kvm_main.c 73 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "kvm.h"
  18. #include <linux/kvm.h>
  19. #include <linux/module.h>
  20. #include <linux/errno.h>
  21. #include <linux/magic.h>
  22. #include <asm/processor.h>
  23. #include <linux/percpu.h>
  24. #include <linux/gfp.h>
  25. #include <asm/msr.h>
  26. #include <linux/mm.h>
  27. #include <linux/miscdevice.h>
  28. #include <linux/vmalloc.h>
  29. #include <asm/uaccess.h>
  30. #include <linux/reboot.h>
  31. #include <asm/io.h>
  32. #include <linux/debugfs.h>
  33. #include <linux/highmem.h>
  34. #include <linux/file.h>
  35. #include <asm/desc.h>
  36. #include <linux/sysdev.h>
  37. #include <linux/cpu.h>
  38. #include <linux/file.h>
  39. #include <linux/fs.h>
  40. #include <linux/mount.h>
  41. #include <linux/sched.h>
  42. #include <linux/cpumask.h>
  43. #include <linux/smp.h>
  44. #include "x86_emulate.h"
  45. #include "segment_descriptor.h"
  46. MODULE_AUTHOR("Qumranet");
  47. MODULE_LICENSE("GPL");
  48. static DEFINE_SPINLOCK(kvm_lock);
  49. static LIST_HEAD(vm_list);
  50. struct kvm_arch_ops *kvm_arch_ops;
  51. #define STAT_OFFSET(x) offsetof(struct kvm_vcpu, stat.x)
  52. static struct kvm_stats_debugfs_item {
  53. const char *name;
  54. int offset;
  55. struct dentry *dentry;
  56. } debugfs_entries[] = {
  57. { "pf_fixed", STAT_OFFSET(pf_fixed) },
  58. { "pf_guest", STAT_OFFSET(pf_guest) },
  59. { "tlb_flush", STAT_OFFSET(tlb_flush) },
  60. { "invlpg", STAT_OFFSET(invlpg) },
  61. { "exits", STAT_OFFSET(exits) },
  62. { "io_exits", STAT_OFFSET(io_exits) },
  63. { "mmio_exits", STAT_OFFSET(mmio_exits) },
  64. { "signal_exits", STAT_OFFSET(signal_exits) },
  65. { "irq_window", STAT_OFFSET(irq_window_exits) },
  66. { "halt_exits", STAT_OFFSET(halt_exits) },
  67. { "request_irq", STAT_OFFSET(request_irq_exits) },
  68. { "irq_exits", STAT_OFFSET(irq_exits) },
  69. { "light_exits", STAT_OFFSET(light_exits) },
  70. { "efer_reload", STAT_OFFSET(efer_reload) },
  71. { NULL }
  72. };
  73. static struct dentry *debugfs_dir;
  74. struct vfsmount *kvmfs_mnt;
  75. #define MAX_IO_MSRS 256
  76. #define CR0_RESEVED_BITS 0xffffffff1ffaffc0ULL
  77. #define LMSW_GUEST_MASK 0x0eULL
  78. #define CR4_RESEVED_BITS (~((1ULL << 11) - 1))
  79. #define CR8_RESEVED_BITS (~0x0fULL)
  80. #define EFER_RESERVED_BITS 0xfffffffffffff2fe
  81. #ifdef CONFIG_X86_64
  82. // LDT or TSS descriptor in the GDT. 16 bytes.
  83. struct segment_descriptor_64 {
  84. struct segment_descriptor s;
  85. u32 base_higher;
  86. u32 pad_zero;
  87. };
  88. #endif
  89. static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
  90. unsigned long arg);
  91. static struct inode *kvmfs_inode(struct file_operations *fops)
  92. {
  93. int error = -ENOMEM;
  94. struct inode *inode = new_inode(kvmfs_mnt->mnt_sb);
  95. if (!inode)
  96. goto eexit_1;
  97. inode->i_fop = fops;
  98. /*
  99. * Mark the inode dirty from the very beginning,
  100. * that way it will never be moved to the dirty
  101. * list because mark_inode_dirty() will think
  102. * that it already _is_ on the dirty list.
  103. */
  104. inode->i_state = I_DIRTY;
  105. inode->i_mode = S_IRUSR | S_IWUSR;
  106. inode->i_uid = current->fsuid;
  107. inode->i_gid = current->fsgid;
  108. inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
  109. return inode;
  110. eexit_1:
  111. return ERR_PTR(error);
  112. }
  113. static struct file *kvmfs_file(struct inode *inode, void *private_data)
  114. {
  115. struct file *file = get_empty_filp();
  116. if (!file)
  117. return ERR_PTR(-ENFILE);
  118. file->f_path.mnt = mntget(kvmfs_mnt);
  119. file->f_path.dentry = d_alloc_anon(inode);
  120. if (!file->f_path.dentry)
  121. return ERR_PTR(-ENOMEM);
  122. file->f_mapping = inode->i_mapping;
  123. file->f_pos = 0;
  124. file->f_flags = O_RDWR;
  125. file->f_op = inode->i_fop;
  126. file->f_mode = FMODE_READ | FMODE_WRITE;
  127. file->f_version = 0;
  128. file->private_data = private_data;
  129. return file;
  130. }
  131. unsigned long segment_base(u16 selector)
  132. {
  133. struct descriptor_table gdt;
  134. struct segment_descriptor *d;
  135. unsigned long table_base;
  136. typedef unsigned long ul;
  137. unsigned long v;
  138. if (selector == 0)
  139. return 0;
  140. asm ("sgdt %0" : "=m"(gdt));
  141. table_base = gdt.base;
  142. if (selector & 4) { /* from ldt */
  143. u16 ldt_selector;
  144. asm ("sldt %0" : "=g"(ldt_selector));
  145. table_base = segment_base(ldt_selector);
  146. }
  147. d = (struct segment_descriptor *)(table_base + (selector & ~7));
  148. v = d->base_low | ((ul)d->base_mid << 16) | ((ul)d->base_high << 24);
  149. #ifdef CONFIG_X86_64
  150. if (d->system == 0
  151. && (d->type == 2 || d->type == 9 || d->type == 11))
  152. v |= ((ul)((struct segment_descriptor_64 *)d)->base_higher) << 32;
  153. #endif
  154. return v;
  155. }
  156. EXPORT_SYMBOL_GPL(segment_base);
  157. static inline int valid_vcpu(int n)
  158. {
  159. return likely(n >= 0 && n < KVM_MAX_VCPUS);
  160. }
  161. int kvm_read_guest(struct kvm_vcpu *vcpu, gva_t addr, unsigned long size,
  162. void *dest)
  163. {
  164. unsigned char *host_buf = dest;
  165. unsigned long req_size = size;
  166. while (size) {
  167. hpa_t paddr;
  168. unsigned now;
  169. unsigned offset;
  170. hva_t guest_buf;
  171. paddr = gva_to_hpa(vcpu, addr);
  172. if (is_error_hpa(paddr))
  173. break;
  174. guest_buf = (hva_t)kmap_atomic(
  175. pfn_to_page(paddr >> PAGE_SHIFT),
  176. KM_USER0);
  177. offset = addr & ~PAGE_MASK;
  178. guest_buf |= offset;
  179. now = min(size, PAGE_SIZE - offset);
  180. memcpy(host_buf, (void*)guest_buf, now);
  181. host_buf += now;
  182. addr += now;
  183. size -= now;
  184. kunmap_atomic((void *)(guest_buf & PAGE_MASK), KM_USER0);
  185. }
  186. return req_size - size;
  187. }
  188. EXPORT_SYMBOL_GPL(kvm_read_guest);
  189. int kvm_write_guest(struct kvm_vcpu *vcpu, gva_t addr, unsigned long size,
  190. void *data)
  191. {
  192. unsigned char *host_buf = data;
  193. unsigned long req_size = size;
  194. while (size) {
  195. hpa_t paddr;
  196. unsigned now;
  197. unsigned offset;
  198. hva_t guest_buf;
  199. gfn_t gfn;
  200. paddr = gva_to_hpa(vcpu, addr);
  201. if (is_error_hpa(paddr))
  202. break;
  203. gfn = vcpu->mmu.gva_to_gpa(vcpu, addr) >> PAGE_SHIFT;
  204. mark_page_dirty(vcpu->kvm, gfn);
  205. guest_buf = (hva_t)kmap_atomic(
  206. pfn_to_page(paddr >> PAGE_SHIFT), KM_USER0);
  207. offset = addr & ~PAGE_MASK;
  208. guest_buf |= offset;
  209. now = min(size, PAGE_SIZE - offset);
  210. memcpy((void*)guest_buf, host_buf, now);
  211. host_buf += now;
  212. addr += now;
  213. size -= now;
  214. kunmap_atomic((void *)(guest_buf & PAGE_MASK), KM_USER0);
  215. }
  216. return req_size - size;
  217. }
  218. EXPORT_SYMBOL_GPL(kvm_write_guest);
  219. void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
  220. {
  221. if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
  222. return;
  223. vcpu->guest_fpu_loaded = 1;
  224. fx_save(vcpu->host_fx_image);
  225. fx_restore(vcpu->guest_fx_image);
  226. }
  227. EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
  228. void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
  229. {
  230. if (!vcpu->guest_fpu_loaded)
  231. return;
  232. vcpu->guest_fpu_loaded = 0;
  233. fx_save(vcpu->guest_fx_image);
  234. fx_restore(vcpu->host_fx_image);
  235. }
  236. EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
  237. /*
  238. * Switches to specified vcpu, until a matching vcpu_put()
  239. */
  240. static void vcpu_load(struct kvm_vcpu *vcpu)
  241. {
  242. mutex_lock(&vcpu->mutex);
  243. kvm_arch_ops->vcpu_load(vcpu);
  244. }
  245. /*
  246. * Switches to specified vcpu, until a matching vcpu_put(). Will return NULL
  247. * if the slot is not populated.
  248. */
  249. static struct kvm_vcpu *vcpu_load_slot(struct kvm *kvm, int slot)
  250. {
  251. struct kvm_vcpu *vcpu = &kvm->vcpus[slot];
  252. mutex_lock(&vcpu->mutex);
  253. if (!vcpu->vmcs) {
  254. mutex_unlock(&vcpu->mutex);
  255. return NULL;
  256. }
  257. kvm_arch_ops->vcpu_load(vcpu);
  258. return vcpu;
  259. }
  260. static void vcpu_put(struct kvm_vcpu *vcpu)
  261. {
  262. kvm_arch_ops->vcpu_put(vcpu);
  263. mutex_unlock(&vcpu->mutex);
  264. }
  265. static void ack_flush(void *_completed)
  266. {
  267. atomic_t *completed = _completed;
  268. atomic_inc(completed);
  269. }
  270. void kvm_flush_remote_tlbs(struct kvm *kvm)
  271. {
  272. int i, cpu, needed;
  273. cpumask_t cpus;
  274. struct kvm_vcpu *vcpu;
  275. atomic_t completed;
  276. atomic_set(&completed, 0);
  277. cpus_clear(cpus);
  278. needed = 0;
  279. for (i = 0; i < kvm->nvcpus; ++i) {
  280. vcpu = &kvm->vcpus[i];
  281. if (test_and_set_bit(KVM_TLB_FLUSH, &vcpu->requests))
  282. continue;
  283. cpu = vcpu->cpu;
  284. if (cpu != -1 && cpu != raw_smp_processor_id())
  285. if (!cpu_isset(cpu, cpus)) {
  286. cpu_set(cpu, cpus);
  287. ++needed;
  288. }
  289. }
  290. /*
  291. * We really want smp_call_function_mask() here. But that's not
  292. * available, so ipi all cpus in parallel and wait for them
  293. * to complete.
  294. */
  295. for (cpu = first_cpu(cpus); cpu != NR_CPUS; cpu = next_cpu(cpu, cpus))
  296. smp_call_function_single(cpu, ack_flush, &completed, 1, 0);
  297. while (atomic_read(&completed) != needed) {
  298. cpu_relax();
  299. barrier();
  300. }
  301. }
  302. static struct kvm *kvm_create_vm(void)
  303. {
  304. struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
  305. int i;
  306. if (!kvm)
  307. return ERR_PTR(-ENOMEM);
  308. kvm_io_bus_init(&kvm->pio_bus);
  309. spin_lock_init(&kvm->lock);
  310. INIT_LIST_HEAD(&kvm->active_mmu_pages);
  311. spin_lock(&kvm_lock);
  312. list_add(&kvm->vm_list, &vm_list);
  313. spin_unlock(&kvm_lock);
  314. kvm_io_bus_init(&kvm->mmio_bus);
  315. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  316. struct kvm_vcpu *vcpu = &kvm->vcpus[i];
  317. mutex_init(&vcpu->mutex);
  318. vcpu->cpu = -1;
  319. vcpu->kvm = kvm;
  320. vcpu->mmu.root_hpa = INVALID_PAGE;
  321. }
  322. return kvm;
  323. }
  324. static int kvm_dev_open(struct inode *inode, struct file *filp)
  325. {
  326. return 0;
  327. }
  328. /*
  329. * Free any memory in @free but not in @dont.
  330. */
  331. static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
  332. struct kvm_memory_slot *dont)
  333. {
  334. int i;
  335. if (!dont || free->phys_mem != dont->phys_mem)
  336. if (free->phys_mem) {
  337. for (i = 0; i < free->npages; ++i)
  338. if (free->phys_mem[i])
  339. __free_page(free->phys_mem[i]);
  340. vfree(free->phys_mem);
  341. }
  342. if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
  343. vfree(free->dirty_bitmap);
  344. free->phys_mem = NULL;
  345. free->npages = 0;
  346. free->dirty_bitmap = NULL;
  347. }
  348. static void kvm_free_physmem(struct kvm *kvm)
  349. {
  350. int i;
  351. for (i = 0; i < kvm->nmemslots; ++i)
  352. kvm_free_physmem_slot(&kvm->memslots[i], NULL);
  353. }
  354. static void free_pio_guest_pages(struct kvm_vcpu *vcpu)
  355. {
  356. int i;
  357. for (i = 0; i < 2; ++i)
  358. if (vcpu->pio.guest_pages[i]) {
  359. __free_page(vcpu->pio.guest_pages[i]);
  360. vcpu->pio.guest_pages[i] = NULL;
  361. }
  362. }
  363. static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
  364. {
  365. if (!vcpu->vmcs)
  366. return;
  367. vcpu_load(vcpu);
  368. kvm_mmu_unload(vcpu);
  369. vcpu_put(vcpu);
  370. }
  371. static void kvm_free_vcpu(struct kvm_vcpu *vcpu)
  372. {
  373. if (!vcpu->vmcs)
  374. return;
  375. vcpu_load(vcpu);
  376. kvm_mmu_destroy(vcpu);
  377. vcpu_put(vcpu);
  378. kvm_arch_ops->vcpu_free(vcpu);
  379. free_page((unsigned long)vcpu->run);
  380. vcpu->run = NULL;
  381. free_page((unsigned long)vcpu->pio_data);
  382. vcpu->pio_data = NULL;
  383. free_pio_guest_pages(vcpu);
  384. }
  385. static void kvm_free_vcpus(struct kvm *kvm)
  386. {
  387. unsigned int i;
  388. /*
  389. * Unpin any mmu pages first.
