myri_sbus.c 32 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180
  1. /* myri_sbus.c: MyriCOM MyriNET SBUS card driver.
  2. *
  3. * Copyright (C) 1996, 1999, 2006 David S. Miller (davem@davemloft.net)
  4. */
  5. static char version[] =
  6. "myri_sbus.c:v2.0 June 23, 2006 David S. Miller (davem@davemloft.net)\n";
  7. #include <linux/module.h>
  8. #include <linux/config.h>
  9. #include <linux/errno.h>
  10. #include <linux/kernel.h>
  11. #include <linux/types.h>
  12. #include <linux/fcntl.h>
  13. #include <linux/interrupt.h>
  14. #include <linux/ioport.h>
  15. #include <linux/in.h>
  16. #include <linux/slab.h>
  17. #include <linux/string.h>
  18. #include <linux/delay.h>
  19. #include <linux/init.h>
  20. #include <linux/netdevice.h>
  21. #include <linux/etherdevice.h>
  22. #include <linux/skbuff.h>
  23. #include <linux/bitops.h>
  24. #include <net/dst.h>
  25. #include <net/arp.h>
  26. #include <net/sock.h>
  27. #include <net/ipv6.h>
  28. #include <asm/system.h>
  29. #include <asm/io.h>
  30. #include <asm/dma.h>
  31. #include <asm/byteorder.h>
  32. #include <asm/idprom.h>
  33. #include <asm/sbus.h>
  34. #include <asm/openprom.h>
  35. #include <asm/oplib.h>
  36. #include <asm/auxio.h>
  37. #include <asm/pgtable.h>
  38. #include <asm/irq.h>
  39. #include <asm/checksum.h>
  40. #include "myri_sbus.h"
  41. #include "myri_code.h"
  42. /* #define DEBUG_DETECT */
  43. /* #define DEBUG_IRQ */
  44. /* #define DEBUG_TRANSMIT */
  45. /* #define DEBUG_RECEIVE */
  46. /* #define DEBUG_HEADER */
  47. #ifdef DEBUG_DETECT
  48. #define DET(x) printk x
  49. #else
  50. #define DET(x)
  51. #endif
  52. #ifdef DEBUG_IRQ
  53. #define DIRQ(x) printk x
  54. #else
  55. #define DIRQ(x)
  56. #endif
  57. #ifdef DEBUG_TRANSMIT
  58. #define DTX(x) printk x
  59. #else
  60. #define DTX(x)
  61. #endif
  62. #ifdef DEBUG_RECEIVE
  63. #define DRX(x) printk x
  64. #else
  65. #define DRX(x)
  66. #endif
  67. #ifdef DEBUG_HEADER
  68. #define DHDR(x) printk x
  69. #else
  70. #define DHDR(x)
  71. #endif
  72. static void myri_reset_off(void __iomem *lp, void __iomem *cregs)
  73. {
  74. /* Clear IRQ mask. */
  75. sbus_writel(0, lp + LANAI_EIMASK);
  76. /* Turn RESET function off. */
  77. sbus_writel(CONTROL_ROFF, cregs + MYRICTRL_CTRL);
  78. }
  79. static void myri_reset_on(void __iomem *cregs)
  80. {
  81. /* Enable RESET function. */
  82. sbus_writel(CONTROL_RON, cregs + MYRICTRL_CTRL);
  83. /* Disable IRQ's. */
  84. sbus_writel(CONTROL_DIRQ, cregs + MYRICTRL_CTRL);
  85. }
  86. static void myri_disable_irq(void __iomem *lp, void __iomem *cregs)
  87. {
  88. sbus_writel(CONTROL_DIRQ, cregs + MYRICTRL_CTRL);
  89. sbus_writel(0, lp + LANAI_EIMASK);
  90. sbus_writel(ISTAT_HOST, lp + LANAI_ISTAT);
  91. }
  92. static void myri_enable_irq(void __iomem *lp, void __iomem *cregs)
  93. {
  94. sbus_writel(CONTROL_EIRQ, cregs + MYRICTRL_CTRL);
  95. sbus_writel(ISTAT_HOST, lp + LANAI_EIMASK);
  96. }
  97. static inline void bang_the_chip(struct myri_eth *mp)
  98. {
  99. struct myri_shmem __iomem *shmem = mp->shmem;
  100. void __iomem *cregs = mp->cregs;
  101. sbus_writel(1, &shmem->send);
  102. sbus_writel(CONTROL_WON, cregs + MYRICTRL_CTRL);
  103. }
  104. static int myri_do_handshake(struct myri_eth *mp)
  105. {
  106. struct myri_shmem __iomem *shmem = mp->shmem;
  107. void __iomem *cregs = mp->cregs;
  108. struct myri_channel __iomem *chan = &shmem->channel;
  109. int tick = 0;
  110. DET(("myri_do_handshake: "));
  111. if (sbus_readl(&chan->state) == STATE_READY) {
  112. DET(("Already STATE_READY, failed.\n"));
  113. return -1; /* We're hosed... */
  114. }
  115. myri_disable_irq(mp->lregs, cregs);
  116. while (tick++ <= 25) {
  117. u32 softstate;
  118. /* Wake it up. */
  119. DET(("shakedown, CONTROL_WON, "));
  120. sbus_writel(1, &shmem->shakedown);
  121. sbus_writel(CONTROL_WON, cregs + MYRICTRL_CTRL);
  122. softstate = sbus_readl(&chan->state);
  123. DET(("chanstate[%08x] ", softstate));
  124. if (softstate == STATE_READY) {
  125. DET(("wakeup successful, "));
  126. break;
  127. }
  128. if (softstate != STATE_WFN) {
  129. DET(("not WFN setting that, "));
  130. sbus_writel(STATE_WFN, &chan->state);
  131. }
  132. udelay(20);
  133. }
  134. myri_enable_irq(mp->lregs, cregs);
  135. if (tick > 25) {
  136. DET(("25 ticks we lose, failure.\n"));
  137. return -1;
  138. }
  139. DET(("success\n"));
  140. return 0;
  141. }
