slub.c 128 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457
  1. /*
  2. * SLUB: A slab allocator that limits cache line use instead of queuing
  3. * objects in per cpu and per node lists.
  4. *
  5. * The allocator synchronizes using per slab locks or atomic operatios
  6. * and only uses a centralized lock to manage a pool of partial slabs.
  7. *
  8. * (C) 2007 SGI, Christoph Lameter
  9. * (C) 2011 Linux Foundation, Christoph Lameter
  10. */
  11. #include <linux/mm.h>
  12. #include <linux/swap.h> /* struct reclaim_state */
  13. #include <linux/module.h>
  14. #include <linux/bit_spinlock.h>
  15. #include <linux/interrupt.h>
  16. #include <linux/bitops.h>
  17. #include <linux/slab.h>
  18. #include <linux/proc_fs.h>
  19. #include <linux/seq_file.h>
  20. #include <linux/kmemcheck.h>
  21. #include <linux/cpu.h>
  22. #include <linux/cpuset.h>
  23. #include <linux/mempolicy.h>
  24. #include <linux/ctype.h>
  25. #include <linux/debugobjects.h>
  26. #include <linux/kallsyms.h>
  27. #include <linux/memory.h>
  28. #include <linux/math64.h>
  29. #include <linux/fault-inject.h>
  30. #include <linux/stacktrace.h>
  31. #include <trace/events/kmem.h>
  32. /*
  33. * Lock order:
  34. * 1. slub_lock (Global Semaphore)
  35. * 2. node->list_lock
  36. * 3. slab_lock(page) (Only on some arches and for debugging)
  37. *
  38. * slub_lock
  39. *
  40. * The role of the slub_lock is to protect the list of all the slabs
  41. * and to synchronize major metadata changes to slab cache structures.
  42. *
  43. * The slab_lock is only used for debugging and on arches that do not
  44. * have the ability to do a cmpxchg_double. It only protects the second
  45. * double word in the page struct. Meaning
  46. * A. page->freelist -> List of object free in a page
  47. * B. page->counters -> Counters of objects
  48. * C. page->frozen -> frozen state
  49. *
  50. * If a slab is frozen then it is exempt from list management. It is not
  51. * on any list. The processor that froze the slab is the one who can
  52. * perform list operations on the page. Other processors may put objects
  53. * onto the freelist but the processor that froze the slab is the only
  54. * one that can retrieve the objects from the page's freelist.
  55. *
  56. * The list_lock protects the partial and full list on each node and
  57. * the partial slab counter. If taken then no new slabs may be added or
  58. * removed from the lists nor make the number of partial slabs be modified.
  59. * (Note that the total number of slabs is an atomic value that may be
  60. * modified without taking the list lock).
  61. *
  62. * The list_lock is a centralized lock and thus we avoid taking it as
  63. * much as possible. As long as SLUB does not have to handle partial
  64. * slabs, operations can continue without any centralized lock. F.e.
  65. * allocating a long series of objects that fill up slabs does not require
  66. * the list lock.
  67. * Interrupts are disabled during allocation and deallocation in order to
  68. * make the slab allocator safe to use in the context of an irq. In addition
  69. * interrupts are disabled to ensure that the processor does not change
  70. * while handling per_cpu slabs, due to kernel preemption.
  71. *
  72. * SLUB assigns one slab for allocation to each processor.
  73. * Allocations only occur from these slabs called cpu slabs.
  74. *
  75. * Slabs with free elements are kept on a partial list and during regular
  76. * operations no list for full slabs is used. If an object in a full slab is
  77. * freed then the slab will show up again on the partial lists.
  78. * We track full slabs for debugging purposes though because otherwise we
  79. * cannot scan all objects.
  80. *
  81. * Slabs are freed when they become empty. Teardown and setup is
  82. * minimal so we rely on the page allocators per cpu caches for
  83. * fast frees and allocs.
  84. *
  85. * Overloading of page flags that are otherwise used for LRU management.
  86. *
  87. * PageActive The slab is frozen and exempt from list processing.
  88. * This means that the slab is dedicated to a purpose
  89. * such as satisfying allocations for a specific
  90. * processor. Objects may be freed in the slab while
  91. * it is frozen but slab_free will then skip the usual
  92. * list operations. It is up to the processor holding
  93. * the slab to integrate the slab into the slab lists
  94. * when the slab is no longer needed.
  95. *
  96. * One use of this flag is to mark slabs that are
  97. * used for allocations. Then such a slab becomes a cpu
  98. * slab. The cpu slab may be equipped with an additional
  99. * freelist that allows lockless access to
  100. * free objects in addition to the regular freelist
  101. * that requires the slab lock.
  102. *
  103. * PageError Slab requires special handling due to debug
  104. * options set. This moves slab handling out of
  105. * the fast path and disables lockless freelists.
  106. */
  107. #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
  108. SLAB_TRACE | SLAB_DEBUG_FREE)
  109. static inline int kmem_cache_debug(struct kmem_cache *s)
  110. {
  111. #ifdef CONFIG_SLUB_DEBUG
  112. return unlikely(s->flags & SLAB_DEBUG_FLAGS);
  113. #else
  114. return 0;
  115. #endif
  116. }
  117. /*
  118. * Issues still to be resolved:
  119. *
  120. * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
  121. *
  122. * - Variable sizing of the per node arrays
  123. */
  124. /* Enable to test recovery from slab corruption on boot */
  125. #undef SLUB_RESILIENCY_TEST
  126. /* Enable to log cmpxchg failures */
  127. #undef SLUB_DEBUG_CMPXCHG
  128. /*
  129. * Mininum number of partial slabs. These will be left on the partial
  130. * lists even if they are empty. kmem_cache_shrink may reclaim them.
  131. */
  132. #define MIN_PARTIAL 5
  133. /*
  134. * Maximum number of desirable partial slabs.
  135. * The existence of more partial slabs makes kmem_cache_shrink
  136. * sort the partial list by the number of objects in the.
  137. */
  138. #define MAX_PARTIAL 10
  139. #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
  140. SLAB_POISON | SLAB_STORE_USER)
  141. /*
  142. * Debugging flags that require metadata to be stored in the slab. These get
  143. * disabled when slub_debug=O is used and a cache's min order increases with
  144. * metadata.