  390. */
  391. for (i = 0; i < KVM_MAX_VCPUS; ++i)
  392. kvm_unload_vcpu_mmu(&kvm->vcpus[i]);
  393. for (i = 0; i < KVM_MAX_VCPUS; ++i)
  394. kvm_free_vcpu(&kvm->vcpus[i]);
  395. }
  396. static int kvm_dev_release(struct inode *inode, struct file *filp)
  397. {
  398. return 0;
  399. }
  400. static void kvm_destroy_vm(struct kvm *kvm)
  401. {
  402. spin_lock(&kvm_lock);
  403. list_del(&kvm->vm_list);
  404. spin_unlock(&kvm_lock);
  405. kvm_io_bus_destroy(&kvm->pio_bus);
  406. kvm_io_bus_destroy(&kvm->mmio_bus);
  407. kvm_free_vcpus(kvm);
  408. kvm_free_physmem(kvm);
  409. kfree(kvm);
  410. }
  411. static int kvm_vm_release(struct inode *inode, struct file *filp)
  412. {
  413. struct kvm *kvm = filp->private_data;
  414. kvm_destroy_vm(kvm);
  415. return 0;
  416. }
  417. static void inject_gp(struct kvm_vcpu *vcpu)
  418. {
  419. kvm_arch_ops->inject_gp(vcpu, 0);
  420. }
  421. /*
  422. * Load the pae pdptrs. Return true is they are all valid.
  423. */
  424. static int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
  425. {
  426. gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
  427. unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
  428. int i;
  429. u64 pdpte;
  430. u64 *pdpt;
  431. int ret;
  432. struct page *page;
  433. spin_lock(&vcpu->kvm->lock);
  434. page = gfn_to_page(vcpu->kvm, pdpt_gfn);
  435. /* FIXME: !page - emulate? 0xff? */
  436. pdpt = kmap_atomic(page, KM_USER0);
  437. ret = 1;
  438. for (i = 0; i < 4; ++i) {
  439. pdpte = pdpt[offset + i];
  440. if ((pdpte & 1) && (pdpte & 0xfffffff0000001e6ull)) {
  441. ret = 0;
  442. goto out;
  443. }
  444. }
  445. for (i = 0; i < 4; ++i)
  446. vcpu->pdptrs[i] = pdpt[offset + i];
  447. out:
  448. kunmap_atomic(pdpt, KM_USER0);
  449. spin_unlock(&vcpu->kvm->lock);
  450. return ret;
  451. }
  452. void set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  453. {
  454. if (cr0 & CR0_RESEVED_BITS) {
  455. printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
  456. cr0, vcpu->cr0);
  457. inject_gp(vcpu);
  458. return;
  459. }
  460. if ((cr0 & CR0_NW_MASK) && !(cr0 & CR0_CD_MASK)) {
  461. printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
  462. inject_gp(vcpu);
  463. return;
  464. }
  465. if ((cr0 & CR0_PG_MASK) && !(cr0 & CR0_PE_MASK)) {
  466. printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
  467. "and a clear PE flag\n");
  468. inject_gp(vcpu);
  469. return;
  470. }
  471. if (!is_paging(vcpu) && (cr0 & CR0_PG_MASK)) {
  472. #ifdef CONFIG_X86_64
  473. if ((vcpu->shadow_efer & EFER_LME)) {
  474. int cs_db, cs_l;
  475. if (!is_pae(vcpu)) {
  476. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  477. "in long mode while PAE is disabled\n");
  478. inject_gp(vcpu);
  479. return;
  480. }
  481. kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  482. if (cs_l) {
  483. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  484. "in long mode while CS.L == 1\n");
  485. inject_gp(vcpu);
  486. return;
  487. }
  488. } else
  489. #endif
  490. if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->cr3)) {
  491. printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
  492. "reserved bits\n");
  493. inject_gp(vcpu);
  494. return;
  495. }
  496. }
  497. kvm_arch_ops->set_cr0(vcpu, cr0);
  498. vcpu->cr0 = cr0;
  499. spin_lock(&vcpu->kvm->lock);
  500. kvm_mmu_reset_context(vcpu);
  501. spin_unlock(&vcpu->kvm->lock);
  502. return;
  503. }
  504. EXPORT_SYMBOL_GPL(set_cr0);
  505. void lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
  506. {
  507. set_cr0(vcpu, (vcpu->cr0 & ~0x0ful) | (msw & 0x0f));
  508. }
  509. EXPORT_SYMBOL_GPL(lmsw);
  510. void set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  511. {
  512. if (cr4 & CR4_RESEVED_BITS) {
  513. printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
  514. inject_gp(vcpu);
  515. return;
  516. }
  517. if (is_long_mode(vcpu)) {
  518. if (!(cr4 & CR4_PAE_MASK)) {
  519. printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
  520. "in long mode\n");
  521. inject_gp(vcpu);
  522. return;
  523. }
  524. } else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & CR4_PAE_MASK)
  525. && !load_pdptrs(vcpu, vcpu->cr3)) {
  526. printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
  527. inject_gp(vcpu);
  528. }
  529. if (cr4 & CR4_VMXE_MASK) {
  530. printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
  531. inject_gp(vcpu);
  532. return;
  533. }
  534. kvm_arch_ops->set_cr4(vcpu, cr4);
  535. spin_lock(&vcpu->kvm->lock);
  536. kvm_mmu_reset_context(vcpu);
  537. spin_unlock(&vcpu->kvm->lock);
  538. }
  539. EXPORT_SYMBOL_GPL(set_cr4);
  540. void set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  541. {
  542. if (is_long_mode(vcpu)) {
  543. if (cr3 & CR3_L_MODE_RESEVED_BITS) {
  544. printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
  545. inject_gp(vcpu);
  546. return;
  547. }
  548. } else {
  549. if (cr3 & CR3_RESEVED_BITS) {
  550. printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
  551. inject_gp(vcpu);
  552. return;
  553. }
  554. if (is_paging(vcpu) && is_pae(vcpu) &&
  555. !load_pdptrs(vcpu, cr3)) {
  556. printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
  557. "reserved bits\n");
  558. inject_gp(vcpu);
  559. return;
  560. }
  561. }
  562. vcpu->cr3 = cr3;
  563. spin_lock(&vcpu->kvm->lock);
  564. /*
  565. * Does the new cr3 value map to physical memory? (Note, we
  566. * catch an invalid cr3 even in real-mode, because it would
  567. * cause trouble later on when we turn on paging anyway.)
  568. *
  569. * A real CPU would silently accept an invalid cr3 and would
  570. * attempt to use it - with largely undefined (and often hard
  571. * to debug) behavior on the guest side.
  572. */
  573. if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
  574. inject_gp(vcpu);
  575. else
  576. vcpu->mmu.new_cr3(vcpu);
  577. spin_unlock(&vcpu->kvm->lock);
  578. }
  579. EXPORT_SYMBOL_GPL(set_cr3);
  580. void set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
  581. {
  582. if ( cr8 & CR8_RESEVED_BITS) {
  583. printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
  584. inject_gp(vcpu);
  585. return;
  586. }
  587. vcpu->cr8 = cr8;
  588. }
  589. EXPORT_SYMBOL_GPL(set_cr8);
  590. void fx_init(struct kvm_vcpu *vcpu)
  591. {
  592. struct __attribute__ ((__packed__)) fx_image_s {
  593. u16 control; //fcw
  594. u16 status; //fsw
  595. u16 tag; // ftw
  596. u16 opcode; //fop
  597. u64 ip; // fpu ip
  598. u64 operand;// fpu dp
  599. u32 mxcsr;
  600. u32 mxcsr_mask;
  601. } *fx_image;
  602. fx_save(vcpu->host_fx_image);
  603. fpu_init();
  604. fx_save(vcpu->guest_fx_image);
  605. fx_restore(vcpu->host_fx_image);
  606. fx_image = (struct fx_image_s *)vcpu->guest_fx_image;
  607. fx_image->mxcsr = 0x1f80;
  608. memset(vcpu->guest_fx_image + sizeof(struct fx_image_s),
  609. 0, FX_IMAGE_SIZE - sizeof(struct fx_image_s));
  610. }
  611. EXPORT_SYMBOL_GPL(fx_init);
  612. static void do_remove_write_access(struct kvm_vcpu *vcpu, int slot)
  613. {
  614. spin_lock(&vcpu->kvm->lock);
  615. kvm_mmu_slot_remove_write_access(vcpu, slot);
  616. spin_unlock(&vcpu->kvm->lock);
  617. }
  618. /*
  619. * Allocate some memory and give it an address in the guest physical address
  620. * space.
  621. *
  622. * Discontiguous memory is allowed, mostly for framebuffers.
  623. */
  624. static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
  625. struct kvm_memory_region *mem)
  626. {
  627. int r;
  628. gfn_t base_gfn;
  629. unsigned long npages;
  630. unsigned long i;
  631. struct kvm_memory_slot *memslot;
  632. struct kvm_memory_slot old, new;
  633. int memory_config_version;
  634. r = -EINVAL;
  635. /* General sanity checks */
  636. if (mem->memory_size & (PAGE_SIZE - 1))
  637. goto out;
  638. if (mem->guest_phys_addr & (PAGE_SIZE - 1))
  639. goto out;
  640. if (mem->slot >= KVM_MEMORY_SLOTS)
  641. goto out;
  642. if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
  643. goto out;
  644. memslot = &kvm->memslots[mem->slot];
  645. base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
  646. npages = mem->memory_size >> PAGE_SHIFT;
  647. if (!npages)
  648. mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
  649. raced:
  650. spin_lock(&kvm->lock);
  651. memory_config_version = kvm->memory_config_version;
  652. new = old = *memslot;
  653. new.base_gfn = base_gfn;
  654. new.npages = npages;
  655. new.flags = mem->flags;
  656. /* Disallow changing a memory slot's size. */
  657. r = -EINVAL;
  658. if (npages && old.npages && npages != old.npages)
  659. goto out_unlock;
  660. /* Check for overlaps */
  661. r = -EEXIST;
  662. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  663. struct kvm_memory_slot *s = &kvm->memslots[i];
  664. if (s == memslot)
  665. continue;
  666. if (!((base_gfn + npages <= s->base_gfn) ||
  667. (base_gfn >= s->base_gfn + s->npages)))
  668. goto out_unlock;
  669. }
  670. /*
  671. * Do memory allocations outside lock. memory_config_version will
  672. * detect any races.
  673. */
  674. spin_unlock(&kvm->lock);
  675. /* Deallocate if slot is being removed */
  676. if (!npages)
  677. new.phys_mem = NULL;
  678. /* Free page dirty bitmap if unneeded */
  679. if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
  680. new.dirty_bitmap = NULL;
  681. r = -ENOMEM;
  682. /* Allocate if a slot is being created */
  683. if (npages && !new.phys_mem) {
  684. new.phys_mem = vmalloc(npages * sizeof(struct page *));
  685. if (!new.phys_mem)
  686. goto out_free;
  687. memset(new.phys_mem, 0, npages * sizeof(struct page *));
  688. for (i = 0; i < npages; ++i) {
  689. new.phys_mem[i] = alloc_page(GFP_HIGHUSER
  690. | __GFP_ZERO);
  691. if (!new.phys_mem[i])
  692. goto out_free;
  693. set_page_private(new.phys_mem[i],0);
  694. }
  695. }
  696. /* Allocate page dirty bitmap if needed */
  697. if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
  698. unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
  699. new.dirty_bitmap = vmalloc(dirty_bytes);
  700. if (!new.dirty_bitmap)
  701. goto out_free;
  702. memset(new.dirty_bitmap, 0, dirty_bytes);
  703. }
  704. spin_lock(&kvm->lock);
  705. if (memory_config_version != kvm->memory_config_version) {
  706. spin_unlock(&kvm->lock);
  707. kvm_free_physmem_slot(&new, &old);
  708. goto raced;
  709. }
  710. r = -EAGAIN;
  711. if (kvm->busy)
  712. goto out_unlock;
  713. if (mem->slot >= kvm->nmemslots)
  714. kvm->nmemslots = mem->slot + 1;
  715. *memslot = new;
  716. ++kvm->memory_config_version;
  717. spin_unlock(&kvm->lock);
  718. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  719. struct kvm_vcpu *vcpu;
  720. vcpu = vcpu_load_slot(kvm, i);
  721. if (!vcpu)
  722. continue;
  723. if (new.flags & KVM_MEM_LOG_DIRTY_PAGES)
  724. do_remove_write_access(vcpu, mem->slot);
  725. kvm_mmu_reset_context(vcpu);
  726. vcpu_put(vcpu);
  727. }
  728. kvm_free_physmem_slot(&old, &new);
  729. return 0;
  730. out_unlock:
  731. spin_unlock(&kvm->lock);
  732. out_free:
  733. kvm_free_physmem_slot(&new, &old);
  734. out:
  735. return r;
  736. }
  737. /*
  738. * Get (and clear) the dirty memory log for a memory slot.
  739. */
  740. static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
  741. struct kvm_dirty_log *log)
  742. {
  743. struct kvm_memory_slot *memslot;
  744. int r, i;
  745. int n;
  746. int cleared;
  747. unsigned long any = 0;
  748. spin_lock(&kvm->lock);
  749. /*
  750. * Prevent changes to guest memory configuration even while the lock
  751. * is not taken.