  142. static int myri_load_lanai(struct myri_eth *mp)
  143. {
  144. struct net_device *dev = mp->dev;
  145. struct myri_shmem __iomem *shmem = mp->shmem;
  146. void __iomem *rptr;
  147. int i;
  148. myri_disable_irq(mp->lregs, mp->cregs);
  149. myri_reset_on(mp->cregs);
  150. rptr = mp->lanai;
  151. for (i = 0; i < mp->eeprom.ramsz; i++)
  152. sbus_writeb(0, rptr + i);
  153. if (mp->eeprom.cpuvers >= CPUVERS_3_0)
  154. sbus_writel(mp->eeprom.cval, mp->lregs + LANAI_CVAL);
  155. /* Load executable code. */
  156. for (i = 0; i < sizeof(lanai4_code); i++)
  157. sbus_writeb(lanai4_code[i], rptr + (lanai4_code_off * 2) + i);
  158. /* Load data segment. */
  159. for (i = 0; i < sizeof(lanai4_data); i++)
  160. sbus_writeb(lanai4_data[i], rptr + (lanai4_data_off * 2) + i);
  161. /* Set device address. */
  162. sbus_writeb(0, &shmem->addr[0]);
  163. sbus_writeb(0, &shmem->addr[1]);
  164. for (i = 0; i < 6; i++)
  165. sbus_writeb(dev->dev_addr[i],
  166. &shmem->addr[i + 2]);
  167. /* Set SBUS bursts and interrupt mask. */
  168. sbus_writel(((mp->myri_bursts & 0xf8) >> 3), &shmem->burst);
  169. sbus_writel(SHMEM_IMASK_RX, &shmem->imask);
  170. /* Release the LANAI. */
  171. myri_disable_irq(mp->lregs, mp->cregs);
  172. myri_reset_off(mp->lregs, mp->cregs);
  173. myri_disable_irq(mp->lregs, mp->cregs);
  174. /* Wait for the reset to complete. */
  175. for (i = 0; i < 5000; i++) {
  176. if (sbus_readl(&shmem->channel.state) != STATE_READY)
  177. break;
  178. else
  179. udelay(10);
  180. }
  181. if (i == 5000)
  182. printk(KERN_ERR "myricom: Chip would not reset after firmware load.\n");
  183. i = myri_do_handshake(mp);
  184. if (i)
  185. printk(KERN_ERR "myricom: Handshake with LANAI failed.\n");
  186. if (mp->eeprom.cpuvers == CPUVERS_4_0)
  187. sbus_writel(0, mp->lregs + LANAI_VERS);
  188. return i;
  189. }
  190. static void myri_clean_rings(struct myri_eth *mp)
  191. {
  192. struct sendq __iomem *sq = mp->sq;
  193. struct recvq __iomem *rq = mp->rq;
  194. int i;
  195. sbus_writel(0, &rq->tail);
  196. sbus_writel(0, &rq->head);
  197. for (i = 0; i < (RX_RING_SIZE+1); i++) {
  198. if (mp->rx_skbs[i] != NULL) {
  199. struct myri_rxd __iomem *rxd = &rq->myri_rxd[i];
  200. u32 dma_addr;
  201. dma_addr = sbus_readl(&rxd->myri_scatters[0].addr);
  202. sbus_unmap_single(mp->myri_sdev, dma_addr, RX_ALLOC_SIZE, SBUS_DMA_FROMDEVICE);
  203. dev_kfree_skb(mp->rx_skbs[i]);
  204. mp->rx_skbs[i] = NULL;
  205. }
  206. }
  207. mp->tx_old = 0;
  208. sbus_writel(0, &sq->tail);
  209. sbus_writel(0, &sq->head);
  210. for (i = 0; i < TX_RING_SIZE; i++) {
  211. if (mp->tx_skbs[i] != NULL) {
  212. struct sk_buff *skb = mp->tx_skbs[i];
  213. struct myri_txd __iomem *txd = &sq->myri_txd[i];
  214. u32 dma_addr;
  215. dma_addr = sbus_readl(&txd->myri_gathers[0].addr);
  216. sbus_unmap_single(mp->myri_sdev, dma_addr, (skb->len + 3) & ~3, SBUS_DMA_TODEVICE);
  217. dev_kfree_skb(mp->tx_skbs[i]);
  218. mp->tx_skbs[i] = NULL;
  219. }
  220. }
  221. }
  222. static void myri_init_rings(struct myri_eth *mp, int from_irq)
  223. {
  224. struct recvq __iomem *rq = mp->rq;
  225. struct myri_rxd __iomem *rxd = &rq->myri_rxd[0];
  226. struct net_device *dev = mp->dev;
  227. gfp_t gfp_flags = GFP_KERNEL;
  228. int i;
  229. if (from_irq || in_interrupt())
  230. gfp_flags = GFP_ATOMIC;
  231. myri_clean_rings(mp);
  232. for (i = 0; i < RX_RING_SIZE; i++) {
  233. struct sk_buff *skb = myri_alloc_skb(RX_ALLOC_SIZE, gfp_flags);
  234. u32 dma_addr;
  235. if (!skb)
  236. continue;
  237. mp->rx_skbs[i] = skb;
  238. skb->dev = dev;
  239. skb_put(skb, RX_ALLOC_SIZE);
  240. dma_addr = sbus_map_single(mp->myri_sdev, skb->data, RX_ALLOC_SIZE, SBUS_DMA_FROMDEVICE);
  241. sbus_writel(dma_addr, &rxd[i].myri_scatters[0].addr);
  242. sbus_writel(RX_ALLOC_SIZE, &rxd[i].myri_scatters[0].len);
  243. sbus_writel(i, &rxd[i].ctx);
  244. sbus_writel(1, &rxd[i].num_sg);
  245. }
  246. sbus_writel(0, &rq->head);
  247. sbus_writel(RX_RING_SIZE, &rq->tail);
  248. }
  249. static int myri_init(struct myri_eth *mp, int from_irq)
  250. {
  251. myri_init_rings(mp, from_irq);
  252. return 0;
  253. }
  254. static void myri_is_not_so_happy(struct myri_eth *mp)
  255. {
  256. }
  257. #ifdef DEBUG_HEADER
  258. static void dump_ehdr(struct ethhdr *ehdr)
  259. {
  260. printk("ehdr[h_dst(%02x:%02x:%02x:%02x:%02x:%02x)"
  261. "h_source(%02x:%02x:%02x:%02x:%02x:%02x)h_proto(%04x)]\n",