  145. */
  146. #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
  147. /*
  148. * Set of flags that will prevent slab merging
  149. */
  150. #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
  151. SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
  152. SLAB_FAILSLAB)
  153. #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
  154. SLAB_CACHE_DMA | SLAB_NOTRACK)
  155. #define OO_SHIFT 16
  156. #define OO_MASK ((1 << OO_SHIFT) - 1)
  157. #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
  158. /* Internal SLUB flags */
  159. #define __OBJECT_POISON 0x80000000UL /* Poison object */
  160. #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
  161. static int kmem_size = sizeof(struct kmem_cache);
  162. #ifdef CONFIG_SMP
  163. static struct notifier_block slab_notifier;
  164. #endif
  165. static enum {
  166. DOWN, /* No slab functionality available */
  167. PARTIAL, /* Kmem_cache_node works */
  168. UP, /* Everything works but does not show up in sysfs */
  169. SYSFS /* Sysfs up */
  170. } slab_state = DOWN;
  171. /* A list of all slab caches on the system */
  172. static DECLARE_RWSEM(slub_lock);
  173. static LIST_HEAD(slab_caches);
  174. /*
  175. * Tracking user of a slab.
  176. */
  177. #define TRACK_ADDRS_COUNT 16
  178. struct track {
  179. unsigned long addr; /* Called from address */
  180. #ifdef CONFIG_STACKTRACE
  181. unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
  182. #endif
  183. int cpu; /* Was running on cpu */
  184. int pid; /* Pid context */
  185. unsigned long when; /* When did the operation occur */
  186. };
  187. enum track_item { TRACK_ALLOC, TRACK_FREE };
  188. #ifdef CONFIG_SYSFS
  189. static int sysfs_slab_add(struct kmem_cache *);
  190. static int sysfs_slab_alias(struct kmem_cache *, const char *);
  191. static void sysfs_slab_remove(struct kmem_cache *);
  192. #else
  193. static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
  194. static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
  195. { return 0; }
  196. static inline void sysfs_slab_remove(struct kmem_cache *s)
  197. {
  198. kfree(s->name);
  199. kfree(s);
  200. }
  201. #endif
  202. static inline void stat(const struct kmem_cache *s, enum stat_item si)
  203. {
  204. #ifdef CONFIG_SLUB_STATS
  205. __this_cpu_inc(s->cpu_slab->stat[si]);
  206. #endif
  207. }
  208. /********************************************************************
  209. * Core slab cache functions
  210. *******************************************************************/
  211. int slab_is_available(void)
  212. {
  213. return slab_state >= UP;
  214. }
  215. static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
  216. {
  217. return s->node[node];
  218. }
  219. /* Verify that a pointer has an address that is valid within a slab page */
  220. static inline int check_valid_pointer(struct kmem_cache *s,
  221. struct page *page, const void *object)
  222. {
  223. void *base;
  224. if (!object)
  225. return 1;
  226. base = page_address(page);
  227. if (object < base || object >= base + page->objects * s->size ||
  228. (object - base) % s->size) {
  229. return 0;
  230. }
  231. return 1;
  232. }
  233. static inline void *get_freepointer(struct kmem_cache *s, void *object)
  234. {
  235. return *(void **)(object + s->offset);
  236. }
  237. static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
  238. {
  239. void *p;
  240. #ifdef CONFIG_DEBUG_PAGEALLOC
  241. probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
  242. #else
  243. p = get_freepointer(s, object);
  244. #endif
  245. return p;
  246. }
  247. static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
  248. {
  249. *(void **)(object + s->offset) = fp;
  250. }
  251. /* Loop over all objects in a slab */
  252. #define for_each_object(__p, __s, __addr, __objects) \
  253. for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
  254. __p += (__s)->size)
  255. /* Determine object index from a given position */
  256. static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
  257. {
  258. return (p - addr) / s->size;
  259. }
  260. static inline size_t slab_ksize(const struct kmem_cache *s)
  261. {
  262. #ifdef CONFIG_SLUB_DEBUG
  263. /*
  264. * Debugging requires use of the padding between object
  265. * and whatever may come after it.
  266. */
  267. if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
  268. return s->objsize;
  269. #endif
  270. /*
  271. * If we have the need to store the freelist pointer
  272. * back there or track user information then we can
  273. * only use the space before that information.
  274. */
  275. if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
  276. return s->inuse;
  277. /*
  278. * Else we can use all the padding etc for the allocation
  279. */
  280. return s->size;
  281. }
  282. static inline int order_objects(int order, unsigned long size, int reserved)
  283. {
  284. return ((PAGE_SIZE << order) - reserved) / size;
  285. }
  286. static inline struct kmem_cache_order_objects oo_make(int order,
  287. unsigned long size, int reserved)
  288. {
  289. struct kmem_cache_order_objects x = {
  290. (order << OO_SHIFT) + order_objects(order, size, reserved)
  291. };
  292. return x;
  293. }
  294. static inline int oo_order(struct kmem_cache_order_objects x)
  295. {
  296. return x.x >> OO_SHIFT;
  297. }
  298. static inline int oo_objects(struct kmem_cache_order_objects x)
  299. {
  300. return x.x & OO_MASK;
  301. }
  302. /*
  303. * Per slab locking using the pagelock
  304. */
  305. static __always_inline void slab_lock(struct page *page)
  306. {
  307. bit_spin_lock(PG_locked, &page->flags);
  308. }
  309. static __always_inline void slab_unlock(struct page *page)
  310. {
  311. __bit_spin_unlock(PG_locked, &page->flags);
  312. }
  313. /* Interrupts must be disabled (for the fallback code to work right) */
  314. static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
  315. void *freelist_old, unsigned long counters_old,
  316. void *freelist_new, unsigned long counters_new,
  317. const char *n)
  318. {
  319. VM_BUG_ON(!irqs_disabled());
  320. #ifdef CONFIG_CMPXCHG_DOUBLE
  321. if (s->flags & __CMPXCHG_DOUBLE) {
  322. if (cmpxchg_double(&page->freelist,
  323. freelist_old, counters_old,
  324. freelist_new, counters_new))
  325. return 1;
  326. } else
  327. #endif
  328. {
  329. slab_lock(page);
  330. if (page->freelist == freelist_old && page->counters == counters_old) {
  331. page->freelist = freelist_new;
  332. page->counters = counters_new;
  333. slab_unlock(page);
  334. return 1;
  335. }
  336. slab_unlock(page);
  337. }
  338. cpu_relax();
  339. stat(s, CMPXCHG_DOUBLE_FAIL);
  340. #ifdef SLUB_DEBUG_CMPXCHG
  341. printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
  342. #endif
  343. return 0;
  344. }
  345. static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
  346. void *freelist_old, unsigned long counters_old,
  347. void *freelist_new, unsigned long counters_new,
  348. const char *n)
  349. {
  350. #ifdef CONFIG_CMPXCHG_DOUBLE
  351. if (s->flags & __CMPXCHG_DOUBLE) {
  352. if (cmpxchg_double(&page->freelist,
  353. freelist_old, counters_old,
  354. freelist_new, counters_new))
  355. return 1;
  356. } else
  357. #endif
  358. {
  359. unsigned long flags;
  360. local_irq_save(flags);
  361. slab_lock(page);
  362. if (page->freelist == freelist_old && page->counters == counters_old) {
  363. page->freelist = freelist_new;
  364. page->counters = counters_new;
  365. slab_unlock(page);
  366. local_irq_restore(flags);
  367. return 1;
  368. }
  369. slab_unlock(page);
  370. local_irq_restore(flags);
  371. }
  372. cpu_relax();
  373. stat(s, CMPXCHG_DOUBLE_FAIL);
  374. #ifdef SLUB_DEBUG_CMPXCHG
  375. printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
  376. #endif
  377. return 0;
  378. }
  379. #ifdef CONFIG_SLUB_DEBUG
  380. /*
  381. * Determine a map of object in use on a page.
