perf_counter.c 109 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644
  1. /*
  2. * Performance counter core code
  3. *
  4. * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
  5. * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
  6. * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  7. * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
  8. *
  9. * For licensing details see kernel-base/COPYING
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/mm.h>
  13. #include <linux/cpu.h>
  14. #include <linux/smp.h>
  15. #include <linux/file.h>
  16. #include <linux/poll.h>
  17. #include <linux/sysfs.h>
  18. #include <linux/dcache.h>
  19. #include <linux/percpu.h>
  20. #include <linux/ptrace.h>
  21. #include <linux/vmstat.h>
  22. #include <linux/hardirq.h>
  23. #include <linux/rculist.h>
  24. #include <linux/uaccess.h>
  25. #include <linux/syscalls.h>
  26. #include <linux/anon_inodes.h>
  27. #include <linux/kernel_stat.h>
  28. #include <linux/perf_counter.h>
  29. #include <asm/irq_regs.h>
  30. /*
  31. * Each CPU has a list of per CPU counters:
  32. */
  33. DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
  34. int perf_max_counters __read_mostly = 1;
  35. static int perf_reserved_percpu __read_mostly;
  36. static int perf_overcommit __read_mostly = 1;
  37. static atomic_t nr_counters __read_mostly;
  38. static atomic_t nr_mmap_counters __read_mostly;
  39. static atomic_t nr_comm_counters __read_mostly;
  40. static atomic_t nr_task_counters __read_mostly;
  41. /*
  42. * perf counter paranoia level:
  43. * 0 - not paranoid
  44. * 1 - disallow cpu counters to unpriv
  45. * 2 - disallow kernel profiling to unpriv
  46. */
  47. int sysctl_perf_counter_paranoid __read_mostly;
  48. static inline bool perf_paranoid_cpu(void)
  49. {
  50. return sysctl_perf_counter_paranoid > 0;
  51. }
  52. static inline bool perf_paranoid_kernel(void)
  53. {
  54. return sysctl_perf_counter_paranoid > 1;
  55. }
  56. int sysctl_perf_counter_mlock __read_mostly = 512; /* 'free' kb per user */
  57. /*
  58. * max perf counter sample rate
  59. */
  60. int sysctl_perf_counter_sample_rate __read_mostly = 100000;
  61. static atomic64_t perf_counter_id;
  62. /*
  63. * Lock for (sysadmin-configurable) counter reservations:
  64. */
  65. static DEFINE_SPINLOCK(perf_resource_lock);
  66. /*
  67. * Architecture provided APIs - weak aliases:
  68. */
  69. extern __weak const struct pmu *hw_perf_counter_init(struct perf_counter *counter)
  70. {
  71. return NULL;
  72. }
  73. void __weak hw_perf_disable(void) { barrier(); }
  74. void __weak hw_perf_enable(void) { barrier(); }
  75. void __weak hw_perf_counter_setup(int cpu) { barrier(); }
  76. int __weak
  77. hw_perf_group_sched_in(struct perf_counter *group_leader,
  78. struct perf_cpu_context *cpuctx,
  79. struct perf_counter_context *ctx, int cpu)
  80. {
  81. return 0;
  82. }
  83. void __weak perf_counter_print_debug(void) { }
  84. static DEFINE_PER_CPU(int, disable_count);
  85. void __perf_disable(void)
  86. {
  87. __get_cpu_var(disable_count)++;
  88. }
  89. bool __perf_enable(void)
  90. {
  91. return !--__get_cpu_var(disable_count);
  92. }
  93. void perf_disable(void)
  94. {
  95. __perf_disable();
  96. hw_perf_disable();
  97. }
  98. void perf_enable(void)
  99. {
  100. if (__perf_enable())
  101. hw_perf_enable();
  102. }
  103. static void get_ctx(struct perf_counter_context *ctx)
  104. {
  105. WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
  106. }
  107. static void free_ctx(struct rcu_head *head)
  108. {
  109. struct perf_counter_context *ctx;
  110. ctx = container_of(head, struct perf_counter_context, rcu_head);
  111. kfree(ctx);
  112. }
  113. static void put_ctx(struct perf_counter_context *ctx)
  114. {
  115. if (atomic_dec_and_test(&ctx->refcount)) {
  116. if (ctx->parent_ctx)
  117. put_ctx(ctx->parent_ctx);
  118. if (ctx->task)
  119. put_task_struct(ctx->task);
  120. call_rcu(&ctx->rcu_head, free_ctx);
  121. }
  122. }
  123. static void unclone_ctx(struct perf_counter_context *ctx)
  124. {
  125. if (ctx->parent_ctx) {
  126. put_ctx(ctx->parent_ctx);
  127. ctx->parent_ctx = NULL;
  128. }
  129. }
  130. /*
  131. * If we inherit counters we want to return the parent counter id
  132. * to userspace.
  133. */
  134. static u64 primary_counter_id(struct perf_counter *counter)
  135. {
  136. u64 id = counter->id;
  137. if (counter->parent)
  138. id = counter->parent->id;
  139. return id;
  140. }
  141. /*
  142. * Get the perf_counter_context for a task and lock it.
  143. * This has to cope with with the fact that until it is locked,
  144. * the context could get moved to another task.
  145. */
  146. static struct perf_counter_context *
  147. perf_lock_task_context(struct task_struct *task, unsigned long *flags)
  148. {
  149. struct perf_counter_context *ctx;
  150. rcu_read_lock();
  151. retry:
  152. ctx = rcu_dereference(task->perf_counter_ctxp);
  153. if (ctx) {
  154. /*
  155. * If this context is a clone of another, it might
  156. * get swapped for another underneath us by
  157. * perf_counter_task_sched_out, though the
  158. * rcu_read_lock() protects us from any context
  159. * getting freed. Lock the context and check if it
  160. * got swapped before we could get the lock, and retry
  161. * if so. If we locked the right context, then it
  162. * can't get swapped on us any more.
  163. */
  164. spin_lock_irqsave(&ctx->lock, *flags);
  165. if (ctx != rcu_dereference(task->perf_counter_ctxp)) {
  166. spin_unlock_irqrestore(&ctx->lock, *flags);
  167. goto retry;
  168. }
  169. if (!atomic_inc_not_zero(&ctx->refcount)) {
  170. spin_unlock_irqrestore(&ctx->lock, *flags);
  171. ctx = NULL;
  172. }
  173. }
  174. rcu_read_unlock();
  175. return ctx;
  176. }
  177. /*
  178. * Get the context for a task and increment its pin_count so it
  179. * can't get swapped to another task. This also increments its
  180. * reference count so that the context can't get freed.
  181. */
  182. static struct perf_counter_context *perf_pin_task_context(struct task_struct *task)
  183. {
  184. struct perf_counter_context *ctx;
  185. unsigned long flags;
  186. ctx = perf_lock_task_context(task, &flags);
  187. if (ctx) {
  188. ++ctx->pin_count;
  189. spin_unlock_irqrestore(&ctx->lock, flags);
  190. }
  191. return ctx;
  192. }
  193. static void perf_unpin_context(struct perf_counter_context *ctx)
  194. {
  195. unsigned long flags;
  196. spin_lock_irqsave(&ctx->lock, flags);
  197. --ctx->pin_count;
  198. spin_unlock_irqrestore(&ctx->lock, flags);
  199. put_ctx(ctx);
  200. }
  201. /*
  202. * Add a counter from the lists for its context.
  203. * Must be called with ctx->mutex and ctx->lock held.
  204. */
  205. static void
  206. list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
  207. {
  208. struct perf_counter *group_leader = counter->group_leader;
  209. /*
  210. * Depending on whether it is a standalone or sibling counter,
  211. * add it straight to the context's counter list, or to the group
  212. * leader's sibling list:
  213. */
  214. if (group_leader == counter)
  215. list_add_tail(&counter->list_entry, &ctx->counter_list);
  216. else {
  217. list_add_tail(&counter->list_entry, &group_leader->sibling_list);
  218. group_leader->nr_siblings++;
  219. }
  220. list_add_rcu(&counter->event_entry, &ctx->event_list);
  221. ctx->nr_counters++;
  222. if (counter->attr.inherit_stat)
  223. ctx->nr_stat++;
  224. }
  225. /*
  226. * Remove a counter from the lists for its context.
  227. * Must be called with ctx->mutex and ctx->lock held.
  228. */
  229. static void
  230. list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
  231. {
  232. struct perf_counter *sibling, *tmp;
  233. if (list_empty(&counter->list_entry))
  234. return;
  235. ctx->nr_counters--;
  236. if (counter->attr.inherit_stat)
  237. ctx->nr_stat--;
  238. list_del_init(&counter->list_entry);
  239. list_del_rcu(&counter->event_entry);
  240. if (counter->group_leader != counter)
  241. counter->group_leader->nr_siblings--;
  242. /*
  243. * If this was a group counter with sibling counters then
  244. * upgrade the siblings to singleton counters by adding them
  245. * to the context list directly:
  246. */
  247. list_for_each_entry_safe(sibling, tmp,
  248. &counter->sibling_list, list_entry) {
  249. list_move_tail(&sibling->list_entry, &ctx->counter_list);
  250. sibling->group_leader = sibling;
  251. }
  252. }
  253. static void
  254. counter_sched_out(struct perf_counter *counter,
  255. struct perf_cpu_context *cpuctx,
  256. struct perf_counter_context *ctx)
  257. {
  258. if (counter->state != PERF_COUNTER_STATE_ACTIVE)
  259. return;
  260. counter->state = PERF_COUNTER_STATE_INACTIVE;
  261. counter->tstamp_stopped = ctx->time;
  262. counter->pmu->disable(counter);
  263. counter->oncpu = -1;
  264. if (!is_software_counter(counter))
  265. cpuctx->active_oncpu--;
  266. ctx->nr_active--;
  267. if (counter->attr.exclusive || !cpuctx->active_oncpu)
  268. cpuctx->exclusive = 0;
  269. }
  270. static void
  271. group_sched_out(struct perf_counter *group_counter,
  272. struct perf_cpu_context *cpuctx,
  273. struct perf_counter_context *ctx)
  274. {
  275. struct perf_counter *counter;
  276. if (group_counter->state != PERF_COUNTER_STATE_ACTIVE)
  277. return;
  278. counter_sched_out(group_counter, cpuctx, ctx);
  279. /*
  280. * Schedule out siblings (if any):
  281. */
  282. list_for_each_entry(counter, &group_counter->sibling_list, list_entry)
  283. counter_sched_out(counter, cpuctx, ctx);
  284. if (group_counter->attr.exclusive)
  285. cpuctx->exclusive = 0;
  286. }
  287. /*
  288. * Cross CPU call to remove a performance counter
  289. *
  290. * We disable the counter on the hardware level first. After that we
  291. * remove it from the context list.
  292. */
  293. static void __perf_counter_remove_from_context(void *info)
  294. {
  295. struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
  296. struct perf_counter *counter = info;
  297. struct perf_counter_context *ctx = counter->ctx;
  298. /*
  299. * If this is a task context, we need to check whether it is
  300. * the current task context of this cpu. If not it has been
  301. * scheduled out before the smp call arrived.
  302. */
  303. if (ctx->task && cpuctx->task_ctx != ctx)
  304. return;
  305. spin_lock(&ctx->lock);
  306. /*
  307. * Protect the list operation against NMI by disabling the
  308. * counters on a global level.
  309. */
  310. perf_disable();
  311. counter_sched_out(counter, cpuctx, ctx);
  312. list_del_counter(counter, ctx);
  313. if (!ctx->task) {
  314. /*
  315. * Allow more per task counters with respect to the
  316. * reservation:
  317. */
  318. cpuctx->max_pertask =
  319. min(perf_max_counters - ctx->nr_counters,
  320. perf_max_counters - perf_reserved_percpu);
  321. }
  322. perf_enable();
  323. spin_unlock(&ctx->lock);
  324. }
  325. /*
  326. * Remove the counter from a task's (or a CPU's) list of counters.
  327. *
  328. * Must be called with ctx->mutex held.
  329. *
  330. * CPU counters are removed with a smp call. For task counters we only
  331. * call when the task is on a CPU.
  332. *
  333. * If counter->ctx is a cloned context, callers must make sure that
  334. * every task struct that counter->ctx->task could possibly point to
  335. * remains valid. This is OK when called from perf_release since
  336. * that only calls us on the top-level context, which can't be a clone.
  337. * When called from perf_counter_exit_task, it's OK because the
  338. * context has been detached from its task.
  339. */
  340. static void perf_counter_remove_from_context(struct perf_counter *counter)
  341. {
  342. struct perf_counter_context *ctx = counter->ctx;
  343. struct task_struct *task = ctx->task;
  344. if (!task) {
  345. /*
  346. * Per cpu counters are removed via an smp call and
  347. * the removal is always sucessful.
  348. */
  349. smp_call_function_single(counter->cpu,
  350. __perf_counter_remove_from_context,
  351. counter, 1);
  352. return;
  353. }
  354. retry:
  355. task_oncpu_function_call(task, __perf_counter_remove_from_context,
  356. counter);
  357. spin_lock_irq(&ctx->lock);
  358. /*
  359. * If the context is active we need to retry the smp call.
  360. */
  361. if (ctx->nr_active && !list_empty(&counter->list_entry)) {
  362. spin_unlock_irq(&ctx->lock);
  363. goto retry;
  364. }
  365. /*
  366. * The lock prevents that this context is scheduled in so we
  367. * can remove the counter safely, if the call above did not
  368. * succeed.
  369. */
  370. if (!list_empty(&counter->list_entry)) {
  371. list_del_counter(counter, ctx);
  372. }
  373. spin_unlock_irq(&ctx->lock);
  374. }
  375. static inline u64 perf_clock(void)
  376. {
  377. return cpu_clock(smp_processor_id());
  378. }
  379. /*
  380. * Update the record of the current time in a context.
  381. */
  382. static void update_context_time(struct perf_counter_context *ctx)
  383. {
  384. u64 now = perf_clock();
  385. ctx->time += now - ctx->timestamp;
  386. ctx->timestamp = now;
  387. }
  388. /*
  389. * Update the total_time_enabled and total_time_running fields for a counter.
  390. */
  391. static void update_counter_times(struct perf_counter *counter)
  392. {
  393. struct perf_counter_context *ctx = counter->ctx;
  394. u64 run_end;
  395. if (counter->state < PERF_COUNTER_STATE_INACTIVE)
  396. return;
  397. counter->total_time_enabled = ctx->time - counter->tstamp_enabled;
  398. if (counter->state == PERF_COUNTER_STATE_INACTIVE)
  399. run_end = counter->tstamp_stopped;
  400. else
  401. run_end = ctx->time;
  402. counter->total_time_running = run_end - counter->tstamp_running;
  403. }
  404. /*
  405. * Update total_time_enabled and total_time_running for all counters in a group.
  406. */
  407. static void update_group_times(struct perf_counter *leader)
  408. {
  409. struct perf_counter *counter;
  410. update_counter_times(leader);
  411. list_for_each_entry(counter, &leader->sibling_list, list_entry)
  412. update_counter_times(counter);
  413. }
  414. /*
  415. * Cross CPU call to disable a performance counter
  416. */
  417. static void __perf_counter_disable(void *info)
  418. {
  419. struct perf_counter *counter = info;
  420. struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
  421. struct perf_counter_context *ctx = counter->ctx;
  422. /*
  423. * If this is a per-task counter, need to check whether this
  424. * counter's task is the current task on this cpu.
  425. */
  426. if (ctx->task && cpuctx->task_ctx != ctx)
  427. return;
  428. spin_lock(&ctx->lock);
  429. /*
  430. * If the counter is on, turn it off.
  431. * If it is in error state, leave it in error state.
  432. */
  433. if (counter->state >= PERF_COUNTER_STATE_INACTIVE) {
  434. update_context_time(ctx);
  435. update_counter_times(counter);
  436. if (counter == counter->group_leader)
  437. group_sched_out(counter, cpuctx, ctx);
  438. else
  439. counter_sched_out(counter, cpuctx, ctx);
  440. counter->state = PERF_COUNTER_STATE_OFF;
  441. }
  442. spin_unlock(&ctx->lock);
  443. }
  444. /*
  445. * Disable a counter.
  446. *
  447. * If counter->ctx is a cloned context, callers must make sure that
  448. * every task struct that counter->ctx->task could possibly point to
  449. * remains valid. This condition is satisifed when called through
  450. * perf_counter_for_each_child or perf_counter_for_each because they
  451. * hold the top-level counter's child_mutex, so any descendant that
  452. * goes to exit will block in sync_child_counter.
  453. * When called from perf_pending_counter it's OK because counter->ctx
  454. * is the current context on this CPU and preemption is disabled,
  455. * hence we can't get into perf_counter_task_sched_out for this context.
  456. */
  457. static void perf_counter_disable(struct perf_counter *counter)
  458. {
  459. struct perf_counter_context *ctx = counter->ctx;
  460. struct task_struct *task = ctx->task;
  461. if (!task) {
  462. /*
  463. * Disable the counter on the cpu that it's on
  464. */
  465. smp_call_function_single(counter->cpu, __perf_counter_disable,
  466. counter, 1);
  467. return;
  468. }
  469. retry:
  470. task_oncpu_function_call(task, __perf_counter_disable, counter);
  471. spin_lock_irq(&ctx->lock);
  472. /*
  473. * If the counter is still active, we need to retry the cross-call.
  474. */
  475. if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
  476. spin_unlock_irq(&ctx->lock);
  477. goto retry;
  478. }
  479. /*
  480. * Since we have the lock this context can't be scheduled
  481. * in, so we can change the state safely.