  262. ehdr->h_dest[0], ehdr->h_dest[1], ehdr->h_dest[2],
  263. ehdr->h_dest[3], ehdr->h_dest[4], ehdr->h_dest[4],
  264. ehdr->h_source[0], ehdr->h_source[1], ehdr->h_source[2],
  265. ehdr->h_source[3], ehdr->h_source[4], ehdr->h_source[4],
  266. ehdr->h_proto);
  267. }
  268. static void dump_ehdr_and_myripad(unsigned char *stuff)
  269. {
  270. struct ethhdr *ehdr = (struct ethhdr *) (stuff + 2);
  271. printk("pad[%02x:%02x]", stuff[0], stuff[1]);
  272. printk("ehdr[h_dst(%02x:%02x:%02x:%02x:%02x:%02x)"
  273. "h_source(%02x:%02x:%02x:%02x:%02x:%02x)h_proto(%04x)]\n",
  274. ehdr->h_dest[0], ehdr->h_dest[1], ehdr->h_dest[2],
  275. ehdr->h_dest[3], ehdr->h_dest[4], ehdr->h_dest[4],
  276. ehdr->h_source[0], ehdr->h_source[1], ehdr->h_source[2],
  277. ehdr->h_source[3], ehdr->h_source[4], ehdr->h_source[4],
  278. ehdr->h_proto);
  279. }
  280. #endif
  281. static void myri_tx(struct myri_eth *mp, struct net_device *dev)
  282. {
  283. struct sendq __iomem *sq= mp->sq;
  284. int entry = mp->tx_old;
  285. int limit = sbus_readl(&sq->head);
  286. DTX(("entry[%d] limit[%d] ", entry, limit));
  287. if (entry == limit)
  288. return;
  289. while (entry != limit) {
  290. struct sk_buff *skb = mp->tx_skbs[entry];
  291. u32 dma_addr;
  292. DTX(("SKB[%d] ", entry));
  293. dma_addr = sbus_readl(&sq->myri_txd[entry].myri_gathers[0].addr);
  294. sbus_unmap_single(mp->myri_sdev, dma_addr, skb->len, SBUS_DMA_TODEVICE);
  295. dev_kfree_skb(skb);
  296. mp->tx_skbs[entry] = NULL;
  297. mp->enet_stats.tx_packets++;
  298. entry = NEXT_TX(entry);
  299. }
  300. mp->tx_old = entry;
  301. }
  302. /* Determine the packet's protocol ID. The rule here is that we
  303. * assume 802.3 if the type field is short enough to be a length.
  304. * This is normal practice and works for any 'now in use' protocol.
  305. */
  306. static __be16 myri_type_trans(struct sk_buff *skb, struct net_device *dev)
  307. {
  308. struct ethhdr *eth;
  309. unsigned char *rawp;
  310. skb->mac.raw = (((unsigned char *)skb->data) + MYRI_PAD_LEN);
  311. skb_pull(skb, dev->hard_header_len);
  312. eth = eth_hdr(skb);
  313. #ifdef DEBUG_HEADER
  314. DHDR(("myri_type_trans: "));
  315. dump_ehdr(eth);
  316. #endif
  317. if (*eth->h_dest & 1) {
  318. if (memcmp(eth->h_dest, dev->broadcast, ETH_ALEN)==0)
  319. skb->pkt_type = PACKET_BROADCAST;
  320. else
  321. skb->pkt_type = PACKET_MULTICAST;
  322. } else if (dev->flags & (IFF_PROMISC|IFF_ALLMULTI)) {
  323. if (memcmp(eth->h_dest, dev->dev_addr, ETH_ALEN))
  324. skb->pkt_type = PACKET_OTHERHOST;
  325. }
  326. if (ntohs(eth->h_proto) >= 1536)
  327. return eth->h_proto;
  328. rawp = skb->data;
  329. /* This is a magic hack to spot IPX packets. Older Novell breaks
  330. * the protocol design and runs IPX over 802.3 without an 802.2 LLC
  331. * layer. We look for FFFF which isn't a used 802.2 SSAP/DSAP. This
  332. * won't work for fault tolerant netware but does for the rest.
  333. */
  334. if (*(unsigned short *)rawp == 0xFFFF)
  335. return htons(ETH_P_802_3);
  336. /* Real 802.2 LLC */
  337. return htons(ETH_P_802_2);
  338. }
  339. static void myri_rx(struct myri_eth *mp, struct net_device *dev)
  340. {
  341. struct recvq __iomem *rq = mp->rq;
  342. struct recvq __iomem *rqa = mp->rqack;
  343. int entry = sbus_readl(&rqa->head);
  344. int limit = sbus_readl(&rqa->tail);
  345. int drops;
  346. DRX(("entry[%d] limit[%d] ", entry, limit));
  347. if (entry == limit)
  348. return;
  349. drops = 0;
  350. DRX(("\n"));
  351. while (entry != limit) {
  352. struct myri_rxd __iomem *rxdack = &rqa->myri_rxd[entry];
  353. u32 csum = sbus_readl(&rxdack->csum);
  354. int len = sbus_readl(&rxdack->myri_scatters[0].len);
  355. int index = sbus_readl(&rxdack->ctx);
  356. struct myri_rxd __iomem *rxd = &rq->myri_rxd[sbus_readl(&rq->tail)];
  357. struct sk_buff *skb = mp->rx_skbs[index];
  358. /* Ack it. */
  359. sbus_writel(NEXT_RX(entry), &rqa->head);
  360. /* Check for errors. */
  361. DRX(("rxd[%d]: %p len[%d] csum[%08x] ", entry, rxd, len, csum));
  362. sbus_dma_sync_single_for_cpu(mp->myri_sdev,
  363. sbus_readl(&rxd->myri_scatters[0].addr),
  364. RX_ALLOC_SIZE, SBUS_DMA_FROMDEVICE);
  365. if (len < (ETH_HLEN + MYRI_PAD_LEN) || (skb->data[0] != MYRI_PAD_LEN)) {
  366. DRX(("ERROR["));
  367. mp->enet_stats.rx_errors++;
  368. if (len < (ETH_HLEN + MYRI_PAD_LEN)) {
  369. DRX(("BAD_LENGTH] "));
  370. mp->enet_stats.rx_length_errors++;
  371. } else {