  382. *
  383. * Node listlock must be held to guarantee that the page does
  384. * not vanish from under us.
  385. */
  386. static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
  387. {
  388. void *p;
  389. void *addr = page_address(page);
  390. for (p = page->freelist; p; p = get_freepointer(s, p))
  391. set_bit(slab_index(p, s, addr), map);
  392. }
  393. /*
  394. * Debug settings:
  395. */
  396. #ifdef CONFIG_SLUB_DEBUG_ON
  397. static int slub_debug = DEBUG_DEFAULT_FLAGS;
  398. #else
  399. static int slub_debug;
  400. #endif
  401. static char *slub_debug_slabs;
  402. static int disable_higher_order_debug;
  403. /*
  404. * Object debugging
  405. */
  406. static void print_section(char *text, u8 *addr, unsigned int length)
  407. {
  408. print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
  409. length, 1);
  410. }
  411. static struct track *get_track(struct kmem_cache *s, void *object,
  412. enum track_item alloc)
  413. {
  414. struct track *p;
  415. if (s->offset)
  416. p = object + s->offset + sizeof(void *);
  417. else
  418. p = object + s->inuse;
  419. return p + alloc;
  420. }
  421. static void set_track(struct kmem_cache *s, void *object,
  422. enum track_item alloc, unsigned long addr)
  423. {
  424. struct track *p = get_track(s, object, alloc);
  425. if (addr) {
  426. #ifdef CONFIG_STACKTRACE
  427. struct stack_trace trace;
  428. int i;
  429. trace.nr_entries = 0;
  430. trace.max_entries = TRACK_ADDRS_COUNT;
  431. trace.entries = p->addrs;
  432. trace.skip = 3;
  433. save_stack_trace(&trace);
  434. /* See rant in lockdep.c */
  435. if (trace.nr_entries != 0 &&
  436. trace.entries[trace.nr_entries - 1] == ULONG_MAX)
  437. trace.nr_entries--;
  438. for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
  439. p->addrs[i] = 0;
  440. #endif
  441. p->addr = addr;
  442. p->cpu = smp_processor_id();
  443. p->pid = current->pid;
  444. p->when = jiffies;
  445. } else
  446. memset(p, 0, sizeof(struct track));
  447. }
  448. static void init_tracking(struct kmem_cache *s, void *object)
  449. {
  450. if (!(s->flags & SLAB_STORE_USER))
  451. return;
  452. set_track(s, object, TRACK_FREE, 0UL);
  453. set_track(s, object, TRACK_ALLOC, 0UL);
  454. }
  455. static void print_track(const char *s, struct track *t)
  456. {
  457. if (!t->addr)
  458. return;
  459. printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
  460. s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
  461. #ifdef CONFIG_STACKTRACE
  462. {
  463. int i;
  464. for (i = 0; i < TRACK_ADDRS_COUNT; i++)
  465. if (t->addrs[i])
  466. printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]);
  467. else
  468. break;
  469. }
  470. #endif
  471. }
  472. static void print_tracking(struct kmem_cache *s, void *object)
  473. {
  474. if (!(s->flags & SLAB_STORE_USER))
  475. return;
  476. print_track("Allocated", get_track(s, object, TRACK_ALLOC));
  477. print_track("Freed", get_track(s, object, TRACK_FREE));
  478. }
  479. static void print_page_info(struct page *page)
  480. {
  481. printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
  482. page, page->objects, page->inuse, page->freelist, page->flags);
  483. }
  484. static void slab_bug(struct kmem_cache *s, char *fmt, ...)
  485. {
  486. va_list args;
  487. char buf[100];
  488. va_start(args, fmt);
  489. vsnprintf(buf, sizeof(buf), fmt, args);
  490. va_end(args);
  491. printk(KERN_ERR "========================================"
  492. "=====================================\n");
  493. printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
  494. printk(KERN_ERR "----------------------------------------"
  495. "-------------------------------------\n\n");
  496. }
  497. static void slab_fix(struct kmem_cache *s, char *fmt, ...)
