timer.c 41 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577
  1. /*
  2. * linux/kernel/timer.c
  3. *
  4. * Kernel internal timers, kernel timekeeping, basic process system calls
  5. *
  6. * Copyright (C) 1991, 1992 Linus Torvalds
  7. *
  8. * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better.
  9. *
  10. * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
  11. * "A Kernel Model for Precision Timekeeping" by Dave Mills
  12. * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
  13. * serialize accesses to xtime/lost_ticks).
  14. * Copyright (C) 1998 Andrea Arcangeli
  15. * 1999-03-10 Improved NTP compatibility by Ulrich Windl
  16. * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love
  17. * 2000-10-05 Implemented scalable SMP per-CPU timer handling.
  18. * Copyright (C) 2000, 2001, 2002 Ingo Molnar
  19. * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
  20. */
  21. #include <linux/kernel_stat.h>
  22. #include <linux/module.h>
  23. #include <linux/interrupt.h>
  24. #include <linux/percpu.h>
  25. #include <linux/init.h>
  26. #include <linux/mm.h>
  27. #include <linux/swap.h>
  28. #include <linux/notifier.h>
  29. #include <linux/thread_info.h>
  30. #include <linux/time.h>
  31. #include <linux/jiffies.h>
  32. #include <linux/posix-timers.h>
  33. #include <linux/cpu.h>
  34. #include <linux/syscalls.h>
  35. #include <linux/delay.h>
  36. #include <asm/uaccess.h>
  37. #include <asm/unistd.h>
  38. #include <asm/div64.h>
  39. #include <asm/timex.h>
  40. #include <asm/io.h>
  41. #ifdef CONFIG_TIME_INTERPOLATION
  42. static void time_interpolator_update(long delta_nsec);
  43. #else
  44. #define time_interpolator_update(x)
  45. #endif
  46. u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
  47. EXPORT_SYMBOL(jiffies_64);
  48. /*
  49. * per-CPU timer vector definitions:
  50. */
  51. #define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6)
  52. #define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8)
  53. #define TVN_SIZE (1 << TVN_BITS)
  54. #define TVR_SIZE (1 << TVR_BITS)
  55. #define TVN_MASK (TVN_SIZE - 1)
  56. #define TVR_MASK (TVR_SIZE - 1)
  57. typedef struct tvec_s {
  58. struct list_head vec[TVN_SIZE];
  59. } tvec_t;
  60. typedef struct tvec_root_s {
  61. struct list_head vec[TVR_SIZE];
  62. } tvec_root_t;
  63. struct tvec_t_base_s {
  64. spinlock_t lock;
  65. struct timer_list *running_timer;
  66. unsigned long timer_jiffies;
  67. tvec_root_t tv1;
  68. tvec_t tv2;
  69. tvec_t tv3;
  70. tvec_t tv4;
  71. tvec_t tv5;
  72. } ____cacheline_aligned_in_smp;
  73. typedef struct tvec_t_base_s tvec_base_t;
  74. tvec_base_t boot_tvec_bases;
  75. EXPORT_SYMBOL(boot_tvec_bases);
  76. static DEFINE_PER_CPU(tvec_base_t *, tvec_bases) = { &boot_tvec_bases };
  77. static inline void set_running_timer(tvec_base_t *base,
  78. struct timer_list *timer)
  79. {
  80. #ifdef CONFIG_SMP
  81. base->running_timer = timer;
  82. #endif
  83. }
  84. static void internal_add_timer(tvec_base_t *base, struct timer_list *timer)
  85. {
  86. unsigned long expires = timer->expires;
  87. unsigned long idx = expires - base->timer_jiffies;
  88. struct list_head *vec;
  89. if (idx < TVR_SIZE) {
  90. int i = expires & TVR_MASK;
  91. vec = base->tv1.vec + i;
  92. } else if (idx < 1 << (TVR_BITS + TVN_BITS)) {
  93. int i = (expires >> TVR_BITS) & TVN_MASK;
  94. vec = base->tv2.vec + i;
  95. } else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) {
  96. int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK;
  97. vec = base->tv3.vec + i;
  98. } else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) {
  99. int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK;
  100. vec = base->tv4.vec + i;
  101. } else if ((signed long) idx < 0) {
  102. /*
  103. * Can happen if you add a timer with expires == jiffies,
  104. * or you set a timer to go off in the past
  105. */
  106. vec = base->tv1.vec + (base->timer_jiffies & TVR_MASK);
  107. } else {
  108. int i;
  109. /* If the timeout is larger than 0xffffffff on 64-bit
  110. * architectures then we use the maximum timeout:
  111. */
  112. if (idx > 0xffffffffUL) {
  113. idx = 0xffffffffUL;
  114. expires = idx + base->timer_jiffies;
  115. }
  116. i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK;
  117. vec = base->tv5.vec + i;
  118. }
  119. /*
  120. * Timers are FIFO:
  121. */
  122. list_add_tail(&timer->entry, vec);
  123. }
  124. /***
  125. * init_timer - initialize a timer.
  126. * @timer: the timer to be initialized
  127. *
  128. * init_timer() must be done to a timer prior calling *any* of the
  129. * other timer functions.
  130. */
  131. void fastcall init_timer(struct timer_list *timer)
  132. {
  133. timer->entry.next = NULL;
  134. timer->base = __raw_get_cpu_var(tvec_bases);
  135. }
  136. EXPORT_SYMBOL(init_timer);
  137. static inline void detach_timer(struct timer_list *timer,
  138. int clear_pending)
  139. {
  140. struct list_head *entry = &timer->entry;
  141. __list_del(entry->prev, entry->next);
  142. if (clear_pending)
  143. entry->next = NULL;
  144. entry->prev = LIST_POISON2;
  145. }
  146. /*
  147. * We are using hashed locking: holding per_cpu(tvec_bases).lock
  148. * means that all timers which are tied to this base via timer->base are
  149. * locked, and the base itself is locked too.
  150. *
  151. * So __run_timers/migrate_timers can safely modify all timers which could
  152. * be found on ->tvX lists.
  153. *
  154. * When the timer's base is locked, and the timer removed from list, it is
  155. * possible to set timer->base = NULL and drop the lock: the timer remains
  156. * locked.
  157. */
  158. static tvec_base_t *lock_timer_base(struct timer_list *timer,
  159. unsigned long *flags)
  160. {
  161. tvec_base_t *base;
  162. for (;;) {
  163. base = timer->base;
  164. if (likely(base != NULL)) {
  165. spin_lock_irqsave(&base->lock, *flags);
  166. if (likely(base == timer->base))
  167. return base;
  168. /* The timer has migrated to another CPU */
  169. spin_unlock_irqrestore(&base->lock, *flags);
  170. }
  171. cpu_relax();
  172. }
  173. }
  174. int __mod_timer(struct timer_list *timer, unsigned long expires)
  175. {
  176. tvec_base_t *base, *new_base;
  177. unsigned long flags;
  178. int ret = 0;
  179. BUG_ON(!timer->function);
  180. base = lock_timer_base(timer, &flags);
  181. if (timer_pending(timer)) {
  182. detach_timer(timer, 0);
  183. ret = 1;
  184. }
  185. new_base = __get_cpu_var(tvec_bases);
  186. if (base != new_base) {
  187. /*
  188. * We are trying to schedule the timer on the local CPU.