  482. */
  483. if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
  484. update_counter_times(counter);
  485. counter->state = PERF_COUNTER_STATE_OFF;
  486. }
  487. spin_unlock_irq(&ctx->lock);
  488. }
  489. static int
  490. counter_sched_in(struct perf_counter *counter,
  491. struct perf_cpu_context *cpuctx,
  492. struct perf_counter_context *ctx,
  493. int cpu)
  494. {
  495. if (counter->state <= PERF_COUNTER_STATE_OFF)
  496. return 0;
  497. counter->state = PERF_COUNTER_STATE_ACTIVE;
  498. counter->oncpu = cpu; /* TODO: put 'cpu' into cpuctx->cpu */
  499. /*
  500. * The new state must be visible before we turn it on in the hardware:
  501. */
  502. smp_wmb();
  503. if (counter->pmu->enable(counter)) {
  504. counter->state = PERF_COUNTER_STATE_INACTIVE;
  505. counter->oncpu = -1;
  506. return -EAGAIN;
  507. }
  508. counter->tstamp_running += ctx->time - counter->tstamp_stopped;
  509. if (!is_software_counter(counter))
  510. cpuctx->active_oncpu++;
  511. ctx->nr_active++;
  512. if (counter->attr.exclusive)
  513. cpuctx->exclusive = 1;
  514. return 0;
  515. }
  516. static int
  517. group_sched_in(struct perf_counter *group_counter,
  518. struct perf_cpu_context *cpuctx,
  519. struct perf_counter_context *ctx,
  520. int cpu)
  521. {
  522. struct perf_counter *counter, *partial_group;
  523. int ret;
  524. if (group_counter->state == PERF_COUNTER_STATE_OFF)
  525. return 0;
  526. ret = hw_perf_group_sched_in(group_counter, cpuctx, ctx, cpu);
  527. if (ret)
  528. return ret < 0 ? ret : 0;
  529. if (counter_sched_in(group_counter, cpuctx, ctx, cpu))
  530. return -EAGAIN;
  531. /*
  532. * Schedule in siblings as one group (if any):
  533. */
  534. list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
  535. if (counter_sched_in(counter, cpuctx, ctx, cpu)) {
  536. partial_group = counter;
  537. goto group_error;
  538. }
  539. }
  540. return 0;
  541. group_error:
  542. /*
  543. * Groups can be scheduled in as one unit only, so undo any
  544. * partial group before returning:
  545. */
  546. list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
  547. if (counter == partial_group)
  548. break;
  549. counter_sched_out(counter, cpuctx, ctx);
  550. }
  551. counter_sched_out(group_counter, cpuctx, ctx);
  552. return -EAGAIN;
  553. }
  554. /*
  555. * Return 1 for a group consisting entirely of software counters,
  556. * 0 if the group contains any hardware counters.
  557. */
  558. static int is_software_only_group(struct perf_counter *leader)
  559. {
  560. struct perf_counter *counter;
  561. if (!is_software_counter(leader))
  562. return 0;
  563. list_for_each_entry(counter, &leader->sibling_list, list_entry)
  564. if (!is_software_counter(counter))
  565. return 0;
  566. return 1;
  567. }
  568. /*
  569. * Work out whether we can put this counter group on the CPU now.
  570. */
  571. static int group_can_go_on(struct perf_counter *counter,
  572. struct perf_cpu_context *cpuctx,
  573. int can_add_hw)
  574. {
  575. /*
  576. * Groups consisting entirely of software counters can always go on.
  577. */
  578. if (is_software_only_group(counter))
  579. return 1;
  580. /*
  581. * If an exclusive group is already on, no other hardware
  582. * counters can go on.
  583. */
  584. if (cpuctx->exclusive)
  585. return 0;
  586. /*
  587. * If this group is exclusive and there are already
  588. * counters on the CPU, it can't go on.
  589. */
  590. if (counter->attr.exclusive && cpuctx->active_oncpu)
  591. return 0;
  592. /*
  593. * Otherwise, try to add it if all previous groups were able
  594. * to go on.
  595. */
  596. return can_add_hw;
  597. }
  598. static void add_counter_to_ctx(struct perf_counter *counter,
  599. struct perf_counter_context *ctx)
  600. {
  601. list_add_counter(counter, ctx);
  602. counter->tstamp_enabled = ctx->time;
  603. counter->tstamp_running = ctx->time;
  604. counter->tstamp_stopped = ctx->time;
  605. }
  606. /*
  607. * Cross CPU call to install and enable a performance counter
  608. *
  609. * Must be called with ctx->mutex held
  610. */
  611. static void __perf_install_in_context(void *info)
  612. {
  613. struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
  614. struct perf_counter *counter = info;
  615. struct perf_counter_context *ctx = counter->ctx;
  616. struct perf_counter *leader = counter->group_leader;
  617. int cpu = smp_processor_id();
  618. int err;
  619. /*
  620. * If this is a task context, we need to check whether it is
  621. * the current task context of this cpu. If not it has been
  622. * scheduled out before the smp call arrived.
  623. * Or possibly this is the right context but it isn't
  624. * on this cpu because it had no counters.
  625. */
  626. if (ctx->task && cpuctx->task_ctx != ctx) {
  627. if (cpuctx->task_ctx || ctx->task != current)
  628. return;
  629. cpuctx->task_ctx = ctx;
  630. }
  631. spin_lock(&ctx->lock);
  632. ctx->is_active = 1;
  633. update_context_time(ctx);
  634. /*
  635. * Protect the list operation against NMI by disabling the
  636. * counters on a global level. NOP for non NMI based counters.
  637. */
  638. perf_disable();
  639. add_counter_to_ctx(counter, ctx);
  640. /*
  641. * Don't put the counter on if it is disabled or if
  642. * it is in a group and the group isn't on.
  643. */
  644. if (counter->state != PERF_COUNTER_STATE_INACTIVE ||
  645. (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE))
  646. goto unlock;
  647. /*
  648. * An exclusive counter can't go on if there are already active
  649. * hardware counters, and no hardware counter can go on if there
  650. * is already an exclusive counter on.
  651. */
  652. if (!group_can_go_on(counter, cpuctx, 1))
  653. err = -EEXIST;
  654. else
  655. err = counter_sched_in(counter, cpuctx, ctx, cpu);
  656. if (err) {
  657. /*
  658. * This counter couldn't go on. If it is in a group
  659. * then we have to pull the whole group off.
  660. * If the counter group is pinned then put it in error state.
  661. */
  662. if (leader != counter)
  663. group_sched_out(leader, cpuctx, ctx);
  664. if (leader->attr.pinned) {
  665. update_group_times(leader);
  666. leader->state = PERF_COUNTER_STATE_ERROR;
  667. }
  668. }
  669. if (!err && !ctx->task && cpuctx->max_pertask)
  670. cpuctx->max_pertask--;
  671. unlock:
  672. perf_enable();
  673. spin_unlock(&ctx->lock);
  674. }
  675. /*
  676. * Attach a performance counter to a context
  677. *
  678. * First we add the counter to the list with the hardware enable bit
  679. * in counter->hw_config cleared.
  680. *
  681. * If the counter is attached to a task which is on a CPU we use a smp
  682. * call to enable it in the task context. The task might have been
  683. * scheduled away, but we check this in the smp call again.
  684. *
  685. * Must be called with ctx->mutex held.
  686. */
  687. static void
  688. perf_install_in_context(struct perf_counter_context *ctx,
  689. struct perf_counter *counter,
  690. int cpu)
  691. {
  692. struct task_struct *task = ctx->task;
  693. if (!task) {
  694. /*
  695. * Per cpu counters are installed via an smp call and
  696. * the install is always sucessful.
  697. */
  698. smp_call_function_single(cpu, __perf_install_in_context,
  699. counter, 1);
  700. return;
  701. }
  702. retry:
  703. task_oncpu_function_call(task, __perf_install_in_context,
  704. counter);
  705. spin_lock_irq(&ctx->lock);
  706. /*
  707. * we need to retry the smp call.
  708. */
  709. if (ctx->is_active && list_empty(&counter->list_entry)) {
  710. spin_unlock_irq(&ctx->lock);
  711. goto retry;
  712. }
  713. /*
  714. * The lock prevents that this context is scheduled in so we
  715. * can add the counter safely, if it the call above did not
  716. * succeed.
  717. */
  718. if (list_empty(&counter->list_entry))
  719. add_counter_to_ctx(counter, ctx);
  720. spin_unlock_irq(&ctx->lock);
  721. }
  722. /*
  723. * Cross CPU call to enable a performance counter
  724. */
  725. static void __perf_counter_enable(void *info)
  726. {
  727. struct perf_counter *counter = info;
  728. struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
  729. struct perf_counter_context *ctx = counter->ctx;
  730. struct perf_counter *leader = counter->group_leader;
  731. int err;
  732. /*
  733. * If this is a per-task counter, need to check whether this
  734. * counter's task is the current task on this cpu.
  735. */
  736. if (ctx->task && cpuctx->task_ctx != ctx) {
  737. if (cpuctx->task_ctx || ctx->task != current)
  738. return;
  739. cpuctx->task_ctx = ctx;
  740. }
  741. spin_lock(&ctx->lock);
  742. ctx->is_active = 1;
  743. update_context_time(ctx);
  744. if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
  745. goto unlock;
  746. counter->state = PERF_COUNTER_STATE_INACTIVE;
  747. counter->tstamp_enabled = ctx->time - counter->total_time_enabled;
  748. /*
  749. * If the counter is in a group and isn't the group leader,
  750. * then don't put it on unless the group is on.
  751. */
  752. if (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE)
  753. goto unlock;
  754. if (!group_can_go_on(counter, cpuctx, 1)) {
  755. err = -EEXIST;
  756. } else {
  757. perf_disable();
  758. if (counter == leader)
  759. err = group_sched_in(counter, cpuctx, ctx,
  760. smp_processor_id());
  761. else
  762. err = counter_sched_in(counter, cpuctx, ctx,
  763. smp_processor_id());
  764. perf_enable();
  765. }
  766. if (err) {
  767. /*
  768. * If this counter can't go on and it's part of a
  769. * group, then the whole group has to come off.
  770. */
  771. if (leader != counter)
  772. group_sched_out(leader, cpuctx, ctx);
  773. if (leader->attr.pinned) {
  774. update_group_times(leader);
  775. leader->state = PERF_COUNTER_STATE_ERROR;
  776. }
  777. }
  778. unlock:
  779. spin_unlock(&ctx->lock);
  780. }
  781. /*
  782. * Enable a counter.
  783. *
  784. * If counter->ctx is a cloned context, callers must make sure that
  785. * every task struct that counter->ctx->task could possibly point to
  786. * remains valid. This condition is satisfied when called through
  787. * perf_counter_for_each_child or perf_counter_for_each as described
  788. * for perf_counter_disable.
  789. */
  790. static void perf_counter_enable(struct perf_counter *counter)
  791. {
  792. struct perf_counter_context *ctx = counter->ctx;
  793. struct task_struct *task = ctx->task;
  794. if (!task) {
  795. /*
  796. * Enable the counter on the cpu that it's on
  797. */
  798. smp_call_function_single(counter->cpu, __perf_counter_enable,
  799. counter, 1);
  800. return;
  801. }
  802. spin_lock_irq(&ctx->lock);
  803. if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
  804. goto out;
  805. /*
  806. * If the counter is in error state, clear that first.
  807. * That way, if we see the counter in error state below, we
  808. * know that it has gone back into error state, as distinct
  809. * from the task having been scheduled away before the
  810. * cross-call arrived.
  811. */
  812. if (counter->state == PERF_COUNTER_STATE_ERROR)
  813. counter->state = PERF_COUNTER_STATE_OFF;
  814. retry:
  815. spin_unlock_irq(&ctx->lock);
  816. task_oncpu_function_call(task, __perf_counter_enable, counter);
  817. spin_lock_irq(&ctx->lock);
  818. /*
  819. * If the context is active and the counter is still off,
  820. * we need to retry the cross-call.
  821. */
  822. if (ctx->is_active && counter->state == PERF_COUNTER_STATE_OFF)
  823. goto retry;
  824. /*
  825. * Since we have the lock this context can't be scheduled
  826. * in, so we can change the state safely.
  827. */
  828. if (counter->state == PERF_COUNTER_STATE_OFF) {
  829. counter->state = PERF_COUNTER_STATE_INACTIVE;
  830. counter->tstamp_enabled =
  831. ctx->time - counter->total_time_enabled;
  832. }
  833. out:
  834. spin_unlock_irq(&ctx->lock);
  835. }
  836. static int perf_counter_refresh(struct perf_counter *counter, int refresh)
  837. {
  838. /*
  839. * not supported on inherited counters
  840. */
  841. if (counter->attr.inherit)
  842. return -EINVAL;
  843. atomic_add(refresh, &counter->event_limit);
  844. perf_counter_enable(counter);
  845. return 0;
  846. }
  847. void __perf_counter_sched_out(struct perf_counter_context *ctx,
  848. struct perf_cpu_context *cpuctx)
  849. {
  850. struct perf_counter *counter;
  851. spin_lock(&ctx->lock);
  852. ctx->is_active = 0;
  853. if (likely(!ctx->nr_counters))
  854. goto out;
  855. update_context_time(ctx);
  856. perf_disable();
  857. if (ctx->nr_active) {
  858. list_for_each_entry(counter, &ctx->counter_list, list_entry) {
  859. if (counter != counter->group_leader)
  860. counter_sched_out(counter, cpuctx, ctx);
  861. else
  862. group_sched_out(counter, cpuctx, ctx);
  863. }
  864. }
  865. perf_enable();
  866. out:
  867. spin_unlock(&ctx->lock);
  868. }
  869. /*
  870. * Test whether two contexts are equivalent, i.e. whether they
  871. * have both been cloned from the same version of the same context
  872. * and they both have the same number of enabled counters.
  873. * If the number of enabled counters is the same, then the set
  874. * of enabled counters should be the same, because these are both
  875. * inherited contexts, therefore we can't access individual counters
  876. * in them directly with an fd; we can only enable/disable all
  877. * counters via prctl, or enable/disable all counters in a family
  878. * via ioctl, which will have the same effect on both contexts.
  879. */
  880. static int context_equiv(struct perf_counter_context *ctx1,
  881. struct perf_counter_context *ctx2)
  882. {
  883. return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
  884. && ctx1->parent_gen == ctx2->parent_gen
  885. && !ctx1->pin_count && !ctx2->pin_count;
  886. }
  887. static void __perf_counter_read(void *counter);
  888. static void __perf_counter_sync_stat(struct perf_counter *counter,
  889. struct perf_counter *next_counter)
  890. {
  891. u64 value;
  892. if (!counter->attr.inherit_stat)
  893. return;
  894. /*
  895. * Update the counter value, we cannot use perf_counter_read()
  896. * because we're in the middle of a context switch and have IRQs
  897. * disabled, which upsets smp_call_function_single(), however
  898. * we know the counter must be on the current CPU, therefore we
  899. * don't need to use it.
  900. */
  901. switch (counter->state) {
  902. case PERF_COUNTER_STATE_ACTIVE:
  903. __perf_counter_read(counter);
  904. break;
  905. case PERF_COUNTER_STATE_INACTIVE:
  906. update_counter_times(counter);
  907. break;
  908. default:
  909. break;
  910. }
  911. /*
  912. * In order to keep per-task stats reliable we need to flip the counter
  913. * values when we flip the contexts.
  914. */
  915. value = atomic64_read(&next_counter->count);
  916. value = atomic64_xchg(&counter->count, value);
  917. atomic64_set(&next_counter->count, value);
  918. swap(counter->total_time_enabled, next_counter->total_time_enabled);
  919. swap(counter->total_time_running, next_counter->total_time_running);
  920. /*
  921. * Since we swizzled the values, update the user visible data too.
  922. */
  923. perf_counter_update_userpage(counter);
  924. perf_counter_update_userpage(next_counter);
  925. }
  926. #define list_next_entry(pos, member) \
  927. list_entry(pos->member.next, typeof(*pos), member)
  928. static void perf_counter_sync_stat(struct perf_counter_context *ctx,
  929. struct perf_counter_context *next_ctx)
  930. {
  931. struct perf_counter *counter, *next_counter;
  932. if (!ctx->nr_stat)
  933. return;
  934. counter = list_first_entry(&ctx->event_list,
  935. struct perf_counter, event_entry);
  936. next_counter = list_first_entry(&next_ctx->event_list,
  937. struct perf_counter, event_entry);
  938. while (&counter->event_entry != &ctx->event_list &&
  939. &next_counter->event_entry != &next_ctx->event_list) {
  940. __perf_counter_sync_stat(counter, next_counter);
  941. counter = list_next_entry(counter, event_entry);
  942. next_counter = list_next_entry(counter, event_entry);
  943. }
  944. }
  945. /*
  946. * Called from scheduler to remove the counters of the current task,
  947. * with interrupts disabled.
  948. *
  949. * We stop each counter and update the counter value in counter->count.
  950. *
  951. * This does not protect us against NMI, but disable()
  952. * sets the disabled bit in the control field of counter _before_
  953. * accessing the counter control register. If a NMI hits, then it will
  954. * not restart the counter.
  955. */
  956. void perf_counter_task_sched_out(struct task_struct *task,
  957. struct task_struct *next, int cpu)
  958. {
  959. struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
  960. struct perf_counter_context *ctx = task->perf_counter_ctxp;
  961. struct perf_counter_context *next_ctx;
  962. struct perf_counter_context *parent;
  963. struct pt_regs *regs;
  964. int do_switch = 1;
  965. regs = task_pt_regs(task);
  966. perf_swcounter_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, regs, 0);
  967. if (likely(!ctx || !cpuctx->task_ctx))
  968. return;
  969. update_context_time(ctx);
  970. rcu_read_lock();
  971. parent = rcu_dereference(ctx->parent_ctx);
  972. next_ctx = next->perf_counter_ctxp;
  973. if (parent && next_ctx &&
  974. rcu_dereference(next_ctx->parent_ctx) == parent) {
  975. /*
  976. * Looks like the two contexts are clones, so we might be
  977. * able to optimize the context switch. We lock both
  978. * contexts and check that they are clones under the
  979. * lock (including re-checking that neither has been
  980. * uncloned in the meantime). It doesn't matter which
  981. * order we take the locks because no other cpu could
  982. * be trying to lock both of these tasks.
  983. */
  984. spin_lock(&ctx->lock);
  985. spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
  986. if (context_equiv(ctx, next_ctx)) {
  987. /*
  988. * XXX do we need a memory barrier of sorts
  989. * wrt to rcu_dereference() of perf_counter_ctxp
  990. */
  991. task->perf_counter_ctxp = next_ctx;
  992. next->perf_counter_ctxp = ctx;
  993. ctx->task = next;
  994. next_ctx->task = task;
  995. do_switch = 0;
  996. perf_counter_sync_stat(ctx, next_ctx);
  997. }
  998. spin_unlock(&next_ctx->lock);
  999. spin_unlock(&ctx->lock);
  1000. }
  1001. rcu_read_unlock();
  1002. if (do_switch) {
  1003. __perf_counter_sched_out(ctx, cpuctx);
  1004. cpuctx->task_ctx = NULL;
  1005. }
  1006. }
  1007. /*
  1008. * Called with IRQs disabled
  1009. */
  1010. static void __perf_counter_task_sched_out(struct perf_counter_context *ctx)
  1011. {
  1012. struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
  1013. if (!cpuctx->task_ctx)
  1014. return;
  1015. if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
  1016. return;
  1017. __perf_counter_sched_out(ctx, cpuctx);
  1018. cpuctx->task_ctx = NULL;
  1019. }
  1020. /*
  1021. * Called with IRQs disabled
  1022. */
  1023. static void perf_counter_cpu_sched_out(struct perf_cpu_context *cpuctx)
  1024. {
  1025. __perf_counter_sched_out(&cpuctx->ctx, cpuctx);
  1026. }
  1027. static void
  1028. __perf_counter_sched_in(struct perf_counter_context *ctx,
  1029. struct perf_cpu_context *cpuctx, int cpu)
  1030. {
  1031. struct perf_counter *counter;
  1032. int can_add_hw = 1;
  1033. spin_lock(&ctx->lock);
  1034. ctx->is_active = 1;
  1035. if (likely(!ctx->nr_counters))
  1036. goto out;
  1037. ctx->timestamp = perf_clock();
  1038. perf_disable();
  1039. /*
  1040. * First go through the list and put on any pinned groups
  1041. * in order to give them the best chance of going on.
