kvm_main.c 62 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  9. *
  10. * Authors:
  11. * Avi Kivity <avi@qumranet.com>
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. *
  14. * This work is licensed under the terms of the GNU GPL, version 2. See
  15. * the COPYING file in the top-level directory.
  16. *
  17. */
  18. #include "iodev.h"
  19. #include <linux/kvm_host.h>
  20. #include <linux/kvm.h>
  21. #include <linux/module.h>
  22. #include <linux/errno.h>
  23. #include <linux/percpu.h>
  24. #include <linux/mm.h>
  25. #include <linux/miscdevice.h>
  26. #include <linux/vmalloc.h>
  27. #include <linux/reboot.h>
  28. #include <linux/debugfs.h>
  29. #include <linux/highmem.h>
  30. #include <linux/file.h>
  31. #include <linux/syscore_ops.h>
  32. #include <linux/cpu.h>
  33. #include <linux/sched.h>
  34. #include <linux/cpumask.h>
  35. #include <linux/smp.h>
  36. #include <linux/anon_inodes.h>
  37. #include <linux/profile.h>
  38. #include <linux/kvm_para.h>
  39. #include <linux/pagemap.h>
  40. #include <linux/mman.h>
  41. #include <linux/swap.h>
  42. #include <linux/bitops.h>
  43. #include <linux/spinlock.h>
  44. #include <linux/compat.h>
  45. #include <linux/srcu.h>
  46. #include <linux/hugetlb.h>
  47. #include <linux/slab.h>
  48. #include <linux/sort.h>
  49. #include <linux/bsearch.h>
  50. #include <asm/processor.h>
  51. #include <asm/io.h>
  52. #include <asm/uaccess.h>
  53. #include <asm/pgtable.h>
  54. #include "coalesced_mmio.h"
  55. #include "async_pf.h"
  56. #define CREATE_TRACE_POINTS
  57. #include <trace/events/kvm.h>
  58. MODULE_AUTHOR("Qumranet");
  59. MODULE_LICENSE("GPL");
  60. /*
  61. * Ordering of locks:
  62. *
  63. * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
  64. */
  65. DEFINE_RAW_SPINLOCK(kvm_lock);
  66. LIST_HEAD(vm_list);
  67. static cpumask_var_t cpus_hardware_enabled;
  68. static int kvm_usage_count = 0;
  69. static atomic_t hardware_enable_failed;
  70. struct kmem_cache *kvm_vcpu_cache;
  71. EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
  72. static __read_mostly struct preempt_ops kvm_preempt_ops;
  73. struct dentry *kvm_debugfs_dir;
  74. static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
  75. unsigned long arg);
  76. #ifdef CONFIG_COMPAT
  77. static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
  78. unsigned long arg);
  79. #endif
  80. static int hardware_enable_all(void);
  81. static void hardware_disable_all(void);
  82. static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
  83. bool kvm_rebooting;
  84. EXPORT_SYMBOL_GPL(kvm_rebooting);
  85. static bool largepages_enabled = true;
  86. static struct page *hwpoison_page;
  87. static pfn_t hwpoison_pfn;
  88. struct page *fault_page;
  89. pfn_t fault_pfn;
  90. inline int kvm_is_mmio_pfn(pfn_t pfn)
  91. {
  92. if (pfn_valid(pfn)) {
  93. int reserved;
  94. struct page *tail = pfn_to_page(pfn);
  95. struct page *head = compound_trans_head(tail);
  96. reserved = PageReserved(head);
  97. if (head != tail) {
  98. /*
  99. * "head" is not a dangling pointer
  100. * (compound_trans_head takes care of that)
  101. * but the hugepage may have been splitted
  102. * from under us (and we may not hold a
  103. * reference count on the head page so it can
  104. * be reused before we run PageReferenced), so
  105. * we've to check PageTail before returning
  106. * what we just read.
  107. */
  108. smp_rmb();
  109. if (PageTail(tail))
  110. return reserved;
  111. }
  112. return PageReserved(tail);
  113. }
  114. return true;
  115. }
  116. /*
  117. * Switches to specified vcpu, until a matching vcpu_put()
  118. */
  119. void vcpu_load(struct kvm_vcpu *vcpu)
  120. {
  121. int cpu;
  122. mutex_lock(&vcpu->mutex);
  123. if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
  124. /* The thread running this VCPU changed. */
  125. struct pid *oldpid = vcpu->pid;
  126. struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
  127. rcu_assign_pointer(vcpu->pid, newpid);
  128. synchronize_rcu();
  129. put_pid(oldpid);
  130. }
  131. cpu = get_cpu();
  132. preempt_notifier_register(&vcpu->preempt_notifier);
  133. kvm_arch_vcpu_load(vcpu, cpu);
  134. put_cpu();
  135. }
  136. void vcpu_put(struct kvm_vcpu *vcpu)
  137. {
  138. preempt_disable();
  139. kvm_arch_vcpu_put(vcpu);
  140. preempt_notifier_unregister(&vcpu->preempt_notifier);
  141. preempt_enable();
  142. mutex_unlock(&vcpu->mutex);
  143. }
  144. static void ack_flush(void *_completed)
  145. {
  146. }
  147. static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
  148. {
  149. int i, cpu, me;
  150. cpumask_var_t cpus;
  151. bool called = true;
  152. struct kvm_vcpu *vcpu;
  153. zalloc_cpumask_var(&cpus, GFP_ATOMIC);
  154. me = get_cpu();
  155. kvm_for_each_vcpu(i, vcpu, kvm) {
  156. kvm_make_request(req, vcpu);
  157. cpu = vcpu->cpu;
  158. /* Set ->requests bit before we read ->mode */
  159. smp_mb();
  160. if (cpus != NULL && cpu != -1 && cpu != me &&
  161. kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
  162. cpumask_set_cpu(cpu, cpus);
  163. }
  164. if (unlikely(cpus == NULL))
  165. smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
  166. else if (!cpumask_empty(cpus))
  167. smp_call_function_many(cpus, ack_flush, NULL, 1);
  168. else
  169. called = false;
  170. put_cpu();
  171. free_cpumask_var(cpus);
  172. return called;
  173. }
  174. void kvm_flush_remote_tlbs(struct kvm *kvm)
  175. {
  176. int dirty_count = kvm->tlbs_dirty;
  177. smp_mb();
  178. if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
  179. ++kvm->stat.remote_tlb_flush;
  180. cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
  181. }
  182. void kvm_reload_remote_mmus(struct kvm *kvm)
  183. {
  184. make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
  185. }
  186. int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
  187. {
  188. struct page *page;
  189. int r;
  190. mutex_init(&vcpu->mutex);
  191. vcpu->cpu = -1;
  192. vcpu->kvm = kvm;
  193. vcpu->vcpu_id = id;
  194. vcpu->pid = NULL;
  195. init_waitqueue_head(&vcpu->wq);
  196. kvm_async_pf_vcpu_init(vcpu);
  197. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  198. if (!page) {
  199. r = -ENOMEM;
  200. goto fail;
  201. }
  202. vcpu->run = page_address(page);
  203. r = kvm_arch_vcpu_init(vcpu);
  204. if (r < 0)
  205. goto fail_free_run;
  206. return 0;
  207. fail_free_run:
  208. free_page((unsigned long)vcpu->run);
  209. fail:
  210. return r;
  211. }
  212. EXPORT_SYMBOL_GPL(kvm_vcpu_init);
  213. void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
  214. {
  215. put_pid(vcpu->pid);
  216. kvm_arch_vcpu_uninit(vcpu);
  217. free_page((unsigned long)vcpu->run);
  218. }
  219. EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
  220. #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
  221. static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
  222. {
  223. return container_of(mn, struct kvm, mmu_notifier);
  224. }
  225. static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
  226. struct mm_struct *mm,
  227. unsigned long address)
  228. {
  229. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  230. int need_tlb_flush, idx;
  231. /*
  232. * When ->invalidate_page runs, the linux pte has been zapped
  233. * already but the page is still allocated until
  234. * ->invalidate_page returns. So if we increase the sequence
  235. * here the kvm page fault will notice if the spte can't be
  236. * established because the page is going to be freed. If
  237. * instead the kvm page fault establishes the spte before
  238. * ->invalidate_page runs, kvm_unmap_hva will release it
  239. * before returning.
  240. *
  241. * The sequence increase only need to be seen at spin_unlock
  242. * time, and not at spin_lock time.
  243. *
  244. * Increasing the sequence after the spin_unlock would be
  245. * unsafe because the kvm page fault could then establish the
  246. * pte after kvm_unmap_hva returned, without noticing the page
  247. * is going to be freed.
  248. */
  249. idx = srcu_read_lock(&kvm->srcu);
  250. spin_lock(&kvm->mmu_lock);
  251. kvm->mmu_notifier_seq++;
  252. need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
  253. spin_unlock(&kvm->mmu_lock);
  254. srcu_read_unlock(&kvm->srcu, idx);
  255. /* we've to flush the tlb before the pages can be freed */
  256. if (need_tlb_flush)
  257. kvm_flush_remote_tlbs(kvm);
  258. }
  259. static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
  260. struct mm_struct *mm,
  261. unsigned long address,
  262. pte_t pte)
  263. {
  264. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  265. int idx;
  266. idx = srcu_read_lock(&kvm->srcu);
  267. spin_lock(&kvm->mmu_lock);
  268. kvm->mmu_notifier_seq++;
  269. kvm_set_spte_hva(kvm, address, pte);
  270. spin_unlock(&kvm->mmu_lock);
  271. srcu_read_unlock(&kvm->srcu, idx);
  272. }
  273. static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
  274. struct mm_struct *mm,
  275. unsigned long start,
  276. unsigned long end)
  277. {
  278. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  279. int need_tlb_flush = 0, idx;
  280. idx = srcu_read_lock(&kvm->srcu);
  281. spin_lock(&kvm->mmu_lock);
  282. /*
  283. * The count increase must become visible at unlock time as no
  284. * spte can be established without taking the mmu_lock and
  285. * count is also read inside the mmu_lock critical section.
  286. */
  287. kvm->mmu_notifier_count++;
  288. for (; start < end; start += PAGE_SIZE)
  289. need_tlb_flush |= kvm_unmap_hva(kvm, start);
  290. need_tlb_flush |= kvm->tlbs_dirty;
  291. spin_unlock(&kvm->mmu_lock);
  292. srcu_read_unlock(&kvm->srcu, idx);
  293. /* we've to flush the tlb before the pages can be freed */
  294. if (need_tlb_flush)
  295. kvm_flush_remote_tlbs(kvm);
  296. }
  297. static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
  298. struct mm_struct *mm,
  299. unsigned long start,
  300. unsigned long end)
  301. {
  302. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  303. spin_lock(&kvm->mmu_lock);
  304. /*
  305. * This sequence increase will notify the kvm page fault that
  306. * the page that is going to be mapped in the spte could have
  307. * been freed.
