xfs_inode.c 135 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672
  1. /*
  2. * Copyright (c) 2000-2006 Silicon Graphics, Inc.
  3. * All Rights Reserved.
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public License as
  7. * published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it would be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write the Free Software Foundation,
  16. * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  17. */
  18. #include <linux/log2.h>
  19. #include "xfs.h"
  20. #include "xfs_fs.h"
  21. #include "xfs_types.h"
  22. #include "xfs_bit.h"
  23. #include "xfs_log.h"
  24. #include "xfs_inum.h"
  25. #include "xfs_imap.h"
  26. #include "xfs_trans.h"
  27. #include "xfs_trans_priv.h"
  28. #include "xfs_sb.h"
  29. #include "xfs_ag.h"
  30. #include "xfs_dir2.h"
  31. #include "xfs_dmapi.h"
  32. #include "xfs_mount.h"
  33. #include "xfs_bmap_btree.h"
  34. #include "xfs_alloc_btree.h"
  35. #include "xfs_ialloc_btree.h"
  36. #include "xfs_dir2_sf.h"
  37. #include "xfs_attr_sf.h"
  38. #include "xfs_dinode.h"
  39. #include "xfs_inode.h"
  40. #include "xfs_buf_item.h"
  41. #include "xfs_inode_item.h"
  42. #include "xfs_btree.h"
  43. #include "xfs_alloc.h"
  44. #include "xfs_ialloc.h"
  45. #include "xfs_bmap.h"
  46. #include "xfs_rw.h"
  47. #include "xfs_error.h"
  48. #include "xfs_utils.h"
  49. #include "xfs_dir2_trace.h"
  50. #include "xfs_quota.h"
  51. #include "xfs_acl.h"
  52. #include "xfs_filestream.h"
  53. #include "xfs_vnodeops.h"
  54. kmem_zone_t *xfs_ifork_zone;
  55. kmem_zone_t *xfs_inode_zone;
  56. kmem_zone_t *xfs_icluster_zone;
  57. /*
  58. * Used in xfs_itruncate(). This is the maximum number of extents
  59. * freed from a file in a single transaction.
  60. */
  61. #define XFS_ITRUNC_MAX_EXTENTS 2
  62. STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
  63. STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
  64. STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
  65. STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
  66. #ifdef DEBUG
  67. /*
  68. * Make sure that the extents in the given memory buffer
  69. * are valid.
  70. */
  71. STATIC void
  72. xfs_validate_extents(
  73. xfs_ifork_t *ifp,
  74. int nrecs,
  75. xfs_exntfmt_t fmt)
  76. {
  77. xfs_bmbt_irec_t irec;
  78. xfs_bmbt_rec_host_t rec;
  79. int i;
  80. for (i = 0; i < nrecs; i++) {
  81. xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
  82. rec.l0 = get_unaligned(&ep->l0);
  83. rec.l1 = get_unaligned(&ep->l1);
  84. xfs_bmbt_get_all(&rec, &irec);
  85. if (fmt == XFS_EXTFMT_NOSTATE)
  86. ASSERT(irec.br_state == XFS_EXT_NORM);
  87. }
  88. }
  89. #else /* DEBUG */
  90. #define xfs_validate_extents(ifp, nrecs, fmt)
  91. #endif /* DEBUG */
  92. /*
  93. * Check that none of the inode's in the buffer have a next
  94. * unlinked field of 0.
  95. */
  96. #if defined(DEBUG)
  97. void
  98. xfs_inobp_check(
  99. xfs_mount_t *mp,
  100. xfs_buf_t *bp)
  101. {
  102. int i;
  103. int j;
  104. xfs_dinode_t *dip;
  105. j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
  106. for (i = 0; i < j; i++) {
  107. dip = (xfs_dinode_t *)xfs_buf_offset(bp,
  108. i * mp->m_sb.sb_inodesize);
  109. if (!dip->di_next_unlinked) {
  110. xfs_fs_cmn_err(CE_ALERT, mp,
  111. "Detected a bogus zero next_unlinked field in incore inode buffer 0x%p. About to pop an ASSERT.",
  112. bp);
  113. ASSERT(dip->di_next_unlinked);
  114. }
  115. }
  116. }
  117. #endif
  118. /*
  119. * Find the buffer associated with the given inode map
  120. * We do basic validation checks on the buffer once it has been
  121. * retrieved from disk.
  122. */
  123. STATIC int
  124. xfs_imap_to_bp(
  125. xfs_mount_t *mp,
  126. xfs_trans_t *tp,
  127. xfs_imap_t *imap,
  128. xfs_buf_t **bpp,
  129. uint buf_flags,
  130. uint imap_flags)
  131. {
  132. int error;
  133. int i;
  134. int ni;
  135. xfs_buf_t *bp;
  136. error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap->im_blkno,
  137. (int)imap->im_len, buf_flags, &bp);
  138. if (error) {
  139. if (error != EAGAIN) {
  140. cmn_err(CE_WARN,
  141. "xfs_imap_to_bp: xfs_trans_read_buf()returned "
  142. "an error %d on %s. Returning error.",
  143. error, mp->m_fsname);
  144. } else {
  145. ASSERT(buf_flags & XFS_BUF_TRYLOCK);
  146. }
  147. return error;
  148. }
  149. /*
  150. * Validate the magic number and version of every inode in the buffer
  151. * (if DEBUG kernel) or the first inode in the buffer, otherwise.
  152. */
  153. #ifdef DEBUG
  154. ni = BBTOB(imap->im_len) >> mp->m_sb.sb_inodelog;
  155. #else /* usual case */
  156. ni = 1;
  157. #endif
  158. for (i = 0; i < ni; i++) {
  159. int di_ok;
  160. xfs_dinode_t *dip;
  161. dip = (xfs_dinode_t *)xfs_buf_offset(bp,
  162. (i << mp->m_sb.sb_inodelog));
  163. di_ok = be16_to_cpu(dip->di_core.di_magic) == XFS_DINODE_MAGIC &&
  164. XFS_DINODE_GOOD_VERSION(dip->di_core.di_version);
  165. if (unlikely(XFS_TEST_ERROR(!di_ok, mp,
  166. XFS_ERRTAG_ITOBP_INOTOBP,
  167. XFS_RANDOM_ITOBP_INOTOBP))) {
  168. if (imap_flags & XFS_IMAP_BULKSTAT) {
  169. xfs_trans_brelse(tp, bp);
  170. return XFS_ERROR(EINVAL);
  171. }
  172. XFS_CORRUPTION_ERROR("xfs_imap_to_bp",
  173. XFS_ERRLEVEL_HIGH, mp, dip);
  174. #ifdef DEBUG
  175. cmn_err(CE_PANIC,
  176. "Device %s - bad inode magic/vsn "
  177. "daddr %lld #%d (magic=%x)",
  178. XFS_BUFTARG_NAME(mp->m_ddev_targp),
  179. (unsigned long long)imap->im_blkno, i,
  180. be16_to_cpu(dip->di_core.di_magic));
  181. #endif
  182. xfs_trans_brelse(tp, bp);
  183. return XFS_ERROR(EFSCORRUPTED);
  184. }
  185. }
  186. xfs_inobp_check(mp, bp);
  187. /*
  188. * Mark the buffer as an inode buffer now that it looks good
  189. */
  190. XFS_BUF_SET_VTYPE(bp, B_FS_INO);
  191. *bpp = bp;
  192. return 0;
  193. }
  194. /*
  195. * This routine is called to map an inode number within a file
  196. * system to the buffer containing the on-disk version of the
  197. * inode. It returns a pointer to the buffer containing the
  198. * on-disk inode in the bpp parameter, and in the dip parameter
  199. * it returns a pointer to the on-disk inode within that buffer.
  200. *
  201. * If a non-zero error is returned, then the contents of bpp and
  202. * dipp are undefined.
  203. *
  204. * Use xfs_imap() to determine the size and location of the
  205. * buffer to read from disk.
  206. */
  207. STATIC int
  208. xfs_inotobp(
  209. xfs_mount_t *mp,
  210. xfs_trans_t *tp,
  211. xfs_ino_t ino,
  212. xfs_dinode_t **dipp,
  213. xfs_buf_t **bpp,
  214. int *offset)
  215. {
  216. xfs_imap_t imap;
  217. xfs_buf_t *bp;
  218. int error;
  219. imap.im_blkno = 0;
  220. error = xfs_imap(mp, tp, ino, &imap, XFS_IMAP_LOOKUP);
  221. if (error)
  222. return error;
  223. error = xfs_imap_to_bp(mp, tp, &imap, &bp, XFS_BUF_LOCK, 0);
  224. if (error)
  225. return error;
  226. *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
  227. *bpp = bp;
  228. *offset = imap.im_boffset;
  229. return 0;
  230. }
  231. /*
  232. * This routine is called to map an inode to the buffer containing
  233. * the on-disk version of the inode. It returns a pointer to the
  234. * buffer containing the on-disk inode in the bpp parameter, and in
  235. * the dip parameter it returns a pointer to the on-disk inode within
  236. * that buffer.
  237. *
  238. * If a non-zero error is returned, then the contents of bpp and
  239. * dipp are undefined.
  240. *
  241. * If the inode is new and has not yet been initialized, use xfs_imap()
  242. * to determine the size and location of the buffer to read from disk.
  243. * If the inode has already been mapped to its buffer and read in once,
  244. * then use the mapping information stored in the inode rather than
  245. * calling xfs_imap(). This allows us to avoid the overhead of looking
  246. * at the inode btree for small block file systems (see xfs_dilocate()).
  247. * We can tell whether the inode has been mapped in before by comparing
  248. * its disk block address to 0. Only uninitialized inodes will have
  249. * 0 for the disk block address.
  250. */
  251. int
  252. xfs_itobp(
  253. xfs_mount_t *mp,
  254. xfs_trans_t *tp,
  255. xfs_inode_t *ip,
  256. xfs_dinode_t **dipp,
  257. xfs_buf_t **bpp,
  258. xfs_daddr_t bno,
  259. uint imap_flags,
  260. uint buf_flags)
  261. {
  262. xfs_imap_t imap;
  263. xfs_buf_t *bp;
  264. int error;
  265. if (ip->i_blkno == (xfs_daddr_t)0) {
  266. imap.im_blkno = bno;
  267. error = xfs_imap(mp, tp, ip->i_ino, &imap,
  268. XFS_IMAP_LOOKUP | imap_flags);
  269. if (error)
  270. return error;
  271. /*
  272. * Fill in the fields in the inode that will be used to
  273. * map the inode to its buffer from now on.
  274. */
  275. ip->i_blkno = imap.im_blkno;
  276. ip->i_len = imap.im_len;
  277. ip->i_boffset = imap.im_boffset;
  278. } else {
  279. /*
  280. * We've already mapped the inode once, so just use the
  281. * mapping that we saved the first time.
  282. */
  283. imap.im_blkno = ip->i_blkno;
  284. imap.im_len = ip->i_len;
  285. imap.im_boffset = ip->i_boffset;
  286. }
  287. ASSERT(bno == 0 || bno == imap.im_blkno);
  288. error = xfs_imap_to_bp(mp, tp, &imap, &bp, buf_flags, imap_flags);
  289. if (error)
  290. return error;
  291. if (!bp) {
  292. ASSERT(buf_flags & XFS_BUF_TRYLOCK);
  293. ASSERT(tp == NULL);
  294. *bpp = NULL;
  295. return EAGAIN;
  296. }
  297. *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
  298. *bpp = bp;
  299. return 0;
  300. }
  301. /*
  302. * Move inode type and inode format specific information from the
  303. * on-disk inode to the in-core inode. For fifos, devs, and sockets
  304. * this means set if_rdev to the proper value. For files, directories,
  305. * and symlinks this means to bring in the in-line data or extent
  306. * pointers. For a file in B-tree format, only the root is immediately
  307. * brought in-core. The rest will be in-lined in if_extents when it
  308. * is first referenced (see xfs_iread_extents()).
  309. */
  310. STATIC int
  311. xfs_iformat(
  312. xfs_inode_t *ip,
  313. xfs_dinode_t *dip)
  314. {
  315. xfs_attr_shortform_t *atp;
  316. int size;
  317. int error;
  318. xfs_fsize_t di_size;
  319. ip->i_df.if_ext_max =
  320. XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
  321. error = 0;
  322. if (unlikely(be32_to_cpu(dip->di_core.di_nextents) +
  323. be16_to_cpu(dip->di_core.di_anextents) >
  324. be64_to_cpu(dip->di_core.di_nblocks))) {
  325. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  326. "corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
  327. (unsigned long long)ip->i_ino,
  328. (int)(be32_to_cpu(dip->di_core.di_nextents) +
  329. be16_to_cpu(dip->di_core.di_anextents)),
  330. (unsigned long long)
  331. be64_to_cpu(dip->di_core.di_nblocks));
  332. XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW,
  333. ip->i_mount, dip);
  334. return XFS_ERROR(EFSCORRUPTED);
  335. }
  336. if (unlikely(dip->di_core.di_forkoff > ip->i_mount->m_sb.sb_inodesize)) {
  337. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  338. "corrupt dinode %Lu, forkoff = 0x%x.",
  339. (unsigned long long)ip->i_ino,
  340. dip->di_core.di_forkoff);
  341. XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW,
  342. ip->i_mount, dip);
  343. return XFS_ERROR(EFSCORRUPTED);
  344. }
  345. switch (ip->i_d.di_mode & S_IFMT) {
  346. case S_IFIFO:
  347. case S_IFCHR:
  348. case S_IFBLK:
  349. case S_IFSOCK:
  350. if (unlikely(dip->di_core.di_format != XFS_DINODE_FMT_DEV)) {
  351. XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW,
  352. ip->i_mount, dip);
  353. return XFS_ERROR(EFSCORRUPTED);
  354. }
  355. ip->i_d.di_size = 0;
  356. ip->i_size = 0;
  357. ip->i_df.if_u2.if_rdev = be32_to_cpu(dip->di_u.di_dev);
  358. break;
  359. case S_IFREG:
  360. case S_IFLNK:
  361. case S_IFDIR:
  362. switch (dip->di_core.di_format) {
  363. case XFS_DINODE_FMT_LOCAL:
  364. /*
  365. * no local regular files yet
  366. */
  367. if (unlikely((be16_to_cpu(dip->di_core.di_mode) & S_IFMT) == S_IFREG)) {
  368. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  369. "corrupt inode %Lu "
  370. "(local format for regular file).",
  371. (unsigned long long) ip->i_ino);
  372. XFS_CORRUPTION_ERROR("xfs_iformat(4)",
  373. XFS_ERRLEVEL_LOW,
  374. ip->i_mount, dip);
  375. return XFS_ERROR(EFSCORRUPTED);
  376. }
  377. di_size = be64_to_cpu(dip->di_core.di_size);
  378. if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) {
  379. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  380. "corrupt inode %Lu "
  381. "(bad size %Ld for local inode).",
  382. (unsigned long long) ip->i_ino,
  383. (long long) di_size);
  384. XFS_CORRUPTION_ERROR("xfs_iformat(5)",
  385. XFS_ERRLEVEL_LOW,
  386. ip->i_mount, dip);
  387. return XFS_ERROR(EFSCORRUPTED);
  388. }
  389. size = (int)di_size;
  390. error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
  391. break;
  392. case XFS_DINODE_FMT_EXTENTS:
  393. error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
  394. break;
  395. case XFS_DINODE_FMT_BTREE:
  396. error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
  397. break;
  398. default:
  399. XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW,
  400. ip->i_mount);
  401. return XFS_ERROR(EFSCORRUPTED);
  402. }
  403. break;
  404. default:
  405. XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount);
  406. return XFS_ERROR(EFSCORRUPTED);
  407. }
  408. if (error) {
  409. return error;
  410. }
  411. if (!XFS_DFORK_Q(dip))
  412. return 0;
  413. ASSERT(ip->i_afp == NULL);
  414. ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP);
  415. ip->i_afp->if_ext_max =
  416. XFS_IFORK_ASIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
  417. switch (dip->di_core.di_aformat) {
  418. case XFS_DINODE_FMT_LOCAL:
  419. atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip);
  420. size = be16_to_cpu(atp->hdr.totsize);
  421. error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
  422. break;
  423. case XFS_DINODE_FMT_EXTENTS:
  424. error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
  425. break;
  426. case XFS_DINODE_FMT_BTREE:
  427. error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
  428. break;
  429. default:
  430. error = XFS_ERROR(EFSCORRUPTED);
  431. break;
  432. }
  433. if (error) {
  434. kmem_zone_free(xfs_ifork_zone, ip->i_afp);
  435. ip->i_afp = NULL;
  436. xfs_idestroy_fork(ip, XFS_DATA_FORK);
  437. }
  438. return error;
  439. }
  440. /*
  441. * The file is in-lined in the on-disk inode.
  442. * If it fits into if_inline_data, then copy
  443. * it there, otherwise allocate a buffer for it
  444. * and copy the data there. Either way, set
  445. * if_data to point at the data.
  446. * If we allocate a buffer for the data, make
  447. * sure that its size is a multiple of 4 and
  448. * record the real size in i_real_bytes.
  449. */
  450. STATIC int
  451. xfs_iformat_local(
  452. xfs_inode_t *ip,
  453. xfs_dinode_t *dip,
  454. int whichfork,
  455. int size)
  456. {
  457. xfs_ifork_t *ifp;
  458. int real_size;
  459. /*
  460. * If the size is unreasonable, then something
  461. * is wrong and we just bail out rather than crash in
  462. * kmem_alloc() or memcpy() below.
  463. */
  464. if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
  465. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  466. "corrupt inode %Lu "
  467. "(bad size %d for local fork, size = %d).",
  468. (unsigned long long) ip->i_ino, size,
  469. XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
  470. XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW,
  471. ip->i_mount, dip);
  472. return XFS_ERROR(EFSCORRUPTED);
  473. }
  474. ifp = XFS_IFORK_PTR(ip, whichfork);
  475. real_size = 0;
  476. if (size == 0)
  477. ifp->if_u1.if_data = NULL;
  478. else if (size <= sizeof(ifp->if_u2.if_inline_data))
  479. ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
  480. else {
  481. real_size = roundup(size, 4);
  482. ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
  483. }
  484. ifp->if_bytes = size;
  485. ifp->if_real_bytes = real_size;
  486. if (size)
  487. memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size);
  488. ifp->if_flags &= ~XFS_IFEXTENTS;
  489. ifp->if_flags |= XFS_IFINLINE;
  490. return 0;
  491. }
  492. /*
  493. * The file consists of a set of extents all
  494. * of which fit into the on-disk inode.
  495. * If there are few enough extents to fit into
  496. * the if_inline_ext, then copy them there.
  497. * Otherwise allocate a buffer for them and copy
  498. * them into it. Either way, set if_extents
  499. * to point at the extents.
  500. */
  501. STATIC int
  502. xfs_iformat_extents(
  503. xfs_inode_t *ip,
  504. xfs_dinode_t *dip,
  505. int whichfork)
  506. {
  507. xfs_bmbt_rec_t *dp;
  508. xfs_ifork_t *ifp;
  509. int nex;
  510. int size;
  511. int i;
  512. ifp = XFS_IFORK_PTR(ip, whichfork);
  513. nex = XFS_DFORK_NEXTENTS(dip, whichfork);
  514. size = nex * (uint)sizeof(xfs_bmbt_rec_t);
  515. /*
  516. * If the number of extents is unreasonable, then something
  517. * is wrong and we just bail out rather than crash in
  518. * kmem_alloc() or memcpy() below.
  519. */
  520. if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
  521. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  522. "corrupt inode %Lu ((a)extents = %d).",
  523. (unsigned long long) ip->i_ino, nex);
  524. XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW,
  525. ip->i_mount, dip);
  526. return XFS_ERROR(EFSCORRUPTED);
  527. }
  528. ifp->if_real_bytes = 0;
  529. if (nex == 0)
  530. ifp->if_u1.if_extents = NULL;
  531. else if (nex <= XFS_INLINE_EXTS)
  532. ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
  533. else
  534. xfs_iext_add(ifp, 0, nex);
  535. ifp->if_bytes = size;
  536. if (size) {
  537. dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
  538. xfs_validate_extents(ifp, nex, XFS_EXTFMT_INODE(ip));
  539. for (i = 0; i < nex; i++, dp++) {
  540. xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
  541. ep->l0 = be64_to_cpu(get_unaligned(&dp->l0));
  542. ep->l1 = be64_to_cpu(get_unaligned(&dp->l1));
  543. }
  544. XFS_BMAP_TRACE_EXLIST(ip, nex, whichfork);
  545. if (whichfork != XFS_DATA_FORK ||
  546. XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE)
  547. if (unlikely(xfs_check_nostate_extents(
  548. ifp, 0, nex))) {
  549. XFS_ERROR_REPORT("xfs_iformat_extents(2)",
  550. XFS_ERRLEVEL_LOW,
  551. ip->i_mount);
  552. return XFS_ERROR(EFSCORRUPTED);
  553. }
  554. }
  555. ifp->if_flags |= XFS_IFEXTENTS;
  556. return 0;
  557. }
  558. /*
  559. * The file has too many extents to fit into
  560. * the inode, so they are in B-tree format.
  561. * Allocate a buffer for the root of the B-tree
  562. * and copy the root into it. The i_extents
  563. * field will remain NULL until all of the
  564. * extents are read in (when they are needed).
  565. */
  566. STATIC int
  567. xfs_iformat_btree(
  568. xfs_inode_t *ip,
  569. xfs_dinode_t *dip,
  570. int whichfork)
  571. {
  572. xfs_bmdr_block_t *dfp;
  573. xfs_ifork_t *ifp;
  574. /* REFERENCED */
  575. int nrecs;
  576. int size;
  577. ifp = XFS_IFORK_PTR(ip, whichfork);
  578. dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
  579. size = XFS_BMAP_BROOT_SPACE(dfp);
  580. nrecs = XFS_BMAP_BROOT_NUMRECS(dfp);
  581. /*
  582. * blow out if -- fork has less extents than can fit in
  583. * fork (fork shouldn't be a btree format), root btree
  584. * block has more records than can fit into the fork,
  585. * or the number of extents is greater than the number of
  586. * blocks.