  189. * However we can't change timer's base while it is running,
  190. * otherwise del_timer_sync() can't detect that the timer's
  191. * handler yet has not finished. This also guarantees that
  192. * the timer is serialized wrt itself.
  193. */
  194. if (likely(base->running_timer != timer)) {
  195. /* See the comment in lock_timer_base() */
  196. timer->base = NULL;
  197. spin_unlock(&base->lock);
  198. base = new_base;
  199. spin_lock(&base->lock);
  200. timer->base = base;
  201. }
  202. }
  203. timer->expires = expires;
  204. internal_add_timer(base, timer);
  205. spin_unlock_irqrestore(&base->lock, flags);
  206. return ret;
  207. }
  208. EXPORT_SYMBOL(__mod_timer);
  209. /***
  210. * add_timer_on - start a timer on a particular CPU
  211. * @timer: the timer to be added
  212. * @cpu: the CPU to start it on
  213. *
  214. * This is not very scalable on SMP. Double adds are not possible.
  215. */
  216. void add_timer_on(struct timer_list *timer, int cpu)
  217. {
  218. tvec_base_t *base = per_cpu(tvec_bases, cpu);
  219. unsigned long flags;
  220. BUG_ON(timer_pending(timer) || !timer->function);
  221. spin_lock_irqsave(&base->lock, flags);
  222. timer->base = base;
  223. internal_add_timer(base, timer);
  224. spin_unlock_irqrestore(&base->lock, flags);
  225. }
  226. /***
  227. * mod_timer - modify a timer's timeout
  228. * @timer: the timer to be modified
  229. *
  230. * mod_timer is a more efficient way to update the expire field of an
  231. * active timer (if the timer is inactive it will be activated)
  232. *
  233. * mod_timer(timer, expires) is equivalent to:
  234. *
  235. * del_timer(timer); timer->expires = expires; add_timer(timer);
  236. *
  237. * Note that if there are multiple unserialized concurrent users of the
  238. * same timer, then mod_timer() is the only safe way to modify the timeout,
  239. * since add_timer() cannot modify an already running timer.
  240. *
  241. * The function returns whether it has modified a pending timer or not.
  242. * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
  243. * active timer returns 1.)
  244. */
  245. int mod_timer(struct timer_list *timer, unsigned long expires)
  246. {
  247. BUG_ON(!timer->function);
  248. /*
  249. * This is a common optimization triggered by the
  250. * networking code - if the timer is re-modified
  251. * to be the same thing then just return:
  252. */
  253. if (timer->expires == expires && timer_pending(timer))
  254. return 1;
  255. return __mod_timer(timer, expires);
  256. }
  257. EXPORT_SYMBOL(mod_timer);
  258. /***
  259. * del_timer - deactive a timer.
  260. * @timer: the timer to be deactivated
  261. *
  262. * del_timer() deactivates a timer - this works on both active and inactive
  263. * timers.
  264. *
  265. * The function returns whether it has deactivated a pending timer or not.
  266. * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
  267. * active timer returns 1.)
  268. */
  269. int del_timer(struct timer_list *timer)
  270. {
  271. tvec_base_t *base;
  272. unsigned long flags;
  273. int ret = 0;
  274. if (timer_pending(timer)) {
  275. base = lock_timer_base(timer, &flags);
  276. if (timer_pending(timer)) {
  277. detach_timer(timer, 1);
  278. ret = 1;
  279. }
  280. spin_unlock_irqrestore(&base->lock, flags);
  281. }
  282. return ret;
  283. }
  284. EXPORT_SYMBOL(del_timer);
  285. #ifdef CONFIG_SMP
  286. /*
  287. * This function tries to deactivate a timer. Upon successful (ret >= 0)
  288. * exit the timer is not queued and the handler is not running on any CPU.
  289. *
  290. * It must not be called from interrupt contexts.
  291. */
  292. int try_to_del_timer_sync(struct timer_list *timer)
  293. {
  294. tvec_base_t *base;
  295. unsigned long flags;
  296. int ret = -1;
  297. base = lock_timer_base(timer, &flags);
  298. if (base->running_timer == timer)
  299. goto out;
  300. ret = 0;
  301. if (timer_pending(timer)) {
  302. detach_timer(timer, 1);
  303. ret = 1;
  304. }
  305. out:
  306. spin_unlock_irqrestore(&base->lock, flags);
  307. return ret;
  308. }
  309. /***
  310. * del_timer_sync - deactivate a timer and wait for the handler to finish.
  311. * @timer: the timer to be deactivated
  312. *
  313. * This function only differs from del_timer() on SMP: besides deactivating
  314. * the timer it also makes sure the handler has finished executing on other
  315. * CPUs.
  316. *
  317. * Synchronization rules: callers must prevent restarting of the timer,
  318. * otherwise this function is meaningless. It must not be called from
  319. * interrupt contexts. The caller must not hold locks which would prevent
  320. * completion of the timer's handler. The timer's handler must not call
  321. * add_timer_on(). Upon exit the timer is not queued and the handler is
  322. * not running on any CPU.
  323. *
  324. * The function returns whether it has deactivated a pending timer or not.
  325. */
  326. int del_timer_sync(struct timer_list *timer)
  327. {
  328. for (;;) {
  329. int ret = try_to_del_timer_sync(timer);
  330. if (ret >= 0)
  331. return ret;
  332. }
  333. }
  334. EXPORT_SYMBOL(del_timer_sync);
  335. #endif
  336. static int cascade(tvec_base_t *base, tvec_t *tv, int index)
  337. {
  338. /* cascade all the timers from tv up one level */
  339. struct timer_list *timer, *tmp;
  340. struct list_head tv_list;
  341. list_replace_init(tv->vec + index, &tv_list);
  342. /*
  343. * We are removing _all_ timers from the list, so we
  344. * don't have to detach them individually.
  345. */
  346. list_for_each_entry_safe(timer, tmp, &tv_list, entry) {
  347. BUG_ON(timer->base != base);
  348. internal_add_timer(base, timer);
  349. }
  350. return index;
  351. }
  352. /***
  353. * __run_timers - run all expired timers (if any) on this CPU.
  354. * @base: the timer vector to be processed.
  355. *
  356. * This function cascades all vectors and executes all expired timer
  357. * vectors.
