ath_hw *ah)
  1492. {
  1493. struct ath_hw_private_ops *priv_ops = ath9k_hw_private_ops(ah);
  1494. struct ath_hw_ops *ops = ath9k_hw_ops(ah);
  1495. static const u32 ar9300_cca_regs[6] = {
  1496. AR_PHY_CCA_0,
  1497. AR_PHY_CCA_1,
  1498. AR_PHY_CCA_2,
  1499. AR_PHY_EXT_CCA,
  1500. AR_PHY_EXT_CCA_1,
  1501. AR_PHY_EXT_CCA_2,
  1502. };
  1503. priv_ops->rf_set_freq = ar9003_hw_set_channel;
  1504. priv_ops->spur_mitigate_freq = ar9003_hw_spur_mitigate;
  1505. priv_ops->compute_pll_control = ar9003_hw_compute_pll_control;
  1506. priv_ops->set_channel_regs = ar9003_hw_set_channel_regs;
  1507. priv_ops->init_bb = ar9003_hw_init_bb;
  1508. priv_ops->process_ini = ar9003_hw_process_ini;
  1509. priv_ops->set_rfmode = ar9003_hw_set_rfmode;
  1510. priv_ops->mark_phy_inactive = ar9003_hw_mark_phy_inactive;
  1511. priv_ops->set_delta_slope = ar9003_hw_set_delta_slope;
  1512. priv_ops->rfbus_req = ar9003_hw_rfbus_req;
  1513. priv_ops->rfbus_done = ar9003_hw_rfbus_done;
  1514. priv_ops->ani_control = ar9003_hw_ani_control;
  1515. priv_ops->do_getnf = ar9003_hw_do_getnf;
  1516. priv_ops->ani_cache_ini_regs = ar9003_hw_ani_cache_ini_regs;
  1517. priv_ops->set_radar_params = ar9003_hw_set_radar_params;
  1518. priv_ops->fast_chan_change = ar9003_hw_fast_chan_change;
  1519. ops->antdiv_comb_conf_get = ar9003_hw_antdiv_comb_conf_get;
  1520. ops->antdiv_comb_conf_set = ar9003_hw_antdiv_comb_conf_set;
  1521. ops->spectral_scan_config = ar9003_hw_spectral_scan_config;
  1522. ops->spectral_scan_trigger = ar9003_hw_spectral_scan_trigger;
  1523. ops->spectral_scan_wait = ar9003_hw_spectral_scan_wait;
  1524. #ifdef CONFIG_ATH9K_BTCOEX_SUPPORT
  1525. ops->set_bt_ant_diversity = ar9003_hw_set_bt_ant_diversity;
  1526. #endif
  1527. ops->tx99_start = ar9003_hw_tx99_start;
  1528. ops->tx99_stop = ar9003_hw_tx99_stop;
  1529. ops->tx99_set_txpower = ar9003_hw_tx99_set_txpower;
  1530. ar9003_hw_set_nf_limits(ah);
  1531. ar9003_hw_set_radar_conf(ah);
  1532. memcpy(ah->nf_regs, ar9300_cca_regs, sizeof(ah->nf_regs));
  1533. }
  1534. void ar9003_hw_bb_watchdog_config(struct ath_hw *ah)
  1535. {
  1536. struct ath_common *common = ath9k_hw_common(ah);
  1537. u32 idle_tmo_ms = ah->bb_watchdog_timeout_ms;
  1538. u32 val, idle_count;
  1539. if (!idle_tmo_ms) {
  1540. /* disable IRQ, disable chip-reset for BB panic */
  1541. REG_WRITE(ah, AR_PHY_WATCHDOG_CTL_2,
  1542. REG_READ(ah, AR_PHY_WATCHDOG_CTL_2) &
  1543. ~(AR_PHY_WATCHDOG_RST_ENABLE |
  1544. AR_PHY_WATCHDOG_IRQ_ENABLE));
  1545. /* disable watchdog in non-IDLE mode, disable in IDLE mode */
  1546. REG_WRITE(ah, AR_PHY_WATCHDOG_CTL_1,
  1547. REG_READ(ah, AR_PHY_WATCHDOG_CTL_1) &
  1548. ~(AR_PHY_WATCHDOG_NON_IDLE_ENABLE |
  1549. AR_PHY_WATCHDOG_IDLE_ENABLE));
  1550. ath_dbg(common, RESET, "Disabled BB Watchdog\n");
  1551. return;
  1552. }
  1553. /* enable IRQ, disable chip-reset for BB watchdog */
  1554. val = REG_READ(ah, AR_PHY_WATCHDOG_CTL_2) & AR_PHY_WATCHDOG_CNTL2_MASK;
  1555. REG_WRITE(ah, AR_PHY_WATCHDOG_CTL_2,
  1556. (val | AR_PHY_WATCHDOG_IRQ_ENABLE) &
  1557. ~AR_PHY_WATCHDOG_RST_ENABLE);
  1558. /* bound limit to 10 secs */
  1559. if (idle_tmo_ms > 10000)
  1560. idle_tmo_ms = 10000;
  1561. /*
  1562. * The time unit for watchdog event is 2^15 44/88MHz cycles.
  1563. *
  1564. * For HT20 we have a time unit of 2^15/44 MHz = .74 ms per tick
  1565. * For HT40 we have a time unit of 2^15/88 MHz = .37 ms per tick
  1566. *
  1567. * Given we use fast clock now in 5 GHz, these time units should
  1568. * be common for both 2 GHz and 5 GHz.
