iwl-eeprom.c 35 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159
  1. /******************************************************************************
  2. *
  3. * This file is provided under a dual BSD/GPLv2 license. When using or
  4. * redistributing this file, you may do so under either license.
  5. *
  6. * GPL LICENSE SUMMARY
  7. *
  8. * Copyright(c) 2008 - 2009 Intel Corporation. All rights reserved.
  9. *
  10. * This program is free software; you can redistribute it and/or modify
  11. * it under the terms of version 2 of the GNU General Public License as
  12. * published by the Free Software Foundation.
  13. *
  14. * This program is distributed in the hope that it will be useful, but
  15. * WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  17. * General Public License for more details.
  18. *
  19. * You should have received a copy of the GNU General Public License
  20. * along with this program; if not, write to the Free Software
  21. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
  22. * USA
  23. *
  24. * The full GNU General Public License is included in this distribution
  25. * in the file called LICENSE.GPL.
  26. *
  27. * Contact Information:
  28. * Intel Linux Wireless <ilw@linux.intel.com>
  29. * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  30. *
  31. * BSD LICENSE
  32. *
  33. * Copyright(c) 2005 - 2009 Intel Corporation. All rights reserved.
  34. * All rights reserved.
  35. *
  36. * Redistribution and use in source and binary forms, with or without
  37. * modification, are permitted provided that the following conditions
  38. * are met:
  39. *
  40. * * Redistributions of source code must retain the above copyright
  41. * notice, this list of conditions and the following disclaimer.
  42. * * Redistributions in binary form must reproduce the above copyright
  43. * notice, this list of conditions and the following disclaimer in
  44. * the documentation and/or other materials provided with the
  45. * distribution.
  46. * * Neither the name Intel Corporation nor the names of its
  47. * contributors may be used to endorse or promote products derived
  48. * from this software without specific prior written permission.
  49. *
  50. * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  51. * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  52. * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  53. * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  54. * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  55. * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  56. * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  57. * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  58. * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  59. * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  60. * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  61. *****************************************************************************/
  62. #include <linux/kernel.h>
  63. #include <linux/module.h>
  64. #include <linux/init.h>
  65. #include <net/mac80211.h>
  66. #include "iwl-commands.h"
  67. #include "iwl-dev.h"
  68. #include "iwl-core.h"
  69. #include "iwl-debug.h"
  70. #include "iwl-eeprom.h"
  71. #include "iwl-io.h"
  72. /************************** EEPROM BANDS ****************************
  73. *
  74. * The iwl_eeprom_band definitions below provide the mapping from the
  75. * EEPROM contents to the specific channel number supported for each
  76. * band.
  77. *
  78. * For example, iwl_priv->eeprom.band_3_channels[4] from the band_3
  79. * definition below maps to physical channel 42 in the 5.2GHz spectrum.
  80. * The specific geography and calibration information for that channel
  81. * is contained in the eeprom map itself.
  82. *
  83. * During init, we copy the eeprom information and channel map
  84. * information into priv->channel_info_24/52 and priv->channel_map_24/52
  85. *
  86. * channel_map_24/52 provides the index in the channel_info array for a
  87. * given channel. We have to have two separate maps as there is channel
  88. * overlap with the 2.4GHz and 5.2GHz spectrum as seen in band_1 and
  89. * band_2
  90. *
  91. * A value of 0xff stored in the channel_map indicates that the channel
  92. * is not supported by the hardware at all.
  93. *
  94. * A value of 0xfe in the channel_map indicates that the channel is not
  95. * valid for Tx with the current hardware. This means that
  96. * while the system can tune and receive on a given channel, it may not
  97. * be able to associate or transmit any frames on that
  98. * channel. There is no corresponding channel information for that
  99. * entry.
  100. *
  101. *********************************************************************/
  102. /* 2.4 GHz */
  103. const u8 iwl_eeprom_band_1[14] = {
  104. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14
  105. };
  106. /* 5.2 GHz bands */
  107. static const u8 iwl_eeprom_band_2[] = { /* 4915-5080MHz */
  108. 183, 184, 185, 187, 188, 189, 192, 196, 7, 8, 11, 12, 16
  109. };
  110. static const u8 iwl_eeprom_band_3[] = { /* 5170-5320MHz */
  111. 34, 36, 38, 40, 42, 44, 46, 48, 52, 56, 60, 64
  112. };
  113. static const u8 iwl_eeprom_band_4[] = { /* 5500-5700MHz */
  114. 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140
  115. };
  116. static const u8 iwl_eeprom_band_5[] = { /* 5725-5825MHz */
  117. 145, 149, 153, 157, 161, 165
  118. };
  119. static const u8 iwl_eeprom_band_6[] = { /* 2.4 ht40 channel */
  120. 1, 2, 3, 4, 5, 6, 7
  121. };
  122. static const u8 iwl_eeprom_band_7[] = { /* 5.2 ht40 channel */
  123. 36, 44, 52, 60, 100, 108, 116, 124, 132, 149, 157
  124. };
  125. /**
  126. * struct iwl_txpwr_section: eeprom section information