  372. DRX(("NO_PADDING] "));
  373. mp->enet_stats.rx_frame_errors++;
  374. }
  375. /* Return it to the LANAI. */
  376. drop_it:
  377. drops++;
  378. DRX(("DROP "));
  379. mp->enet_stats.rx_dropped++;
  380. sbus_dma_sync_single_for_device(mp->myri_sdev,
  381. sbus_readl(&rxd->myri_scatters[0].addr),
  382. RX_ALLOC_SIZE,
  383. SBUS_DMA_FROMDEVICE);
  384. sbus_writel(RX_ALLOC_SIZE, &rxd->myri_scatters[0].len);
  385. sbus_writel(index, &rxd->ctx);
  386. sbus_writel(1, &rxd->num_sg);
  387. sbus_writel(NEXT_RX(sbus_readl(&rq->tail)), &rq->tail);
  388. goto next;
  389. }
  390. DRX(("len[%d] ", len));
  391. if (len > RX_COPY_THRESHOLD) {
  392. struct sk_buff *new_skb;
  393. u32 dma_addr;
  394. DRX(("BIGBUFF "));
  395. new_skb = myri_alloc_skb(RX_ALLOC_SIZE, GFP_ATOMIC);
  396. if (new_skb == NULL) {
  397. DRX(("skb_alloc(FAILED) "));
  398. goto drop_it;
  399. }
  400. sbus_unmap_single(mp->myri_sdev,
  401. sbus_readl(&rxd->myri_scatters[0].addr),
  402. RX_ALLOC_SIZE,
  403. SBUS_DMA_FROMDEVICE);
  404. mp->rx_skbs[index] = new_skb;
  405. new_skb->dev = dev;
  406. skb_put(new_skb, RX_ALLOC_SIZE);
  407. dma_addr = sbus_map_single(mp->myri_sdev,
  408. new_skb->data,
  409. RX_ALLOC_SIZE,
  410. SBUS_DMA_FROMDEVICE);
  411. sbus_writel(dma_addr, &rxd->myri_scatters[0].addr);
  412. sbus_writel(RX_ALLOC_SIZE, &rxd->myri_scatters[0].len);
  413. sbus_writel(index, &rxd->ctx);
  414. sbus_writel(1, &rxd->num_sg);
  415. sbus_writel(NEXT_RX(sbus_readl(&rq->tail)), &rq->tail);
  416. /* Trim the original skb for the netif. */
  417. DRX(("trim(%d) ", len));
  418. skb_trim(skb, len);
  419. } else {
  420. struct sk_buff *copy_skb = dev_alloc_skb(len);
  421. DRX(("SMALLBUFF "));
  422. if (copy_skb == NULL) {
  423. DRX(("dev_alloc_skb(FAILED) "));
  424. goto drop_it;
  425. }
  426. /* DMA sync already done above. */
  427. copy_skb->dev = dev;
  428. DRX(("resv_and_put "));
  429. skb_put(copy_skb, len);
  430. memcpy(copy_skb->data, skb->data, len);
  431. /* Reuse original ring buffer. */
  432. DRX(("reuse "));
  433. sbus_dma_sync_single_for_device(mp->myri_sdev,
  434. sbus_readl(&rxd->myri_scatters[0].addr),
  435. RX_ALLOC_SIZE,
  436. SBUS_DMA_FROMDEVICE);
  437. sbus_writel(RX_ALLOC_SIZE, &rxd->myri_scatters[0].len);
  438. sbus_writel(index, &rxd->ctx);
  439. sbus_writel(1, &rxd->num_sg);
  440. sbus_writel(NEXT_RX(sbus_readl(&rq->tail)), &rq->tail);
  441. skb = copy_skb;
  442. }
  443. /* Just like the happy meal we get checksums from this card. */
  444. skb->csum = csum;
  445. skb->ip_summed = CHECKSUM_UNNECESSARY; /* XXX */
  446. skb->protocol = myri_type_trans(skb, dev);
  447. DRX(("prot[%04x] netif_rx ", skb->protocol));
  448. netif_rx(skb);
  449. dev->last_rx = jiffies;
  450. mp->enet_stats.rx_packets++;
  451. mp->enet_stats.rx_bytes += len;
  452. next:
  453. DRX(("NEXT\n"));
  454. entry = NEXT_RX(entry);
  455. }
  456. }
  457. static irqreturn_t myri_interrupt(int irq, void *dev_id, struct pt_regs *regs)
  458. {
  459. struct net_device *dev = (struct net_device *) dev_id;
  460. struct myri_eth *mp = (struct myri_eth *) dev->priv;
  461. void __iomem *lregs = mp->lregs;
  462. struct myri_channel __iomem *chan = &mp->shmem->channel;
  463. unsigned long flags;
  464. u32 status;
  465. int handled = 0;
  466. spin_lock_irqsave(&mp->irq_lock, flags);
  467. status = sbus_readl(lregs + LANAI_ISTAT);
  468. DIRQ(("myri_interrupt: status[%08x] ", status));
  469. if (status & ISTAT_HOST) {
  470. u32 softstate;
  471. handled = 1;
  472. DIRQ(("IRQ_DISAB "));
  473. myri_disable_irq(lregs, mp->cregs);
  474. softstate = sbus_readl(&chan->state);
  475. DIRQ(("state[%08x] ", softstate));
  476. if (softstate != STATE_READY) {
  477. DIRQ(("myri_not_so_happy "));
  478. myri_is_not_so_happy(mp);
  479. }
  480. DIRQ(("\nmyri_rx: "));
  481. myri_rx(mp, dev);
  482. DIRQ(("\nistat=ISTAT_HOST "));
  483. sbus_writel(ISTAT_HOST, lregs + LANAI_ISTAT);
  484. DIRQ(("IRQ_ENAB "));
  485. myri_enable_irq(lregs, mp->cregs);
  486. }
  487. DIRQ(("\n"));
  488. spin_unlock_irqrestore(&mp->irq_lock, flags);
  489. return IRQ_RETVAL(handled);
  490. }
  491. static int myri_open(struct net_device *dev)
  492. {
  493. struct myri_eth *mp = (struct myri_eth *) dev->priv;
  494. return myri_init(mp, in_interrupt());
  495. }
  496. static int myri_close(struct net_device *dev)
  497. {
  498. struct myri_eth *mp = (struct myri_eth *) dev->priv;
  499. myri_clean_rings(mp);
  500. return 0;