  752. */
  753. ++kvm->busy;
  754. spin_unlock(&kvm->lock);
  755. r = -EINVAL;
  756. if (log->slot >= KVM_MEMORY_SLOTS)
  757. goto out;
  758. memslot = &kvm->memslots[log->slot];
  759. r = -ENOENT;
  760. if (!memslot->dirty_bitmap)
  761. goto out;
  762. n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
  763. for (i = 0; !any && i < n/sizeof(long); ++i)
  764. any = memslot->dirty_bitmap[i];
  765. r = -EFAULT;
  766. if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
  767. goto out;
  768. if (any) {
  769. cleared = 0;
  770. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  771. struct kvm_vcpu *vcpu;
  772. vcpu = vcpu_load_slot(kvm, i);
  773. if (!vcpu)
  774. continue;
  775. if (!cleared) {
  776. do_remove_write_access(vcpu, log->slot);
  777. memset(memslot->dirty_bitmap, 0, n);
  778. cleared = 1;
  779. }
  780. kvm_arch_ops->tlb_flush(vcpu);
  781. vcpu_put(vcpu);
  782. }
  783. }
  784. r = 0;
  785. out:
  786. spin_lock(&kvm->lock);
  787. --kvm->busy;
  788. spin_unlock(&kvm->lock);
  789. return r;
  790. }
  791. /*
  792. * Set a new alias region. Aliases map a portion of physical memory into
  793. * another portion. This is useful for memory windows, for example the PC
  794. * VGA region.
  795. */
  796. static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
  797. struct kvm_memory_alias *alias)
  798. {
  799. int r, n;
  800. struct kvm_mem_alias *p;
  801. r = -EINVAL;
  802. /* General sanity checks */
  803. if (alias->memory_size & (PAGE_SIZE - 1))
  804. goto out;
  805. if (alias->guest_phys_addr & (PAGE_SIZE - 1))
  806. goto out;
  807. if (alias->slot >= KVM_ALIAS_SLOTS)
  808. goto out;
  809. if (alias->guest_phys_addr + alias->memory_size
  810. < alias->guest_phys_addr)
  811. goto out;
  812. if (alias->target_phys_addr + alias->memory_size
  813. < alias->target_phys_addr)
  814. goto out;
  815. spin_lock(&kvm->lock);
  816. p = &kvm->aliases[alias->slot];
  817. p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
  818. p->npages = alias->memory_size >> PAGE_SHIFT;
  819. p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
  820. for (n = KVM_ALIAS_SLOTS; n > 0; --n)
  821. if (kvm->aliases[n - 1].npages)
  822. break;
  823. kvm->naliases = n;
  824. spin_unlock(&kvm->lock);
  825. vcpu_load(&kvm->vcpus[0]);
  826. spin_lock(&kvm->lock);
  827. kvm_mmu_zap_all(&kvm->vcpus[0]);
  828. spin_unlock(&kvm->lock);
  829. vcpu_put(&kvm->vcpus[0]);
  830. return 0;
  831. out:
  832. return r;
  833. }
  834. static gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
  835. {
  836. int i;
  837. struct kvm_mem_alias *alias;
  838. for (i = 0; i < kvm->naliases; ++i) {
  839. alias = &kvm->aliases[i];
  840. if (gfn >= alias->base_gfn
  841. && gfn < alias->base_gfn + alias->npages)
  842. return alias->target_gfn + gfn - alias->base_gfn;
  843. }
  844. return gfn;
  845. }
  846. static struct kvm_memory_slot *__gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  847. {
  848. int i;
  849. for (i = 0; i < kvm->nmemslots; ++i) {
  850. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  851. if (gfn >= memslot->base_gfn
  852. && gfn < memslot->base_gfn + memslot->npages)
  853. return memslot;
  854. }
  855. return NULL;
  856. }
  857. struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  858. {
  859. gfn = unalias_gfn(kvm, gfn);
  860. return __gfn_to_memslot(kvm, gfn);
  861. }
  862. struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
  863. {
  864. struct kvm_memory_slot *slot;
  865. gfn = unalias_gfn(kvm, gfn);
  866. slot = __gfn_to_memslot(kvm, gfn);
  867. if (!slot)
  868. return NULL;
  869. return slot->phys_mem[gfn - slot->base_gfn];
  870. }
  871. EXPORT_SYMBOL_GPL(gfn_to_page);
  872. void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
  873. {
  874. int i;
  875. struct kvm_memory_slot *memslot;
  876. unsigned long rel_gfn;
  877. for (i = 0; i < kvm->nmemslots; ++i) {
  878. memslot = &kvm->memslots[i];
  879. if (gfn >= memslot->base_gfn
  880. && gfn < memslot->base_gfn + memslot->npages) {
  881. if (!memslot->dirty_bitmap)
  882. return;
  883. rel_gfn = gfn - memslot->base_gfn;
  884. /* avoid RMW */
  885. if (!test_bit(rel_gfn, memslot->dirty_bitmap))
  886. set_bit(rel_gfn, memslot->dirty_bitmap);
  887. return;
  888. }
  889. }
  890. }
  891. static int emulator_read_std(unsigned long addr,
  892. void *val,
  893. unsigned int bytes,
  894. struct x86_emulate_ctxt *ctxt)
  895. {
  896. struct kvm_vcpu *vcpu = ctxt->vcpu;
  897. void *data = val;
  898. while (bytes) {
  899. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
  900. unsigned offset = addr & (PAGE_SIZE-1);
  901. unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
  902. unsigned long pfn;
  903. struct page *page;
  904. void *page_virt;
  905. if (gpa == UNMAPPED_GVA)
  906. return X86EMUL_PROPAGATE_FAULT;
  907. pfn = gpa >> PAGE_SHIFT;
  908. page = gfn_to_page(vcpu->kvm, pfn);
  909. if (!page)
  910. return X86EMUL_UNHANDLEABLE;
  911. page_virt = kmap_atomic(page, KM_USER0);
  912. memcpy(data, page_virt + offset, tocopy);
  913. kunmap_atomic(page_virt, KM_USER0);
  914. bytes -= tocopy;
  915. data += tocopy;
  916. addr += tocopy;
  917. }
  918. return X86EMUL_CONTINUE;
  919. }
  920. static int emulator_write_std(unsigned long addr,
  921. const void *val,
  922. unsigned int bytes,
  923. struct x86_emulate_ctxt *ctxt)
  924. {
  925. printk(KERN_ERR "emulator_write_std: addr %lx n %d\n",
  926. addr, bytes);
  927. return X86EMUL_UNHANDLEABLE;
  928. }
  929. static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
  930. gpa_t addr)
  931. {
  932. /*
  933. * Note that its important to have this wrapper function because
  934. * in the very near future we will be checking for MMIOs against
  935. * the LAPIC as well as the general MMIO bus
  936. */
  937. return kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr);
  938. }
  939. static struct kvm_io_device *vcpu_find_pio_dev(struct kvm_vcpu *vcpu,
  940. gpa_t addr)
  941. {
  942. return kvm_io_bus_find_dev(&vcpu->kvm->pio_bus, addr);
  943. }
  944. static int emulator_read_emulated(unsigned long addr,
  945. void *val,
  946. unsigned int bytes,
  947. struct x86_emulate_ctxt *ctxt)
  948. {
  949. struct kvm_vcpu *vcpu = ctxt->vcpu;
  950. struct kvm_io_device *mmio_dev;
  951. gpa_t gpa;
  952. if (vcpu->mmio_read_completed) {
  953. memcpy(val, vcpu->mmio_data, bytes);
  954. vcpu->mmio_read_completed = 0;
  955. return X86EMUL_CONTINUE;
  956. } else if (emulator_read_std(addr, val, bytes, ctxt)
  957. == X86EMUL_CONTINUE)
  958. return X86EMUL_CONTINUE;
  959. gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
  960. if (gpa == UNMAPPED_GVA)
  961. return X86EMUL_PROPAGATE_FAULT;
  962. /*
  963. * Is this MMIO handled locally?
  964. */
  965. mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
  966. if (mmio_dev) {
  967. kvm_iodevice_read(mmio_dev, gpa, bytes, val);
  968. return X86EMUL_CONTINUE;
  969. }
  970. vcpu->mmio_needed = 1;
  971. vcpu->mmio_phys_addr = gpa;
  972. vcpu->mmio_size = bytes;
  973. vcpu->mmio_is_write = 0;
  974. return X86EMUL_UNHANDLEABLE;
  975. }
  976. static int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
  977. const void *val, int bytes)
  978. {
  979. struct page *page;
  980. void *virt;
  981. unsigned offset = offset_in_page(gpa);
  982. if (((gpa + bytes - 1) >> PAGE_SHIFT) != (gpa >> PAGE_SHIFT))
  983. return 0;
  984. page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  985. if (!page)
  986. return 0;
  987. mark_page_dirty(vcpu->kvm, gpa >> PAGE_SHIFT);
  988. virt = kmap_atomic(page, KM_USER0);
  989. if (memcmp(virt + offset_in_page(gpa), val, bytes)) {
  990. kvm_mmu_pte_write(vcpu, gpa, virt + offset, val, bytes);
  991. memcpy(virt + offset_in_page(gpa), val, bytes);
  992. }
  993. kunmap_atomic(virt, KM_USER0);
  994. return 1;
  995. }
  996. static int emulator_write_emulated(unsigned long addr,
  997. const void *val,
  998. unsigned int bytes,
  999. struct x86_emulate_ctxt *ctxt)
  1000. {
  1001. struct kvm_vcpu *vcpu = ctxt->vcpu;
  1002. struct kvm_io_device *mmio_dev;
  1003. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
  1004. if (gpa == UNMAPPED_GVA) {
  1005. kvm_arch_ops->inject_page_fault(vcpu, addr, 2);
  1006. return X86EMUL_PROPAGATE_FAULT;
  1007. }
  1008. if (emulator_write_phys(vcpu, gpa, val, bytes))
  1009. return X86EMUL_CONTINUE;
  1010. /*
  1011. * Is this MMIO handled locally?
  1012. */
  1013. mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
  1014. if (mmio_dev) {
  1015. kvm_iodevice_write(mmio_dev, gpa, bytes, val);
  1016. return X86EMUL_CONTINUE;
  1017. }
  1018. vcpu->mmio_needed = 1;
  1019. vcpu->mmio_phys_addr = gpa;
  1020. vcpu->mmio_size = bytes;
  1021. vcpu->mmio_is_write = 1;
  1022. memcpy(vcpu->mmio_data, val, bytes);
  1023. return X86EMUL_CONTINUE;
  1024. }
  1025. static int emulator_cmpxchg_emulated(unsigned long addr,
  1026. const void *old,
  1027. const void *new,
  1028. unsigned int bytes,
  1029. struct x86_emulate_ctxt *ctxt)
  1030. {
  1031. static int reported;
  1032. if (!reported) {
  1033. reported = 1;
  1034. printk(KERN_WARNING "kvm: emulating exchange as write\n");
  1035. }
  1036. return emulator_write_emulated(addr, new, bytes, ctxt);
  1037. }
  1038. static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
  1039. {
  1040. return kvm_arch_ops->get_segment_base(vcpu, seg);
  1041. }
  1042. int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
  1043. {
  1044. return X86EMUL_CONTINUE;
  1045. }
  1046. int emulate_clts(struct kvm_vcpu *vcpu)
  1047. {
  1048. unsigned long cr0;
  1049. cr0 = vcpu->cr0 & ~CR0_TS_MASK;
  1050. kvm_arch_ops->set_cr0(vcpu, cr0);
  1051. return X86EMUL_CONTINUE;
  1052. }
  1053. int emulator_get_dr(struct x86_emulate_ctxt* ctxt, int dr, unsigned long *dest)
  1054. {
  1055. struct kvm_vcpu *vcpu = ctxt->vcpu;
  1056. switch (dr) {
  1057. case 0 ... 3:
  1058. *dest = kvm_arch_ops->get_dr(vcpu, dr);
  1059. return X86EMUL_CONTINUE;
  1060. default:
  1061. printk(KERN_DEBUG "%s: unexpected dr %u\n",
  1062. __FUNCTION__, dr);
  1063. return X86EMUL_UNHANDLEABLE;
  1064. }
  1065. }
  1066. int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
  1067. {
  1068. unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
  1069. int exception;
  1070. kvm_arch_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
  1071. if (exception) {
  1072. /* FIXME: better handling */
  1073. return X86EMUL_UNHANDLEABLE;
  1074. }
  1075. return X86EMUL_CONTINUE;
  1076. }
  1077. static void report_emulation_failure(struct x86_emulate_ctxt *ctxt)
  1078. {
  1079. static int reported;
  1080. u8 opcodes[4];
  1081. unsigned long rip = ctxt->vcpu->rip;
  1082. unsigned long rip_linear;
  1083. rip_linear = rip + get_segment_base(ctxt->vcpu, VCPU_SREG_CS);
  1084. if (reported)
  1085. return;
  1086. emulator_read_std(rip_linear, (void *)opcodes, 4, ctxt);
  1087. printk(KERN_ERR "emulation failed but !mmio_needed?"