  587. */
  588. if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= ifp->if_ext_max
  589. || XFS_BMDR_SPACE_CALC(nrecs) >
  590. XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)
  591. || XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) {
  592. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  593. "corrupt inode %Lu (btree).",
  594. (unsigned long long) ip->i_ino);
  595. XFS_ERROR_REPORT("xfs_iformat_btree", XFS_ERRLEVEL_LOW,
  596. ip->i_mount);
  597. return XFS_ERROR(EFSCORRUPTED);
  598. }
  599. ifp->if_broot_bytes = size;
  600. ifp->if_broot = kmem_alloc(size, KM_SLEEP);
  601. ASSERT(ifp->if_broot != NULL);
  602. /*
  603. * Copy and convert from the on-disk structure
  604. * to the in-memory structure.
  605. */
  606. xfs_bmdr_to_bmbt(dfp, XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
  607. ifp->if_broot, size);
  608. ifp->if_flags &= ~XFS_IFEXTENTS;
  609. ifp->if_flags |= XFS_IFBROOT;
  610. return 0;
  611. }
  612. void
  613. xfs_dinode_from_disk(
  614. xfs_icdinode_t *to,
  615. xfs_dinode_core_t *from)
  616. {
  617. to->di_magic = be16_to_cpu(from->di_magic);
  618. to->di_mode = be16_to_cpu(from->di_mode);
  619. to->di_version = from ->di_version;
  620. to->di_format = from->di_format;
  621. to->di_onlink = be16_to_cpu(from->di_onlink);
  622. to->di_uid = be32_to_cpu(from->di_uid);
  623. to->di_gid = be32_to_cpu(from->di_gid);
  624. to->di_nlink = be32_to_cpu(from->di_nlink);
  625. to->di_projid = be16_to_cpu(from->di_projid);
  626. memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
  627. to->di_flushiter = be16_to_cpu(from->di_flushiter);
  628. to->di_atime.t_sec = be32_to_cpu(from->di_atime.t_sec);
  629. to->di_atime.t_nsec = be32_to_cpu(from->di_atime.t_nsec);
  630. to->di_mtime.t_sec = be32_to_cpu(from->di_mtime.t_sec);
  631. to->di_mtime.t_nsec = be32_to_cpu(from->di_mtime.t_nsec);
  632. to->di_ctime.t_sec = be32_to_cpu(from->di_ctime.t_sec);
  633. to->di_ctime.t_nsec = be32_to_cpu(from->di_ctime.t_nsec);
  634. to->di_size = be64_to_cpu(from->di_size);
  635. to->di_nblocks = be64_to_cpu(from->di_nblocks);
  636. to->di_extsize = be32_to_cpu(from->di_extsize);
  637. to->di_nextents = be32_to_cpu(from->di_nextents);
  638. to->di_anextents = be16_to_cpu(from->di_anextents);
  639. to->di_forkoff = from->di_forkoff;
  640. to->di_aformat = from->di_aformat;
  641. to->di_dmevmask = be32_to_cpu(from->di_dmevmask);
  642. to->di_dmstate = be16_to_cpu(from->di_dmstate);
  643. to->di_flags = be16_to_cpu(from->di_flags);
  644. to->di_gen = be32_to_cpu(from->di_gen);
  645. }
  646. void
  647. xfs_dinode_to_disk(
  648. xfs_dinode_core_t *to,
  649. xfs_icdinode_t *from)
  650. {
  651. to->di_magic = cpu_to_be16(from->di_magic);
  652. to->di_mode = cpu_to_be16(from->di_mode);
  653. to->di_version = from ->di_version;
  654. to->di_format = from->di_format;
  655. to->di_onlink = cpu_to_be16(from->di_onlink);
  656. to->di_uid = cpu_to_be32(from->di_uid);
  657. to->di_gid = cpu_to_be32(from->di_gid);
  658. to->di_nlink = cpu_to_be32(from->di_nlink);
  659. to->di_projid = cpu_to_be16(from->di_projid);
  660. memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
  661. to->di_flushiter = cpu_to_be16(from->di_flushiter);
  662. to->di_atime.t_sec = cpu_to_be32(from->di_atime.t_sec);
  663. to->di_atime.t_nsec = cpu_to_be32(from->di_atime.t_nsec);
  664. to->di_mtime.t_sec = cpu_to_be32(from->di_mtime.t_sec);
  665. to->di_mtime.t_nsec = cpu_to_be32(from->di_mtime.t_nsec);
  666. to->di_ctime.t_sec = cpu_to_be32(from->di_ctime.t_sec);
  667. to->di_ctime.t_nsec = cpu_to_be32(from->di_ctime.t_nsec);
  668. to->di_size = cpu_to_be64(from->di_size);
  669. to->di_nblocks = cpu_to_be64(from->di_nblocks);
  670. to->di_extsize = cpu_to_be32(from->di_extsize);
  671. to->di_nextents = cpu_to_be32(from->di_nextents);
  672. to->di_anextents = cpu_to_be16(from->di_anextents);
  673. to->di_forkoff = from->di_forkoff;
  674. to->di_aformat = from->di_aformat;
  675. to->di_dmevmask = cpu_to_be32(from->di_dmevmask);
  676. to->di_dmstate = cpu_to_be16(from->di_dmstate);
  677. to->di_flags = cpu_to_be16(from->di_flags);
  678. to->di_gen = cpu_to_be32(from->di_gen);
  679. }
  680. STATIC uint
  681. _xfs_dic2xflags(
  682. __uint16_t di_flags)
  683. {
  684. uint flags = 0;
  685. if (di_flags & XFS_DIFLAG_ANY) {
  686. if (di_flags & XFS_DIFLAG_REALTIME)
  687. flags |= XFS_XFLAG_REALTIME;
  688. if (di_flags & XFS_DIFLAG_PREALLOC)
  689. flags |= XFS_XFLAG_PREALLOC;
  690. if (di_flags & XFS_DIFLAG_IMMUTABLE)
  691. flags |= XFS_XFLAG_IMMUTABLE;
  692. if (di_flags & XFS_DIFLAG_APPEND)
  693. flags |= XFS_XFLAG_APPEND;
  694. if (di_flags & XFS_DIFLAG_SYNC)
  695. flags |= XFS_XFLAG_SYNC;
  696. if (di_flags & XFS_DIFLAG_NOATIME)
  697. flags |= XFS_XFLAG_NOATIME;
  698. if (di_flags & XFS_DIFLAG_NODUMP)
  699. flags |= XFS_XFLAG_NODUMP;
  700. if (di_flags & XFS_DIFLAG_RTINHERIT)
  701. flags |= XFS_XFLAG_RTINHERIT;
  702. if (di_flags & XFS_DIFLAG_PROJINHERIT)
  703. flags |= XFS_XFLAG_PROJINHERIT;
  704. if (di_flags & XFS_DIFLAG_NOSYMLINKS)
  705. flags |= XFS_XFLAG_NOSYMLINKS;
  706. if (di_flags & XFS_DIFLAG_EXTSIZE)
  707. flags |= XFS_XFLAG_EXTSIZE;
  708. if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
  709. flags |= XFS_XFLAG_EXTSZINHERIT;
  710. if (di_flags & XFS_DIFLAG_NODEFRAG)
  711. flags |= XFS_XFLAG_NODEFRAG;
  712. if (di_flags & XFS_DIFLAG_FILESTREAM)
  713. flags |= XFS_XFLAG_FILESTREAM;
  714. }
  715. return flags;
  716. }
  717. uint
  718. xfs_ip2xflags(
  719. xfs_inode_t *ip)
  720. {
  721. xfs_icdinode_t *dic = &ip->i_d;
  722. return _xfs_dic2xflags(dic->di_flags) |
  723. (XFS_IFORK_Q(ip) ? XFS_XFLAG_HASATTR : 0);
  724. }
  725. uint
  726. xfs_dic2xflags(
  727. xfs_dinode_t *dip)
  728. {
  729. xfs_dinode_core_t *dic = &dip->di_core;
  730. return _xfs_dic2xflags(be16_to_cpu(dic->di_flags)) |
  731. (XFS_DFORK_Q(dip) ? XFS_XFLAG_HASATTR : 0);
  732. }
  733. /*
  734. * Given a mount structure and an inode number, return a pointer
  735. * to a newly allocated in-core inode corresponding to the given
  736. * inode number.
  737. *
  738. * Initialize the inode's attributes and extent pointers if it
  739. * already has them (it will not if the inode has no links).
  740. */
  741. int
  742. xfs_iread(
  743. xfs_mount_t *mp,
  744. xfs_trans_t *tp,
  745. xfs_ino_t ino,
  746. xfs_inode_t **ipp,
  747. xfs_daddr_t bno,
  748. uint imap_flags)
  749. {
  750. xfs_buf_t *bp;
  751. xfs_dinode_t *dip;
  752. xfs_inode_t *ip;
  753. int error;
  754. ASSERT(xfs_inode_zone != NULL);
  755. ip = kmem_zone_zalloc(xfs_inode_zone, KM_SLEEP);
  756. ip->i_ino = ino;
  757. ip->i_mount = mp;
  758. atomic_set(&ip->i_iocount, 0);
  759. spin_lock_init(&ip->i_flags_lock);
  760. /*
  761. * Get pointer's to the on-disk inode and the buffer containing it.
  762. * If the inode number refers to a block outside the file system
  763. * then xfs_itobp() will return NULL. In this case we should
  764. * return NULL as well. Set i_blkno to 0 so that xfs_itobp() will
  765. * know that this is a new incore inode.
  766. */
  767. error = xfs_itobp(mp, tp, ip, &dip, &bp, bno, imap_flags, XFS_BUF_LOCK);
  768. if (error) {
  769. kmem_zone_free(xfs_inode_zone, ip);
  770. return error;
  771. }
  772. /*
  773. * Initialize inode's trace buffers.
  774. * Do this before xfs_iformat in case it adds entries.
  775. */
  776. #ifdef XFS_INODE_TRACE
  777. ip->i_trace = ktrace_alloc(INODE_TRACE_SIZE, KM_SLEEP);
  778. #endif
  779. #ifdef XFS_BMAP_TRACE
  780. ip->i_xtrace = ktrace_alloc(XFS_BMAP_KTRACE_SIZE, KM_SLEEP);
  781. #endif
  782. #ifdef XFS_BMBT_TRACE
  783. ip->i_btrace = ktrace_alloc(XFS_BMBT_KTRACE_SIZE, KM_SLEEP);
  784. #endif
  785. #ifdef XFS_RW_TRACE
  786. ip->i_rwtrace = ktrace_alloc(XFS_RW_KTRACE_SIZE, KM_SLEEP);
  787. #endif
  788. #ifdef XFS_ILOCK_TRACE
  789. ip->i_lock_trace = ktrace_alloc(XFS_ILOCK_KTRACE_SIZE, KM_SLEEP);
  790. #endif
  791. #ifdef XFS_DIR2_TRACE
  792. ip->i_dir_trace = ktrace_alloc(XFS_DIR2_KTRACE_SIZE, KM_SLEEP);
  793. #endif
  794. /*
  795. * If we got something that isn't an inode it means someone
  796. * (nfs or dmi) has a stale handle.
  797. */
  798. if (be16_to_cpu(dip->di_core.di_magic) != XFS_DINODE_MAGIC) {
  799. kmem_zone_free(xfs_inode_zone, ip);
  800. xfs_trans_brelse(tp, bp);
  801. #ifdef DEBUG
  802. xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
  803. "dip->di_core.di_magic (0x%x) != "
  804. "XFS_DINODE_MAGIC (0x%x)",
  805. be16_to_cpu(dip->di_core.di_magic),
  806. XFS_DINODE_MAGIC);
  807. #endif /* DEBUG */
  808. return XFS_ERROR(EINVAL);
  809. }
  810. /*
  811. * If the on-disk inode is already linked to a directory
  812. * entry, copy all of the inode into the in-core inode.
  813. * xfs_iformat() handles copying in the inode format
  814. * specific information.
  815. * Otherwise, just get the truly permanent information.
  816. */
  817. if (dip->di_core.di_mode) {
  818. xfs_dinode_from_disk(&ip->i_d, &dip->di_core);
  819. error = xfs_iformat(ip, dip);
  820. if (error) {
  821. kmem_zone_free(xfs_inode_zone, ip);
  822. xfs_trans_brelse(tp, bp);
  823. #ifdef DEBUG
  824. xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
  825. "xfs_iformat() returned error %d",
  826. error);
  827. #endif /* DEBUG */
  828. return error;
  829. }
  830. } else {
  831. ip->i_d.di_magic = be16_to_cpu(dip->di_core.di_magic);
  832. ip->i_d.di_version = dip->di_core.di_version;
  833. ip->i_d.di_gen = be32_to_cpu(dip->di_core.di_gen);
  834. ip->i_d.di_flushiter = be16_to_cpu(dip->di_core.di_flushiter);
  835. /*
  836. * Make sure to pull in the mode here as well in
  837. * case the inode is released without being used.
  838. * This ensures that xfs_inactive() will see that
  839. * the inode is already free and not try to mess
  840. * with the uninitialized part of it.
  841. */
  842. ip->i_d.di_mode = 0;
  843. /*
  844. * Initialize the per-fork minima and maxima for a new
  845. * inode here. xfs_iformat will do it for old inodes.
  846. */
  847. ip->i_df.if_ext_max =
  848. XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
  849. }
  850. INIT_LIST_HEAD(&ip->i_reclaim);
  851. /*
  852. * The inode format changed when we moved the link count and
  853. * made it 32 bits long. If this is an old format inode,
  854. * convert it in memory to look like a new one. If it gets
  855. * flushed to disk we will convert back before flushing or
  856. * logging it. We zero out the new projid field and the old link
  857. * count field. We'll handle clearing the pad field (the remains
  858. * of the old uuid field) when we actually convert the inode to
  859. * the new format. We don't change the version number so that we
  860. * can distinguish this from a real new format inode.
  861. */
  862. if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
  863. ip->i_d.di_nlink = ip->i_d.di_onlink;
  864. ip->i_d.di_onlink = 0;
  865. ip->i_d.di_projid = 0;
  866. }
  867. ip->i_delayed_blks = 0;
  868. ip->i_size = ip->i_d.di_size;
  869. /*
  870. * Mark the buffer containing the inode as something to keep
  871. * around for a while. This helps to keep recently accessed
  872. * meta-data in-core longer.
  873. */
  874. XFS_BUF_SET_REF(bp, XFS_INO_REF);
  875. /*
  876. * Use xfs_trans_brelse() to release the buffer containing the
  877. * on-disk inode, because it was acquired with xfs_trans_read_buf()
  878. * in xfs_itobp() above. If tp is NULL, this is just a normal
  879. * brelse(). If we're within a transaction, then xfs_trans_brelse()
  880. * will only release the buffer if it is not dirty within the
  881. * transaction. It will be OK to release the buffer in this case,
  882. * because inodes on disk are never destroyed and we will be
  883. * locking the new in-core inode before putting it in the hash
  884. * table where other processes can find it. Thus we don't have
  885. * to worry about the inode being changed just because we released
  886. * the buffer.
  887. */
  888. xfs_trans_brelse(tp, bp);
  889. *ipp = ip;
  890. return 0;
  891. }
  892. /*
  893. * Read in extents from a btree-format inode.
  894. * Allocate and fill in if_extents. Real work is done in xfs_bmap.c.
  895. */
  896. int
  897. xfs_iread_extents(
  898. xfs_trans_t *tp,
  899. xfs_inode_t *ip,
  900. int whichfork)
  901. {
  902. int error;
  903. xfs_ifork_t *ifp;
  904. xfs_extnum_t nextents;
  905. size_t size;
  906. if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) {
  907. XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW,
  908. ip->i_mount);
  909. return XFS_ERROR(EFSCORRUPTED);
  910. }
  911. nextents = XFS_IFORK_NEXTENTS(ip, whichfork);
  912. size = nextents * sizeof(xfs_bmbt_rec_t);
  913. ifp = XFS_IFORK_PTR(ip, whichfork);
  914. /*
  915. * We know that the size is valid (it's checked in iformat_btree)
  916. */
  917. ifp->if_lastex = NULLEXTNUM;
  918. ifp->if_bytes = ifp->if_real_bytes = 0;
  919. ifp->if_flags |= XFS_IFEXTENTS;
  920. xfs_iext_add(ifp, 0, nextents);
  921. error = xfs_bmap_read_extents(tp, ip, whichfork);
  922. if (error) {
  923. xfs_iext_destroy(ifp);
  924. ifp->if_flags &= ~XFS_IFEXTENTS;
  925. return error;
  926. }
  927. xfs_validate_extents(ifp, nextents, XFS_EXTFMT_INODE(ip));
  928. return 0;
  929. }
  930. /*
  931. * Allocate an inode on disk and return a copy of its in-core version.
  932. * The in-core inode is locked exclusively. Set mode, nlink, and rdev
  933. * appropriately within the inode. The uid and gid for the inode are
  934. * set according to the contents of the given cred structure.
  935. *
  936. * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
  937. * has a free inode available, call xfs_iget()
  938. * to obtain the in-core version of the allocated inode. Finally,
  939. * fill in the inode and log its initial contents. In this case,
  940. * ialloc_context would be set to NULL and call_again set to false.
  941. *
  942. * If xfs_dialloc() does not have an available inode,
  943. * it will replenish its supply by doing an allocation. Since we can
  944. * only do one allocation within a transaction without deadlocks, we
  945. * must commit the current transaction before returning the inode itself.
  946. * In this case, therefore, we will set call_again to true and return.
  947. * The caller should then commit the current transaction, start a new
  948. * transaction, and call xfs_ialloc() again to actually get the inode.
  949. *
  950. * To ensure that some other process does not grab the inode that
  951. * was allocated during the first call to xfs_ialloc(), this routine
  952. * also returns the [locked] bp pointing to the head of the freelist
  953. * as ialloc_context. The caller should hold this buffer across
  954. * the commit and pass it back into this routine on the second call.
  955. *
  956. * If we are allocating quota inodes, we do not have a parent inode
  957. * to attach to or associate with (i.e. pip == NULL) because they
  958. * are not linked into the directory structure - they are attached
  959. * directly to the superblock - and so have no parent.
  960. */
  961. int
  962. xfs_ialloc(
  963. xfs_trans_t *tp,
  964. xfs_inode_t *pip,
  965. mode_t mode,
  966. xfs_nlink_t nlink,
  967. xfs_dev_t rdev,
  968. cred_t *cr,
  969. xfs_prid_t prid,
  970. int okalloc,
  971. xfs_buf_t **ialloc_context,
  972. boolean_t *call_again,
  973. xfs_inode_t **ipp)
  974. {
  975. xfs_ino_t ino;
  976. xfs_inode_t *ip;
  977. bhv_vnode_t *vp;
  978. uint flags;
  979. int error;
  980. /*
  981. * Call the space management code to pick
  982. * the on-disk inode to be allocated.
  983. */
  984. error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
  985. ialloc_context, call_again, &ino);
  986. if (error != 0) {
  987. return error;
  988. }
  989. if (*call_again || ino == NULLFSINO) {
  990. *ipp = NULL;
  991. return 0;
  992. }
  993. ASSERT(*ialloc_context == NULL);
  994. /*
  995. * Get the in-core inode with the lock held exclusively.
  996. * This is because we're setting fields here we need
  997. * to prevent others from looking at until we're done.
  998. */
  999. error = xfs_trans_iget(tp->t_mountp, tp, ino,
  1000. XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip);
  1001. if (error != 0) {
  1002. return error;
  1003. }
  1004. ASSERT(ip != NULL);
  1005. vp = XFS_ITOV(ip);
  1006. ip->i_d.di_mode = (__uint16_t)mode;
  1007. ip->i_d.di_onlink = 0;
  1008. ip->i_d.di_nlink = nlink;
  1009. ASSERT(ip->i_d.di_nlink == nlink);
  1010. ip->i_d.di_uid = current_fsuid(cr);
  1011. ip->i_d.di_gid = current_fsgid(cr);
  1012. ip->i_d.di_projid = prid;
  1013. memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
  1014. /*
  1015. * If the superblock version is up to where we support new format
  1016. * inodes and this is currently an old format inode, then change
  1017. * the inode version number now. This way we only do the conversion
  1018. * here rather than here and in the flush/logging code.
  1019. */
  1020. if (xfs_sb_version_hasnlink(&tp->t_mountp->m_sb) &&
  1021. ip->i_d.di_version == XFS_DINODE_VERSION_1) {
  1022. ip->i_d.di_version = XFS_DINODE_VERSION_2;
  1023. /*
  1024. * We've already zeroed the old link count, the projid field,
  1025. * and the pad field.
  1026. */
  1027. }
  1028. /*
  1029. * Project ids won't be stored on disk if we are using a version 1 inode.
  1030. */
  1031. if ((prid != 0) && (ip->i_d.di_version == XFS_DINODE_VERSION_1))
  1032. xfs_bump_ino_vers2(tp, ip);
  1033. if (pip && XFS_INHERIT_GID(pip)) {
  1034. ip->i_d.di_gid = pip->i_d.di_gid;
  1035. if ((pip->i_d.di_mode & S_ISGID) && (mode & S_IFMT) == S_IFDIR) {
  1036. ip->i_d.di_mode |= S_ISGID;
  1037. }
  1038. }
  1039. /*
  1040. * If the group ID of the new file does not match the effective group
  1041. * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
  1042. * (and only if the irix_sgid_inherit compatibility variable is set).
  1043. */
  1044. if ((irix_sgid_inherit) &&
  1045. (ip->i_d.di_mode & S_ISGID) &&
  1046. (!in_group_p((gid_t)ip->i_d.di_gid))) {
  1047. ip->i_d.di_mode &= ~S_ISGID;
  1048. }
  1049. ip->i_d.di_size = 0;
  1050. ip->i_size = 0;
  1051. ip->i_d.di_nextents = 0;
  1052. ASSERT(ip->i_d.di_nblocks == 0);
  1053. xfs_ichgtime(ip, XFS_ICHGTIME_CHG|XFS_ICHGTIME_ACC|XFS_ICHGTIME_MOD);
  1054. /*
  1055. * di_gen will have been taken care of in xfs_iread.