  501. }
  502. static void myri_tx_timeout(struct net_device *dev)
  503. {
  504. struct myri_eth *mp = (struct myri_eth *) dev->priv;
  505. printk(KERN_ERR "%s: transmit timed out, resetting\n", dev->name);
  506. mp->enet_stats.tx_errors++;
  507. myri_init(mp, 0);
  508. netif_wake_queue(dev);
  509. }
  510. static int myri_start_xmit(struct sk_buff *skb, struct net_device *dev)
  511. {
  512. struct myri_eth *mp = (struct myri_eth *) dev->priv;
  513. struct sendq __iomem *sq = mp->sq;
  514. struct myri_txd __iomem *txd;
  515. unsigned long flags;
  516. unsigned int head, tail;
  517. int len, entry;
  518. u32 dma_addr;
  519. DTX(("myri_start_xmit: "));
  520. myri_tx(mp, dev);
  521. netif_stop_queue(dev);
  522. /* This is just to prevent multiple PIO reads for TX_BUFFS_AVAIL. */
  523. head = sbus_readl(&sq->head);
  524. tail = sbus_readl(&sq->tail);
  525. if (!TX_BUFFS_AVAIL(head, tail)) {
  526. DTX(("no buffs available, returning 1\n"));
  527. return 1;
  528. }
  529. spin_lock_irqsave(&mp->irq_lock, flags);
  530. DHDR(("xmit[skbdata(%p)]\n", skb->data));
  531. #ifdef DEBUG_HEADER
  532. dump_ehdr_and_myripad(((unsigned char *) skb->data));
  533. #endif
  534. /* XXX Maybe this can go as well. */
  535. len = skb->len;
  536. if (len & 3) {
  537. DTX(("len&3 "));
  538. len = (len + 4) & (~3);
  539. }
  540. entry = sbus_readl(&sq->tail);
  541. txd = &sq->myri_txd[entry];
  542. mp->tx_skbs[entry] = skb;
  543. /* Must do this before we sbus map it. */
  544. if (skb->data[MYRI_PAD_LEN] & 0x1) {
  545. sbus_writew(0xffff, &txd->addr[0]);
  546. sbus_writew(0xffff, &txd->addr[1]);
  547. sbus_writew(0xffff, &txd->addr[2]);
  548. sbus_writew(0xffff, &txd->addr[3]);
  549. } else {
  550. sbus_writew(0xffff, &txd->addr[0]);
  551. sbus_writew((skb->data[0] << 8) | skb->data[1], &txd->addr[1]);
  552. sbus_writew((skb->data[2] << 8) | skb->data[3], &txd->addr[2]);
  553. sbus_writew((skb->data[4] << 8) | skb->data[5], &txd->addr[3]);
  554. }
  555. dma_addr = sbus_map_single(mp->myri_sdev, skb->data, len, SBUS_DMA_TODEVICE);
  556. sbus_writel(dma_addr, &txd->myri_gathers[0].addr);
  557. sbus_writel(len, &txd->myri_gathers[0].len);
  558. sbus_writel(1, &txd->num_sg);
  559. sbus_writel(KERNEL_CHANNEL, &txd->chan);
  560. sbus_writel(len, &txd->len);
  561. sbus_writel((u32)-1, &txd->csum_off);
  562. sbus_writel(0, &txd->csum_field);
  563. sbus_writel(NEXT_TX(entry), &sq->tail);
  564. DTX(("BangTheChip "));
  565. bang_the_chip(mp);
  566. DTX(("tbusy=0, returning 0\n"));
  567. netif_start_queue(dev);
  568. spin_unlock_irqrestore(&mp->irq_lock, flags);
  569. return 0;
  570. }
  571. /* Create the MyriNet MAC header for an arbitrary protocol layer
  572. *
  573. * saddr=NULL means use device source address
  574. * daddr=NULL means leave destination address (eg unresolved arp)
  575. */
  576. static int myri_header(struct sk_buff *skb, struct net_device *dev, unsigned short type,
  577. void *daddr, void *saddr, unsigned len)
  578. {
  579. struct ethhdr *eth = (struct ethhdr *) skb_push(skb, ETH_HLEN);
  580. unsigned char *pad = (unsigned char *) skb_push(skb, MYRI_PAD_LEN);
  581. #ifdef DEBUG_HEADER
  582. DHDR(("myri_header: pad[%02x,%02x] ", pad[0], pad[1]));
  583. dump_ehdr(eth);
  584. #endif
  585. /* Set the MyriNET padding identifier. */
  586. pad[0] = MYRI_PAD_LEN;
  587. pad[1] = 0xab;
  588. /* Set the protocol type. For a packet of type ETH_P_802_3 we put the length
  589. * in here instead. It is up to the 802.2 layer to carry protocol information.
  590. */
  591. if (type != ETH_P_802_3)
  592. eth->h_proto = htons(type);
  593. else
  594. eth->h_proto = htons(len);
  595. /* Set the source hardware address. */
  596. if (saddr)
  597. memcpy(eth->h_source, saddr, dev->addr_len);
  598. else
  599. memcpy(eth->h_source, dev->dev_addr, dev->addr_len);
  600. /* Anyway, the loopback-device should never use this function... */
  601. if (dev->flags & IFF_LOOPBACK) {
  602. int i;
  603. for (i = 0; i < dev->addr_len; i++)
  604. eth->h_dest[i] = 0;
  605. return(dev->hard_header_len);
  606. }
  607. if (daddr) {
  608. memcpy(eth->h_dest, daddr, dev->addr_len);
  609. return dev->hard_header_len;
  610. }
  611. return -dev->hard_header_len;
  612. }
  613. /* Rebuild the MyriNet MAC header. This is called after an ARP
  614. * (or in future other address resolution) has completed on this
  615. * sk_buff. We now let ARP fill in the other fields.