  498. {
  499. va_list args;
  500. char buf[100];
  501. va_start(args, fmt);
  502. vsnprintf(buf, sizeof(buf), fmt, args);
  503. va_end(args);
  504. printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
  505. }
  506. static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
  507. {
  508. unsigned int off; /* Offset of last byte */
  509. u8 *addr = page_address(page);
  510. print_tracking(s, p);
  511. print_page_info(page);
  512. printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
  513. p, p - addr, get_freepointer(s, p));
  514. if (p > addr + 16)
  515. print_section("Bytes b4 ", p - 16, 16);
  516. print_section("Object ", p, min_t(unsigned long, s->objsize,
  517. PAGE_SIZE));
  518. if (s->flags & SLAB_RED_ZONE)
  519. print_section("Redzone ", p + s->objsize,
  520. s->inuse - s->objsize);
  521. if (s->offset)
  522. off = s->offset + sizeof(void *);
  523. else
  524. off = s->inuse;
  525. if (s->flags & SLAB_STORE_USER)
  526. off += 2 * sizeof(struct track);
  527. if (off != s->size)
  528. /* Beginning of the filler is the free pointer */
  529. print_section("Padding ", p + off, s->size - off);
  530. dump_stack();
  531. }
  532. static void object_err(struct kmem_cache *s, struct page *page,
  533. u8 *object, char *reason)
  534. {
  535. slab_bug(s, "%s", reason);
  536. print_trailer(s, page, object);
  537. }
  538. static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
  539. {
  540. va_list args;
  541. char buf[100];
  542. va_start(args, fmt);
  543. vsnprintf(buf, sizeof(buf), fmt, args);
  544. va_end(args);
  545. slab_bug(s, "%s", buf);
  546. print_page_info(page);
  547. dump_stack();
  548. }
  549. static void init_object(struct kmem_cache *s, void *object, u8 val)
  550. {
  551. u8 *p = object;
  552. if (s->flags & __OBJECT_POISON) {
  553. memset(p, POISON_FREE, s->objsize - 1);
  554. p[s->objsize - 1] = POISON_END;
  555. }
  556. if (s->flags & SLAB_RED_ZONE)
  557. memset(p + s->objsize, val, s->inuse - s->objsize);
  558. }
  559. static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
  560. void *from, void *to)
  561. {
  562. slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
  563. memset(from, data, to - from);
  564. }
  565. static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
  566. u8 *object, char *what,
  567. u8 *start, unsigned int value, unsigned int bytes)
  568. {
  569. u8 *fault;
  570. u8 *end;
  571. fault = memchr_inv(start, value, bytes);
  572. if (!fault)
  573. return 1;
  574. end = start + bytes;
  575. while (end > fault && end[-1] == value)
  576. end--;
  577. slab_bug(s, "%s overwritten", what);
  578. printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
  579. fault, end - 1, fault[0], value);
  580. print_trailer(s, page, object);
  581. restore_bytes(s, what, value, fault, end);
  582. return 0;
  583. }
  584. /*
  585. * Object layout:
  586. *
  587. * object address
  588. * Bytes of the object to be managed.
  589. * If the freepointer may overlay the object then the free
  590. * pointer is the first word of the object.
  591. *
  592. * Poisoning uses 0x6b (POISON_FREE) and the last byte is
  593. * 0xa5 (POISON_END)
  594. *
  595. * object + s->objsize
  596. * Padding to reach word boundary. This is also used for Redzoning.
  597. * Padding is extended by another word if Redzoning is enabled and
  598. * objsize == inuse.
  599. *
  600. * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
  601. * 0xcc (RED_ACTIVE) for objects in use.
  602. *
  603. * object + s->inuse
  604. * Meta data starts here.
  605. *
  606. * A. Free pointer (if we cannot overwrite object on free)
  607. * B. Tracking data for SLAB_STORE_USER
  608. * C. Padding to reach required alignment boundary or at mininum
  609. * one word if debugging is on to be able to detect writes
  610. * before the word boundary.
  611. *
  612. * Padding is done using 0x5a (POISON_INUSE)
  613. *
  614. * object + s->size
  615. * Nothing is used beyond s->size.
  616. *
  617. * If slabcaches are merged then the objsize and inuse boundaries are mostly
  618. * ignored. And therefore no slab options that rely on these boundaries
  619. * may be used with merged slabcaches.
  620. */
  621. static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
  622. {
  623. unsigned long off = s->inuse; /* The end of info */
  624. if (s->offset)
  625. /* Freepointer is placed after the object. */
  626. off += sizeof(void *);
  627. if (s->flags & SLAB_STORE_USER)
  628. /* We also have user information there */
  629. off += 2 * sizeof(struct track);
  630. if (s->size == off)
  631. return 1;
  632. return check_bytes_and_report(s, page, p, "Object padding",
  633. p + off, POISON_INUSE, s->size - off);
  634. }
  635. /* Check the pad bytes at the end of a slab page */
  636. static int slab_pad_check(struct kmem_cache *s, struct page *page)
  637. {
  638. u8 *start;
  639. u8 *fault;
  640. u8 *end;
  641. int length;
  642. int remainder;
  643. if (!(s->flags & SLAB_POISON))
  644. return 1;
  645. start = page_address(page);
  646. length = (PAGE_SIZE << compound_order(page)) - s->reserved;
  647. end = start + length;
  648. remainder = length % s->size;
  649. if (!remainder)
  650. return 1;
  651. fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
  652. if (!fault)
  653. return 1;
  654. while (end > fault && end[-1] == POISON_INUSE)
  655. end--;
  656. slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
  657. print_section("Padding ", end - remainder, remainder);
  658. restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
  659. return 0;
  660. }
  661. static int check_object(struct kmem_cache *s, struct page *page,
  662. void *object, u8 val)
  663. {
  664. u8 *p = object;
  665. u8 *endobject = object + s->objsize;
  666. if (s->flags & SLAB_RED_ZONE) {
  667. if (!check_bytes_and_report(s, page, object, "Redzone",
  668. endobject, val, s->inuse - s->objsize))
  669. return 0;
  670. } else {
  671. if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
  672. check_bytes_and_report(s, page, p, "Alignment padding",
  673. endobject, POISON_INUSE, s->inuse - s->objsize);
  674. }
  675. }
  676. if (s->flags & SLAB_POISON) {
  677. if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
  678. (!check_bytes_and_report(s, page, p, "Poison", p,
  679. POISON_FREE, s->objsize - 1) ||
  680. !check_bytes_and_report(s, page, p, "Poison",
  681. p + s->objsize - 1, POISON_END, 1)))
  682. return 0;
  683. /*
  684. * check_pad_bytes cleans up on its own.
  685. */
  686. check_pad_bytes(s, page, p);
  687. }
  688. if (!s->offset && val == SLUB_RED_ACTIVE)
  689. /*
  690. * Object and freepointer overlap. Cannot check
  691. * freepointer while object is allocated.
  692. */
  693. return 1;
  694. /* Check free pointer validity */
  695. if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
  696. object_err(s, page, p, "Freepointer corrupt");
  697. /*
  698. * No choice but to zap it and thus lose the remainder
  699. * of the free objects in this slab. May cause
  700. * another error because the object count is now wrong.