  1088. " rip %lx %02x %02x %02x %02x\n",
  1089. rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
  1090. reported = 1;
  1091. }
  1092. struct x86_emulate_ops emulate_ops = {
  1093. .read_std = emulator_read_std,
  1094. .write_std = emulator_write_std,
  1095. .read_emulated = emulator_read_emulated,
  1096. .write_emulated = emulator_write_emulated,
  1097. .cmpxchg_emulated = emulator_cmpxchg_emulated,
  1098. };
  1099. int emulate_instruction(struct kvm_vcpu *vcpu,
  1100. struct kvm_run *run,
  1101. unsigned long cr2,
  1102. u16 error_code)
  1103. {
  1104. struct x86_emulate_ctxt emulate_ctxt;
  1105. int r;
  1106. int cs_db, cs_l;
  1107. vcpu->mmio_fault_cr2 = cr2;
  1108. kvm_arch_ops->cache_regs(vcpu);
  1109. kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  1110. emulate_ctxt.vcpu = vcpu;
  1111. emulate_ctxt.eflags = kvm_arch_ops->get_rflags(vcpu);
  1112. emulate_ctxt.cr2 = cr2;
  1113. emulate_ctxt.mode = (emulate_ctxt.eflags & X86_EFLAGS_VM)
  1114. ? X86EMUL_MODE_REAL : cs_l
  1115. ? X86EMUL_MODE_PROT64 : cs_db
  1116. ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
  1117. if (emulate_ctxt.mode == X86EMUL_MODE_PROT64) {
  1118. emulate_ctxt.cs_base = 0;
  1119. emulate_ctxt.ds_base = 0;
  1120. emulate_ctxt.es_base = 0;
  1121. emulate_ctxt.ss_base = 0;
  1122. } else {
  1123. emulate_ctxt.cs_base = get_segment_base(vcpu, VCPU_SREG_CS);
  1124. emulate_ctxt.ds_base = get_segment_base(vcpu, VCPU_SREG_DS);
  1125. emulate_ctxt.es_base = get_segment_base(vcpu, VCPU_SREG_ES);
  1126. emulate_ctxt.ss_base = get_segment_base(vcpu, VCPU_SREG_SS);
  1127. }
  1128. emulate_ctxt.gs_base = get_segment_base(vcpu, VCPU_SREG_GS);
  1129. emulate_ctxt.fs_base = get_segment_base(vcpu, VCPU_SREG_FS);
  1130. vcpu->mmio_is_write = 0;
  1131. r = x86_emulate_memop(&emulate_ctxt, &emulate_ops);
  1132. if ((r || vcpu->mmio_is_write) && run) {
  1133. run->mmio.phys_addr = vcpu->mmio_phys_addr;
  1134. memcpy(run->mmio.data, vcpu->mmio_data, 8);
  1135. run->mmio.len = vcpu->mmio_size;
  1136. run->mmio.is_write = vcpu->mmio_is_write;
  1137. }
  1138. if (r) {
  1139. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  1140. return EMULATE_DONE;
  1141. if (!vcpu->mmio_needed) {
  1142. report_emulation_failure(&emulate_ctxt);
  1143. return EMULATE_FAIL;
  1144. }
  1145. return EMULATE_DO_MMIO;
  1146. }
  1147. kvm_arch_ops->decache_regs(vcpu);
  1148. kvm_arch_ops->set_rflags(vcpu, emulate_ctxt.eflags);
  1149. if (vcpu->mmio_is_write) {
  1150. vcpu->mmio_needed = 0;
  1151. return EMULATE_DO_MMIO;
  1152. }
  1153. return EMULATE_DONE;
  1154. }
  1155. EXPORT_SYMBOL_GPL(emulate_instruction);
  1156. int kvm_emulate_halt(struct kvm_vcpu *vcpu)
  1157. {
  1158. if (vcpu->irq_summary)
  1159. return 1;
  1160. vcpu->run->exit_reason = KVM_EXIT_HLT;
  1161. ++vcpu->stat.halt_exits;
  1162. return 0;
  1163. }
  1164. EXPORT_SYMBOL_GPL(kvm_emulate_halt);
  1165. int kvm_hypercall(struct kvm_vcpu *vcpu, struct kvm_run *run)
  1166. {
  1167. unsigned long nr, a0, a1, a2, a3, a4, a5, ret;
  1168. kvm_arch_ops->cache_regs(vcpu);
  1169. ret = -KVM_EINVAL;
  1170. #ifdef CONFIG_X86_64
  1171. if (is_long_mode(vcpu)) {
  1172. nr = vcpu->regs[VCPU_REGS_RAX];
  1173. a0 = vcpu->regs[VCPU_REGS_RDI];
  1174. a1 = vcpu->regs[VCPU_REGS_RSI];
  1175. a2 = vcpu->regs[VCPU_REGS_RDX];
  1176. a3 = vcpu->regs[VCPU_REGS_RCX];
  1177. a4 = vcpu->regs[VCPU_REGS_R8];
  1178. a5 = vcpu->regs[VCPU_REGS_R9];
  1179. } else
  1180. #endif
  1181. {
  1182. nr = vcpu->regs[VCPU_REGS_RBX] & -1u;
  1183. a0 = vcpu->regs[VCPU_REGS_RAX] & -1u;
  1184. a1 = vcpu->regs[VCPU_REGS_RCX] & -1u;
  1185. a2 = vcpu->regs[VCPU_REGS_RDX] & -1u;
  1186. a3 = vcpu->regs[VCPU_REGS_RSI] & -1u;
  1187. a4 = vcpu->regs[VCPU_REGS_RDI] & -1u;
  1188. a5 = vcpu->regs[VCPU_REGS_RBP] & -1u;
  1189. }
  1190. switch (nr) {
  1191. default:
  1192. run->hypercall.args[0] = a0;
  1193. run->hypercall.args[1] = a1;
  1194. run->hypercall.args[2] = a2;
  1195. run->hypercall.args[3] = a3;
  1196. run->hypercall.args[4] = a4;
  1197. run->hypercall.args[5] = a5;
  1198. run->hypercall.ret = ret;
  1199. run->hypercall.longmode = is_long_mode(vcpu);
  1200. kvm_arch_ops->decache_regs(vcpu);
  1201. return 0;
  1202. }
  1203. vcpu->regs[VCPU_REGS_RAX] = ret;
  1204. kvm_arch_ops->decache_regs(vcpu);
  1205. return 1;
  1206. }
  1207. EXPORT_SYMBOL_GPL(kvm_hypercall);
  1208. static u64 mk_cr_64(u64 curr_cr, u32 new_val)
  1209. {
  1210. return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
  1211. }
  1212. void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  1213. {
  1214. struct descriptor_table dt = { limit, base };
  1215. kvm_arch_ops->set_gdt(vcpu, &dt);
  1216. }
  1217. void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  1218. {
  1219. struct descriptor_table dt = { limit, base };
  1220. kvm_arch_ops->set_idt(vcpu, &dt);
  1221. }
  1222. void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
  1223. unsigned long *rflags)
  1224. {
  1225. lmsw(vcpu, msw);
  1226. *rflags = kvm_arch_ops->get_rflags(vcpu);
  1227. }
  1228. unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
  1229. {
  1230. kvm_arch_ops->decache_cr4_guest_bits(vcpu);
  1231. switch (cr) {
  1232. case 0:
  1233. return vcpu->cr0;
  1234. case 2:
  1235. return vcpu->cr2;
  1236. case 3:
  1237. return vcpu->cr3;
  1238. case 4:
  1239. return vcpu->cr4;
  1240. default:
  1241. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
  1242. return 0;
  1243. }
  1244. }
  1245. void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
  1246. unsigned long *rflags)
  1247. {
  1248. switch (cr) {
  1249. case 0:
  1250. set_cr0(vcpu, mk_cr_64(vcpu->cr0, val));
  1251. *rflags = kvm_arch_ops->get_rflags(vcpu);
  1252. break;
  1253. case 2:
  1254. vcpu->cr2 = val;
  1255. break;
  1256. case 3:
  1257. set_cr3(vcpu, val);
  1258. break;
  1259. case 4:
  1260. set_cr4(vcpu, mk_cr_64(vcpu->cr4, val));
  1261. break;
  1262. default:
  1263. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
  1264. }
  1265. }
  1266. /*
  1267. * Register the para guest with the host:
  1268. */
  1269. static int vcpu_register_para(struct kvm_vcpu *vcpu, gpa_t para_state_gpa)
  1270. {
  1271. struct kvm_vcpu_para_state *para_state;
  1272. hpa_t para_state_hpa, hypercall_hpa;
  1273. struct page *para_state_page;
  1274. unsigned char *hypercall;
  1275. gpa_t hypercall_gpa;
  1276. printk(KERN_DEBUG "kvm: guest trying to enter paravirtual mode\n");
  1277. printk(KERN_DEBUG ".... para_state_gpa: %08Lx\n", para_state_gpa);
  1278. /*
  1279. * Needs to be page aligned:
  1280. */
  1281. if (para_state_gpa != PAGE_ALIGN(para_state_gpa))
  1282. goto err_gp;
  1283. para_state_hpa = gpa_to_hpa(vcpu, para_state_gpa);
  1284. printk(KERN_DEBUG ".... para_state_hpa: %08Lx\n", para_state_hpa);
  1285. if (is_error_hpa(para_state_hpa))
  1286. goto err_gp;
  1287. mark_page_dirty(vcpu->kvm, para_state_gpa >> PAGE_SHIFT);
  1288. para_state_page = pfn_to_page(para_state_hpa >> PAGE_SHIFT);
  1289. para_state = kmap_atomic(para_state_page, KM_USER0);
  1290. printk(KERN_DEBUG ".... guest version: %d\n", para_state->guest_version);
  1291. printk(KERN_DEBUG ".... size: %d\n", para_state->size);
  1292. para_state->host_version = KVM_PARA_API_VERSION;
  1293. /*
  1294. * We cannot support guests that try to register themselves
  1295. * with a newer API version than the host supports:
  1296. */
  1297. if (para_state->guest_version > KVM_PARA_API_VERSION) {
  1298. para_state->ret = -KVM_EINVAL;
  1299. goto err_kunmap_skip;
  1300. }
  1301. hypercall_gpa = para_state->hypercall_gpa;
  1302. hypercall_hpa = gpa_to_hpa(vcpu, hypercall_gpa);
  1303. printk(KERN_DEBUG ".... hypercall_hpa: %08Lx\n", hypercall_hpa);
  1304. if (is_error_hpa(hypercall_hpa)) {
  1305. para_state->ret = -KVM_EINVAL;
  1306. goto err_kunmap_skip;
  1307. }
  1308. printk(KERN_DEBUG "kvm: para guest successfully registered.\n");
  1309. vcpu->para_state_page = para_state_page;
  1310. vcpu->para_state_gpa = para_state_gpa;
  1311. vcpu->hypercall_gpa = hypercall_gpa;
  1312. mark_page_dirty(vcpu->kvm, hypercall_gpa >> PAGE_SHIFT);
  1313. hypercall = kmap_atomic(pfn_to_page(hypercall_hpa >> PAGE_SHIFT),
  1314. KM_USER1) + (hypercall_hpa & ~PAGE_MASK);
  1315. kvm_arch_ops->patch_hypercall(vcpu, hypercall);
  1316. kunmap_atomic(hypercall, KM_USER1);
  1317. para_state->ret = 0;
  1318. err_kunmap_skip:
  1319. kunmap_atomic(para_state, KM_USER0);
  1320. return 0;
  1321. err_gp:
  1322. return 1;
  1323. }
  1324. int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1325. {
  1326. u64 data;
  1327. switch (msr) {
  1328. case 0xc0010010: /* SYSCFG */
  1329. case 0xc0010015: /* HWCR */
  1330. case MSR_IA32_PLATFORM_ID:
  1331. case MSR_IA32_P5_MC_ADDR:
  1332. case MSR_IA32_P5_MC_TYPE:
  1333. case MSR_IA32_MC0_CTL:
  1334. case MSR_IA32_MCG_STATUS:
  1335. case MSR_IA32_MCG_CAP:
  1336. case MSR_IA32_MC0_MISC:
  1337. case MSR_IA32_MC0_MISC+4:
  1338. case MSR_IA32_MC0_MISC+8:
  1339. case MSR_IA32_MC0_MISC+12:
  1340. case MSR_IA32_MC0_MISC+16:
  1341. case MSR_IA32_UCODE_REV:
  1342. case MSR_IA32_PERF_STATUS:
  1343. case MSR_IA32_EBL_CR_POWERON:
  1344. /* MTRR registers */
  1345. case 0xfe:
  1346. case 0x200 ... 0x2ff:
  1347. data = 0;
  1348. break;
  1349. case 0xcd: /* fsb frequency */
  1350. data = 3;
  1351. break;
  1352. case MSR_IA32_APICBASE:
  1353. data = vcpu->apic_base;
  1354. break;
  1355. case MSR_IA32_MISC_ENABLE:
  1356. data = vcpu->ia32_misc_enable_msr;
  1357. break;
  1358. #ifdef CONFIG_X86_64
  1359. case MSR_EFER:
  1360. data = vcpu->shadow_efer;
  1361. break;
  1362. #endif
  1363. default:
  1364. printk(KERN_ERR "kvm: unhandled rdmsr: 0x%x\n", msr);
  1365. return 1;
  1366. }
  1367. *pdata = data;
  1368. return 0;
  1369. }
  1370. EXPORT_SYMBOL_GPL(kvm_get_msr_common);
  1371. /*
  1372. * Reads an msr value (of 'msr_index') into 'pdata'.
  1373. * Returns 0 on success, non-0 otherwise.
  1374. * Assumes vcpu_load() was already called.
  1375. */
  1376. static int get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  1377. {
  1378. return kvm_arch_ops->get_msr(vcpu, msr_index, pdata);
  1379. }
  1380. #ifdef CONFIG_X86_64
  1381. static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
  1382. {
  1383. if (efer & EFER_RESERVED_BITS) {
  1384. printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
  1385. efer);
  1386. inject_gp(vcpu);
  1387. return;
  1388. }
  1389. if (is_paging(vcpu)
  1390. && (vcpu->shadow_efer & EFER_LME) != (efer & EFER_LME)) {
  1391. printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
  1392. inject_gp(vcpu);
  1393. return;
  1394. }
  1395. kvm_arch_ops->set_efer(vcpu, efer);
  1396. efer &= ~EFER_LMA;
  1397. efer |= vcpu->shadow_efer & EFER_LMA;
  1398. vcpu->shadow_efer = efer;
  1399. }
  1400. #endif
  1401. int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  1402. {
  1403. switch (msr) {
  1404. #ifdef CONFIG_X86_64
  1405. case MSR_EFER:
  1406. set_efer(vcpu, data);
  1407. break;
  1408. #endif
  1409. case MSR_IA32_MC0_STATUS:
  1410. printk(KERN_WARNING "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
  1411. __FUNCTION__, data);
  1412. break;
  1413. case MSR_IA32_MCG_STATUS:
  1414. printk(KERN_WARNING "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
  1415. __FUNCTION__, data);
  1416. break;
  1417. case MSR_IA32_UCODE_REV:
  1418. case MSR_IA32_UCODE_WRITE:
  1419. case 0x200 ... 0x2ff: /* MTRRs */
  1420. break;
  1421. case MSR_IA32_APICBASE:
  1422. vcpu->apic_base = data;
  1423. break;
  1424. case MSR_IA32_MISC_ENABLE:
  1425. vcpu->ia32_misc_enable_msr = data;
  1426. break;
  1427. /*
  1428. * This is the 'probe whether the host is KVM' logic:
  1429. */
  1430. case MSR_KVM_API_MAGIC:
  1431. return vcpu_register_para(vcpu, data);
  1432. default:
  1433. printk(KERN_ERR "kvm: unhandled wrmsr: 0x%x\n", msr);
  1434. return 1;
  1435. }
  1436. return 0;
  1437. }
  1438. EXPORT_SYMBOL_GPL(kvm_set_msr_common);
  1439. /*
  1440. * Writes msr value into into the appropriate "register".