  1056. */
  1057. ip->i_d.di_extsize = 0;
  1058. ip->i_d.di_dmevmask = 0;
  1059. ip->i_d.di_dmstate = 0;
  1060. ip->i_d.di_flags = 0;
  1061. flags = XFS_ILOG_CORE;
  1062. switch (mode & S_IFMT) {
  1063. case S_IFIFO:
  1064. case S_IFCHR:
  1065. case S_IFBLK:
  1066. case S_IFSOCK:
  1067. ip->i_d.di_format = XFS_DINODE_FMT_DEV;
  1068. ip->i_df.if_u2.if_rdev = rdev;
  1069. ip->i_df.if_flags = 0;
  1070. flags |= XFS_ILOG_DEV;
  1071. break;
  1072. case S_IFREG:
  1073. if (pip && xfs_inode_is_filestream(pip)) {
  1074. error = xfs_filestream_associate(pip, ip);
  1075. if (error < 0)
  1076. return -error;
  1077. if (!error)
  1078. xfs_iflags_set(ip, XFS_IFILESTREAM);
  1079. }
  1080. /* fall through */
  1081. case S_IFDIR:
  1082. if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
  1083. uint di_flags = 0;
  1084. if ((mode & S_IFMT) == S_IFDIR) {
  1085. if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
  1086. di_flags |= XFS_DIFLAG_RTINHERIT;
  1087. if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
  1088. di_flags |= XFS_DIFLAG_EXTSZINHERIT;
  1089. ip->i_d.di_extsize = pip->i_d.di_extsize;
  1090. }
  1091. } else if ((mode & S_IFMT) == S_IFREG) {
  1092. if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
  1093. di_flags |= XFS_DIFLAG_REALTIME;
  1094. if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
  1095. di_flags |= XFS_DIFLAG_EXTSIZE;
  1096. ip->i_d.di_extsize = pip->i_d.di_extsize;
  1097. }
  1098. }
  1099. if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
  1100. xfs_inherit_noatime)
  1101. di_flags |= XFS_DIFLAG_NOATIME;
  1102. if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
  1103. xfs_inherit_nodump)
  1104. di_flags |= XFS_DIFLAG_NODUMP;
  1105. if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
  1106. xfs_inherit_sync)
  1107. di_flags |= XFS_DIFLAG_SYNC;
  1108. if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
  1109. xfs_inherit_nosymlinks)
  1110. di_flags |= XFS_DIFLAG_NOSYMLINKS;
  1111. if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
  1112. di_flags |= XFS_DIFLAG_PROJINHERIT;
  1113. if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
  1114. xfs_inherit_nodefrag)
  1115. di_flags |= XFS_DIFLAG_NODEFRAG;
  1116. if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
  1117. di_flags |= XFS_DIFLAG_FILESTREAM;
  1118. ip->i_d.di_flags |= di_flags;
  1119. }
  1120. /* FALLTHROUGH */
  1121. case S_IFLNK:
  1122. ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
  1123. ip->i_df.if_flags = XFS_IFEXTENTS;
  1124. ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
  1125. ip->i_df.if_u1.if_extents = NULL;
  1126. break;
  1127. default:
  1128. ASSERT(0);
  1129. }
  1130. /*
  1131. * Attribute fork settings for new inode.
  1132. */
  1133. ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
  1134. ip->i_d.di_anextents = 0;
  1135. /*
  1136. * Log the new values stuffed into the inode.
  1137. */
  1138. xfs_trans_log_inode(tp, ip, flags);
  1139. /* now that we have an i_mode we can setup inode ops and unlock */
  1140. xfs_initialize_vnode(tp->t_mountp, vp, ip);
  1141. *ipp = ip;
  1142. return 0;
  1143. }
  1144. /*
  1145. * Check to make sure that there are no blocks allocated to the
  1146. * file beyond the size of the file. We don't check this for
  1147. * files with fixed size extents or real time extents, but we
  1148. * at least do it for regular files.
  1149. */
  1150. #ifdef DEBUG
  1151. void
  1152. xfs_isize_check(
  1153. xfs_mount_t *mp,
  1154. xfs_inode_t *ip,
  1155. xfs_fsize_t isize)
  1156. {
  1157. xfs_fileoff_t map_first;
  1158. int nimaps;
  1159. xfs_bmbt_irec_t imaps[2];
  1160. if ((ip->i_d.di_mode & S_IFMT) != S_IFREG)
  1161. return;
  1162. if (XFS_IS_REALTIME_INODE(ip))
  1163. return;
  1164. if (ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE)
  1165. return;
  1166. nimaps = 2;
  1167. map_first = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
  1168. /*
  1169. * The filesystem could be shutting down, so bmapi may return
  1170. * an error.
  1171. */
  1172. if (xfs_bmapi(NULL, ip, map_first,
  1173. (XFS_B_TO_FSB(mp,
  1174. (xfs_ufsize_t)XFS_MAXIOFFSET(mp)) -
  1175. map_first),
  1176. XFS_BMAPI_ENTIRE, NULL, 0, imaps, &nimaps,
  1177. NULL, NULL))
  1178. return;
  1179. ASSERT(nimaps == 1);
  1180. ASSERT(imaps[0].br_startblock == HOLESTARTBLOCK);
  1181. }
  1182. #endif /* DEBUG */
  1183. /*
  1184. * Calculate the last possible buffered byte in a file. This must
  1185. * include data that was buffered beyond the EOF by the write code.
  1186. * This also needs to deal with overflowing the xfs_fsize_t type
  1187. * which can happen for sizes near the limit.
  1188. *
  1189. * We also need to take into account any blocks beyond the EOF. It
  1190. * may be the case that they were buffered by a write which failed.
  1191. * In that case the pages will still be in memory, but the inode size
  1192. * will never have been updated.
  1193. */
  1194. xfs_fsize_t
  1195. xfs_file_last_byte(
  1196. xfs_inode_t *ip)
  1197. {
  1198. xfs_mount_t *mp;
  1199. xfs_fsize_t last_byte;
  1200. xfs_fileoff_t last_block;
  1201. xfs_fileoff_t size_last_block;
  1202. int error;
  1203. ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE | MR_ACCESS));
  1204. mp = ip->i_mount;
  1205. /*
  1206. * Only check for blocks beyond the EOF if the extents have
  1207. * been read in. This eliminates the need for the inode lock,
  1208. * and it also saves us from looking when it really isn't
  1209. * necessary.
  1210. */
  1211. if (ip->i_df.if_flags & XFS_IFEXTENTS) {
  1212. error = xfs_bmap_last_offset(NULL, ip, &last_block,
  1213. XFS_DATA_FORK);
  1214. if (error) {
  1215. last_block = 0;
  1216. }
  1217. } else {
  1218. last_block = 0;
  1219. }
  1220. size_last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)ip->i_size);
  1221. last_block = XFS_FILEOFF_MAX(last_block, size_last_block);
  1222. last_byte = XFS_FSB_TO_B(mp, last_block);
  1223. if (last_byte < 0) {
  1224. return XFS_MAXIOFFSET(mp);
  1225. }
  1226. last_byte += (1 << mp->m_writeio_log);
  1227. if (last_byte < 0) {
  1228. return XFS_MAXIOFFSET(mp);
  1229. }
  1230. return last_byte;
  1231. }
  1232. #if defined(XFS_RW_TRACE)
  1233. STATIC void
  1234. xfs_itrunc_trace(
  1235. int tag,
  1236. xfs_inode_t *ip,
  1237. int flag,
  1238. xfs_fsize_t new_size,
  1239. xfs_off_t toss_start,
  1240. xfs_off_t toss_finish)
  1241. {
  1242. if (ip->i_rwtrace == NULL) {
  1243. return;
  1244. }
  1245. ktrace_enter(ip->i_rwtrace,
  1246. (void*)((long)tag),
  1247. (void*)ip,
  1248. (void*)(unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff),
  1249. (void*)(unsigned long)(ip->i_d.di_size & 0xffffffff),
  1250. (void*)((long)flag),
  1251. (void*)(unsigned long)((new_size >> 32) & 0xffffffff),
  1252. (void*)(unsigned long)(new_size & 0xffffffff),
  1253. (void*)(unsigned long)((toss_start >> 32) & 0xffffffff),
  1254. (void*)(unsigned long)(toss_start & 0xffffffff),
  1255. (void*)(unsigned long)((toss_finish >> 32) & 0xffffffff),
  1256. (void*)(unsigned long)(toss_finish & 0xffffffff),
  1257. (void*)(unsigned long)current_cpu(),
  1258. (void*)(unsigned long)current_pid(),
  1259. (void*)NULL,
  1260. (void*)NULL,
  1261. (void*)NULL);
  1262. }
  1263. #else
  1264. #define xfs_itrunc_trace(tag, ip, flag, new_size, toss_start, toss_finish)
  1265. #endif
  1266. /*
  1267. * Start the truncation of the file to new_size. The new size
  1268. * must be smaller than the current size. This routine will
  1269. * clear the buffer and page caches of file data in the removed
  1270. * range, and xfs_itruncate_finish() will remove the underlying
  1271. * disk blocks.
  1272. *
  1273. * The inode must have its I/O lock locked EXCLUSIVELY, and it
  1274. * must NOT have the inode lock held at all. This is because we're
  1275. * calling into the buffer/page cache code and we can't hold the
  1276. * inode lock when we do so.
  1277. *
  1278. * We need to wait for any direct I/Os in flight to complete before we
  1279. * proceed with the truncate. This is needed to prevent the extents
  1280. * being read or written by the direct I/Os from being removed while the
  1281. * I/O is in flight as there is no other method of synchronising
  1282. * direct I/O with the truncate operation. Also, because we hold
  1283. * the IOLOCK in exclusive mode, we prevent new direct I/Os from being
  1284. * started until the truncate completes and drops the lock. Essentially,
  1285. * the vn_iowait() call forms an I/O barrier that provides strict ordering
  1286. * between direct I/Os and the truncate operation.
  1287. *
  1288. * The flags parameter can have either the value XFS_ITRUNC_DEFINITE
  1289. * or XFS_ITRUNC_MAYBE. The XFS_ITRUNC_MAYBE value should be used
  1290. * in the case that the caller is locking things out of order and
  1291. * may not be able to call xfs_itruncate_finish() with the inode lock
  1292. * held without dropping the I/O lock. If the caller must drop the
  1293. * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start()
  1294. * must be called again with all the same restrictions as the initial
  1295. * call.
  1296. */
  1297. int
  1298. xfs_itruncate_start(
  1299. xfs_inode_t *ip,
  1300. uint flags,
  1301. xfs_fsize_t new_size)
  1302. {
  1303. xfs_fsize_t last_byte;
  1304. xfs_off_t toss_start;
  1305. xfs_mount_t *mp;
  1306. bhv_vnode_t *vp;
  1307. int error = 0;
  1308. ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0);
  1309. ASSERT((new_size == 0) || (new_size <= ip->i_size));
  1310. ASSERT((flags == XFS_ITRUNC_DEFINITE) ||
  1311. (flags == XFS_ITRUNC_MAYBE));
  1312. mp = ip->i_mount;
  1313. vp = XFS_ITOV(ip);
  1314. /* wait for the completion of any pending DIOs */
  1315. if (new_size < ip->i_size)
  1316. vn_iowait(ip);
  1317. /*
  1318. * Call toss_pages or flushinval_pages to get rid of pages
  1319. * overlapping the region being removed. We have to use
  1320. * the less efficient flushinval_pages in the case that the
  1321. * caller may not be able to finish the truncate without
  1322. * dropping the inode's I/O lock. Make sure
  1323. * to catch any pages brought in by buffers overlapping
  1324. * the EOF by searching out beyond the isize by our
  1325. * block size. We round new_size up to a block boundary
  1326. * so that we don't toss things on the same block as
  1327. * new_size but before it.
  1328. *
  1329. * Before calling toss_page or flushinval_pages, make sure to
  1330. * call remapf() over the same region if the file is mapped.
  1331. * This frees up mapped file references to the pages in the
  1332. * given range and for the flushinval_pages case it ensures
  1333. * that we get the latest mapped changes flushed out.
  1334. */
  1335. toss_start = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
  1336. toss_start = XFS_FSB_TO_B(mp, toss_start);
  1337. if (toss_start < 0) {
  1338. /*
  1339. * The place to start tossing is beyond our maximum
  1340. * file size, so there is no way that the data extended
  1341. * out there.
  1342. */
  1343. return 0;
  1344. }
  1345. last_byte = xfs_file_last_byte(ip);
  1346. xfs_itrunc_trace(XFS_ITRUNC_START, ip, flags, new_size, toss_start,
  1347. last_byte);
  1348. if (last_byte > toss_start) {
  1349. if (flags & XFS_ITRUNC_DEFINITE) {
  1350. xfs_tosspages(ip, toss_start,
  1351. -1, FI_REMAPF_LOCKED);
  1352. } else {
  1353. error = xfs_flushinval_pages(ip, toss_start,
  1354. -1, FI_REMAPF_LOCKED);
  1355. }
  1356. }
  1357. #ifdef DEBUG
  1358. if (new_size == 0) {
  1359. ASSERT(VN_CACHED(vp) == 0);
  1360. }
  1361. #endif
  1362. return error;
  1363. }
  1364. /*
  1365. * Shrink the file to the given new_size. The new
  1366. * size must be smaller than the current size.
  1367. * This will free up the underlying blocks
  1368. * in the removed range after a call to xfs_itruncate_start()
  1369. * or xfs_atruncate_start().
  1370. *
  1371. * The transaction passed to this routine must have made
  1372. * a permanent log reservation of at least XFS_ITRUNCATE_LOG_RES.
  1373. * This routine may commit the given transaction and
  1374. * start new ones, so make sure everything involved in
  1375. * the transaction is tidy before calling here.
  1376. * Some transaction will be returned to the caller to be
  1377. * committed. The incoming transaction must already include
  1378. * the inode, and both inode locks must be held exclusively.
  1379. * The inode must also be "held" within the transaction. On
  1380. * return the inode will be "held" within the returned transaction.
  1381. * This routine does NOT require any disk space to be reserved
  1382. * for it within the transaction.
  1383. *
  1384. * The fork parameter must be either xfs_attr_fork or xfs_data_fork,
  1385. * and it indicates the fork which is to be truncated. For the
  1386. * attribute fork we only support truncation to size 0.
  1387. *
  1388. * We use the sync parameter to indicate whether or not the first
  1389. * transaction we perform might have to be synchronous. For the attr fork,
  1390. * it needs to be so if the unlink of the inode is not yet known to be
  1391. * permanent in the log. This keeps us from freeing and reusing the
  1392. * blocks of the attribute fork before the unlink of the inode becomes
  1393. * permanent.
  1394. *
  1395. * For the data fork, we normally have to run synchronously if we're
  1396. * being called out of the inactive path or we're being called
  1397. * out of the create path where we're truncating an existing file.
  1398. * Either way, the truncate needs to be sync so blocks don't reappear
  1399. * in the file with altered data in case of a crash. wsync filesystems
  1400. * can run the first case async because anything that shrinks the inode
  1401. * has to run sync so by the time we're called here from inactive, the
  1402. * inode size is permanently set to 0.
  1403. *
  1404. * Calls from the truncate path always need to be sync unless we're
  1405. * in a wsync filesystem and the file has already been unlinked.
  1406. *
  1407. * The caller is responsible for correctly setting the sync parameter.
  1408. * It gets too hard for us to guess here which path we're being called
  1409. * out of just based on inode state.
  1410. */
  1411. int
  1412. xfs_itruncate_finish(
  1413. xfs_trans_t **tp,
  1414. xfs_inode_t *ip,
  1415. xfs_fsize_t new_size,
  1416. int fork,
  1417. int sync)
  1418. {
  1419. xfs_fsblock_t first_block;
  1420. xfs_fileoff_t first_unmap_block;
  1421. xfs_fileoff_t last_block;
  1422. xfs_filblks_t unmap_len=0;
  1423. xfs_mount_t *mp;
  1424. xfs_trans_t *ntp;
  1425. int done;
  1426. int committed;
  1427. xfs_bmap_free_t free_list;
  1428. int error;
  1429. ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0);
  1430. ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE) != 0);
  1431. ASSERT((new_size == 0) || (new_size <= ip->i_size));
  1432. ASSERT(*tp != NULL);
  1433. ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES);
  1434. ASSERT(ip->i_transp == *tp);
  1435. ASSERT(ip->i_itemp != NULL);
  1436. ASSERT(ip->i_itemp->ili_flags & XFS_ILI_HOLD);
  1437. ntp = *tp;
  1438. mp = (ntp)->t_mountp;
  1439. ASSERT(! XFS_NOT_DQATTACHED(mp, ip));
  1440. /*
  1441. * We only support truncating the entire attribute fork.
  1442. */
  1443. if (fork == XFS_ATTR_FORK) {
  1444. new_size = 0LL;
  1445. }
  1446. first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
  1447. xfs_itrunc_trace(XFS_ITRUNC_FINISH1, ip, 0, new_size, 0, 0);
  1448. /*
  1449. * The first thing we do is set the size to new_size permanently
  1450. * on disk. This way we don't have to worry about anyone ever
  1451. * being able to look at the data being freed even in the face
  1452. * of a crash. What we're getting around here is the case where
  1453. * we free a block, it is allocated to another file, it is written
  1454. * to, and then we crash. If the new data gets written to the
  1455. * file but the log buffers containing the free and reallocation
  1456. * don't, then we'd end up with garbage in the blocks being freed.
  1457. * As long as we make the new_size permanent before actually
  1458. * freeing any blocks it doesn't matter if they get writtten to.
  1459. *
  1460. * The callers must signal into us whether or not the size
  1461. * setting here must be synchronous. There are a few cases
  1462. * where it doesn't have to be synchronous. Those cases
  1463. * occur if the file is unlinked and we know the unlink is
  1464. * permanent or if the blocks being truncated are guaranteed
  1465. * to be beyond the inode eof (regardless of the link count)
  1466. * and the eof value is permanent. Both of these cases occur
  1467. * only on wsync-mounted filesystems. In those cases, we're
  1468. * guaranteed that no user will ever see the data in the blocks
  1469. * that are being truncated so the truncate can run async.
  1470. * In the free beyond eof case, the file may wind up with
  1471. * more blocks allocated to it than it needs if we crash
  1472. * and that won't get fixed until the next time the file
  1473. * is re-opened and closed but that's ok as that shouldn't
  1474. * be too many blocks.
  1475. *
  1476. * However, we can't just make all wsync xactions run async
  1477. * because there's one call out of the create path that needs
  1478. * to run sync where it's truncating an existing file to size
  1479. * 0 whose size is > 0.
  1480. *
  1481. * It's probably possible to come up with a test in this
  1482. * routine that would correctly distinguish all the above
  1483. * cases from the values of the function parameters and the
  1484. * inode state but for sanity's sake, I've decided to let the
  1485. * layers above just tell us. It's simpler to correctly figure
  1486. * out in the layer above exactly under what conditions we
  1487. * can run async and I think it's easier for others read and
  1488. * follow the logic in case something has to be changed.
  1489. * cscope is your friend -- rcc.
  1490. *
  1491. * The attribute fork is much simpler.
  1492. *
  1493. * For the attribute fork we allow the caller to tell us whether
  1494. * the unlink of the inode that led to this call is yet permanent
  1495. * in the on disk log. If it is not and we will be freeing extents
  1496. * in this inode then we make the first transaction synchronous
  1497. * to make sure that the unlink is permanent by the time we free
  1498. * the blocks.
  1499. */
  1500. if (fork == XFS_DATA_FORK) {
  1501. if (ip->i_d.di_nextents > 0) {
  1502. /*
  1503. * If we are not changing the file size then do
  1504. * not update the on-disk file size - we may be
  1505. * called from xfs_inactive_free_eofblocks(). If we
  1506. * update the on-disk file size and then the system
  1507. * crashes before the contents of the file are
  1508. * flushed to disk then the files may be full of
  1509. * holes (ie NULL files bug).
  1510. */
  1511. if (ip->i_size != new_size) {
  1512. ip->i_d.di_size = new_size;
  1513. ip->i_size = new_size;
  1514. xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
  1515. }
  1516. }
  1517. } else if (sync) {
  1518. ASSERT(!(mp->m_flags & XFS_MOUNT_WSYNC));
  1519. if (ip->i_d.di_anextents > 0)
  1520. xfs_trans_set_sync(ntp);
  1521. }
  1522. ASSERT(fork == XFS_DATA_FORK ||
  1523. (fork == XFS_ATTR_FORK &&
  1524. ((sync && !(mp->m_flags & XFS_MOUNT_WSYNC)) ||
  1525. (sync == 0 && (mp->m_flags & XFS_MOUNT_WSYNC)))));
  1526. /*
  1527. * Since it is possible for space to become allocated beyond
  1528. * the end of the file (in a crash where the space is allocated
  1529. * but the inode size is not yet updated), simply remove any
  1530. * blocks which show up between the new EOF and the maximum
  1531. * possible file size. If the first block to be removed is
  1532. * beyond the maximum file size (ie it is the same as last_block),
  1533. * then there is nothing to do.
  1534. */
  1535. last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp));
  1536. ASSERT(first_unmap_block <= last_block);
  1537. done = 0;
  1538. if (last_block == first_unmap_block) {
  1539. done = 1;
  1540. } else {
  1541. unmap_len = last_block - first_unmap_block + 1;
  1542. }
  1543. while (!done) {
  1544. /*
  1545. * Free up up to XFS_ITRUNC_MAX_EXTENTS. xfs_bunmapi()
  1546. * will tell us whether it freed the entire range or
  1547. * not. If this is a synchronous mount (wsync),
  1548. * then we can tell bunmapi to keep all the
  1549. * transactions asynchronous since the unlink
  1550. * transaction that made this inode inactive has
  1551. * already hit the disk. There's no danger of
  1552. * the freed blocks being reused, there being a
  1553. * crash, and the reused blocks suddenly reappearing
  1554. * in this file with garbage in them once recovery
  1555. * runs.
  1556. */
  1557. XFS_BMAP_INIT(&free_list, &first_block);
  1558. error = xfs_bunmapi(ntp, ip,
  1559. first_unmap_block, unmap_len,
  1560. XFS_BMAPI_AFLAG(fork) |
  1561. (sync ? 0 : XFS_BMAPI_ASYNC),
  1562. XFS_ITRUNC_MAX_EXTENTS,
  1563. &first_block, &free_list,
  1564. NULL, &done);
  1565. if (error) {
  1566. /*
  1567. * If the bunmapi call encounters an error,
  1568. * return to the caller where the transaction
  1569. * can be properly aborted. We just need to
  1570. * make sure we're not holding any resources
  1571. * that we were not when we came in.
  1572. */
  1573. xfs_bmap_cancel(&free_list);
  1574. return error;
  1575. }
  1576. /*
  1577. * Duplicate the transaction that has the permanent
  1578. * reservation and commit the old transaction.