  1042. */
  1043. list_for_each_entry(counter, &ctx->counter_list, list_entry) {
  1044. if (counter->state <= PERF_COUNTER_STATE_OFF ||
  1045. !counter->attr.pinned)
  1046. continue;
  1047. if (counter->cpu != -1 && counter->cpu != cpu)
  1048. continue;
  1049. if (counter != counter->group_leader)
  1050. counter_sched_in(counter, cpuctx, ctx, cpu);
  1051. else {
  1052. if (group_can_go_on(counter, cpuctx, 1))
  1053. group_sched_in(counter, cpuctx, ctx, cpu);
  1054. }
  1055. /*
  1056. * If this pinned group hasn't been scheduled,
  1057. * put it in error state.
  1058. */
  1059. if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
  1060. update_group_times(counter);
  1061. counter->state = PERF_COUNTER_STATE_ERROR;
  1062. }
  1063. }
  1064. list_for_each_entry(counter, &ctx->counter_list, list_entry) {
  1065. /*
  1066. * Ignore counters in OFF or ERROR state, and
  1067. * ignore pinned counters since we did them already.
  1068. */
  1069. if (counter->state <= PERF_COUNTER_STATE_OFF ||
  1070. counter->attr.pinned)
  1071. continue;
  1072. /*
  1073. * Listen to the 'cpu' scheduling filter constraint
  1074. * of counters:
  1075. */
  1076. if (counter->cpu != -1 && counter->cpu != cpu)
  1077. continue;
  1078. if (counter != counter->group_leader) {
  1079. if (counter_sched_in(counter, cpuctx, ctx, cpu))
  1080. can_add_hw = 0;
  1081. } else {
  1082. if (group_can_go_on(counter, cpuctx, can_add_hw)) {
  1083. if (group_sched_in(counter, cpuctx, ctx, cpu))
  1084. can_add_hw = 0;
  1085. }
  1086. }
  1087. }
  1088. perf_enable();
  1089. out:
  1090. spin_unlock(&ctx->lock);
  1091. }
  1092. /*
  1093. * Called from scheduler to add the counters of the current task
  1094. * with interrupts disabled.
  1095. *
  1096. * We restore the counter value and then enable it.
  1097. *
  1098. * This does not protect us against NMI, but enable()
  1099. * sets the enabled bit in the control field of counter _before_
  1100. * accessing the counter control register. If a NMI hits, then it will
  1101. * keep the counter running.
  1102. */
  1103. void perf_counter_task_sched_in(struct task_struct *task, int cpu)
  1104. {
  1105. struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
  1106. struct perf_counter_context *ctx = task->perf_counter_ctxp;
  1107. if (likely(!ctx))
  1108. return;
  1109. if (cpuctx->task_ctx == ctx)
  1110. return;
  1111. __perf_counter_sched_in(ctx, cpuctx, cpu);
  1112. cpuctx->task_ctx = ctx;
  1113. }
  1114. static void perf_counter_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
  1115. {
  1116. struct perf_counter_context *ctx = &cpuctx->ctx;
  1117. __perf_counter_sched_in(ctx, cpuctx, cpu);
  1118. }
  1119. #define MAX_INTERRUPTS (~0ULL)
  1120. static void perf_log_throttle(struct perf_counter *counter, int enable);
  1121. static void perf_adjust_period(struct perf_counter *counter, u64 events)
  1122. {
  1123. struct hw_perf_counter *hwc = &counter->hw;
  1124. u64 period, sample_period;
  1125. s64 delta;
  1126. events *= hwc->sample_period;
  1127. period = div64_u64(events, counter->attr.sample_freq);
  1128. delta = (s64)(period - hwc->sample_period);
  1129. delta = (delta + 7) / 8; /* low pass filter */
  1130. sample_period = hwc->sample_period + delta;
  1131. if (!sample_period)
  1132. sample_period = 1;
  1133. hwc->sample_period = sample_period;
  1134. }
  1135. static void perf_ctx_adjust_freq(struct perf_counter_context *ctx)
  1136. {
  1137. struct perf_counter *counter;
  1138. struct hw_perf_counter *hwc;
  1139. u64 interrupts, freq;
  1140. spin_lock(&ctx->lock);
  1141. list_for_each_entry(counter, &ctx->counter_list, list_entry) {
  1142. if (counter->state != PERF_COUNTER_STATE_ACTIVE)
  1143. continue;
  1144. hwc = &counter->hw;
  1145. interrupts = hwc->interrupts;
  1146. hwc->interrupts = 0;
  1147. /*
  1148. * unthrottle counters on the tick
  1149. */
  1150. if (interrupts == MAX_INTERRUPTS) {
  1151. perf_log_throttle(counter, 1);
  1152. counter->pmu->unthrottle(counter);
  1153. interrupts = 2*sysctl_perf_counter_sample_rate/HZ;
  1154. }
  1155. if (!counter->attr.freq || !counter->attr.sample_freq)
  1156. continue;
  1157. /*
  1158. * if the specified freq < HZ then we need to skip ticks
  1159. */
  1160. if (counter->attr.sample_freq < HZ) {
  1161. freq = counter->attr.sample_freq;
  1162. hwc->freq_count += freq;
  1163. hwc->freq_interrupts += interrupts;
  1164. if (hwc->freq_count < HZ)
  1165. continue;
  1166. interrupts = hwc->freq_interrupts;
  1167. hwc->freq_interrupts = 0;
  1168. hwc->freq_count -= HZ;
  1169. } else
  1170. freq = HZ;
  1171. perf_adjust_period(counter, freq * interrupts);
  1172. /*
  1173. * In order to avoid being stalled by an (accidental) huge
  1174. * sample period, force reset the sample period if we didn't
  1175. * get any events in this freq period.
  1176. */
  1177. if (!interrupts) {
  1178. perf_disable();
  1179. counter->pmu->disable(counter);
  1180. atomic64_set(&hwc->period_left, 0);
  1181. counter->pmu->enable(counter);
  1182. perf_enable();
  1183. }
  1184. }
  1185. spin_unlock(&ctx->lock);
  1186. }
  1187. /*
  1188. * Round-robin a context's counters:
  1189. */
  1190. static void rotate_ctx(struct perf_counter_context *ctx)
  1191. {
  1192. struct perf_counter *counter;
  1193. if (!ctx->nr_counters)
  1194. return;
  1195. spin_lock(&ctx->lock);
  1196. /*
  1197. * Rotate the first entry last (works just fine for group counters too):
  1198. */
  1199. perf_disable();
  1200. list_for_each_entry(counter, &ctx->counter_list, list_entry) {
  1201. list_move_tail(&counter->list_entry, &ctx->counter_list);
  1202. break;
  1203. }
  1204. perf_enable();
  1205. spin_unlock(&ctx->lock);
  1206. }
  1207. void perf_counter_task_tick(struct task_struct *curr, int cpu)
  1208. {
  1209. struct perf_cpu_context *cpuctx;
  1210. struct perf_counter_context *ctx;
  1211. if (!atomic_read(&nr_counters))
  1212. return;
  1213. cpuctx = &per_cpu(perf_cpu_context, cpu);
  1214. ctx = curr->perf_counter_ctxp;
  1215. perf_ctx_adjust_freq(&cpuctx->ctx);
  1216. if (ctx)
  1217. perf_ctx_adjust_freq(ctx);
  1218. perf_counter_cpu_sched_out(cpuctx);
  1219. if (ctx)
  1220. __perf_counter_task_sched_out(ctx);
  1221. rotate_ctx(&cpuctx->ctx);
  1222. if (ctx)
  1223. rotate_ctx(ctx);
  1224. perf_counter_cpu_sched_in(cpuctx, cpu);
  1225. if (ctx)
  1226. perf_counter_task_sched_in(curr, cpu);
  1227. }
  1228. /*
  1229. * Enable all of a task's counters that have been marked enable-on-exec.
  1230. * This expects task == current.
  1231. */
  1232. static void perf_counter_enable_on_exec(struct task_struct *task)
  1233. {
  1234. struct perf_counter_context *ctx;
  1235. struct perf_counter *counter;
  1236. unsigned long flags;
  1237. int enabled = 0;
  1238. local_irq_save(flags);
  1239. ctx = task->perf_counter_ctxp;
  1240. if (!ctx || !ctx->nr_counters)
  1241. goto out;
  1242. __perf_counter_task_sched_out(ctx);
  1243. spin_lock(&ctx->lock);
  1244. list_for_each_entry(counter, &ctx->counter_list, list_entry) {
  1245. if (!counter->attr.enable_on_exec)
  1246. continue;
  1247. counter->attr.enable_on_exec = 0;
  1248. if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
  1249. continue;
  1250. counter->state = PERF_COUNTER_STATE_INACTIVE;
  1251. counter->tstamp_enabled =
  1252. ctx->time - counter->total_time_enabled;
  1253. enabled = 1;
  1254. }
  1255. /*
  1256. * Unclone this context if we enabled any counter.
  1257. */
  1258. if (enabled)
  1259. unclone_ctx(ctx);
  1260. spin_unlock(&ctx->lock);
  1261. perf_counter_task_sched_in(task, smp_processor_id());
  1262. out:
  1263. local_irq_restore(flags);
  1264. }
  1265. /*
  1266. * Cross CPU call to read the hardware counter
  1267. */
  1268. static void __perf_counter_read(void *info)
  1269. {
  1270. struct perf_counter *counter = info;
  1271. struct perf_counter_context *ctx = counter->ctx;
  1272. unsigned long flags;
  1273. local_irq_save(flags);
  1274. if (ctx->is_active)
  1275. update_context_time(ctx);
  1276. counter->pmu->read(counter);
  1277. update_counter_times(counter);
  1278. local_irq_restore(flags);
  1279. }
  1280. static u64 perf_counter_read(struct perf_counter *counter)
  1281. {
  1282. /*
  1283. * If counter is enabled and currently active on a CPU, update the
  1284. * value in the counter structure:
  1285. */
  1286. if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
  1287. smp_call_function_single(counter->oncpu,
  1288. __perf_counter_read, counter, 1);
  1289. } else if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
  1290. update_counter_times(counter);
  1291. }
  1292. return atomic64_read(&counter->count);
  1293. }
  1294. /*
  1295. * Initialize the perf_counter context in a task_struct:
  1296. */
  1297. static void
  1298. __perf_counter_init_context(struct perf_counter_context *ctx,
  1299. struct task_struct *task)
  1300. {
  1301. memset(ctx, 0, sizeof(*ctx));
  1302. spin_lock_init(&ctx->lock);
  1303. mutex_init(&ctx->mutex);
  1304. INIT_LIST_HEAD(&ctx->counter_list);
  1305. INIT_LIST_HEAD(&ctx->event_list);
  1306. atomic_set(&ctx->refcount, 1);
  1307. ctx->task = task;
  1308. }
  1309. static struct perf_counter_context *find_get_context(pid_t pid, int cpu)
  1310. {
  1311. struct perf_counter_context *ctx;
  1312. struct perf_cpu_context *cpuctx;
  1313. struct task_struct *task;
  1314. unsigned long flags;
  1315. int err;
  1316. /*
  1317. * If cpu is not a wildcard then this is a percpu counter:
  1318. */
  1319. if (cpu != -1) {
  1320. /* Must be root to operate on a CPU counter: */
  1321. if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
  1322. return ERR_PTR(-EACCES);
  1323. if (cpu < 0 || cpu > num_possible_cpus())
  1324. return ERR_PTR(-EINVAL);
  1325. /*
  1326. * We could be clever and allow to attach a counter to an
  1327. * offline CPU and activate it when the CPU comes up, but
  1328. * that's for later.
  1329. */
  1330. if (!cpu_isset(cpu, cpu_online_map))
  1331. return ERR_PTR(-ENODEV);
  1332. cpuctx = &per_cpu(perf_cpu_context, cpu);
  1333. ctx = &cpuctx->ctx;
  1334. get_ctx(ctx);
  1335. return ctx;
  1336. }
  1337. rcu_read_lock();
  1338. if (!pid)
  1339. task = current;
  1340. else
  1341. task = find_task_by_vpid(pid);
  1342. if (task)
  1343. get_task_struct(task);
  1344. rcu_read_unlock();
  1345. if (!task)
  1346. return ERR_PTR(-ESRCH);
  1347. /*
  1348. * Can't attach counters to a dying task.
  1349. */
  1350. err = -ESRCH;
  1351. if (task->flags & PF_EXITING)
  1352. goto errout;
  1353. /* Reuse ptrace permission checks for now. */
  1354. err = -EACCES;
  1355. if (!ptrace_may_access(task, PTRACE_MODE_READ))
  1356. goto errout;
  1357. retry:
  1358. ctx = perf_lock_task_context(task, &flags);
  1359. if (ctx) {
  1360. unclone_ctx(ctx);
  1361. spin_unlock_irqrestore(&ctx->lock, flags);
  1362. }
  1363. if (!ctx) {
  1364. ctx = kmalloc(sizeof(struct perf_counter_context), GFP_KERNEL);
  1365. err = -ENOMEM;
  1366. if (!ctx)
  1367. goto errout;
  1368. __perf_counter_init_context(ctx, task);
  1369. get_ctx(ctx);
  1370. if (cmpxchg(&task->perf_counter_ctxp, NULL, ctx)) {
  1371. /*
  1372. * We raced with some other task; use
  1373. * the context they set.
  1374. */
  1375. kfree(ctx);
  1376. goto retry;
  1377. }
  1378. get_task_struct(task);
  1379. }
  1380. put_task_struct(task);
  1381. return ctx;
  1382. errout:
  1383. put_task_struct(task);
  1384. return ERR_PTR(err);
  1385. }
  1386. static void free_counter_rcu(struct rcu_head *head)
  1387. {
  1388. struct perf_counter *counter;
  1389. counter = container_of(head, struct perf_counter, rcu_head);
  1390. if (counter->ns)
  1391. put_pid_ns(counter->ns);
  1392. kfree(counter);
  1393. }
  1394. static void perf_pending_sync(struct perf_counter *counter);
  1395. static void free_counter(struct perf_counter *counter)
  1396. {
  1397. perf_pending_sync(counter);
  1398. if (!counter->parent) {
  1399. atomic_dec(&nr_counters);
  1400. if (counter->attr.mmap)
  1401. atomic_dec(&nr_mmap_counters);
  1402. if (counter->attr.comm)
  1403. atomic_dec(&nr_comm_counters);
  1404. if (counter->attr.task)
  1405. atomic_dec(&nr_task_counters);
  1406. }
  1407. if (counter->destroy)
  1408. counter->destroy(counter);
  1409. put_ctx(counter->ctx);
  1410. call_rcu(&counter->rcu_head, free_counter_rcu);
  1411. }
  1412. /*
  1413. * Called when the last reference to the file is gone.
  1414. */
  1415. static int perf_release(struct inode *inode, struct file *file)
  1416. {
  1417. struct perf_counter *counter = file->private_data;
  1418. struct perf_counter_context *ctx = counter->ctx;
  1419. file->private_data = NULL;
  1420. WARN_ON_ONCE(ctx->parent_ctx);
  1421. mutex_lock(&ctx->mutex);
  1422. perf_counter_remove_from_context(counter);
  1423. mutex_unlock(&ctx->mutex);
  1424. mutex_lock(&counter->owner->perf_counter_mutex);
  1425. list_del_init(&counter->owner_entry);
  1426. mutex_unlock(&counter->owner->perf_counter_mutex);
  1427. put_task_struct(counter->owner);
  1428. free_counter(counter);
  1429. return 0;
  1430. }
  1431. static u64 perf_counter_read_tree(struct perf_counter *counter)
  1432. {
  1433. struct perf_counter *child;
  1434. u64 total = 0;
  1435. total += perf_counter_read(counter);
  1436. list_for_each_entry(child, &counter->child_list, child_list)
  1437. total += perf_counter_read(child);
  1438. return total;
  1439. }
  1440. /*
  1441. * Read the performance counter - simple non blocking version for now
  1442. */
  1443. static ssize_t
  1444. perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count)
  1445. {
  1446. u64 values[4];
  1447. int n;
  1448. /*
  1449. * Return end-of-file for a read on a counter that is in
  1450. * error state (i.e. because it was pinned but it couldn't be
  1451. * scheduled on to the CPU at some point).
  1452. */
  1453. if (counter->state == PERF_COUNTER_STATE_ERROR)
  1454. return 0;
  1455. WARN_ON_ONCE(counter->ctx->parent_ctx);
  1456. mutex_lock(&counter->child_mutex);
  1457. values[0] = perf_counter_read_tree(counter);
  1458. n = 1;
  1459. if (counter->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
  1460. values[n++] = counter->total_time_enabled +
  1461. atomic64_read(&counter->child_total_time_enabled);
  1462. if (counter->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
  1463. values[n++] = counter->total_time_running +
  1464. atomic64_read(&counter->child_total_time_running);
  1465. if (counter->attr.read_format & PERF_FORMAT_ID)
  1466. values[n++] = primary_counter_id(counter);
  1467. mutex_unlock(&counter->child_mutex);
  1468. if (count < n * sizeof(u64))
  1469. return -EINVAL;
  1470. count = n * sizeof(u64);
  1471. if (copy_to_user(buf, values, count))
  1472. return -EFAULT;
  1473. return count;
  1474. }
  1475. static ssize_t
  1476. perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
  1477. {
  1478. struct perf_counter *counter = file->private_data;
  1479. return perf_read_hw(counter, buf, count);
  1480. }
  1481. static unsigned int perf_poll(struct file *file, poll_table *wait)
  1482. {
  1483. struct perf_counter *counter = file->private_data;
  1484. struct perf_mmap_data *data;
  1485. unsigned int events = POLL_HUP;
  1486. rcu_read_lock();
  1487. data = rcu_dereference(counter->data);
  1488. if (data)
  1489. events = atomic_xchg(&data->poll, 0);
  1490. rcu_read_unlock();
  1491. poll_wait(file, &counter->waitq, wait);
  1492. return events;
  1493. }
  1494. static void perf_counter_reset(struct perf_counter *counter)
  1495. {
  1496. (void)perf_counter_read(counter);
  1497. atomic64_set(&counter->count, 0);
  1498. perf_counter_update_userpage(counter);
  1499. }
  1500. /*
  1501. * Holding the top-level counter's child_mutex means that any
  1502. * descendant process that has inherited this counter will block
  1503. * in sync_child_counter if it goes to exit, thus satisfying the
  1504. * task existence requirements of perf_counter_enable/disable.