  1441. * Returns 0 on success, non-0 otherwise.
  1442. * Assumes vcpu_load() was already called.
  1443. */
  1444. static int set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  1445. {
  1446. return kvm_arch_ops->set_msr(vcpu, msr_index, data);
  1447. }
  1448. void kvm_resched(struct kvm_vcpu *vcpu)
  1449. {
  1450. if (!need_resched())
  1451. return;
  1452. vcpu_put(vcpu);
  1453. cond_resched();
  1454. vcpu_load(vcpu);
  1455. }
  1456. EXPORT_SYMBOL_GPL(kvm_resched);
  1457. void load_msrs(struct vmx_msr_entry *e, int n)
  1458. {
  1459. int i;
  1460. for (i = 0; i < n; ++i)
  1461. wrmsrl(e[i].index, e[i].data);
  1462. }
  1463. EXPORT_SYMBOL_GPL(load_msrs);
  1464. void save_msrs(struct vmx_msr_entry *e, int n)
  1465. {
  1466. int i;
  1467. for (i = 0; i < n; ++i)
  1468. rdmsrl(e[i].index, e[i].data);
  1469. }
  1470. EXPORT_SYMBOL_GPL(save_msrs);
  1471. void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
  1472. {
  1473. int i;
  1474. u32 function;
  1475. struct kvm_cpuid_entry *e, *best;
  1476. kvm_arch_ops->cache_regs(vcpu);
  1477. function = vcpu->regs[VCPU_REGS_RAX];
  1478. vcpu->regs[VCPU_REGS_RAX] = 0;
  1479. vcpu->regs[VCPU_REGS_RBX] = 0;
  1480. vcpu->regs[VCPU_REGS_RCX] = 0;
  1481. vcpu->regs[VCPU_REGS_RDX] = 0;
  1482. best = NULL;
  1483. for (i = 0; i < vcpu->cpuid_nent; ++i) {
  1484. e = &vcpu->cpuid_entries[i];
  1485. if (e->function == function) {
  1486. best = e;
  1487. break;
  1488. }
  1489. /*
  1490. * Both basic or both extended?
  1491. */
  1492. if (((e->function ^ function) & 0x80000000) == 0)
  1493. if (!best || e->function > best->function)
  1494. best = e;
  1495. }
  1496. if (best) {
  1497. vcpu->regs[VCPU_REGS_RAX] = best->eax;
  1498. vcpu->regs[VCPU_REGS_RBX] = best->ebx;
  1499. vcpu->regs[VCPU_REGS_RCX] = best->ecx;
  1500. vcpu->regs[VCPU_REGS_RDX] = best->edx;
  1501. }
  1502. kvm_arch_ops->decache_regs(vcpu);
  1503. kvm_arch_ops->skip_emulated_instruction(vcpu);
  1504. }
  1505. EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
  1506. static int pio_copy_data(struct kvm_vcpu *vcpu)
  1507. {
  1508. void *p = vcpu->pio_data;
  1509. void *q;
  1510. unsigned bytes;
  1511. int nr_pages = vcpu->pio.guest_pages[1] ? 2 : 1;
  1512. kvm_arch_ops->vcpu_put(vcpu);
  1513. q = vmap(vcpu->pio.guest_pages, nr_pages, VM_READ|VM_WRITE,
  1514. PAGE_KERNEL);
  1515. if (!q) {
  1516. kvm_arch_ops->vcpu_load(vcpu);
  1517. free_pio_guest_pages(vcpu);
  1518. return -ENOMEM;
  1519. }
  1520. q += vcpu->pio.guest_page_offset;
  1521. bytes = vcpu->pio.size * vcpu->pio.cur_count;
  1522. if (vcpu->pio.in)
  1523. memcpy(q, p, bytes);
  1524. else
  1525. memcpy(p, q, bytes);
  1526. q -= vcpu->pio.guest_page_offset;
  1527. vunmap(q);
  1528. kvm_arch_ops->vcpu_load(vcpu);
  1529. free_pio_guest_pages(vcpu);
  1530. return 0;
  1531. }
  1532. static int complete_pio(struct kvm_vcpu *vcpu)
  1533. {
  1534. struct kvm_pio_request *io = &vcpu->pio;
  1535. long delta;
  1536. int r;
  1537. kvm_arch_ops->cache_regs(vcpu);
  1538. if (!io->string) {
  1539. if (io->in)
  1540. memcpy(&vcpu->regs[VCPU_REGS_RAX], vcpu->pio_data,
  1541. io->size);
  1542. } else {
  1543. if (io->in) {
  1544. r = pio_copy_data(vcpu);
  1545. if (r) {
  1546. kvm_arch_ops->cache_regs(vcpu);
  1547. return r;
  1548. }
  1549. }
  1550. delta = 1;
  1551. if (io->rep) {
  1552. delta *= io->cur_count;
  1553. /*
  1554. * The size of the register should really depend on
  1555. * current address size.
  1556. */
  1557. vcpu->regs[VCPU_REGS_RCX] -= delta;
  1558. }
  1559. if (io->down)
  1560. delta = -delta;
  1561. delta *= io->size;
  1562. if (io->in)
  1563. vcpu->regs[VCPU_REGS_RDI] += delta;
  1564. else
  1565. vcpu->regs[VCPU_REGS_RSI] += delta;
  1566. }
  1567. kvm_arch_ops->decache_regs(vcpu);
  1568. io->count -= io->cur_count;
  1569. io->cur_count = 0;
  1570. if (!io->count)
  1571. kvm_arch_ops->skip_emulated_instruction(vcpu);
  1572. return 0;
  1573. }
  1574. void kernel_pio(struct kvm_io_device *pio_dev, struct kvm_vcpu *vcpu)
  1575. {
  1576. /* TODO: String I/O for in kernel device */
  1577. if (vcpu->pio.in)
  1578. kvm_iodevice_read(pio_dev, vcpu->pio.port,
  1579. vcpu->pio.size,
  1580. vcpu->pio_data);
  1581. else
  1582. kvm_iodevice_write(pio_dev, vcpu->pio.port,
  1583. vcpu->pio.size,
  1584. vcpu->pio_data);
  1585. }
  1586. int kvm_setup_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
  1587. int size, unsigned long count, int string, int down,
  1588. gva_t address, int rep, unsigned port)
  1589. {
  1590. unsigned now, in_page;
  1591. int i;
  1592. int nr_pages = 1;
  1593. struct page *page;
  1594. struct kvm_io_device *pio_dev;
  1595. vcpu->run->exit_reason = KVM_EXIT_IO;
  1596. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  1597. vcpu->run->io.size = size;
  1598. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  1599. vcpu->run->io.count = count;
  1600. vcpu->run->io.port = port;
  1601. vcpu->pio.count = count;
  1602. vcpu->pio.cur_count = count;
  1603. vcpu->pio.size = size;
  1604. vcpu->pio.in = in;
  1605. vcpu->pio.port = port;
  1606. vcpu->pio.string = string;
  1607. vcpu->pio.down = down;
  1608. vcpu->pio.guest_page_offset = offset_in_page(address);
  1609. vcpu->pio.rep = rep;
  1610. pio_dev = vcpu_find_pio_dev(vcpu, port);
  1611. if (!string) {
  1612. kvm_arch_ops->cache_regs(vcpu);
  1613. memcpy(vcpu->pio_data, &vcpu->regs[VCPU_REGS_RAX], 4);
  1614. kvm_arch_ops->decache_regs(vcpu);
  1615. if (pio_dev) {
  1616. kernel_pio(pio_dev, vcpu);
  1617. complete_pio(vcpu);
  1618. return 1;
  1619. }
  1620. return 0;
  1621. }
  1622. /* TODO: String I/O for in kernel device */
  1623. if (pio_dev)
  1624. printk(KERN_ERR "kvm_setup_pio: no string io support\n");
  1625. if (!count) {
  1626. kvm_arch_ops->skip_emulated_instruction(vcpu);
  1627. return 1;
  1628. }
  1629. now = min(count, PAGE_SIZE / size);
  1630. if (!down)
  1631. in_page = PAGE_SIZE - offset_in_page(address);
  1632. else
  1633. in_page = offset_in_page(address) + size;
  1634. now = min(count, (unsigned long)in_page / size);
  1635. if (!now) {
  1636. /*
  1637. * String I/O straddles page boundary. Pin two guest pages
  1638. * so that we satisfy atomicity constraints. Do just one
  1639. * transaction to avoid complexity.
  1640. */
  1641. nr_pages = 2;
  1642. now = 1;
  1643. }
  1644. if (down) {
  1645. /*
  1646. * String I/O in reverse. Yuck. Kill the guest, fix later.
  1647. */
  1648. printk(KERN_ERR "kvm: guest string pio down\n");
  1649. inject_gp(vcpu);
  1650. return 1;
  1651. }
  1652. vcpu->run->io.count = now;
  1653. vcpu->pio.cur_count = now;
  1654. for (i = 0; i < nr_pages; ++i) {
  1655. spin_lock(&vcpu->kvm->lock);
  1656. page = gva_to_page(vcpu, address + i * PAGE_SIZE);
  1657. if (page)
  1658. get_page(page);
  1659. vcpu->pio.guest_pages[i] = page;
  1660. spin_unlock(&vcpu->kvm->lock);
  1661. if (!page) {
  1662. inject_gp(vcpu);
  1663. free_pio_guest_pages(vcpu);
  1664. return 1;
  1665. }
  1666. }
  1667. if (!vcpu->pio.in)
  1668. return pio_copy_data(vcpu);
  1669. return 0;
  1670. }
  1671. EXPORT_SYMBOL_GPL(kvm_setup_pio);
  1672. static int kvm_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1673. {
  1674. int r;
  1675. sigset_t sigsaved;
  1676. vcpu_load(vcpu);
  1677. if (vcpu->sigset_active)
  1678. sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
  1679. /* re-sync apic's tpr */
  1680. vcpu->cr8 = kvm_run->cr8;
  1681. if (vcpu->pio.cur_count) {
  1682. r = complete_pio(vcpu);
  1683. if (r)
  1684. goto out;
  1685. }
  1686. if (vcpu->mmio_needed) {
  1687. memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
  1688. vcpu->mmio_read_completed = 1;
  1689. vcpu->mmio_needed = 0;
  1690. r = emulate_instruction(vcpu, kvm_run,
  1691. vcpu->mmio_fault_cr2, 0);
  1692. if (r == EMULATE_DO_MMIO) {
  1693. /*
  1694. * Read-modify-write. Back to userspace.