  308. */
  309. kvm->mmu_notifier_seq++;
  310. /*
  311. * The above sequence increase must be visible before the
  312. * below count decrease but both values are read by the kvm
  313. * page fault under mmu_lock spinlock so we don't need to add
  314. * a smb_wmb() here in between the two.
  315. */
  316. kvm->mmu_notifier_count--;
  317. spin_unlock(&kvm->mmu_lock);
  318. BUG_ON(kvm->mmu_notifier_count < 0);
  319. }
  320. static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
  321. struct mm_struct *mm,
  322. unsigned long address)
  323. {
  324. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  325. int young, idx;
  326. idx = srcu_read_lock(&kvm->srcu);
  327. spin_lock(&kvm->mmu_lock);
  328. young = kvm_age_hva(kvm, address);
  329. spin_unlock(&kvm->mmu_lock);
  330. srcu_read_unlock(&kvm->srcu, idx);
  331. if (young)
  332. kvm_flush_remote_tlbs(kvm);
  333. return young;
  334. }
  335. static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
  336. struct mm_struct *mm,
  337. unsigned long address)
  338. {
  339. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  340. int young, idx;
  341. idx = srcu_read_lock(&kvm->srcu);
  342. spin_lock(&kvm->mmu_lock);
  343. young = kvm_test_age_hva(kvm, address);
  344. spin_unlock(&kvm->mmu_lock);
  345. srcu_read_unlock(&kvm->srcu, idx);
  346. return young;
  347. }
  348. static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
  349. struct mm_struct *mm)
  350. {
  351. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  352. int idx;
  353. idx = srcu_read_lock(&kvm->srcu);
  354. kvm_arch_flush_shadow(kvm);
  355. srcu_read_unlock(&kvm->srcu, idx);
  356. }
  357. static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
  358. .invalidate_page = kvm_mmu_notifier_invalidate_page,
  359. .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
  360. .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
  361. .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
  362. .test_young = kvm_mmu_notifier_test_young,
  363. .change_pte = kvm_mmu_notifier_change_pte,
  364. .release = kvm_mmu_notifier_release,
  365. };
  366. static int kvm_init_mmu_notifier(struct kvm *kvm)
  367. {
  368. kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
  369. return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
  370. }
  371. #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
  372. static int kvm_init_mmu_notifier(struct kvm *kvm)
  373. {
  374. return 0;
  375. }
  376. #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
  377. static struct kvm *kvm_create_vm(void)
  378. {
  379. int r, i;
  380. struct kvm *kvm = kvm_arch_alloc_vm();
  381. if (!kvm)
  382. return ERR_PTR(-ENOMEM);
  383. r = kvm_arch_init_vm(kvm);
  384. if (r)
  385. goto out_err_nodisable;
  386. r = hardware_enable_all();
  387. if (r)
  388. goto out_err_nodisable;
  389. #ifdef CONFIG_HAVE_KVM_IRQCHIP
  390. INIT_HLIST_HEAD(&kvm->mask_notifier_list);
  391. INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
  392. #endif
  393. r = -ENOMEM;
  394. kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
  395. if (!kvm->memslots)
  396. goto out_err_nosrcu;
  397. if (init_srcu_struct(&kvm->srcu))
  398. goto out_err_nosrcu;
  399. for (i = 0; i < KVM_NR_BUSES; i++) {
  400. kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
  401. GFP_KERNEL);
  402. if (!kvm->buses[i])
  403. goto out_err;
  404. }
  405. spin_lock_init(&kvm->mmu_lock);
  406. kvm->mm = current->mm;
  407. atomic_inc(&kvm->mm->mm_count);
  408. kvm_eventfd_init(kvm);
  409. mutex_init(&kvm->lock);
  410. mutex_init(&kvm->irq_lock);
  411. mutex_init(&kvm->slots_lock);
  412. atomic_set(&kvm->users_count, 1);
  413. r = kvm_init_mmu_notifier(kvm);
  414. if (r)
  415. goto out_err;
  416. raw_spin_lock(&kvm_lock);
  417. list_add(&kvm->vm_list, &vm_list);
  418. raw_spin_unlock(&kvm_lock);
  419. return kvm;
  420. out_err:
  421. cleanup_srcu_struct(&kvm->srcu);
  422. out_err_nosrcu:
  423. hardware_disable_all();
  424. out_err_nodisable:
  425. for (i = 0; i < KVM_NR_BUSES; i++)
  426. kfree(kvm->buses[i]);
  427. kfree(kvm->memslots);
  428. kvm_arch_free_vm(kvm);
  429. return ERR_PTR(r);
  430. }
  431. static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
  432. {
  433. if (!memslot->dirty_bitmap)
  434. return;
  435. if (2 * kvm_dirty_bitmap_bytes(memslot) > PAGE_SIZE)
  436. vfree(memslot->dirty_bitmap_head);
  437. else
  438. kfree(memslot->dirty_bitmap_head);
  439. memslot->dirty_bitmap = NULL;
  440. memslot->dirty_bitmap_head = NULL;
  441. }
  442. /*
  443. * Free any memory in @free but not in @dont.
  444. */
  445. static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
  446. struct kvm_memory_slot *dont)
  447. {
  448. int i;
  449. if (!dont || free->rmap != dont->rmap)
  450. vfree(free->rmap);
  451. if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
  452. kvm_destroy_dirty_bitmap(free);
  453. for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
  454. if (!dont || free->lpage_info[i] != dont->lpage_info[i]) {
  455. vfree(free->lpage_info[i]);
  456. free->lpage_info[i] = NULL;
  457. }
  458. }
  459. free->npages = 0;
  460. free->rmap = NULL;
  461. }
  462. void kvm_free_physmem(struct kvm *kvm)
  463. {
  464. int i;
  465. struct kvm_memslots *slots = kvm->memslots;
  466. for (i = 0; i < slots->nmemslots; ++i)
  467. kvm_free_physmem_slot(&slots->memslots[i], NULL);
  468. kfree(kvm->memslots);
  469. }
  470. static void kvm_destroy_vm(struct kvm *kvm)
  471. {
  472. int i;
  473. struct mm_struct *mm = kvm->mm;
  474. kvm_arch_sync_events(kvm);
  475. raw_spin_lock(&kvm_lock);
  476. list_del(&kvm->vm_list);
  477. raw_spin_unlock(&kvm_lock);
  478. kvm_free_irq_routing(kvm);
  479. for (i = 0; i < KVM_NR_BUSES; i++)
  480. kvm_io_bus_destroy(kvm->buses[i]);
  481. kvm_coalesced_mmio_free(kvm);
  482. #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
  483. mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
  484. #else
  485. kvm_arch_flush_shadow(kvm);
  486. #endif
  487. kvm_arch_destroy_vm(kvm);
  488. kvm_free_physmem(kvm);
  489. cleanup_srcu_struct(&kvm->srcu);
  490. kvm_arch_free_vm(kvm);
  491. hardware_disable_all();
  492. mmdrop(mm);
  493. }
  494. void kvm_get_kvm(struct kvm *kvm)
  495. {
  496. atomic_inc(&kvm->users_count);
  497. }
  498. EXPORT_SYMBOL_GPL(kvm_get_kvm);
  499. void kvm_put_kvm(struct kvm *kvm)
  500. {
  501. if (atomic_dec_and_test(&kvm->users_count))
  502. kvm_destroy_vm(kvm);
  503. }
  504. EXPORT_SYMBOL_GPL(kvm_put_kvm);
  505. static int kvm_vm_release(struct inode *inode, struct file *filp)
  506. {
  507. struct kvm *kvm = filp->private_data;
  508. kvm_irqfd_release(kvm);
  509. kvm_put_kvm(kvm);
  510. return 0;
  511. }
  512. #ifndef CONFIG_S390
  513. /*
  514. * Allocation size is twice as large as the actual dirty bitmap size.
  515. * This makes it possible to do double buffering: see x86's
  516. * kvm_vm_ioctl_get_dirty_log().
  517. */
  518. static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
  519. {
  520. unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
  521. if (dirty_bytes > PAGE_SIZE)
  522. memslot->dirty_bitmap = vzalloc(dirty_bytes);
  523. else
  524. memslot->dirty_bitmap = kzalloc(dirty_bytes, GFP_KERNEL);
  525. if (!memslot->dirty_bitmap)
  526. return -ENOMEM;
  527. memslot->dirty_bitmap_head = memslot->dirty_bitmap;
  528. return 0;
  529. }
  530. #endif /* !CONFIG_S390 */
  531. /*
  532. * Allocate some memory and give it an address in the guest physical address
  533. * space.
  534. *
  535. * Discontiguous memory is allowed, mostly for framebuffers.
  536. *
  537. * Must be called holding mmap_sem for write.