  1505. */
  1506. static void perf_counter_for_each_child(struct perf_counter *counter,
  1507. void (*func)(struct perf_counter *))
  1508. {
  1509. struct perf_counter *child;
  1510. WARN_ON_ONCE(counter->ctx->parent_ctx);
  1511. mutex_lock(&counter->child_mutex);
  1512. func(counter);
  1513. list_for_each_entry(child, &counter->child_list, child_list)
  1514. func(child);
  1515. mutex_unlock(&counter->child_mutex);
  1516. }
  1517. static void perf_counter_for_each(struct perf_counter *counter,
  1518. void (*func)(struct perf_counter *))
  1519. {
  1520. struct perf_counter_context *ctx = counter->ctx;
  1521. struct perf_counter *sibling;
  1522. WARN_ON_ONCE(ctx->parent_ctx);
  1523. mutex_lock(&ctx->mutex);
  1524. counter = counter->group_leader;
  1525. perf_counter_for_each_child(counter, func);
  1526. func(counter);
  1527. list_for_each_entry(sibling, &counter->sibling_list, list_entry)
  1528. perf_counter_for_each_child(counter, func);
  1529. mutex_unlock(&ctx->mutex);
  1530. }
  1531. static int perf_counter_period(struct perf_counter *counter, u64 __user *arg)
  1532. {
  1533. struct perf_counter_context *ctx = counter->ctx;
  1534. unsigned long size;
  1535. int ret = 0;
  1536. u64 value;
  1537. if (!counter->attr.sample_period)
  1538. return -EINVAL;
  1539. size = copy_from_user(&value, arg, sizeof(value));
  1540. if (size != sizeof(value))
  1541. return -EFAULT;
  1542. if (!value)
  1543. return -EINVAL;
  1544. spin_lock_irq(&ctx->lock);
  1545. if (counter->attr.freq) {
  1546. if (value > sysctl_perf_counter_sample_rate) {
  1547. ret = -EINVAL;
  1548. goto unlock;
  1549. }
  1550. counter->attr.sample_freq = value;
  1551. } else {
  1552. counter->attr.sample_period = value;
  1553. counter->hw.sample_period = value;
  1554. }
  1555. unlock:
  1556. spin_unlock_irq(&ctx->lock);
  1557. return ret;
  1558. }
  1559. static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
  1560. {
  1561. struct perf_counter *counter = file->private_data;
  1562. void (*func)(struct perf_counter *);
  1563. u32 flags = arg;
  1564. switch (cmd) {
  1565. case PERF_COUNTER_IOC_ENABLE:
  1566. func = perf_counter_enable;
  1567. break;
  1568. case PERF_COUNTER_IOC_DISABLE:
  1569. func = perf_counter_disable;
  1570. break;
  1571. case PERF_COUNTER_IOC_RESET:
  1572. func = perf_counter_reset;
  1573. break;
  1574. case PERF_COUNTER_IOC_REFRESH:
  1575. return perf_counter_refresh(counter, arg);
  1576. case PERF_COUNTER_IOC_PERIOD:
  1577. return perf_counter_period(counter, (u64 __user *)arg);
  1578. default:
  1579. return -ENOTTY;
  1580. }
  1581. if (flags & PERF_IOC_FLAG_GROUP)
  1582. perf_counter_for_each(counter, func);
  1583. else
  1584. perf_counter_for_each_child(counter, func);
  1585. return 0;
  1586. }
  1587. int perf_counter_task_enable(void)
  1588. {
  1589. struct perf_counter *counter;
  1590. mutex_lock(&current->perf_counter_mutex);
  1591. list_for_each_entry(counter, &current->perf_counter_list, owner_entry)
  1592. perf_counter_for_each_child(counter, perf_counter_enable);
  1593. mutex_unlock(&current->perf_counter_mutex);
  1594. return 0;
  1595. }
  1596. int perf_counter_task_disable(void)
  1597. {
  1598. struct perf_counter *counter;
  1599. mutex_lock(&current->perf_counter_mutex);
  1600. list_for_each_entry(counter, &current->perf_counter_list, owner_entry)
  1601. perf_counter_for_each_child(counter, perf_counter_disable);
  1602. mutex_unlock(&current->perf_counter_mutex);
  1603. return 0;
  1604. }
  1605. static int perf_counter_index(struct perf_counter *counter)
  1606. {
  1607. if (counter->state != PERF_COUNTER_STATE_ACTIVE)
  1608. return 0;
  1609. return counter->hw.idx + 1 - PERF_COUNTER_INDEX_OFFSET;
  1610. }
  1611. /*
  1612. * Callers need to ensure there can be no nesting of this function, otherwise
  1613. * the seqlock logic goes bad. We can not serialize this because the arch
  1614. * code calls this from NMI context.
  1615. */
  1616. void perf_counter_update_userpage(struct perf_counter *counter)
  1617. {
  1618. struct perf_counter_mmap_page *userpg;
  1619. struct perf_mmap_data *data;
  1620. rcu_read_lock();
  1621. data = rcu_dereference(counter->data);
  1622. if (!data)
  1623. goto unlock;
  1624. userpg = data->user_page;
  1625. /*
  1626. * Disable preemption so as to not let the corresponding user-space
  1627. * spin too long if we get preempted.
  1628. */
  1629. preempt_disable();
  1630. ++userpg->lock;
  1631. barrier();
  1632. userpg->index = perf_counter_index(counter);
  1633. userpg->offset = atomic64_read(&counter->count);
  1634. if (counter->state == PERF_COUNTER_STATE_ACTIVE)
  1635. userpg->offset -= atomic64_read(&counter->hw.prev_count);
  1636. userpg->time_enabled = counter->total_time_enabled +
  1637. atomic64_read(&counter->child_total_time_enabled);
  1638. userpg->time_running = counter->total_time_running +
  1639. atomic64_read(&counter->child_total_time_running);
  1640. barrier();
  1641. ++userpg->lock;
  1642. preempt_enable();
  1643. unlock:
  1644. rcu_read_unlock();
  1645. }
  1646. static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1647. {
  1648. struct perf_counter *counter = vma->vm_file->private_data;
  1649. struct perf_mmap_data *data;
  1650. int ret = VM_FAULT_SIGBUS;
  1651. if (vmf->flags & FAULT_FLAG_MKWRITE) {
  1652. if (vmf->pgoff == 0)
  1653. ret = 0;
  1654. return ret;
  1655. }
  1656. rcu_read_lock();
  1657. data = rcu_dereference(counter->data);
  1658. if (!data)
  1659. goto unlock;
  1660. if (vmf->pgoff == 0) {
  1661. vmf->page = virt_to_page(data->user_page);
  1662. } else {
  1663. int nr = vmf->pgoff - 1;
  1664. if ((unsigned)nr > data->nr_pages)
  1665. goto unlock;
  1666. if (vmf->flags & FAULT_FLAG_WRITE)
  1667. goto unlock;
  1668. vmf->page = virt_to_page(data->data_pages[nr]);
  1669. }
  1670. get_page(vmf->page);
  1671. vmf->page->mapping = vma->vm_file->f_mapping;
  1672. vmf->page->index = vmf->pgoff;
  1673. ret = 0;
  1674. unlock:
  1675. rcu_read_unlock();
  1676. return ret;
  1677. }
  1678. static int perf_mmap_data_alloc(struct perf_counter *counter, int nr_pages)
  1679. {
  1680. struct perf_mmap_data *data;
  1681. unsigned long size;
  1682. int i;
  1683. WARN_ON(atomic_read(&counter->mmap_count));
  1684. size = sizeof(struct perf_mmap_data);
  1685. size += nr_pages * sizeof(void *);
  1686. data = kzalloc(size, GFP_KERNEL);
  1687. if (!data)
  1688. goto fail;
  1689. data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
  1690. if (!data->user_page)
  1691. goto fail_user_page;
  1692. for (i = 0; i < nr_pages; i++) {
  1693. data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
  1694. if (!data->data_pages[i])
  1695. goto fail_data_pages;
  1696. }
  1697. data->nr_pages = nr_pages;
  1698. atomic_set(&data->lock, -1);
  1699. rcu_assign_pointer(counter->data, data);
  1700. return 0;
  1701. fail_data_pages:
  1702. for (i--; i >= 0; i--)
  1703. free_page((unsigned long)data->data_pages[i]);
  1704. free_page((unsigned long)data->user_page);
  1705. fail_user_page:
  1706. kfree(data);
  1707. fail:
  1708. return -ENOMEM;
  1709. }
  1710. static void perf_mmap_free_page(unsigned long addr)
  1711. {
  1712. struct page *page = virt_to_page((void *)addr);
  1713. page->mapping = NULL;
  1714. __free_page(page);
  1715. }
  1716. static void __perf_mmap_data_free(struct rcu_head *rcu_head)
  1717. {
  1718. struct perf_mmap_data *data;
  1719. int i;
  1720. data = container_of(rcu_head, struct perf_mmap_data, rcu_head);
  1721. perf_mmap_free_page((unsigned long)data->user_page);
  1722. for (i = 0; i < data->nr_pages; i++)
  1723. perf_mmap_free_page((unsigned long)data->data_pages[i]);
  1724. kfree(data);
  1725. }
  1726. static void perf_mmap_data_free(struct perf_counter *counter)
  1727. {
  1728. struct perf_mmap_data *data = counter->data;
  1729. WARN_ON(atomic_read(&counter->mmap_count));
  1730. rcu_assign_pointer(counter->data, NULL);
  1731. call_rcu(&data->rcu_head, __perf_mmap_data_free);
  1732. }
  1733. static void perf_mmap_open(struct vm_area_struct *vma)
  1734. {
  1735. struct perf_counter *counter = vma->vm_file->private_data;
  1736. atomic_inc(&counter->mmap_count);
  1737. }
  1738. static void perf_mmap_close(struct vm_area_struct *vma)
  1739. {
  1740. struct perf_counter *counter = vma->vm_file->private_data;
  1741. WARN_ON_ONCE(counter->ctx->parent_ctx);
  1742. if (atomic_dec_and_mutex_lock(&counter->mmap_count, &counter->mmap_mutex)) {
  1743. struct user_struct *user = current_user();
  1744. atomic_long_sub(counter->data->nr_pages + 1, &user->locked_vm);
  1745. vma->vm_mm->locked_vm -= counter->data->nr_locked;
  1746. perf_mmap_data_free(counter);
  1747. mutex_unlock(&counter->mmap_mutex);
  1748. }
  1749. }
  1750. static struct vm_operations_struct perf_mmap_vmops = {
  1751. .open = perf_mmap_open,
  1752. .close = perf_mmap_close,
  1753. .fault = perf_mmap_fault,
  1754. .page_mkwrite = perf_mmap_fault,
  1755. };
  1756. static int perf_mmap(struct file *file, struct vm_area_struct *vma)
  1757. {
  1758. struct perf_counter *counter = file->private_data;
  1759. unsigned long user_locked, user_lock_limit;
  1760. struct user_struct *user = current_user();
  1761. unsigned long locked, lock_limit;
  1762. unsigned long vma_size;
  1763. unsigned long nr_pages;
  1764. long user_extra, extra;
  1765. int ret = 0;
  1766. if (!(vma->vm_flags & VM_SHARED))
  1767. return -EINVAL;
  1768. vma_size = vma->vm_end - vma->vm_start;
  1769. nr_pages = (vma_size / PAGE_SIZE) - 1;
  1770. /*
  1771. * If we have data pages ensure they're a power-of-two number, so we
  1772. * can do bitmasks instead of modulo.
  1773. */
  1774. if (nr_pages != 0 && !is_power_of_2(nr_pages))
  1775. return -EINVAL;
  1776. if (vma_size != PAGE_SIZE * (1 + nr_pages))
  1777. return -EINVAL;
  1778. if (vma->vm_pgoff != 0)
  1779. return -EINVAL;
  1780. WARN_ON_ONCE(counter->ctx->parent_ctx);
  1781. mutex_lock(&counter->mmap_mutex);
  1782. if (atomic_inc_not_zero(&counter->mmap_count)) {
  1783. if (nr_pages != counter->data->nr_pages)
  1784. ret = -EINVAL;
  1785. goto unlock;
  1786. }
  1787. user_extra = nr_pages + 1;
  1788. user_lock_limit = sysctl_perf_counter_mlock >> (PAGE_SHIFT - 10);
  1789. /*
  1790. * Increase the limit linearly with more CPUs:
  1791. */
  1792. user_lock_limit *= num_online_cpus();
  1793. user_locked = atomic_long_read(&user->locked_vm) + user_extra;
  1794. extra = 0;
  1795. if (user_locked > user_lock_limit)
  1796. extra = user_locked - user_lock_limit;
  1797. lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
  1798. lock_limit >>= PAGE_SHIFT;
  1799. locked = vma->vm_mm->locked_vm + extra;
  1800. if ((locked > lock_limit) && !capable(CAP_IPC_LOCK)) {
  1801. ret = -EPERM;
  1802. goto unlock;
  1803. }
  1804. WARN_ON(counter->data);
  1805. ret = perf_mmap_data_alloc(counter, nr_pages);
  1806. if (ret)
  1807. goto unlock;
  1808. atomic_set(&counter->mmap_count, 1);
  1809. atomic_long_add(user_extra, &user->locked_vm);
  1810. vma->vm_mm->locked_vm += extra;
  1811. counter->data->nr_locked = extra;
  1812. if (vma->vm_flags & VM_WRITE)
  1813. counter->data->writable = 1;
  1814. unlock:
  1815. mutex_unlock(&counter->mmap_mutex);
  1816. vma->vm_flags |= VM_RESERVED;
  1817. vma->vm_ops = &perf_mmap_vmops;
  1818. return ret;
  1819. }
  1820. static int perf_fasync(int fd, struct file *filp, int on)
  1821. {
  1822. struct inode *inode = filp->f_path.dentry->d_inode;
  1823. struct perf_counter *counter = filp->private_data;
  1824. int retval;
  1825. mutex_lock(&inode->i_mutex);
  1826. retval = fasync_helper(fd, filp, on, &counter->fasync);
  1827. mutex_unlock(&inode->i_mutex);
  1828. if (retval < 0)
  1829. return retval;
  1830. return 0;
  1831. }
  1832. static const struct file_operations perf_fops = {
  1833. .release = perf_release,
  1834. .read = perf_read,
  1835. .poll = perf_poll,
  1836. .unlocked_ioctl = perf_ioctl,
  1837. .compat_ioctl = perf_ioctl,
  1838. .mmap = perf_mmap,
  1839. .fasync = perf_fasync,
  1840. };
  1841. /*
  1842. * Perf counter wakeup
  1843. *
  1844. * If there's data, ensure we set the poll() state and publish everything
  1845. * to user-space before waking everybody up.
  1846. */
  1847. void perf_counter_wakeup(struct perf_counter *counter)
  1848. {
  1849. wake_up_all(&counter->waitq);
  1850. if (counter->pending_kill) {
  1851. kill_fasync(&counter->fasync, SIGIO, counter->pending_kill);
  1852. counter->pending_kill = 0;
  1853. }
  1854. }
  1855. /*
  1856. * Pending wakeups
  1857. *
  1858. * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
  1859. *
  1860. * The NMI bit means we cannot possibly take locks. Therefore, maintain a
  1861. * single linked list and use cmpxchg() to add entries lockless.
  1862. */
  1863. static void perf_pending_counter(struct perf_pending_entry *entry)
  1864. {
  1865. struct perf_counter *counter = container_of(entry,
  1866. struct perf_counter, pending);
  1867. if (counter->pending_disable) {
  1868. counter->pending_disable = 0;
  1869. perf_counter_disable(counter);
  1870. }
  1871. if (counter->pending_wakeup) {
  1872. counter->pending_wakeup = 0;
  1873. perf_counter_wakeup(counter);
  1874. }
  1875. }
  1876. #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
  1877. static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
  1878. PENDING_TAIL,
  1879. };
  1880. static void perf_pending_queue(struct perf_pending_entry *entry,
  1881. void (*func)(struct perf_pending_entry *))
  1882. {
  1883. struct perf_pending_entry **head;
  1884. if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
  1885. return;
  1886. entry->func = func;
  1887. head = &get_cpu_var(perf_pending_head);
  1888. do {
  1889. entry->next = *head;
  1890. } while (cmpxchg(head, entry->next, entry) != entry->next);
  1891. set_perf_counter_pending();
  1892. put_cpu_var(perf_pending_head);
  1893. }
  1894. static int __perf_pending_run(void)
  1895. {
  1896. struct perf_pending_entry *list;
  1897. int nr = 0;
  1898. list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
  1899. while (list != PENDING_TAIL) {
  1900. void (*func)(struct perf_pending_entry *);
  1901. struct perf_pending_entry *entry = list;
  1902. list = list->next;
  1903. func = entry->func;
  1904. entry->next = NULL;
  1905. /*
  1906. * Ensure we observe the unqueue before we issue the wakeup,
  1907. * so that we won't be waiting forever.
  1908. * -- see perf_not_pending().
  1909. */
  1910. smp_wmb();
  1911. func(entry);
  1912. nr++;
  1913. }
  1914. return nr;
  1915. }
  1916. static inline int perf_not_pending(struct perf_counter *counter)
  1917. {
  1918. /*
  1919. * If we flush on whatever cpu we run, there is a chance we don't
  1920. * need to wait.