  1695. */
  1696. kvm_run->exit_reason = KVM_EXIT_MMIO;
  1697. r = 0;
  1698. goto out;
  1699. }
  1700. }
  1701. if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL) {
  1702. kvm_arch_ops->cache_regs(vcpu);
  1703. vcpu->regs[VCPU_REGS_RAX] = kvm_run->hypercall.ret;
  1704. kvm_arch_ops->decache_regs(vcpu);
  1705. }
  1706. r = kvm_arch_ops->run(vcpu, kvm_run);
  1707. out:
  1708. if (vcpu->sigset_active)
  1709. sigprocmask(SIG_SETMASK, &sigsaved, NULL);
  1710. vcpu_put(vcpu);
  1711. return r;
  1712. }
  1713. static int kvm_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu,
  1714. struct kvm_regs *regs)
  1715. {
  1716. vcpu_load(vcpu);
  1717. kvm_arch_ops->cache_regs(vcpu);
  1718. regs->rax = vcpu->regs[VCPU_REGS_RAX];
  1719. regs->rbx = vcpu->regs[VCPU_REGS_RBX];
  1720. regs->rcx = vcpu->regs[VCPU_REGS_RCX];
  1721. regs->rdx = vcpu->regs[VCPU_REGS_RDX];
  1722. regs->rsi = vcpu->regs[VCPU_REGS_RSI];
  1723. regs->rdi = vcpu->regs[VCPU_REGS_RDI];
  1724. regs->rsp = vcpu->regs[VCPU_REGS_RSP];
  1725. regs->rbp = vcpu->regs[VCPU_REGS_RBP];
  1726. #ifdef CONFIG_X86_64
  1727. regs->r8 = vcpu->regs[VCPU_REGS_R8];
  1728. regs->r9 = vcpu->regs[VCPU_REGS_R9];
  1729. regs->r10 = vcpu->regs[VCPU_REGS_R10];
  1730. regs->r11 = vcpu->regs[VCPU_REGS_R11];
  1731. regs->r12 = vcpu->regs[VCPU_REGS_R12];
  1732. regs->r13 = vcpu->regs[VCPU_REGS_R13];
  1733. regs->r14 = vcpu->regs[VCPU_REGS_R14];
  1734. regs->r15 = vcpu->regs[VCPU_REGS_R15];
  1735. #endif
  1736. regs->rip = vcpu->rip;
  1737. regs->rflags = kvm_arch_ops->get_rflags(vcpu);
  1738. /*
  1739. * Don't leak debug flags in case they were set for guest debugging
  1740. */
  1741. if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
  1742. regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  1743. vcpu_put(vcpu);
  1744. return 0;
  1745. }
  1746. static int kvm_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu,
  1747. struct kvm_regs *regs)
  1748. {
  1749. vcpu_load(vcpu);
  1750. vcpu->regs[VCPU_REGS_RAX] = regs->rax;
  1751. vcpu->regs[VCPU_REGS_RBX] = regs->rbx;
  1752. vcpu->regs[VCPU_REGS_RCX] = regs->rcx;
  1753. vcpu->regs[VCPU_REGS_RDX] = regs->rdx;
  1754. vcpu->regs[VCPU_REGS_RSI] = regs->rsi;
  1755. vcpu->regs[VCPU_REGS_RDI] = regs->rdi;
  1756. vcpu->regs[VCPU_REGS_RSP] = regs->rsp;
  1757. vcpu->regs[VCPU_REGS_RBP] = regs->rbp;
  1758. #ifdef CONFIG_X86_64
  1759. vcpu->regs[VCPU_REGS_R8] = regs->r8;
  1760. vcpu->regs[VCPU_REGS_R9] = regs->r9;
  1761. vcpu->regs[VCPU_REGS_R10] = regs->r10;
  1762. vcpu->regs[VCPU_REGS_R11] = regs->r11;
  1763. vcpu->regs[VCPU_REGS_R12] = regs->r12;
  1764. vcpu->regs[VCPU_REGS_R13] = regs->r13;
  1765. vcpu->regs[VCPU_REGS_R14] = regs->r14;
  1766. vcpu->regs[VCPU_REGS_R15] = regs->r15;
  1767. #endif
  1768. vcpu->rip = regs->rip;
  1769. kvm_arch_ops->set_rflags(vcpu, regs->rflags);
  1770. kvm_arch_ops->decache_regs(vcpu);
  1771. vcpu_put(vcpu);
  1772. return 0;
  1773. }
  1774. static void get_segment(struct kvm_vcpu *vcpu,
  1775. struct kvm_segment *var, int seg)
  1776. {
  1777. return kvm_arch_ops->get_segment(vcpu, var, seg);
  1778. }
  1779. static int kvm_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
  1780. struct kvm_sregs *sregs)
  1781. {
  1782. struct descriptor_table dt;
  1783. vcpu_load(vcpu);
  1784. get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  1785. get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  1786. get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  1787. get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  1788. get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  1789. get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  1790. get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  1791. get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  1792. kvm_arch_ops->get_idt(vcpu, &dt);
  1793. sregs->idt.limit = dt.limit;
  1794. sregs->idt.base = dt.base;
  1795. kvm_arch_ops->get_gdt(vcpu, &dt);
  1796. sregs->gdt.limit = dt.limit;
  1797. sregs->gdt.base = dt.base;
  1798. kvm_arch_ops->decache_cr4_guest_bits(vcpu);
  1799. sregs->cr0 = vcpu->cr0;
  1800. sregs->cr2 = vcpu->cr2;
  1801. sregs->cr3 = vcpu->cr3;
  1802. sregs->cr4 = vcpu->cr4;
  1803. sregs->cr8 = vcpu->cr8;
  1804. sregs->efer = vcpu->shadow_efer;
  1805. sregs->apic_base = vcpu->apic_base;
  1806. memcpy(sregs->interrupt_bitmap, vcpu->irq_pending,
  1807. sizeof sregs->interrupt_bitmap);
  1808. vcpu_put(vcpu);
  1809. return 0;
  1810. }
  1811. static void set_segment(struct kvm_vcpu *vcpu,
  1812. struct kvm_segment *var, int seg)
  1813. {
  1814. return kvm_arch_ops->set_segment(vcpu, var, seg);
  1815. }
  1816. static int kvm_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
  1817. struct kvm_sregs *sregs)
  1818. {
  1819. int mmu_reset_needed = 0;
  1820. int i;
  1821. struct descriptor_table dt;
  1822. vcpu_load(vcpu);
  1823. dt.limit = sregs->idt.limit;
  1824. dt.base = sregs->idt.base;
  1825. kvm_arch_ops->set_idt(vcpu, &dt);
  1826. dt.limit = sregs->gdt.limit;
  1827. dt.base = sregs->gdt.base;
  1828. kvm_arch_ops->set_gdt(vcpu, &dt);
  1829. vcpu->cr2 = sregs->cr2;
  1830. mmu_reset_needed |= vcpu->cr3 != sregs->cr3;
  1831. vcpu->cr3 = sregs->cr3;
  1832. vcpu->cr8 = sregs->cr8;
  1833. mmu_reset_needed |= vcpu->shadow_efer != sregs->efer;
  1834. #ifdef CONFIG_X86_64
  1835. kvm_arch_ops->set_efer(vcpu, sregs->efer);
  1836. #endif
  1837. vcpu->apic_base = sregs->apic_base;
  1838. kvm_arch_ops->decache_cr4_guest_bits(vcpu);
  1839. mmu_reset_needed |= vcpu->cr0 != sregs->cr0;
  1840. kvm_arch_ops->set_cr0(vcpu, sregs->cr0);
  1841. mmu_reset_needed |= vcpu->cr4 != sregs->cr4;
  1842. kvm_arch_ops->set_cr4(vcpu, sregs->cr4);
  1843. if (!is_long_mode(vcpu) && is_pae(vcpu))
  1844. load_pdptrs(vcpu, vcpu->cr3);
  1845. if (mmu_reset_needed)
  1846. kvm_mmu_reset_context(vcpu);
  1847. memcpy(vcpu->irq_pending, sregs->interrupt_bitmap,
  1848. sizeof vcpu->irq_pending);
  1849. vcpu->irq_summary = 0;
  1850. for (i = 0; i < NR_IRQ_WORDS; ++i)
  1851. if (vcpu->irq_pending[i])
  1852. __set_bit(i, &vcpu->irq_summary);
  1853. set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  1854. set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  1855. set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  1856. set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  1857. set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  1858. set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  1859. set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  1860. set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  1861. vcpu_put(vcpu);
  1862. return 0;
  1863. }
  1864. /*
  1865. * List of msr numbers which we expose to userspace through KVM_GET_MSRS
  1866. * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
  1867. *
  1868. * This list is modified at module load time to reflect the
  1869. * capabilities of the host cpu.
  1870. */
  1871. static u32 msrs_to_save[] = {
  1872. MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
  1873. MSR_K6_STAR,
  1874. #ifdef CONFIG_X86_64
  1875. MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
  1876. #endif
  1877. MSR_IA32_TIME_STAMP_COUNTER,
  1878. };
  1879. static unsigned num_msrs_to_save;
  1880. static u32 emulated_msrs[] = {
  1881. MSR_IA32_MISC_ENABLE,
  1882. };
  1883. static __init void kvm_init_msr_list(void)
  1884. {
  1885. u32 dummy[2];
  1886. unsigned i, j;
  1887. for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
  1888. if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
  1889. continue;
  1890. if (j < i)
  1891. msrs_to_save[j] = msrs_to_save[i];
  1892. j++;
  1893. }
  1894. num_msrs_to_save = j;
  1895. }
  1896. /*
  1897. * Adapt set_msr() to msr_io()'s calling convention
  1898. */
  1899. static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
  1900. {
  1901. return set_msr(vcpu, index, *data);
  1902. }
  1903. /*
  1904. * Read or write a bunch of msrs. All parameters are kernel addresses.
  1905. *
  1906. * @return number of msrs set successfully.
  1907. */
  1908. static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
  1909. struct kvm_msr_entry *entries,
  1910. int (*do_msr)(struct kvm_vcpu *vcpu,
  1911. unsigned index, u64 *data))
  1912. {
  1913. int i;
  1914. vcpu_load(vcpu);
  1915. for (i = 0; i < msrs->nmsrs; ++i)
  1916. if (do_msr(vcpu, entries[i].index, &entries[i].data))
  1917. break;
  1918. vcpu_put(vcpu);
  1919. return i;
  1920. }
  1921. /*
  1922. * Read or write a bunch of msrs. Parameters are user addresses.
  1923. *
  1924. * @return number of msrs set successfully.
  1925. */
  1926. static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
  1927. int (*do_msr)(struct kvm_vcpu *vcpu,
  1928. unsigned index, u64 *data),
  1929. int writeback)
  1930. {
  1931. struct kvm_msrs msrs;
  1932. struct kvm_msr_entry *entries;
  1933. int r, n;
  1934. unsigned size;
  1935. r = -EFAULT;
  1936. if (copy_from_user(&msrs, user_msrs, sizeof msrs))
  1937. goto out;
  1938. r = -E2BIG;
  1939. if (msrs.nmsrs >= MAX_IO_MSRS)
  1940. goto out;
  1941. r = -ENOMEM;
  1942. size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
  1943. entries = vmalloc(size);
  1944. if (!entries)
  1945. goto out;
  1946. r = -EFAULT;
  1947. if (copy_from_user(entries, user_msrs->entries, size))
  1948. goto out_free;
  1949. r = n = __msr_io(vcpu, &msrs, entries, do_msr);
  1950. if (r < 0)
  1951. goto out_free;
  1952. r = -EFAULT;
  1953. if (writeback && copy_to_user(user_msrs->entries, entries, size))
  1954. goto out_free;
  1955. r = n;
  1956. out_free:
  1957. vfree(entries);
  1958. out:
  1959. return r;
  1960. }
  1961. /*
  1962. * Translate a guest virtual address to a guest physical address.
  1963. */
  1964. static int kvm_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
  1965. struct kvm_translation *tr)
  1966. {
  1967. unsigned long vaddr = tr->linear_address;
  1968. gpa_t gpa;
  1969. vcpu_load(vcpu);
  1970. spin_lock(&vcpu->kvm->lock);
  1971. gpa = vcpu->mmu.gva_to_gpa(vcpu, vaddr);
  1972. tr->physical_address = gpa;
  1973. tr->valid = gpa != UNMAPPED_GVA;
  1974. tr->writeable = 1;
  1975. tr->usermode = 0;
  1976. spin_unlock(&vcpu->kvm->lock);
  1977. vcpu_put(vcpu);
  1978. return 0;
  1979. }
  1980. static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
  1981. struct kvm_interrupt *irq)
  1982. {
  1983. if (irq->irq < 0 || irq->irq >= 256)
  1984. return -EINVAL;
  1985. vcpu_load(vcpu);
  1986. set_bit(irq->irq, vcpu->irq_pending);
  1987. set_bit(irq->irq / BITS_PER_LONG, &vcpu->irq_summary);
  1988. vcpu_put(vcpu);
  1989. return 0;
  1990. }
  1991. static int kvm_vcpu_ioctl_debug_guest(struct kvm_vcpu *vcpu,
  1992. struct kvm_debug_guest *dbg)
  1993. {
  1994. int r;
  1995. vcpu_load(vcpu);
  1996. r = kvm_arch_ops->set_guest_debug(vcpu, dbg);
  1997. vcpu_put(vcpu);
  1998. return r;
  1999. }
  2000. static struct page *kvm_vcpu_nopage(struct vm_area_struct *vma,
  2001. unsigned long address,
  2002. int *type)
  2003. {
  2004. struct kvm_vcpu *vcpu = vma->vm_file->private_data;
  2005. unsigned long pgoff;
  2006. struct page *page;
  2007. *type = VM_FAULT_MINOR;
  2008. pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  2009. if (pgoff == 0)
  2010. page = virt_to_page(vcpu->run);
  2011. else if (pgoff == KVM_PIO_PAGE_OFFSET)
  2012. page = virt_to_page(vcpu->pio_data);
  2013. else
  2014. return NOPAGE_SIGBUS;
  2015. get_page(page);
  2016. return page;
  2017. }
  2018. static struct vm_operations_struct kvm_vcpu_vm_ops = {
  2019. .nopage = kvm_vcpu_nopage,
  2020. };
  2021. static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
  2022. {
  2023. vma->vm_ops = &kvm_vcpu_vm_ops;
  2024. return 0;
  2025. }
  2026. static int kvm_vcpu_release(struct inode *inode, struct file *filp)
  2027. {
  2028. struct kvm_vcpu *vcpu = filp->private_data;
  2029. fput(vcpu->kvm->filp);
  2030. return 0;
  2031. }
  2032. static struct file_operations kvm_vcpu_fops = {
  2033. .release = kvm_vcpu_release,
  2034. .unlocked_ioctl = kvm_vcpu_ioctl,
  2035. .compat_ioctl = kvm_vcpu_ioctl,
  2036. .mmap = kvm_vcpu_mmap,
  2037. };
  2038. /*
  2039. * Allocates an inode for the vcpu.
  2040. */
  2041. static int create_vcpu_fd(struct kvm_vcpu *vcpu)
  2042. {
  2043. int fd, r;
  2044. struct inode *inode;
  2045. struct file *file;
  2046. atomic_inc(&vcpu->kvm->filp->f_count);
  2047. inode = kvmfs_inode(&kvm_vcpu_fops);
  2048. if (IS_ERR(inode)) {
  2049. r = PTR_ERR(inode);
  2050. goto out1;
  2051. }
  2052. file = kvmfs_file(inode, vcpu);
  2053. if (IS_ERR(file)) {
  2054. r = PTR_ERR(file);
  2055. goto out2;
  2056. }
  2057. r = get_unused_fd();
  2058. if (r < 0)
  2059. goto out3;
  2060. fd = r;
  2061. fd_install(fd, file);
  2062. return fd;
  2063. out3:
  2064. fput(file);
  2065. out2:
  2066. iput(inode);
  2067. out1:
  2068. fput(vcpu->kvm->filp);
  2069. return r;
  2070. }
  2071. /*
  2072. * Creates some virtual cpus. Good luck creating more than one.