  358. */
  359. #define INDEX(N) (base->timer_jiffies >> (TVR_BITS + N * TVN_BITS)) & TVN_MASK
  360. static inline void __run_timers(tvec_base_t *base)
  361. {
  362. struct timer_list *timer;
  363. spin_lock_irq(&base->lock);
  364. while (time_after_eq(jiffies, base->timer_jiffies)) {
  365. struct list_head work_list;
  366. struct list_head *head = &work_list;
  367. int index = base->timer_jiffies & TVR_MASK;
  368. /*
  369. * Cascade timers:
  370. */
  371. if (!index &&
  372. (!cascade(base, &base->tv2, INDEX(0))) &&
  373. (!cascade(base, &base->tv3, INDEX(1))) &&
  374. !cascade(base, &base->tv4, INDEX(2)))
  375. cascade(base, &base->tv5, INDEX(3));
  376. ++base->timer_jiffies;
  377. list_replace_init(base->tv1.vec + index, &work_list);
  378. while (!list_empty(head)) {
  379. void (*fn)(unsigned long);
  380. unsigned long data;
  381. timer = list_entry(head->next,struct timer_list,entry);
  382. fn = timer->function;
  383. data = timer->data;
  384. set_running_timer(base, timer);
  385. detach_timer(timer, 1);
  386. spin_unlock_irq(&base->lock);
  387. {
  388. int preempt_count = preempt_count();
  389. fn(data);
  390. if (preempt_count != preempt_count()) {
  391. printk(KERN_WARNING "huh, entered %p "
  392. "with preempt_count %08x, exited"
  393. " with %08x?\n",
  394. fn, preempt_count,
  395. preempt_count());
  396. BUG();
  397. }
  398. }
  399. spin_lock_irq(&base->lock);
  400. }
  401. }
  402. set_running_timer(base, NULL);
  403. spin_unlock_irq(&base->lock);
  404. }
  405. #ifdef CONFIG_NO_IDLE_HZ
  406. /*
  407. * Find out when the next timer event is due to happen. This
  408. * is used on S/390 to stop all activity when a cpus is idle.
  409. * This functions needs to be called disabled.
  410. */
  411. unsigned long next_timer_interrupt(void)
  412. {
  413. tvec_base_t *base;
  414. struct list_head *list;
  415. struct timer_list *nte;
  416. unsigned long expires;
  417. unsigned long hr_expires = MAX_JIFFY_OFFSET;
  418. ktime_t hr_delta;
  419. tvec_t *varray[4];
  420. int i, j;
  421. hr_delta = hrtimer_get_next_event();
  422. if (hr_delta.tv64 != KTIME_MAX) {
  423. struct timespec tsdelta;
  424. tsdelta = ktime_to_timespec(hr_delta);
  425. hr_expires = timespec_to_jiffies(&tsdelta);
  426. if (hr_expires < 3)
  427. return hr_expires + jiffies;
  428. }
  429. hr_expires += jiffies;
  430. base = __get_cpu_var(tvec_bases);
  431. spin_lock(&base->lock);
  432. expires = base->timer_jiffies + (LONG_MAX >> 1);
  433. list = NULL;
  434. /* Look for timer events in tv1. */
  435. j = base->timer_jiffies & TVR_MASK;
  436. do {
  437. list_for_each_entry(nte, base->tv1.vec + j, entry) {
  438. expires = nte->expires;
  439. if (j < (base->timer_jiffies & TVR_MASK))
  440. list = base->tv2.vec + (INDEX(0));
  441. goto found;
  442. }
  443. j = (j + 1) & TVR_MASK;
  444. } while (j != (base->timer_jiffies & TVR_MASK));
  445. /* Check tv2-tv5. */
  446. varray[0] = &base->tv2;
  447. varray[1] = &base->tv3;
  448. varray[2] = &base->tv4;
  449. varray[3] = &base->tv5;
  450. for (i = 0; i < 4; i++) {
  451. j = INDEX(i);
  452. do {
  453. if (list_empty(varray[i]->vec + j)) {
  454. j = (j + 1) & TVN_MASK;
  455. continue;
  456. }
  457. list_for_each_entry(nte, varray[i]->vec + j, entry)
  458. if (time_before(nte->expires, expires))
  459. expires = nte->expires;
  460. if (j < (INDEX(i)) && i < 3)
  461. list = varray[i + 1]->vec + (INDEX(i + 1));
  462. goto found;
  463. } while (j != (INDEX(i)));
  464. }
  465. found:
  466. if (list) {
  467. /*
  468. * The search wrapped. We need to look at the next list
  469. * from next tv element that would cascade into tv element
  470. * where we found the timer element.
  471. */
  472. list_for_each_entry(nte, list, entry) {
  473. if (time_before(nte->expires, expires))
  474. expires = nte->expires;
  475. }
  476. }
  477. spin_unlock(&base->lock);
  478. /*
  479. * It can happen that other CPUs service timer IRQs and increment
  480. * jiffies, but we have not yet got a local timer tick to process
  481. * the timer wheels. In that case, the expiry time can be before
  482. * jiffies, but since the high-resolution timer here is relative to
  483. * jiffies, the default expression when high-resolution timers are
  484. * not active,
  485. *
  486. * time_before(MAX_JIFFY_OFFSET + jiffies, expires)
  487. *
  488. * would falsely evaluate to true. If that is the case, just
  489. * return jiffies so that we can immediately fire the local timer
  490. */
  491. if (time_before(expires, jiffies))
  492. return jiffies;
  493. if (time_before(hr_expires, expires))
  494. return hr_expires;
  495. return expires;
  496. }
  497. #endif
  498. /******************************************************************/
  499. /*
  500. * Timekeeping variables
  501. */
  502. unsigned long tick_usec = TICK_USEC; /* USER_HZ period (usec) */
  503. unsigned long tick_nsec = TICK_NSEC; /* ACTHZ period (nsec) */
  504. /*
  505. * The current time
  506. * wall_to_monotonic is what we need to add to xtime (or xtime corrected
  507. * for sub jiffie times) to get to monotonic time. Monotonic is pegged
  508. * at zero at system boot time, so wall_to_monotonic will be negative,
  509. * however, we will ALWAYS keep the tv_nsec part positive so we can use
  510. * the usual normalization.
  511. */
  512. struct timespec xtime __attribute__ ((aligned (16)));
  513. struct timespec wall_to_monotonic __attribute__ ((aligned (16)));
  514. EXPORT_SYMBOL(xtime);
  515. /* Don't completely fail for HZ > 500. */
  516. int tickadj = 500/HZ ? : 1; /* microsecs */
  517. /*
  518. * phase-lock loop variables
  519. */
  520. /* TIME_ERROR prevents overwriting the CMOS clock */
  521. int time_state = TIME_OK; /* clock synchronization status */
  522. int time_status = STA_UNSYNC; /* clock status bits */
  523. long time_offset; /* time adjustment (us) */
  524. long time_constant = 2; /* pll time constant */
  525. long time_tolerance = MAXFREQ; /* frequency tolerance (ppm) */
  526. long time_precision = 1; /* clock precision (us) */
  527. long time_maxerror = NTP_PHASE_LIMIT; /* maximum error (us) */
  528. long time_esterror = NTP_PHASE_LIMIT; /* estimated error (us) */
  529. static long time_phase; /* phase offset (scaled us) */
  530. long time_freq = (((NSEC_PER_SEC + HZ/2) % HZ - HZ/2) << SHIFT_USEC) / NSEC_PER_USEC;
  531. /* frequency offset (scaled ppm)*/
  532. static long time_adj; /* tick adjust (scaled 1 / HZ) */
  533. long time_reftime; /* time at last adjustment (s) */
  534. long time_adjust;
  535. long time_next_adjust;
  536. /*
  537. * this routine handles the overflow of the microsecond field
  538. *
  539. * The tricky bits of code to handle the accurate clock support
  540. * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
  541. * They were originally developed for SUN and DEC kernels.