  1579. */
  1580. error = xfs_bmap_finish(tp, &free_list, &committed);
  1581. ntp = *tp;
  1582. if (error) {
  1583. /*
  1584. * If the bmap finish call encounters an error,
  1585. * return to the caller where the transaction
  1586. * can be properly aborted. We just need to
  1587. * make sure we're not holding any resources
  1588. * that we were not when we came in.
  1589. *
  1590. * Aborting from this point might lose some
  1591. * blocks in the file system, but oh well.
  1592. */
  1593. xfs_bmap_cancel(&free_list);
  1594. if (committed) {
  1595. /*
  1596. * If the passed in transaction committed
  1597. * in xfs_bmap_finish(), then we want to
  1598. * add the inode to this one before returning.
  1599. * This keeps things simple for the higher
  1600. * level code, because it always knows that
  1601. * the inode is locked and held in the
  1602. * transaction that returns to it whether
  1603. * errors occur or not. We don't mark the
  1604. * inode dirty so that this transaction can
  1605. * be easily aborted if possible.
  1606. */
  1607. xfs_trans_ijoin(ntp, ip,
  1608. XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
  1609. xfs_trans_ihold(ntp, ip);
  1610. }
  1611. return error;
  1612. }
  1613. if (committed) {
  1614. /*
  1615. * The first xact was committed,
  1616. * so add the inode to the new one.
  1617. * Mark it dirty so it will be logged
  1618. * and moved forward in the log as
  1619. * part of every commit.
  1620. */
  1621. xfs_trans_ijoin(ntp, ip,
  1622. XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
  1623. xfs_trans_ihold(ntp, ip);
  1624. xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
  1625. }
  1626. ntp = xfs_trans_dup(ntp);
  1627. (void) xfs_trans_commit(*tp, 0);
  1628. *tp = ntp;
  1629. error = xfs_trans_reserve(ntp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0,
  1630. XFS_TRANS_PERM_LOG_RES,
  1631. XFS_ITRUNCATE_LOG_COUNT);
  1632. /*
  1633. * Add the inode being truncated to the next chained
  1634. * transaction.
  1635. */
  1636. xfs_trans_ijoin(ntp, ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
  1637. xfs_trans_ihold(ntp, ip);
  1638. if (error)
  1639. return (error);
  1640. }
  1641. /*
  1642. * Only update the size in the case of the data fork, but
  1643. * always re-log the inode so that our permanent transaction
  1644. * can keep on rolling it forward in the log.
  1645. */
  1646. if (fork == XFS_DATA_FORK) {
  1647. xfs_isize_check(mp, ip, new_size);
  1648. /*
  1649. * If we are not changing the file size then do
  1650. * not update the on-disk file size - we may be
  1651. * called from xfs_inactive_free_eofblocks(). If we
  1652. * update the on-disk file size and then the system
  1653. * crashes before the contents of the file are
  1654. * flushed to disk then the files may be full of
  1655. * holes (ie NULL files bug).
  1656. */
  1657. if (ip->i_size != new_size) {
  1658. ip->i_d.di_size = new_size;
  1659. ip->i_size = new_size;
  1660. }
  1661. }
  1662. xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
  1663. ASSERT((new_size != 0) ||
  1664. (fork == XFS_ATTR_FORK) ||
  1665. (ip->i_delayed_blks == 0));
  1666. ASSERT((new_size != 0) ||
  1667. (fork == XFS_ATTR_FORK) ||
  1668. (ip->i_d.di_nextents == 0));
  1669. xfs_itrunc_trace(XFS_ITRUNC_FINISH2, ip, 0, new_size, 0, 0);
  1670. return 0;
  1671. }
  1672. /*
  1673. * xfs_igrow_start
  1674. *
  1675. * Do the first part of growing a file: zero any data in the last
  1676. * block that is beyond the old EOF. We need to do this before
  1677. * the inode is joined to the transaction to modify the i_size.
  1678. * That way we can drop the inode lock and call into the buffer
  1679. * cache to get the buffer mapping the EOF.
  1680. */
  1681. int
  1682. xfs_igrow_start(
  1683. xfs_inode_t *ip,
  1684. xfs_fsize_t new_size,
  1685. cred_t *credp)
  1686. {
  1687. ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0);
  1688. ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0);
  1689. ASSERT(new_size > ip->i_size);
  1690. /*
  1691. * Zero any pages that may have been created by
  1692. * xfs_write_file() beyond the end of the file
  1693. * and any blocks between the old and new file sizes.
  1694. */
  1695. return xfs_zero_eof(ip, new_size, ip->i_size);
  1696. }
  1697. /*
  1698. * xfs_igrow_finish
  1699. *
  1700. * This routine is called to extend the size of a file.
  1701. * The inode must have both the iolock and the ilock locked
  1702. * for update and it must be a part of the current transaction.
  1703. * The xfs_igrow_start() function must have been called previously.
  1704. * If the change_flag is not zero, the inode change timestamp will
  1705. * be updated.
  1706. */
  1707. void
  1708. xfs_igrow_finish(
  1709. xfs_trans_t *tp,
  1710. xfs_inode_t *ip,
  1711. xfs_fsize_t new_size,
  1712. int change_flag)
  1713. {
  1714. ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0);
  1715. ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0);
  1716. ASSERT(ip->i_transp == tp);
  1717. ASSERT(new_size > ip->i_size);
  1718. /*
  1719. * Update the file size. Update the inode change timestamp
  1720. * if change_flag set.
  1721. */
  1722. ip->i_d.di_size = new_size;
  1723. ip->i_size = new_size;
  1724. if (change_flag)
  1725. xfs_ichgtime(ip, XFS_ICHGTIME_CHG);
  1726. xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
  1727. }
  1728. /*
  1729. * This is called when the inode's link count goes to 0.
  1730. * We place the on-disk inode on a list in the AGI. It
  1731. * will be pulled from this list when the inode is freed.
  1732. */
  1733. int
  1734. xfs_iunlink(
  1735. xfs_trans_t *tp,
  1736. xfs_inode_t *ip)
  1737. {
  1738. xfs_mount_t *mp;
  1739. xfs_agi_t *agi;
  1740. xfs_dinode_t *dip;
  1741. xfs_buf_t *agibp;
  1742. xfs_buf_t *ibp;
  1743. xfs_agnumber_t agno;
  1744. xfs_daddr_t agdaddr;
  1745. xfs_agino_t agino;
  1746. short bucket_index;
  1747. int offset;
  1748. int error;
  1749. int agi_ok;
  1750. ASSERT(ip->i_d.di_nlink == 0);
  1751. ASSERT(ip->i_d.di_mode != 0);
  1752. ASSERT(ip->i_transp == tp);
  1753. mp = tp->t_mountp;
  1754. agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
  1755. agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
  1756. /*
  1757. * Get the agi buffer first. It ensures lock ordering
  1758. * on the list.
  1759. */
  1760. error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
  1761. XFS_FSS_TO_BB(mp, 1), 0, &agibp);
  1762. if (error)
  1763. return error;
  1764. /*
  1765. * Validate the magic number of the agi block.
  1766. */
  1767. agi = XFS_BUF_TO_AGI(agibp);
  1768. agi_ok =
  1769. be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC &&
  1770. XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum));
  1771. if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK,
  1772. XFS_RANDOM_IUNLINK))) {
  1773. XFS_CORRUPTION_ERROR("xfs_iunlink", XFS_ERRLEVEL_LOW, mp, agi);
  1774. xfs_trans_brelse(tp, agibp);
  1775. return XFS_ERROR(EFSCORRUPTED);
  1776. }
  1777. /*
  1778. * Get the index into the agi hash table for the
  1779. * list this inode will go on.
  1780. */
  1781. agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
  1782. ASSERT(agino != 0);
  1783. bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
  1784. ASSERT(agi->agi_unlinked[bucket_index]);
  1785. ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
  1786. if (be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO) {
  1787. /*
  1788. * There is already another inode in the bucket we need
  1789. * to add ourselves to. Add us at the front of the list.
  1790. * Here we put the head pointer into our next pointer,
  1791. * and then we fall through to point the head at us.
  1792. */
  1793. error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0, XFS_BUF_LOCK);
  1794. if (error)
  1795. return error;
  1796. ASSERT(be32_to_cpu(dip->di_next_unlinked) == NULLAGINO);
  1797. /* both on-disk, don't endian flip twice */
  1798. dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
  1799. offset = ip->i_boffset +
  1800. offsetof(xfs_dinode_t, di_next_unlinked);
  1801. xfs_trans_inode_buf(tp, ibp);
  1802. xfs_trans_log_buf(tp, ibp, offset,
  1803. (offset + sizeof(xfs_agino_t) - 1));
  1804. xfs_inobp_check(mp, ibp);
  1805. }
  1806. /*
  1807. * Point the bucket head pointer at the inode being inserted.
  1808. */
  1809. ASSERT(agino != 0);
  1810. agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
  1811. offset = offsetof(xfs_agi_t, agi_unlinked) +
  1812. (sizeof(xfs_agino_t) * bucket_index);
  1813. xfs_trans_log_buf(tp, agibp, offset,
  1814. (offset + sizeof(xfs_agino_t) - 1));
  1815. return 0;
  1816. }
  1817. /*
  1818. * Pull the on-disk inode from the AGI unlinked list.
  1819. */
  1820. STATIC int
  1821. xfs_iunlink_remove(
  1822. xfs_trans_t *tp,
  1823. xfs_inode_t *ip)
  1824. {
  1825. xfs_ino_t next_ino;
  1826. xfs_mount_t *mp;
  1827. xfs_agi_t *agi;
  1828. xfs_dinode_t *dip;
  1829. xfs_buf_t *agibp;
  1830. xfs_buf_t *ibp;
  1831. xfs_agnumber_t agno;
  1832. xfs_daddr_t agdaddr;
  1833. xfs_agino_t agino;
  1834. xfs_agino_t next_agino;
  1835. xfs_buf_t *last_ibp;
  1836. xfs_dinode_t *last_dip = NULL;
  1837. short bucket_index;
  1838. int offset, last_offset = 0;
  1839. int error;
  1840. int agi_ok;
  1841. /*
  1842. * First pull the on-disk inode from the AGI unlinked list.
  1843. */
  1844. mp = tp->t_mountp;
  1845. agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
  1846. agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
  1847. /*
  1848. * Get the agi buffer first. It ensures lock ordering
  1849. * on the list.
  1850. */
  1851. error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
  1852. XFS_FSS_TO_BB(mp, 1), 0, &agibp);
  1853. if (error) {
  1854. cmn_err(CE_WARN,
  1855. "xfs_iunlink_remove: xfs_trans_read_buf() returned an error %d on %s. Returning error.",
  1856. error, mp->m_fsname);
  1857. return error;
  1858. }
  1859. /*
  1860. * Validate the magic number of the agi block.
  1861. */
  1862. agi = XFS_BUF_TO_AGI(agibp);
  1863. agi_ok =
  1864. be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC &&
  1865. XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum));
  1866. if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK_REMOVE,
  1867. XFS_RANDOM_IUNLINK_REMOVE))) {
  1868. XFS_CORRUPTION_ERROR("xfs_iunlink_remove", XFS_ERRLEVEL_LOW,
  1869. mp, agi);
  1870. xfs_trans_brelse(tp, agibp);
  1871. cmn_err(CE_WARN,
  1872. "xfs_iunlink_remove: XFS_TEST_ERROR() returned an error on %s. Returning EFSCORRUPTED.",
  1873. mp->m_fsname);
  1874. return XFS_ERROR(EFSCORRUPTED);
  1875. }
  1876. /*
  1877. * Get the index into the agi hash table for the
  1878. * list this inode will go on.
  1879. */
  1880. agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
  1881. ASSERT(agino != 0);
  1882. bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
  1883. ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO);
  1884. ASSERT(agi->agi_unlinked[bucket_index]);
  1885. if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
  1886. /*
  1887. * We're at the head of the list. Get the inode's
  1888. * on-disk buffer to see if there is anyone after us
  1889. * on the list. Only modify our next pointer if it
  1890. * is not already NULLAGINO. This saves us the overhead
  1891. * of dealing with the buffer when there is no need to
  1892. * change it.
  1893. */
  1894. error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0, XFS_BUF_LOCK);
  1895. if (error) {
  1896. cmn_err(CE_WARN,
  1897. "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
  1898. error, mp->m_fsname);
  1899. return error;
  1900. }
  1901. next_agino = be32_to_cpu(dip->di_next_unlinked);
  1902. ASSERT(next_agino != 0);
  1903. if (next_agino != NULLAGINO) {
  1904. dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
  1905. offset = ip->i_boffset +
  1906. offsetof(xfs_dinode_t, di_next_unlinked);
  1907. xfs_trans_inode_buf(tp, ibp);
  1908. xfs_trans_log_buf(tp, ibp, offset,
  1909. (offset + sizeof(xfs_agino_t) - 1));
  1910. xfs_inobp_check(mp, ibp);
  1911. } else {
  1912. xfs_trans_brelse(tp, ibp);
  1913. }
  1914. /*
  1915. * Point the bucket head pointer at the next inode.
  1916. */
  1917. ASSERT(next_agino != 0);
  1918. ASSERT(next_agino != agino);
  1919. agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
  1920. offset = offsetof(xfs_agi_t, agi_unlinked) +
  1921. (sizeof(xfs_agino_t) * bucket_index);
  1922. xfs_trans_log_buf(tp, agibp, offset,
  1923. (offset + sizeof(xfs_agino_t) - 1));
  1924. } else {
  1925. /*
  1926. * We need to search the list for the inode being freed.
  1927. */
  1928. next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
  1929. last_ibp = NULL;
  1930. while (next_agino != agino) {
  1931. /*
  1932. * If the last inode wasn't the one pointing to
  1933. * us, then release its buffer since we're not
  1934. * going to do anything with it.
  1935. */
  1936. if (last_ibp != NULL) {
  1937. xfs_trans_brelse(tp, last_ibp);
  1938. }
  1939. next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
  1940. error = xfs_inotobp(mp, tp, next_ino, &last_dip,
  1941. &last_ibp, &last_offset);
  1942. if (error) {
  1943. cmn_err(CE_WARN,
  1944. "xfs_iunlink_remove: xfs_inotobp() returned an error %d on %s. Returning error.",
  1945. error, mp->m_fsname);
  1946. return error;
  1947. }
  1948. next_agino = be32_to_cpu(last_dip->di_next_unlinked);
  1949. ASSERT(next_agino != NULLAGINO);
  1950. ASSERT(next_agino != 0);
  1951. }
  1952. /*
  1953. * Now last_ibp points to the buffer previous to us on
  1954. * the unlinked list. Pull us from the list.
  1955. */
  1956. error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0, XFS_BUF_LOCK);
  1957. if (error) {
  1958. cmn_err(CE_WARN,
  1959. "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
  1960. error, mp->m_fsname);
  1961. return error;
  1962. }
  1963. next_agino = be32_to_cpu(dip->di_next_unlinked);
  1964. ASSERT(next_agino != 0);
  1965. ASSERT(next_agino != agino);
  1966. if (next_agino != NULLAGINO) {
  1967. dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
  1968. offset = ip->i_boffset +
  1969. offsetof(xfs_dinode_t, di_next_unlinked);
  1970. xfs_trans_inode_buf(tp, ibp);
  1971. xfs_trans_log_buf(tp, ibp, offset,
  1972. (offset + sizeof(xfs_agino_t) - 1));
  1973. xfs_inobp_check(mp, ibp);
  1974. } else {
  1975. xfs_trans_brelse(tp, ibp);
  1976. }
  1977. /*
  1978. * Point the previous inode on the list to the next inode.
  1979. */
  1980. last_dip->di_next_unlinked = cpu_to_be32(next_agino);
  1981. ASSERT(next_agino != 0);
  1982. offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
  1983. xfs_trans_inode_buf(tp, last_ibp);
  1984. xfs_trans_log_buf(tp, last_ibp, offset,
  1985. (offset + sizeof(xfs_agino_t) - 1));
  1986. xfs_inobp_check(mp, last_ibp);
  1987. }
  1988. return 0;
  1989. }
  1990. STATIC_INLINE int xfs_inode_clean(xfs_inode_t *ip)
  1991. {
  1992. return (((ip->i_itemp == NULL) ||
  1993. !(ip->i_itemp->ili_format.ilf_fields & XFS_ILOG_ALL)) &&
  1994. (ip->i_update_core == 0));
  1995. }
  1996. STATIC void
  1997. xfs_ifree_cluster(
  1998. xfs_inode_t *free_ip,
  1999. xfs_trans_t *tp,
  2000. xfs_ino_t inum)
  2001. {
  2002. xfs_mount_t *mp = free_ip->i_mount;
  2003. int blks_per_cluster;
  2004. int nbufs;
  2005. int ninodes;
  2006. int i, j, found, pre_flushed;
  2007. xfs_daddr_t blkno;
  2008. xfs_buf_t *bp;
  2009. xfs_inode_t *ip, **ip_found;
  2010. xfs_inode_log_item_t *iip;
  2011. xfs_log_item_t *lip;
  2012. xfs_perag_t *pag = xfs_get_perag(mp, inum);
  2013. if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
  2014. blks_per_cluster = 1;
  2015. ninodes = mp->m_sb.sb_inopblock;
  2016. nbufs = XFS_IALLOC_BLOCKS(mp);
  2017. } else {
  2018. blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
  2019. mp->m_sb.sb_blocksize;
  2020. ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
  2021. nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
  2022. }
  2023. ip_found = kmem_alloc(ninodes * sizeof(xfs_inode_t *), KM_NOFS);
  2024. for (j = 0; j < nbufs; j++, inum += ninodes) {
  2025. blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
  2026. XFS_INO_TO_AGBNO(mp, inum));
  2027. /*
  2028. * Look for each inode in memory and attempt to lock it,
  2029. * we can be racing with flush and tail pushing here.
  2030. * any inode we get the locks on, add to an array of
  2031. * inode items to process later.
  2032. *
  2033. * The get the buffer lock, we could beat a flush
  2034. * or tail pushing thread to the lock here, in which
  2035. * case they will go looking for the inode buffer
  2036. * and fail, we need some other form of interlock
  2037. * here.
  2038. */
  2039. found = 0;
  2040. for (i = 0; i < ninodes; i++) {
  2041. read_lock(&pag->pag_ici_lock);
  2042. ip = radix_tree_lookup(&pag->pag_ici_root,
  2043. XFS_INO_TO_AGINO(mp, (inum + i)));
  2044. /* Inode not in memory or we found it already,
  2045. * nothing to do
  2046. */
  2047. if (!ip || xfs_iflags_test(ip, XFS_ISTALE)) {
  2048. read_unlock(&pag->pag_ici_lock);
  2049. continue;
  2050. }
  2051. if (xfs_inode_clean(ip)) {
  2052. read_unlock(&pag->pag_ici_lock);
  2053. continue;
  2054. }
  2055. /* If we can get the locks then add it to the
  2056. * list, otherwise by the time we get the bp lock
  2057. * below it will already be attached to the
  2058. * inode buffer.
  2059. */
  2060. /* This inode will already be locked - by us, lets
  2061. * keep it that way.
  2062. */
  2063. if (ip == free_ip) {
  2064. if (xfs_iflock_nowait(ip)) {
  2065. xfs_iflags_set(ip, XFS_ISTALE);
  2066. if (xfs_inode_clean(ip)) {
  2067. xfs_ifunlock(ip);
  2068. } else {
  2069. ip_found[found++] = ip;
  2070. }
  2071. }
  2072. read_unlock(&pag->pag_ici_lock);
  2073. continue;
  2074. }
  2075. if (xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
  2076. if (xfs_iflock_nowait(ip)) {
  2077. xfs_iflags_set(ip, XFS_ISTALE);
  2078. if (xfs_inode_clean(ip)) {
  2079. xfs_ifunlock(ip);
  2080. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  2081. } else {
  2082. ip_found[found++] = ip;
  2083. }
  2084. } else {
  2085. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  2086. }
  2087. }
  2088. read_unlock(&pag->pag_ici_lock);
  2089. }
  2090. bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
  2091. mp->m_bsize * blks_per_cluster,
  2092. XFS_BUF_LOCK);
  2093. pre_flushed = 0;
  2094. lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
  2095. while (lip) {
  2096. if (lip->li_type == XFS_LI_INODE) {
  2097. iip = (xfs_inode_log_item_t *)lip;
  2098. ASSERT(iip->ili_logged == 1);
  2099. lip->li_cb = (void(*)(xfs_buf_t*,xfs_log_item_t*)) xfs_istale_done;
  2100. spin_lock(&mp->m_ail_lock);
  2101. iip->ili_flush_lsn = iip->ili_item.li_lsn;
  2102. spin_unlock(&mp->m_ail_lock);
  2103. xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
  2104. pre_flushed++;
  2105. }
  2106. lip = lip->li_bio_list;
  2107. }
  2108. for (i = 0; i < found; i++) {
  2109. ip = ip_found[i];
  2110. iip = ip->i_itemp;
  2111. if (!iip) {
  2112. ip->i_update_core = 0;
  2113. xfs_ifunlock(ip);
  2114. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  2115. continue;
  2116. }
  2117. iip->ili_last_fields = iip->ili_format.ilf_fields;
  2118. iip->ili_format.ilf_fields = 0;
  2119. iip->ili_logged = 1;
  2120. spin_lock(&mp->m_ail_lock);
  2121. iip->ili_flush_lsn = iip->ili_item.li_lsn;
  2122. spin_unlock(&mp->m_ail_lock);
  2123. xfs_buf_attach_iodone(bp,
  2124. (void(*)(xfs_buf_t*,xfs_log_item_t*))
  2125. xfs_istale_done, (xfs_log_item_t *)iip);
  2126. if (ip != free_ip) {
  2127. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  2128. }
  2129. }
  2130. if (found || pre_flushed)
  2131. xfs_trans_stale_inode_buf(tp, bp);
  2132. xfs_trans_binval(tp, bp);
  2133. }
  2134. kmem_free(ip_found, ninodes * sizeof(xfs_inode_t *));
  2135. xfs_put_perag(mp, pag);
  2136. }
  2137. /*
  2138. * This is called to return an inode to the inode free list.
  2139. * The inode should already be truncated to 0 length and have
  2140. * no pages associated with it. This routine also assumes that
  2141. * the inode is already a part of the transaction.
  2142. *
  2143. * The on-disk copy of the inode will have been added to the list
  2144. * of unlinked inodes in the AGI. We need to remove the inode from
  2145. * that list atomically with respect to freeing it here.