  2073. */
  2074. static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, int n)
  2075. {
  2076. int r;
  2077. struct kvm_vcpu *vcpu;
  2078. struct page *page;
  2079. r = -EINVAL;
  2080. if (!valid_vcpu(n))
  2081. goto out;
  2082. vcpu = &kvm->vcpus[n];
  2083. mutex_lock(&vcpu->mutex);
  2084. if (vcpu->vmcs) {
  2085. mutex_unlock(&vcpu->mutex);
  2086. return -EEXIST;
  2087. }
  2088. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  2089. r = -ENOMEM;
  2090. if (!page)
  2091. goto out_unlock;
  2092. vcpu->run = page_address(page);
  2093. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  2094. r = -ENOMEM;
  2095. if (!page)
  2096. goto out_free_run;
  2097. vcpu->pio_data = page_address(page);
  2098. vcpu->host_fx_image = (char*)ALIGN((hva_t)vcpu->fx_buf,
  2099. FX_IMAGE_ALIGN);
  2100. vcpu->guest_fx_image = vcpu->host_fx_image + FX_IMAGE_SIZE;
  2101. vcpu->cr0 = 0x10;
  2102. r = kvm_arch_ops->vcpu_create(vcpu);
  2103. if (r < 0)
  2104. goto out_free_vcpus;
  2105. r = kvm_mmu_create(vcpu);
  2106. if (r < 0)
  2107. goto out_free_vcpus;
  2108. kvm_arch_ops->vcpu_load(vcpu);
  2109. r = kvm_mmu_setup(vcpu);
  2110. if (r >= 0)
  2111. r = kvm_arch_ops->vcpu_setup(vcpu);
  2112. vcpu_put(vcpu);
  2113. if (r < 0)
  2114. goto out_free_vcpus;
  2115. r = create_vcpu_fd(vcpu);
  2116. if (r < 0)
  2117. goto out_free_vcpus;
  2118. spin_lock(&kvm_lock);
  2119. if (n >= kvm->nvcpus)
  2120. kvm->nvcpus = n + 1;
  2121. spin_unlock(&kvm_lock);
  2122. return r;
  2123. out_free_vcpus:
  2124. kvm_free_vcpu(vcpu);
  2125. out_free_run:
  2126. free_page((unsigned long)vcpu->run);
  2127. vcpu->run = NULL;
  2128. out_unlock:
  2129. mutex_unlock(&vcpu->mutex);
  2130. out:
  2131. return r;
  2132. }
  2133. static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
  2134. {
  2135. u64 efer;
  2136. int i;
  2137. struct kvm_cpuid_entry *e, *entry;
  2138. rdmsrl(MSR_EFER, efer);
  2139. entry = NULL;
  2140. for (i = 0; i < vcpu->cpuid_nent; ++i) {
  2141. e = &vcpu->cpuid_entries[i];
  2142. if (e->function == 0x80000001) {
  2143. entry = e;
  2144. break;
  2145. }
  2146. }
  2147. if (entry && (entry->edx & EFER_NX) && !(efer & EFER_NX)) {
  2148. entry->edx &= ~(1 << 20);
  2149. printk(KERN_INFO ": guest NX capability removed\n");
  2150. }
  2151. }
  2152. static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
  2153. struct kvm_cpuid *cpuid,
  2154. struct kvm_cpuid_entry __user *entries)
  2155. {
  2156. int r;
  2157. r = -E2BIG;
  2158. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  2159. goto out;
  2160. r = -EFAULT;
  2161. if (copy_from_user(&vcpu->cpuid_entries, entries,
  2162. cpuid->nent * sizeof(struct kvm_cpuid_entry)))
  2163. goto out;
  2164. vcpu->cpuid_nent = cpuid->nent;
  2165. cpuid_fix_nx_cap(vcpu);
  2166. return 0;
  2167. out:
  2168. return r;
  2169. }
  2170. static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
  2171. {
  2172. if (sigset) {
  2173. sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
  2174. vcpu->sigset_active = 1;
  2175. vcpu->sigset = *sigset;
  2176. } else
  2177. vcpu->sigset_active = 0;
  2178. return 0;
  2179. }
  2180. /*
  2181. * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
  2182. * we have asm/x86/processor.h
  2183. */
  2184. struct fxsave {
  2185. u16 cwd;
  2186. u16 swd;
  2187. u16 twd;
  2188. u16 fop;
  2189. u64 rip;
  2190. u64 rdp;
  2191. u32 mxcsr;
  2192. u32 mxcsr_mask;
  2193. u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
  2194. #ifdef CONFIG_X86_64
  2195. u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
  2196. #else
  2197. u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
  2198. #endif
  2199. };
  2200. static int kvm_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  2201. {
  2202. struct fxsave *fxsave = (struct fxsave *)vcpu->guest_fx_image;
  2203. vcpu_load(vcpu);
  2204. memcpy(fpu->fpr, fxsave->st_space, 128);
  2205. fpu->fcw = fxsave->cwd;
  2206. fpu->fsw = fxsave->swd;
  2207. fpu->ftwx = fxsave->twd;
  2208. fpu->last_opcode = fxsave->fop;
  2209. fpu->last_ip = fxsave->rip;
  2210. fpu->last_dp = fxsave->rdp;
  2211. memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
  2212. vcpu_put(vcpu);
  2213. return 0;
  2214. }
  2215. static int kvm_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  2216. {
  2217. struct fxsave *fxsave = (struct fxsave *)vcpu->guest_fx_image;
  2218. vcpu_load(vcpu);
  2219. memcpy(fxsave->st_space, fpu->fpr, 128);
  2220. fxsave->cwd = fpu->fcw;
  2221. fxsave->swd = fpu->fsw;
  2222. fxsave->twd = fpu->ftwx;
  2223. fxsave->fop = fpu->last_opcode;
  2224. fxsave->rip = fpu->last_ip;
  2225. fxsave->rdp = fpu->last_dp;
  2226. memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
  2227. vcpu_put(vcpu);
  2228. return 0;
  2229. }
  2230. static long kvm_vcpu_ioctl(struct file *filp,
  2231. unsigned int ioctl, unsigned long arg)
  2232. {
  2233. struct kvm_vcpu *vcpu = filp->private_data;
  2234. void __user *argp = (void __user *)arg;
  2235. int r = -EINVAL;
  2236. switch (ioctl) {
  2237. case KVM_RUN:
  2238. r = -EINVAL;
  2239. if (arg)
  2240. goto out;
  2241. r = kvm_vcpu_ioctl_run(vcpu, vcpu->run);
  2242. break;
  2243. case KVM_GET_REGS: {
  2244. struct kvm_regs kvm_regs;
  2245. memset(&kvm_regs, 0, sizeof kvm_regs);
  2246. r = kvm_vcpu_ioctl_get_regs(vcpu, &kvm_regs);
  2247. if (r)
  2248. goto out;
  2249. r = -EFAULT;
  2250. if (copy_to_user(argp, &kvm_regs, sizeof kvm_regs))
  2251. goto out;
  2252. r = 0;
  2253. break;
  2254. }
  2255. case KVM_SET_REGS: {
  2256. struct kvm_regs kvm_regs;
  2257. r = -EFAULT;
  2258. if (copy_from_user(&kvm_regs, argp, sizeof kvm_regs))
  2259. goto out;
  2260. r = kvm_vcpu_ioctl_set_regs(vcpu, &kvm_regs);
  2261. if (r)
  2262. goto out;
  2263. r = 0;
  2264. break;
  2265. }
  2266. case KVM_GET_SREGS: {
  2267. struct kvm_sregs kvm_sregs;
  2268. memset(&kvm_sregs, 0, sizeof kvm_sregs);
  2269. r = kvm_vcpu_ioctl_get_sregs(vcpu, &kvm_sregs);
  2270. if (r)
  2271. goto out;
  2272. r = -EFAULT;
  2273. if (copy_to_user(argp, &kvm_sregs, sizeof kvm_sregs))
  2274. goto out;
  2275. r = 0;
  2276. break;
  2277. }
  2278. case KVM_SET_SREGS: {
  2279. struct kvm_sregs kvm_sregs;
  2280. r = -EFAULT;
  2281. if (copy_from_user(&kvm_sregs, argp, sizeof kvm_sregs))
  2282. goto out;
  2283. r = kvm_vcpu_ioctl_set_sregs(vcpu, &kvm_sregs);
  2284. if (r)
  2285. goto out;
  2286. r = 0;
  2287. break;
  2288. }
  2289. case KVM_TRANSLATE: {
  2290. struct kvm_translation tr;
  2291. r = -EFAULT;
  2292. if (copy_from_user(&tr, argp, sizeof tr))
  2293. goto out;
  2294. r = kvm_vcpu_ioctl_translate(vcpu, &tr);
  2295. if (r)
  2296. goto out;
  2297. r = -EFAULT;
  2298. if (copy_to_user(argp, &tr, sizeof tr))
  2299. goto out;
  2300. r = 0;
  2301. break;
  2302. }
  2303. case KVM_INTERRUPT: {
  2304. struct kvm_interrupt irq;
  2305. r = -EFAULT;
  2306. if (copy_from_user(&irq, argp, sizeof irq))
  2307. goto out;
  2308. r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
  2309. if (r)
  2310. goto out;
  2311. r = 0;
  2312. break;
  2313. }
  2314. case KVM_DEBUG_GUEST: {
  2315. struct kvm_debug_guest dbg;
  2316. r = -EFAULT;
  2317. if (copy_from_user(&dbg, argp, sizeof dbg))
  2318. goto out;
  2319. r = kvm_vcpu_ioctl_debug_guest(vcpu, &dbg);
  2320. if (r)
  2321. goto out;
  2322. r = 0;
  2323. break;
  2324. }
  2325. case KVM_GET_MSRS:
  2326. r = msr_io(vcpu, argp, get_msr, 1);
  2327. break;
  2328. case KVM_SET_MSRS:
  2329. r = msr_io(vcpu, argp, do_set_msr, 0);
  2330. break;
  2331. case KVM_SET_CPUID: {
  2332. struct kvm_cpuid __user *cpuid_arg = argp;
  2333. struct kvm_cpuid cpuid;
  2334. r = -EFAULT;
  2335. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  2336. goto out;
  2337. r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
  2338. if (r)
  2339. goto out;
  2340. break;
  2341. }
  2342. case KVM_SET_SIGNAL_MASK: {
  2343. struct kvm_signal_mask __user *sigmask_arg = argp;
  2344. struct kvm_signal_mask kvm_sigmask;
  2345. sigset_t sigset, *p;
  2346. p = NULL;
  2347. if (argp) {
  2348. r = -EFAULT;
  2349. if (copy_from_user(&kvm_sigmask, argp,
  2350. sizeof kvm_sigmask))
  2351. goto out;
  2352. r = -EINVAL;
  2353. if (kvm_sigmask.len != sizeof sigset)
  2354. goto out;
  2355. r = -EFAULT;
  2356. if (copy_from_user(&sigset, sigmask_arg->sigset,
  2357. sizeof sigset))
  2358. goto out;
  2359. p = &sigset;
  2360. }
  2361. r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
  2362. break;
  2363. }
  2364. case KVM_GET_FPU: {
  2365. struct kvm_fpu fpu;
  2366. memset(&fpu, 0, sizeof fpu);
  2367. r = kvm_vcpu_ioctl_get_fpu(vcpu, &fpu);
  2368. if (r)
  2369. goto out;
  2370. r = -EFAULT;
  2371. if (copy_to_user(argp, &fpu, sizeof fpu))
  2372. goto out;
  2373. r = 0;
  2374. break;
  2375. }
  2376. case KVM_SET_FPU: {
  2377. struct kvm_fpu fpu;
  2378. r = -EFAULT;
  2379. if (copy_from_user(&fpu, argp, sizeof fpu))
  2380. goto out;
  2381. r = kvm_vcpu_ioctl_set_fpu(vcpu, &fpu);
  2382. if (r)
  2383. goto out;
  2384. r = 0;
  2385. break;
  2386. }
  2387. default:
  2388. ;
  2389. }
  2390. out:
  2391. return r;
  2392. }
  2393. static long kvm_vm_ioctl(struct file *filp,
  2394. unsigned int ioctl, unsigned long arg)
  2395. {
  2396. struct kvm *kvm = filp->private_data;
  2397. void __user *argp = (void __user *)arg;
  2398. int r = -EINVAL;
  2399. switch (ioctl) {
  2400. case KVM_CREATE_VCPU:
  2401. r = kvm_vm_ioctl_create_vcpu(kvm, arg);
  2402. if (r < 0)
  2403. goto out;
  2404. break;
  2405. case KVM_SET_MEMORY_REGION: {
  2406. struct kvm_memory_region kvm_mem;
  2407. r = -EFAULT;
  2408. if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
  2409. goto out;
  2410. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_mem);
  2411. if (r)
  2412. goto out;
  2413. break;
  2414. }
  2415. case KVM_GET_DIRTY_LOG: {
  2416. struct kvm_dirty_log log;
  2417. r = -EFAULT;
  2418. if (copy_from_user(&log, argp, sizeof log))
  2419. goto out;
  2420. r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
  2421. if (r)
  2422. goto out;
  2423. break;
  2424. }
  2425. case KVM_SET_MEMORY_ALIAS: {
  2426. struct kvm_memory_alias alias;
  2427. r = -EFAULT;
  2428. if (copy_from_user(&alias, argp, sizeof alias))
  2429. goto out;
  2430. r = kvm_vm_ioctl_set_memory_alias(kvm, &alias);
  2431. if (r)
  2432. goto out;
  2433. break;
  2434. }
  2435. default:
  2436. ;
  2437. }
  2438. out:
  2439. return r;
  2440. }
  2441. static struct page *kvm_vm_nopage(struct vm_area_struct *vma,
  2442. unsigned long address,
  2443. int *type)
  2444. {
  2445. struct kvm *kvm = vma->vm_file->private_data;
  2446. unsigned long pgoff;
  2447. struct page *page;
  2448. *type = VM_FAULT_MINOR;
  2449. pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  2450. page = gfn_to_page(kvm, pgoff);
  2451. if (!page)
  2452. return NOPAGE_SIGBUS;
  2453. get_page(page);
  2454. return page;
  2455. }
  2456. static struct vm_operations_struct kvm_vm_vm_ops = {
  2457. .nopage = kvm_vm_nopage,
  2458. };
  2459. static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
  2460. {
  2461. vma->vm_ops = &kvm_vm_vm_ops;
  2462. return 0;
  2463. }
  2464. static struct file_operations kvm_vm_fops = {
  2465. .release = kvm_vm_release,
  2466. .unlocked_ioctl = kvm_vm_ioctl,
  2467. .compat_ioctl = kvm_vm_ioctl,
  2468. .mmap = kvm_vm_mmap,
  2469. };
  2470. static int kvm_dev_ioctl_create_vm(void)
  2471. {
  2472. int fd, r;
  2473. struct inode *inode;
  2474. struct file *file;
  2475. struct kvm *kvm;
  2476. inode = kvmfs_inode(&kvm_vm_fops);
  2477. if (IS_ERR(inode)) {
  2478. r = PTR_ERR(inode);
  2479. goto out1;
  2480. }
  2481. kvm = kvm_create_vm();
  2482. if (IS_ERR(kvm)) {
  2483. r = PTR_ERR(kvm);
  2484. goto out2;
  2485. }
  2486. file = kvmfs_file(inode, kvm);
  2487. if (IS_ERR(file)) {
  2488. r = PTR_ERR(file);
  2489. goto out3;
  2490. }
  2491. kvm->filp = file;
  2492. r = get_unused_fd();
  2493. if (r < 0)
  2494. goto out4;
  2495. fd = r;
  2496. fd_install(fd, file);
  2497. return fd;
  2498. out4:
  2499. fput(file);
  2500. out3:
  2501. kvm_destroy_vm(kvm);
  2502. out2:
  2503. iput(inode);
  2504. out1:
  2505. return r;
  2506. }
  2507. static long kvm_dev_ioctl(struct file *filp,
  2508. unsigned int ioctl, unsigned long arg)
  2509. {
  2510. void __user *argp = (void __user *)arg;
  2511. long r = -EINVAL;
  2512. switch (ioctl) {
  2513. case KVM_GET_API_VERSION:
  2514. r = -EINVAL;
  2515. if (arg)
  2516. goto out;
  2517. r = KVM_API_VERSION;
  2518. break;
  2519. case KVM_CREATE_VM:
  2520. r = -EINVAL;
  2521. if (arg)
  2522. goto out;
  2523. r = kvm_dev_ioctl_create_vm();
  2524. break;
  2525. case KVM_GET_MSR_INDEX_LIST: {
  2526. struct kvm_msr_list __user *user_msr_list = argp;
  2527. struct kvm_msr_list msr_list;
  2528. unsigned n;
  2529. r = -EFAULT;
  2530. if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
  2531. goto out;
  2532. n = msr_list.nmsrs;
  2533. msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
  2534. if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
  2535. goto out;
  2536. r = -E2BIG;
  2537. if (n < num_msrs_to_save)
  2538. goto out;
  2539. r = -EFAULT;
  2540. if (copy_to_user(user_msr_list->indices, &msrs_to_save,
  2541. num_msrs_to_save * sizeof(u32)))
  2542. goto out;
  2543. if (copy_to_user(user_msr_list->indices
  2544. + num_msrs_to_save * sizeof(u32),
  2545. &emulated_msrs,
  2546. ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
  2547. goto out;
  2548. r = 0;
  2549. break;
  2550. }
  2551. case KVM_CHECK_EXTENSION:
  2552. /*
  2553. * No extensions defined at present.