  538. */
  539. int __kvm_set_memory_region(struct kvm *kvm,
  540. struct kvm_userspace_memory_region *mem,
  541. int user_alloc)
  542. {
  543. int r;
  544. gfn_t base_gfn;
  545. unsigned long npages;
  546. unsigned long i;
  547. struct kvm_memory_slot *memslot;
  548. struct kvm_memory_slot old, new;
  549. struct kvm_memslots *slots, *old_memslots;
  550. r = -EINVAL;
  551. /* General sanity checks */
  552. if (mem->memory_size & (PAGE_SIZE - 1))
  553. goto out;
  554. if (mem->guest_phys_addr & (PAGE_SIZE - 1))
  555. goto out;
  556. /* We can read the guest memory with __xxx_user() later on. */
  557. if (user_alloc &&
  558. ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
  559. !access_ok(VERIFY_WRITE,
  560. (void __user *)(unsigned long)mem->userspace_addr,
  561. mem->memory_size)))
  562. goto out;
  563. if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS)
  564. goto out;
  565. if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
  566. goto out;
  567. memslot = &kvm->memslots->memslots[mem->slot];
  568. base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
  569. npages = mem->memory_size >> PAGE_SHIFT;
  570. r = -EINVAL;
  571. if (npages > KVM_MEM_MAX_NR_PAGES)
  572. goto out;
  573. if (!npages)
  574. mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
  575. new = old = *memslot;
  576. new.id = mem->slot;
  577. new.base_gfn = base_gfn;
  578. new.npages = npages;
  579. new.flags = mem->flags;
  580. /* Disallow changing a memory slot's size. */
  581. r = -EINVAL;
  582. if (npages && old.npages && npages != old.npages)
  583. goto out_free;
  584. /* Check for overlaps */
  585. r = -EEXIST;
  586. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  587. struct kvm_memory_slot *s = &kvm->memslots->memslots[i];
  588. if (s == memslot || !s->npages)
  589. continue;
  590. if (!((base_gfn + npages <= s->base_gfn) ||
  591. (base_gfn >= s->base_gfn + s->npages)))
  592. goto out_free;
  593. }
  594. /* Free page dirty bitmap if unneeded */
  595. if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
  596. new.dirty_bitmap = NULL;
  597. r = -ENOMEM;
  598. /* Allocate if a slot is being created */
  599. #ifndef CONFIG_S390
  600. if (npages && !new.rmap) {
  601. new.rmap = vzalloc(npages * sizeof(*new.rmap));
  602. if (!new.rmap)
  603. goto out_free;
  604. new.user_alloc = user_alloc;
  605. new.userspace_addr = mem->userspace_addr;
  606. }
  607. if (!npages)
  608. goto skip_lpage;
  609. for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
  610. unsigned long ugfn;
  611. unsigned long j;
  612. int lpages;
  613. int level = i + 2;
  614. /* Avoid unused variable warning if no large pages */
  615. (void)level;
  616. if (new.lpage_info[i])
  617. continue;
  618. lpages = 1 + ((base_gfn + npages - 1)
  619. >> KVM_HPAGE_GFN_SHIFT(level));
  620. lpages -= base_gfn >> KVM_HPAGE_GFN_SHIFT(level);
  621. new.lpage_info[i] = vzalloc(lpages * sizeof(*new.lpage_info[i]));
  622. if (!new.lpage_info[i])
  623. goto out_free;
  624. if (base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
  625. new.lpage_info[i][0].write_count = 1;
  626. if ((base_gfn+npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
  627. new.lpage_info[i][lpages - 1].write_count = 1;
  628. ugfn = new.userspace_addr >> PAGE_SHIFT;
  629. /*
  630. * If the gfn and userspace address are not aligned wrt each
  631. * other, or if explicitly asked to, disable large page
  632. * support for this slot
  633. */
  634. if ((base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
  635. !largepages_enabled)
  636. for (j = 0; j < lpages; ++j)
  637. new.lpage_info[i][j].write_count = 1;
  638. }
  639. skip_lpage:
  640. /* Allocate page dirty bitmap if needed */
  641. if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
  642. if (kvm_create_dirty_bitmap(&new) < 0)
  643. goto out_free;
  644. /* destroy any largepage mappings for dirty tracking */
  645. }
  646. #else /* not defined CONFIG_S390 */
  647. new.user_alloc = user_alloc;
  648. if (user_alloc)
  649. new.userspace_addr = mem->userspace_addr;
  650. #endif /* not defined CONFIG_S390 */
  651. if (!npages) {
  652. r = -ENOMEM;
  653. slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
  654. if (!slots)
  655. goto out_free;
  656. memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
  657. if (mem->slot >= slots->nmemslots)
  658. slots->nmemslots = mem->slot + 1;
  659. slots->generation++;
  660. slots->memslots[mem->slot].flags |= KVM_MEMSLOT_INVALID;
  661. old_memslots = kvm->memslots;
  662. rcu_assign_pointer(kvm->memslots, slots);
  663. synchronize_srcu_expedited(&kvm->srcu);
  664. /* From this point no new shadow pages pointing to a deleted
  665. * memslot will be created.
  666. *
  667. * validation of sp->gfn happens in:
  668. * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
  669. * - kvm_is_visible_gfn (mmu_check_roots)
  670. */
  671. kvm_arch_flush_shadow(kvm);
  672. kfree(old_memslots);
  673. }
  674. r = kvm_arch_prepare_memory_region(kvm, &new, old, mem, user_alloc);
  675. if (r)
  676. goto out_free;
  677. /* map the pages in iommu page table */
  678. if (npages) {
  679. r = kvm_iommu_map_pages(kvm, &new);
  680. if (r)
  681. goto out_free;
  682. }
  683. r = -ENOMEM;
  684. slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
  685. if (!slots)
  686. goto out_free;
  687. memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
  688. if (mem->slot >= slots->nmemslots)
  689. slots->nmemslots = mem->slot + 1;
  690. slots->generation++;
  691. /* actual memory is freed via old in kvm_free_physmem_slot below */
  692. if (!npages) {
  693. new.rmap = NULL;
  694. new.dirty_bitmap = NULL;
  695. for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i)
  696. new.lpage_info[i] = NULL;
  697. }
  698. slots->memslots[mem->slot] = new;
  699. old_memslots = kvm->memslots;
  700. rcu_assign_pointer(kvm->memslots, slots);
  701. synchronize_srcu_expedited(&kvm->srcu);
  702. kvm_arch_commit_memory_region(kvm, mem, old, user_alloc);
  703. /*
  704. * If the new memory slot is created, we need to clear all
  705. * mmio sptes.
  706. */
  707. if (npages && old.base_gfn != mem->guest_phys_addr >> PAGE_SHIFT)
  708. kvm_arch_flush_shadow(kvm);
  709. kvm_free_physmem_slot(&old, &new);
  710. kfree(old_memslots);
  711. return 0;
  712. out_free:
  713. kvm_free_physmem_slot(&new, &old);
  714. out:
  715. return r;
  716. }
  717. EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
  718. int kvm_set_memory_region(struct kvm *kvm,
  719. struct kvm_userspace_memory_region *mem,
  720. int user_alloc)
  721. {
  722. int r;
  723. mutex_lock(&kvm->slots_lock);
  724. r = __kvm_set_memory_region(kvm, mem, user_alloc);
  725. mutex_unlock(&kvm->slots_lock);
  726. return r;
  727. }
  728. EXPORT_SYMBOL_GPL(kvm_set_memory_region);
  729. int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
  730. struct
  731. kvm_userspace_memory_region *mem,
  732. int user_alloc)
  733. {
  734. if (mem->slot >= KVM_MEMORY_SLOTS)
  735. return -EINVAL;
  736. return kvm_set_memory_region(kvm, mem, user_alloc);
  737. }
  738. int kvm_get_dirty_log(struct kvm *kvm,
  739. struct kvm_dirty_log *log, int *is_dirty)
  740. {
  741. struct kvm_memory_slot *memslot;
  742. int r, i;
  743. unsigned long n;
  744. unsigned long any = 0;
  745. r = -EINVAL;
  746. if (log->slot >= KVM_MEMORY_SLOTS)
  747. goto out;
  748. memslot = &kvm->memslots->memslots[log->slot];
  749. r = -ENOENT;
  750. if (!memslot->dirty_bitmap)
  751. goto out;
  752. n = kvm_dirty_bitmap_bytes(memslot);
  753. for (i = 0; !any && i < n/sizeof(long); ++i)
  754. any = memslot->dirty_bitmap[i];
  755. r = -EFAULT;
  756. if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
  757. goto out;
  758. if (any)
  759. *is_dirty = 1;
  760. r = 0;
  761. out:
  762. return r;
  763. }
  764. void kvm_disable_largepages(void)
  765. {
  766. largepages_enabled = false;
  767. }
  768. EXPORT_SYMBOL_GPL(kvm_disable_largepages);
  769. int is_error_page(struct page *page)
  770. {
  771. return page == bad_page || page == hwpoison_page || page == fault_page;
  772. }
  773. EXPORT_SYMBOL_GPL(is_error_page);
  774. int is_error_pfn(pfn_t pfn)
  775. {
  776. return pfn == bad_pfn || pfn == hwpoison_pfn || pfn == fault_pfn;
  777. }
  778. EXPORT_SYMBOL_GPL(is_error_pfn);
  779. int is_hwpoison_pfn(pfn_t pfn)
  780. {
  781. return pfn == hwpoison_pfn;
  782. }
  783. EXPORT_SYMBOL_GPL(is_hwpoison_pfn);
  784. int is_fault_pfn(pfn_t pfn)
  785. {
  786. return pfn == fault_pfn;
  787. }
  788. EXPORT_SYMBOL_GPL(is_fault_pfn);
  789. int is_noslot_pfn(pfn_t pfn)
  790. {
  791. return pfn == bad_pfn;
  792. }
  793. EXPORT_SYMBOL_GPL(is_noslot_pfn);
  794. int is_invalid_pfn(pfn_t pfn)
  795. {
  796. return pfn == hwpoison_pfn || pfn == fault_pfn;
  797. }
  798. EXPORT_SYMBOL_GPL(is_invalid_pfn);
  799. static inline unsigned long bad_hva(void)
  800. {
  801. return PAGE_OFFSET;
  802. }
  803. int kvm_is_error_hva(unsigned long addr)
  804. {
  805. return addr == bad_hva();
  806. }
  807. EXPORT_SYMBOL_GPL(kvm_is_error_hva);
  808. static struct kvm_memory_slot *__gfn_to_memslot(struct kvm_memslots *slots,
  809. gfn_t gfn)
  810. {
  811. int i;
  812. for (i = 0; i < slots->nmemslots; ++i) {
  813. struct kvm_memory_slot *memslot = &slots->memslots[i];
  814. if (gfn >= memslot->base_gfn
  815. && gfn < memslot->base_gfn + memslot->npages)
  816. return memslot;
  817. }
  818. return NULL;
  819. }
  820. struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  821. {
  822. return __gfn_to_memslot(kvm_memslots(kvm), gfn);
  823. }
  824. EXPORT_SYMBOL_GPL(gfn_to_memslot);
  825. int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
  826. {
  827. int i;
  828. struct kvm_memslots *slots = kvm_memslots(kvm);
  829. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  830. struct kvm_memory_slot *memslot = &slots->memslots[i];
  831. if (memslot->flags & KVM_MEMSLOT_INVALID)
  832. continue;
  833. if (gfn >= memslot->base_gfn
  834. && gfn < memslot->base_gfn + memslot->npages)
  835. return 1;
  836. }
  837. return 0;
  838. }
  839. EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
  840. unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
  841. {
  842. struct vm_area_struct *vma;
  843. unsigned long addr, size;
  844. size = PAGE_SIZE;
  845. addr = gfn_to_hva(kvm, gfn);
  846. if (kvm_is_error_hva(addr))
  847. return PAGE_SIZE;
  848. down_read(&current->mm->mmap_sem);
  849. vma = find_vma(current->mm, addr);
  850. if (!vma)
  851. goto out;
  852. size = vma_kernel_pagesize(vma);
  853. out:
  854. up_read(&current->mm->mmap_sem);
  855. return size;
  856. }
  857. static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
  858. gfn_t *nr_pages)
  859. {
  860. if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
  861. return bad_hva();
  862. if (nr_pages)
  863. *nr_pages = slot->npages - (gfn - slot->base_gfn);
  864. return gfn_to_hva_memslot(slot, gfn);
  865. }
  866. unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
  867. {
  868. return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
  869. }
  870. EXPORT_SYMBOL_GPL(gfn_to_hva);
  871. static pfn_t get_fault_pfn(void)
  872. {
  873. get_page(fault_page);
  874. return fault_pfn;
  875. }
  876. int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm,
  877. unsigned long start, int write, struct page **page)
  878. {
  879. int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
  880. if (write)
  881. flags |= FOLL_WRITE;
  882. return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL);
  883. }
  884. static inline int check_user_page_hwpoison(unsigned long addr)
  885. {
  886. int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
  887. rc = __get_user_pages(current, current->mm, addr, 1,
  888. flags, NULL, NULL, NULL);
  889. return rc == -EHWPOISON;
  890. }