  701. */
  702. set_freepointer(s, p, NULL);
  703. return 0;
  704. }
  705. return 1;
  706. }
  707. static int check_slab(struct kmem_cache *s, struct page *page)
  708. {
  709. int maxobj;
  710. VM_BUG_ON(!irqs_disabled());
  711. if (!PageSlab(page)) {
  712. slab_err(s, page, "Not a valid slab page");
  713. return 0;
  714. }
  715. maxobj = order_objects(compound_order(page), s->size, s->reserved);
  716. if (page->objects > maxobj) {
  717. slab_err(s, page, "objects %u > max %u",
  718. s->name, page->objects, maxobj);
  719. return 0;
  720. }
  721. if (page->inuse > page->objects) {
  722. slab_err(s, page, "inuse %u > max %u",
  723. s->name, page->inuse, page->objects);
  724. return 0;
  725. }
  726. /* Slab_pad_check fixes things up after itself */
  727. slab_pad_check(s, page);
  728. return 1;
  729. }
  730. /*
  731. * Determine if a certain object on a page is on the freelist. Must hold the
  732. * slab lock to guarantee that the chains are in a consistent state.
  733. */
  734. static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
  735. {
  736. int nr = 0;
  737. void *fp;
  738. void *object = NULL;
  739. unsigned long max_objects;
  740. fp = page->freelist;
  741. while (fp && nr <= page->objects) {
  742. if (fp == search)
  743. return 1;
  744. if (!check_valid_pointer(s, page, fp)) {
  745. if (object) {
  746. object_err(s, page, object,
  747. "Freechain corrupt");
  748. set_freepointer(s, object, NULL);
  749. break;
  750. } else {
  751. slab_err(s, page, "Freepointer corrupt");
  752. page->freelist = NULL;
  753. page->inuse = page->objects;
  754. slab_fix(s, "Freelist cleared");
  755. return 0;
  756. }
  757. break;
  758. }
  759. object = fp;
  760. fp = get_freepointer(s, object);
  761. nr++;
  762. }
  763. max_objects = order_objects(compound_order(page), s->size, s->reserved);
  764. if (max_objects > MAX_OBJS_PER_PAGE)
  765. max_objects = MAX_OBJS_PER_PAGE;
  766. if (page->objects != max_objects) {
  767. slab_err(s, page, "Wrong number of objects. Found %d but "
  768. "should be %d", page->objects, max_objects);
  769. page->objects = max_objects;
  770. slab_fix(s, "Number of objects adjusted.");
  771. }
  772. if (page->inuse != page->objects - nr) {
  773. slab_err(s, page, "Wrong object count. Counter is %d but "
  774. "counted were %d", page->inuse, page->objects - nr);
  775. page->inuse = page->objects - nr;
  776. slab_fix(s, "Object count adjusted.");
  777. }
  778. return search == NULL;
  779. }
  780. static void trace(struct kmem_cache *s, struct page *page, void *object,
  781. int alloc)
  782. {
  783. if (s->flags & SLAB_TRACE) {
  784. printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
  785. s->name,
  786. alloc ? "alloc" : "free",
  787. object, page->inuse,
  788. page->freelist);
  789. if (!alloc)
  790. print_section("Object ", (void *)object, s->objsize);
  791. dump_stack();
  792. }
  793. }
  794. /*
  795. * Hooks for other subsystems that check memory allocations. In a typical
  796. * production configuration these hooks all should produce no code at all.
  797. */
  798. static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
  799. {
  800. flags &= gfp_allowed_mask;
  801. lockdep_trace_alloc(flags);
  802. might_sleep_if(flags & __GFP_WAIT);
  803. return should_failslab(s->objsize, flags, s->flags);
  804. }
  805. static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
  806. {
  807. flags &= gfp_allowed_mask;
  808. kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
  809. kmemleak_alloc_recursive(object, s->objsize, 1, s->flags, flags);
  810. }
  811. static inline void slab_free_hook(struct kmem_cache *s, void *x)
  812. {
  813. kmemleak_free_recursive(x, s->flags);
  814. /*
  815. * Trouble is that we may no longer disable interupts in the fast path
  816. * So in order to make the debug calls that expect irqs to be
  817. * disabled we need to disable interrupts temporarily.
  818. */
  819. #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
  820. {
  821. unsigned long flags;
  822. local_irq_save(flags);
  823. kmemcheck_slab_free(s, x, s->objsize);
  824. debug_check_no_locks_freed(x, s->objsize);
  825. local_irq_restore(flags);
  826. }
  827. #endif
  828. if (!(s->flags & SLAB_DEBUG_OBJECTS))
  829. debug_check_no_obj_freed(x, s->objsize);
  830. }
  831. /*
  832. * Tracking of fully allocated slabs for debugging purposes.
  833. *
  834. * list_lock must be held.
  835. */
  836. static void add_full(struct kmem_cache *s,
  837. struct kmem_cache_node *n, struct page *page)
  838. {
  839. if (!(s->flags & SLAB_STORE_USER))
  840. return;
  841. list_add(&page->lru, &n->full);
  842. }
  843. /*
  844. * list_lock must be held.
  845. */
  846. static void remove_full(struct kmem_cache *s, struct page *page)
  847. {
  848. if (!(s->flags & SLAB_STORE_USER))
  849. return;
  850. list_del(&page->lru);
  851. }
  852. /* Tracking of the number of slabs for debugging purposes */
  853. static inline unsigned long slabs_node(struct kmem_cache *s, int node)
  854. {
  855. struct kmem_cache_node *n = get_node(s, node);
  856. return atomic_long_read(&n->nr_slabs);
  857. }
  858. static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
  859. {
  860. return atomic_long_read(&n->nr_slabs);
  861. }
  862. static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
  863. {
  864. struct kmem_cache_node *n = get_node(s, node);
  865. /*
  866. * May be called early in order to allocate a slab for the
  867. * kmem_cache_node structure. Solve the chicken-egg
  868. * dilemma by deferring the increment of the count during
  869. * bootstrap (see early_kmem_cache_node_alloc).