  2554. */
  2555. r = 0;
  2556. break;
  2557. case KVM_GET_VCPU_MMAP_SIZE:
  2558. r = -EINVAL;
  2559. if (arg)
  2560. goto out;
  2561. r = 2 * PAGE_SIZE;
  2562. break;
  2563. default:
  2564. ;
  2565. }
  2566. out:
  2567. return r;
  2568. }
  2569. static struct file_operations kvm_chardev_ops = {
  2570. .open = kvm_dev_open,
  2571. .release = kvm_dev_release,
  2572. .unlocked_ioctl = kvm_dev_ioctl,
  2573. .compat_ioctl = kvm_dev_ioctl,
  2574. };
  2575. static struct miscdevice kvm_dev = {
  2576. KVM_MINOR,
  2577. "kvm",
  2578. &kvm_chardev_ops,
  2579. };
  2580. static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
  2581. void *v)
  2582. {
  2583. if (val == SYS_RESTART) {
  2584. /*
  2585. * Some (well, at least mine) BIOSes hang on reboot if
  2586. * in vmx root mode.
  2587. */
  2588. printk(KERN_INFO "kvm: exiting hardware virtualization\n");
  2589. on_each_cpu(kvm_arch_ops->hardware_disable, NULL, 0, 1);
  2590. }
  2591. return NOTIFY_OK;
  2592. }
  2593. static struct notifier_block kvm_reboot_notifier = {
  2594. .notifier_call = kvm_reboot,
  2595. .priority = 0,
  2596. };
  2597. /*
  2598. * Make sure that a cpu that is being hot-unplugged does not have any vcpus
  2599. * cached on it.
  2600. */
  2601. static void decache_vcpus_on_cpu(int cpu)
  2602. {
  2603. struct kvm *vm;
  2604. struct kvm_vcpu *vcpu;
  2605. int i;
  2606. spin_lock(&kvm_lock);
  2607. list_for_each_entry(vm, &vm_list, vm_list)
  2608. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  2609. vcpu = &vm->vcpus[i];
  2610. /*
  2611. * If the vcpu is locked, then it is running on some
  2612. * other cpu and therefore it is not cached on the
  2613. * cpu in question.
  2614. *
  2615. * If it's not locked, check the last cpu it executed
  2616. * on.
  2617. */
  2618. if (mutex_trylock(&vcpu->mutex)) {
  2619. if (vcpu->cpu == cpu) {
  2620. kvm_arch_ops->vcpu_decache(vcpu);
  2621. vcpu->cpu = -1;
  2622. }
  2623. mutex_unlock(&vcpu->mutex);
  2624. }
  2625. }
  2626. spin_unlock(&kvm_lock);
  2627. }
  2628. static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
  2629. void *v)
  2630. {
  2631. int cpu = (long)v;
  2632. switch (val) {
  2633. case CPU_DOWN_PREPARE:
  2634. case CPU_DOWN_PREPARE_FROZEN:
  2635. case CPU_UP_CANCELED:
  2636. case CPU_UP_CANCELED_FROZEN:
  2637. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  2638. cpu);
  2639. decache_vcpus_on_cpu(cpu);
  2640. smp_call_function_single(cpu, kvm_arch_ops->hardware_disable,
  2641. NULL, 0, 1);
  2642. break;
  2643. case CPU_ONLINE:
  2644. case CPU_ONLINE_FROZEN:
  2645. printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
  2646. cpu);
  2647. smp_call_function_single(cpu, kvm_arch_ops->hardware_enable,
  2648. NULL, 0, 1);
  2649. break;
  2650. }
  2651. return NOTIFY_OK;
  2652. }
  2653. void kvm_io_bus_init(struct kvm_io_bus *bus)
  2654. {
  2655. memset(bus, 0, sizeof(*bus));
  2656. }
  2657. void kvm_io_bus_destroy(struct kvm_io_bus *bus)
  2658. {
  2659. int i;
  2660. for (i = 0; i < bus->dev_count; i++) {
  2661. struct kvm_io_device *pos = bus->devs[i];
  2662. kvm_iodevice_destructor(pos);
  2663. }
  2664. }
  2665. struct kvm_io_device *kvm_io_bus_find_dev(struct kvm_io_bus *bus, gpa_t addr)
  2666. {
  2667. int i;
  2668. for (i = 0; i < bus->dev_count; i++) {
  2669. struct kvm_io_device *pos = bus->devs[i];
  2670. if (pos->in_range(pos, addr))
  2671. return pos;
  2672. }
  2673. return NULL;
  2674. }
  2675. void kvm_io_bus_register_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev)
  2676. {
  2677. BUG_ON(bus->dev_count > (NR_IOBUS_DEVS-1));
  2678. bus->devs[bus->dev_count++] = dev;
  2679. }
  2680. static struct notifier_block kvm_cpu_notifier = {
  2681. .notifier_call = kvm_cpu_hotplug,
  2682. .priority = 20, /* must be > scheduler priority */
  2683. };
  2684. static u64 stat_get(void *_offset)
  2685. {
  2686. unsigned offset = (long)_offset;
  2687. u64 total = 0;
  2688. struct kvm *kvm;
  2689. struct kvm_vcpu *vcpu;
  2690. int i;
  2691. spin_lock(&kvm_lock);
  2692. list_for_each_entry(kvm, &vm_list, vm_list)
  2693. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  2694. vcpu = &kvm->vcpus[i];
  2695. total += *(u32 *)((void *)vcpu + offset);
  2696. }
  2697. spin_unlock(&kvm_lock);
  2698. return total;
  2699. }
  2700. static void stat_set(void *offset, u64 val)
  2701. {
  2702. }
  2703. DEFINE_SIMPLE_ATTRIBUTE(stat_fops, stat_get, stat_set, "%llu\n");
  2704. static __init void kvm_init_debug(void)
  2705. {
  2706. struct kvm_stats_debugfs_item *p;
  2707. debugfs_dir = debugfs_create_dir("kvm", NULL);
  2708. for (p = debugfs_entries; p->name; ++p)
  2709. p->dentry = debugfs_create_file(p->name, 0444, debugfs_dir,
  2710. (void *)(long)p->offset,
  2711. &stat_fops);
  2712. }
  2713. static void kvm_exit_debug(void)
  2714. {
  2715. struct kvm_stats_debugfs_item *p;
  2716. for (p = debugfs_entries; p->name; ++p)
  2717. debugfs_remove(p->dentry);
  2718. debugfs_remove(debugfs_dir);
  2719. }
  2720. static int kvm_suspend(struct sys_device *dev, pm_message_t state)
  2721. {
  2722. decache_vcpus_on_cpu(raw_smp_processor_id());
  2723. on_each_cpu(kvm_arch_ops->hardware_disable, NULL, 0, 1);
  2724. return 0;
  2725. }
  2726. static int kvm_resume(struct sys_device *dev)
  2727. {
  2728. on_each_cpu(kvm_arch_ops->hardware_enable, NULL, 0, 1);
  2729. return 0;
  2730. }
  2731. static struct sysdev_class kvm_sysdev_class = {
  2732. set_kset_name("kvm"),
  2733. .suspend = kvm_suspend,
  2734. .resume = kvm_resume,
  2735. };
  2736. static struct sys_device kvm_sysdev = {
  2737. .id = 0,
  2738. .cls = &kvm_sysdev_class,
  2739. };
  2740. hpa_t bad_page_address;
  2741. static int kvmfs_get_sb(struct file_system_type *fs_type, int flags,
  2742. const char *dev_name, void *data, struct vfsmount *mnt)
  2743. {
  2744. return get_sb_pseudo(fs_type, "kvm:", NULL, KVMFS_SUPER_MAGIC, mnt);
  2745. }
  2746. static struct file_system_type kvm_fs_type = {
  2747. .name = "kvmfs",
  2748. .get_sb = kvmfs_get_sb,
  2749. .kill_sb = kill_anon_super,
  2750. };
  2751. int kvm_init_arch(struct kvm_arch_ops *ops, struct module *module)
  2752. {
  2753. int r;
  2754. if (kvm_arch_ops) {
  2755. printk(KERN_ERR "kvm: already loaded the other module\n");
  2756. return -EEXIST;
  2757. }
  2758. if (!ops->cpu_has_kvm_support()) {
  2759. printk(KERN_ERR "kvm: no hardware support\n");
  2760. return -EOPNOTSUPP;
  2761. }
  2762. if (ops->disabled_by_bios()) {
  2763. printk(KERN_ERR "kvm: disabled by bios\n");
  2764. return -EOPNOTSUPP;
  2765. }
  2766. kvm_arch_ops = ops;
  2767. r = kvm_arch_ops->hardware_setup();
  2768. if (r < 0)
  2769. goto out;
  2770. on_each_cpu(kvm_arch_ops->hardware_enable, NULL, 0, 1);
  2771. r = register_cpu_notifier(&kvm_cpu_notifier);
  2772. if (r)
  2773. goto out_free_1;
  2774. register_reboot_notifier(&kvm_reboot_notifier);
  2775. r = sysdev_class_register(&kvm_sysdev_class);
  2776. if (r)
  2777. goto out_free_2;
  2778. r = sysdev_register(&kvm_sysdev);
  2779. if (r)
  2780. goto out_free_3;
  2781. kvm_chardev_ops.owner = module;
  2782. r = misc_register(&kvm_dev);
  2783. if (r) {
  2784. printk (KERN_ERR "kvm: misc device register failed\n");
  2785. goto out_free;
  2786. }
  2787. return r;
  2788. out_free:
  2789. sysdev_unregister(&kvm_sysdev);
  2790. out_free_3:
  2791. sysdev_class_unregister(&kvm_sysdev_class);
  2792. out_free_2:
  2793. unregister_reboot_notifier(&kvm_reboot_notifier);
  2794. unregister_cpu_notifier(&kvm_cpu_notifier);
  2795. out_free_1:
  2796. on_each_cpu(kvm_arch_ops->hardware_disable, NULL, 0, 1);
  2797. kvm_arch_ops->hardware_unsetup();
  2798. out:
  2799. kvm_arch_ops = NULL;
  2800. return r;
  2801. }
  2802. void kvm_exit_arch(void)
  2803. {
  2804. misc_deregister(&kvm_dev);
  2805. sysdev_unregister(&kvm_sysdev);
  2806. sysdev_class_unregister(&kvm_sysdev_class);
  2807. unregister_reboot_notifier(&kvm_reboot_notifier);
  2808. unregister_cpu_notifier(&kvm_cpu_notifier);
  2809. on_each_cpu(kvm_arch_ops->hardware_disable, NULL, 0, 1);
  2810. kvm_arch_ops->hardware_unsetup();
  2811. kvm_arch_ops = NULL;
  2812. }
  2813. static __init int kvm_init(void)
  2814. {
  2815. static struct page *bad_page;
  2816. int r;
  2817. r = kvm_mmu_module_init();
  2818. if (r)
  2819. goto out4;
  2820. r = register_filesystem(&kvm_fs_type);
  2821. if (r)
  2822. goto out3;
  2823. kvmfs_mnt = kern_mount(&kvm_fs_type);
  2824. r = PTR_ERR(kvmfs_mnt);
  2825. if (IS_ERR(kvmfs_mnt))
  2826. goto out2;
  2827. kvm_init_debug();
  2828. kvm_init_msr_list();
  2829. if ((bad_page = alloc_page(GFP_KERNEL)) == NULL) {
  2830. r = -ENOMEM;
  2831. goto out;
  2832. }
  2833. bad_page_address = page_to_pfn(bad_page) << PAGE_SHIFT;
  2834. memset(__va(bad_page_address), 0, PAGE_SIZE);
  2835. return 0;
  2836. out:
  2837. kvm_exit_debug();
  2838. mntput(kvmfs_mnt);
  2839. out2:
  2840. unregister_filesystem(&kvm_fs_type);
  2841. out3:
  2842. kvm_mmu_module_exit();
  2843. out4:
  2844. return r;
  2845. }
  2846. static __exit void kvm_exit(void)
  2847. {
  2848. kvm_exit_debug();
  2849. __free_page(pfn_to_page(bad_page_address >> PAGE_SHIFT));
  2850. mntput(kvmfs_mnt);
  2851. unregister_filesystem(&kvm_fs_type);
  2852. kvm_mmu_module_exit();
  2853. }
  2854. module_init(kvm_init)
  2855. module_exit(kvm_exit)
  2856. EXPORT_SYMBOL_GPL(kvm_init_arch);
  2857. EXPORT_SYMBOL_GPL(kvm_exit_arch);