  127. * @offset: indirect address into eeprom image
  128. * @count: number of "struct iwl_eeprom_enhanced_txpwr" in this section
  129. * @band: band type for the section
  130. * @is_common - true: common section, false: channel section
  131. * @is_cck - true: cck section, false: not cck section
  132. * @is_ht_40 - true: all channel in the section are HT40 channel,
  133. * false: legacy or HT 20 MHz
  134. * ignore if it is common section
  135. * @iwl_eeprom_section_channel: channel array in the section,
  136. * ignore if common section
  137. */
  138. struct iwl_txpwr_section {
  139. u32 offset;
  140. u8 count;
  141. enum ieee80211_band band;
  142. bool is_common;
  143. bool is_cck;
  144. bool is_ht40;
  145. u8 iwl_eeprom_section_channel[EEPROM_MAX_TXPOWER_SECTION_ELEMENTS];
  146. };
  147. /**
  148. * section 1 - 3 are regulatory tx power apply to all channels based on
  149. * modulation: CCK, OFDM
  150. * Band: 2.4GHz, 5.2GHz
  151. * section 4 - 10 are regulatory tx power apply to specified channels
  152. * For example:
  153. * 1L - Channel 1 Legacy
  154. * 1HT - Channel 1 HT
  155. * (1,+1) - Channel 1 HT40 "_above_"
  156. *
  157. * Section 1: all CCK channels
  158. * Section 2: all 2.4 GHz OFDM (Legacy, HT and HT40) channels
  159. * Section 3: all 5.2 GHz OFDM (Legacy, HT and HT40) channels
  160. * Section 4: 2.4 GHz 20MHz channels: 1L, 1HT, 2L, 2HT, 10L, 10HT, 11L, 11HT
  161. * Section 5: 2.4 GHz 40MHz channels: (1,+1) (2,+1) (6,+1) (7,+1) (9,+1)
  162. * Section 6: 5.2 GHz 20MHz channels: 36L, 64L, 100L, 36HT, 64HT, 100HT
  163. * Section 7: 5.2 GHz 40MHz channels: (36,+1) (60,+1) (100,+1)
  164. * Section 8: 2.4 GHz channel: 13L, 13HT
  165. * Section 9: 2.4 GHz channel: 140L, 140HT
  166. * Section 10: 2.4 GHz 40MHz channels: (132,+1) (44,+1)
  167. *
  168. */
  169. static const struct iwl_txpwr_section enhinfo[] = {
  170. { EEPROM_LB_CCK_20_COMMON, 1, IEEE80211_BAND_2GHZ, true, true, false },
  171. { EEPROM_LB_OFDM_COMMON, 3, IEEE80211_BAND_2GHZ, true, false, false },
  172. { EEPROM_HB_OFDM_COMMON, 3, IEEE80211_BAND_5GHZ, true, false, false },
  173. { EEPROM_LB_OFDM_20_BAND, 8, IEEE80211_BAND_2GHZ,
  174. false, false, false,
  175. {1, 1, 2, 2, 10, 10, 11, 11 } },
  176. { EEPROM_LB_OFDM_HT40_BAND, 5, IEEE80211_BAND_2GHZ,
  177. false, false, true,
  178. { 1, 2, 6, 7, 9 } },
  179. { EEPROM_HB_OFDM_20_BAND, 6, IEEE80211_BAND_5GHZ,
  180. false, false, false,
  181. { 36, 64, 100, 36, 64, 100 } },
  182. { EEPROM_HB_OFDM_HT40_BAND, 3, IEEE80211_BAND_5GHZ,
  183. false, false, true,
  184. { 36, 60, 100 } },
  185. { EEPROM_LB_OFDM_20_CHANNEL_13, 2, IEEE80211_BAND_2GHZ,
  186. false, false, false,
  187. { 13, 13 } },
  188. { EEPROM_HB_OFDM_20_CHANNEL_140, 2, IEEE80211_BAND_5GHZ,
  189. false, false, false,
  190. { 140, 140 } },
  191. { EEPROM_HB_OFDM_HT40_BAND_1, 2, IEEE80211_BAND_5GHZ,
  192. false, false, true,
  193. { 132, 44 } },
  194. };
  195. /******************************************************************************
  196. *
  197. * EEPROM related functions
  198. *
  199. ******************************************************************************/
  200. int iwlcore_eeprom_verify_signature(struct iwl_priv *priv)
  201. {
  202. u32 gp = iwl_read32(priv, CSR_EEPROM_GP) & CSR_EEPROM_GP_VALID_MSK;
  203. int ret = 0;
  204. IWL_DEBUG_INFO(priv, "EEPROM signature=0x%08x\n", gp);
  205. switch (gp) {
  206. case CSR_EEPROM_GP_BAD_SIG_EEP_GOOD_SIG_OTP:
  207. if (priv->nvm_device_type != NVM_DEVICE_TYPE_OTP) {
  208. IWL_ERR(priv, "EEPROM with bad signature: 0x%08x\n",
  209. gp);
  210. ret = -ENOENT;
  211. }
  212. break;
  213. case CSR_EEPROM_GP_GOOD_SIG_EEP_LESS_THAN_4K:
  214. case CSR_EEPROM_GP_GOOD_SIG_EEP_MORE_THAN_4K:
  215. if (priv->nvm_device_type != NVM_DEVICE_TYPE_EEPROM) {
  216. IWL_ERR(priv, "OTP with bad signature: 0x%08x\n", gp);
  217. ret = -ENOENT;
  218. }
  219. break;
  220. case CSR_EEPROM_GP_BAD_SIGNATURE_BOTH_EEP_AND_OTP:
  221. default:
  222. IWL_ERR(priv, "bad EEPROM/OTP signature, type=%s, "
  223. "EEPROM_GP=0x%08x\n",
  224. (priv->nvm_device_type == NVM_DEVICE_TYPE_OTP)
  225. ? "OTP" : "EEPROM", gp);
  226. ret = -ENOENT;
  227. break;
  228. }
  229. return ret;
  230. }
  231. EXPORT_SYMBOL(iwlcore_eeprom_verify_signature);
  232. static void iwl_set_otp_access(struct iwl_priv *priv, enum iwl_access_mode mode)
  233. {
  234. u32 otpgp;
  235. otpgp = iwl_read32(priv, CSR_OTP_GP_REG);
  236. if (mode == IWL_OTP_ACCESS_ABSOLUTE)
  237. iwl_clear_bit(priv, CSR_OTP_GP_REG,
  238. CSR_OTP_GP_REG_OTP_ACCESS_MODE);
  239. else
  240. iwl_set_bit(priv, CSR_OTP_GP_REG,
  241. CSR_OTP_GP_REG_OTP_ACCESS_MODE);
  242. }
  243. static int iwlcore_get_nvm_type(struct iwl_priv *priv)
  244. {
  245. u32 otpgp;
  246. int nvm_type;
  247. /* OTP only valid for CP/PP and after */
  248. switch (priv->hw_rev & CSR_HW_REV_TYPE_MSK) {
  249. case CSR_HW_REV_TYPE_NONE:
  250. IWL_ERR(priv, "Unknown hardware type\n");
  251. return -ENOENT;
  252. case CSR_HW_REV_TYPE_3945:
  253. case CSR_HW_REV_TYPE_4965:
  254. case CSR_HW_REV_TYPE_5300:
  255. case CSR_HW_REV_TYPE_5350:
  256. case CSR_HW_REV_TYPE_5100:
  257. case CSR_HW_REV_TYPE_5150:
  258. nvm_type = NVM_DEVICE_TYPE_EEPROM;
  259. break;
  260. default:
  261. otpgp = iwl_read32(priv, CSR_OTP_GP_REG);
  262. if (otpgp & CSR_OTP_GP_REG_DEVICE_SELECT)
  263. nvm_type = NVM_DEVICE_TYPE_OTP;
  264. else
  265. nvm_type = NVM_DEVICE_TYPE_EEPROM;
  266. break;
  267. }
  268. return nvm_type;
  269. }
  270. /*
  271. * The device's EEPROM semaphore prevents conflicts between driver and uCode
  272. * when accessing the EEPROM; each access is a series of pulses to/from the
  273. * EEPROM chip, not a single event, so even reads could conflict if they
  274. * weren't arbitrated by the semaphore.