  542. * All the kudos should go to Dave for this stuff.
  543. *
  544. */
  545. static void second_overflow(void)
  546. {
  547. long ltemp;
  548. /* Bump the maxerror field */
  549. time_maxerror += time_tolerance >> SHIFT_USEC;
  550. if (time_maxerror > NTP_PHASE_LIMIT) {
  551. time_maxerror = NTP_PHASE_LIMIT;
  552. time_status |= STA_UNSYNC;
  553. }
  554. /*
  555. * Leap second processing. If in leap-insert state at the end of the
  556. * day, the system clock is set back one second; if in leap-delete
  557. * state, the system clock is set ahead one second. The microtime()
  558. * routine or external clock driver will insure that reported time is
  559. * always monotonic. The ugly divides should be replaced.
  560. */
  561. switch (time_state) {
  562. case TIME_OK:
  563. if (time_status & STA_INS)
  564. time_state = TIME_INS;
  565. else if (time_status & STA_DEL)
  566. time_state = TIME_DEL;
  567. break;
  568. case TIME_INS:
  569. if (xtime.tv_sec % 86400 == 0) {
  570. xtime.tv_sec--;
  571. wall_to_monotonic.tv_sec++;
  572. /*
  573. * The timer interpolator will make time change
  574. * gradually instead of an immediate jump by one second
  575. */
  576. time_interpolator_update(-NSEC_PER_SEC);
  577. time_state = TIME_OOP;
  578. clock_was_set();
  579. printk(KERN_NOTICE "Clock: inserting leap second "
  580. "23:59:60 UTC\n");
  581. }
  582. break;
  583. case TIME_DEL:
  584. if ((xtime.tv_sec + 1) % 86400 == 0) {
  585. xtime.tv_sec++;
  586. wall_to_monotonic.tv_sec--;
  587. /*
  588. * Use of time interpolator for a gradual change of
  589. * time
  590. */
  591. time_interpolator_update(NSEC_PER_SEC);
  592. time_state = TIME_WAIT;
  593. clock_was_set();
  594. printk(KERN_NOTICE "Clock: deleting leap second "
  595. "23:59:59 UTC\n");
  596. }
  597. break;
  598. case TIME_OOP:
  599. time_state = TIME_WAIT;
  600. break;
  601. case TIME_WAIT:
  602. if (!(time_status & (STA_INS | STA_DEL)))
  603. time_state = TIME_OK;
  604. }
  605. /*
  606. * Compute the phase adjustment for the next second. In PLL mode, the
  607. * offset is reduced by a fixed factor times the time constant. In FLL
  608. * mode the offset is used directly. In either mode, the maximum phase
  609. * adjustment for each second is clamped so as to spread the adjustment
  610. * over not more than the number of seconds between updates.
  611. */
  612. ltemp = time_offset;
  613. if (!(time_status & STA_FLL))
  614. ltemp = shift_right(ltemp, SHIFT_KG + time_constant);
  615. ltemp = min(ltemp, (MAXPHASE / MINSEC) << SHIFT_UPDATE);
  616. ltemp = max(ltemp, -(MAXPHASE / MINSEC) << SHIFT_UPDATE);
  617. time_offset -= ltemp;
  618. time_adj = ltemp << (SHIFT_SCALE - SHIFT_HZ - SHIFT_UPDATE);
  619. /*
  620. * Compute the frequency estimate and additional phase adjustment due
  621. * to frequency error for the next second.
  622. */
  623. ltemp = time_freq;
  624. time_adj += shift_right(ltemp,(SHIFT_USEC + SHIFT_HZ - SHIFT_SCALE));
  625. #if HZ == 100
  626. /*
  627. * Compensate for (HZ==100) != (1 << SHIFT_HZ). Add 25% and 3.125% to
  628. * get 128.125; => only 0.125% error (p. 14)
  629. */
  630. time_adj += shift_right(time_adj, 2) + shift_right(time_adj, 5);
  631. #endif
  632. #if HZ == 250
  633. /*
  634. * Compensate for (HZ==250) != (1 << SHIFT_HZ). Add 1.5625% and
  635. * 0.78125% to get 255.85938; => only 0.05% error (p. 14)
  636. */
  637. time_adj += shift_right(time_adj, 6) + shift_right(time_adj, 7);
  638. #endif
  639. #if HZ == 1000
  640. /*
  641. * Compensate for (HZ==1000) != (1 << SHIFT_HZ). Add 1.5625% and
  642. * 0.78125% to get 1023.4375; => only 0.05% error (p. 14)
  643. */
  644. time_adj += shift_right(time_adj, 6) + shift_right(time_adj, 7);
  645. #endif
  646. }
  647. /*
  648. * Returns how many microseconds we need to add to xtime this tick
  649. * in doing an adjustment requested with adjtime.
  650. */
  651. static long adjtime_adjustment(void)
  652. {
  653. long time_adjust_step;
  654. time_adjust_step = time_adjust;
  655. if (time_adjust_step) {
  656. /*
  657. * We are doing an adjtime thing. Prepare time_adjust_step to
  658. * be within bounds. Note that a positive time_adjust means we
  659. * want the clock to run faster.
  660. *
  661. * Limit the amount of the step to be in the range
  662. * -tickadj .. +tickadj
  663. */
  664. time_adjust_step = min(time_adjust_step, (long)tickadj);
  665. time_adjust_step = max(time_adjust_step, (long)-tickadj);
  666. }
  667. return time_adjust_step;
  668. }
  669. /* in the NTP reference this is called "hardclock()" */
  670. static void update_wall_time_one_tick(void)
  671. {
  672. long time_adjust_step, delta_nsec;
  673. time_adjust_step = adjtime_adjustment();
  674. if (time_adjust_step)
  675. /* Reduce by this step the amount of time left */
  676. time_adjust -= time_adjust_step;
  677. delta_nsec = tick_nsec + time_adjust_step * 1000;
  678. /*
  679. * Advance the phase, once it gets to one microsecond, then
  680. * advance the tick more.
  681. */
  682. time_phase += time_adj;
  683. if ((time_phase >= FINENSEC) || (time_phase <= -FINENSEC)) {
  684. long ltemp = shift_right(time_phase, (SHIFT_SCALE - 10));
  685. time_phase -= ltemp << (SHIFT_SCALE - 10);
  686. delta_nsec += ltemp;
  687. }
  688. xtime.tv_nsec += delta_nsec;
  689. time_interpolator_update(delta_nsec);
  690. /* Changes by adjtime() do not take effect till next tick. */
  691. if (time_next_adjust != 0) {
  692. time_adjust = time_next_adjust;
  693. time_next_adjust = 0;
  694. }
  695. }
  696. /*
  697. * Return how long ticks are at the moment, that is, how much time
  698. * update_wall_time_one_tick will add to xtime next time we call it
  699. * (assuming no calls to do_adjtimex in the meantime).