  616. */
  617. static int myri_rebuild_header(struct sk_buff *skb)
  618. {
  619. unsigned char *pad = (unsigned char *) skb->data;
  620. struct ethhdr *eth = (struct ethhdr *) (pad + MYRI_PAD_LEN);
  621. struct net_device *dev = skb->dev;
  622. #ifdef DEBUG_HEADER
  623. DHDR(("myri_rebuild_header: pad[%02x,%02x] ", pad[0], pad[1]));
  624. dump_ehdr(eth);
  625. #endif
  626. /* Refill MyriNet padding identifiers, this is just being anal. */
  627. pad[0] = MYRI_PAD_LEN;
  628. pad[1] = 0xab;
  629. switch (eth->h_proto)
  630. {
  631. #ifdef CONFIG_INET
  632. case __constant_htons(ETH_P_IP):
  633. return arp_find(eth->h_dest, skb);
  634. #endif
  635. default:
  636. printk(KERN_DEBUG
  637. "%s: unable to resolve type %X addresses.\n",
  638. dev->name, (int)eth->h_proto);
  639. memcpy(eth->h_source, dev->dev_addr, dev->addr_len);
  640. return 0;
  641. break;
  642. }
  643. return 0;
  644. }
  645. int myri_header_cache(struct neighbour *neigh, struct hh_cache *hh)
  646. {
  647. unsigned short type = hh->hh_type;
  648. unsigned char *pad;
  649. struct ethhdr *eth;
  650. struct net_device *dev = neigh->dev;
  651. pad = ((unsigned char *) hh->hh_data) +
  652. HH_DATA_OFF(sizeof(*eth) + MYRI_PAD_LEN);
  653. eth = (struct ethhdr *) (pad + MYRI_PAD_LEN);
  654. if (type == __constant_htons(ETH_P_802_3))
  655. return -1;
  656. /* Refill MyriNet padding identifiers, this is just being anal. */
  657. pad[0] = MYRI_PAD_LEN;
  658. pad[1] = 0xab;
  659. eth->h_proto = type;
  660. memcpy(eth->h_source, dev->dev_addr, dev->addr_len);
  661. memcpy(eth->h_dest, neigh->ha, dev->addr_len);
  662. hh->hh_len = 16;
  663. return 0;
  664. }
  665. /* Called by Address Resolution module to notify changes in address. */
  666. void myri_header_cache_update(struct hh_cache *hh, struct net_device *dev, unsigned char * haddr)
  667. {
  668. memcpy(((u8*)hh->hh_data) + HH_DATA_OFF(sizeof(struct ethhdr)),
  669. haddr, dev->addr_len);
  670. }
  671. static int myri_change_mtu(struct net_device *dev, int new_mtu)
  672. {
  673. if ((new_mtu < (ETH_HLEN + MYRI_PAD_LEN)) || (new_mtu > MYRINET_MTU))
  674. return -EINVAL;
  675. dev->mtu = new_mtu;
  676. return 0;
  677. }
  678. static struct net_device_stats *myri_get_stats(struct net_device *dev)
  679. { return &(((struct myri_eth *)dev->priv)->enet_stats); }
  680. static void myri_set_multicast(struct net_device *dev)
  681. {
  682. /* Do nothing, all MyriCOM nodes transmit multicast frames
  683. * as broadcast packets...
  684. */
  685. }
  686. static inline void set_boardid_from_idprom(struct myri_eth *mp, int num)
  687. {
  688. mp->eeprom.id[0] = 0;
  689. mp->eeprom.id[1] = idprom->id_machtype;
  690. mp->eeprom.id[2] = (idprom->id_sernum >> 16) & 0xff;
  691. mp->eeprom.id[3] = (idprom->id_sernum >> 8) & 0xff;
  692. mp->eeprom.id[4] = (idprom->id_sernum >> 0) & 0xff;
  693. mp->eeprom.id[5] = num;
  694. }
  695. static inline void determine_reg_space_size(struct myri_eth *mp)
  696. {
  697. switch(mp->eeprom.cpuvers) {
  698. case CPUVERS_2_3:
  699. case CPUVERS_3_0:
  700. case CPUVERS_3_1:
  701. case CPUVERS_3_2:
  702. mp->reg_size = (3 * 128 * 1024) + 4096;
  703. break;
  704. case CPUVERS_4_0:
  705. case CPUVERS_4_1:
  706. mp->reg_size = ((4096<<1) + mp->eeprom.ramsz);
  707. break;
  708. case CPUVERS_4_2:
  709. case CPUVERS_5_0:
  710. default:
  711. printk("myricom: AIEEE weird cpu version %04x assuming pre4.0\n",
  712. mp->eeprom.cpuvers);
  713. mp->reg_size = (3 * 128 * 1024) + 4096;
  714. };
  715. }
  716. #ifdef DEBUG_DETECT
  717. static void dump_eeprom(struct myri_eth *mp)
  718. {
  719. printk("EEPROM: clockval[%08x] cpuvers[%04x] "
  720. "id[%02x,%02x,%02x,%02x,%02x,%02x]\n",
  721. mp->eeprom.cval, mp->eeprom.cpuvers,
  722. mp->eeprom.id[0], mp->eeprom.id[1], mp->eeprom.id[2],
  723. mp->eeprom.id[3], mp->eeprom.id[4], mp->eeprom.id[5]);
  724. printk("EEPROM: ramsz[%08x]\n", mp->eeprom.ramsz);
  725. printk("EEPROM: fvers[%02x,%02x,%02x,%02x,%02x,%02x,%02x,%02x\n",
  726. mp->eeprom.fvers[0], mp->eeprom.fvers[1], mp->eeprom.fvers[2],
  727. mp->eeprom.fvers[3], mp->eeprom.fvers[4], mp->eeprom.fvers[5],
  728. mp->eeprom.fvers[6], mp->eeprom.fvers[7]);
  729. printk("EEPROM: %02x,%02x,%02x,%02x,%02x,%02x,%02x,%02x\n",
  730. mp->eeprom.fvers[8], mp->eeprom.fvers[9], mp->eeprom.fvers[10],
  731. mp->eeprom.fvers[11], mp->eeprom.fvers[12], mp->eeprom.fvers[13],
  732. mp->eeprom.fvers[14], mp->eeprom.fvers[15]);
  733. printk("EEPROM: %02x,%02x,%02x,%02x,%02x,%02x,%02x,%02x\n",
  734. mp->eeprom.fvers[16], mp->eeprom.fvers[17], mp->eeprom.fvers[18],
  735. mp->eeprom.fvers[19], mp->eeprom.fvers[20], mp->eeprom.fvers[21],