  891. static pfn_t hva_to_pfn(struct kvm *kvm, unsigned long addr, bool atomic,
  892. bool *async, bool write_fault, bool *writable)
  893. {
  894. struct page *page[1];
  895. int npages = 0;
  896. pfn_t pfn;
  897. /* we can do it either atomically or asynchronously, not both */
  898. BUG_ON(atomic && async);
  899. BUG_ON(!write_fault && !writable);
  900. if (writable)
  901. *writable = true;
  902. if (atomic || async)
  903. npages = __get_user_pages_fast(addr, 1, 1, page);
  904. if (unlikely(npages != 1) && !atomic) {
  905. might_sleep();
  906. if (writable)
  907. *writable = write_fault;
  908. if (async) {
  909. down_read(&current->mm->mmap_sem);
  910. npages = get_user_page_nowait(current, current->mm,
  911. addr, write_fault, page);
  912. up_read(&current->mm->mmap_sem);
  913. } else
  914. npages = get_user_pages_fast(addr, 1, write_fault,
  915. page);
  916. /* map read fault as writable if possible */
  917. if (unlikely(!write_fault) && npages == 1) {
  918. struct page *wpage[1];
  919. npages = __get_user_pages_fast(addr, 1, 1, wpage);
  920. if (npages == 1) {
  921. *writable = true;
  922. put_page(page[0]);
  923. page[0] = wpage[0];
  924. }
  925. npages = 1;
  926. }
  927. }
  928. if (unlikely(npages != 1)) {
  929. struct vm_area_struct *vma;
  930. if (atomic)
  931. return get_fault_pfn();
  932. down_read(&current->mm->mmap_sem);
  933. if (npages == -EHWPOISON ||
  934. (!async && check_user_page_hwpoison(addr))) {
  935. up_read(&current->mm->mmap_sem);
  936. get_page(hwpoison_page);
  937. return page_to_pfn(hwpoison_page);
  938. }
  939. vma = find_vma_intersection(current->mm, addr, addr+1);
  940. if (vma == NULL)
  941. pfn = get_fault_pfn();
  942. else if ((vma->vm_flags & VM_PFNMAP)) {
  943. pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
  944. vma->vm_pgoff;
  945. BUG_ON(!kvm_is_mmio_pfn(pfn));
  946. } else {
  947. if (async && (vma->vm_flags & VM_WRITE))
  948. *async = true;
  949. pfn = get_fault_pfn();
  950. }
  951. up_read(&current->mm->mmap_sem);
  952. } else
  953. pfn = page_to_pfn(page[0]);
  954. return pfn;
  955. }
  956. pfn_t hva_to_pfn_atomic(struct kvm *kvm, unsigned long addr)
  957. {
  958. return hva_to_pfn(kvm, addr, true, NULL, true, NULL);
  959. }
  960. EXPORT_SYMBOL_GPL(hva_to_pfn_atomic);
  961. static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic, bool *async,
  962. bool write_fault, bool *writable)
  963. {
  964. unsigned long addr;
  965. if (async)
  966. *async = false;
  967. addr = gfn_to_hva(kvm, gfn);
  968. if (kvm_is_error_hva(addr)) {
  969. get_page(bad_page);
  970. return page_to_pfn(bad_page);
  971. }
  972. return hva_to_pfn(kvm, addr, atomic, async, write_fault, writable);
  973. }
  974. pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
  975. {
  976. return __gfn_to_pfn(kvm, gfn, true, NULL, true, NULL);
  977. }
  978. EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
  979. pfn_t gfn_to_pfn_async(struct kvm *kvm, gfn_t gfn, bool *async,
  980. bool write_fault, bool *writable)
  981. {
  982. return __gfn_to_pfn(kvm, gfn, false, async, write_fault, writable);
  983. }
  984. EXPORT_SYMBOL_GPL(gfn_to_pfn_async);
  985. pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
  986. {
  987. return __gfn_to_pfn(kvm, gfn, false, NULL, true, NULL);
  988. }
  989. EXPORT_SYMBOL_GPL(gfn_to_pfn);
  990. pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
  991. bool *writable)
  992. {
  993. return __gfn_to_pfn(kvm, gfn, false, NULL, write_fault, writable);
  994. }
  995. EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
  996. pfn_t gfn_to_pfn_memslot(struct kvm *kvm,
  997. struct kvm_memory_slot *slot, gfn_t gfn)
  998. {
  999. unsigned long addr = gfn_to_hva_memslot(slot, gfn);
  1000. return hva_to_pfn(kvm, addr, false, NULL, true, NULL);
  1001. }
  1002. int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages,
  1003. int nr_pages)
  1004. {
  1005. unsigned long addr;
  1006. gfn_t entry;
  1007. addr = gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, &entry);
  1008. if (kvm_is_error_hva(addr))
  1009. return -1;
  1010. if (entry < nr_pages)
  1011. return 0;
  1012. return __get_user_pages_fast(addr, nr_pages, 1, pages);
  1013. }
  1014. EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
  1015. struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
  1016. {
  1017. pfn_t pfn;
  1018. pfn = gfn_to_pfn(kvm, gfn);
  1019. if (!kvm_is_mmio_pfn(pfn))
  1020. return pfn_to_page(pfn);
  1021. WARN_ON(kvm_is_mmio_pfn(pfn));
  1022. get_page(bad_page);
  1023. return bad_page;
  1024. }
  1025. EXPORT_SYMBOL_GPL(gfn_to_page);
  1026. void kvm_release_page_clean(struct page *page)
  1027. {
  1028. kvm_release_pfn_clean(page_to_pfn(page));
  1029. }
  1030. EXPORT_SYMBOL_GPL(kvm_release_page_clean);
  1031. void kvm_release_pfn_clean(pfn_t pfn)
  1032. {
  1033. if (!kvm_is_mmio_pfn(pfn))
  1034. put_page(pfn_to_page(pfn));
  1035. }
  1036. EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
  1037. void kvm_release_page_dirty(struct page *page)
  1038. {
  1039. kvm_release_pfn_dirty(page_to_pfn(page));
  1040. }
  1041. EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
  1042. void kvm_release_pfn_dirty(pfn_t pfn)
  1043. {
  1044. kvm_set_pfn_dirty(pfn);
  1045. kvm_release_pfn_clean(pfn);
  1046. }
  1047. EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
  1048. void kvm_set_page_dirty(struct page *page)
  1049. {
  1050. kvm_set_pfn_dirty(page_to_pfn(page));
  1051. }
  1052. EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
  1053. void kvm_set_pfn_dirty(pfn_t pfn)
  1054. {
  1055. if (!kvm_is_mmio_pfn(pfn)) {
  1056. struct page *page = pfn_to_page(pfn);
  1057. if (!PageReserved(page))
  1058. SetPageDirty(page);
  1059. }
  1060. }
  1061. EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
  1062. void kvm_set_pfn_accessed(pfn_t pfn)
  1063. {
  1064. if (!kvm_is_mmio_pfn(pfn))
  1065. mark_page_accessed(pfn_to_page(pfn));
  1066. }
  1067. EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
  1068. void kvm_get_pfn(pfn_t pfn)
  1069. {
  1070. if (!kvm_is_mmio_pfn(pfn))
  1071. get_page(pfn_to_page(pfn));
  1072. }
  1073. EXPORT_SYMBOL_GPL(kvm_get_pfn);
  1074. static int next_segment(unsigned long len, int offset)
  1075. {
  1076. if (len > PAGE_SIZE - offset)
  1077. return PAGE_SIZE - offset;
  1078. else
  1079. return len;
  1080. }
  1081. int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
  1082. int len)
  1083. {
  1084. int r;
  1085. unsigned long addr;
  1086. addr = gfn_to_hva(kvm, gfn);
  1087. if (kvm_is_error_hva(addr))
  1088. return -EFAULT;
  1089. r = __copy_from_user(data, (void __user *)addr + offset, len);
  1090. if (r)
  1091. return -EFAULT;
  1092. return 0;
  1093. }
  1094. EXPORT_SYMBOL_GPL(kvm_read_guest_page);
  1095. int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
  1096. {
  1097. gfn_t gfn = gpa >> PAGE_SHIFT;
  1098. int seg;
  1099. int offset = offset_in_page(gpa);
  1100. int ret;
  1101. while ((seg = next_segment(len, offset)) != 0) {
  1102. ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
  1103. if (ret < 0)
  1104. return ret;
  1105. offset = 0;
  1106. len -= seg;
  1107. data += seg;
  1108. ++gfn;
  1109. }
  1110. return 0;
  1111. }
  1112. EXPORT_SYMBOL_GPL(kvm_read_guest);
  1113. int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
  1114. unsigned long len)
  1115. {
  1116. int r;
  1117. unsigned long addr;
  1118. gfn_t gfn = gpa >> PAGE_SHIFT;
  1119. int offset = offset_in_page(gpa);
  1120. addr = gfn_to_hva(kvm, gfn);
  1121. if (kvm_is_error_hva(addr))
  1122. return -EFAULT;
  1123. pagefault_disable();
  1124. r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
  1125. pagefault_enable();
  1126. if (r)
  1127. return -EFAULT;
  1128. return 0;
  1129. }
  1130. EXPORT_SYMBOL(kvm_read_guest_atomic);
  1131. int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
  1132. int offset, int len)
  1133. {
  1134. int r;
  1135. unsigned long addr;
  1136. addr = gfn_to_hva(kvm, gfn);
  1137. if (kvm_is_error_hva(addr))
  1138. return -EFAULT;
  1139. r = __copy_to_user((void __user *)addr + offset, data, len);
  1140. if (r)
  1141. return -EFAULT;
  1142. mark_page_dirty(kvm, gfn);
  1143. return 0;
  1144. }
  1145. EXPORT_SYMBOL_GPL(kvm_write_guest_page);
  1146. int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
  1147. unsigned long len)
  1148. {
  1149. gfn_t gfn = gpa >> PAGE_SHIFT;
  1150. int seg;
  1151. int offset = offset_in_page(gpa);
  1152. int ret;
  1153. while ((seg = next_segment(len, offset)) != 0) {
  1154. ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
  1155. if (ret < 0)
  1156. return ret;
  1157. offset = 0;
  1158. len -= seg;
  1159. data += seg;
  1160. ++gfn;
  1161. }
  1162. return 0;
  1163. }
  1164. int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
  1165. gpa_t gpa)
  1166. {
  1167. struct kvm_memslots *slots = kvm_memslots(kvm);
  1168. int offset = offset_in_page(gpa);
  1169. gfn_t gfn = gpa >> PAGE_SHIFT;
  1170. ghc->gpa = gpa;
  1171. ghc->generation = slots->generation;
  1172. ghc->memslot = __gfn_to_memslot(slots, gfn);
  1173. ghc->hva = gfn_to_hva_many(ghc->memslot, gfn, NULL);
  1174. if (!kvm_is_error_hva(ghc->hva))
  1175. ghc->hva += offset;
  1176. else
  1177. return -EFAULT;
  1178. return 0;
  1179. }
  1180. EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
  1181. int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
  1182. void *data, unsigned long len)
  1183. {
  1184. struct kvm_memslots *slots = kvm_memslots(kvm);
  1185. int r;
  1186. if (slots->generation != ghc->generation)
  1187. kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa);
  1188. if (kvm_is_error_hva(ghc->hva))
  1189. return -EFAULT;
  1190. r = __copy_to_user((void __user *)ghc->hva, data, len);
  1191. if (r)
  1192. return -EFAULT;
  1193. mark_page_dirty_in_slot(kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT);
  1194. return 0;
  1195. }
  1196. EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
  1197. int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
  1198. void *data, unsigned long len)
  1199. {
  1200. struct kvm_memslots *slots = kvm_memslots(kvm);
  1201. int r;
  1202. if (slots->generation != ghc->generation)
  1203. kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa);
  1204. if (kvm_is_error_hva(ghc->hva))
  1205. return -EFAULT;
  1206. r = __copy_from_user(data, (void __user *)ghc->hva, len);
  1207. if (r)
  1208. return -EFAULT;
  1209. return 0;
  1210. }
  1211. EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
  1212. int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
  1213. {
  1214. return kvm_write_guest_page(kvm, gfn, (const void *) empty_zero_page,
  1215. offset, len);
  1216. }
  1217. EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
  1218. int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
  1219. {
  1220. gfn_t gfn = gpa >> PAGE_SHIFT;
  1221. int seg;
  1222. int offset = offset_in_page(gpa);
  1223. int ret;
  1224. while ((seg = next_segment(len, offset)) != 0) {
  1225. ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
  1226. if (ret < 0)
  1227. return ret;
  1228. offset = 0;
  1229. len -= seg;
  1230. ++gfn;
  1231. }
  1232. return 0;
  1233. }
  1234. EXPORT_SYMBOL_GPL(kvm_clear_guest);
  1235. void mark_page_dirty_in_slot(struct kvm *kvm, struct kvm_memory_slot *memslot,
  1236. gfn_t gfn)
  1237. {
  1238. if (memslot && memslot->dirty_bitmap) {
  1239. unsigned long rel_gfn = gfn - memslot->base_gfn;
  1240. __set_bit_le(rel_gfn, memslot->dirty_bitmap);
  1241. }
  1242. }
  1243. void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
  1244. {
  1245. struct kvm_memory_slot *memslot;
  1246. memslot = gfn_to_memslot(kvm, gfn);
  1247. mark_page_dirty_in_slot(kvm, memslot, gfn);
  1248. }
  1249. /*
  1250. * The vCPU has executed a HLT instruction with in-kernel mode enabled.