  700. * The return value is in fixed-point nanoseconds with SHIFT_SCALE-10
  701. * bits to the right of the binary point.
  702. * This function has no side-effects.
  703. */
  704. u64 current_tick_length(void)
  705. {
  706. long delta_nsec;
  707. delta_nsec = tick_nsec + adjtime_adjustment() * 1000;
  708. return ((u64) delta_nsec << (SHIFT_SCALE - 10)) + time_adj;
  709. }
  710. /*
  711. * Using a loop looks inefficient, but "ticks" is
  712. * usually just one (we shouldn't be losing ticks,
  713. * we're doing this this way mainly for interrupt
  714. * latency reasons, not because we think we'll
  715. * have lots of lost timer ticks
  716. */
  717. static void update_wall_time(unsigned long ticks)
  718. {
  719. do {
  720. ticks--;
  721. update_wall_time_one_tick();
  722. if (xtime.tv_nsec >= 1000000000) {
  723. xtime.tv_nsec -= 1000000000;
  724. xtime.tv_sec++;
  725. second_overflow();
  726. }
  727. } while (ticks);
  728. }
  729. /*
  730. * Called from the timer interrupt handler to charge one tick to the current
  731. * process. user_tick is 1 if the tick is user time, 0 for system.
  732. */
  733. void update_process_times(int user_tick)
  734. {
  735. struct task_struct *p = current;
  736. int cpu = smp_processor_id();
  737. /* Note: this timer irq context must be accounted for as well. */
  738. if (user_tick)
  739. account_user_time(p, jiffies_to_cputime(1));
  740. else
  741. account_system_time(p, HARDIRQ_OFFSET, jiffies_to_cputime(1));
  742. run_local_timers();
  743. if (rcu_pending(cpu))
  744. rcu_check_callbacks(cpu, user_tick);
  745. scheduler_tick();
  746. run_posix_cpu_timers(p);
  747. }
  748. /*
  749. * Nr of active tasks - counted in fixed-point numbers
  750. */
  751. static unsigned long count_active_tasks(void)
  752. {
  753. return nr_active() * FIXED_1;
  754. }
  755. /*
  756. * Hmm.. Changed this, as the GNU make sources (load.c) seems to
  757. * imply that avenrun[] is the standard name for this kind of thing.
  758. * Nothing else seems to be standardized: the fractional size etc
  759. * all seem to differ on different machines.
  760. *
  761. * Requires xtime_lock to access.
  762. */
  763. unsigned long avenrun[3];
  764. EXPORT_SYMBOL(avenrun);
  765. /*
  766. * calc_load - given tick count, update the avenrun load estimates.
  767. * This is called while holding a write_lock on xtime_lock.
  768. */
  769. static inline void calc_load(unsigned long ticks)
  770. {
  771. unsigned long active_tasks; /* fixed-point */
  772. static int count = LOAD_FREQ;
  773. count -= ticks;
  774. if (count < 0) {
  775. count += LOAD_FREQ;
  776. active_tasks = count_active_tasks();
  777. CALC_LOAD(avenrun[0], EXP_1, active_tasks);
  778. CALC_LOAD(avenrun[1], EXP_5, active_tasks);
  779. CALC_LOAD(avenrun[2], EXP_15, active_tasks);
  780. }
  781. }
  782. /* jiffies at the most recent update of wall time */
  783. unsigned long wall_jiffies = INITIAL_JIFFIES;
  784. /*
  785. * This read-write spinlock protects us from races in SMP while
  786. * playing with xtime and avenrun.
  787. */
  788. #ifndef ARCH_HAVE_XTIME_LOCK
  789. seqlock_t xtime_lock __cacheline_aligned_in_smp = SEQLOCK_UNLOCKED;
  790. EXPORT_SYMBOL(xtime_lock);
  791. #endif
  792. /*
  793. * This function runs timers and the timer-tq in bottom half context.
  794. */
  795. static void run_timer_softirq(struct softirq_action *h)
  796. {
  797. tvec_base_t *base = __get_cpu_var(tvec_bases);
  798. hrtimer_run_queues();
  799. if (time_after_eq(jiffies, base->timer_jiffies))
  800. __run_timers(base);
  801. }
  802. /*
  803. * Called by the local, per-CPU timer interrupt on SMP.
  804. */
  805. void run_local_timers(void)
  806. {
  807. raise_softirq(TIMER_SOFTIRQ);
  808. softlockup_tick();
  809. }
  810. /*
  811. * Called by the timer interrupt. xtime_lock must already be taken
  812. * by the timer IRQ!
  813. */
  814. static inline void update_times(void)
  815. {
  816. unsigned long ticks;
  817. ticks = jiffies - wall_jiffies;
  818. if (ticks) {
  819. wall_jiffies += ticks;
  820. update_wall_time(ticks);
  821. }
  822. calc_load(ticks);
  823. }
  824. /*
  825. * The 64-bit jiffies value is not atomic - you MUST NOT read it
  826. * without sampling the sequence number in xtime_lock.
  827. * jiffies is defined in the linker script...
  828. */
  829. void do_timer(struct pt_regs *regs)
  830. {
  831. jiffies_64++;
  832. /* prevent loading jiffies before storing new jiffies_64 value. */
  833. barrier();
  834. update_times();
  835. }
  836. #ifdef __ARCH_WANT_SYS_ALARM
  837. /*
  838. * For backwards compatibility? This can be done in libc so Alpha
  839. * and all newer ports shouldn't need it.
  840. */
  841. asmlinkage unsigned long sys_alarm(unsigned int seconds)
  842. {
  843. return alarm_setitimer(seconds);
  844. }
  845. #endif
  846. #ifndef __alpha__
  847. /*
  848. * The Alpha uses getxpid, getxuid, and getxgid instead. Maybe this
  849. * should be moved into arch/i386 instead?
  850. */
  851. /**
  852. * sys_getpid - return the thread group id of the current process
  853. *
  854. * Note, despite the name, this returns the tgid not the pid. The tgid and
  855. * the pid are identical unless CLONE_THREAD was specified on clone() in
  856. * which case the tgid is the same in all threads of the same group.
  857. *
  858. * This is SMP safe as current->tgid does not change.
  859. */
  860. asmlinkage long sys_getpid(void)
  861. {
  862. return current->tgid;
  863. }
  864. /*
  865. * Accessing ->group_leader->real_parent is not SMP-safe, it could
  866. * change from under us. However, rather than getting any lock
  867. * we can use an optimistic algorithm: get the parent
  868. * pid, and go back and check that the parent is still
  869. * the same. If it has changed (which is extremely unlikely
  870. * indeed), we just try again..
  871. *
  872. * NOTE! This depends on the fact that even if we _do_
  873. * get an old value of "parent", we can happily dereference
  874. * the pointer (it was and remains a dereferencable kernel pointer
  875. * no matter what): we just can't necessarily trust the result
  876. * until we know that the parent pointer is valid.
  877. *
  878. * NOTE2: ->group_leader never changes from under us.