  736. mp->eeprom.fvers[22], mp->eeprom.fvers[23]);
  737. printk("EEPROM: %02x,%02x,%02x,%02x,%02x,%02x,%02x,%02x]\n",
  738. mp->eeprom.fvers[24], mp->eeprom.fvers[25], mp->eeprom.fvers[26],
  739. mp->eeprom.fvers[27], mp->eeprom.fvers[28], mp->eeprom.fvers[29],
  740. mp->eeprom.fvers[30], mp->eeprom.fvers[31]);
  741. printk("EEPROM: mvers[%02x,%02x,%02x,%02x,%02x,%02x,%02x,%02x\n",
  742. mp->eeprom.mvers[0], mp->eeprom.mvers[1], mp->eeprom.mvers[2],
  743. mp->eeprom.mvers[3], mp->eeprom.mvers[4], mp->eeprom.mvers[5],
  744. mp->eeprom.mvers[6], mp->eeprom.mvers[7]);
  745. printk("EEPROM: %02x,%02x,%02x,%02x,%02x,%02x,%02x,%02x]\n",
  746. mp->eeprom.mvers[8], mp->eeprom.mvers[9], mp->eeprom.mvers[10],
  747. mp->eeprom.mvers[11], mp->eeprom.mvers[12], mp->eeprom.mvers[13],
  748. mp->eeprom.mvers[14], mp->eeprom.mvers[15]);
  749. printk("EEPROM: dlval[%04x] brd_type[%04x] bus_type[%04x] prod_code[%04x]\n",
  750. mp->eeprom.dlval, mp->eeprom.brd_type, mp->eeprom.bus_type,
  751. mp->eeprom.prod_code);
  752. printk("EEPROM: serial_num[%08x]\n", mp->eeprom.serial_num);
  753. }
  754. #endif
  755. static int __init myri_ether_init(struct sbus_dev *sdev)
  756. {
  757. static int num;
  758. static unsigned version_printed;
  759. struct net_device *dev;
  760. struct myri_eth *mp;
  761. unsigned char prop_buf[32];
  762. int i;
  763. DET(("myri_ether_init(%p,%d):\n", sdev, num));
  764. dev = alloc_etherdev(sizeof(struct myri_eth));
  765. if (!dev)
  766. return -ENOMEM;
  767. if (version_printed++ == 0)
  768. printk(version);
  769. SET_MODULE_OWNER(dev);
  770. SET_NETDEV_DEV(dev, &sdev->ofdev.dev);
  771. mp = (struct myri_eth *) dev->priv;
  772. spin_lock_init(&mp->irq_lock);
  773. mp->myri_sdev = sdev;
  774. /* Clean out skb arrays. */
  775. for (i = 0; i < (RX_RING_SIZE + 1); i++)
  776. mp->rx_skbs[i] = NULL;
  777. for (i = 0; i < TX_RING_SIZE; i++)
  778. mp->tx_skbs[i] = NULL;
  779. /* First check for EEPROM information. */
  780. i = prom_getproperty(sdev->prom_node, "myrinet-eeprom-info",
  781. (char *)&mp->eeprom, sizeof(struct myri_eeprom));
  782. DET(("prom_getprop(myrinet-eeprom-info) returns %d\n", i));
  783. if (i == 0 || i == -1) {
  784. /* No eeprom property, must cook up the values ourselves. */
  785. DET(("No EEPROM: "));
  786. mp->eeprom.bus_type = BUS_TYPE_SBUS;
  787. mp->eeprom.cpuvers = prom_getintdefault(sdev->prom_node,"cpu_version",0);
  788. mp->eeprom.cval = prom_getintdefault(sdev->prom_node,"clock_value",0);
  789. mp->eeprom.ramsz = prom_getintdefault(sdev->prom_node,"sram_size",0);
  790. DET(("cpuvers[%d] cval[%d] ramsz[%d]\n", mp->eeprom.cpuvers,
  791. mp->eeprom.cval, mp->eeprom.ramsz));
  792. if (mp->eeprom.cpuvers == 0) {
  793. DET(("EEPROM: cpuvers was zero, setting to %04x\n",CPUVERS_2_3));
  794. mp->eeprom.cpuvers = CPUVERS_2_3;
  795. }
  796. if (mp->eeprom.cpuvers < CPUVERS_3_0) {
  797. DET(("EEPROM: cpuvers < CPUVERS_3_0, clockval set to zero.\n"));
  798. mp->eeprom.cval = 0;
  799. }
  800. if (mp->eeprom.ramsz == 0) {
  801. DET(("EEPROM: ramsz == 0, setting to 128k\n"));
  802. mp->eeprom.ramsz = (128 * 1024);
  803. }
  804. i = prom_getproperty(sdev->prom_node, "myrinet-board-id",
  805. &prop_buf[0], 10);
  806. DET(("EEPROM: prom_getprop(myrinet-board-id) returns %d\n", i));
  807. if ((i != 0) && (i != -1))
  808. memcpy(&mp->eeprom.id[0], &prop_buf[0], 6);
  809. else
  810. set_boardid_from_idprom(mp, num);
  811. i = prom_getproperty(sdev->prom_node, "fpga_version",
  812. &mp->eeprom.fvers[0], 32);
  813. DET(("EEPROM: prom_getprop(fpga_version) returns %d\n", i));
  814. if (i == 0 || i == -1)
  815. memset(&mp->eeprom.fvers[0], 0, 32);
  816. if (mp->eeprom.cpuvers == CPUVERS_4_1) {
  817. DET(("EEPROM: cpuvers CPUVERS_4_1, "));
  818. if (mp->eeprom.ramsz == (128 * 1024)) {
  819. DET(("ramsize 128k, setting to 256k, "));
  820. mp->eeprom.ramsz = (256 * 1024);
  821. }
  822. if ((mp->eeprom.cval==0x40414041)||(mp->eeprom.cval==0x90449044)){
  823. DET(("changing cval from %08x to %08x ",
  824. mp->eeprom.cval, 0x50e450e4));
  825. mp->eeprom.cval = 0x50e450e4;
  826. }
  827. DET(("\n"));
  828. }
  829. }
  830. #ifdef DEBUG_DETECT
  831. dump_eeprom(mp);
  832. #endif
  833. for (i = 0; i < 6; i++)
  834. dev->dev_addr[i] = mp->eeprom.id[i];
  835. determine_reg_space_size(mp);
  836. /* Map in the MyriCOM register/localram set. */
  837. if (mp->eeprom.cpuvers < CPUVERS_4_0) {
  838. /* XXX Makes no sense, if control reg is non-existant this
  839. * XXX driver cannot function at all... maybe pre-4.0 is
  840. * XXX only a valid version for PCI cards? Ask feldy...