  275. */
  276. int iwlcore_eeprom_acquire_semaphore(struct iwl_priv *priv)
  277. {
  278. u16 count;
  279. int ret;
  280. for (count = 0; count < EEPROM_SEM_RETRY_LIMIT; count++) {
  281. /* Request semaphore */
  282. iwl_set_bit(priv, CSR_HW_IF_CONFIG_REG,
  283. CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM);
  284. /* See if we got it */
  285. ret = iwl_poll_bit(priv, CSR_HW_IF_CONFIG_REG,
  286. CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM,
  287. CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM,
  288. EEPROM_SEM_TIMEOUT);
  289. if (ret >= 0) {
  290. IWL_DEBUG_IO(priv, "Acquired semaphore after %d tries.\n",
  291. count+1);
  292. return ret;
  293. }
  294. }
  295. return ret;
  296. }
  297. EXPORT_SYMBOL(iwlcore_eeprom_acquire_semaphore);
  298. void iwlcore_eeprom_release_semaphore(struct iwl_priv *priv)
  299. {
  300. iwl_clear_bit(priv, CSR_HW_IF_CONFIG_REG,
  301. CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM);
  302. }
  303. EXPORT_SYMBOL(iwlcore_eeprom_release_semaphore);
  304. const u8 *iwlcore_eeprom_query_addr(const struct iwl_priv *priv, size_t offset)
  305. {
  306. BUG_ON(offset >= priv->cfg->eeprom_size);
  307. return &priv->eeprom[offset];
  308. }
  309. EXPORT_SYMBOL(iwlcore_eeprom_query_addr);
  310. static int iwl_init_otp_access(struct iwl_priv *priv)
  311. {
  312. int ret;
  313. /* Enable 40MHz radio clock */
  314. _iwl_write32(priv, CSR_GP_CNTRL,
  315. _iwl_read32(priv, CSR_GP_CNTRL) |
  316. CSR_GP_CNTRL_REG_FLAG_INIT_DONE);
  317. /* wait for clock to be ready */
  318. ret = iwl_poll_bit(priv, CSR_GP_CNTRL,
  319. CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY,
  320. CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY,
  321. 25000);
  322. if (ret < 0)
  323. IWL_ERR(priv, "Time out access OTP\n");
  324. else {
  325. iwl_set_bits_prph(priv, APMG_PS_CTRL_REG,
  326. APMG_PS_CTRL_VAL_RESET_REQ);
  327. udelay(5);
  328. iwl_clear_bits_prph(priv, APMG_PS_CTRL_REG,
  329. APMG_PS_CTRL_VAL_RESET_REQ);
  330. /*
  331. * CSR auto clock gate disable bit -
  332. * this is only applicable for HW with OTP shadow RAM
  333. */
  334. if (priv->cfg->shadow_ram_support)
  335. iwl_set_bit(priv, CSR_DBG_LINK_PWR_MGMT_REG,
  336. CSR_RESET_LINK_PWR_MGMT_DISABLED);
  337. }
  338. return ret;
  339. }
  340. static int iwl_read_otp_word(struct iwl_priv *priv, u16 addr, u16 *eeprom_data)
  341. {
  342. int ret = 0;
  343. u32 r;
  344. u32 otpgp;
  345. _iwl_write32(priv, CSR_EEPROM_REG,
  346. CSR_EEPROM_REG_MSK_ADDR & (addr << 1));
  347. ret = iwl_poll_bit(priv, CSR_EEPROM_REG,
  348. CSR_EEPROM_REG_READ_VALID_MSK,
  349. CSR_EEPROM_REG_READ_VALID_MSK,
  350. IWL_EEPROM_ACCESS_TIMEOUT);
  351. if (ret < 0) {
  352. IWL_ERR(priv, "Time out reading OTP[%d]\n", addr);
  353. return ret;
  354. }
  355. r = _iwl_read_direct32(priv, CSR_EEPROM_REG);
  356. /* check for ECC errors: */
  357. otpgp = iwl_read32(priv, CSR_OTP_GP_REG);
  358. if (otpgp & CSR_OTP_GP_REG_ECC_UNCORR_STATUS_MSK) {
  359. /* stop in this case */
  360. /* set the uncorrectable OTP ECC bit for acknowledgement */
  361. iwl_set_bit(priv, CSR_OTP_GP_REG,
  362. CSR_OTP_GP_REG_ECC_UNCORR_STATUS_MSK);
  363. IWL_ERR(priv, "Uncorrectable OTP ECC error, abort OTP read\n");
  364. return -EINVAL;
  365. }
  366. if (otpgp & CSR_OTP_GP_REG_ECC_CORR_STATUS_MSK) {
  367. /* continue in this case */
  368. /* set the correctable OTP ECC bit for acknowledgement */
  369. iwl_set_bit(priv, CSR_OTP_GP_REG,
  370. CSR_OTP_GP_REG_ECC_CORR_STATUS_MSK);
  371. IWL_ERR(priv, "Correctable OTP ECC error, continue read\n");
  372. }
  373. *eeprom_data = le16_to_cpu((__force __le16)(r >> 16));
  374. return 0;
  375. }
  376. /*
  377. * iwl_is_otp_empty: check for empty OTP
  378. */
  379. static bool iwl_is_otp_empty(struct iwl_priv *priv)
  380. {
  381. u16 next_link_addr = 0, link_value;
  382. bool is_empty = false;
  383. /* locate the beginning of OTP link list */
  384. if (!iwl_read_otp_word(priv, next_link_addr, &link_value)) {
  385. if (!link_value) {
  386. IWL_ERR(priv, "OTP is empty\n");
  387. is_empty = true;
  388. }
  389. } else {
  390. IWL_ERR(priv, "Unable to read first block of OTP list.\n");
  391. is_empty = true;
  392. }
  393. return is_empty;
  394. }
  395. /*
  396. * iwl_find_otp_image: find EEPROM image in OTP
  397. * finding the OTP block that contains the EEPROM image.