  879. */
  880. asmlinkage long sys_getppid(void)
  881. {
  882. int pid;
  883. struct task_struct *me = current;
  884. struct task_struct *parent;
  885. parent = me->group_leader->real_parent;
  886. for (;;) {
  887. pid = parent->tgid;
  888. #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
  889. {
  890. struct task_struct *old = parent;
  891. /*
  892. * Make sure we read the pid before re-reading the
  893. * parent pointer:
  894. */
  895. smp_rmb();
  896. parent = me->group_leader->real_parent;
  897. if (old != parent)
  898. continue;
  899. }
  900. #endif
  901. break;
  902. }
  903. return pid;
  904. }
  905. asmlinkage long sys_getuid(void)
  906. {
  907. /* Only we change this so SMP safe */
  908. return current->uid;
  909. }
  910. asmlinkage long sys_geteuid(void)
  911. {
  912. /* Only we change this so SMP safe */
  913. return current->euid;
  914. }
  915. asmlinkage long sys_getgid(void)
  916. {
  917. /* Only we change this so SMP safe */
  918. return current->gid;
  919. }
  920. asmlinkage long sys_getegid(void)
  921. {
  922. /* Only we change this so SMP safe */
  923. return current->egid;
  924. }
  925. #endif
  926. static void process_timeout(unsigned long __data)
  927. {
  928. wake_up_process((task_t *)__data);
  929. }
  930. /**
  931. * schedule_timeout - sleep until timeout
  932. * @timeout: timeout value in jiffies
  933. *
  934. * Make the current task sleep until @timeout jiffies have
  935. * elapsed. The routine will return immediately unless
  936. * the current task state has been set (see set_current_state()).
  937. *
  938. * You can set the task state as follows -
  939. *
  940. * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
  941. * pass before the routine returns. The routine will return 0
  942. *
  943. * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
  944. * delivered to the current task. In this case the remaining time
  945. * in jiffies will be returned, or 0 if the timer expired in time
  946. *
  947. * The current task state is guaranteed to be TASK_RUNNING when this
  948. * routine returns.
  949. *
  950. * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
  951. * the CPU away without a bound on the timeout. In this case the return
  952. * value will be %MAX_SCHEDULE_TIMEOUT.
  953. *
  954. * In all cases the return value is guaranteed to be non-negative.
  955. */
  956. fastcall signed long __sched schedule_timeout(signed long timeout)
  957. {
  958. struct timer_list timer;
  959. unsigned long expire;
  960. switch (timeout)
  961. {
  962. case MAX_SCHEDULE_TIMEOUT:
  963. /*
  964. * These two special cases are useful to be comfortable
  965. * in the caller. Nothing more. We could take
  966. * MAX_SCHEDULE_TIMEOUT from one of the negative value
  967. * but I' d like to return a valid offset (>=0) to allow
  968. * the caller to do everything it want with the retval.
  969. */
  970. schedule();
  971. goto out;
  972. default:
  973. /*
  974. * Another bit of PARANOID. Note that the retval will be
  975. * 0 since no piece of kernel is supposed to do a check
  976. * for a negative retval of schedule_timeout() (since it
  977. * should never happens anyway). You just have the printk()
  978. * that will tell you if something is gone wrong and where.
  979. */
  980. if (timeout < 0)
  981. {
  982. printk(KERN_ERR "schedule_timeout: wrong timeout "
  983. "value %lx from %p\n", timeout,
  984. __builtin_return_address(0));
  985. current->state = TASK_RUNNING;
  986. goto out;
  987. }
  988. }
  989. expire = timeout + jiffies;
  990. setup_timer(&timer, process_timeout, (unsigned long)current);
  991. __mod_timer(&timer, expire);
  992. schedule();
  993. del_singleshot_timer_sync(&timer);
  994. timeout = expire - jiffies;
  995. out:
  996. return timeout < 0 ? 0 : timeout;
  997. }
  998. EXPORT_SYMBOL(schedule_timeout);
  999. /*
  1000. * We can use __set_current_state() here because schedule_timeout() calls
  1001. * schedule() unconditionally.
  1002. */
  1003. signed long __sched schedule_timeout_interruptible(signed long timeout)
  1004. {
  1005. __set_current_state(TASK_INTERRUPTIBLE);
  1006. return schedule_timeout(timeout);
  1007. }
  1008. EXPORT_SYMBOL(schedule_timeout_interruptible);
  1009. signed long __sched schedule_timeout_uninterruptible(signed long timeout)
  1010. {
  1011. __set_current_state(TASK_UNINTERRUPTIBLE);
  1012. return schedule_timeout(timeout);
  1013. }
  1014. EXPORT_SYMBOL(schedule_timeout_uninterruptible);
  1015. /* Thread ID - the internal kernel "pid" */
  1016. asmlinkage long sys_gettid(void)
  1017. {
  1018. return current->pid;
  1019. }
  1020. /*
  1021. * sys_sysinfo - fill in sysinfo struct
  1022. */
  1023. asmlinkage long sys_sysinfo(struct sysinfo __user *info)
  1024. {
  1025. struct sysinfo val;
  1026. unsigned long mem_total, sav_total;
  1027. unsigned int mem_unit, bitcount;
  1028. unsigned long seq;
  1029. memset((char *)&val, 0, sizeof(struct sysinfo));
  1030. do {
  1031. struct timespec tp;
  1032. seq = read_seqbegin(&xtime_lock);
  1033. /*
  1034. * This is annoying. The below is the same thing
  1035. * posix_get_clock_monotonic() does, but it wants to
  1036. * take the lock which we want to cover the loads stuff
  1037. * too.
  1038. */
  1039. getnstimeofday(&tp);
  1040. tp.tv_sec += wall_to_monotonic.tv_sec;
  1041. tp.tv_nsec += wall_to_monotonic.tv_nsec;
  1042. if (tp.tv_nsec - NSEC_PER_SEC >= 0) {
  1043. tp.tv_nsec = tp.tv_nsec - NSEC_PER_SEC;
  1044. tp.tv_sec++;
  1045. }
  1046. val.uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
  1047. val.loads[0] = avenrun[0] << (SI_LOAD_SHIFT - FSHIFT);
  1048. val.loads[1] = avenrun[1] << (SI_LOAD_SHIFT - FSHIFT);
  1049. val.loads[2] = avenrun[2] << (SI_LOAD_SHIFT - FSHIFT);
  1050. val.procs = nr_threads;
  1051. } while (read_seqretry(&xtime_lock, seq));
  1052. si_meminfo(&val);
  1053. si_swapinfo(&val);
  1054. /*
  1055. * If the sum of all the available memory (i.e. ram + swap)
  1056. * is less than can be stored in a 32 bit unsigned long then
  1057. * we can be binary compatible with 2.2.x kernels. If not,
  1058. * well, in that case 2.2.x was broken anyways...