  2146. */
  2147. int
  2148. xfs_ifree(
  2149. xfs_trans_t *tp,
  2150. xfs_inode_t *ip,
  2151. xfs_bmap_free_t *flist)
  2152. {
  2153. int error;
  2154. int delete;
  2155. xfs_ino_t first_ino;
  2156. xfs_dinode_t *dip;
  2157. xfs_buf_t *ibp;
  2158. ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE));
  2159. ASSERT(ip->i_transp == tp);
  2160. ASSERT(ip->i_d.di_nlink == 0);
  2161. ASSERT(ip->i_d.di_nextents == 0);
  2162. ASSERT(ip->i_d.di_anextents == 0);
  2163. ASSERT((ip->i_d.di_size == 0 && ip->i_size == 0) ||
  2164. ((ip->i_d.di_mode & S_IFMT) != S_IFREG));
  2165. ASSERT(ip->i_d.di_nblocks == 0);
  2166. /*
  2167. * Pull the on-disk inode from the AGI unlinked list.
  2168. */
  2169. error = xfs_iunlink_remove(tp, ip);
  2170. if (error != 0) {
  2171. return error;
  2172. }
  2173. error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
  2174. if (error != 0) {
  2175. return error;
  2176. }
  2177. ip->i_d.di_mode = 0; /* mark incore inode as free */
  2178. ip->i_d.di_flags = 0;
  2179. ip->i_d.di_dmevmask = 0;
  2180. ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
  2181. ip->i_df.if_ext_max =
  2182. XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
  2183. ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
  2184. ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
  2185. /*
  2186. * Bump the generation count so no one will be confused
  2187. * by reincarnations of this inode.
  2188. */
  2189. ip->i_d.di_gen++;
  2190. xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
  2191. error = xfs_itobp(ip->i_mount, tp, ip, &dip, &ibp, 0, 0, XFS_BUF_LOCK);
  2192. if (error)
  2193. return error;
  2194. /*
  2195. * Clear the on-disk di_mode. This is to prevent xfs_bulkstat
  2196. * from picking up this inode when it is reclaimed (its incore state
  2197. * initialzed but not flushed to disk yet). The in-core di_mode is
  2198. * already cleared and a corresponding transaction logged.
  2199. * The hack here just synchronizes the in-core to on-disk
  2200. * di_mode value in advance before the actual inode sync to disk.
  2201. * This is OK because the inode is already unlinked and would never
  2202. * change its di_mode again for this inode generation.
  2203. * This is a temporary hack that would require a proper fix
  2204. * in the future.
  2205. */
  2206. dip->di_core.di_mode = 0;
  2207. if (delete) {
  2208. xfs_ifree_cluster(ip, tp, first_ino);
  2209. }
  2210. return 0;
  2211. }
  2212. /*
  2213. * Reallocate the space for if_broot based on the number of records
  2214. * being added or deleted as indicated in rec_diff. Move the records
  2215. * and pointers in if_broot to fit the new size. When shrinking this
  2216. * will eliminate holes between the records and pointers created by
  2217. * the caller. When growing this will create holes to be filled in
  2218. * by the caller.
  2219. *
  2220. * The caller must not request to add more records than would fit in
  2221. * the on-disk inode root. If the if_broot is currently NULL, then
  2222. * if we adding records one will be allocated. The caller must also
  2223. * not request that the number of records go below zero, although
  2224. * it can go to zero.
  2225. *
  2226. * ip -- the inode whose if_broot area is changing
  2227. * ext_diff -- the change in the number of records, positive or negative,
  2228. * requested for the if_broot array.
  2229. */
  2230. void
  2231. xfs_iroot_realloc(
  2232. xfs_inode_t *ip,
  2233. int rec_diff,
  2234. int whichfork)
  2235. {
  2236. int cur_max;
  2237. xfs_ifork_t *ifp;
  2238. xfs_bmbt_block_t *new_broot;
  2239. int new_max;
  2240. size_t new_size;
  2241. char *np;
  2242. char *op;
  2243. /*
  2244. * Handle the degenerate case quietly.
  2245. */
  2246. if (rec_diff == 0) {
  2247. return;
  2248. }
  2249. ifp = XFS_IFORK_PTR(ip, whichfork);
  2250. if (rec_diff > 0) {
  2251. /*
  2252. * If there wasn't any memory allocated before, just
  2253. * allocate it now and get out.
  2254. */
  2255. if (ifp->if_broot_bytes == 0) {
  2256. new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff);
  2257. ifp->if_broot = (xfs_bmbt_block_t*)kmem_alloc(new_size,
  2258. KM_SLEEP);
  2259. ifp->if_broot_bytes = (int)new_size;
  2260. return;
  2261. }
  2262. /*
  2263. * If there is already an existing if_broot, then we need
  2264. * to realloc() it and shift the pointers to their new
  2265. * location. The records don't change location because
  2266. * they are kept butted up against the btree block header.
  2267. */
  2268. cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes);
  2269. new_max = cur_max + rec_diff;
  2270. new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
  2271. ifp->if_broot = (xfs_bmbt_block_t *)
  2272. kmem_realloc(ifp->if_broot,
  2273. new_size,
  2274. (size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */
  2275. KM_SLEEP);
  2276. op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
  2277. ifp->if_broot_bytes);
  2278. np = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
  2279. (int)new_size);
  2280. ifp->if_broot_bytes = (int)new_size;
  2281. ASSERT(ifp->if_broot_bytes <=
  2282. XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
  2283. memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t));
  2284. return;
  2285. }
  2286. /*
  2287. * rec_diff is less than 0. In this case, we are shrinking the
  2288. * if_broot buffer. It must already exist. If we go to zero
  2289. * records, just get rid of the root and clear the status bit.
  2290. */
  2291. ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
  2292. cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes);
  2293. new_max = cur_max + rec_diff;
  2294. ASSERT(new_max >= 0);
  2295. if (new_max > 0)
  2296. new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
  2297. else
  2298. new_size = 0;
  2299. if (new_size > 0) {
  2300. new_broot = (xfs_bmbt_block_t *)kmem_alloc(new_size, KM_SLEEP);
  2301. /*
  2302. * First copy over the btree block header.
  2303. */
  2304. memcpy(new_broot, ifp->if_broot, sizeof(xfs_bmbt_block_t));
  2305. } else {
  2306. new_broot = NULL;
  2307. ifp->if_flags &= ~XFS_IFBROOT;
  2308. }
  2309. /*
  2310. * Only copy the records and pointers if there are any.
  2311. */
  2312. if (new_max > 0) {
  2313. /*
  2314. * First copy the records.
  2315. */
  2316. op = (char *)XFS_BMAP_BROOT_REC_ADDR(ifp->if_broot, 1,
  2317. ifp->if_broot_bytes);
  2318. np = (char *)XFS_BMAP_BROOT_REC_ADDR(new_broot, 1,
  2319. (int)new_size);
  2320. memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
  2321. /*
  2322. * Then copy the pointers.
  2323. */
  2324. op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
  2325. ifp->if_broot_bytes);
  2326. np = (char *)XFS_BMAP_BROOT_PTR_ADDR(new_broot, 1,
  2327. (int)new_size);
  2328. memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t));
  2329. }
  2330. kmem_free(ifp->if_broot, ifp->if_broot_bytes);
  2331. ifp->if_broot = new_broot;
  2332. ifp->if_broot_bytes = (int)new_size;
  2333. ASSERT(ifp->if_broot_bytes <=
  2334. XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
  2335. return;
  2336. }
  2337. /*
  2338. * This is called when the amount of space needed for if_data
  2339. * is increased or decreased. The change in size is indicated by
  2340. * the number of bytes that need to be added or deleted in the
  2341. * byte_diff parameter.
  2342. *
  2343. * If the amount of space needed has decreased below the size of the
  2344. * inline buffer, then switch to using the inline buffer. Otherwise,
  2345. * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
  2346. * to what is needed.
  2347. *
  2348. * ip -- the inode whose if_data area is changing
  2349. * byte_diff -- the change in the number of bytes, positive or negative,
  2350. * requested for the if_data array.
  2351. */
  2352. void
  2353. xfs_idata_realloc(
  2354. xfs_inode_t *ip,
  2355. int byte_diff,
  2356. int whichfork)
  2357. {
  2358. xfs_ifork_t *ifp;
  2359. int new_size;
  2360. int real_size;
  2361. if (byte_diff == 0) {
  2362. return;
  2363. }
  2364. ifp = XFS_IFORK_PTR(ip, whichfork);
  2365. new_size = (int)ifp->if_bytes + byte_diff;
  2366. ASSERT(new_size >= 0);
  2367. if (new_size == 0) {
  2368. if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
  2369. kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
  2370. }
  2371. ifp->if_u1.if_data = NULL;
  2372. real_size = 0;
  2373. } else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) {
  2374. /*
  2375. * If the valid extents/data can fit in if_inline_ext/data,
  2376. * copy them from the malloc'd vector and free it.
  2377. */
  2378. if (ifp->if_u1.if_data == NULL) {
  2379. ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
  2380. } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
  2381. ASSERT(ifp->if_real_bytes != 0);
  2382. memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data,
  2383. new_size);
  2384. kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
  2385. ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
  2386. }
  2387. real_size = 0;
  2388. } else {
  2389. /*
  2390. * Stuck with malloc/realloc.
  2391. * For inline data, the underlying buffer must be
  2392. * a multiple of 4 bytes in size so that it can be
  2393. * logged and stay on word boundaries. We enforce
  2394. * that here.
  2395. */
  2396. real_size = roundup(new_size, 4);
  2397. if (ifp->if_u1.if_data == NULL) {
  2398. ASSERT(ifp->if_real_bytes == 0);
  2399. ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
  2400. } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
  2401. /*
  2402. * Only do the realloc if the underlying size
  2403. * is really changing.
  2404. */
  2405. if (ifp->if_real_bytes != real_size) {
  2406. ifp->if_u1.if_data =
  2407. kmem_realloc(ifp->if_u1.if_data,
  2408. real_size,
  2409. ifp->if_real_bytes,
  2410. KM_SLEEP);
  2411. }
  2412. } else {
  2413. ASSERT(ifp->if_real_bytes == 0);
  2414. ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
  2415. memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data,
  2416. ifp->if_bytes);
  2417. }
  2418. }
  2419. ifp->if_real_bytes = real_size;
  2420. ifp->if_bytes = new_size;
  2421. ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
  2422. }
  2423. /*
  2424. * Map inode to disk block and offset.
  2425. *
  2426. * mp -- the mount point structure for the current file system
  2427. * tp -- the current transaction
  2428. * ino -- the inode number of the inode to be located
  2429. * imap -- this structure is filled in with the information necessary
  2430. * to retrieve the given inode from disk
  2431. * flags -- flags to pass to xfs_dilocate indicating whether or not
  2432. * lookups in the inode btree were OK or not
  2433. */
  2434. int
  2435. xfs_imap(
  2436. xfs_mount_t *mp,
  2437. xfs_trans_t *tp,
  2438. xfs_ino_t ino,
  2439. xfs_imap_t *imap,
  2440. uint flags)
  2441. {
  2442. xfs_fsblock_t fsbno;
  2443. int len;
  2444. int off;
  2445. int error;
  2446. fsbno = imap->im_blkno ?
  2447. XFS_DADDR_TO_FSB(mp, imap->im_blkno) : NULLFSBLOCK;
  2448. error = xfs_dilocate(mp, tp, ino, &fsbno, &len, &off, flags);
  2449. if (error)
  2450. return error;
  2451. imap->im_blkno = XFS_FSB_TO_DADDR(mp, fsbno);
  2452. imap->im_len = XFS_FSB_TO_BB(mp, len);
  2453. imap->im_agblkno = XFS_FSB_TO_AGBNO(mp, fsbno);
  2454. imap->im_ioffset = (ushort)off;
  2455. imap->im_boffset = (ushort)(off << mp->m_sb.sb_inodelog);
  2456. /*
  2457. * If the inode number maps to a block outside the bounds
  2458. * of the file system then return NULL rather than calling
  2459. * read_buf and panicing when we get an error from the
  2460. * driver.
  2461. */
  2462. if ((imap->im_blkno + imap->im_len) >
  2463. XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
  2464. xfs_fs_cmn_err(CE_ALERT, mp, "xfs_imap: "
  2465. "(imap->im_blkno (0x%llx) + imap->im_len (0x%llx)) > "
  2466. " XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks) (0x%llx)",
  2467. (unsigned long long) imap->im_blkno,
  2468. (unsigned long long) imap->im_len,
  2469. XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
  2470. return EINVAL;
  2471. }
  2472. return 0;
  2473. }
  2474. void
  2475. xfs_idestroy_fork(
  2476. xfs_inode_t *ip,
  2477. int whichfork)
  2478. {
  2479. xfs_ifork_t *ifp;
  2480. ifp = XFS_IFORK_PTR(ip, whichfork);
  2481. if (ifp->if_broot != NULL) {
  2482. kmem_free(ifp->if_broot, ifp->if_broot_bytes);
  2483. ifp->if_broot = NULL;
  2484. }
  2485. /*
  2486. * If the format is local, then we can't have an extents
  2487. * array so just look for an inline data array. If we're
  2488. * not local then we may or may not have an extents list,
  2489. * so check and free it up if we do.
  2490. */
  2491. if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
  2492. if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) &&
  2493. (ifp->if_u1.if_data != NULL)) {
  2494. ASSERT(ifp->if_real_bytes != 0);
  2495. kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
  2496. ifp->if_u1.if_data = NULL;
  2497. ifp->if_real_bytes = 0;
  2498. }
  2499. } else if ((ifp->if_flags & XFS_IFEXTENTS) &&
  2500. ((ifp->if_flags & XFS_IFEXTIREC) ||
  2501. ((ifp->if_u1.if_extents != NULL) &&
  2502. (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) {
  2503. ASSERT(ifp->if_real_bytes != 0);
  2504. xfs_iext_destroy(ifp);
  2505. }
  2506. ASSERT(ifp->if_u1.if_extents == NULL ||
  2507. ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext);
  2508. ASSERT(ifp->if_real_bytes == 0);
  2509. if (whichfork == XFS_ATTR_FORK) {
  2510. kmem_zone_free(xfs_ifork_zone, ip->i_afp);
  2511. ip->i_afp = NULL;
  2512. }
  2513. }
  2514. /*
  2515. * This is called free all the memory associated with an inode.
  2516. * It must free the inode itself and any buffers allocated for
  2517. * if_extents/if_data and if_broot. It must also free the lock
  2518. * associated with the inode.
  2519. */
  2520. void
  2521. xfs_idestroy(
  2522. xfs_inode_t *ip)
  2523. {
  2524. switch (ip->i_d.di_mode & S_IFMT) {
  2525. case S_IFREG:
  2526. case S_IFDIR:
  2527. case S_IFLNK:
  2528. xfs_idestroy_fork(ip, XFS_DATA_FORK);
  2529. break;
  2530. }
  2531. if (ip->i_afp)
  2532. xfs_idestroy_fork(ip, XFS_ATTR_FORK);
  2533. mrfree(&ip->i_lock);
  2534. mrfree(&ip->i_iolock);
  2535. freesema(&ip->i_flock);
  2536. #ifdef XFS_INODE_TRACE
  2537. ktrace_free(ip->i_trace);
  2538. #endif
  2539. #ifdef XFS_BMAP_TRACE
  2540. ktrace_free(ip->i_xtrace);
  2541. #endif
  2542. #ifdef XFS_BMBT_TRACE
  2543. ktrace_free(ip->i_btrace);
  2544. #endif
  2545. #ifdef XFS_RW_TRACE
  2546. ktrace_free(ip->i_rwtrace);
  2547. #endif
  2548. #ifdef XFS_ILOCK_TRACE
  2549. ktrace_free(ip->i_lock_trace);
  2550. #endif
  2551. #ifdef XFS_DIR2_TRACE
  2552. ktrace_free(ip->i_dir_trace);
  2553. #endif
  2554. if (ip->i_itemp) {
  2555. /*
  2556. * Only if we are shutting down the fs will we see an
  2557. * inode still in the AIL. If it is there, we should remove
  2558. * it to prevent a use-after-free from occurring.
  2559. */
  2560. xfs_mount_t *mp = ip->i_mount;
  2561. xfs_log_item_t *lip = &ip->i_itemp->ili_item;
  2562. ASSERT(((lip->li_flags & XFS_LI_IN_AIL) == 0) ||
  2563. XFS_FORCED_SHUTDOWN(ip->i_mount));
  2564. if (lip->li_flags & XFS_LI_IN_AIL) {
  2565. spin_lock(&mp->m_ail_lock);
  2566. if (lip->li_flags & XFS_LI_IN_AIL)
  2567. xfs_trans_delete_ail(mp, lip);
  2568. else
  2569. spin_unlock(&mp->m_ail_lock);
  2570. }
  2571. xfs_inode_item_destroy(ip);
  2572. }
  2573. kmem_zone_free(xfs_inode_zone, ip);
  2574. }
  2575. /*
  2576. * Increment the pin count of the given buffer.
  2577. * This value is protected by ipinlock spinlock in the mount structure.
  2578. */
  2579. void
  2580. xfs_ipin(
  2581. xfs_inode_t *ip)
  2582. {
  2583. ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE));
  2584. atomic_inc(&ip->i_pincount);
  2585. }
  2586. /*
  2587. * Decrement the pin count of the given inode, and wake up
  2588. * anyone in xfs_iwait_unpin() if the count goes to 0. The
  2589. * inode must have been previously pinned with a call to xfs_ipin().
  2590. */
  2591. void
  2592. xfs_iunpin(
  2593. xfs_inode_t *ip)
  2594. {
  2595. ASSERT(atomic_read(&ip->i_pincount) > 0);
  2596. if (atomic_dec_and_test(&ip->i_pincount))
  2597. wake_up(&ip->i_ipin_wait);
  2598. }
  2599. /*
  2600. * This is called to unpin an inode. It can be directed to wait or to return
  2601. * immediately without waiting for the inode to be unpinned. The caller must
  2602. * have the inode locked in at least shared mode so that the buffer cannot be
  2603. * subsequently pinned once someone is waiting for it to be unpinned.
  2604. */
  2605. STATIC void
  2606. __xfs_iunpin_wait(
  2607. xfs_inode_t *ip,
  2608. int wait)
  2609. {
  2610. xfs_inode_log_item_t *iip = ip->i_itemp;
  2611. ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE | MR_ACCESS));
  2612. if (atomic_read(&ip->i_pincount) == 0)
  2613. return;
  2614. /* Give the log a push to start the unpinning I/O */
  2615. xfs_log_force(ip->i_mount, (iip && iip->ili_last_lsn) ?
  2616. iip->ili_last_lsn : 0, XFS_LOG_FORCE);
  2617. if (wait)
  2618. wait_event(ip->i_ipin_wait, (atomic_read(&ip->i_pincount) == 0));
  2619. }
  2620. static inline void
  2621. xfs_iunpin_wait(
  2622. xfs_inode_t *ip)
  2623. {
  2624. __xfs_iunpin_wait(ip, 1);
  2625. }
  2626. static inline void
  2627. xfs_iunpin_nowait(
  2628. xfs_inode_t *ip)
  2629. {
  2630. __xfs_iunpin_wait(ip, 0);
  2631. }
  2632. /*
  2633. * xfs_iextents_copy()
  2634. *
  2635. * This is called to copy the REAL extents (as opposed to the delayed
  2636. * allocation extents) from the inode into the given buffer. It
  2637. * returns the number of bytes copied into the buffer.
  2638. *
  2639. * If there are no delayed allocation extents, then we can just
  2640. * memcpy() the extents into the buffer. Otherwise, we need to
  2641. * examine each extent in turn and skip those which are delayed.
  2642. */
  2643. int
  2644. xfs_iextents_copy(
  2645. xfs_inode_t *ip,
  2646. xfs_bmbt_rec_t *dp,
  2647. int whichfork)
  2648. {
  2649. int copied;
  2650. int i;
  2651. xfs_ifork_t *ifp;
  2652. int nrecs;
  2653. xfs_fsblock_t start_block;
  2654. ifp = XFS_IFORK_PTR(ip, whichfork);
  2655. ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
  2656. ASSERT(ifp->if_bytes > 0);
  2657. nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  2658. XFS_BMAP_TRACE_EXLIST(ip, nrecs, whichfork);
  2659. ASSERT(nrecs > 0);
  2660. /*
  2661. * There are some delayed allocation extents in the
  2662. * inode, so copy the extents one at a time and skip
  2663. * the delayed ones. There must be at least one
  2664. * non-delayed extent.
  2665. */
  2666. copied = 0;
  2667. for (i = 0; i < nrecs; i++) {
  2668. xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
  2669. start_block = xfs_bmbt_get_startblock(ep);
  2670. if (ISNULLSTARTBLOCK(start_block)) {
  2671. /*
  2672. * It's a delayed allocation extent, so skip it.
  2673. */
  2674. continue;
  2675. }
  2676. /* Translate to on disk format */
  2677. put_unaligned(cpu_to_be64(ep->l0), &dp->l0);
  2678. put_unaligned(cpu_to_be64(ep->l1), &dp->l1);
  2679. dp++;
  2680. copied++;
  2681. }
  2682. ASSERT(copied != 0);
  2683. xfs_validate_extents(ifp, copied, XFS_EXTFMT_INODE(ip));
  2684. return (copied * (uint)sizeof(xfs_bmbt_rec_t));
  2685. }
  2686. /*
  2687. * Each of the following cases stores data into the same region
  2688. * of the on-disk inode, so only one of them can be valid at
  2689. * any given time. While it is possible to have conflicting formats
  2690. * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
  2691. * in EXTENTS format, this can only happen when the fork has
  2692. * changed formats after being modified but before being flushed.
  2693. * In these cases, the format always takes precedence, because the
  2694. * format indicates the current state of the fork.
  2695. */
  2696. /*ARGSUSED*/
  2697. STATIC int
  2698. xfs_iflush_fork(
  2699. xfs_inode_t *ip,
  2700. xfs_dinode_t *dip,
  2701. xfs_inode_log_item_t *iip,
  2702. int whichfork,
  2703. xfs_buf_t *bp)
  2704. {
  2705. char *cp;
  2706. xfs_ifork_t *ifp;
  2707. xfs_mount_t *mp;
  2708. #ifdef XFS_TRANS_DEBUG
  2709. int first;
  2710. #endif
  2711. static const short brootflag[2] =
  2712. { XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
  2713. static const short dataflag[2] =
  2714. { XFS_ILOG_DDATA, XFS_ILOG_ADATA };
  2715. static const short extflag[2] =
  2716. { XFS_ILOG_DEXT, XFS_ILOG_AEXT };
  2717. if (iip == NULL)
  2718. return 0;
  2719. ifp = XFS_IFORK_PTR(ip, whichfork);
  2720. /*
  2721. * This can happen if we gave up in iformat in an error path,
  2722. * for the attribute fork.