  398. * the last valid block on the link list (the block _before_ the last block)
  399. * is the block we should read and used to configure the device.
  400. * If all the available OTP blocks are full, the last block will be the block
  401. * we should read and used to configure the device.
  402. * only perform this operation if shadow RAM is disabled
  403. */
  404. static int iwl_find_otp_image(struct iwl_priv *priv,
  405. u16 *validblockaddr)
  406. {
  407. u16 next_link_addr = 0, link_value = 0, valid_addr;
  408. int usedblocks = 0;
  409. /* set addressing mode to absolute to traverse the link list */
  410. iwl_set_otp_access(priv, IWL_OTP_ACCESS_ABSOLUTE);
  411. /* checking for empty OTP or error */
  412. if (iwl_is_otp_empty(priv))
  413. return -EINVAL;
  414. /*
  415. * start traverse link list
  416. * until reach the max number of OTP blocks
  417. * different devices have different number of OTP blocks
  418. */
  419. do {
  420. /* save current valid block address
  421. * check for more block on the link list
  422. */
  423. valid_addr = next_link_addr;
  424. next_link_addr = link_value * sizeof(u16);
  425. IWL_DEBUG_INFO(priv, "OTP blocks %d addr 0x%x\n",
  426. usedblocks, next_link_addr);
  427. if (iwl_read_otp_word(priv, next_link_addr, &link_value))
  428. return -EINVAL;
  429. if (!link_value) {
  430. /*
  431. * reach the end of link list, return success and
  432. * set address point to the starting address
  433. * of the image
  434. */
  435. *validblockaddr = valid_addr;
  436. /* skip first 2 bytes (link list pointer) */
  437. *validblockaddr += 2;
  438. return 0;
  439. }
  440. /* more in the link list, continue */
  441. usedblocks++;
  442. } while (usedblocks <= priv->cfg->max_ll_items);
  443. /* OTP has no valid blocks */
  444. IWL_DEBUG_INFO(priv, "OTP has no valid blocks\n");
  445. return -EINVAL;
  446. }
  447. /**
  448. * iwl_eeprom_init - read EEPROM contents
  449. *
  450. * Load the EEPROM contents from adapter into priv->eeprom
  451. *
  452. * NOTE: This routine uses the non-debug IO access functions.
  453. */
  454. int iwl_eeprom_init(struct iwl_priv *priv)
  455. {
  456. u16 *e;
  457. u32 gp = iwl_read32(priv, CSR_EEPROM_GP);
  458. int sz;
  459. int ret;
  460. u16 addr;
  461. u16 validblockaddr = 0;
  462. u16 cache_addr = 0;
  463. priv->nvm_device_type = iwlcore_get_nvm_type(priv);
  464. if (priv->nvm_device_type == -ENOENT)
  465. return -ENOENT;
  466. /* allocate eeprom */
  467. IWL_DEBUG_INFO(priv, "NVM size = %d\n", priv->cfg->eeprom_size);
  468. sz = priv->cfg->eeprom_size;
  469. priv->eeprom = kzalloc(sz, GFP_KERNEL);
  470. if (!priv->eeprom) {
  471. ret = -ENOMEM;
  472. goto alloc_err;
  473. }
  474. e = (u16 *)priv->eeprom;
  475. if (priv->nvm_device_type == NVM_DEVICE_TYPE_OTP) {
  476. /* OTP reads require powered-up chip */
  477. priv->cfg->ops->lib->apm_ops.init(priv);
  478. }
  479. ret = priv->cfg->ops->lib->eeprom_ops.verify_signature(priv);
  480. if (ret < 0) {
  481. IWL_ERR(priv, "EEPROM not found, EEPROM_GP=0x%08x\n", gp);
  482. ret = -ENOENT;
  483. goto err;
  484. }
  485. /* Make sure driver (instead of uCode) is allowed to read EEPROM */
  486. ret = priv->cfg->ops->lib->eeprom_ops.acquire_semaphore(priv);
  487. if (ret < 0) {
  488. IWL_ERR(priv, "Failed to acquire EEPROM semaphore.\n");
  489. ret = -ENOENT;
  490. goto err;
  491. }
  492. if (priv->nvm_device_type == NVM_DEVICE_TYPE_OTP) {
  493. ret = iwl_init_otp_access(priv);
  494. if (ret) {
  495. IWL_ERR(priv, "Failed to initialize OTP access.\n");
  496. ret = -ENOENT;
  497. goto done;
  498. }
  499. _iwl_write32(priv, CSR_EEPROM_GP,
  500. iwl_read32(priv, CSR_EEPROM_GP) &
  501. ~CSR_EEPROM_GP_IF_OWNER_MSK);
  502. iwl_set_bit(priv, CSR_OTP_GP_REG,
  503. CSR_OTP_GP_REG_ECC_CORR_STATUS_MSK |
  504. CSR_OTP_GP_REG_ECC_UNCORR_STATUS_MSK);
  505. /* traversing the linked list if no shadow ram supported */
  506. if (!priv->cfg->shadow_ram_support) {
  507. if (iwl_find_otp_image(priv, &validblockaddr)) {
  508. ret = -ENOENT;
  509. goto done;
  510. }
  511. }
  512. for (addr = validblockaddr; addr < validblockaddr + sz;
  513. addr += sizeof(u16)) {
  514. u16 eeprom_data;
  515. ret = iwl_read_otp_word(priv, addr, &eeprom_data);
  516. if (ret)
  517. goto done;
  518. e[cache_addr / 2] = eeprom_data;
  519. cache_addr += sizeof(u16);
  520. }
  521. /*
  522. * Now that OTP reads are complete, reset chip to save
  523. * power until we load uCode during "up".