  1921. */
  1922. get_cpu();
  1923. __perf_pending_run();
  1924. put_cpu();
  1925. /*
  1926. * Ensure we see the proper queue state before going to sleep
  1927. * so that we do not miss the wakeup. -- see perf_pending_handle()
  1928. */
  1929. smp_rmb();
  1930. return counter->pending.next == NULL;
  1931. }
  1932. static void perf_pending_sync(struct perf_counter *counter)
  1933. {
  1934. wait_event(counter->waitq, perf_not_pending(counter));
  1935. }
  1936. void perf_counter_do_pending(void)
  1937. {
  1938. __perf_pending_run();
  1939. }
  1940. /*
  1941. * Callchain support -- arch specific
  1942. */
  1943. __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
  1944. {
  1945. return NULL;
  1946. }
  1947. /*
  1948. * Output
  1949. */
  1950. struct perf_output_handle {
  1951. struct perf_counter *counter;
  1952. struct perf_mmap_data *data;
  1953. unsigned long head;
  1954. unsigned long offset;
  1955. int nmi;
  1956. int sample;
  1957. int locked;
  1958. unsigned long flags;
  1959. };
  1960. static bool perf_output_space(struct perf_mmap_data *data,
  1961. unsigned int offset, unsigned int head)
  1962. {
  1963. unsigned long tail;
  1964. unsigned long mask;
  1965. if (!data->writable)
  1966. return true;
  1967. mask = (data->nr_pages << PAGE_SHIFT) - 1;
  1968. /*
  1969. * Userspace could choose to issue a mb() before updating the tail
  1970. * pointer. So that all reads will be completed before the write is
  1971. * issued.
  1972. */
  1973. tail = ACCESS_ONCE(data->user_page->data_tail);
  1974. smp_rmb();
  1975. offset = (offset - tail) & mask;
  1976. head = (head - tail) & mask;
  1977. if ((int)(head - offset) < 0)
  1978. return false;
  1979. return true;
  1980. }
  1981. static void perf_output_wakeup(struct perf_output_handle *handle)
  1982. {
  1983. atomic_set(&handle->data->poll, POLL_IN);
  1984. if (handle->nmi) {
  1985. handle->counter->pending_wakeup = 1;
  1986. perf_pending_queue(&handle->counter->pending,
  1987. perf_pending_counter);
  1988. } else
  1989. perf_counter_wakeup(handle->counter);
  1990. }
  1991. /*
  1992. * Curious locking construct.
  1993. *
  1994. * We need to ensure a later event doesn't publish a head when a former
  1995. * event isn't done writing. However since we need to deal with NMIs we
  1996. * cannot fully serialize things.
  1997. *
  1998. * What we do is serialize between CPUs so we only have to deal with NMI
  1999. * nesting on a single CPU.
  2000. *
  2001. * We only publish the head (and generate a wakeup) when the outer-most
  2002. * event completes.
  2003. */
  2004. static void perf_output_lock(struct perf_output_handle *handle)
  2005. {
  2006. struct perf_mmap_data *data = handle->data;
  2007. int cpu;
  2008. handle->locked = 0;
  2009. local_irq_save(handle->flags);
  2010. cpu = smp_processor_id();
  2011. if (in_nmi() && atomic_read(&data->lock) == cpu)
  2012. return;
  2013. while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
  2014. cpu_relax();
  2015. handle->locked = 1;
  2016. }
  2017. static void perf_output_unlock(struct perf_output_handle *handle)
  2018. {
  2019. struct perf_mmap_data *data = handle->data;
  2020. unsigned long head;
  2021. int cpu;
  2022. data->done_head = data->head;
  2023. if (!handle->locked)
  2024. goto out;
  2025. again:
  2026. /*
  2027. * The xchg implies a full barrier that ensures all writes are done
  2028. * before we publish the new head, matched by a rmb() in userspace when
  2029. * reading this position.
  2030. */
  2031. while ((head = atomic_long_xchg(&data->done_head, 0)))
  2032. data->user_page->data_head = head;
  2033. /*
  2034. * NMI can happen here, which means we can miss a done_head update.
  2035. */
  2036. cpu = atomic_xchg(&data->lock, -1);
  2037. WARN_ON_ONCE(cpu != smp_processor_id());
  2038. /*
  2039. * Therefore we have to validate we did not indeed do so.
  2040. */
  2041. if (unlikely(atomic_long_read(&data->done_head))) {
  2042. /*
  2043. * Since we had it locked, we can lock it again.
  2044. */
  2045. while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
  2046. cpu_relax();
  2047. goto again;
  2048. }
  2049. if (atomic_xchg(&data->wakeup, 0))
  2050. perf_output_wakeup(handle);
  2051. out:
  2052. local_irq_restore(handle->flags);
  2053. }
  2054. static void perf_output_copy(struct perf_output_handle *handle,
  2055. const void *buf, unsigned int len)
  2056. {
  2057. unsigned int pages_mask;
  2058. unsigned int offset;
  2059. unsigned int size;
  2060. void **pages;
  2061. offset = handle->offset;
  2062. pages_mask = handle->data->nr_pages - 1;
  2063. pages = handle->data->data_pages;
  2064. do {
  2065. unsigned int page_offset;
  2066. int nr;
  2067. nr = (offset >> PAGE_SHIFT) & pages_mask;
  2068. page_offset = offset & (PAGE_SIZE - 1);
  2069. size = min_t(unsigned int, PAGE_SIZE - page_offset, len);
  2070. memcpy(pages[nr] + page_offset, buf, size);
  2071. len -= size;
  2072. buf += size;
  2073. offset += size;
  2074. } while (len);
  2075. handle->offset = offset;
  2076. /*
  2077. * Check we didn't copy past our reservation window, taking the
  2078. * possible unsigned int wrap into account.
  2079. */
  2080. WARN_ON_ONCE(((long)(handle->head - handle->offset)) < 0);
  2081. }
  2082. #define perf_output_put(handle, x) \
  2083. perf_output_copy((handle), &(x), sizeof(x))
  2084. static int perf_output_begin(struct perf_output_handle *handle,
  2085. struct perf_counter *counter, unsigned int size,
  2086. int nmi, int sample)
  2087. {
  2088. struct perf_mmap_data *data;
  2089. unsigned int offset, head;
  2090. int have_lost;
  2091. struct {
  2092. struct perf_event_header header;
  2093. u64 id;
  2094. u64 lost;
  2095. } lost_event;
  2096. /*
  2097. * For inherited counters we send all the output towards the parent.
  2098. */
  2099. if (counter->parent)
  2100. counter = counter->parent;
  2101. rcu_read_lock();
  2102. data = rcu_dereference(counter->data);
  2103. if (!data)
  2104. goto out;
  2105. handle->data = data;
  2106. handle->counter = counter;
  2107. handle->nmi = nmi;
  2108. handle->sample = sample;
  2109. if (!data->nr_pages)
  2110. goto fail;
  2111. have_lost = atomic_read(&data->lost);
  2112. if (have_lost)
  2113. size += sizeof(lost_event);
  2114. perf_output_lock(handle);
  2115. do {
  2116. offset = head = atomic_long_read(&data->head);
  2117. head += size;
  2118. if (unlikely(!perf_output_space(data, offset, head)))
  2119. goto fail;
  2120. } while (atomic_long_cmpxchg(&data->head, offset, head) != offset);
  2121. handle->offset = offset;
  2122. handle->head = head;
  2123. if ((offset >> PAGE_SHIFT) != (head >> PAGE_SHIFT))
  2124. atomic_set(&data->wakeup, 1);
  2125. if (have_lost) {
  2126. lost_event.header.type = PERF_EVENT_LOST;
  2127. lost_event.header.misc = 0;
  2128. lost_event.header.size = sizeof(lost_event);
  2129. lost_event.id = counter->id;
  2130. lost_event.lost = atomic_xchg(&data->lost, 0);
  2131. perf_output_put(handle, lost_event);
  2132. }
  2133. return 0;
  2134. fail:
  2135. atomic_inc(&data->lost);
  2136. perf_output_unlock(handle);
  2137. out:
  2138. rcu_read_unlock();
  2139. return -ENOSPC;
  2140. }
  2141. static void perf_output_end(struct perf_output_handle *handle)
  2142. {
  2143. struct perf_counter *counter = handle->counter;
  2144. struct perf_mmap_data *data = handle->data;
  2145. int wakeup_events = counter->attr.wakeup_events;
  2146. if (handle->sample && wakeup_events) {
  2147. int events = atomic_inc_return(&data->events);
  2148. if (events >= wakeup_events) {
  2149. atomic_sub(wakeup_events, &data->events);
  2150. atomic_set(&data->wakeup, 1);
  2151. }
  2152. }
  2153. perf_output_unlock(handle);
  2154. rcu_read_unlock();
  2155. }
  2156. static u32 perf_counter_pid(struct perf_counter *counter, struct task_struct *p)
  2157. {
  2158. /*
  2159. * only top level counters have the pid namespace they were created in
  2160. */
  2161. if (counter->parent)
  2162. counter = counter->parent;
  2163. return task_tgid_nr_ns(p, counter->ns);
  2164. }
  2165. static u32 perf_counter_tid(struct perf_counter *counter, struct task_struct *p)
  2166. {
  2167. /*
  2168. * only top level counters have the pid namespace they were created in
  2169. */
  2170. if (counter->parent)
  2171. counter = counter->parent;
  2172. return task_pid_nr_ns(p, counter->ns);
  2173. }
  2174. static void perf_counter_output(struct perf_counter *counter, int nmi,
  2175. struct perf_sample_data *data)
  2176. {
  2177. int ret;
  2178. u64 sample_type = counter->attr.sample_type;
  2179. struct perf_output_handle handle;
  2180. struct perf_event_header header;
  2181. u64 ip;
  2182. struct {
  2183. u32 pid, tid;
  2184. } tid_entry;
  2185. struct {
  2186. u64 id;
  2187. u64 counter;
  2188. } group_entry;
  2189. struct perf_callchain_entry *callchain = NULL;
  2190. int callchain_size = 0;
  2191. u64 time;
  2192. struct {
  2193. u32 cpu, reserved;
  2194. } cpu_entry;
  2195. header.type = PERF_EVENT_SAMPLE;
  2196. header.size = sizeof(header);
  2197. header.misc = 0;
  2198. header.misc |= perf_misc_flags(data->regs);
  2199. if (sample_type & PERF_SAMPLE_IP) {
  2200. ip = perf_instruction_pointer(data->regs);
  2201. header.size += sizeof(ip);
  2202. }
  2203. if (sample_type & PERF_SAMPLE_TID) {
  2204. /* namespace issues */
  2205. tid_entry.pid = perf_counter_pid(counter, current);
  2206. tid_entry.tid = perf_counter_tid(counter, current);
  2207. header.size += sizeof(tid_entry);
  2208. }
  2209. if (sample_type & PERF_SAMPLE_TIME) {
  2210. /*
  2211. * Maybe do better on x86 and provide cpu_clock_nmi()
  2212. */
  2213. time = sched_clock();
  2214. header.size += sizeof(u64);
  2215. }
  2216. if (sample_type & PERF_SAMPLE_ADDR)
  2217. header.size += sizeof(u64);
  2218. if (sample_type & PERF_SAMPLE_ID)
  2219. header.size += sizeof(u64);
  2220. if (sample_type & PERF_SAMPLE_STREAM_ID)
  2221. header.size += sizeof(u64);
  2222. if (sample_type & PERF_SAMPLE_CPU) {
  2223. header.size += sizeof(cpu_entry);
  2224. cpu_entry.cpu = raw_smp_processor_id();
  2225. cpu_entry.reserved = 0;
  2226. }
  2227. if (sample_type & PERF_SAMPLE_PERIOD)
  2228. header.size += sizeof(u64);
  2229. if (sample_type & PERF_SAMPLE_GROUP) {
  2230. header.size += sizeof(u64) +
  2231. counter->nr_siblings * sizeof(group_entry);
  2232. }
  2233. if (sample_type & PERF_SAMPLE_CALLCHAIN) {
  2234. callchain = perf_callchain(data->regs);
  2235. if (callchain) {
  2236. callchain_size = (1 + callchain->nr) * sizeof(u64);
  2237. header.size += callchain_size;
  2238. } else
  2239. header.size += sizeof(u64);
  2240. }
  2241. ret = perf_output_begin(&handle, counter, header.size, nmi, 1);
  2242. if (ret)
  2243. return;
  2244. perf_output_put(&handle, header);
  2245. if (sample_type & PERF_SAMPLE_IP)
  2246. perf_output_put(&handle, ip);
  2247. if (sample_type & PERF_SAMPLE_TID)
  2248. perf_output_put(&handle, tid_entry);
  2249. if (sample_type & PERF_SAMPLE_TIME)
  2250. perf_output_put(&handle, time);
  2251. if (sample_type & PERF_SAMPLE_ADDR)
  2252. perf_output_put(&handle, data->addr);
  2253. if (sample_type & PERF_SAMPLE_ID) {
  2254. u64 id = primary_counter_id(counter);
  2255. perf_output_put(&handle, id);
  2256. }
  2257. if (sample_type & PERF_SAMPLE_STREAM_ID)
  2258. perf_output_put(&handle, counter->id);
  2259. if (sample_type & PERF_SAMPLE_CPU)
  2260. perf_output_put(&handle, cpu_entry);
  2261. if (sample_type & PERF_SAMPLE_PERIOD)
  2262. perf_output_put(&handle, data->period);
  2263. /*
  2264. * XXX PERF_SAMPLE_GROUP vs inherited counters seems difficult.
  2265. */
  2266. if (sample_type & PERF_SAMPLE_GROUP) {
  2267. struct perf_counter *leader, *sub;
  2268. u64 nr = counter->nr_siblings;
  2269. perf_output_put(&handle, nr);
  2270. leader = counter->group_leader;
  2271. list_for_each_entry(sub, &leader->sibling_list, list_entry) {
  2272. if (sub != counter)
  2273. sub->pmu->read(sub);
  2274. group_entry.id = primary_counter_id(sub);
  2275. group_entry.counter = atomic64_read(&sub->count);
  2276. perf_output_put(&handle, group_entry);
  2277. }
  2278. }
  2279. if (sample_type & PERF_SAMPLE_CALLCHAIN) {
  2280. if (callchain)
  2281. perf_output_copy(&handle, callchain, callchain_size);
  2282. else {
  2283. u64 nr = 0;
  2284. perf_output_put(&handle, nr);
  2285. }
  2286. }
  2287. perf_output_end(&handle);
  2288. }
  2289. /*
  2290. * read event
  2291. */
  2292. struct perf_read_event {
  2293. struct perf_event_header header;
  2294. u32 pid;
  2295. u32 tid;
  2296. u64 value;
  2297. u64 format[3];
  2298. };
  2299. static void
  2300. perf_counter_read_event(struct perf_counter *counter,
  2301. struct task_struct *task)
  2302. {
  2303. struct perf_output_handle handle;
  2304. struct perf_read_event event = {
  2305. .header = {
  2306. .type = PERF_EVENT_READ,
  2307. .misc = 0,
  2308. .size = sizeof(event) - sizeof(event.format),
  2309. },
  2310. .pid = perf_counter_pid(counter, task),
  2311. .tid = perf_counter_tid(counter, task),
  2312. .value = atomic64_read(&counter->count),
  2313. };
  2314. int ret, i = 0;
  2315. if (counter->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
  2316. event.header.size += sizeof(u64);
  2317. event.format[i++] = counter->total_time_enabled;
  2318. }
  2319. if (counter->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
  2320. event.header.size += sizeof(u64);
  2321. event.format[i++] = counter->total_time_running;
  2322. }
  2323. if (counter->attr.read_format & PERF_FORMAT_ID) {
  2324. event.header.size += sizeof(u64);
  2325. event.format[i++] = primary_counter_id(counter);
  2326. }
  2327. ret = perf_output_begin(&handle, counter, event.header.size, 0, 0);
  2328. if (ret)
  2329. return;
  2330. perf_output_copy(&handle, &event, event.header.size);
  2331. perf_output_end(&handle);
  2332. }
  2333. /*
  2334. * task tracking -- fork/exit
  2335. *
  2336. * enabled by: attr.comm | attr.mmap | attr.task
  2337. */
  2338. struct perf_task_event {
  2339. struct task_struct *task;
  2340. struct {
  2341. struct perf_event_header header;
  2342. u32 pid;
  2343. u32 ppid;
  2344. u32 tid;
  2345. u32 ptid;
  2346. } event;
  2347. };
  2348. static void perf_counter_task_output(struct perf_counter *counter,
  2349. struct perf_task_event *task_event)
  2350. {
  2351. struct perf_output_handle handle;
  2352. int size = task_event->event.header.size;
  2353. struct task_struct *task = task_event->task;
  2354. int ret = perf_output_begin(&handle, counter, size, 0, 0);
  2355. if (ret)
  2356. return;
  2357. task_event->event.pid = perf_counter_pid(counter, task);
  2358. task_event->event.ppid = perf_counter_pid(counter, task->real_parent);
  2359. task_event->event.tid = perf_counter_tid(counter, task);
  2360. task_event->event.ptid = perf_counter_tid(counter, task->real_parent);
  2361. perf_output_put(&handle, task_event->event);
  2362. perf_output_end(&handle);
  2363. }
  2364. static int perf_counter_task_match(struct perf_counter *counter)
  2365. {
  2366. if (counter->attr.comm || counter->attr.mmap || counter->attr.task)
  2367. return 1;
  2368. return 0;
  2369. }
  2370. static void perf_counter_task_ctx(struct perf_counter_context *ctx,
  2371. struct perf_task_event *task_event)
  2372. {
  2373. struct perf_counter *counter;
  2374. if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
  2375. return;
  2376. rcu_read_lock();
  2377. list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
  2378. if (perf_counter_task_match(counter))
  2379. perf_counter_task_output(counter, task_event);
  2380. }
  2381. rcu_read_unlock();
  2382. }
  2383. static void perf_counter_task_event(struct perf_task_event *task_event)
  2384. {
  2385. struct perf_cpu_context *cpuctx;
  2386. struct perf_counter_context *ctx;
  2387. cpuctx = &get_cpu_var(perf_cpu_context);
  2388. perf_counter_task_ctx(&cpuctx->ctx, task_event);
  2389. put_cpu_var(perf_cpu_context);
  2390. rcu_read_lock();
  2391. /*
  2392. * doesn't really matter which of the child contexts the
  2393. * events ends up in.