  1569. */
  1570. idle_count = (100 * idle_tmo_ms) / 74;
  1571. if (ah->curchan && IS_CHAN_HT40(ah->curchan))
  1572. idle_count = (100 * idle_tmo_ms) / 37;
  1573. /*
  1574. * enable watchdog in non-IDLE mode, disable in IDLE mode,
  1575. * set idle time-out.
  1576. */
  1577. REG_WRITE(ah, AR_PHY_WATCHDOG_CTL_1,
  1578. AR_PHY_WATCHDOG_NON_IDLE_ENABLE |
  1579. AR_PHY_WATCHDOG_IDLE_MASK |
  1580. (AR_PHY_WATCHDOG_NON_IDLE_MASK & (idle_count << 2)));
  1581. ath_dbg(common, RESET, "Enabled BB Watchdog timeout (%u ms)\n",
  1582. idle_tmo_ms);
  1583. }
  1584. void ar9003_hw_bb_watchdog_read(struct ath_hw *ah)
  1585. {
  1586. /*
  1587. * we want to avoid printing in ISR context so we save the
  1588. * watchdog status to be printed later in bottom half context.
  1589. */
  1590. ah->bb_watchdog_last_status = REG_READ(ah, AR_PHY_WATCHDOG_STATUS);
  1591. /*
  1592. * the watchdog timer should reset on status read but to be sure
  1593. * sure we write 0 to the watchdog status bit.
  1594. */
  1595. REG_WRITE(ah, AR_PHY_WATCHDOG_STATUS,
  1596. ah->bb_watchdog_last_status & ~AR_PHY_WATCHDOG_STATUS_CLR);
  1597. }
  1598. void ar9003_hw_bb_watchdog_dbg_info(struct ath_hw *ah)
  1599. {
  1600. struct ath_common *common = ath9k_hw_common(ah);
  1601. u32 status;
  1602. if (likely(!(common->debug_mask & ATH_DBG_RESET)))
  1603. return;
  1604. status = ah->bb_watchdog_last_status;
  1605. ath_dbg(common, RESET,
  1606. "\n==== BB update: BB status=0x%08x ====\n", status);
  1607. ath_dbg(common, RESET,
  1608. "** BB state: wd=%u det=%u rdar=%u rOFDM=%d rCCK=%u tOFDM=%u tCCK=%u agc=%u src=%u **\n",
  1609. MS(status, AR_PHY_WATCHDOG_INFO),
  1610. MS(status, AR_PHY_WATCHDOG_DET_HANG),
  1611. MS(status, AR_PHY_WATCHDOG_RADAR_SM),
  1612. MS(status, AR_PHY_WATCHDOG_RX_OFDM_SM),
  1613. MS(status, AR_PHY_WATCHDOG_RX_CCK_SM),
  1614. MS(status, AR_PHY_WATCHDOG_TX_OFDM_SM),
  1615. MS(status, AR_PHY_WATCHDOG_TX_CCK_SM),
  1616. MS(status, AR_PHY_WATCHDOG_AGC_SM),
  1617. MS(status, AR_PHY_WATCHDOG_SRCH_SM));
  1618. ath_dbg(common, RESET, "** BB WD cntl: cntl1=0x%08x cntl2=0x%08x **\n",
  1619. REG_READ(ah, AR_PHY_WATCHDOG_CTL_1),
  1620. REG_READ(ah, AR_PHY_WATCHDOG_CTL_2));
  1621. ath_dbg(common, RESET, "** BB mode: BB_gen_controls=0x%08x **\n",
  1622. REG_READ(ah, AR_PHY_GEN_CTRL));
  1623. #define PCT(_field) (common->cc_survey._field * 100 / common->cc_survey.cycles)
  1624. if (common->cc_survey.cycles)
  1625. ath_dbg(common, RESET,
  1626. "** BB busy times: rx_clear=%d%%, rx_frame=%d%%, tx_frame=%d%% **\n",
  1627. PCT(rx_busy), PCT(rx_frame), PCT(tx_frame));
  1628. ath_dbg(common, RESET, "==== BB update: done ====\n\n");
  1629. }
  1630. EXPORT_SYMBOL(ar9003_hw_bb_watchdog_dbg_info);
  1631. void ar9003_hw_disable_phy_restart(struct ath_hw *ah)
  1632. {
  1633. u32 val;
  1634. /* While receiving unsupported rate frame rx state machine
  1635. * gets into a state 0xb and if phy_restart happens in that
  1636. * state, BB would go hang. If RXSM is in 0xb state after
  1637. * first bb panic, ensure to disable the phy_restart.
  1638. */
  1639. if (!((MS(ah->bb_watchdog_last_status,
  1640. AR_PHY_WATCHDOG_RX_OFDM_SM) == 0xb) ||
  1641. ah->bb_hang_rx_ofdm))
  1642. return;
  1643. ah->bb_hang_rx_ofdm = true;
  1644. val = REG_READ(ah, AR_PHY_RESTART);
  1645. val &= ~AR_PHY_RESTART_ENA;
  1646. REG_WRITE(ah, AR_PHY_RESTART, val);
  1647. }
  1648. EXPORT_SYMBOL(ar9003_hw_disable_phy_restart);