  524. */
  525. priv->cfg->ops->lib->apm_ops.stop(priv);
  526. } else {
  527. /* eeprom is an array of 16bit values */
  528. for (addr = 0; addr < sz; addr += sizeof(u16)) {
  529. u32 r;
  530. _iwl_write32(priv, CSR_EEPROM_REG,
  531. CSR_EEPROM_REG_MSK_ADDR & (addr << 1));
  532. ret = iwl_poll_bit(priv, CSR_EEPROM_REG,
  533. CSR_EEPROM_REG_READ_VALID_MSK,
  534. CSR_EEPROM_REG_READ_VALID_MSK,
  535. IWL_EEPROM_ACCESS_TIMEOUT);
  536. if (ret < 0) {
  537. IWL_ERR(priv, "Time out reading EEPROM[%d]\n", addr);
  538. goto done;
  539. }
  540. r = _iwl_read_direct32(priv, CSR_EEPROM_REG);
  541. e[addr / 2] = le16_to_cpu((__force __le16)(r >> 16));
  542. }
  543. }
  544. ret = 0;
  545. done:
  546. priv->cfg->ops->lib->eeprom_ops.release_semaphore(priv);
  547. err:
  548. if (ret)
  549. iwl_eeprom_free(priv);
  550. alloc_err:
  551. return ret;
  552. }
  553. EXPORT_SYMBOL(iwl_eeprom_init);
  554. void iwl_eeprom_free(struct iwl_priv *priv)
  555. {
  556. kfree(priv->eeprom);
  557. priv->eeprom = NULL;
  558. }
  559. EXPORT_SYMBOL(iwl_eeprom_free);
  560. int iwl_eeprom_check_version(struct iwl_priv *priv)
  561. {
  562. u16 eeprom_ver;
  563. u16 calib_ver;
  564. eeprom_ver = iwl_eeprom_query16(priv, EEPROM_VERSION);
  565. calib_ver = priv->cfg->ops->lib->eeprom_ops.calib_version(priv);
  566. if (eeprom_ver < priv->cfg->eeprom_ver ||
  567. calib_ver < priv->cfg->eeprom_calib_ver)
  568. goto err;
  569. return 0;
  570. err:
  571. IWL_ERR(priv, "Unsupported (too old) EEPROM VER=0x%x < 0x%x CALIB=0x%x < 0x%x\n",
  572. eeprom_ver, priv->cfg->eeprom_ver,
  573. calib_ver, priv->cfg->eeprom_calib_ver);
  574. return -EINVAL;
  575. }
  576. EXPORT_SYMBOL(iwl_eeprom_check_version);
  577. const u8 *iwl_eeprom_query_addr(const struct iwl_priv *priv, size_t offset)
  578. {
  579. return priv->cfg->ops->lib->eeprom_ops.query_addr(priv, offset);
  580. }
  581. EXPORT_SYMBOL(iwl_eeprom_query_addr);
  582. u16 iwl_eeprom_query16(const struct iwl_priv *priv, size_t offset)
  583. {
  584. if (!priv->eeprom)
  585. return 0;
  586. return (u16)priv->eeprom[offset] | ((u16)priv->eeprom[offset + 1] << 8);
  587. }
  588. EXPORT_SYMBOL(iwl_eeprom_query16);
  589. void iwl_eeprom_get_mac(const struct iwl_priv *priv, u8 *mac)
  590. {
  591. const u8 *addr = priv->cfg->ops->lib->eeprom_ops.query_addr(priv,
  592. EEPROM_MAC_ADDRESS);
  593. memcpy(mac, addr, ETH_ALEN);
  594. }
  595. EXPORT_SYMBOL(iwl_eeprom_get_mac);
  596. static void iwl_init_band_reference(const struct iwl_priv *priv,
  597. int eep_band, int *eeprom_ch_count,
  598. const struct iwl_eeprom_channel **eeprom_ch_info,
  599. const u8 **eeprom_ch_index)
  600. {
  601. u32 offset = priv->cfg->ops->lib->
  602. eeprom_ops.regulatory_bands[eep_band - 1];
  603. switch (eep_band) {
  604. case 1: /* 2.4GHz band */
  605. *eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_1);
  606. *eeprom_ch_info = (struct iwl_eeprom_channel *)
  607. iwl_eeprom_query_addr(priv, offset);
  608. *eeprom_ch_index = iwl_eeprom_band_1;
  609. break;
  610. case 2: /* 4.9GHz band */
  611. *eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_2);
  612. *eeprom_ch_info = (struct iwl_eeprom_channel *)
  613. iwl_eeprom_query_addr(priv, offset);
  614. *eeprom_ch_index = iwl_eeprom_band_2;
  615. break;
  616. case 3: /* 5.2GHz band */
  617. *eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_3);
  618. *eeprom_ch_info = (struct iwl_eeprom_channel *)
  619. iwl_eeprom_query_addr(priv, offset);
  620. *eeprom_ch_index = iwl_eeprom_band_3;
  621. break;
  622. case 4: /* 5.5GHz band */
  623. *eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_4);
  624. *eeprom_ch_info = (struct iwl_eeprom_channel *)
  625. iwl_eeprom_query_addr(priv, offset);
  626. *eeprom_ch_index = iwl_eeprom_band_4;
  627. break;
  628. case 5: /* 5.7GHz band */
  629. *eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_5);
  630. *eeprom_ch_info = (struct iwl_eeprom_channel *)
  631. iwl_eeprom_query_addr(priv, offset);
  632. *eeprom_ch_index = iwl_eeprom_band_5;
  633. break;
  634. case 6: /* 2.4GHz ht40 channels */
  635. *eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_6);
  636. *eeprom_ch_info = (struct iwl_eeprom_channel *)
  637. iwl_eeprom_query_addr(priv, offset);
  638. *eeprom_ch_index = iwl_eeprom_band_6;
  639. break;
  640. case 7: /* 5 GHz ht40 channels */
  641. *eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_7);
  642. *eeprom_ch_info = (struct iwl_eeprom_channel *)
  643. iwl_eeprom_query_addr(priv, offset);
  644. *eeprom_ch_index = iwl_eeprom_band_7;
  645. break;
  646. default:
  647. BUG();
  648. return;
  649. }
  650. }
  651. #define CHECK_AND_PRINT(x) ((eeprom_ch->flags & EEPROM_CHANNEL_##x) \
  652. ? # x " " : "")
  653. /**
  654. * iwl_mod_ht40_chan_info - Copy ht40 channel info into driver's priv.
  655. *
  656. * Does not set up a command, or touch hardware.