  1251. */
  1252. void kvm_vcpu_block(struct kvm_vcpu *vcpu)
  1253. {
  1254. DEFINE_WAIT(wait);
  1255. for (;;) {
  1256. prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
  1257. if (kvm_arch_vcpu_runnable(vcpu)) {
  1258. kvm_make_request(KVM_REQ_UNHALT, vcpu);
  1259. break;
  1260. }
  1261. if (kvm_cpu_has_pending_timer(vcpu))
  1262. break;
  1263. if (signal_pending(current))
  1264. break;
  1265. schedule();
  1266. }
  1267. finish_wait(&vcpu->wq, &wait);
  1268. }
  1269. void kvm_resched(struct kvm_vcpu *vcpu)
  1270. {
  1271. if (!need_resched())
  1272. return;
  1273. cond_resched();
  1274. }
  1275. EXPORT_SYMBOL_GPL(kvm_resched);
  1276. void kvm_vcpu_on_spin(struct kvm_vcpu *me)
  1277. {
  1278. struct kvm *kvm = me->kvm;
  1279. struct kvm_vcpu *vcpu;
  1280. int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
  1281. int yielded = 0;
  1282. int pass;
  1283. int i;
  1284. /*
  1285. * We boost the priority of a VCPU that is runnable but not
  1286. * currently running, because it got preempted by something
  1287. * else and called schedule in __vcpu_run. Hopefully that
  1288. * VCPU is holding the lock that we need and will release it.
  1289. * We approximate round-robin by starting at the last boosted VCPU.
  1290. */
  1291. for (pass = 0; pass < 2 && !yielded; pass++) {
  1292. kvm_for_each_vcpu(i, vcpu, kvm) {
  1293. struct task_struct *task = NULL;
  1294. struct pid *pid;
  1295. if (!pass && i < last_boosted_vcpu) {
  1296. i = last_boosted_vcpu;
  1297. continue;
  1298. } else if (pass && i > last_boosted_vcpu)
  1299. break;
  1300. if (vcpu == me)
  1301. continue;
  1302. if (waitqueue_active(&vcpu->wq))
  1303. continue;
  1304. rcu_read_lock();
  1305. pid = rcu_dereference(vcpu->pid);
  1306. if (pid)
  1307. task = get_pid_task(vcpu->pid, PIDTYPE_PID);
  1308. rcu_read_unlock();
  1309. if (!task)
  1310. continue;
  1311. if (task->flags & PF_VCPU) {
  1312. put_task_struct(task);
  1313. continue;
  1314. }
  1315. if (yield_to(task, 1)) {
  1316. put_task_struct(task);
  1317. kvm->last_boosted_vcpu = i;
  1318. yielded = 1;
  1319. break;
  1320. }
  1321. put_task_struct(task);
  1322. }
  1323. }
  1324. }
  1325. EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
  1326. static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1327. {
  1328. struct kvm_vcpu *vcpu = vma->vm_file->private_data;
  1329. struct page *page;
  1330. if (vmf->pgoff == 0)
  1331. page = virt_to_page(vcpu->run);
  1332. #ifdef CONFIG_X86
  1333. else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
  1334. page = virt_to_page(vcpu->arch.pio_data);
  1335. #endif
  1336. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1337. else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
  1338. page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
  1339. #endif
  1340. else
  1341. return VM_FAULT_SIGBUS;
  1342. get_page(page);
  1343. vmf->page = page;
  1344. return 0;
  1345. }
  1346. static const struct vm_operations_struct kvm_vcpu_vm_ops = {
  1347. .fault = kvm_vcpu_fault,
  1348. };
  1349. static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
  1350. {
  1351. vma->vm_ops = &kvm_vcpu_vm_ops;
  1352. return 0;
  1353. }
  1354. static int kvm_vcpu_release(struct inode *inode, struct file *filp)
  1355. {
  1356. struct kvm_vcpu *vcpu = filp->private_data;
  1357. kvm_put_kvm(vcpu->kvm);
  1358. return 0;
  1359. }
  1360. static struct file_operations kvm_vcpu_fops = {
  1361. .release = kvm_vcpu_release,
  1362. .unlocked_ioctl = kvm_vcpu_ioctl,
  1363. #ifdef CONFIG_COMPAT
  1364. .compat_ioctl = kvm_vcpu_compat_ioctl,
  1365. #endif
  1366. .mmap = kvm_vcpu_mmap,
  1367. .llseek = noop_llseek,
  1368. };
  1369. /*
  1370. * Allocates an inode for the vcpu.
  1371. */
  1372. static int create_vcpu_fd(struct kvm_vcpu *vcpu)
  1373. {
  1374. return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR);
  1375. }
  1376. /*
  1377. * Creates some virtual cpus. Good luck creating more than one.
  1378. */
  1379. static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
  1380. {
  1381. int r;
  1382. struct kvm_vcpu *vcpu, *v;
  1383. vcpu = kvm_arch_vcpu_create(kvm, id);
  1384. if (IS_ERR(vcpu))
  1385. return PTR_ERR(vcpu);
  1386. preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
  1387. r = kvm_arch_vcpu_setup(vcpu);
  1388. if (r)
  1389. goto vcpu_destroy;
  1390. mutex_lock(&kvm->lock);
  1391. if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
  1392. r = -EINVAL;
  1393. goto unlock_vcpu_destroy;
  1394. }
  1395. kvm_for_each_vcpu(r, v, kvm)
  1396. if (v->vcpu_id == id) {
  1397. r = -EEXIST;
  1398. goto unlock_vcpu_destroy;
  1399. }
  1400. BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
  1401. /* Now it's all set up, let userspace reach it */
  1402. kvm_get_kvm(kvm);
  1403. r = create_vcpu_fd(vcpu);
  1404. if (r < 0) {
  1405. kvm_put_kvm(kvm);
  1406. goto unlock_vcpu_destroy;
  1407. }
  1408. kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
  1409. smp_wmb();
  1410. atomic_inc(&kvm->online_vcpus);
  1411. #ifdef CONFIG_KVM_APIC_ARCHITECTURE
  1412. if (kvm->bsp_vcpu_id == id)
  1413. kvm->bsp_vcpu = vcpu;
  1414. #endif
  1415. mutex_unlock(&kvm->lock);
  1416. return r;
  1417. unlock_vcpu_destroy:
  1418. mutex_unlock(&kvm->lock);
  1419. vcpu_destroy:
  1420. kvm_arch_vcpu_destroy(vcpu);
  1421. return r;
  1422. }
  1423. static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
  1424. {
  1425. if (sigset) {
  1426. sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
  1427. vcpu->sigset_active = 1;
  1428. vcpu->sigset = *sigset;
  1429. } else
  1430. vcpu->sigset_active = 0;
  1431. return 0;
  1432. }
  1433. static long kvm_vcpu_ioctl(struct file *filp,
  1434. unsigned int ioctl, unsigned long arg)
  1435. {
  1436. struct kvm_vcpu *vcpu = filp->private_data;
  1437. void __user *argp = (void __user *)arg;
  1438. int r;
  1439. struct kvm_fpu *fpu = NULL;
  1440. struct kvm_sregs *kvm_sregs = NULL;
  1441. if (vcpu->kvm->mm != current->mm)
  1442. return -EIO;
  1443. #if defined(CONFIG_S390) || defined(CONFIG_PPC)
  1444. /*
  1445. * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
  1446. * so vcpu_load() would break it.