  870. */
  871. if (n) {
  872. atomic_long_inc(&n->nr_slabs);
  873. atomic_long_add(objects, &n->total_objects);
  874. }
  875. }
  876. static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
  877. {
  878. struct kmem_cache_node *n = get_node(s, node);
  879. atomic_long_dec(&n->nr_slabs);
  880. atomic_long_sub(objects, &n->total_objects);
  881. }
  882. /* Object debug checks for alloc/free paths */
  883. static void setup_object_debug(struct kmem_cache *s, struct page *page,
  884. void *object)
  885. {
  886. if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
  887. return;
  888. init_object(s, object, SLUB_RED_INACTIVE);
  889. init_tracking(s, object);
  890. }
  891. static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
  892. void *object, unsigned long addr)
  893. {
  894. if (!check_slab(s, page))
  895. goto bad;
  896. if (!check_valid_pointer(s, page, object)) {
  897. object_err(s, page, object, "Freelist Pointer check fails");
  898. goto bad;
  899. }
  900. if (!check_object(s, page, object, SLUB_RED_INACTIVE))
  901. goto bad;
  902. /* Success perform special debug activities for allocs */
  903. if (s->flags & SLAB_STORE_USER)
  904. set_track(s, object, TRACK_ALLOC, addr);
  905. trace(s, page, object, 1);
  906. init_object(s, object, SLUB_RED_ACTIVE);
  907. return 1;
  908. bad:
  909. if (PageSlab(page)) {
  910. /*
  911. * If this is a slab page then lets do the best we can
  912. * to avoid issues in the future. Marking all objects
  913. * as used avoids touching the remaining objects.
  914. */
  915. slab_fix(s, "Marking all objects used");
  916. page->inuse = page->objects;
  917. page->freelist = NULL;
  918. }
  919. return 0;
  920. }
  921. static noinline int free_debug_processing(struct kmem_cache *s,
  922. struct page *page, void *object, unsigned long addr)
  923. {
  924. unsigned long flags;
  925. int rc = 0;
  926. local_irq_save(flags);
  927. slab_lock(page);
  928. if (!check_slab(s, page))
  929. goto fail;
  930. if (!check_valid_pointer(s, page, object)) {
  931. slab_err(s, page, "Invalid object pointer 0x%p", object);
  932. goto fail;
  933. }
  934. if (on_freelist(s, page, object)) {
  935. object_err(s, page, object, "Object already free");
  936. goto fail;
  937. }
  938. if (!check_object(s, page, object, SLUB_RED_ACTIVE))
  939. goto out;
  940. if (unlikely(s != page->slab)) {
  941. if (!PageSlab(page)) {
  942. slab_err(s, page, "Attempt to free object(0x%p) "
  943. "outside of slab", object);
  944. } else if (!page->slab) {
  945. printk(KERN_ERR
  946. "SLUB <none>: no slab for object 0x%p.\n",
  947. object);
  948. dump_stack();
  949. } else
  950. object_err(s, page, object,
  951. "page slab pointer corrupt.");
  952. goto fail;
  953. }
  954. if (s->flags & SLAB_STORE_USER)
  955. set_track(s, object, TRACK_FREE, addr);
  956. trace(s, page, object, 0);
  957. init_object(s, object, SLUB_RED_INACTIVE);
  958. rc = 1;
  959. out:
  960. slab_unlock(page);
  961. local_irq_restore(flags);
  962. return rc;
  963. fail:
  964. slab_fix(s, "Object at 0x%p not freed", object);
  965. goto out;
  966. }
  967. static int __init setup_slub_debug(char *str)
  968. {
  969. slub_debug = DEBUG_DEFAULT_FLAGS;
  970. if (*str++ != '=' || !*str)
  971. /*
  972. * No options specified. Switch on full debugging.
  973. */
  974. goto out;
  975. if (*str == ',')
  976. /*
  977. * No options but restriction on slabs. This means full
  978. * debugging for slabs matching a pattern.
  979. */
  980. goto check_slabs;
  981. if (tolower(*str) == 'o') {
  982. /*
  983. * Avoid enabling debugging on caches if its minimum order
  984. * would increase as a result.
  985. */
  986. disable_higher_order_debug = 1;
  987. goto out;
  988. }
  989. slub_debug = 0;
  990. if (*str == '-')
  991. /*
  992. * Switch off all debugging measures.
  993. */
  994. goto out;
  995. /*
  996. * Determine which debug features should be switched on
  997. */
  998. for (; *str && *str != ','; str++) {
  999. switch (tolower(*str)) {
  1000. case 'f':
  1001. slub_debug |= SLAB_DEBUG_FREE;
  1002. break;
  1003. case 'z':
  1004. slub_debug |= SLAB_RED_ZONE;
  1005. break;
  1006. case 'p':
  1007. slub_debug |= SLAB_POISON;
  1008. break;
  1009. case 'u':
  1010. slub_debug |= SLAB_STORE_USER;
  1011. break;
  1012. case 't':
  1013. slub_debug |= SLAB_TRACE;
  1014. break;
  1015. case 'a':
  1016. slub_debug |= SLAB_FAILSLAB;
  1017. break;
  1018. default:
  1019. printk(KERN_ERR "slub_debug option '%c' "
  1020. "unknown. skipped\n", *str);
  1021. }
  1022. }
  1023. check_slabs:
  1024. if (*str == ',')
  1025. slub_debug_slabs = str + 1;
  1026. out:
  1027. return 1;
  1028. }
  1029. __setup("slub_debug", setup_slub_debug);
  1030. static unsigned long kmem_cache_flags(unsigned long objsize,
  1031. unsigned long flags, const char *name,
  1032. void (*ctor)(void *))
  1033. {
  1034. /*
  1035. * Enable debugging if selected on the kernel commandline.