  657. */
  658. static int iwl_mod_ht40_chan_info(struct iwl_priv *priv,
  659. enum ieee80211_band band, u16 channel,
  660. const struct iwl_eeprom_channel *eeprom_ch,
  661. u8 clear_ht40_extension_channel)
  662. {
  663. struct iwl_channel_info *ch_info;
  664. ch_info = (struct iwl_channel_info *)
  665. iwl_get_channel_info(priv, band, channel);
  666. if (!is_channel_valid(ch_info))
  667. return -1;
  668. IWL_DEBUG_INFO(priv, "HT40 Ch. %d [%sGHz] %s%s%s%s%s(0x%02x %ddBm):"
  669. " Ad-Hoc %ssupported\n",
  670. ch_info->channel,
  671. is_channel_a_band(ch_info) ?
  672. "5.2" : "2.4",
  673. CHECK_AND_PRINT(IBSS),
  674. CHECK_AND_PRINT(ACTIVE),
  675. CHECK_AND_PRINT(RADAR),
  676. CHECK_AND_PRINT(WIDE),
  677. CHECK_AND_PRINT(DFS),
  678. eeprom_ch->flags,
  679. eeprom_ch->max_power_avg,
  680. ((eeprom_ch->flags & EEPROM_CHANNEL_IBSS)
  681. && !(eeprom_ch->flags & EEPROM_CHANNEL_RADAR)) ?
  682. "" : "not ");
  683. ch_info->ht40_eeprom = *eeprom_ch;
  684. ch_info->ht40_max_power_avg = eeprom_ch->max_power_avg;
  685. ch_info->ht40_flags = eeprom_ch->flags;
  686. ch_info->ht40_extension_channel &= ~clear_ht40_extension_channel;
  687. return 0;
  688. }
  689. /**
  690. * iwl_get_max_txpower_avg - get the highest tx power from all chains.
  691. * find the highest tx power from all chains for the channel
  692. */
  693. static s8 iwl_get_max_txpower_avg(struct iwl_priv *priv,
  694. struct iwl_eeprom_enhanced_txpwr *enhanced_txpower,
  695. int element, s8 *max_txpower_in_half_dbm)
  696. {
  697. s8 max_txpower_avg = 0; /* (dBm) */
  698. IWL_DEBUG_INFO(priv, "%d - "
  699. "chain_a: %d dB chain_b: %d dB "
  700. "chain_c: %d dB mimo2: %d dB mimo3: %d dB\n",
  701. element,
  702. enhanced_txpower[element].chain_a_max >> 1,
  703. enhanced_txpower[element].chain_b_max >> 1,
  704. enhanced_txpower[element].chain_c_max >> 1,
  705. enhanced_txpower[element].mimo2_max >> 1,
  706. enhanced_txpower[element].mimo3_max >> 1);
  707. /* Take the highest tx power from any valid chains */
  708. if ((priv->cfg->valid_tx_ant & ANT_A) &&
  709. (enhanced_txpower[element].chain_a_max > max_txpower_avg))
  710. max_txpower_avg = enhanced_txpower[element].chain_a_max;
  711. if ((priv->cfg->valid_tx_ant & ANT_B) &&
  712. (enhanced_txpower[element].chain_b_max > max_txpower_avg))
  713. max_txpower_avg = enhanced_txpower[element].chain_b_max;
  714. if ((priv->cfg->valid_tx_ant & ANT_C) &&
  715. (enhanced_txpower[element].chain_c_max > max_txpower_avg))
  716. max_txpower_avg = enhanced_txpower[element].chain_c_max;
  717. if (((priv->cfg->valid_tx_ant == ANT_AB) |
  718. (priv->cfg->valid_tx_ant == ANT_BC) |
  719. (priv->cfg->valid_tx_ant == ANT_AC)) &&
  720. (enhanced_txpower[element].mimo2_max > max_txpower_avg))
  721. max_txpower_avg = enhanced_txpower[element].mimo2_max;
  722. if ((priv->cfg->valid_tx_ant == ANT_ABC) &&
  723. (enhanced_txpower[element].mimo3_max > max_txpower_avg))
  724. max_txpower_avg = enhanced_txpower[element].mimo3_max;
  725. /*
  726. * max. tx power in EEPROM is in 1/2 dBm format
  727. * convert from 1/2 dBm to dBm (round-up convert)
  728. * but we also do not want to loss 1/2 dBm resolution which
  729. * will impact performance
  730. */
  731. *max_txpower_in_half_dbm = max_txpower_avg;
  732. return (max_txpower_avg & 0x01) + (max_txpower_avg >> 1);
  733. }
  734. /**
  735. * iwl_update_common_txpower: update channel tx power
  736. * update tx power per band based on EEPROM enhanced tx power info.
  737. */
  738. static s8 iwl_update_common_txpower(struct iwl_priv *priv,
  739. struct iwl_eeprom_enhanced_txpwr *enhanced_txpower,
  740. int section, int element, s8 *max_txpower_in_half_dbm)
  741. {
  742. struct iwl_channel_info *ch_info;
  743. int ch;
  744. bool is_ht40 = false;
  745. s8 max_txpower_avg; /* (dBm) */
  746. /* it is common section, contain all type (Legacy, HT and HT40)
  747. * based on the element in the section to determine
  748. * is it HT 40 or not
  749. */
  750. if (element == EEPROM_TXPOWER_COMMON_HT40_INDEX)
  751. is_ht40 = true;
  752. max_txpower_avg =
  753. iwl_get_max_txpower_avg(priv, enhanced_txpower,
  754. element, max_txpower_in_half_dbm);
  755. ch_info = priv->channel_info;
  756. for (ch = 0; ch < priv->channel_count; ch++) {
  757. /* find matching band and update tx power if needed */
  758. if ((ch_info->band == enhinfo[section].band) &&
  759. (ch_info->max_power_avg < max_txpower_avg) &&
  760. (!is_ht40)) {
  761. /* Update regulatory-based run-time data */
  762. ch_info->max_power_avg = ch_info->curr_txpow =
  763. max_txpower_avg;
  764. ch_info->scan_power = max_txpower_avg;
  765. }
  766. if ((ch_info->band == enhinfo[section].band) && is_ht40 &&
  767. (ch_info->ht40_max_power_avg < max_txpower_avg)) {
  768. /* Update regulatory-based run-time data */
  769. ch_info->ht40_max_power_avg = max_txpower_avg;
  770. }
  771. ch_info++;
  772. }
  773. return max_txpower_avg;
  774. }
  775. /**
  776. * iwl_update_channel_txpower: update channel tx power
  777. * update channel tx power based on EEPROM enhanced tx power info.