  2394. */
  2395. ctx = rcu_dereference(current->perf_counter_ctxp);
  2396. if (ctx)
  2397. perf_counter_task_ctx(ctx, task_event);
  2398. rcu_read_unlock();
  2399. }
  2400. static void perf_counter_task(struct task_struct *task, int new)
  2401. {
  2402. struct perf_task_event task_event;
  2403. if (!atomic_read(&nr_comm_counters) &&
  2404. !atomic_read(&nr_mmap_counters) &&
  2405. !atomic_read(&nr_task_counters))
  2406. return;
  2407. task_event = (struct perf_task_event){
  2408. .task = task,
  2409. .event = {
  2410. .header = {
  2411. .type = new ? PERF_EVENT_FORK : PERF_EVENT_EXIT,
  2412. .misc = 0,
  2413. .size = sizeof(task_event.event),
  2414. },
  2415. /* .pid */
  2416. /* .ppid */
  2417. /* .tid */
  2418. /* .ptid */
  2419. },
  2420. };
  2421. perf_counter_task_event(&task_event);
  2422. }
  2423. void perf_counter_fork(struct task_struct *task)
  2424. {
  2425. perf_counter_task(task, 1);
  2426. }
  2427. /*
  2428. * comm tracking
  2429. */
  2430. struct perf_comm_event {
  2431. struct task_struct *task;
  2432. char *comm;
  2433. int comm_size;
  2434. struct {
  2435. struct perf_event_header header;
  2436. u32 pid;
  2437. u32 tid;
  2438. } event;
  2439. };
  2440. static void perf_counter_comm_output(struct perf_counter *counter,
  2441. struct perf_comm_event *comm_event)
  2442. {
  2443. struct perf_output_handle handle;
  2444. int size = comm_event->event.header.size;
  2445. int ret = perf_output_begin(&handle, counter, size, 0, 0);
  2446. if (ret)
  2447. return;
  2448. comm_event->event.pid = perf_counter_pid(counter, comm_event->task);
  2449. comm_event->event.tid = perf_counter_tid(counter, comm_event->task);
  2450. perf_output_put(&handle, comm_event->event);
  2451. perf_output_copy(&handle, comm_event->comm,
  2452. comm_event->comm_size);
  2453. perf_output_end(&handle);
  2454. }
  2455. static int perf_counter_comm_match(struct perf_counter *counter)
  2456. {
  2457. if (counter->attr.comm)
  2458. return 1;
  2459. return 0;
  2460. }
  2461. static void perf_counter_comm_ctx(struct perf_counter_context *ctx,
  2462. struct perf_comm_event *comm_event)
  2463. {
  2464. struct perf_counter *counter;
  2465. if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
  2466. return;
  2467. rcu_read_lock();
  2468. list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
  2469. if (perf_counter_comm_match(counter))
  2470. perf_counter_comm_output(counter, comm_event);
  2471. }
  2472. rcu_read_unlock();
  2473. }
  2474. static void perf_counter_comm_event(struct perf_comm_event *comm_event)
  2475. {
  2476. struct perf_cpu_context *cpuctx;
  2477. struct perf_counter_context *ctx;
  2478. unsigned int size;
  2479. char comm[TASK_COMM_LEN];
  2480. memset(comm, 0, sizeof(comm));
  2481. strncpy(comm, comm_event->task->comm, sizeof(comm));
  2482. size = ALIGN(strlen(comm)+1, sizeof(u64));
  2483. comm_event->comm = comm;
  2484. comm_event->comm_size = size;
  2485. comm_event->event.header.size = sizeof(comm_event->event) + size;
  2486. cpuctx = &get_cpu_var(perf_cpu_context);
  2487. perf_counter_comm_ctx(&cpuctx->ctx, comm_event);
  2488. put_cpu_var(perf_cpu_context);
  2489. rcu_read_lock();
  2490. /*
  2491. * doesn't really matter which of the child contexts the
  2492. * events ends up in.
  2493. */
  2494. ctx = rcu_dereference(current->perf_counter_ctxp);
  2495. if (ctx)
  2496. perf_counter_comm_ctx(ctx, comm_event);
  2497. rcu_read_unlock();
  2498. }
  2499. void perf_counter_comm(struct task_struct *task)
  2500. {
  2501. struct perf_comm_event comm_event;
  2502. if (task->perf_counter_ctxp)
  2503. perf_counter_enable_on_exec(task);
  2504. if (!atomic_read(&nr_comm_counters))
  2505. return;
  2506. comm_event = (struct perf_comm_event){
  2507. .task = task,
  2508. /* .comm */
  2509. /* .comm_size */
  2510. .event = {
  2511. .header = {
  2512. .type = PERF_EVENT_COMM,
  2513. .misc = 0,
  2514. /* .size */
  2515. },
  2516. /* .pid */
  2517. /* .tid */
  2518. },
  2519. };
  2520. perf_counter_comm_event(&comm_event);
  2521. }
  2522. /*
  2523. * mmap tracking
  2524. */
  2525. struct perf_mmap_event {
  2526. struct vm_area_struct *vma;
  2527. const char *file_name;
  2528. int file_size;
  2529. struct {
  2530. struct perf_event_header header;
  2531. u32 pid;
  2532. u32 tid;
  2533. u64 start;
  2534. u64 len;
  2535. u64 pgoff;
  2536. } event;
  2537. };
  2538. static void perf_counter_mmap_output(struct perf_counter *counter,
  2539. struct perf_mmap_event *mmap_event)
  2540. {
  2541. struct perf_output_handle handle;
  2542. int size = mmap_event->event.header.size;
  2543. int ret = perf_output_begin(&handle, counter, size, 0, 0);
  2544. if (ret)
  2545. return;
  2546. mmap_event->event.pid = perf_counter_pid(counter, current);
  2547. mmap_event->event.tid = perf_counter_tid(counter, current);
  2548. perf_output_put(&handle, mmap_event->event);
  2549. perf_output_copy(&handle, mmap_event->file_name,
  2550. mmap_event->file_size);
  2551. perf_output_end(&handle);
  2552. }
  2553. static int perf_counter_mmap_match(struct perf_counter *counter,
  2554. struct perf_mmap_event *mmap_event)
  2555. {
  2556. if (counter->attr.mmap)
  2557. return 1;
  2558. return 0;
  2559. }
  2560. static void perf_counter_mmap_ctx(struct perf_counter_context *ctx,
  2561. struct perf_mmap_event *mmap_event)
  2562. {
  2563. struct perf_counter *counter;
  2564. if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
  2565. return;
  2566. rcu_read_lock();
  2567. list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
  2568. if (perf_counter_mmap_match(counter, mmap_event))
  2569. perf_counter_mmap_output(counter, mmap_event);
  2570. }
  2571. rcu_read_unlock();
  2572. }
  2573. static void perf_counter_mmap_event(struct perf_mmap_event *mmap_event)
  2574. {
  2575. struct perf_cpu_context *cpuctx;
  2576. struct perf_counter_context *ctx;
  2577. struct vm_area_struct *vma = mmap_event->vma;
  2578. struct file *file = vma->vm_file;
  2579. unsigned int size;
  2580. char tmp[16];
  2581. char *buf = NULL;
  2582. const char *name;
  2583. memset(tmp, 0, sizeof(tmp));
  2584. if (file) {
  2585. /*
  2586. * d_path works from the end of the buffer backwards, so we
  2587. * need to add enough zero bytes after the string to handle
  2588. * the 64bit alignment we do later.
  2589. */
  2590. buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
  2591. if (!buf) {
  2592. name = strncpy(tmp, "//enomem", sizeof(tmp));
  2593. goto got_name;
  2594. }
  2595. name = d_path(&file->f_path, buf, PATH_MAX);
  2596. if (IS_ERR(name)) {
  2597. name = strncpy(tmp, "//toolong", sizeof(tmp));
  2598. goto got_name;
  2599. }
  2600. } else {
  2601. if (arch_vma_name(mmap_event->vma)) {
  2602. name = strncpy(tmp, arch_vma_name(mmap_event->vma),
  2603. sizeof(tmp));
  2604. goto got_name;
  2605. }
  2606. if (!vma->vm_mm) {
  2607. name = strncpy(tmp, "[vdso]", sizeof(tmp));
  2608. goto got_name;
  2609. }
  2610. name = strncpy(tmp, "//anon", sizeof(tmp));
  2611. goto got_name;
  2612. }
  2613. got_name:
  2614. size = ALIGN(strlen(name)+1, sizeof(u64));
  2615. mmap_event->file_name = name;
  2616. mmap_event->file_size = size;
  2617. mmap_event->event.header.size = sizeof(mmap_event->event) + size;
  2618. cpuctx = &get_cpu_var(perf_cpu_context);
  2619. perf_counter_mmap_ctx(&cpuctx->ctx, mmap_event);
  2620. put_cpu_var(perf_cpu_context);
  2621. rcu_read_lock();
  2622. /*
  2623. * doesn't really matter which of the child contexts the
  2624. * events ends up in.
  2625. */
  2626. ctx = rcu_dereference(current->perf_counter_ctxp);
  2627. if (ctx)
  2628. perf_counter_mmap_ctx(ctx, mmap_event);
  2629. rcu_read_unlock();
  2630. kfree(buf);
  2631. }
  2632. void __perf_counter_mmap(struct vm_area_struct *vma)
  2633. {
  2634. struct perf_mmap_event mmap_event;
  2635. if (!atomic_read(&nr_mmap_counters))
  2636. return;
  2637. mmap_event = (struct perf_mmap_event){
  2638. .vma = vma,
  2639. /* .file_name */
  2640. /* .file_size */
  2641. .event = {
  2642. .header = {
  2643. .type = PERF_EVENT_MMAP,
  2644. .misc = 0,
  2645. /* .size */
  2646. },
  2647. /* .pid */
  2648. /* .tid */
  2649. .start = vma->vm_start,
  2650. .len = vma->vm_end - vma->vm_start,
  2651. .pgoff = vma->vm_pgoff,
  2652. },
  2653. };
  2654. perf_counter_mmap_event(&mmap_event);
  2655. }
  2656. /*
  2657. * IRQ throttle logging
  2658. */
  2659. static void perf_log_throttle(struct perf_counter *counter, int enable)
  2660. {
  2661. struct perf_output_handle handle;
  2662. int ret;
  2663. struct {
  2664. struct perf_event_header header;
  2665. u64 time;
  2666. u64 id;
  2667. u64 stream_id;
  2668. } throttle_event = {
  2669. .header = {
  2670. .type = PERF_EVENT_THROTTLE,
  2671. .misc = 0,
  2672. .size = sizeof(throttle_event),
  2673. },
  2674. .time = sched_clock(),
  2675. .id = primary_counter_id(counter),
  2676. .stream_id = counter->id,
  2677. };
  2678. if (enable)
  2679. throttle_event.header.type = PERF_EVENT_UNTHROTTLE;
  2680. ret = perf_output_begin(&handle, counter, sizeof(throttle_event), 1, 0);
  2681. if (ret)
  2682. return;
  2683. perf_output_put(&handle, throttle_event);
  2684. perf_output_end(&handle);
  2685. }
  2686. /*
  2687. * Generic counter overflow handling, sampling.
  2688. */
  2689. int perf_counter_overflow(struct perf_counter *counter, int nmi,
  2690. struct perf_sample_data *data)
  2691. {
  2692. int events = atomic_read(&counter->event_limit);
  2693. int throttle = counter->pmu->unthrottle != NULL;
  2694. struct hw_perf_counter *hwc = &counter->hw;
  2695. int ret = 0;
  2696. if (!throttle) {
  2697. hwc->interrupts++;
  2698. } else {
  2699. if (hwc->interrupts != MAX_INTERRUPTS) {
  2700. hwc->interrupts++;
  2701. if (HZ * hwc->interrupts >
  2702. (u64)sysctl_perf_counter_sample_rate) {
  2703. hwc->interrupts = MAX_INTERRUPTS;
  2704. perf_log_throttle(counter, 0);
  2705. ret = 1;
  2706. }
  2707. } else {
  2708. /*
  2709. * Keep re-disabling counters even though on the previous
  2710. * pass we disabled it - just in case we raced with a
  2711. * sched-in and the counter got enabled again:
  2712. */
  2713. ret = 1;
  2714. }
  2715. }
  2716. if (counter->attr.freq) {
  2717. u64 now = sched_clock();
  2718. s64 delta = now - hwc->freq_stamp;
  2719. hwc->freq_stamp = now;
  2720. if (delta > 0 && delta < TICK_NSEC)
  2721. perf_adjust_period(counter, NSEC_PER_SEC / (int)delta);
  2722. }
  2723. /*
  2724. * XXX event_limit might not quite work as expected on inherited
  2725. * counters
  2726. */
  2727. counter->pending_kill = POLL_IN;
  2728. if (events && atomic_dec_and_test(&counter->event_limit)) {
  2729. ret = 1;
  2730. counter->pending_kill = POLL_HUP;
  2731. if (nmi) {
  2732. counter->pending_disable = 1;
  2733. perf_pending_queue(&counter->pending,
  2734. perf_pending_counter);
  2735. } else
  2736. perf_counter_disable(counter);
  2737. }
  2738. perf_counter_output(counter, nmi, data);
  2739. return ret;
  2740. }
  2741. /*
  2742. * Generic software counter infrastructure
  2743. */
  2744. static void perf_swcounter_update(struct perf_counter *counter)
  2745. {
  2746. struct hw_perf_counter *hwc = &counter->hw;
  2747. u64 prev, now;
  2748. s64 delta;
  2749. again:
  2750. prev = atomic64_read(&hwc->prev_count);
  2751. now = atomic64_read(&hwc->count);
  2752. if (atomic64_cmpxchg(&hwc->prev_count, prev, now) != prev)
  2753. goto again;
  2754. delta = now - prev;
  2755. atomic64_add(delta, &counter->count);
  2756. atomic64_sub(delta, &hwc->period_left);
  2757. }
  2758. static void perf_swcounter_set_period(struct perf_counter *counter)
  2759. {
  2760. struct hw_perf_counter *hwc = &counter->hw;
  2761. s64 left = atomic64_read(&hwc->period_left);
  2762. s64 period = hwc->sample_period;
  2763. if (unlikely(left <= -period)) {
  2764. left = period;
  2765. atomic64_set(&hwc->period_left, left);
  2766. hwc->last_period = period;
  2767. }
  2768. if (unlikely(left <= 0)) {
  2769. left += period;
  2770. atomic64_add(period, &hwc->period_left);
  2771. hwc->last_period = period;
  2772. }
  2773. atomic64_set(&hwc->prev_count, -left);
  2774. atomic64_set(&hwc->count, -left);
  2775. }
  2776. static enum hrtimer_restart perf_swcounter_hrtimer(struct hrtimer *hrtimer)
  2777. {
  2778. enum hrtimer_restart ret = HRTIMER_RESTART;
  2779. struct perf_sample_data data;
  2780. struct perf_counter *counter;
  2781. u64 period;
  2782. counter = container_of(hrtimer, struct perf_counter, hw.hrtimer);
  2783. counter->pmu->read(counter);
  2784. data.addr = 0;
  2785. data.regs = get_irq_regs();
  2786. /*
  2787. * In case we exclude kernel IPs or are somehow not in interrupt
  2788. * context, provide the next best thing, the user IP.
  2789. */
  2790. if ((counter->attr.exclude_kernel || !data.regs) &&
  2791. !counter->attr.exclude_user)
  2792. data.regs = task_pt_regs(current);
  2793. if (data.regs) {
  2794. if (perf_counter_overflow(counter, 0, &data))
  2795. ret = HRTIMER_NORESTART;
  2796. }
  2797. period = max_t(u64, 10000, counter->hw.sample_period);
  2798. hrtimer_forward_now(hrtimer, ns_to_ktime(period));
  2799. return ret;
  2800. }
  2801. static void perf_swcounter_overflow(struct perf_counter *counter,
  2802. int nmi, struct perf_sample_data *data)
  2803. {
  2804. data->period = counter->hw.last_period;
  2805. perf_swcounter_update(counter);
  2806. perf_swcounter_set_period(counter);
  2807. if (perf_counter_overflow(counter, nmi, data))
  2808. /* soft-disable the counter */
  2809. ;
  2810. }
  2811. static int perf_swcounter_is_counting(struct perf_counter *counter)
  2812. {
  2813. struct perf_counter_context *ctx;
  2814. unsigned long flags;
  2815. int count;
  2816. if (counter->state == PERF_COUNTER_STATE_ACTIVE)
  2817. return 1;
  2818. if (counter->state != PERF_COUNTER_STATE_INACTIVE)
  2819. return 0;
  2820. /*
  2821. * If the counter is inactive, it could be just because
  2822. * its task is scheduled out, or because it's in a group
  2823. * which could not go on the PMU. We want to count in
  2824. * the first case but not the second. If the context is
  2825. * currently active then an inactive software counter must
  2826. * be the second case. If it's not currently active then
  2827. * we need to know whether the counter was active when the
  2828. * context was last active, which we can determine by
  2829. * comparing counter->tstamp_stopped with ctx->time.
  2830. *
  2831. * We are within an RCU read-side critical section,
  2832. * which protects the existence of *ctx.
  2833. */
  2834. ctx = counter->ctx;
  2835. spin_lock_irqsave(&ctx->lock, flags);
  2836. count = 1;
  2837. /* Re-check state now we have the lock */
  2838. if (counter->state < PERF_COUNTER_STATE_INACTIVE ||
  2839. counter->ctx->is_active ||
  2840. counter->tstamp_stopped < ctx->time)
  2841. count = 0;
  2842. spin_unlock_irqrestore(&ctx->lock, flags);
  2843. return count;
  2844. }
  2845. static int perf_swcounter_match(struct perf_counter *counter,
  2846. enum perf_type_id type,
  2847. u32 event, struct pt_regs *regs)
  2848. {
  2849. if (!perf_swcounter_is_counting(counter))
  2850. return 0;
  2851. if (counter->attr.type != type)
  2852. return 0;
  2853. if (counter->attr.config != event)
  2854. return 0;
  2855. if (regs) {
  2856. if (counter->attr.exclude_user && user_mode(regs))
  2857. return 0;
  2858. if (counter->attr.exclude_kernel && !user_mode(regs))
  2859. return 0;
  2860. }
  2861. return 1;
  2862. }
  2863. static void perf_swcounter_add(struct perf_counter *counter, u64 nr,
  2864. int nmi, struct perf_sample_data *data)
  2865. {
  2866. int neg = atomic64_add_negative(nr, &counter->hw.count);
  2867. if (counter->hw.sample_period && !neg && data->regs)
  2868. perf_swcounter_overflow(counter, nmi, data);
  2869. }
  2870. static void perf_swcounter_ctx_event(struct perf_counter_context *ctx,
  2871. enum perf_type_id type,
  2872. u32 event, u64 nr, int nmi,
  2873. struct perf_sample_data *data)
  2874. {
  2875. struct perf_counter *counter;
  2876. if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
  2877. return;
  2878. rcu_read_lock();
  2879. list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
  2880. if (perf_swcounter_match(counter, type, event, data->regs))
  2881. perf_swcounter_add(counter, nr, nmi, data);
  2882. }
  2883. rcu_read_unlock();
  2884. }
  2885. static int *perf_swcounter_recursion_context(struct perf_cpu_context *cpuctx)
  2886. {
  2887. if (in_nmi())
  2888. return &cpuctx->recursion[3];
  2889. if (in_irq())
  2890. return &cpuctx->recursion[2];
  2891. if (in_softirq())
  2892. return &cpuctx->recursion[1];
  2893. return &cpuctx->recursion[0];
  2894. }
  2895. static void do_perf_swcounter_event(enum perf_type_id type, u32 event,
  2896. u64 nr, int nmi,
  2897. struct perf_sample_data *data)
  2898. {
  2899. struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
  2900. int *recursion = perf_swcounter_recursion_context(cpuctx);
  2901. struct perf_counter_context *ctx;
  2902. if (*recursion)
  2903. goto out;
  2904. (*recursion)++;
  2905. barrier();
  2906. perf_swcounter_ctx_event(&cpuctx->ctx, type, event,
  2907. nr, nmi, data);
  2908. rcu_read_lock();
  2909. /*
  2910. * doesn't really matter which of the child contexts the
  2911. * events ends up in.