  2723. */
  2724. if (ifp == NULL) {
  2725. ASSERT(whichfork == XFS_ATTR_FORK);
  2726. return 0;
  2727. }
  2728. cp = XFS_DFORK_PTR(dip, whichfork);
  2729. mp = ip->i_mount;
  2730. switch (XFS_IFORK_FORMAT(ip, whichfork)) {
  2731. case XFS_DINODE_FMT_LOCAL:
  2732. if ((iip->ili_format.ilf_fields & dataflag[whichfork]) &&
  2733. (ifp->if_bytes > 0)) {
  2734. ASSERT(ifp->if_u1.if_data != NULL);
  2735. ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
  2736. memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
  2737. }
  2738. break;
  2739. case XFS_DINODE_FMT_EXTENTS:
  2740. ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
  2741. !(iip->ili_format.ilf_fields & extflag[whichfork]));
  2742. ASSERT((xfs_iext_get_ext(ifp, 0) != NULL) ||
  2743. (ifp->if_bytes == 0));
  2744. ASSERT((xfs_iext_get_ext(ifp, 0) == NULL) ||
  2745. (ifp->if_bytes > 0));
  2746. if ((iip->ili_format.ilf_fields & extflag[whichfork]) &&
  2747. (ifp->if_bytes > 0)) {
  2748. ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
  2749. (void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
  2750. whichfork);
  2751. }
  2752. break;
  2753. case XFS_DINODE_FMT_BTREE:
  2754. if ((iip->ili_format.ilf_fields & brootflag[whichfork]) &&
  2755. (ifp->if_broot_bytes > 0)) {
  2756. ASSERT(ifp->if_broot != NULL);
  2757. ASSERT(ifp->if_broot_bytes <=
  2758. (XFS_IFORK_SIZE(ip, whichfork) +
  2759. XFS_BROOT_SIZE_ADJ));
  2760. xfs_bmbt_to_bmdr(ifp->if_broot, ifp->if_broot_bytes,
  2761. (xfs_bmdr_block_t *)cp,
  2762. XFS_DFORK_SIZE(dip, mp, whichfork));
  2763. }
  2764. break;
  2765. case XFS_DINODE_FMT_DEV:
  2766. if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
  2767. ASSERT(whichfork == XFS_DATA_FORK);
  2768. dip->di_u.di_dev = cpu_to_be32(ip->i_df.if_u2.if_rdev);
  2769. }
  2770. break;
  2771. case XFS_DINODE_FMT_UUID:
  2772. if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
  2773. ASSERT(whichfork == XFS_DATA_FORK);
  2774. memcpy(&dip->di_u.di_muuid, &ip->i_df.if_u2.if_uuid,
  2775. sizeof(uuid_t));
  2776. }
  2777. break;
  2778. default:
  2779. ASSERT(0);
  2780. break;
  2781. }
  2782. return 0;
  2783. }
  2784. /*
  2785. * xfs_iflush() will write a modified inode's changes out to the
  2786. * inode's on disk home. The caller must have the inode lock held
  2787. * in at least shared mode and the inode flush semaphore must be
  2788. * held as well. The inode lock will still be held upon return from
  2789. * the call and the caller is free to unlock it.
  2790. * The inode flush lock will be unlocked when the inode reaches the disk.
  2791. * The flags indicate how the inode's buffer should be written out.
  2792. */
  2793. int
  2794. xfs_iflush(
  2795. xfs_inode_t *ip,
  2796. uint flags)
  2797. {
  2798. xfs_inode_log_item_t *iip;
  2799. xfs_buf_t *bp;
  2800. xfs_dinode_t *dip;
  2801. xfs_mount_t *mp;
  2802. int error;
  2803. /* REFERENCED */
  2804. xfs_inode_t *iq;
  2805. int clcount; /* count of inodes clustered */
  2806. int bufwasdelwri;
  2807. struct hlist_node *entry;
  2808. enum { INT_DELWRI = (1 << 0), INT_ASYNC = (1 << 1) };
  2809. int noblock = (flags == XFS_IFLUSH_ASYNC_NOBLOCK);
  2810. XFS_STATS_INC(xs_iflush_count);
  2811. ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
  2812. ASSERT(issemalocked(&(ip->i_flock)));
  2813. ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
  2814. ip->i_d.di_nextents > ip->i_df.if_ext_max);
  2815. iip = ip->i_itemp;
  2816. mp = ip->i_mount;
  2817. /*
  2818. * If the inode isn't dirty, then just release the inode
  2819. * flush lock and do nothing.
  2820. */
  2821. if ((ip->i_update_core == 0) &&
  2822. ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
  2823. ASSERT((iip != NULL) ?
  2824. !(iip->ili_item.li_flags & XFS_LI_IN_AIL) : 1);
  2825. xfs_ifunlock(ip);
  2826. return 0;
  2827. }
  2828. /*
  2829. * We can't flush the inode until it is unpinned, so wait for it if we
  2830. * are allowed to block. We know noone new can pin it, because we are
  2831. * holding the inode lock shared and you need to hold it exclusively to
  2832. * pin the inode.
  2833. *
  2834. * If we are not allowed to block, force the log out asynchronously so
  2835. * that when we come back the inode will be unpinned. If other inodes
  2836. * in the same cluster are dirty, they will probably write the inode
  2837. * out for us if they occur after the log force completes.
  2838. */
  2839. if (noblock && xfs_ipincount(ip)) {
  2840. xfs_iunpin_nowait(ip);
  2841. xfs_ifunlock(ip);
  2842. return EAGAIN;
  2843. }
  2844. xfs_iunpin_wait(ip);
  2845. /*
  2846. * This may have been unpinned because the filesystem is shutting
  2847. * down forcibly. If that's the case we must not write this inode
  2848. * to disk, because the log record didn't make it to disk!
  2849. */
  2850. if (XFS_FORCED_SHUTDOWN(mp)) {
  2851. ip->i_update_core = 0;
  2852. if (iip)
  2853. iip->ili_format.ilf_fields = 0;
  2854. xfs_ifunlock(ip);
  2855. return XFS_ERROR(EIO);
  2856. }
  2857. /*
  2858. * Decide how buffer will be flushed out. This is done before
  2859. * the call to xfs_iflush_int because this field is zeroed by it.
  2860. */
  2861. if (iip != NULL && iip->ili_format.ilf_fields != 0) {
  2862. /*
  2863. * Flush out the inode buffer according to the directions
  2864. * of the caller. In the cases where the caller has given
  2865. * us a choice choose the non-delwri case. This is because
  2866. * the inode is in the AIL and we need to get it out soon.
  2867. */
  2868. switch (flags) {
  2869. case XFS_IFLUSH_SYNC:
  2870. case XFS_IFLUSH_DELWRI_ELSE_SYNC:
  2871. flags = 0;
  2872. break;
  2873. case XFS_IFLUSH_ASYNC_NOBLOCK:
  2874. case XFS_IFLUSH_ASYNC:
  2875. case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
  2876. flags = INT_ASYNC;
  2877. break;
  2878. case XFS_IFLUSH_DELWRI:
  2879. flags = INT_DELWRI;
  2880. break;
  2881. default:
  2882. ASSERT(0);
  2883. flags = 0;
  2884. break;
  2885. }
  2886. } else {
  2887. switch (flags) {
  2888. case XFS_IFLUSH_DELWRI_ELSE_SYNC:
  2889. case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
  2890. case XFS_IFLUSH_DELWRI:
  2891. flags = INT_DELWRI;
  2892. break;
  2893. case XFS_IFLUSH_ASYNC_NOBLOCK:
  2894. case XFS_IFLUSH_ASYNC:
  2895. flags = INT_ASYNC;
  2896. break;
  2897. case XFS_IFLUSH_SYNC:
  2898. flags = 0;
  2899. break;
  2900. default:
  2901. ASSERT(0);
  2902. flags = 0;
  2903. break;
  2904. }
  2905. }
  2906. /*
  2907. * Get the buffer containing the on-disk inode.
  2908. */
  2909. error = xfs_itobp(mp, NULL, ip, &dip, &bp, 0, 0,
  2910. noblock ? XFS_BUF_TRYLOCK : XFS_BUF_LOCK);
  2911. if (error || !bp) {
  2912. xfs_ifunlock(ip);
  2913. return error;
  2914. }
  2915. /*
  2916. * First flush out the inode that xfs_iflush was called with.
  2917. */
  2918. error = xfs_iflush_int(ip, bp);
  2919. if (error) {
  2920. goto corrupt_out;
  2921. }
  2922. /*
  2923. * If the buffer is pinned then push on the log now so we won't
  2924. * get stuck waiting in the write for too long.
  2925. */
  2926. if (XFS_BUF_ISPINNED(bp))
  2927. xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE);
  2928. /*
  2929. * inode clustering:
  2930. * see if other inodes can be gathered into this write
  2931. */
  2932. spin_lock(&ip->i_cluster->icl_lock);
  2933. ip->i_cluster->icl_buf = bp;
  2934. clcount = 0;
  2935. hlist_for_each_entry(iq, entry, &ip->i_cluster->icl_inodes, i_cnode) {
  2936. if (iq == ip)
  2937. continue;
  2938. /*
  2939. * Do an un-protected check to see if the inode is dirty and
  2940. * is a candidate for flushing. These checks will be repeated
  2941. * later after the appropriate locks are acquired.
  2942. */
  2943. iip = iq->i_itemp;
  2944. if ((iq->i_update_core == 0) &&
  2945. ((iip == NULL) ||
  2946. !(iip->ili_format.ilf_fields & XFS_ILOG_ALL)) &&
  2947. xfs_ipincount(iq) == 0) {
  2948. continue;
  2949. }
  2950. /*
  2951. * Try to get locks. If any are unavailable,
  2952. * then this inode cannot be flushed and is skipped.
  2953. */
  2954. /* get inode locks (just i_lock) */
  2955. if (xfs_ilock_nowait(iq, XFS_ILOCK_SHARED)) {
  2956. /* get inode flush lock */
  2957. if (xfs_iflock_nowait(iq)) {
  2958. /* check if pinned */
  2959. if (xfs_ipincount(iq) == 0) {
  2960. /* arriving here means that
  2961. * this inode can be flushed.
  2962. * first re-check that it's
  2963. * dirty
  2964. */
  2965. iip = iq->i_itemp;
  2966. if ((iq->i_update_core != 0)||
  2967. ((iip != NULL) &&
  2968. (iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
  2969. clcount++;
  2970. error = xfs_iflush_int(iq, bp);
  2971. if (error) {
  2972. xfs_iunlock(iq,
  2973. XFS_ILOCK_SHARED);
  2974. goto cluster_corrupt_out;
  2975. }
  2976. } else {
  2977. xfs_ifunlock(iq);
  2978. }
  2979. } else {
  2980. xfs_ifunlock(iq);
  2981. }
  2982. }
  2983. xfs_iunlock(iq, XFS_ILOCK_SHARED);
  2984. }
  2985. }
  2986. spin_unlock(&ip->i_cluster->icl_lock);
  2987. if (clcount) {
  2988. XFS_STATS_INC(xs_icluster_flushcnt);
  2989. XFS_STATS_ADD(xs_icluster_flushinode, clcount);
  2990. }
  2991. if (flags & INT_DELWRI) {
  2992. xfs_bdwrite(mp, bp);
  2993. } else if (flags & INT_ASYNC) {
  2994. xfs_bawrite(mp, bp);
  2995. } else {
  2996. error = xfs_bwrite(mp, bp);
  2997. }
  2998. return error;
  2999. corrupt_out:
  3000. xfs_buf_relse(bp);
  3001. xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
  3002. xfs_iflush_abort(ip);
  3003. /*
  3004. * Unlocks the flush lock
  3005. */
  3006. return XFS_ERROR(EFSCORRUPTED);
  3007. cluster_corrupt_out:
  3008. /* Corruption detected in the clustering loop. Invalidate the
  3009. * inode buffer and shut down the filesystem.
  3010. */
  3011. spin_unlock(&ip->i_cluster->icl_lock);
  3012. /*
  3013. * Clean up the buffer. If it was B_DELWRI, just release it --
  3014. * brelse can handle it with no problems. If not, shut down the
  3015. * filesystem before releasing the buffer.
  3016. */
  3017. if ((bufwasdelwri= XFS_BUF_ISDELAYWRITE(bp))) {
  3018. xfs_buf_relse(bp);
  3019. }
  3020. xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
  3021. if(!bufwasdelwri) {
  3022. /*
  3023. * Just like incore_relse: if we have b_iodone functions,
  3024. * mark the buffer as an error and call them. Otherwise
  3025. * mark it as stale and brelse.
  3026. */
  3027. if (XFS_BUF_IODONE_FUNC(bp)) {
  3028. XFS_BUF_CLR_BDSTRAT_FUNC(bp);
  3029. XFS_BUF_UNDONE(bp);
  3030. XFS_BUF_STALE(bp);
  3031. XFS_BUF_SHUT(bp);
  3032. XFS_BUF_ERROR(bp,EIO);
  3033. xfs_biodone(bp);
  3034. } else {
  3035. XFS_BUF_STALE(bp);
  3036. xfs_buf_relse(bp);
  3037. }
  3038. }
  3039. xfs_iflush_abort(iq);
  3040. /*
  3041. * Unlocks the flush lock
  3042. */
  3043. return XFS_ERROR(EFSCORRUPTED);
  3044. }
  3045. STATIC int
  3046. xfs_iflush_int(
  3047. xfs_inode_t *ip,
  3048. xfs_buf_t *bp)
  3049. {
  3050. xfs_inode_log_item_t *iip;
  3051. xfs_dinode_t *dip;
  3052. xfs_mount_t *mp;
  3053. #ifdef XFS_TRANS_DEBUG
  3054. int first;
  3055. #endif
  3056. ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
  3057. ASSERT(issemalocked(&(ip->i_flock)));
  3058. ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
  3059. ip->i_d.di_nextents > ip->i_df.if_ext_max);
  3060. iip = ip->i_itemp;
  3061. mp = ip->i_mount;
  3062. /*
  3063. * If the inode isn't dirty, then just release the inode
  3064. * flush lock and do nothing.
  3065. */
  3066. if ((ip->i_update_core == 0) &&
  3067. ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
  3068. xfs_ifunlock(ip);
  3069. return 0;
  3070. }
  3071. /* set *dip = inode's place in the buffer */
  3072. dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_boffset);
  3073. /*
  3074. * Clear i_update_core before copying out the data.
  3075. * This is for coordination with our timestamp updates
  3076. * that don't hold the inode lock. They will always
  3077. * update the timestamps BEFORE setting i_update_core,
  3078. * so if we clear i_update_core after they set it we
  3079. * are guaranteed to see their updates to the timestamps.
  3080. * I believe that this depends on strongly ordered memory
  3081. * semantics, but we have that. We use the SYNCHRONIZE
  3082. * macro to make sure that the compiler does not reorder
  3083. * the i_update_core access below the data copy below.
  3084. */
  3085. ip->i_update_core = 0;
  3086. SYNCHRONIZE();
  3087. /*
  3088. * Make sure to get the latest atime from the Linux inode.
  3089. */
  3090. xfs_synchronize_atime(ip);
  3091. if (XFS_TEST_ERROR(be16_to_cpu(dip->di_core.di_magic) != XFS_DINODE_MAGIC,
  3092. mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
  3093. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  3094. "xfs_iflush: Bad inode %Lu magic number 0x%x, ptr 0x%p",
  3095. ip->i_ino, be16_to_cpu(dip->di_core.di_magic), dip);
  3096. goto corrupt_out;
  3097. }
  3098. if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
  3099. mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
  3100. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  3101. "xfs_iflush: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
  3102. ip->i_ino, ip, ip->i_d.di_magic);
  3103. goto corrupt_out;
  3104. }
  3105. if ((ip->i_d.di_mode & S_IFMT) == S_IFREG) {
  3106. if (XFS_TEST_ERROR(
  3107. (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
  3108. (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
  3109. mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
  3110. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  3111. "xfs_iflush: Bad regular inode %Lu, ptr 0x%p",
  3112. ip->i_ino, ip);
  3113. goto corrupt_out;
  3114. }
  3115. } else if ((ip->i_d.di_mode & S_IFMT) == S_IFDIR) {
  3116. if (XFS_TEST_ERROR(
  3117. (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
  3118. (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
  3119. (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
  3120. mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
  3121. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  3122. "xfs_iflush: Bad directory inode %Lu, ptr 0x%p",
  3123. ip->i_ino, ip);
  3124. goto corrupt_out;
  3125. }
  3126. }
  3127. if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
  3128. ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
  3129. XFS_RANDOM_IFLUSH_5)) {
  3130. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  3131. "xfs_iflush: detected corrupt incore inode %Lu, total extents = %d, nblocks = %Ld, ptr 0x%p",
  3132. ip->i_ino,
  3133. ip->i_d.di_nextents + ip->i_d.di_anextents,
  3134. ip->i_d.di_nblocks,
  3135. ip);
  3136. goto corrupt_out;
  3137. }
  3138. if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
  3139. mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
  3140. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  3141. "xfs_iflush: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
  3142. ip->i_ino, ip->i_d.di_forkoff, ip);
  3143. goto corrupt_out;
  3144. }
  3145. /*
  3146. * bump the flush iteration count, used to detect flushes which
  3147. * postdate a log record during recovery.
  3148. */
  3149. ip->i_d.di_flushiter++;
  3150. /*
  3151. * Copy the dirty parts of the inode into the on-disk
  3152. * inode. We always copy out the core of the inode,
  3153. * because if the inode is dirty at all the core must
  3154. * be.
  3155. */
  3156. xfs_dinode_to_disk(&dip->di_core, &ip->i_d);
  3157. /* Wrap, we never let the log put out DI_MAX_FLUSH */
  3158. if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
  3159. ip->i_d.di_flushiter = 0;
  3160. /*
  3161. * If this is really an old format inode and the superblock version
  3162. * has not been updated to support only new format inodes, then
  3163. * convert back to the old inode format. If the superblock version
  3164. * has been updated, then make the conversion permanent.
  3165. */
  3166. ASSERT(ip->i_d.di_version == XFS_DINODE_VERSION_1 ||
  3167. xfs_sb_version_hasnlink(&mp->m_sb));
  3168. if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
  3169. if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
  3170. /*
  3171. * Convert it back.
  3172. */
  3173. ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
  3174. dip->di_core.di_onlink = cpu_to_be16(ip->i_d.di_nlink);
  3175. } else {
  3176. /*
  3177. * The superblock version has already been bumped,
  3178. * so just make the conversion to the new inode
  3179. * format permanent.
  3180. */
  3181. ip->i_d.di_version = XFS_DINODE_VERSION_2;
  3182. dip->di_core.di_version = XFS_DINODE_VERSION_2;
  3183. ip->i_d.di_onlink = 0;
  3184. dip->di_core.di_onlink = 0;
  3185. memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
  3186. memset(&(dip->di_core.di_pad[0]), 0,
  3187. sizeof(dip->di_core.di_pad));
  3188. ASSERT(ip->i_d.di_projid == 0);
  3189. }
  3190. }
  3191. if (xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp) == EFSCORRUPTED) {
  3192. goto corrupt_out;
  3193. }
  3194. if (XFS_IFORK_Q(ip)) {
  3195. /*
  3196. * The only error from xfs_iflush_fork is on the data fork.
  3197. */
  3198. (void) xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
  3199. }
  3200. xfs_inobp_check(mp, bp);
  3201. /*
  3202. * We've recorded everything logged in the inode, so we'd
  3203. * like to clear the ilf_fields bits so we don't log and
  3204. * flush things unnecessarily. However, we can't stop
  3205. * logging all this information until the data we've copied
  3206. * into the disk buffer is written to disk. If we did we might
  3207. * overwrite the copy of the inode in the log with all the
  3208. * data after re-logging only part of it, and in the face of
  3209. * a crash we wouldn't have all the data we need to recover.
  3210. *
  3211. * What we do is move the bits to the ili_last_fields field.
  3212. * When logging the inode, these bits are moved back to the
  3213. * ilf_fields field. In the xfs_iflush_done() routine we
  3214. * clear ili_last_fields, since we know that the information
  3215. * those bits represent is permanently on disk. As long as
  3216. * the flush completes before the inode is logged again, then
  3217. * both ilf_fields and ili_last_fields will be cleared.
  3218. *
  3219. * We can play with the ilf_fields bits here, because the inode
  3220. * lock must be held exclusively in order to set bits there
  3221. * and the flush lock protects the ili_last_fields bits.
  3222. * Set ili_logged so the flush done
  3223. * routine can tell whether or not to look in the AIL.
  3224. * Also, store the current LSN of the inode so that we can tell
  3225. * whether the item has moved in the AIL from xfs_iflush_done().
  3226. * In order to read the lsn we need the AIL lock, because
  3227. * it is a 64 bit value that cannot be read atomically.
  3228. */
  3229. if (iip != NULL && iip->ili_format.ilf_fields != 0) {
  3230. iip->ili_last_fields = iip->ili_format.ilf_fields;
  3231. iip->ili_format.ilf_fields = 0;
  3232. iip->ili_logged = 1;
  3233. ASSERT(sizeof(xfs_lsn_t) == 8); /* don't lock if it shrinks */
  3234. spin_lock(&mp->m_ail_lock);
  3235. iip->ili_flush_lsn = iip->ili_item.li_lsn;
  3236. spin_unlock(&mp->m_ail_lock);
  3237. /*
  3238. * Attach the function xfs_iflush_done to the inode's
  3239. * buffer. This will remove the inode from the AIL
  3240. * and unlock the inode's flush lock when the inode is
  3241. * completely written to disk.
  3242. */
  3243. xfs_buf_attach_iodone(bp, (void(*)(xfs_buf_t*,xfs_log_item_t*))
  3244. xfs_iflush_done, (xfs_log_item_t *)iip);
  3245. ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
  3246. ASSERT(XFS_BUF_IODONE_FUNC(bp) != NULL);
  3247. } else {
  3248. /*
  3249. * We're flushing an inode which is not in the AIL and has
  3250. * not been logged but has i_update_core set. For this
  3251. * case we can use a B_DELWRI flush and immediately drop
  3252. * the inode flush lock because we can avoid the whole
  3253. * AIL state thing. It's OK to drop the flush lock now,
  3254. * because we've already locked the buffer and to do anything
  3255. * you really need both.