  1059. *
  1060. * -Erik Andersen <andersee@debian.org>
  1061. */
  1062. mem_total = val.totalram + val.totalswap;
  1063. if (mem_total < val.totalram || mem_total < val.totalswap)
  1064. goto out;
  1065. bitcount = 0;
  1066. mem_unit = val.mem_unit;
  1067. while (mem_unit > 1) {
  1068. bitcount++;
  1069. mem_unit >>= 1;
  1070. sav_total = mem_total;
  1071. mem_total <<= 1;
  1072. if (mem_total < sav_total)
  1073. goto out;
  1074. }
  1075. /*
  1076. * If mem_total did not overflow, multiply all memory values by
  1077. * val.mem_unit and set it to 1. This leaves things compatible
  1078. * with 2.2.x, and also retains compatibility with earlier 2.4.x
  1079. * kernels...
  1080. */
  1081. val.mem_unit = 1;
  1082. val.totalram <<= bitcount;
  1083. val.freeram <<= bitcount;
  1084. val.sharedram <<= bitcount;
  1085. val.bufferram <<= bitcount;
  1086. val.totalswap <<= bitcount;
  1087. val.freeswap <<= bitcount;
  1088. val.totalhigh <<= bitcount;
  1089. val.freehigh <<= bitcount;
  1090. out:
  1091. if (copy_to_user(info, &val, sizeof(struct sysinfo)))
  1092. return -EFAULT;
  1093. return 0;
  1094. }
  1095. static int __devinit init_timers_cpu(int cpu)
  1096. {
  1097. int j;
  1098. tvec_base_t *base;
  1099. static char __devinitdata tvec_base_done[NR_CPUS];
  1100. if (!tvec_base_done[cpu]) {
  1101. static char boot_done;
  1102. if (boot_done) {
  1103. /*
  1104. * The APs use this path later in boot
  1105. */
  1106. base = kmalloc_node(sizeof(*base), GFP_KERNEL,
  1107. cpu_to_node(cpu));
  1108. if (!base)
  1109. return -ENOMEM;
  1110. memset(base, 0, sizeof(*base));
  1111. per_cpu(tvec_bases, cpu) = base;
  1112. } else {
  1113. /*
  1114. * This is for the boot CPU - we use compile-time
  1115. * static initialisation because per-cpu memory isn't
  1116. * ready yet and because the memory allocators are not
  1117. * initialised either.
  1118. */
  1119. boot_done = 1;
  1120. base = &boot_tvec_bases;
  1121. }
  1122. tvec_base_done[cpu] = 1;
  1123. } else {
  1124. base = per_cpu(tvec_bases, cpu);
  1125. }
  1126. spin_lock_init(&base->lock);
  1127. for (j = 0; j < TVN_SIZE; j++) {
  1128. INIT_LIST_HEAD(base->tv5.vec + j);
  1129. INIT_LIST_HEAD(base->tv4.vec + j);
  1130. INIT_LIST_HEAD(base->tv3.vec + j);
  1131. INIT_LIST_HEAD(base->tv2.vec + j);
  1132. }
  1133. for (j = 0; j < TVR_SIZE; j++)
  1134. INIT_LIST_HEAD(base->tv1.vec + j);
  1135. base->timer_jiffies = jiffies;
  1136. return 0;
  1137. }
  1138. #ifdef CONFIG_HOTPLUG_CPU
  1139. static void migrate_timer_list(tvec_base_t *new_base, struct list_head *head)
  1140. {
  1141. struct timer_list *timer;
  1142. while (!list_empty(head)) {
  1143. timer = list_entry(head->next, struct timer_list, entry);
  1144. detach_timer(timer, 0);
  1145. timer->base = new_base;
  1146. internal_add_timer(new_base, timer);
  1147. }
  1148. }
  1149. static void __devinit migrate_timers(int cpu)
  1150. {
  1151. tvec_base_t *old_base;
  1152. tvec_base_t *new_base;
  1153. int i;
  1154. BUG_ON(cpu_online(cpu));
  1155. old_base = per_cpu(tvec_bases, cpu);
  1156. new_base = get_cpu_var(tvec_bases);
  1157. local_irq_disable();
  1158. spin_lock(&new_base->lock);
  1159. spin_lock(&old_base->lock);
  1160. BUG_ON(old_base->running_timer);
  1161. for (i = 0; i < TVR_SIZE; i++)
  1162. migrate_timer_list(new_base, old_base->tv1.vec + i);
  1163. for (i = 0; i < TVN_SIZE; i++) {
  1164. migrate_timer_list(new_base, old_base->tv2.vec + i);
  1165. migrate_timer_list(new_base, old_base->tv3.vec + i);
  1166. migrate_timer_list(new_base, old_base->tv4.vec + i);
  1167. migrate_timer_list(new_base, old_base->tv5.vec + i);
  1168. }
  1169. spin_unlock(&old_base->lock);
  1170. spin_unlock(&new_base->lock);
  1171. local_irq_enable();
  1172. put_cpu_var(tvec_bases);
  1173. }
  1174. #endif /* CONFIG_HOTPLUG_CPU */
  1175. static int timer_cpu_notify(struct notifier_block *self,
  1176. unsigned long action, void *hcpu)
  1177. {
  1178. long cpu = (long)hcpu;
  1179. switch(action) {
  1180. case CPU_UP_PREPARE:
  1181. if (init_timers_cpu(cpu) < 0)
  1182. return NOTIFY_BAD;
  1183. break;
  1184. #ifdef CONFIG_HOTPLUG_CPU
  1185. case CPU_DEAD:
  1186. migrate_timers(cpu);
  1187. break;
  1188. #endif
  1189. default:
  1190. break;
  1191. }
  1192. return NOTIFY_OK;
  1193. }
  1194. static struct notifier_block timers_nb = {
  1195. .notifier_call = timer_cpu_notify,
  1196. };
  1197. void __init init_timers(void)
  1198. {
  1199. timer_cpu_notify(&timers_nb, (unsigned long)CPU_UP_PREPARE,
  1200. (void *)(long)smp_processor_id());
  1201. register_cpu_notifier(&timers_nb);
  1202. open_softirq(TIMER_SOFTIRQ, run_timer_softirq, NULL);
  1203. }
  1204. #ifdef CONFIG_TIME_INTERPOLATION
  1205. struct time_interpolator *time_interpolator __read_mostly;
  1206. static struct time_interpolator *time_interpolator_list __read_mostly;
  1207. static DEFINE_SPINLOCK(time_interpolator_lock);
  1208. static inline u64 time_interpolator_get_cycles(unsigned int src)
  1209. {
  1210. unsigned long (*x)(void);
  1211. switch (src)
  1212. {
  1213. case TIME_SOURCE_FUNCTION:
  1214. x = time_interpolator->addr;
  1215. return x();
  1216. case TIME_SOURCE_MMIO64 :
  1217. return readq_relaxed((void __iomem *)time_interpolator->addr);
  1218. case TIME_SOURCE_MMIO32 :
  1219. return readl_relaxed((void __iomem *)time_interpolator->addr);
  1220. default: return get_cycles();
  1221. }
  1222. }
  1223. static inline u64 time_interpolator_get_counter(int writelock)
  1224. {
  1225. unsigned int src = time_interpolator->source;
  1226. if (time_interpolator->jitter)
  1227. {
  1228. u64 lcycle;
  1229. u64 now;
  1230. do {
  1231. lcycle = time_interpolator->last_cycle;
  1232. now = time_interpolator_get_cycles(src);
  1233. if (lcycle && time_after(lcycle, now))
  1234. return lcycle;
  1235. /* When holding the xtime write lock, there's no need
  1236. * to add the overhead of the cmpxchg. Readers are
  1237. * force to retry until the write lock is released.