  1447. */
  1448. if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_INTERRUPT)
  1449. return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
  1450. #endif
  1451. vcpu_load(vcpu);
  1452. switch (ioctl) {
  1453. case KVM_RUN:
  1454. r = -EINVAL;
  1455. if (arg)
  1456. goto out;
  1457. r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
  1458. trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
  1459. break;
  1460. case KVM_GET_REGS: {
  1461. struct kvm_regs *kvm_regs;
  1462. r = -ENOMEM;
  1463. kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
  1464. if (!kvm_regs)
  1465. goto out;
  1466. r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
  1467. if (r)
  1468. goto out_free1;
  1469. r = -EFAULT;
  1470. if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
  1471. goto out_free1;
  1472. r = 0;
  1473. out_free1:
  1474. kfree(kvm_regs);
  1475. break;
  1476. }
  1477. case KVM_SET_REGS: {
  1478. struct kvm_regs *kvm_regs;
  1479. r = -ENOMEM;
  1480. kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
  1481. if (!kvm_regs)
  1482. goto out;
  1483. r = -EFAULT;
  1484. if (copy_from_user(kvm_regs, argp, sizeof(struct kvm_regs)))
  1485. goto out_free2;
  1486. r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
  1487. if (r)
  1488. goto out_free2;
  1489. r = 0;
  1490. out_free2:
  1491. kfree(kvm_regs);
  1492. break;
  1493. }
  1494. case KVM_GET_SREGS: {
  1495. kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
  1496. r = -ENOMEM;
  1497. if (!kvm_sregs)
  1498. goto out;
  1499. r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
  1500. if (r)
  1501. goto out;
  1502. r = -EFAULT;
  1503. if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
  1504. goto out;
  1505. r = 0;
  1506. break;
  1507. }
  1508. case KVM_SET_SREGS: {
  1509. kvm_sregs = kmalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
  1510. r = -ENOMEM;
  1511. if (!kvm_sregs)
  1512. goto out;
  1513. r = -EFAULT;
  1514. if (copy_from_user(kvm_sregs, argp, sizeof(struct kvm_sregs)))
  1515. goto out;
  1516. r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
  1517. if (r)
  1518. goto out;
  1519. r = 0;
  1520. break;
  1521. }
  1522. case KVM_GET_MP_STATE: {
  1523. struct kvm_mp_state mp_state;
  1524. r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
  1525. if (r)
  1526. goto out;
  1527. r = -EFAULT;
  1528. if (copy_to_user(argp, &mp_state, sizeof mp_state))
  1529. goto out;
  1530. r = 0;
  1531. break;
  1532. }
  1533. case KVM_SET_MP_STATE: {
  1534. struct kvm_mp_state mp_state;
  1535. r = -EFAULT;
  1536. if (copy_from_user(&mp_state, argp, sizeof mp_state))
  1537. goto out;
  1538. r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
  1539. if (r)
  1540. goto out;
  1541. r = 0;
  1542. break;
  1543. }
  1544. case KVM_TRANSLATE: {
  1545. struct kvm_translation tr;
  1546. r = -EFAULT;
  1547. if (copy_from_user(&tr, argp, sizeof tr))
  1548. goto out;
  1549. r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
  1550. if (r)
  1551. goto out;
  1552. r = -EFAULT;
  1553. if (copy_to_user(argp, &tr, sizeof tr))
  1554. goto out;
  1555. r = 0;
  1556. break;
  1557. }
  1558. case KVM_SET_GUEST_DEBUG: {
  1559. struct kvm_guest_debug dbg;
  1560. r = -EFAULT;
  1561. if (copy_from_user(&dbg, argp, sizeof dbg))
  1562. goto out;
  1563. r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
  1564. if (r)
  1565. goto out;
  1566. r = 0;
  1567. break;
  1568. }
  1569. case KVM_SET_SIGNAL_MASK: {
  1570. struct kvm_signal_mask __user *sigmask_arg = argp;
  1571. struct kvm_signal_mask kvm_sigmask;
  1572. sigset_t sigset, *p;
  1573. p = NULL;
  1574. if (argp) {
  1575. r = -EFAULT;
  1576. if (copy_from_user(&kvm_sigmask, argp,
  1577. sizeof kvm_sigmask))
  1578. goto out;
  1579. r = -EINVAL;
  1580. if (kvm_sigmask.len != sizeof sigset)
  1581. goto out;
  1582. r = -EFAULT;
  1583. if (copy_from_user(&sigset, sigmask_arg->sigset,
  1584. sizeof sigset))
  1585. goto out;
  1586. p = &sigset;
  1587. }
  1588. r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
  1589. break;
  1590. }
  1591. case KVM_GET_FPU: {
  1592. fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
  1593. r = -ENOMEM;
  1594. if (!fpu)
  1595. goto out;
  1596. r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
  1597. if (r)
  1598. goto out;
  1599. r = -EFAULT;
  1600. if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
  1601. goto out;
  1602. r = 0;
  1603. break;
  1604. }
  1605. case KVM_SET_FPU: {
  1606. fpu = kmalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
  1607. r = -ENOMEM;
  1608. if (!fpu)
  1609. goto out;
  1610. r = -EFAULT;
  1611. if (copy_from_user(fpu, argp, sizeof(struct kvm_fpu)))
  1612. goto out;
  1613. r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
  1614. if (r)
  1615. goto out;
  1616. r = 0;
  1617. break;
  1618. }
  1619. default:
  1620. r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
  1621. }
  1622. out:
  1623. vcpu_put(vcpu);
  1624. kfree(fpu);
  1625. kfree(kvm_sregs);
  1626. return r;
  1627. }
  1628. #ifdef CONFIG_COMPAT
  1629. static long kvm_vcpu_compat_ioctl(struct file *filp,
  1630. unsigned int ioctl, unsigned long arg)
  1631. {
  1632. struct kvm_vcpu *vcpu = filp->private_data;
  1633. void __user *argp = compat_ptr(arg);
  1634. int r;
  1635. if (vcpu->kvm->mm != current->mm)
  1636. return -EIO;
  1637. switch (ioctl) {
  1638. case KVM_SET_SIGNAL_MASK: {
  1639. struct kvm_signal_mask __user *sigmask_arg = argp;
  1640. struct kvm_signal_mask kvm_sigmask;
  1641. compat_sigset_t csigset;
  1642. sigset_t sigset;
  1643. if (argp) {
  1644. r = -EFAULT;
  1645. if (copy_from_user(&kvm_sigmask, argp,
  1646. sizeof kvm_sigmask))
  1647. goto out;
  1648. r = -EINVAL;
  1649. if (kvm_sigmask.len != sizeof csigset)
  1650. goto out;
  1651. r = -EFAULT;
  1652. if (copy_from_user(&csigset, sigmask_arg->sigset,
  1653. sizeof csigset))
  1654. goto out;
  1655. }
  1656. sigset_from_compat(&sigset, &csigset);
  1657. r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
  1658. break;
  1659. }
  1660. default:
  1661. r = kvm_vcpu_ioctl(filp, ioctl, arg);
  1662. }
  1663. out:
  1664. return r;
  1665. }
  1666. #endif
  1667. static long kvm_vm_ioctl(struct file *filp,
  1668. unsigned int ioctl, unsigned long arg)
  1669. {
  1670. struct kvm *kvm = filp->private_data;
  1671. void __user *argp = (void __user *)arg;
  1672. int r;
  1673. if (kvm->mm != current->mm)
  1674. return -EIO;
  1675. switch (ioctl) {
  1676. case KVM_CREATE_VCPU:
  1677. r = kvm_vm_ioctl_create_vcpu(kvm, arg);
  1678. if (r < 0)
  1679. goto out;
  1680. break;
  1681. case KVM_SET_USER_MEMORY_REGION: {
  1682. struct kvm_userspace_memory_region kvm_userspace_mem;
  1683. r = -EFAULT;
  1684. if (copy_from_user(&kvm_userspace_mem, argp,
  1685. sizeof kvm_userspace_mem))
  1686. goto out;
  1687. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
  1688. if (r)
  1689. goto out;
  1690. break;
  1691. }
  1692. case KVM_GET_DIRTY_LOG: {
  1693. struct kvm_dirty_log log;
  1694. r = -EFAULT;
  1695. if (copy_from_user(&log, argp, sizeof log))
  1696. goto out;
  1697. r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
  1698. if (r)
  1699. goto out;
  1700. break;
  1701. }
  1702. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1703. case KVM_REGISTER_COALESCED_MMIO: {
  1704. struct kvm_coalesced_mmio_zone zone;
  1705. r = -EFAULT;
  1706. if (copy_from_user(&zone, argp, sizeof zone))
  1707. goto out;
  1708. r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
  1709. if (r)
  1710. goto out;
  1711. r = 0;
  1712. break;
  1713. }
  1714. case KVM_UNREGISTER_COALESCED_MMIO: {
  1715. struct kvm_coalesced_mmio_zone zone;
  1716. r = -EFAULT;
  1717. if (copy_from_user(&zone, argp, sizeof zone))
  1718. goto out;
  1719. r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
  1720. if (r)
  1721. goto out;
  1722. r = 0;
  1723. break;
  1724. }
  1725. #endif
  1726. case KVM_IRQFD: {
  1727. struct kvm_irqfd data;
  1728. r = -EFAULT;
  1729. if (copy_from_user(&data, argp, sizeof data))
  1730. goto out;
  1731. r = kvm_irqfd(kvm, data.fd, data.gsi, data.flags);
  1732. break;
  1733. }
  1734. case KVM_IOEVENTFD: {
  1735. struct kvm_ioeventfd data;
  1736. r = -EFAULT;
  1737. if (copy_from_user(&data, argp, sizeof data))
  1738. goto out;
  1739. r = kvm_ioeventfd(kvm, &data);