  1036. */
  1037. if (slub_debug && (!slub_debug_slabs ||
  1038. !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
  1039. flags |= slub_debug;
  1040. return flags;
  1041. }
  1042. #else
  1043. static inline void setup_object_debug(struct kmem_cache *s,
  1044. struct page *page, void *object) {}
  1045. static inline int alloc_debug_processing(struct kmem_cache *s,
  1046. struct page *page, void *object, unsigned long addr) { return 0; }
  1047. static inline int free_debug_processing(struct kmem_cache *s,
  1048. struct page *page, void *object, unsigned long addr) { return 0; }
  1049. static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
  1050. { return 1; }
  1051. static inline int check_object(struct kmem_cache *s, struct page *page,
  1052. void *object, u8 val) { return 1; }
  1053. static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
  1054. struct page *page) {}
  1055. static inline void remove_full(struct kmem_cache *s, struct page *page) {}
  1056. static inline unsigned long kmem_cache_flags(unsigned long objsize,
  1057. unsigned long flags, const char *name,
  1058. void (*ctor)(void *))
  1059. {
  1060. return flags;
  1061. }
  1062. #define slub_debug 0
  1063. #define disable_higher_order_debug 0
  1064. static inline unsigned long slabs_node(struct kmem_cache *s, int node)
  1065. { return 0; }
  1066. static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
  1067. { return 0; }
  1068. static inline void inc_slabs_node(struct kmem_cache *s, int node,
  1069. int objects) {}
  1070. static inline void dec_slabs_node(struct kmem_cache *s, int node,
  1071. int objects) {}
  1072. static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
  1073. { return 0; }
  1074. static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
  1075. void *object) {}
  1076. static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
  1077. #endif /* CONFIG_SLUB_DEBUG */
  1078. /*
  1079. * Slab allocation and freeing
  1080. */
  1081. static inline struct page *alloc_slab_page(gfp_t flags, int node,
  1082. struct kmem_cache_order_objects oo)
  1083. {
  1084. int order = oo_order(oo);
  1085. flags |= __GFP_NOTRACK;
  1086. if (node == NUMA_NO_NODE)
  1087. return alloc_pages(flags, order);
  1088. else
  1089. return alloc_pages_exact_node(node, flags, order);
  1090. }
  1091. static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
  1092. {
  1093. struct page *page;
  1094. struct kmem_cache_order_objects oo = s->oo;
  1095. gfp_t alloc_gfp;
  1096. flags &= gfp_allowed_mask;
  1097. if (flags & __GFP_WAIT)
  1098. local_irq_enable();
  1099. flags |= s->allocflags;
  1100. /*
  1101. * Let the initial higher-order allocation fail under memory pressure
  1102. * so we fall-back to the minimum order allocation.
  1103. */
  1104. alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
  1105. page = alloc_slab_page(alloc_gfp, node, oo);
  1106. if (unlikely(!page)) {
  1107. oo = s->min;
  1108. /*
  1109. * Allocation may have failed due to fragmentation.
  1110. * Try a lower order alloc if possible
  1111. */
  1112. page = alloc_slab_page(flags, node, oo);
  1113. if (page)
  1114. stat(s, ORDER_FALLBACK);
  1115. }
  1116. if (flags & __GFP_WAIT)
  1117. local_irq_disable();
  1118. if (!page)
  1119. return NULL;
  1120. if (kmemcheck_enabled
  1121. && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
  1122. int pages = 1 << oo_order(oo);
  1123. kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
  1124. /*
  1125. * Objects from caches that have a constructor don't get
  1126. * cleared when they're allocated, so we need to do it here.
  1127. */
  1128. if (s->ctor)
  1129. kmemcheck_mark_uninitialized_pages(page, pages);
  1130. else
  1131. kmemcheck_mark_unallocated_pages(page, pages);
  1132. }
  1133. page->objects = oo_objects(oo);
  1134. mod_zone_page_state(page_zone(page),
  1135. (s->flags & SLAB_RECLAIM_ACCOUNT) ?
  1136. NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
  1137. 1 << oo_order(oo));
  1138. return page;
  1139. }
  1140. static void setup_object(struct kmem_cache *s, struct page *page,
  1141. void *object)
  1142. {
  1143. setup_object_debug(s, page, object);
  1144. if (unlikely(s->ctor))
  1145. s->ctor(object);
  1146. }
  1147. static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
  1148. {
  1149. struct page *page;
  1150. void *start;
  1151. void *last;
  1152. void *p;
  1153. BUG_ON(flags & GFP_SLAB_BUG_MASK);
  1154. page = allocate_slab(s,
  1155. flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
  1156. if (!page)
  1157. goto out;
  1158. inc_slabs_node(s, page_to_nid(page), page->objects);
  1159. page->slab = s;
  1160. page->flags |= 1 << PG_slab;
  1161. start = page_address(page);
  1162. if (unlikely(s->flags & SLAB_POISON))
  1163. memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
  1164. last = start;
  1165. for_each_object(p, s, start, page->objects) {
  1166. setup_object(s, page, last);
  1167. set_freepointer(s, last, p);
  1168. last = p;
  1169. }
  1170. setup_object(s, page, last);
  1171. set_freepointer(s, last, NULL);
  1172. page->freelist = start;
  1173. page->inuse = page->objects;
  1174. page->frozen = 1;
  1175. out:
  1176. return page;
  1177. }
  1178. static void __free_slab(struct kmem_cache *s, struct page *page)
  1179. {
  1180. int order = compound_order(page);
  1181. int pages = 1 << order;
  1182. if (kmem_cache_debug(s)) {
  1183. void *p;
  1184. slab_pad_check(s, page);
  1185. for_each_object(p, s, page_address(page),
  1186. page->objects)
  1187. check_object(s, page, p, SLUB_RED_INACTIVE);
  1188. }
  1189. kmemcheck_free_shadow(page, compound_order(page));
  1190. mod_zone_page_state(page_zone(page),
  1191. (s->flags & SLAB_RECLAIM_ACCOUNT) ?
  1192. NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
  1193. -pages);
  1194. __ClearPageSlab(page);
  1195. reset_page_mapcount(page);
  1196. if (current->reclaim_state)
  1197. current->reclaim_state->reclaimed_slab += pages;
  1198. __free_pages(page, order);
  1199. }
  1200. #define need_reserve_slab_rcu \
  1201. (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
  1202. static void rcu_free_slab(struct rcu_head *h)
  1203. {
  1204. struct page *page;
  1205. if (need_reserve_slab_rcu)
  1206. page = virt_to_head_page(h);
  1207. else
  1208. page = container_of((struct list_head *)h, struct page, lru);
  1209. __free_slab(page->slab, page);
  1210. }
  1211. static void free_slab(struct kmem_cache *s, struct page *page)
  1212. {
  1213. if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
  1214. struct rcu_head *head;
  1215. if (need_reserve_slab_rcu) {
  1216. int order = compound_order(page);
  1217. int offset = (PAGE_SIZE << order) - s->reserved;
  1218. VM_BUG_ON(s->reserved != sizeof(*head));
  1219. head = page_address(page) + offset;
  1220. } else {
  1221. /*
  1222. * RCU free overloads the RCU head over the LRU
  1223. */
  1224. head = (void *)&page->lru;
  1225. }
  1226. call_rcu(head, rcu_free_slab);
  1227. } else
  1228. __free_slab(s, page);
  1229. }
  1230. static void discard_slab(struct kmem_cache *s, struct page *page)
  1231. {
  1232. dec_slabs_node(s, page_to_nid(page), page->objects);
  1233. free_slab(s, page);
  1234. }
  1235. /*
  1236. * Management of partially allocated slabs.