  778. */
  779. static s8 iwl_update_channel_txpower(struct iwl_priv *priv,
  780. struct iwl_eeprom_enhanced_txpwr *enhanced_txpower,
  781. int section, int element, s8 *max_txpower_in_half_dbm)
  782. {
  783. struct iwl_channel_info *ch_info;
  784. int ch;
  785. u8 channel;
  786. s8 max_txpower_avg; /* (dBm) */
  787. channel = enhinfo[section].iwl_eeprom_section_channel[element];
  788. max_txpower_avg =
  789. iwl_get_max_txpower_avg(priv, enhanced_txpower,
  790. element, max_txpower_in_half_dbm);
  791. ch_info = priv->channel_info;
  792. for (ch = 0; ch < priv->channel_count; ch++) {
  793. /* find matching channel and update tx power if needed */
  794. if (ch_info->channel == channel) {
  795. if ((ch_info->max_power_avg < max_txpower_avg) &&
  796. (!enhinfo[section].is_ht40)) {
  797. /* Update regulatory-based run-time data */
  798. ch_info->max_power_avg = max_txpower_avg;
  799. ch_info->curr_txpow = max_txpower_avg;
  800. ch_info->scan_power = max_txpower_avg;
  801. }
  802. if ((enhinfo[section].is_ht40) &&
  803. (ch_info->ht40_max_power_avg < max_txpower_avg)) {
  804. /* Update regulatory-based run-time data */
  805. ch_info->ht40_max_power_avg = max_txpower_avg;
  806. }
  807. break;
  808. }
  809. ch_info++;
  810. }
  811. return max_txpower_avg;
  812. }
  813. /**
  814. * iwlcore_eeprom_enhanced_txpower: process enhanced tx power info
  815. */
  816. void iwlcore_eeprom_enhanced_txpower(struct iwl_priv *priv)
  817. {
  818. int eeprom_section_count = 0;
  819. int section, element;
  820. struct iwl_eeprom_enhanced_txpwr *enhanced_txpower;
  821. u32 offset;
  822. s8 max_txpower_avg; /* (dBm) */
  823. s8 max_txpower_in_half_dbm; /* (half-dBm) */
  824. /* Loop through all the sections
  825. * adjust bands and channel's max tx power
  826. * Set the tx_power_user_lmt to the highest power
  827. * supported by any channels and chains
  828. */
  829. for (section = 0; section < ARRAY_SIZE(enhinfo); section++) {
  830. eeprom_section_count = enhinfo[section].count;
  831. offset = enhinfo[section].offset;
  832. enhanced_txpower = (struct iwl_eeprom_enhanced_txpwr *)
  833. iwl_eeprom_query_addr(priv, offset);
  834. /*
  835. * check for valid entry -
  836. * different version of EEPROM might contain different set
  837. * of enhanced tx power table
  838. * always check for valid entry before process
  839. * the information
  840. */
  841. if (!enhanced_txpower->common || enhanced_txpower->reserved)
  842. continue;
  843. for (element = 0; element < eeprom_section_count; element++) {
  844. if (enhinfo[section].is_common)
  845. max_txpower_avg =
  846. iwl_update_common_txpower(priv,
  847. enhanced_txpower, section,
  848. element,
  849. &max_txpower_in_half_dbm);
  850. else
  851. max_txpower_avg =
  852. iwl_update_channel_txpower(priv,
  853. enhanced_txpower, section,
  854. element,
  855. &max_txpower_in_half_dbm);
  856. /* Update the tx_power_user_lmt to the highest power
  857. * supported by any channel */
  858. if (max_txpower_avg > priv->tx_power_user_lmt)
  859. priv->tx_power_user_lmt = max_txpower_avg;
  860. /*
  861. * Update the tx_power_lmt_in_half_dbm to
  862. * the highest power supported by any channel
  863. */
  864. if (max_txpower_in_half_dbm >
  865. priv->tx_power_lmt_in_half_dbm)
  866. priv->tx_power_lmt_in_half_dbm =
  867. max_txpower_in_half_dbm;
  868. }
  869. }
  870. }
  871. EXPORT_SYMBOL(iwlcore_eeprom_enhanced_txpower);
  872. #define CHECK_AND_PRINT_I(x) ((eeprom_ch_info[ch].flags & EEPROM_CHANNEL_##x) \
  873. ? # x " " : "")
  874. /**
  875. * iwl_init_channel_map - Set up driver's info for all possible channels
  876. */
  877. int iwl_init_channel_map(struct iwl_priv *priv)
  878. {
  879. int eeprom_ch_count = 0;
  880. const u8 *eeprom_ch_index = NULL;
  881. const struct iwl_eeprom_channel *eeprom_ch_info = NULL;
  882. int band, ch;
  883. struct iwl_channel_info *ch_info;
  884. if (priv->channel_count) {
  885. IWL_DEBUG_INFO(priv, "Channel map already initialized.\n");
  886. return 0;
  887. }
  888. IWL_DEBUG_INFO(priv, "Initializing regulatory info from EEPROM\n");
  889. priv->channel_count =
  890. ARRAY_SIZE(iwl_eeprom_band_1) +
  891. ARRAY_SIZE(iwl_eeprom_band_2) +
  892. ARRAY_SIZE(iwl_eeprom_band_3) +
  893. ARRAY_SIZE(iwl_eeprom_band_4) +
  894. ARRAY_SIZE(iwl_eeprom_band_5);
  895. IWL_DEBUG_INFO(priv, "Parsing data for %d channels.\n", priv->channel_count);
  896. priv->channel_info = kzalloc(sizeof(struct iwl_channel_info) *
  897. priv->channel_count, GFP_KERNEL);
  898. if (!priv->channel_info) {
  899. IWL_ERR(priv, "Could not allocate channel_info\n");
  900. priv->channel_count = 0;
  901. return -ENOMEM;
  902. }
  903. ch_info = priv->channel_info;
  904. /* Loop through the 5 EEPROM bands adding them in order to the
  905. * channel map we maintain (that contains additional information than
  906. * what just in the EEPROM) */
  907. for (band = 1; band <= 5; band++) {
  908. iwl_init_band_reference(priv, band, &eeprom_ch_count,
  909. &eeprom_ch_info, &eeprom_ch_index);
  910. /* Loop through each band adding each of the channels */
  911. for (ch = 0; ch < eeprom_ch_count; ch++) {
  912. ch_info->channel = eeprom_ch_index[ch];
  913. ch_info->band = (band == 1) ? IEEE80211_BAND_2GHZ :
  914. IEEE80211_BAND_5GHZ;
  915. /* permanently store EEPROM's channel regulatory flags
  916. * and max power in channel info database. */
  917. ch_info->eeprom = eeprom_ch_info[ch];
  918. /* Copy the run-time flags so they are there even on
  919. * invalid channels */
  920. ch_info->flags = eeprom_ch_info[ch].flags;
  921. /* First write that ht40 is not enabled, and then enable
  922. * one by one */
  923. ch_info->ht40_extension_channel =
  924. IEEE80211_CHAN_NO_HT40;
  925. if (!(is_channel_valid(ch_info))) {
  926. IWL_DEBUG_INFO(priv, "Ch. %d Flags %x [%sGHz] - "
  927. "No traffic\n",
  928. ch_info->channel,
  929. ch_info->flags,
  930. is_channel_a_band(ch_info) ?