  1740. break;
  1741. }
  1742. #ifdef CONFIG_KVM_APIC_ARCHITECTURE
  1743. case KVM_SET_BOOT_CPU_ID:
  1744. r = 0;
  1745. mutex_lock(&kvm->lock);
  1746. if (atomic_read(&kvm->online_vcpus) != 0)
  1747. r = -EBUSY;
  1748. else
  1749. kvm->bsp_vcpu_id = arg;
  1750. mutex_unlock(&kvm->lock);
  1751. break;
  1752. #endif
  1753. default:
  1754. r = kvm_arch_vm_ioctl(filp, ioctl, arg);
  1755. if (r == -ENOTTY)
  1756. r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
  1757. }
  1758. out:
  1759. return r;
  1760. }
  1761. #ifdef CONFIG_COMPAT
  1762. struct compat_kvm_dirty_log {
  1763. __u32 slot;
  1764. __u32 padding1;
  1765. union {
  1766. compat_uptr_t dirty_bitmap; /* one bit per page */
  1767. __u64 padding2;
  1768. };
  1769. };
  1770. static long kvm_vm_compat_ioctl(struct file *filp,
  1771. unsigned int ioctl, unsigned long arg)
  1772. {
  1773. struct kvm *kvm = filp->private_data;
  1774. int r;
  1775. if (kvm->mm != current->mm)
  1776. return -EIO;
  1777. switch (ioctl) {
  1778. case KVM_GET_DIRTY_LOG: {
  1779. struct compat_kvm_dirty_log compat_log;
  1780. struct kvm_dirty_log log;
  1781. r = -EFAULT;
  1782. if (copy_from_user(&compat_log, (void __user *)arg,
  1783. sizeof(compat_log)))
  1784. goto out;
  1785. log.slot = compat_log.slot;
  1786. log.padding1 = compat_log.padding1;
  1787. log.padding2 = compat_log.padding2;
  1788. log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
  1789. r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
  1790. if (r)
  1791. goto out;
  1792. break;
  1793. }
  1794. default:
  1795. r = kvm_vm_ioctl(filp, ioctl, arg);
  1796. }
  1797. out:
  1798. return r;
  1799. }
  1800. #endif
  1801. static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1802. {
  1803. struct page *page[1];
  1804. unsigned long addr;
  1805. int npages;
  1806. gfn_t gfn = vmf->pgoff;
  1807. struct kvm *kvm = vma->vm_file->private_data;
  1808. addr = gfn_to_hva(kvm, gfn);
  1809. if (kvm_is_error_hva(addr))
  1810. return VM_FAULT_SIGBUS;
  1811. npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
  1812. NULL);
  1813. if (unlikely(npages != 1))
  1814. return VM_FAULT_SIGBUS;
  1815. vmf->page = page[0];
  1816. return 0;
  1817. }
  1818. static const struct vm_operations_struct kvm_vm_vm_ops = {
  1819. .fault = kvm_vm_fault,
  1820. };
  1821. static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
  1822. {
  1823. vma->vm_ops = &kvm_vm_vm_ops;
  1824. return 0;
  1825. }
  1826. static struct file_operations kvm_vm_fops = {
  1827. .release = kvm_vm_release,
  1828. .unlocked_ioctl = kvm_vm_ioctl,
  1829. #ifdef CONFIG_COMPAT
  1830. .compat_ioctl = kvm_vm_compat_ioctl,
  1831. #endif
  1832. .mmap = kvm_vm_mmap,
  1833. .llseek = noop_llseek,
  1834. };
  1835. static int kvm_dev_ioctl_create_vm(void)
  1836. {
  1837. int r;
  1838. struct kvm *kvm;
  1839. kvm = kvm_create_vm();
  1840. if (IS_ERR(kvm))
  1841. return PTR_ERR(kvm);
  1842. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1843. r = kvm_coalesced_mmio_init(kvm);
  1844. if (r < 0) {
  1845. kvm_put_kvm(kvm);
  1846. return r;
  1847. }
  1848. #endif
  1849. r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
  1850. if (r < 0)
  1851. kvm_put_kvm(kvm);
  1852. return r;
  1853. }
  1854. static long kvm_dev_ioctl_check_extension_generic(long arg)
  1855. {
  1856. switch (arg) {
  1857. case KVM_CAP_USER_MEMORY:
  1858. case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
  1859. case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
  1860. #ifdef CONFIG_KVM_APIC_ARCHITECTURE
  1861. case KVM_CAP_SET_BOOT_CPU_ID:
  1862. #endif
  1863. case KVM_CAP_INTERNAL_ERROR_DATA:
  1864. return 1;
  1865. #ifdef CONFIG_HAVE_KVM_IRQCHIP
  1866. case KVM_CAP_IRQ_ROUTING:
  1867. return KVM_MAX_IRQ_ROUTES;
  1868. #endif
  1869. default:
  1870. break;
  1871. }
  1872. return kvm_dev_ioctl_check_extension(arg);
  1873. }
  1874. static long kvm_dev_ioctl(struct file *filp,
  1875. unsigned int ioctl, unsigned long arg)
  1876. {
  1877. long r = -EINVAL;
  1878. switch (ioctl) {
  1879. case KVM_GET_API_VERSION:
  1880. r = -EINVAL;
  1881. if (arg)
  1882. goto out;
  1883. r = KVM_API_VERSION;
  1884. break;
  1885. case KVM_CREATE_VM:
  1886. r = -EINVAL;
  1887. if (arg)
  1888. goto out;
  1889. r = kvm_dev_ioctl_create_vm();
  1890. break;
  1891. case KVM_CHECK_EXTENSION:
  1892. r = kvm_dev_ioctl_check_extension_generic(arg);
  1893. break;
  1894. case KVM_GET_VCPU_MMAP_SIZE:
  1895. r = -EINVAL;
  1896. if (arg)
  1897. goto out;
  1898. r = PAGE_SIZE; /* struct kvm_run */
  1899. #ifdef CONFIG_X86
  1900. r += PAGE_SIZE; /* pio data page */
  1901. #endif
  1902. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1903. r += PAGE_SIZE; /* coalesced mmio ring page */
  1904. #endif
  1905. break;
  1906. case KVM_TRACE_ENABLE:
  1907. case KVM_TRACE_PAUSE:
  1908. case KVM_TRACE_DISABLE:
  1909. r = -EOPNOTSUPP;
  1910. break;
  1911. default:
  1912. return kvm_arch_dev_ioctl(filp, ioctl, arg);
  1913. }
  1914. out:
  1915. return r;
  1916. }
  1917. static struct file_operations kvm_chardev_ops = {
  1918. .unlocked_ioctl = kvm_dev_ioctl,
  1919. .compat_ioctl = kvm_dev_ioctl,
  1920. .llseek = noop_llseek,
  1921. };
  1922. static struct miscdevice kvm_dev = {
  1923. KVM_MINOR,
  1924. "kvm",
  1925. &kvm_chardev_ops,
  1926. };
  1927. static void hardware_enable_nolock(void *junk)
  1928. {
  1929. int cpu = raw_smp_processor_id();
  1930. int r;
  1931. if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
  1932. return;
  1933. cpumask_set_cpu(cpu, cpus_hardware_enabled);
  1934. r = kvm_arch_hardware_enable(NULL);
  1935. if (r) {
  1936. cpumask_clear_cpu(cpu, cpus_hardware_enabled);
  1937. atomic_inc(&hardware_enable_failed);
  1938. printk(KERN_INFO "kvm: enabling virtualization on "
  1939. "CPU%d failed\n", cpu);
  1940. }
  1941. }
  1942. static void hardware_enable(void *junk)
  1943. {
  1944. raw_spin_lock(&kvm_lock);
  1945. hardware_enable_nolock(junk);
  1946. raw_spin_unlock(&kvm_lock);
  1947. }
  1948. static void hardware_disable_nolock(void *junk)
  1949. {
  1950. int cpu = raw_smp_processor_id();
  1951. if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
  1952. return;
  1953. cpumask_clear_cpu(cpu, cpus_hardware_enabled);
  1954. kvm_arch_hardware_disable(NULL);
  1955. }
  1956. static void hardware_disable(void *junk)
  1957. {
  1958. raw_spin_lock(&kvm_lock);
  1959. hardware_disable_nolock(junk);
  1960. raw_spin_unlock(&kvm_lock);
  1961. }
  1962. static void hardware_disable_all_nolock(void)
  1963. {
  1964. BUG_ON(!kvm_usage_count);
  1965. kvm_usage_count--;
  1966. if (!kvm_usage_count)
  1967. on_each_cpu(hardware_disable_nolock, NULL, 1);
  1968. }
  1969. static void hardware_disable_all(void)
  1970. {
  1971. raw_spin_lock(&kvm_lock);
  1972. hardware_disable_all_nolock();
  1973. raw_spin_unlock(&kvm_lock);
  1974. }
  1975. static int hardware_enable_all(void)
  1976. {
  1977. int r = 0;
  1978. raw_spin_lock(&kvm_lock);
  1979. kvm_usage_count++;
  1980. if (kvm_usage_count == 1) {
  1981. atomic_set(&hardware_enable_failed, 0);
  1982. on_each_cpu(hardware_enable_nolock, NULL, 1);
  1983. if (atomic_read(&hardware_enable_failed)) {
  1984. hardware_disable_all_nolock();
  1985. r = -EBUSY;
  1986. }
  1987. }
  1988. raw_spin_unlock(&kvm_lock);
  1989. return r;
  1990. }
  1991. static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
  1992. void *v)
  1993. {
  1994. int cpu = (long)v;
  1995. if (!kvm_usage_count)
  1996. return NOTIFY_OK;
  1997. val &= ~CPU_TASKS_FROZEN;
  1998. switch (val) {
  1999. case CPU_DYING:
  2000. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  2001. cpu);
  2002. hardware_disable(NULL);
  2003. break;
  2004. case CPU_STARTING:
  2005. printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
  2006. cpu);
  2007. hardware_enable(NULL);
  2008. break;
  2009. }
  2010. return NOTIFY_OK;
  2011. }
  2012. asmlinkage void kvm_spurious_fault(void)
  2013. {
  2014. /* Fault while not rebooting. We want the trace. */
  2015. BUG();
  2016. }
  2017. EXPORT_SYMBOL_GPL(kvm_spurious_fault);
  2018. static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
  2019. void *v)
  2020. {
  2021. /*
  2022. * Some (well, at least mine) BIOSes hang on reboot if
  2023. * in vmx root mode.
  2024. *
  2025. * And Intel TXT required VMX off for all cpu when system shutdown.