  2912. */
  2913. ctx = rcu_dereference(current->perf_counter_ctxp);
  2914. if (ctx)
  2915. perf_swcounter_ctx_event(ctx, type, event, nr, nmi, data);
  2916. rcu_read_unlock();
  2917. barrier();
  2918. (*recursion)--;
  2919. out:
  2920. put_cpu_var(perf_cpu_context);
  2921. }
  2922. void __perf_swcounter_event(u32 event, u64 nr, int nmi,
  2923. struct pt_regs *regs, u64 addr)
  2924. {
  2925. struct perf_sample_data data = {
  2926. .regs = regs,
  2927. .addr = addr,
  2928. };
  2929. do_perf_swcounter_event(PERF_TYPE_SOFTWARE, event, nr, nmi, &data);
  2930. }
  2931. static void perf_swcounter_read(struct perf_counter *counter)
  2932. {
  2933. perf_swcounter_update(counter);
  2934. }
  2935. static int perf_swcounter_enable(struct perf_counter *counter)
  2936. {
  2937. perf_swcounter_set_period(counter);
  2938. return 0;
  2939. }
  2940. static void perf_swcounter_disable(struct perf_counter *counter)
  2941. {
  2942. perf_swcounter_update(counter);
  2943. }
  2944. static const struct pmu perf_ops_generic = {
  2945. .enable = perf_swcounter_enable,
  2946. .disable = perf_swcounter_disable,
  2947. .read = perf_swcounter_read,
  2948. };
  2949. /*
  2950. * Software counter: cpu wall time clock
  2951. */
  2952. static void cpu_clock_perf_counter_update(struct perf_counter *counter)
  2953. {
  2954. int cpu = raw_smp_processor_id();
  2955. s64 prev;
  2956. u64 now;
  2957. now = cpu_clock(cpu);
  2958. prev = atomic64_read(&counter->hw.prev_count);
  2959. atomic64_set(&counter->hw.prev_count, now);
  2960. atomic64_add(now - prev, &counter->count);
  2961. }
  2962. static int cpu_clock_perf_counter_enable(struct perf_counter *counter)
  2963. {
  2964. struct hw_perf_counter *hwc = &counter->hw;
  2965. int cpu = raw_smp_processor_id();
  2966. atomic64_set(&hwc->prev_count, cpu_clock(cpu));
  2967. hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  2968. hwc->hrtimer.function = perf_swcounter_hrtimer;
  2969. if (hwc->sample_period) {
  2970. u64 period = max_t(u64, 10000, hwc->sample_period);
  2971. __hrtimer_start_range_ns(&hwc->hrtimer,
  2972. ns_to_ktime(period), 0,
  2973. HRTIMER_MODE_REL, 0);
  2974. }
  2975. return 0;
  2976. }
  2977. static void cpu_clock_perf_counter_disable(struct perf_counter *counter)
  2978. {
  2979. if (counter->hw.sample_period)
  2980. hrtimer_cancel(&counter->hw.hrtimer);
  2981. cpu_clock_perf_counter_update(counter);
  2982. }
  2983. static void cpu_clock_perf_counter_read(struct perf_counter *counter)
  2984. {
  2985. cpu_clock_perf_counter_update(counter);
  2986. }
  2987. static const struct pmu perf_ops_cpu_clock = {
  2988. .enable = cpu_clock_perf_counter_enable,
  2989. .disable = cpu_clock_perf_counter_disable,
  2990. .read = cpu_clock_perf_counter_read,
  2991. };
  2992. /*
  2993. * Software counter: task time clock
  2994. */
  2995. static void task_clock_perf_counter_update(struct perf_counter *counter, u64 now)
  2996. {
  2997. u64 prev;
  2998. s64 delta;
  2999. prev = atomic64_xchg(&counter->hw.prev_count, now);
  3000. delta = now - prev;
  3001. atomic64_add(delta, &counter->count);
  3002. }
  3003. static int task_clock_perf_counter_enable(struct perf_counter *counter)
  3004. {
  3005. struct hw_perf_counter *hwc = &counter->hw;
  3006. u64 now;
  3007. now = counter->ctx->time;
  3008. atomic64_set(&hwc->prev_count, now);
  3009. hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  3010. hwc->hrtimer.function = perf_swcounter_hrtimer;
  3011. if (hwc->sample_period) {
  3012. u64 period = max_t(u64, 10000, hwc->sample_period);
  3013. __hrtimer_start_range_ns(&hwc->hrtimer,
  3014. ns_to_ktime(period), 0,
  3015. HRTIMER_MODE_REL, 0);
  3016. }
  3017. return 0;
  3018. }
  3019. static void task_clock_perf_counter_disable(struct perf_counter *counter)
  3020. {
  3021. if (counter->hw.sample_period)
  3022. hrtimer_cancel(&counter->hw.hrtimer);
  3023. task_clock_perf_counter_update(counter, counter->ctx->time);
  3024. }
  3025. static void task_clock_perf_counter_read(struct perf_counter *counter)
  3026. {
  3027. u64 time;
  3028. if (!in_nmi()) {
  3029. update_context_time(counter->ctx);
  3030. time = counter->ctx->time;
  3031. } else {
  3032. u64 now = perf_clock();
  3033. u64 delta = now - counter->ctx->timestamp;
  3034. time = counter->ctx->time + delta;
  3035. }
  3036. task_clock_perf_counter_update(counter, time);
  3037. }
  3038. static const struct pmu perf_ops_task_clock = {
  3039. .enable = task_clock_perf_counter_enable,
  3040. .disable = task_clock_perf_counter_disable,
  3041. .read = task_clock_perf_counter_read,
  3042. };
  3043. #ifdef CONFIG_EVENT_PROFILE
  3044. void perf_tpcounter_event(int event_id)
  3045. {
  3046. struct perf_sample_data data = {
  3047. .regs = get_irq_regs(),
  3048. .addr = 0,
  3049. };
  3050. if (!data.regs)
  3051. data.regs = task_pt_regs(current);
  3052. do_perf_swcounter_event(PERF_TYPE_TRACEPOINT, event_id, 1, 1, &data);
  3053. }
  3054. EXPORT_SYMBOL_GPL(perf_tpcounter_event);
  3055. extern int ftrace_profile_enable(int);
  3056. extern void ftrace_profile_disable(int);
  3057. static void tp_perf_counter_destroy(struct perf_counter *counter)
  3058. {
  3059. ftrace_profile_disable(counter->attr.config);
  3060. }
  3061. static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
  3062. {
  3063. if (ftrace_profile_enable(counter->attr.config))
  3064. return NULL;
  3065. counter->destroy = tp_perf_counter_destroy;
  3066. return &perf_ops_generic;
  3067. }
  3068. #else
  3069. static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
  3070. {
  3071. return NULL;
  3072. }
  3073. #endif
  3074. atomic_t perf_swcounter_enabled[PERF_COUNT_SW_MAX];
  3075. static void sw_perf_counter_destroy(struct perf_counter *counter)
  3076. {
  3077. u64 event = counter->attr.config;
  3078. WARN_ON(counter->parent);
  3079. atomic_dec(&perf_swcounter_enabled[event]);
  3080. }
  3081. static const struct pmu *sw_perf_counter_init(struct perf_counter *counter)
  3082. {
  3083. const struct pmu *pmu = NULL;
  3084. u64 event = counter->attr.config;
  3085. /*
  3086. * Software counters (currently) can't in general distinguish
  3087. * between user, kernel and hypervisor events.
  3088. * However, context switches and cpu migrations are considered
  3089. * to be kernel events, and page faults are never hypervisor
  3090. * events.
  3091. */
  3092. switch (event) {
  3093. case PERF_COUNT_SW_CPU_CLOCK:
  3094. pmu = &perf_ops_cpu_clock;
  3095. break;
  3096. case PERF_COUNT_SW_TASK_CLOCK:
  3097. /*
  3098. * If the user instantiates this as a per-cpu counter,
  3099. * use the cpu_clock counter instead.
  3100. */
  3101. if (counter->ctx->task)
  3102. pmu = &perf_ops_task_clock;
  3103. else
  3104. pmu = &perf_ops_cpu_clock;
  3105. break;
  3106. case PERF_COUNT_SW_PAGE_FAULTS:
  3107. case PERF_COUNT_SW_PAGE_FAULTS_MIN:
  3108. case PERF_COUNT_SW_PAGE_FAULTS_MAJ:
  3109. case PERF_COUNT_SW_CONTEXT_SWITCHES:
  3110. case PERF_COUNT_SW_CPU_MIGRATIONS:
  3111. if (!counter->parent) {
  3112. atomic_inc(&perf_swcounter_enabled[event]);
  3113. counter->destroy = sw_perf_counter_destroy;
  3114. }
  3115. pmu = &perf_ops_generic;
  3116. break;
  3117. }
  3118. return pmu;
  3119. }
  3120. /*
  3121. * Allocate and initialize a counter structure
  3122. */
  3123. static struct perf_counter *
  3124. perf_counter_alloc(struct perf_counter_attr *attr,
  3125. int cpu,
  3126. struct perf_counter_context *ctx,
  3127. struct perf_counter *group_leader,
  3128. struct perf_counter *parent_counter,
  3129. gfp_t gfpflags)
  3130. {
  3131. const struct pmu *pmu;
  3132. struct perf_counter *counter;
  3133. struct hw_perf_counter *hwc;
  3134. long err;
  3135. counter = kzalloc(sizeof(*counter), gfpflags);
  3136. if (!counter)
  3137. return ERR_PTR(-ENOMEM);
  3138. /*
  3139. * Single counters are their own group leaders, with an
  3140. * empty sibling list:
  3141. */
  3142. if (!group_leader)
  3143. group_leader = counter;
  3144. mutex_init(&counter->child_mutex);
  3145. INIT_LIST_HEAD(&counter->child_list);
  3146. INIT_LIST_HEAD(&counter->list_entry);
  3147. INIT_LIST_HEAD(&counter->event_entry);
  3148. INIT_LIST_HEAD(&counter->sibling_list);
  3149. init_waitqueue_head(&counter->waitq);
  3150. mutex_init(&counter->mmap_mutex);
  3151. counter->cpu = cpu;
  3152. counter->attr = *attr;
  3153. counter->group_leader = group_leader;
  3154. counter->pmu = NULL;
  3155. counter->ctx = ctx;
  3156. counter->oncpu = -1;
  3157. counter->parent = parent_counter;
  3158. counter->ns = get_pid_ns(current->nsproxy->pid_ns);
  3159. counter->id = atomic64_inc_return(&perf_counter_id);
  3160. counter->state = PERF_COUNTER_STATE_INACTIVE;
  3161. if (attr->disabled)
  3162. counter->state = PERF_COUNTER_STATE_OFF;
  3163. pmu = NULL;
  3164. hwc = &counter->hw;
  3165. hwc->sample_period = attr->sample_period;
  3166. if (attr->freq && attr->sample_freq)
  3167. hwc->sample_period = 1;
  3168. atomic64_set(&hwc->period_left, hwc->sample_period);
  3169. /*
  3170. * we currently do not support PERF_SAMPLE_GROUP on inherited counters
  3171. */
  3172. if (attr->inherit && (attr->sample_type & PERF_SAMPLE_GROUP))
  3173. goto done;
  3174. switch (attr->type) {
  3175. case PERF_TYPE_RAW:
  3176. case PERF_TYPE_HARDWARE:
  3177. case PERF_TYPE_HW_CACHE:
  3178. pmu = hw_perf_counter_init(counter);
  3179. break;
  3180. case PERF_TYPE_SOFTWARE:
  3181. pmu = sw_perf_counter_init(counter);
  3182. break;
  3183. case PERF_TYPE_TRACEPOINT:
  3184. pmu = tp_perf_counter_init(counter);
  3185. break;
  3186. default:
  3187. break;
  3188. }
  3189. done:
  3190. err = 0;
  3191. if (!pmu)
  3192. err = -EINVAL;
  3193. else if (IS_ERR(pmu))
  3194. err = PTR_ERR(pmu);
  3195. if (err) {
  3196. if (counter->ns)
  3197. put_pid_ns(counter->ns);
  3198. kfree(counter);
  3199. return ERR_PTR(err);
  3200. }
  3201. counter->pmu = pmu;
  3202. if (!counter->parent) {
  3203. atomic_inc(&nr_counters);
  3204. if (counter->attr.mmap)
  3205. atomic_inc(&nr_mmap_counters);
  3206. if (counter->attr.comm)
  3207. atomic_inc(&nr_comm_counters);
  3208. if (counter->attr.task)
  3209. atomic_inc(&nr_task_counters);
  3210. }
  3211. return counter;
  3212. }
  3213. static int perf_copy_attr(struct perf_counter_attr __user *uattr,
  3214. struct perf_counter_attr *attr)
  3215. {
  3216. int ret;
  3217. u32 size;
  3218. if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
  3219. return -EFAULT;
  3220. /*
  3221. * zero the full structure, so that a short copy will be nice.
  3222. */
  3223. memset(attr, 0, sizeof(*attr));
  3224. ret = get_user(size, &uattr->size);
  3225. if (ret)
  3226. return ret;
  3227. if (size > PAGE_SIZE) /* silly large */
  3228. goto err_size;
  3229. if (!size) /* abi compat */
  3230. size = PERF_ATTR_SIZE_VER0;
  3231. if (size < PERF_ATTR_SIZE_VER0)
  3232. goto err_size;
  3233. /*
  3234. * If we're handed a bigger struct than we know of,
  3235. * ensure all the unknown bits are 0.
  3236. */
  3237. if (size > sizeof(*attr)) {
  3238. unsigned long val;
  3239. unsigned long __user *addr;
  3240. unsigned long __user *end;
  3241. addr = PTR_ALIGN((void __user *)uattr + sizeof(*attr),
  3242. sizeof(unsigned long));
  3243. end = PTR_ALIGN((void __user *)uattr + size,
  3244. sizeof(unsigned long));
  3245. for (; addr < end; addr += sizeof(unsigned long)) {
  3246. ret = get_user(val, addr);
  3247. if (ret)
  3248. return ret;
  3249. if (val)
  3250. goto err_size;
  3251. }
  3252. }
  3253. ret = copy_from_user(attr, uattr, size);
  3254. if (ret)
  3255. return -EFAULT;
  3256. /*
  3257. * If the type exists, the corresponding creation will verify
  3258. * the attr->config.
  3259. */
  3260. if (attr->type >= PERF_TYPE_MAX)
  3261. return -EINVAL;
  3262. if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
  3263. return -EINVAL;
  3264. if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
  3265. return -EINVAL;
  3266. if (attr->read_format & ~(PERF_FORMAT_MAX-1))
  3267. return -EINVAL;
  3268. out:
  3269. return ret;
  3270. err_size:
  3271. put_user(sizeof(*attr), &uattr->size);
  3272. ret = -E2BIG;
  3273. goto out;
  3274. }
  3275. /**
  3276. * sys_perf_counter_open - open a performance counter, associate it to a task/cpu
  3277. *
  3278. * @attr_uptr: event type attributes for monitoring/sampling
  3279. * @pid: target pid
  3280. * @cpu: target cpu
  3281. * @group_fd: group leader counter fd
  3282. */
  3283. SYSCALL_DEFINE5(perf_counter_open,
  3284. struct perf_counter_attr __user *, attr_uptr,
  3285. pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
  3286. {
  3287. struct perf_counter *counter, *group_leader;
  3288. struct perf_counter_attr attr;
  3289. struct perf_counter_context *ctx;
  3290. struct file *counter_file = NULL;
  3291. struct file *group_file = NULL;
  3292. int fput_needed = 0;
  3293. int fput_needed2 = 0;
  3294. int ret;
  3295. /* for future expandability... */
  3296. if (flags)
  3297. return -EINVAL;
  3298. ret = perf_copy_attr(attr_uptr, &attr);
  3299. if (ret)
  3300. return ret;
  3301. if (!attr.exclude_kernel) {
  3302. if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
  3303. return -EACCES;
  3304. }
  3305. if (attr.freq) {
  3306. if (attr.sample_freq > sysctl_perf_counter_sample_rate)
  3307. return -EINVAL;
  3308. }
  3309. /*
  3310. * Get the target context (task or percpu):
  3311. */
  3312. ctx = find_get_context(pid, cpu);
  3313. if (IS_ERR(ctx))
  3314. return PTR_ERR(ctx);
  3315. /*
  3316. * Look up the group leader (we will attach this counter to it):
  3317. */
  3318. group_leader = NULL;
  3319. if (group_fd != -1) {
  3320. ret = -EINVAL;
  3321. group_file = fget_light(group_fd, &fput_needed);
  3322. if (!group_file)
  3323. goto err_put_context;
  3324. if (group_file->f_op != &perf_fops)
  3325. goto err_put_context;
  3326. group_leader = group_file->private_data;
  3327. /*
  3328. * Do not allow a recursive hierarchy (this new sibling
  3329. * becoming part of another group-sibling):
  3330. */
  3331. if (group_leader->group_leader != group_leader)
  3332. goto err_put_context;
  3333. /*
  3334. * Do not allow to attach to a group in a different
  3335. * task or CPU context:
  3336. */
  3337. if (group_leader->ctx != ctx)
  3338. goto err_put_context;
  3339. /*
  3340. * Only a group leader can be exclusive or pinned
  3341. */
  3342. if (attr.exclusive || attr.pinned)
  3343. goto err_put_context;
  3344. }
  3345. counter = perf_counter_alloc(&attr, cpu, ctx, group_leader,
  3346. NULL, GFP_KERNEL);
  3347. ret = PTR_ERR(counter);
  3348. if (IS_ERR(counter))
  3349. goto err_put_context;
  3350. ret = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0);
  3351. if (ret < 0)
  3352. goto err_free_put_context;
  3353. counter_file = fget_light(ret, &fput_needed2);
  3354. if (!counter_file)
  3355. goto err_free_put_context;
  3356. counter->filp = counter_file;
  3357. WARN_ON_ONCE(ctx->parent_ctx);
  3358. mutex_lock(&ctx->mutex);
  3359. perf_install_in_context(ctx, counter, cpu);
  3360. ++ctx->generation;
  3361. mutex_unlock(&ctx->mutex);
  3362. counter->owner = current;
  3363. get_task_struct(current);
  3364. mutex_lock(&current->perf_counter_mutex);
  3365. list_add_tail(&counter->owner_entry, &current->perf_counter_list);
  3366. mutex_unlock(&current->perf_counter_mutex);
  3367. fput_light(counter_file, fput_needed2);
  3368. out_fput:
  3369. fput_light(group_file, fput_needed);
  3370. return ret;
  3371. err_free_put_context:
  3372. kfree(counter);
  3373. err_put_context:
  3374. put_ctx(ctx);
  3375. goto out_fput;
  3376. }
  3377. /*
  3378. * inherit a counter from parent task to child task:
  3379. */
  3380. static struct perf_counter *
  3381. inherit_counter(struct perf_counter *parent_counter,
  3382. struct task_struct *parent,
  3383. struct perf_counter_context *parent_ctx,
  3384. struct task_struct *child,
  3385. struct perf_counter *group_leader,
  3386. struct perf_counter_context *child_ctx)
  3387. {
  3388. struct perf_counter *child_counter;
  3389. /*
  3390. * Instead of creating recursive hierarchies of counters,
  3391. * we link inherited counters back to the original parent,
  3392. * which has a filp for sure, which we use as the reference
  3393. * count:
  3394. */
  3395. if (parent_counter->parent)
  3396. parent_counter = parent_counter->parent;
  3397. child_counter = perf_counter_alloc(&parent_counter->attr,
  3398. parent_counter->cpu, child_ctx,
  3399. group_leader, parent_counter,
  3400. GFP_KERNEL);
  3401. if (IS_ERR(child_counter))
  3402. return child_counter;
  3403. get_ctx(child_ctx);
  3404. /*
  3405. * Make the child state follow the state of the parent counter,
  3406. * not its attr.disabled bit. We hold the parent's mutex,
  3407. * so we won't race with perf_counter_{en, dis}able_family.