  3256. */
  3257. if (iip != NULL) {
  3258. ASSERT(iip->ili_logged == 0);
  3259. ASSERT(iip->ili_last_fields == 0);
  3260. ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0);
  3261. }
  3262. xfs_ifunlock(ip);
  3263. }
  3264. return 0;
  3265. corrupt_out:
  3266. return XFS_ERROR(EFSCORRUPTED);
  3267. }
  3268. /*
  3269. * Flush all inactive inodes in mp.
  3270. */
  3271. void
  3272. xfs_iflush_all(
  3273. xfs_mount_t *mp)
  3274. {
  3275. xfs_inode_t *ip;
  3276. bhv_vnode_t *vp;
  3277. again:
  3278. XFS_MOUNT_ILOCK(mp);
  3279. ip = mp->m_inodes;
  3280. if (ip == NULL)
  3281. goto out;
  3282. do {
  3283. /* Make sure we skip markers inserted by sync */
  3284. if (ip->i_mount == NULL) {
  3285. ip = ip->i_mnext;
  3286. continue;
  3287. }
  3288. vp = XFS_ITOV_NULL(ip);
  3289. if (!vp) {
  3290. XFS_MOUNT_IUNLOCK(mp);
  3291. xfs_finish_reclaim(ip, 0, XFS_IFLUSH_ASYNC);
  3292. goto again;
  3293. }
  3294. ASSERT(vn_count(vp) == 0);
  3295. ip = ip->i_mnext;
  3296. } while (ip != mp->m_inodes);
  3297. out:
  3298. XFS_MOUNT_IUNLOCK(mp);
  3299. }
  3300. #ifdef XFS_ILOCK_TRACE
  3301. ktrace_t *xfs_ilock_trace_buf;
  3302. void
  3303. xfs_ilock_trace(xfs_inode_t *ip, int lock, unsigned int lockflags, inst_t *ra)
  3304. {
  3305. ktrace_enter(ip->i_lock_trace,
  3306. (void *)ip,
  3307. (void *)(unsigned long)lock, /* 1 = LOCK, 3=UNLOCK, etc */
  3308. (void *)(unsigned long)lockflags, /* XFS_ILOCK_EXCL etc */
  3309. (void *)ra, /* caller of ilock */
  3310. (void *)(unsigned long)current_cpu(),
  3311. (void *)(unsigned long)current_pid(),
  3312. NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL);
  3313. }
  3314. #endif
  3315. /*
  3316. * Return a pointer to the extent record at file index idx.
  3317. */
  3318. xfs_bmbt_rec_host_t *
  3319. xfs_iext_get_ext(
  3320. xfs_ifork_t *ifp, /* inode fork pointer */
  3321. xfs_extnum_t idx) /* index of target extent */
  3322. {
  3323. ASSERT(idx >= 0);
  3324. if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) {
  3325. return ifp->if_u1.if_ext_irec->er_extbuf;
  3326. } else if (ifp->if_flags & XFS_IFEXTIREC) {
  3327. xfs_ext_irec_t *erp; /* irec pointer */
  3328. int erp_idx = 0; /* irec index */
  3329. xfs_extnum_t page_idx = idx; /* ext index in target list */
  3330. erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
  3331. return &erp->er_extbuf[page_idx];
  3332. } else if (ifp->if_bytes) {
  3333. return &ifp->if_u1.if_extents[idx];
  3334. } else {
  3335. return NULL;
  3336. }
  3337. }
  3338. /*
  3339. * Insert new item(s) into the extent records for incore inode
  3340. * fork 'ifp'. 'count' new items are inserted at index 'idx'.
  3341. */
  3342. void
  3343. xfs_iext_insert(
  3344. xfs_ifork_t *ifp, /* inode fork pointer */
  3345. xfs_extnum_t idx, /* starting index of new items */
  3346. xfs_extnum_t count, /* number of inserted items */
  3347. xfs_bmbt_irec_t *new) /* items to insert */
  3348. {
  3349. xfs_extnum_t i; /* extent record index */
  3350. ASSERT(ifp->if_flags & XFS_IFEXTENTS);
  3351. xfs_iext_add(ifp, idx, count);
  3352. for (i = idx; i < idx + count; i++, new++)
  3353. xfs_bmbt_set_all(xfs_iext_get_ext(ifp, i), new);
  3354. }
  3355. /*
  3356. * This is called when the amount of space required for incore file
  3357. * extents needs to be increased. The ext_diff parameter stores the
  3358. * number of new extents being added and the idx parameter contains
  3359. * the extent index where the new extents will be added. If the new
  3360. * extents are being appended, then we just need to (re)allocate and
  3361. * initialize the space. Otherwise, if the new extents are being
  3362. * inserted into the middle of the existing entries, a bit more work
  3363. * is required to make room for the new extents to be inserted. The
  3364. * caller is responsible for filling in the new extent entries upon
  3365. * return.
  3366. */
  3367. void
  3368. xfs_iext_add(
  3369. xfs_ifork_t *ifp, /* inode fork pointer */
  3370. xfs_extnum_t idx, /* index to begin adding exts */
  3371. int ext_diff) /* number of extents to add */
  3372. {
  3373. int byte_diff; /* new bytes being added */
  3374. int new_size; /* size of extents after adding */
  3375. xfs_extnum_t nextents; /* number of extents in file */
  3376. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3377. ASSERT((idx >= 0) && (idx <= nextents));
  3378. byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t);
  3379. new_size = ifp->if_bytes + byte_diff;
  3380. /*
  3381. * If the new number of extents (nextents + ext_diff)
  3382. * fits inside the inode, then continue to use the inline
  3383. * extent buffer.
  3384. */
  3385. if (nextents + ext_diff <= XFS_INLINE_EXTS) {
  3386. if (idx < nextents) {
  3387. memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff],
  3388. &ifp->if_u2.if_inline_ext[idx],
  3389. (nextents - idx) * sizeof(xfs_bmbt_rec_t));
  3390. memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff);
  3391. }
  3392. ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
  3393. ifp->if_real_bytes = 0;
  3394. ifp->if_lastex = nextents + ext_diff;
  3395. }
  3396. /*
  3397. * Otherwise use a linear (direct) extent list.
  3398. * If the extents are currently inside the inode,
  3399. * xfs_iext_realloc_direct will switch us from
  3400. * inline to direct extent allocation mode.
  3401. */
  3402. else if (nextents + ext_diff <= XFS_LINEAR_EXTS) {
  3403. xfs_iext_realloc_direct(ifp, new_size);
  3404. if (idx < nextents) {
  3405. memmove(&ifp->if_u1.if_extents[idx + ext_diff],
  3406. &ifp->if_u1.if_extents[idx],
  3407. (nextents - idx) * sizeof(xfs_bmbt_rec_t));
  3408. memset(&ifp->if_u1.if_extents[idx], 0, byte_diff);
  3409. }
  3410. }
  3411. /* Indirection array */
  3412. else {
  3413. xfs_ext_irec_t *erp;
  3414. int erp_idx = 0;
  3415. int page_idx = idx;
  3416. ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS);
  3417. if (ifp->if_flags & XFS_IFEXTIREC) {
  3418. erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1);
  3419. } else {
  3420. xfs_iext_irec_init(ifp);
  3421. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3422. erp = ifp->if_u1.if_ext_irec;
  3423. }
  3424. /* Extents fit in target extent page */
  3425. if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) {
  3426. if (page_idx < erp->er_extcount) {
  3427. memmove(&erp->er_extbuf[page_idx + ext_diff],
  3428. &erp->er_extbuf[page_idx],
  3429. (erp->er_extcount - page_idx) *
  3430. sizeof(xfs_bmbt_rec_t));
  3431. memset(&erp->er_extbuf[page_idx], 0, byte_diff);
  3432. }
  3433. erp->er_extcount += ext_diff;
  3434. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
  3435. }
  3436. /* Insert a new extent page */
  3437. else if (erp) {
  3438. xfs_iext_add_indirect_multi(ifp,
  3439. erp_idx, page_idx, ext_diff);
  3440. }
  3441. /*
  3442. * If extent(s) are being appended to the last page in
  3443. * the indirection array and the new extent(s) don't fit
  3444. * in the page, then erp is NULL and erp_idx is set to
  3445. * the next index needed in the indirection array.
  3446. */
  3447. else {
  3448. int count = ext_diff;
  3449. while (count) {
  3450. erp = xfs_iext_irec_new(ifp, erp_idx);
  3451. erp->er_extcount = count;
  3452. count -= MIN(count, (int)XFS_LINEAR_EXTS);
  3453. if (count) {
  3454. erp_idx++;
  3455. }
  3456. }
  3457. }
  3458. }
  3459. ifp->if_bytes = new_size;
  3460. }
  3461. /*
  3462. * This is called when incore extents are being added to the indirection
  3463. * array and the new extents do not fit in the target extent list. The
  3464. * erp_idx parameter contains the irec index for the target extent list
  3465. * in the indirection array, and the idx parameter contains the extent
  3466. * index within the list. The number of extents being added is stored
  3467. * in the count parameter.
  3468. *
  3469. * |-------| |-------|
  3470. * | | | | idx - number of extents before idx
  3471. * | idx | | count |
  3472. * | | | | count - number of extents being inserted at idx
  3473. * |-------| |-------|
  3474. * | count | | nex2 | nex2 - number of extents after idx + count
  3475. * |-------| |-------|
  3476. */
  3477. void
  3478. xfs_iext_add_indirect_multi(
  3479. xfs_ifork_t *ifp, /* inode fork pointer */
  3480. int erp_idx, /* target extent irec index */
  3481. xfs_extnum_t idx, /* index within target list */
  3482. int count) /* new extents being added */
  3483. {
  3484. int byte_diff; /* new bytes being added */
  3485. xfs_ext_irec_t *erp; /* pointer to irec entry */
  3486. xfs_extnum_t ext_diff; /* number of extents to add */
  3487. xfs_extnum_t ext_cnt; /* new extents still needed */
  3488. xfs_extnum_t nex2; /* extents after idx + count */
  3489. xfs_bmbt_rec_t *nex2_ep = NULL; /* temp list for nex2 extents */
  3490. int nlists; /* number of irec's (lists) */
  3491. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3492. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  3493. nex2 = erp->er_extcount - idx;
  3494. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3495. /*
  3496. * Save second part of target extent list
  3497. * (all extents past */
  3498. if (nex2) {
  3499. byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
  3500. nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_SLEEP);
  3501. memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff);
  3502. erp->er_extcount -= nex2;
  3503. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2);
  3504. memset(&erp->er_extbuf[idx], 0, byte_diff);
  3505. }
  3506. /*
  3507. * Add the new extents to the end of the target
  3508. * list, then allocate new irec record(s) and
  3509. * extent buffer(s) as needed to store the rest
  3510. * of the new extents.
  3511. */
  3512. ext_cnt = count;
  3513. ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount);
  3514. if (ext_diff) {
  3515. erp->er_extcount += ext_diff;
  3516. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
  3517. ext_cnt -= ext_diff;
  3518. }
  3519. while (ext_cnt) {
  3520. erp_idx++;
  3521. erp = xfs_iext_irec_new(ifp, erp_idx);
  3522. ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS);
  3523. erp->er_extcount = ext_diff;
  3524. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
  3525. ext_cnt -= ext_diff;
  3526. }
  3527. /* Add nex2 extents back to indirection array */
  3528. if (nex2) {
  3529. xfs_extnum_t ext_avail;
  3530. int i;
  3531. byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
  3532. ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
  3533. i = 0;
  3534. /*
  3535. * If nex2 extents fit in the current page, append
  3536. * nex2_ep after the new extents.
  3537. */
  3538. if (nex2 <= ext_avail) {
  3539. i = erp->er_extcount;
  3540. }
  3541. /*
  3542. * Otherwise, check if space is available in the
  3543. * next page.
  3544. */
  3545. else if ((erp_idx < nlists - 1) &&
  3546. (nex2 <= (ext_avail = XFS_LINEAR_EXTS -
  3547. ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) {
  3548. erp_idx++;
  3549. erp++;
  3550. /* Create a hole for nex2 extents */
  3551. memmove(&erp->er_extbuf[nex2], erp->er_extbuf,
  3552. erp->er_extcount * sizeof(xfs_bmbt_rec_t));
  3553. }
  3554. /*
  3555. * Final choice, create a new extent page for
  3556. * nex2 extents.
  3557. */
  3558. else {
  3559. erp_idx++;
  3560. erp = xfs_iext_irec_new(ifp, erp_idx);
  3561. }
  3562. memmove(&erp->er_extbuf[i], nex2_ep, byte_diff);
  3563. kmem_free(nex2_ep, byte_diff);
  3564. erp->er_extcount += nex2;
  3565. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2);
  3566. }
  3567. }
  3568. /*
  3569. * This is called when the amount of space required for incore file
  3570. * extents needs to be decreased. The ext_diff parameter stores the
  3571. * number of extents to be removed and the idx parameter contains
  3572. * the extent index where the extents will be removed from.
  3573. *
  3574. * If the amount of space needed has decreased below the linear
  3575. * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
  3576. * extent array. Otherwise, use kmem_realloc() to adjust the
  3577. * size to what is needed.
  3578. */
  3579. void
  3580. xfs_iext_remove(
  3581. xfs_ifork_t *ifp, /* inode fork pointer */
  3582. xfs_extnum_t idx, /* index to begin removing exts */
  3583. int ext_diff) /* number of extents to remove */
  3584. {
  3585. xfs_extnum_t nextents; /* number of extents in file */
  3586. int new_size; /* size of extents after removal */
  3587. ASSERT(ext_diff > 0);
  3588. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3589. new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t);
  3590. if (new_size == 0) {
  3591. xfs_iext_destroy(ifp);
  3592. } else if (ifp->if_flags & XFS_IFEXTIREC) {
  3593. xfs_iext_remove_indirect(ifp, idx, ext_diff);
  3594. } else if (ifp->if_real_bytes) {
  3595. xfs_iext_remove_direct(ifp, idx, ext_diff);
  3596. } else {
  3597. xfs_iext_remove_inline(ifp, idx, ext_diff);
  3598. }
  3599. ifp->if_bytes = new_size;
  3600. }
  3601. /*
  3602. * This removes ext_diff extents from the inline buffer, beginning
  3603. * at extent index idx.
  3604. */
  3605. void
  3606. xfs_iext_remove_inline(
  3607. xfs_ifork_t *ifp, /* inode fork pointer */
  3608. xfs_extnum_t idx, /* index to begin removing exts */
  3609. int ext_diff) /* number of extents to remove */
  3610. {
  3611. int nextents; /* number of extents in file */
  3612. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
  3613. ASSERT(idx < XFS_INLINE_EXTS);
  3614. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3615. ASSERT(((nextents - ext_diff) > 0) &&
  3616. (nextents - ext_diff) < XFS_INLINE_EXTS);
  3617. if (idx + ext_diff < nextents) {
  3618. memmove(&ifp->if_u2.if_inline_ext[idx],
  3619. &ifp->if_u2.if_inline_ext[idx + ext_diff],
  3620. (nextents - (idx + ext_diff)) *
  3621. sizeof(xfs_bmbt_rec_t));
  3622. memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff],
  3623. 0, ext_diff * sizeof(xfs_bmbt_rec_t));
  3624. } else {
  3625. memset(&ifp->if_u2.if_inline_ext[idx], 0,
  3626. ext_diff * sizeof(xfs_bmbt_rec_t));
  3627. }
  3628. }
  3629. /*
  3630. * This removes ext_diff extents from a linear (direct) extent list,
  3631. * beginning at extent index idx. If the extents are being removed
  3632. * from the end of the list (ie. truncate) then we just need to re-
  3633. * allocate the list to remove the extra space. Otherwise, if the
  3634. * extents are being removed from the middle of the existing extent
  3635. * entries, then we first need to move the extent records beginning
  3636. * at idx + ext_diff up in the list to overwrite the records being
  3637. * removed, then remove the extra space via kmem_realloc.
  3638. */
  3639. void
  3640. xfs_iext_remove_direct(
  3641. xfs_ifork_t *ifp, /* inode fork pointer */
  3642. xfs_extnum_t idx, /* index to begin removing exts */
  3643. int ext_diff) /* number of extents to remove */
  3644. {
  3645. xfs_extnum_t nextents; /* number of extents in file */
  3646. int new_size; /* size of extents after removal */
  3647. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
  3648. new_size = ifp->if_bytes -
  3649. (ext_diff * sizeof(xfs_bmbt_rec_t));
  3650. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3651. if (new_size == 0) {
  3652. xfs_iext_destroy(ifp);
  3653. return;
  3654. }
  3655. /* Move extents up in the list (if needed) */
  3656. if (idx + ext_diff < nextents) {
  3657. memmove(&ifp->if_u1.if_extents[idx],
  3658. &ifp->if_u1.if_extents[idx + ext_diff],
  3659. (nextents - (idx + ext_diff)) *
  3660. sizeof(xfs_bmbt_rec_t));
  3661. }
  3662. memset(&ifp->if_u1.if_extents[nextents - ext_diff],
  3663. 0, ext_diff * sizeof(xfs_bmbt_rec_t));
  3664. /*
  3665. * Reallocate the direct extent list. If the extents
  3666. * will fit inside the inode then xfs_iext_realloc_direct
  3667. * will switch from direct to inline extent allocation
  3668. * mode for us.
  3669. */
  3670. xfs_iext_realloc_direct(ifp, new_size);
  3671. ifp->if_bytes = new_size;
  3672. }
  3673. /*
  3674. * This is called when incore extents are being removed from the
  3675. * indirection array and the extents being removed span multiple extent
  3676. * buffers. The idx parameter contains the file extent index where we
  3677. * want to begin removing extents, and the count parameter contains
  3678. * how many extents need to be removed.
  3679. *
  3680. * |-------| |-------|
  3681. * | nex1 | | | nex1 - number of extents before idx
  3682. * |-------| | count |
  3683. * | | | | count - number of extents being removed at idx
  3684. * | count | |-------|
  3685. * | | | nex2 | nex2 - number of extents after idx + count
  3686. * |-------| |-------|
  3687. */
  3688. void
  3689. xfs_iext_remove_indirect(
  3690. xfs_ifork_t *ifp, /* inode fork pointer */
  3691. xfs_extnum_t idx, /* index to begin removing extents */
  3692. int count) /* number of extents to remove */
  3693. {
  3694. xfs_ext_irec_t *erp; /* indirection array pointer */
  3695. int erp_idx = 0; /* indirection array index */
  3696. xfs_extnum_t ext_cnt; /* extents left to remove */
  3697. xfs_extnum_t ext_diff; /* extents to remove in current list */
  3698. xfs_extnum_t nex1; /* number of extents before idx */
  3699. xfs_extnum_t nex2; /* extents after idx + count */
  3700. int nlists; /* entries in indirection array */
  3701. int page_idx = idx; /* index in target extent list */
  3702. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3703. erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
  3704. ASSERT(erp != NULL);
  3705. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3706. nex1 = page_idx;
  3707. ext_cnt = count;
  3708. while (ext_cnt) {
  3709. nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0);
  3710. ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1));
  3711. /*
  3712. * Check for deletion of entire list;
  3713. * xfs_iext_irec_remove() updates extent offsets.
  3714. */
  3715. if (ext_diff == erp->er_extcount) {
  3716. xfs_iext_irec_remove(ifp, erp_idx);
  3717. ext_cnt -= ext_diff;
  3718. nex1 = 0;
  3719. if (ext_cnt) {
  3720. ASSERT(erp_idx < ifp->if_real_bytes /
  3721. XFS_IEXT_BUFSZ);
  3722. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  3723. nex1 = 0;
  3724. continue;
  3725. } else {
  3726. break;
  3727. }
  3728. }
  3729. /* Move extents up (if needed) */
  3730. if (nex2) {
  3731. memmove(&erp->er_extbuf[nex1],
  3732. &erp->er_extbuf[nex1 + ext_diff],
  3733. nex2 * sizeof(xfs_bmbt_rec_t));
  3734. }
  3735. /* Zero out rest of page */
  3736. memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ -
  3737. ((nex1 + nex2) * sizeof(xfs_bmbt_rec_t))));
  3738. /* Update remaining counters */
  3739. erp->er_extcount -= ext_diff;
  3740. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff);
  3741. ext_cnt -= ext_diff;
  3742. nex1 = 0;
  3743. erp_idx++;
  3744. erp++;
  3745. }
  3746. ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t);
  3747. xfs_iext_irec_compact(ifp);
  3748. }
  3749. /*
  3750. * Create, destroy, or resize a linear (direct) block of extents.
  3751. */
  3752. void
  3753. xfs_iext_realloc_direct(
  3754. xfs_ifork_t *ifp, /* inode fork pointer */
  3755. int new_size) /* new size of extents */
  3756. {
  3757. int rnew_size; /* real new size of extents */
  3758. rnew_size = new_size;
  3759. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) ||
  3760. ((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) &&
  3761. (new_size != ifp->if_real_bytes)));
  3762. /* Free extent records */
  3763. if (new_size == 0) {
  3764. xfs_iext_destroy(ifp);
  3765. }
  3766. /* Resize direct extent list and zero any new bytes */
  3767. else if (ifp->if_real_bytes) {
  3768. /* Check if extents will fit inside the inode */
  3769. if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) {
  3770. xfs_iext_direct_to_inline(ifp, new_size /
  3771. (uint)sizeof(xfs_bmbt_rec_t));
  3772. ifp->if_bytes = new_size;
  3773. return;
  3774. }
  3775. if (!is_power_of_2(new_size)){
  3776. rnew_size = roundup_pow_of_two(new_size);
  3777. }
  3778. if (rnew_size != ifp->if_real_bytes) {
  3779. ifp->if_u1.if_extents =
  3780. kmem_realloc(ifp->if_u1.if_extents,
  3781. rnew_size,
  3782. ifp->if_real_bytes,
  3783. KM_SLEEP);
  3784. }
  3785. if (rnew_size > ifp->if_real_bytes) {
  3786. memset(&ifp->if_u1.if_extents[ifp->if_bytes /
  3787. (uint)sizeof(xfs_bmbt_rec_t)], 0,
  3788. rnew_size - ifp->if_real_bytes);
  3789. }
  3790. }
  3791. /*
  3792. * Switch from the inline extent buffer to a direct
  3793. * extent list. Be sure to include the inline extent
  3794. * bytes in new_size.