  931. "5.2" : "2.4");
  932. ch_info++;
  933. continue;
  934. }
  935. /* Initialize regulatory-based run-time data */
  936. ch_info->max_power_avg = ch_info->curr_txpow =
  937. eeprom_ch_info[ch].max_power_avg;
  938. ch_info->scan_power = eeprom_ch_info[ch].max_power_avg;
  939. ch_info->min_power = 0;
  940. IWL_DEBUG_INFO(priv, "Ch. %d [%sGHz] %s%s%s%s%s%s(0x%02x %ddBm):"
  941. " Ad-Hoc %ssupported\n",
  942. ch_info->channel,
  943. is_channel_a_band(ch_info) ?
  944. "5.2" : "2.4",
  945. CHECK_AND_PRINT_I(VALID),
  946. CHECK_AND_PRINT_I(IBSS),
  947. CHECK_AND_PRINT_I(ACTIVE),
  948. CHECK_AND_PRINT_I(RADAR),
  949. CHECK_AND_PRINT_I(WIDE),
  950. CHECK_AND_PRINT_I(DFS),
  951. eeprom_ch_info[ch].flags,
  952. eeprom_ch_info[ch].max_power_avg,
  953. ((eeprom_ch_info[ch].
  954. flags & EEPROM_CHANNEL_IBSS)
  955. && !(eeprom_ch_info[ch].
  956. flags & EEPROM_CHANNEL_RADAR))
  957. ? "" : "not ");
  958. /* Set the tx_power_user_lmt to the highest power
  959. * supported by any channel */
  960. if (eeprom_ch_info[ch].max_power_avg >
  961. priv->tx_power_user_lmt)
  962. priv->tx_power_user_lmt =
  963. eeprom_ch_info[ch].max_power_avg;
  964. ch_info++;
  965. }
  966. }
  967. /* Check if we do have HT40 channels */
  968. if (priv->cfg->ops->lib->eeprom_ops.regulatory_bands[5] ==
  969. EEPROM_REGULATORY_BAND_NO_HT40 &&
  970. priv->cfg->ops->lib->eeprom_ops.regulatory_bands[6] ==
  971. EEPROM_REGULATORY_BAND_NO_HT40)
  972. return 0;
  973. /* Two additional EEPROM bands for 2.4 and 5 GHz HT40 channels */
  974. for (band = 6; band <= 7; band++) {
  975. enum ieee80211_band ieeeband;
  976. iwl_init_band_reference(priv, band, &eeprom_ch_count,
  977. &eeprom_ch_info, &eeprom_ch_index);
  978. /* EEPROM band 6 is 2.4, band 7 is 5 GHz */
  979. ieeeband =
  980. (band == 6) ? IEEE80211_BAND_2GHZ : IEEE80211_BAND_5GHZ;
  981. /* Loop through each band adding each of the channels */
  982. for (ch = 0; ch < eeprom_ch_count; ch++) {
  983. /* Set up driver's info for lower half */
  984. iwl_mod_ht40_chan_info(priv, ieeeband,
  985. eeprom_ch_index[ch],
  986. &eeprom_ch_info[ch],
  987. IEEE80211_CHAN_NO_HT40PLUS);
  988. /* Set up driver's info for upper half */
  989. iwl_mod_ht40_chan_info(priv, ieeeband,
  990. eeprom_ch_index[ch] + 4,
  991. &eeprom_ch_info[ch],
  992. IEEE80211_CHAN_NO_HT40MINUS);
  993. }
  994. }
  995. /* for newer device (6000 series and up)
  996. * EEPROM contain enhanced tx power information
  997. * driver need to process addition information
  998. * to determine the max channel tx power limits
  999. */
  1000. if (priv->cfg->ops->lib->eeprom_ops.update_enhanced_txpower)
  1001. priv->cfg->ops->lib->eeprom_ops.update_enhanced_txpower(priv);
  1002. return 0;
  1003. }
  1004. EXPORT_SYMBOL(iwl_init_channel_map);
  1005. /*
  1006. * iwl_free_channel_map - undo allocations in iwl_init_channel_map
  1007. */
  1008. void iwl_free_channel_map(struct iwl_priv *priv)
  1009. {
  1010. kfree(priv->channel_info);
  1011. priv->channel_count = 0;
  1012. }
  1013. EXPORT_SYMBOL(iwl_free_channel_map);
  1014. /**
  1015. * iwl_get_channel_info - Find driver's private channel info
  1016. *
  1017. * Based on band and channel number.
  1018. */
  1019. const struct iwl_channel_info *iwl_get_channel_info(const struct iwl_priv *priv,
  1020. enum ieee80211_band band, u16 channel)
  1021. {
  1022. int i;
  1023. switch (band) {
  1024. case IEEE80211_BAND_5GHZ:
  1025. for (i = 14; i < priv->channel_count; i++) {
  1026. if (priv->channel_info[i].channel == channel)
  1027. return &priv->channel_info[i];
  1028. }
  1029. break;
  1030. case IEEE80211_BAND_2GHZ:
  1031. if (channel >= 1 && channel <= 14)
  1032. return &priv->channel_info[channel - 1];
  1033. break;
  1034. default:
  1035. BUG();
  1036. }
  1037. return NULL;
  1038. }
  1039. EXPORT_SYMBOL(iwl_get_channel_info);