  1238. */
  1239. if (writelock) {
  1240. time_interpolator->last_cycle = now;
  1241. return now;
  1242. }
  1243. /* Keep track of the last timer value returned. The use of cmpxchg here
  1244. * will cause contention in an SMP environment.
  1245. */
  1246. } while (unlikely(cmpxchg(&time_interpolator->last_cycle, lcycle, now) != lcycle));
  1247. return now;
  1248. }
  1249. else
  1250. return time_interpolator_get_cycles(src);
  1251. }
  1252. void time_interpolator_reset(void)
  1253. {
  1254. time_interpolator->offset = 0;
  1255. time_interpolator->last_counter = time_interpolator_get_counter(1);
  1256. }
  1257. #define GET_TI_NSECS(count,i) (((((count) - i->last_counter) & (i)->mask) * (i)->nsec_per_cyc) >> (i)->shift)
  1258. unsigned long time_interpolator_get_offset(void)
  1259. {
  1260. /* If we do not have a time interpolator set up then just return zero */
  1261. if (!time_interpolator)
  1262. return 0;
  1263. return time_interpolator->offset +
  1264. GET_TI_NSECS(time_interpolator_get_counter(0), time_interpolator);
  1265. }
  1266. #define INTERPOLATOR_ADJUST 65536
  1267. #define INTERPOLATOR_MAX_SKIP 10*INTERPOLATOR_ADJUST
  1268. static void time_interpolator_update(long delta_nsec)
  1269. {
  1270. u64 counter;
  1271. unsigned long offset;
  1272. /* If there is no time interpolator set up then do nothing */
  1273. if (!time_interpolator)
  1274. return;
  1275. /*
  1276. * The interpolator compensates for late ticks by accumulating the late
  1277. * time in time_interpolator->offset. A tick earlier than expected will
  1278. * lead to a reset of the offset and a corresponding jump of the clock
  1279. * forward. Again this only works if the interpolator clock is running
  1280. * slightly slower than the regular clock and the tuning logic insures
  1281. * that.
  1282. */
  1283. counter = time_interpolator_get_counter(1);
  1284. offset = time_interpolator->offset +
  1285. GET_TI_NSECS(counter, time_interpolator);
  1286. if (delta_nsec < 0 || (unsigned long) delta_nsec < offset)
  1287. time_interpolator->offset = offset - delta_nsec;
  1288. else {
  1289. time_interpolator->skips++;
  1290. time_interpolator->ns_skipped += delta_nsec - offset;
  1291. time_interpolator->offset = 0;
  1292. }
  1293. time_interpolator->last_counter = counter;
  1294. /* Tuning logic for time interpolator invoked every minute or so.
  1295. * Decrease interpolator clock speed if no skips occurred and an offset is carried.
  1296. * Increase interpolator clock speed if we skip too much time.
  1297. */
  1298. if (jiffies % INTERPOLATOR_ADJUST == 0)
  1299. {
  1300. if (time_interpolator->skips == 0 && time_interpolator->offset > tick_nsec)
  1301. time_interpolator->nsec_per_cyc--;
  1302. if (time_interpolator->ns_skipped > INTERPOLATOR_MAX_SKIP && time_interpolator->offset == 0)
  1303. time_interpolator->nsec_per_cyc++;
  1304. time_interpolator->skips = 0;
  1305. time_interpolator->ns_skipped = 0;
  1306. }
  1307. }
  1308. static inline int
  1309. is_better_time_interpolator(struct time_interpolator *new)
  1310. {
  1311. if (!time_interpolator)
  1312. return 1;
  1313. return new->frequency > 2*time_interpolator->frequency ||
  1314. (unsigned long)new->drift < (unsigned long)time_interpolator->drift;
  1315. }
  1316. void
  1317. register_time_interpolator(struct time_interpolator *ti)
  1318. {
  1319. unsigned long flags;
  1320. /* Sanity check */
  1321. BUG_ON(ti->frequency == 0 || ti->mask == 0);
  1322. ti->nsec_per_cyc = ((u64)NSEC_PER_SEC << ti->shift) / ti->frequency;
  1323. spin_lock(&time_interpolator_lock);
  1324. write_seqlock_irqsave(&xtime_lock, flags);
  1325. if (is_better_time_interpolator(ti)) {
  1326. time_interpolator = ti;
  1327. time_interpolator_reset();
  1328. }
  1329. write_sequnlock_irqrestore(&xtime_lock, flags);
  1330. ti->next = time_interpolator_list;
  1331. time_interpolator_list = ti;
  1332. spin_unlock(&time_interpolator_lock);
  1333. }
  1334. void
  1335. unregister_time_interpolator(struct time_interpolator *ti)
  1336. {
  1337. struct time_interpolator *curr, **prev;
  1338. unsigned long flags;
  1339. spin_lock(&time_interpolator_lock);
  1340. prev = &time_interpolator_list;
  1341. for (curr = *prev; curr; curr = curr->next) {
  1342. if (curr == ti) {
  1343. *prev = curr->next;
  1344. break;
  1345. }
  1346. prev = &curr->next;
  1347. }
  1348. write_seqlock_irqsave(&xtime_lock, flags);
  1349. if (ti == time_interpolator) {
  1350. /* we lost the best time-interpolator: */
  1351. time_interpolator = NULL;
  1352. /* find the next-best interpolator */
  1353. for (curr = time_interpolator_list; curr; curr = curr->next)
  1354. if (is_better_time_interpolator(curr))
  1355. time_interpolator = curr;
  1356. time_interpolator_reset();
  1357. }
  1358. write_sequnlock_irqrestore(&xtime_lock, flags);
  1359. spin_unlock(&time_interpolator_lock);
  1360. }
  1361. #endif /* CONFIG_TIME_INTERPOLATION */
  1362. /**
  1363. * msleep - sleep safely even with waitqueue interruptions
  1364. * @msecs: Time in milliseconds to sleep for
  1365. */
  1366. void msleep(unsigned int msecs)
  1367. {
  1368. unsigned long timeout = msecs_to_jiffies(msecs) + 1;
  1369. while (timeout)
  1370. timeout = schedule_timeout_uninterruptible(timeout);
  1371. }
  1372. EXPORT_SYMBOL(msleep);
  1373. /**
  1374. * msleep_interruptible - sleep waiting for signals
  1375. * @msecs: Time in milliseconds to sleep for
  1376. */
  1377. unsigned long msleep_interruptible(unsigned int msecs)
  1378. {
  1379. unsigned long timeout = msecs_to_jiffies(msecs) + 1;
  1380. while (timeout && !signal_pending(current))
  1381. timeout = schedule_timeout_interruptible(timeout);
  1382. return jiffies_to_msecs(timeout);
  1383. }
  1384. EXPORT_SYMBOL(msleep_interruptible);