  841. */
  842. DET(("Mapping regs for cpuvers < CPUVERS_4_0\n"));
  843. mp->regs = sbus_ioremap(&sdev->resource[0], 0,
  844. mp->reg_size, "MyriCOM Regs");
  845. if (!mp->regs) {
  846. printk("MyriCOM: Cannot map MyriCOM registers.\n");
  847. goto err;
  848. }
  849. mp->lanai = mp->regs + (256 * 1024);
  850. mp->lregs = mp->lanai + (0x10000 * 2);
  851. } else {
  852. DET(("Mapping regs for cpuvers >= CPUVERS_4_0\n"));
  853. mp->cregs = sbus_ioremap(&sdev->resource[0], 0,
  854. PAGE_SIZE, "MyriCOM Control Regs");
  855. mp->lregs = sbus_ioremap(&sdev->resource[0], (256 * 1024),
  856. PAGE_SIZE, "MyriCOM LANAI Regs");
  857. mp->lanai =
  858. sbus_ioremap(&sdev->resource[0], (512 * 1024),
  859. mp->eeprom.ramsz, "MyriCOM SRAM");
  860. }
  861. DET(("Registers mapped: cregs[%p] lregs[%p] lanai[%p]\n",
  862. mp->cregs, mp->lregs, mp->lanai));
  863. if (mp->eeprom.cpuvers >= CPUVERS_4_0)
  864. mp->shmem_base = 0xf000;
  865. else
  866. mp->shmem_base = 0x8000;
  867. DET(("Shared memory base is %04x, ", mp->shmem_base));
  868. mp->shmem = (struct myri_shmem __iomem *)
  869. (mp->lanai + (mp->shmem_base * 2));
  870. DET(("shmem mapped at %p\n", mp->shmem));
  871. mp->rqack = &mp->shmem->channel.recvqa;
  872. mp->rq = &mp->shmem->channel.recvq;
  873. mp->sq = &mp->shmem->channel.sendq;
  874. /* Reset the board. */
  875. DET(("Resetting LANAI\n"));
  876. myri_reset_off(mp->lregs, mp->cregs);
  877. myri_reset_on(mp->cregs);
  878. /* Turn IRQ's off. */
  879. myri_disable_irq(mp->lregs, mp->cregs);
  880. /* Reset once more. */
  881. myri_reset_on(mp->cregs);
  882. /* Get the supported DVMA burst sizes from our SBUS. */
  883. mp->myri_bursts = prom_getintdefault(mp->myri_sdev->bus->prom_node,
  884. "burst-sizes", 0x00);
  885. if (!sbus_can_burst64(sdev))
  886. mp->myri_bursts &= ~(DMA_BURST64);
  887. DET(("MYRI bursts %02x\n", mp->myri_bursts));
  888. /* Encode SBUS interrupt level in second control register. */
  889. i = prom_getint(sdev->prom_node, "interrupts");
  890. if (i == 0)
  891. i = 4;
  892. DET(("prom_getint(interrupts)==%d, irqlvl set to %04x\n",
  893. i, (1 << i)));
  894. sbus_writel((1 << i), mp->cregs + MYRICTRL_IRQLVL);
  895. mp->dev = dev;
  896. dev->open = &myri_open;
  897. dev->stop = &myri_close;
  898. dev->hard_start_xmit = &myri_start_xmit;
  899. dev->tx_timeout = &myri_tx_timeout;
  900. dev->watchdog_timeo = 5*HZ;
  901. dev->get_stats = &myri_get_stats;
  902. dev->set_multicast_list = &myri_set_multicast;
  903. dev->irq = sdev->irqs[0];
  904. /* Register interrupt handler now. */
  905. DET(("Requesting MYRIcom IRQ line.\n"));
  906. if (request_irq(dev->irq, &myri_interrupt,
  907. SA_SHIRQ, "MyriCOM Ethernet", (void *) dev)) {
  908. printk("MyriCOM: Cannot register interrupt handler.\n");
  909. goto err;
  910. }
  911. dev->mtu = MYRINET_MTU;
  912. dev->change_mtu = myri_change_mtu;
  913. dev->hard_header = myri_header;
  914. dev->rebuild_header = myri_rebuild_header;
  915. dev->hard_header_len = (ETH_HLEN + MYRI_PAD_LEN);
  916. dev->hard_header_cache = myri_header_cache;
  917. dev->header_cache_update= myri_header_cache_update;
  918. /* Load code onto the LANai. */
  919. DET(("Loading LANAI firmware\n"));
  920. myri_load_lanai(mp);
  921. if (register_netdev(dev)) {
  922. printk("MyriCOM: Cannot register device.\n");
  923. goto err_free_irq;
  924. }
  925. dev_set_drvdata(&sdev->ofdev.dev, mp);
  926. num++;
  927. printk("%s: MyriCOM MyriNET Ethernet ", dev->name);
  928. for (i = 0; i < 6; i++)
  929. printk("%2.2x%c", dev->dev_addr[i],
  930. i == 5 ? ' ' : ':');
  931. printk("\n");
  932. return 0;
  933. err_free_irq:
  934. free_irq(dev->irq, dev);
  935. err:
  936. /* This will also free the co-allocated 'dev->priv' */
  937. free_netdev(dev);
  938. return -ENODEV;
  939. }
  940. static int __devinit myri_sbus_probe(struct of_device *dev, const struct of_device_id *match)
  941. {
  942. struct sbus_dev *sdev = to_sbus_device(&dev->dev);
  943. return myri_ether_init(sdev);
  944. }
  945. static int __devexit myri_sbus_remove(struct of_device *dev)
  946. {
  947. struct myri_eth *mp = dev_get_drvdata(&dev->dev);
  948. struct net_device *net_dev = mp->dev;
  949. unregister_netdevice(net_dev);
  950. free_irq(net_dev->irq, net_dev);
  951. if (mp->eeprom.cpuvers < CPUVERS_4_0) {
  952. sbus_iounmap(mp->regs, mp->reg_size);
  953. } else {
  954. sbus_iounmap(mp->cregs, PAGE_SIZE);
  955. sbus_iounmap(mp->lregs, (256 * 1024));
  956. sbus_iounmap(mp->lanai, (512 * 1024));
  957. }
  958. free_netdev(net_dev);
  959. dev_set_drvdata(&dev->dev, NULL);
  960. return 0;
  961. }
  962. static struct of_device_id myri_sbus_match[] = {
  963. {
  964. .name = "MYRICOM,mlanai",
  965. },
  966. {
  967. .name = "myri",
  968. },
  969. {},
  970. };
  971. MODULE_DEVICE_TABLE(of, myri_sbus_match);
  972. static struct of_platform_driver myri_sbus_driver = {
  973. .name = "myri",
  974. .match_table = myri_sbus_match,
  975. .probe = myri_sbus_probe,
  976. .remove = __devexit_p(myri_sbus_remove),
  977. };
  978. static int __init myri_sbus_init(void)
  979. {
  980. return of_register_driver(&myri_sbus_driver, &sbus_bus_type);
  981. }
  982. static void __exit myri_sbus_exit(void)
  983. {
  984. of_unregister_driver(&myri_sbus_driver);
  985. }
  986. module_init(myri_sbus_init);
  987. module_exit(myri_sbus_exit);
  988. MODULE_LICENSE("GPL");