  3408. */
  3409. if (parent_counter->state >= PERF_COUNTER_STATE_INACTIVE)
  3410. child_counter->state = PERF_COUNTER_STATE_INACTIVE;
  3411. else
  3412. child_counter->state = PERF_COUNTER_STATE_OFF;
  3413. if (parent_counter->attr.freq)
  3414. child_counter->hw.sample_period = parent_counter->hw.sample_period;
  3415. /*
  3416. * Link it up in the child's context:
  3417. */
  3418. add_counter_to_ctx(child_counter, child_ctx);
  3419. /*
  3420. * Get a reference to the parent filp - we will fput it
  3421. * when the child counter exits. This is safe to do because
  3422. * we are in the parent and we know that the filp still
  3423. * exists and has a nonzero count:
  3424. */
  3425. atomic_long_inc(&parent_counter->filp->f_count);
  3426. /*
  3427. * Link this into the parent counter's child list
  3428. */
  3429. WARN_ON_ONCE(parent_counter->ctx->parent_ctx);
  3430. mutex_lock(&parent_counter->child_mutex);
  3431. list_add_tail(&child_counter->child_list, &parent_counter->child_list);
  3432. mutex_unlock(&parent_counter->child_mutex);
  3433. return child_counter;
  3434. }
  3435. static int inherit_group(struct perf_counter *parent_counter,
  3436. struct task_struct *parent,
  3437. struct perf_counter_context *parent_ctx,
  3438. struct task_struct *child,
  3439. struct perf_counter_context *child_ctx)
  3440. {
  3441. struct perf_counter *leader;
  3442. struct perf_counter *sub;
  3443. struct perf_counter *child_ctr;
  3444. leader = inherit_counter(parent_counter, parent, parent_ctx,
  3445. child, NULL, child_ctx);
  3446. if (IS_ERR(leader))
  3447. return PTR_ERR(leader);
  3448. list_for_each_entry(sub, &parent_counter->sibling_list, list_entry) {
  3449. child_ctr = inherit_counter(sub, parent, parent_ctx,
  3450. child, leader, child_ctx);
  3451. if (IS_ERR(child_ctr))
  3452. return PTR_ERR(child_ctr);
  3453. }
  3454. return 0;
  3455. }
  3456. static void sync_child_counter(struct perf_counter *child_counter,
  3457. struct task_struct *child)
  3458. {
  3459. struct perf_counter *parent_counter = child_counter->parent;
  3460. u64 child_val;
  3461. if (child_counter->attr.inherit_stat)
  3462. perf_counter_read_event(child_counter, child);
  3463. child_val = atomic64_read(&child_counter->count);
  3464. /*
  3465. * Add back the child's count to the parent's count:
  3466. */
  3467. atomic64_add(child_val, &parent_counter->count);
  3468. atomic64_add(child_counter->total_time_enabled,
  3469. &parent_counter->child_total_time_enabled);
  3470. atomic64_add(child_counter->total_time_running,
  3471. &parent_counter->child_total_time_running);
  3472. /*
  3473. * Remove this counter from the parent's list
  3474. */
  3475. WARN_ON_ONCE(parent_counter->ctx->parent_ctx);
  3476. mutex_lock(&parent_counter->child_mutex);
  3477. list_del_init(&child_counter->child_list);
  3478. mutex_unlock(&parent_counter->child_mutex);
  3479. /*
  3480. * Release the parent counter, if this was the last
  3481. * reference to it.
  3482. */
  3483. fput(parent_counter->filp);
  3484. }
  3485. static void
  3486. __perf_counter_exit_task(struct perf_counter *child_counter,
  3487. struct perf_counter_context *child_ctx,
  3488. struct task_struct *child)
  3489. {
  3490. struct perf_counter *parent_counter;
  3491. update_counter_times(child_counter);
  3492. perf_counter_remove_from_context(child_counter);
  3493. parent_counter = child_counter->parent;
  3494. /*
  3495. * It can happen that parent exits first, and has counters
  3496. * that are still around due to the child reference. These
  3497. * counters need to be zapped - but otherwise linger.
  3498. */
  3499. if (parent_counter) {
  3500. sync_child_counter(child_counter, child);
  3501. free_counter(child_counter);
  3502. }
  3503. }
  3504. /*
  3505. * When a child task exits, feed back counter values to parent counters.
  3506. */
  3507. void perf_counter_exit_task(struct task_struct *child)
  3508. {
  3509. struct perf_counter *child_counter, *tmp;
  3510. struct perf_counter_context *child_ctx;
  3511. unsigned long flags;
  3512. if (likely(!child->perf_counter_ctxp)) {
  3513. perf_counter_task(child, 0);
  3514. return;
  3515. }
  3516. local_irq_save(flags);
  3517. /*
  3518. * We can't reschedule here because interrupts are disabled,
  3519. * and either child is current or it is a task that can't be
  3520. * scheduled, so we are now safe from rescheduling changing
  3521. * our context.
  3522. */
  3523. child_ctx = child->perf_counter_ctxp;
  3524. __perf_counter_task_sched_out(child_ctx);
  3525. /*
  3526. * Take the context lock here so that if find_get_context is
  3527. * reading child->perf_counter_ctxp, we wait until it has
  3528. * incremented the context's refcount before we do put_ctx below.
  3529. */
  3530. spin_lock(&child_ctx->lock);
  3531. /*
  3532. * If this context is a clone; unclone it so it can't get
  3533. * swapped to another process while we're removing all
  3534. * the counters from it.
  3535. */
  3536. unclone_ctx(child_ctx);
  3537. spin_unlock_irqrestore(&child_ctx->lock, flags);
  3538. /*
  3539. * Report the task dead after unscheduling the counters so that we
  3540. * won't get any samples after PERF_EVENT_EXIT. We can however still
  3541. * get a few PERF_EVENT_READ events.
  3542. */
  3543. perf_counter_task(child, 0);
  3544. child->perf_counter_ctxp = NULL;
  3545. /*
  3546. * We can recurse on the same lock type through:
  3547. *
  3548. * __perf_counter_exit_task()
  3549. * sync_child_counter()
  3550. * fput(parent_counter->filp)
  3551. * perf_release()
  3552. * mutex_lock(&ctx->mutex)
  3553. *
  3554. * But since its the parent context it won't be the same instance.
  3555. */
  3556. mutex_lock_nested(&child_ctx->mutex, SINGLE_DEPTH_NESTING);
  3557. again:
  3558. list_for_each_entry_safe(child_counter, tmp, &child_ctx->counter_list,
  3559. list_entry)
  3560. __perf_counter_exit_task(child_counter, child_ctx, child);
  3561. /*
  3562. * If the last counter was a group counter, it will have appended all
  3563. * its siblings to the list, but we obtained 'tmp' before that which
  3564. * will still point to the list head terminating the iteration.
  3565. */
  3566. if (!list_empty(&child_ctx->counter_list))
  3567. goto again;
  3568. mutex_unlock(&child_ctx->mutex);
  3569. put_ctx(child_ctx);
  3570. }
  3571. /*
  3572. * free an unexposed, unused context as created by inheritance by
  3573. * init_task below, used by fork() in case of fail.
  3574. */
  3575. void perf_counter_free_task(struct task_struct *task)
  3576. {
  3577. struct perf_counter_context *ctx = task->perf_counter_ctxp;
  3578. struct perf_counter *counter, *tmp;
  3579. if (!ctx)
  3580. return;
  3581. mutex_lock(&ctx->mutex);
  3582. again:
  3583. list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry) {
  3584. struct perf_counter *parent = counter->parent;
  3585. if (WARN_ON_ONCE(!parent))
  3586. continue;
  3587. mutex_lock(&parent->child_mutex);
  3588. list_del_init(&counter->child_list);
  3589. mutex_unlock(&parent->child_mutex);
  3590. fput(parent->filp);
  3591. list_del_counter(counter, ctx);
  3592. free_counter(counter);
  3593. }
  3594. if (!list_empty(&ctx->counter_list))
  3595. goto again;
  3596. mutex_unlock(&ctx->mutex);
  3597. put_ctx(ctx);
  3598. }
  3599. /*
  3600. * Initialize the perf_counter context in task_struct
  3601. */
  3602. int perf_counter_init_task(struct task_struct *child)
  3603. {
  3604. struct perf_counter_context *child_ctx, *parent_ctx;
  3605. struct perf_counter_context *cloned_ctx;
  3606. struct perf_counter *counter;
  3607. struct task_struct *parent = current;
  3608. int inherited_all = 1;
  3609. int ret = 0;
  3610. child->perf_counter_ctxp = NULL;
  3611. mutex_init(&child->perf_counter_mutex);
  3612. INIT_LIST_HEAD(&child->perf_counter_list);
  3613. if (likely(!parent->perf_counter_ctxp))
  3614. return 0;
  3615. /*
  3616. * This is executed from the parent task context, so inherit
  3617. * counters that have been marked for cloning.
  3618. * First allocate and initialize a context for the child.
  3619. */
  3620. child_ctx = kmalloc(sizeof(struct perf_counter_context), GFP_KERNEL);
  3621. if (!child_ctx)
  3622. return -ENOMEM;
  3623. __perf_counter_init_context(child_ctx, child);
  3624. child->perf_counter_ctxp = child_ctx;
  3625. get_task_struct(child);
  3626. /*
  3627. * If the parent's context is a clone, pin it so it won't get
  3628. * swapped under us.
  3629. */
  3630. parent_ctx = perf_pin_task_context(parent);
  3631. /*
  3632. * No need to check if parent_ctx != NULL here; since we saw
  3633. * it non-NULL earlier, the only reason for it to become NULL
  3634. * is if we exit, and since we're currently in the middle of
  3635. * a fork we can't be exiting at the same time.
  3636. */
  3637. /*
  3638. * Lock the parent list. No need to lock the child - not PID
  3639. * hashed yet and not running, so nobody can access it.
  3640. */
  3641. mutex_lock(&parent_ctx->mutex);
  3642. /*
  3643. * We dont have to disable NMIs - we are only looking at
  3644. * the list, not manipulating it:
  3645. */
  3646. list_for_each_entry_rcu(counter, &parent_ctx->event_list, event_entry) {
  3647. if (counter != counter->group_leader)
  3648. continue;
  3649. if (!counter->attr.inherit) {
  3650. inherited_all = 0;
  3651. continue;
  3652. }
  3653. ret = inherit_group(counter, parent, parent_ctx,
  3654. child, child_ctx);
  3655. if (ret) {
  3656. inherited_all = 0;
  3657. break;
  3658. }
  3659. }
  3660. if (inherited_all) {
  3661. /*
  3662. * Mark the child context as a clone of the parent
  3663. * context, or of whatever the parent is a clone of.
  3664. * Note that if the parent is a clone, it could get
  3665. * uncloned at any point, but that doesn't matter
  3666. * because the list of counters and the generation
  3667. * count can't have changed since we took the mutex.
  3668. */
  3669. cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
  3670. if (cloned_ctx) {
  3671. child_ctx->parent_ctx = cloned_ctx;
  3672. child_ctx->parent_gen = parent_ctx->parent_gen;
  3673. } else {
  3674. child_ctx->parent_ctx = parent_ctx;
  3675. child_ctx->parent_gen = parent_ctx->generation;
  3676. }
  3677. get_ctx(child_ctx->parent_ctx);
  3678. }
  3679. mutex_unlock(&parent_ctx->mutex);
  3680. perf_unpin_context(parent_ctx);
  3681. return ret;
  3682. }
  3683. static void __cpuinit perf_counter_init_cpu(int cpu)
  3684. {
  3685. struct perf_cpu_context *cpuctx;
  3686. cpuctx = &per_cpu(perf_cpu_context, cpu);
  3687. __perf_counter_init_context(&cpuctx->ctx, NULL);
  3688. spin_lock(&perf_resource_lock);
  3689. cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu;
  3690. spin_unlock(&perf_resource_lock);
  3691. hw_perf_counter_setup(cpu);
  3692. }
  3693. #ifdef CONFIG_HOTPLUG_CPU
  3694. static void __perf_counter_exit_cpu(void *info)
  3695. {
  3696. struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
  3697. struct perf_counter_context *ctx = &cpuctx->ctx;
  3698. struct perf_counter *counter, *tmp;
  3699. list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry)
  3700. __perf_counter_remove_from_context(counter);
  3701. }
  3702. static void perf_counter_exit_cpu(int cpu)
  3703. {
  3704. struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
  3705. struct perf_counter_context *ctx = &cpuctx->ctx;
  3706. mutex_lock(&ctx->mutex);
  3707. smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1);
  3708. mutex_unlock(&ctx->mutex);
  3709. }
  3710. #else
  3711. static inline void perf_counter_exit_cpu(int cpu) { }
  3712. #endif
  3713. static int __cpuinit
  3714. perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
  3715. {
  3716. unsigned int cpu = (long)hcpu;
  3717. switch (action) {
  3718. case CPU_UP_PREPARE:
  3719. case CPU_UP_PREPARE_FROZEN:
  3720. perf_counter_init_cpu(cpu);
  3721. break;
  3722. case CPU_DOWN_PREPARE:
  3723. case CPU_DOWN_PREPARE_FROZEN:
  3724. perf_counter_exit_cpu(cpu);
  3725. break;
  3726. default:
  3727. break;
  3728. }
  3729. return NOTIFY_OK;
  3730. }
  3731. /*
  3732. * This has to have a higher priority than migration_notifier in sched.c.
  3733. */
  3734. static struct notifier_block __cpuinitdata perf_cpu_nb = {
  3735. .notifier_call = perf_cpu_notify,
  3736. .priority = 20,
  3737. };
  3738. void __init perf_counter_init(void)
  3739. {
  3740. perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
  3741. (void *)(long)smp_processor_id());
  3742. register_cpu_notifier(&perf_cpu_nb);
  3743. }
  3744. static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
  3745. {
  3746. return sprintf(buf, "%d\n", perf_reserved_percpu);
  3747. }
  3748. static ssize_t
  3749. perf_set_reserve_percpu(struct sysdev_class *class,
  3750. const char *buf,
  3751. size_t count)
  3752. {
  3753. struct perf_cpu_context *cpuctx;
  3754. unsigned long val;
  3755. int err, cpu, mpt;
  3756. err = strict_strtoul(buf, 10, &val);
  3757. if (err)
  3758. return err;
  3759. if (val > perf_max_counters)
  3760. return -EINVAL;
  3761. spin_lock(&perf_resource_lock);
  3762. perf_reserved_percpu = val;
  3763. for_each_online_cpu(cpu) {
  3764. cpuctx = &per_cpu(perf_cpu_context, cpu);
  3765. spin_lock_irq(&cpuctx->ctx.lock);
  3766. mpt = min(perf_max_counters - cpuctx->ctx.nr_counters,
  3767. perf_max_counters - perf_reserved_percpu);
  3768. cpuctx->max_pertask = mpt;
  3769. spin_unlock_irq(&cpuctx->ctx.lock);
  3770. }
  3771. spin_unlock(&perf_resource_lock);
  3772. return count;
  3773. }
  3774. static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
  3775. {
  3776. return sprintf(buf, "%d\n", perf_overcommit);
  3777. }
  3778. static ssize_t
  3779. perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
  3780. {
  3781. unsigned long val;
  3782. int err;
  3783. err = strict_strtoul(buf, 10, &val);
  3784. if (err)
  3785. return err;
  3786. if (val > 1)
  3787. return -EINVAL;
  3788. spin_lock(&perf_resource_lock);
  3789. perf_overcommit = val;
  3790. spin_unlock(&perf_resource_lock);
  3791. return count;
  3792. }
  3793. static SYSDEV_CLASS_ATTR(
  3794. reserve_percpu,
  3795. 0644,
  3796. perf_show_reserve_percpu,
  3797. perf_set_reserve_percpu
  3798. );
  3799. static SYSDEV_CLASS_ATTR(
  3800. overcommit,
  3801. 0644,
  3802. perf_show_overcommit,
  3803. perf_set_overcommit
  3804. );
  3805. static struct attribute *perfclass_attrs[] = {
  3806. &attr_reserve_percpu.attr,
  3807. &attr_overcommit.attr,
  3808. NULL
  3809. };
  3810. static struct attribute_group perfclass_attr_group = {
  3811. .attrs = perfclass_attrs,
  3812. .name = "perf_counters",
  3813. };
  3814. static int __init perf_counter_sysfs_init(void)
  3815. {
  3816. return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
  3817. &perfclass_attr_group);
  3818. }
  3819. device_initcall(perf_counter_sysfs_init);