  3795. */
  3796. else {
  3797. new_size += ifp->if_bytes;
  3798. if (!is_power_of_2(new_size)) {
  3799. rnew_size = roundup_pow_of_two(new_size);
  3800. }
  3801. xfs_iext_inline_to_direct(ifp, rnew_size);
  3802. }
  3803. ifp->if_real_bytes = rnew_size;
  3804. ifp->if_bytes = new_size;
  3805. }
  3806. /*
  3807. * Switch from linear (direct) extent records to inline buffer.
  3808. */
  3809. void
  3810. xfs_iext_direct_to_inline(
  3811. xfs_ifork_t *ifp, /* inode fork pointer */
  3812. xfs_extnum_t nextents) /* number of extents in file */
  3813. {
  3814. ASSERT(ifp->if_flags & XFS_IFEXTENTS);
  3815. ASSERT(nextents <= XFS_INLINE_EXTS);
  3816. /*
  3817. * The inline buffer was zeroed when we switched
  3818. * from inline to direct extent allocation mode,
  3819. * so we don't need to clear it here.
  3820. */
  3821. memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents,
  3822. nextents * sizeof(xfs_bmbt_rec_t));
  3823. kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes);
  3824. ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
  3825. ifp->if_real_bytes = 0;
  3826. }
  3827. /*
  3828. * Switch from inline buffer to linear (direct) extent records.
  3829. * new_size should already be rounded up to the next power of 2
  3830. * by the caller (when appropriate), so use new_size as it is.
  3831. * However, since new_size may be rounded up, we can't update
  3832. * if_bytes here. It is the caller's responsibility to update
  3833. * if_bytes upon return.
  3834. */
  3835. void
  3836. xfs_iext_inline_to_direct(
  3837. xfs_ifork_t *ifp, /* inode fork pointer */
  3838. int new_size) /* number of extents in file */
  3839. {
  3840. ifp->if_u1.if_extents = kmem_alloc(new_size, KM_SLEEP);
  3841. memset(ifp->if_u1.if_extents, 0, new_size);
  3842. if (ifp->if_bytes) {
  3843. memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext,
  3844. ifp->if_bytes);
  3845. memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
  3846. sizeof(xfs_bmbt_rec_t));
  3847. }
  3848. ifp->if_real_bytes = new_size;
  3849. }
  3850. /*
  3851. * Resize an extent indirection array to new_size bytes.
  3852. */
  3853. void
  3854. xfs_iext_realloc_indirect(
  3855. xfs_ifork_t *ifp, /* inode fork pointer */
  3856. int new_size) /* new indirection array size */
  3857. {
  3858. int nlists; /* number of irec's (ex lists) */
  3859. int size; /* current indirection array size */
  3860. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3861. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3862. size = nlists * sizeof(xfs_ext_irec_t);
  3863. ASSERT(ifp->if_real_bytes);
  3864. ASSERT((new_size >= 0) && (new_size != size));
  3865. if (new_size == 0) {
  3866. xfs_iext_destroy(ifp);
  3867. } else {
  3868. ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *)
  3869. kmem_realloc(ifp->if_u1.if_ext_irec,
  3870. new_size, size, KM_SLEEP);
  3871. }
  3872. }
  3873. /*
  3874. * Switch from indirection array to linear (direct) extent allocations.
  3875. */
  3876. void
  3877. xfs_iext_indirect_to_direct(
  3878. xfs_ifork_t *ifp) /* inode fork pointer */
  3879. {
  3880. xfs_bmbt_rec_host_t *ep; /* extent record pointer */
  3881. xfs_extnum_t nextents; /* number of extents in file */
  3882. int size; /* size of file extents */
  3883. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3884. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3885. ASSERT(nextents <= XFS_LINEAR_EXTS);
  3886. size = nextents * sizeof(xfs_bmbt_rec_t);
  3887. xfs_iext_irec_compact_full(ifp);
  3888. ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ);
  3889. ep = ifp->if_u1.if_ext_irec->er_extbuf;
  3890. kmem_free(ifp->if_u1.if_ext_irec, sizeof(xfs_ext_irec_t));
  3891. ifp->if_flags &= ~XFS_IFEXTIREC;
  3892. ifp->if_u1.if_extents = ep;
  3893. ifp->if_bytes = size;
  3894. if (nextents < XFS_LINEAR_EXTS) {
  3895. xfs_iext_realloc_direct(ifp, size);
  3896. }
  3897. }
  3898. /*
  3899. * Free incore file extents.
  3900. */
  3901. void
  3902. xfs_iext_destroy(
  3903. xfs_ifork_t *ifp) /* inode fork pointer */
  3904. {
  3905. if (ifp->if_flags & XFS_IFEXTIREC) {
  3906. int erp_idx;
  3907. int nlists;
  3908. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3909. for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) {
  3910. xfs_iext_irec_remove(ifp, erp_idx);
  3911. }
  3912. ifp->if_flags &= ~XFS_IFEXTIREC;
  3913. } else if (ifp->if_real_bytes) {
  3914. kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes);
  3915. } else if (ifp->if_bytes) {
  3916. memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
  3917. sizeof(xfs_bmbt_rec_t));
  3918. }
  3919. ifp->if_u1.if_extents = NULL;
  3920. ifp->if_real_bytes = 0;
  3921. ifp->if_bytes = 0;
  3922. }
  3923. /*
  3924. * Return a pointer to the extent record for file system block bno.
  3925. */
  3926. xfs_bmbt_rec_host_t * /* pointer to found extent record */
  3927. xfs_iext_bno_to_ext(
  3928. xfs_ifork_t *ifp, /* inode fork pointer */
  3929. xfs_fileoff_t bno, /* block number to search for */
  3930. xfs_extnum_t *idxp) /* index of target extent */
  3931. {
  3932. xfs_bmbt_rec_host_t *base; /* pointer to first extent */
  3933. xfs_filblks_t blockcount = 0; /* number of blocks in extent */
  3934. xfs_bmbt_rec_host_t *ep = NULL; /* pointer to target extent */
  3935. xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
  3936. int high; /* upper boundary in search */
  3937. xfs_extnum_t idx = 0; /* index of target extent */
  3938. int low; /* lower boundary in search */
  3939. xfs_extnum_t nextents; /* number of file extents */
  3940. xfs_fileoff_t startoff = 0; /* start offset of extent */
  3941. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3942. if (nextents == 0) {
  3943. *idxp = 0;
  3944. return NULL;
  3945. }
  3946. low = 0;
  3947. if (ifp->if_flags & XFS_IFEXTIREC) {
  3948. /* Find target extent list */
  3949. int erp_idx = 0;
  3950. erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx);
  3951. base = erp->er_extbuf;
  3952. high = erp->er_extcount - 1;
  3953. } else {
  3954. base = ifp->if_u1.if_extents;
  3955. high = nextents - 1;
  3956. }
  3957. /* Binary search extent records */
  3958. while (low <= high) {
  3959. idx = (low + high) >> 1;
  3960. ep = base + idx;
  3961. startoff = xfs_bmbt_get_startoff(ep);
  3962. blockcount = xfs_bmbt_get_blockcount(ep);
  3963. if (bno < startoff) {
  3964. high = idx - 1;
  3965. } else if (bno >= startoff + blockcount) {
  3966. low = idx + 1;
  3967. } else {
  3968. /* Convert back to file-based extent index */
  3969. if (ifp->if_flags & XFS_IFEXTIREC) {
  3970. idx += erp->er_extoff;
  3971. }
  3972. *idxp = idx;
  3973. return ep;
  3974. }
  3975. }
  3976. /* Convert back to file-based extent index */
  3977. if (ifp->if_flags & XFS_IFEXTIREC) {
  3978. idx += erp->er_extoff;
  3979. }
  3980. if (bno >= startoff + blockcount) {
  3981. if (++idx == nextents) {
  3982. ep = NULL;
  3983. } else {
  3984. ep = xfs_iext_get_ext(ifp, idx);
  3985. }
  3986. }
  3987. *idxp = idx;
  3988. return ep;
  3989. }
  3990. /*
  3991. * Return a pointer to the indirection array entry containing the
  3992. * extent record for filesystem block bno. Store the index of the
  3993. * target irec in *erp_idxp.
  3994. */
  3995. xfs_ext_irec_t * /* pointer to found extent record */
  3996. xfs_iext_bno_to_irec(
  3997. xfs_ifork_t *ifp, /* inode fork pointer */
  3998. xfs_fileoff_t bno, /* block number to search for */
  3999. int *erp_idxp) /* irec index of target ext list */
  4000. {
  4001. xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
  4002. xfs_ext_irec_t *erp_next; /* next indirection array entry */
  4003. int erp_idx; /* indirection array index */
  4004. int nlists; /* number of extent irec's (lists) */
  4005. int high; /* binary search upper limit */
  4006. int low; /* binary search lower limit */
  4007. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4008. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4009. erp_idx = 0;
  4010. low = 0;
  4011. high = nlists - 1;
  4012. while (low <= high) {
  4013. erp_idx = (low + high) >> 1;
  4014. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  4015. erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL;
  4016. if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) {
  4017. high = erp_idx - 1;
  4018. } else if (erp_next && bno >=
  4019. xfs_bmbt_get_startoff(erp_next->er_extbuf)) {
  4020. low = erp_idx + 1;
  4021. } else {
  4022. break;
  4023. }
  4024. }
  4025. *erp_idxp = erp_idx;
  4026. return erp;
  4027. }
  4028. /*
  4029. * Return a pointer to the indirection array entry containing the
  4030. * extent record at file extent index *idxp. Store the index of the
  4031. * target irec in *erp_idxp and store the page index of the target
  4032. * extent record in *idxp.
  4033. */
  4034. xfs_ext_irec_t *
  4035. xfs_iext_idx_to_irec(
  4036. xfs_ifork_t *ifp, /* inode fork pointer */
  4037. xfs_extnum_t *idxp, /* extent index (file -> page) */
  4038. int *erp_idxp, /* pointer to target irec */
  4039. int realloc) /* new bytes were just added */
  4040. {
  4041. xfs_ext_irec_t *prev; /* pointer to previous irec */
  4042. xfs_ext_irec_t *erp = NULL; /* pointer to current irec */
  4043. int erp_idx; /* indirection array index */
  4044. int nlists; /* number of irec's (ex lists) */
  4045. int high; /* binary search upper limit */
  4046. int low; /* binary search lower limit */
  4047. xfs_extnum_t page_idx = *idxp; /* extent index in target list */
  4048. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4049. ASSERT(page_idx >= 0 && page_idx <=
  4050. ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t));
  4051. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4052. erp_idx = 0;
  4053. low = 0;
  4054. high = nlists - 1;
  4055. /* Binary search extent irec's */
  4056. while (low <= high) {
  4057. erp_idx = (low + high) >> 1;
  4058. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  4059. prev = erp_idx > 0 ? erp - 1 : NULL;
  4060. if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff &&
  4061. realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) {
  4062. high = erp_idx - 1;
  4063. } else if (page_idx > erp->er_extoff + erp->er_extcount ||
  4064. (page_idx == erp->er_extoff + erp->er_extcount &&
  4065. !realloc)) {
  4066. low = erp_idx + 1;
  4067. } else if (page_idx == erp->er_extoff + erp->er_extcount &&
  4068. erp->er_extcount == XFS_LINEAR_EXTS) {
  4069. ASSERT(realloc);
  4070. page_idx = 0;
  4071. erp_idx++;
  4072. erp = erp_idx < nlists ? erp + 1 : NULL;
  4073. break;
  4074. } else {
  4075. page_idx -= erp->er_extoff;
  4076. break;
  4077. }
  4078. }
  4079. *idxp = page_idx;
  4080. *erp_idxp = erp_idx;
  4081. return(erp);
  4082. }
  4083. /*
  4084. * Allocate and initialize an indirection array once the space needed
  4085. * for incore extents increases above XFS_IEXT_BUFSZ.
  4086. */
  4087. void
  4088. xfs_iext_irec_init(
  4089. xfs_ifork_t *ifp) /* inode fork pointer */
  4090. {
  4091. xfs_ext_irec_t *erp; /* indirection array pointer */
  4092. xfs_extnum_t nextents; /* number of extents in file */
  4093. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
  4094. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  4095. ASSERT(nextents <= XFS_LINEAR_EXTS);
  4096. erp = (xfs_ext_irec_t *)
  4097. kmem_alloc(sizeof(xfs_ext_irec_t), KM_SLEEP);
  4098. if (nextents == 0) {
  4099. ifp->if_u1.if_extents = kmem_alloc(XFS_IEXT_BUFSZ, KM_SLEEP);
  4100. } else if (!ifp->if_real_bytes) {
  4101. xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ);
  4102. } else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) {
  4103. xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ);
  4104. }
  4105. erp->er_extbuf = ifp->if_u1.if_extents;
  4106. erp->er_extcount = nextents;
  4107. erp->er_extoff = 0;
  4108. ifp->if_flags |= XFS_IFEXTIREC;
  4109. ifp->if_real_bytes = XFS_IEXT_BUFSZ;
  4110. ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t);
  4111. ifp->if_u1.if_ext_irec = erp;
  4112. return;
  4113. }
  4114. /*
  4115. * Allocate and initialize a new entry in the indirection array.
  4116. */
  4117. xfs_ext_irec_t *
  4118. xfs_iext_irec_new(
  4119. xfs_ifork_t *ifp, /* inode fork pointer */
  4120. int erp_idx) /* index for new irec */
  4121. {
  4122. xfs_ext_irec_t *erp; /* indirection array pointer */
  4123. int i; /* loop counter */
  4124. int nlists; /* number of irec's (ex lists) */
  4125. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4126. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4127. /* Resize indirection array */
  4128. xfs_iext_realloc_indirect(ifp, ++nlists *
  4129. sizeof(xfs_ext_irec_t));
  4130. /*
  4131. * Move records down in the array so the
  4132. * new page can use erp_idx.
  4133. */
  4134. erp = ifp->if_u1.if_ext_irec;
  4135. for (i = nlists - 1; i > erp_idx; i--) {
  4136. memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t));
  4137. }
  4138. ASSERT(i == erp_idx);
  4139. /* Initialize new extent record */
  4140. erp = ifp->if_u1.if_ext_irec;
  4141. erp[erp_idx].er_extbuf = kmem_alloc(XFS_IEXT_BUFSZ, KM_SLEEP);
  4142. ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
  4143. memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ);
  4144. erp[erp_idx].er_extcount = 0;
  4145. erp[erp_idx].er_extoff = erp_idx > 0 ?
  4146. erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0;
  4147. return (&erp[erp_idx]);
  4148. }
  4149. /*
  4150. * Remove a record from the indirection array.
  4151. */
  4152. void
  4153. xfs_iext_irec_remove(
  4154. xfs_ifork_t *ifp, /* inode fork pointer */
  4155. int erp_idx) /* irec index to remove */
  4156. {
  4157. xfs_ext_irec_t *erp; /* indirection array pointer */
  4158. int i; /* loop counter */
  4159. int nlists; /* number of irec's (ex lists) */
  4160. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4161. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4162. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  4163. if (erp->er_extbuf) {
  4164. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1,
  4165. -erp->er_extcount);
  4166. kmem_free(erp->er_extbuf, XFS_IEXT_BUFSZ);
  4167. }
  4168. /* Compact extent records */
  4169. erp = ifp->if_u1.if_ext_irec;
  4170. for (i = erp_idx; i < nlists - 1; i++) {
  4171. memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t));
  4172. }
  4173. /*
  4174. * Manually free the last extent record from the indirection
  4175. * array. A call to xfs_iext_realloc_indirect() with a size
  4176. * of zero would result in a call to xfs_iext_destroy() which
  4177. * would in turn call this function again, creating a nasty
  4178. * infinite loop.
  4179. */
  4180. if (--nlists) {
  4181. xfs_iext_realloc_indirect(ifp,
  4182. nlists * sizeof(xfs_ext_irec_t));
  4183. } else {
  4184. kmem_free(ifp->if_u1.if_ext_irec,
  4185. sizeof(xfs_ext_irec_t));
  4186. }
  4187. ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
  4188. }
  4189. /*
  4190. * This is called to clean up large amounts of unused memory allocated
  4191. * by the indirection array. Before compacting anything though, verify
  4192. * that the indirection array is still needed and switch back to the
  4193. * linear extent list (or even the inline buffer) if possible. The
  4194. * compaction policy is as follows:
  4195. *
  4196. * Full Compaction: Extents fit into a single page (or inline buffer)
  4197. * Full Compaction: Extents occupy less than 10% of allocated space
  4198. * Partial Compaction: Extents occupy > 10% and < 50% of allocated space
  4199. * No Compaction: Extents occupy at least 50% of allocated space
  4200. */
  4201. void
  4202. xfs_iext_irec_compact(
  4203. xfs_ifork_t *ifp) /* inode fork pointer */
  4204. {
  4205. xfs_extnum_t nextents; /* number of extents in file */
  4206. int nlists; /* number of irec's (ex lists) */
  4207. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4208. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4209. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  4210. if (nextents == 0) {
  4211. xfs_iext_destroy(ifp);
  4212. } else if (nextents <= XFS_INLINE_EXTS) {
  4213. xfs_iext_indirect_to_direct(ifp);
  4214. xfs_iext_direct_to_inline(ifp, nextents);
  4215. } else if (nextents <= XFS_LINEAR_EXTS) {
  4216. xfs_iext_indirect_to_direct(ifp);
  4217. } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 3) {
  4218. xfs_iext_irec_compact_full(ifp);
  4219. } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) {
  4220. xfs_iext_irec_compact_pages(ifp);
  4221. }
  4222. }
  4223. /*
  4224. * Combine extents from neighboring extent pages.
  4225. */
  4226. void
  4227. xfs_iext_irec_compact_pages(
  4228. xfs_ifork_t *ifp) /* inode fork pointer */
  4229. {
  4230. xfs_ext_irec_t *erp, *erp_next;/* pointers to irec entries */
  4231. int erp_idx = 0; /* indirection array index */
  4232. int nlists; /* number of irec's (ex lists) */
  4233. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4234. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4235. while (erp_idx < nlists - 1) {
  4236. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  4237. erp_next = erp + 1;
  4238. if (erp_next->er_extcount <=
  4239. (XFS_LINEAR_EXTS - erp->er_extcount)) {
  4240. memmove(&erp->er_extbuf[erp->er_extcount],
  4241. erp_next->er_extbuf, erp_next->er_extcount *
  4242. sizeof(xfs_bmbt_rec_t));
  4243. erp->er_extcount += erp_next->er_extcount;
  4244. /*
  4245. * Free page before removing extent record
  4246. * so er_extoffs don't get modified in
  4247. * xfs_iext_irec_remove.
  4248. */
  4249. kmem_free(erp_next->er_extbuf, XFS_IEXT_BUFSZ);
  4250. erp_next->er_extbuf = NULL;
  4251. xfs_iext_irec_remove(ifp, erp_idx + 1);
  4252. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4253. } else {
  4254. erp_idx++;
  4255. }
  4256. }
  4257. }
  4258. /*
  4259. * Fully compact the extent records managed by the indirection array.
  4260. */
  4261. void
  4262. xfs_iext_irec_compact_full(
  4263. xfs_ifork_t *ifp) /* inode fork pointer */
  4264. {
  4265. xfs_bmbt_rec_host_t *ep, *ep_next; /* extent record pointers */
  4266. xfs_ext_irec_t *erp, *erp_next; /* extent irec pointers */
  4267. int erp_idx = 0; /* extent irec index */
  4268. int ext_avail; /* empty entries in ex list */
  4269. int ext_diff; /* number of exts to add */
  4270. int nlists; /* number of irec's (ex lists) */
  4271. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4272. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4273. erp = ifp->if_u1.if_ext_irec;
  4274. ep = &erp->er_extbuf[erp->er_extcount];
  4275. erp_next = erp + 1;
  4276. ep_next = erp_next->er_extbuf;
  4277. while (erp_idx < nlists - 1) {
  4278. ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
  4279. ext_diff = MIN(ext_avail, erp_next->er_extcount);
  4280. memcpy(ep, ep_next, ext_diff * sizeof(xfs_bmbt_rec_t));
  4281. erp->er_extcount += ext_diff;
  4282. erp_next->er_extcount -= ext_diff;
  4283. /* Remove next page */
  4284. if (erp_next->er_extcount == 0) {
  4285. /*
  4286. * Free page before removing extent record
  4287. * so er_extoffs don't get modified in
  4288. * xfs_iext_irec_remove.
  4289. */
  4290. kmem_free(erp_next->er_extbuf,
  4291. erp_next->er_extcount * sizeof(xfs_bmbt_rec_t));
  4292. erp_next->er_extbuf = NULL;
  4293. xfs_iext_irec_remove(ifp, erp_idx + 1);
  4294. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  4295. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4296. /* Update next page */
  4297. } else {
  4298. /* Move rest of page up to become next new page */
  4299. memmove(erp_next->er_extbuf, ep_next,
  4300. erp_next->er_extcount * sizeof(xfs_bmbt_rec_t));
  4301. ep_next = erp_next->er_extbuf;
  4302. memset(&ep_next[erp_next->er_extcount], 0,
  4303. (XFS_LINEAR_EXTS - erp_next->er_extcount) *
  4304. sizeof(xfs_bmbt_rec_t));
  4305. }
  4306. if (erp->er_extcount == XFS_LINEAR_EXTS) {
  4307. erp_idx++;
  4308. if (erp_idx < nlists)
  4309. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  4310. else
  4311. break;
  4312. }
  4313. ep = &erp->er_extbuf[erp->er_extcount];
  4314. erp_next = erp + 1;
  4315. ep_next = erp_next->er_extbuf;
  4316. }
  4317. }
  4318. /*
  4319. * This is called to update the er_extoff field in the indirection
  4320. * array when extents have been added or removed from one of the
  4321. * extent lists. erp_idx contains the irec index to begin updating
  4322. * at and ext_diff contains the number of extents that were added
  4323. * or removed.
  4324. */
  4325. void
  4326. xfs_iext_irec_update_extoffs(
  4327. xfs_ifork_t *ifp, /* inode fork pointer */
  4328. int erp_idx, /* irec index to update */
  4329. int ext_diff) /* number of new extents */
  4330. {
  4331. int i; /* loop counter */
  4332. int nlists; /* number of irec's (ex lists */
  4333. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4334. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4335. for (i = erp_idx; i < nlists; i++) {
  4336. ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff;
  4337. }
  4338. }