  2026. */
  2027. printk(KERN_INFO "kvm: exiting hardware virtualization\n");
  2028. kvm_rebooting = true;
  2029. on_each_cpu(hardware_disable_nolock, NULL, 1);
  2030. return NOTIFY_OK;
  2031. }
  2032. static struct notifier_block kvm_reboot_notifier = {
  2033. .notifier_call = kvm_reboot,
  2034. .priority = 0,
  2035. };
  2036. static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
  2037. {
  2038. int i;
  2039. for (i = 0; i < bus->dev_count; i++) {
  2040. struct kvm_io_device *pos = bus->range[i].dev;
  2041. kvm_iodevice_destructor(pos);
  2042. }
  2043. kfree(bus);
  2044. }
  2045. int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
  2046. {
  2047. const struct kvm_io_range *r1 = p1;
  2048. const struct kvm_io_range *r2 = p2;
  2049. if (r1->addr < r2->addr)
  2050. return -1;
  2051. if (r1->addr + r1->len > r2->addr + r2->len)
  2052. return 1;
  2053. return 0;
  2054. }
  2055. int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
  2056. gpa_t addr, int len)
  2057. {
  2058. if (bus->dev_count == NR_IOBUS_DEVS)
  2059. return -ENOSPC;
  2060. bus->range[bus->dev_count++] = (struct kvm_io_range) {
  2061. .addr = addr,
  2062. .len = len,
  2063. .dev = dev,
  2064. };
  2065. sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
  2066. kvm_io_bus_sort_cmp, NULL);
  2067. return 0;
  2068. }
  2069. int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
  2070. gpa_t addr, int len)
  2071. {
  2072. struct kvm_io_range *range, key;
  2073. int off;
  2074. key = (struct kvm_io_range) {
  2075. .addr = addr,
  2076. .len = len,
  2077. };
  2078. range = bsearch(&key, bus->range, bus->dev_count,
  2079. sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
  2080. if (range == NULL)
  2081. return -ENOENT;
  2082. off = range - bus->range;
  2083. while (off > 0 && kvm_io_bus_sort_cmp(&key, &bus->range[off-1]) == 0)
  2084. off--;
  2085. return off;
  2086. }
  2087. /* kvm_io_bus_write - called under kvm->slots_lock */
  2088. int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
  2089. int len, const void *val)
  2090. {
  2091. int idx;
  2092. struct kvm_io_bus *bus;
  2093. struct kvm_io_range range;
  2094. range = (struct kvm_io_range) {
  2095. .addr = addr,
  2096. .len = len,
  2097. };
  2098. bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
  2099. idx = kvm_io_bus_get_first_dev(bus, addr, len);
  2100. if (idx < 0)
  2101. return -EOPNOTSUPP;
  2102. while (idx < bus->dev_count &&
  2103. kvm_io_bus_sort_cmp(&range, &bus->range[idx]) == 0) {
  2104. if (!kvm_iodevice_write(bus->range[idx].dev, addr, len, val))
  2105. return 0;
  2106. idx++;
  2107. }
  2108. return -EOPNOTSUPP;
  2109. }
  2110. /* kvm_io_bus_read - called under kvm->slots_lock */
  2111. int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
  2112. int len, void *val)
  2113. {
  2114. int idx;
  2115. struct kvm_io_bus *bus;
  2116. struct kvm_io_range range;
  2117. range = (struct kvm_io_range) {
  2118. .addr = addr,
  2119. .len = len,
  2120. };
  2121. bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
  2122. idx = kvm_io_bus_get_first_dev(bus, addr, len);
  2123. if (idx < 0)
  2124. return -EOPNOTSUPP;
  2125. while (idx < bus->dev_count &&
  2126. kvm_io_bus_sort_cmp(&range, &bus->range[idx]) == 0) {
  2127. if (!kvm_iodevice_read(bus->range[idx].dev, addr, len, val))
  2128. return 0;
  2129. idx++;
  2130. }
  2131. return -EOPNOTSUPP;
  2132. }
  2133. /* Caller must hold slots_lock. */
  2134. int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
  2135. int len, struct kvm_io_device *dev)
  2136. {
  2137. struct kvm_io_bus *new_bus, *bus;
  2138. bus = kvm->buses[bus_idx];
  2139. if (bus->dev_count > NR_IOBUS_DEVS-1)
  2140. return -ENOSPC;
  2141. new_bus = kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL);
  2142. if (!new_bus)
  2143. return -ENOMEM;
  2144. memcpy(new_bus, bus, sizeof(struct kvm_io_bus));
  2145. kvm_io_bus_insert_dev(new_bus, dev, addr, len);
  2146. rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
  2147. synchronize_srcu_expedited(&kvm->srcu);
  2148. kfree(bus);
  2149. return 0;
  2150. }
  2151. /* Caller must hold slots_lock. */
  2152. int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
  2153. struct kvm_io_device *dev)
  2154. {
  2155. int i, r;
  2156. struct kvm_io_bus *new_bus, *bus;
  2157. new_bus = kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL);
  2158. if (!new_bus)
  2159. return -ENOMEM;
  2160. bus = kvm->buses[bus_idx];
  2161. memcpy(new_bus, bus, sizeof(struct kvm_io_bus));
  2162. r = -ENOENT;
  2163. for (i = 0; i < new_bus->dev_count; i++)
  2164. if (new_bus->range[i].dev == dev) {
  2165. r = 0;
  2166. new_bus->dev_count--;
  2167. new_bus->range[i] = new_bus->range[new_bus->dev_count];
  2168. sort(new_bus->range, new_bus->dev_count,
  2169. sizeof(struct kvm_io_range),
  2170. kvm_io_bus_sort_cmp, NULL);
  2171. break;
  2172. }
  2173. if (r) {
  2174. kfree(new_bus);
  2175. return r;
  2176. }
  2177. rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
  2178. synchronize_srcu_expedited(&kvm->srcu);
  2179. kfree(bus);
  2180. return r;
  2181. }
  2182. static struct notifier_block kvm_cpu_notifier = {
  2183. .notifier_call = kvm_cpu_hotplug,
  2184. };
  2185. static int vm_stat_get(void *_offset, u64 *val)
  2186. {
  2187. unsigned offset = (long)_offset;
  2188. struct kvm *kvm;
  2189. *val = 0;
  2190. raw_spin_lock(&kvm_lock);
  2191. list_for_each_entry(kvm, &vm_list, vm_list)
  2192. *val += *(u32 *)((void *)kvm + offset);
  2193. raw_spin_unlock(&kvm_lock);
  2194. return 0;
  2195. }
  2196. DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
  2197. static int vcpu_stat_get(void *_offset, u64 *val)
  2198. {
  2199. unsigned offset = (long)_offset;
  2200. struct kvm *kvm;
  2201. struct kvm_vcpu *vcpu;
  2202. int i;
  2203. *val = 0;
  2204. raw_spin_lock(&kvm_lock);
  2205. list_for_each_entry(kvm, &vm_list, vm_list)
  2206. kvm_for_each_vcpu(i, vcpu, kvm)
  2207. *val += *(u32 *)((void *)vcpu + offset);
  2208. raw_spin_unlock(&kvm_lock);
  2209. return 0;
  2210. }
  2211. DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
  2212. static const struct file_operations *stat_fops[] = {
  2213. [KVM_STAT_VCPU] = &vcpu_stat_fops,
  2214. [KVM_STAT_VM] = &vm_stat_fops,
  2215. };
  2216. static void kvm_init_debug(void)
  2217. {
  2218. struct kvm_stats_debugfs_item *p;
  2219. kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
  2220. for (p = debugfs_entries; p->name; ++p)
  2221. p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
  2222. (void *)(long)p->offset,
  2223. stat_fops[p->kind]);
  2224. }
  2225. static void kvm_exit_debug(void)
  2226. {
  2227. struct kvm_stats_debugfs_item *p;
  2228. for (p = debugfs_entries; p->name; ++p)
  2229. debugfs_remove(p->dentry);
  2230. debugfs_remove(kvm_debugfs_dir);
  2231. }
  2232. static int kvm_suspend(void)
  2233. {
  2234. if (kvm_usage_count)
  2235. hardware_disable_nolock(NULL);
  2236. return 0;
  2237. }
  2238. static void kvm_resume(void)
  2239. {
  2240. if (kvm_usage_count) {
  2241. WARN_ON(raw_spin_is_locked(&kvm_lock));
  2242. hardware_enable_nolock(NULL);
  2243. }
  2244. }
  2245. static struct syscore_ops kvm_syscore_ops = {
  2246. .suspend = kvm_suspend,
  2247. .resume = kvm_resume,
  2248. };
  2249. struct page *bad_page;
  2250. pfn_t bad_pfn;
  2251. static inline
  2252. struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
  2253. {
  2254. return container_of(pn, struct kvm_vcpu, preempt_notifier);
  2255. }
  2256. static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
  2257. {
  2258. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  2259. kvm_arch_vcpu_load(vcpu, cpu);
  2260. }
  2261. static void kvm_sched_out(struct preempt_notifier *pn,
  2262. struct task_struct *next)
  2263. {
  2264. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  2265. kvm_arch_vcpu_put(vcpu);
  2266. }
  2267. int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
  2268. struct module *module)
  2269. {
  2270. int r;
  2271. int cpu;
  2272. r = kvm_arch_init(opaque);
  2273. if (r)
  2274. goto out_fail;
  2275. bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  2276. if (bad_page == NULL) {
  2277. r = -ENOMEM;
  2278. goto out;
  2279. }
  2280. bad_pfn = page_to_pfn(bad_page);
  2281. hwpoison_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  2282. if (hwpoison_page == NULL) {
  2283. r = -ENOMEM;
  2284. goto out_free_0;
  2285. }
  2286. hwpoison_pfn = page_to_pfn(hwpoison_page);
  2287. fault_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  2288. if (fault_page == NULL) {
  2289. r = -ENOMEM;
  2290. goto out_free_0;
  2291. }
  2292. fault_pfn = page_to_pfn(fault_page);
  2293. if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
  2294. r = -ENOMEM;
  2295. goto out_free_0;
  2296. }
  2297. r = kvm_arch_hardware_setup();
  2298. if (r < 0)
  2299. goto out_free_0a;
  2300. for_each_online_cpu(cpu) {
  2301. smp_call_function_single(cpu,
  2302. kvm_arch_check_processor_compat,
  2303. &r, 1);
  2304. if (r < 0)
  2305. goto out_free_1;
  2306. }
  2307. r = register_cpu_notifier(&kvm_cpu_notifier);
  2308. if (r)
  2309. goto out_free_2;
  2310. register_reboot_notifier(&kvm_reboot_notifier);
  2311. /* A kmem cache lets us meet the alignment requirements of fx_save. */
  2312. if (!vcpu_align)
  2313. vcpu_align = __alignof__(struct kvm_vcpu);
  2314. kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
  2315. 0, NULL);
  2316. if (!kvm_vcpu_cache) {
  2317. r = -ENOMEM;
  2318. goto out_free_3;
  2319. }
  2320. r = kvm_async_pf_init();
  2321. if (r)
  2322. goto out_free;
  2323. kvm_chardev_ops.owner = module;
  2324. kvm_vm_fops.owner = module;
  2325. kvm_vcpu_fops.owner = module;
  2326. r = misc_register(&kvm_dev);
  2327. if (r) {
  2328. printk(KERN_ERR "kvm: misc device register failed\n");
  2329. goto out_unreg;
  2330. }
  2331. register_syscore_ops(&kvm_syscore_ops);
  2332. kvm_preempt_ops.sched_in = kvm_sched_in;
  2333. kvm_preempt_ops.sched_out = kvm_sched_out;
  2334. kvm_init_debug();
  2335. return 0;
  2336. out_unreg:
  2337. kvm_async_pf_deinit();
  2338. out_free:
  2339. kmem_cache_destroy(kvm_vcpu_cache);
  2340. out_free_3:
  2341. unregister_reboot_notifier(&kvm_reboot_notifier);
  2342. unregister_cpu_notifier(&kvm_cpu_notifier);
  2343. out_free_2:
  2344. out_free_1:
  2345. kvm_arch_hardware_unsetup();
  2346. out_free_0a:
  2347. free_cpumask_var(cpus_hardware_enabled);
  2348. out_free_0:
  2349. if (fault_page)
  2350. __free_page(fault_page);
  2351. if (hwpoison_page)
  2352. __free_page(hwpoison_page);
  2353. __free_page(bad_page);
  2354. out:
  2355. kvm_arch_exit();
  2356. out_fail:
  2357. return r;
  2358. }
  2359. EXPORT_SYMBOL_GPL(kvm_init);
  2360. void kvm_exit(void)
  2361. {
  2362. kvm_exit_debug();
  2363. misc_deregister(&kvm_dev);
  2364. kmem_cache_destroy(kvm_vcpu_cache);
  2365. kvm_async_pf_deinit();
  2366. unregister_syscore_ops(&kvm_syscore_ops);
  2367. unregister_reboot_notifier(&kvm_reboot_notifier);
  2368. unregister_cpu_notifier(&kvm_cpu_notifier);
  2369. on_each_cpu(hardware_disable_nolock, NULL, 1);
  2370. kvm_arch_hardware_unsetup();
  2371. kvm_arch_exit();
  2372. free_cpumask_var(cpus_hardware_enabled);
  2373. __free_page(hwpoison_page);
  2374. __free_page(bad_page);
  2375. }
  2376. EXPORT_SYMBOL_GPL(kvm_exit);