  1237. *
  1238. * list_lock must be held.
  1239. */
  1240. static inline void add_partial(struct kmem_cache_node *n,
  1241. struct page *page, int tail)
  1242. {
  1243. n->nr_partial++;
  1244. if (tail == DEACTIVATE_TO_TAIL)
  1245. list_add_tail(&page->lru, &n->partial);
  1246. else
  1247. list_add(&page->lru, &n->partial);
  1248. }
  1249. /*
  1250. * list_lock must be held.
  1251. */
  1252. static inline void remove_partial(struct kmem_cache_node *n,
  1253. struct page *page)
  1254. {
  1255. list_del(&page->lru);
  1256. n->nr_partial--;
  1257. }
  1258. /*
  1259. * Lock slab, remove from the partial list and put the object into the
  1260. * per cpu freelist.
  1261. *
  1262. * Returns a list of objects or NULL if it fails.
  1263. *
  1264. * Must hold list_lock.
  1265. */
  1266. static inline void *acquire_slab(struct kmem_cache *s,
  1267. struct kmem_cache_node *n, struct page *page,
  1268. int mode)
  1269. {
  1270. void *freelist;
  1271. unsigned long counters;
  1272. struct page new;
  1273. /*
  1274. * Zap the freelist and set the frozen bit.
  1275. * The old freelist is the list of objects for the
  1276. * per cpu allocation list.
  1277. */
  1278. do {
  1279. freelist = page->freelist;
  1280. counters = page->counters;
  1281. new.counters = counters;
  1282. if (mode)
  1283. new.inuse = page->objects;
  1284. VM_BUG_ON(new.frozen);
  1285. new.frozen = 1;
  1286. } while (!__cmpxchg_double_slab(s, page,
  1287. freelist, counters,
  1288. NULL, new.counters,
  1289. "lock and freeze"));
  1290. remove_partial(n, page);
  1291. return freelist;
  1292. }
  1293. static int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
  1294. /*
  1295. * Try to allocate a partial slab from a specific node.
  1296. */
  1297. static void *get_partial_node(struct kmem_cache *s,
  1298. struct kmem_cache_node *n, struct kmem_cache_cpu *c)
  1299. {
  1300. struct page *page, *page2;
  1301. void *object = NULL;
  1302. /*
  1303. * Racy check. If we mistakenly see no partial slabs then we
  1304. * just allocate an empty slab. If we mistakenly try to get a
  1305. * partial slab and there is none available then get_partials()
  1306. * will return NULL.
  1307. */
  1308. if (!n || !n->nr_partial)
  1309. return NULL;
  1310. spin_lock(&n->list_lock);
  1311. list_for_each_entry_safe(page, page2, &n->partial, lru) {
  1312. void *t = acquire_slab(s, n, page, object == NULL);
  1313. int available;
  1314. if (!t)
  1315. break;
  1316. if (!object) {
  1317. c->page = page;
  1318. c->node = page_to_nid(page);
  1319. stat(s, ALLOC_FROM_PARTIAL);
  1320. object = t;
  1321. available = page->objects - page->inuse;
  1322. } else {
  1323. page->freelist = t;
  1324. available = put_cpu_partial(s, page, 0);
  1325. }
  1326. if (kmem_cache_debug(s) || available > s->cpu_partial / 2)
  1327. break;
  1328. }
  1329. spin_unlock(&n->list_lock);
  1330. return object;
  1331. }
  1332. /*
  1333. * Get a page from somewhere. Search in increasing NUMA distances.
  1334. */
  1335. static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags,
  1336. struct kmem_cache_cpu *c)
  1337. {
  1338. #ifdef CONFIG_NUMA
  1339. struct zonelist *zonelist;
  1340. struct zoneref *z;
  1341. struct zone *zone;
  1342. enum zone_type high_zoneidx = gfp_zone(flags);
  1343. void *object;
  1344. /*
  1345. * The defrag ratio allows a configuration of the tradeoffs between
  1346. * inter node defragmentation and node local allocations. A lower
  1347. * defrag_ratio increases the tendency to do local allocations
  1348. * instead of attempting to obtain partial slabs from other nodes.
  1349. *
  1350. * If the defrag_ratio is set to 0 then kmalloc() always
  1351. * returns node local objects. If the ratio is higher then kmalloc()
  1352. * may return off node objects because partial slabs are obtained
  1353. * from other nodes and filled up.
  1354. *
  1355. * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
  1356. * defrag_ratio = 1000) then every (well almost) allocation will
  1357. * first attempt to defrag slab caches on other nodes. This means
  1358. * scanning over all nodes to look for partial slabs which may be
  1359. * expensive if we do it every time we are trying to find a slab
  1360. * with available objects.
  1361. */
  1362. if (!s->remote_node_defrag_ratio ||
  1363. get_cycles() % 1024 > s->remote_node_defrag_ratio)
  1364. return NULL;
  1365. get_mems_allowed();
  1366. zonelist = node_zonelist(slab_node(current->mempolicy), flags);
  1367. for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
  1368. struct kmem_cache_node *n;
  1369. n = get_node(s, zone_to_nid(zone));
  1370. if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
  1371. n->nr_partial > s->min_partial) {
  1372. object = get_partial_node(s, n, c);
  1373. if (object) {
  1374. put_mems_allowed();
  1375. return object;
  1376. }
  1377. }
  1378. }
  1379. put_mems_allowed();
  1380. #endif
  1381. return NULL;
  1382. }
  1383. /*
  1384. * Get a partial page, lock it and return it.
  1385. */
  1386. static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
  1387. struct kmem_cache_cpu *c)
  1388. {
  1389. void *object;
  1390. int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
  1391. object = get_partial_node(s, get_node(s, searchnode), c);
  1392. if (object || node != NUMA_NO_NODE)
  1393. return object;
  1394. return get_any_partial(s, flags, c);
  1395. }
  1396. #ifdef CONFIG_PREEMPT
  1397. /*
  1398. * Calculate the next globally unique transaction for disambiguiation
  1399. * during cmpxchg. The transactions start with the cpu number and are then
  1400. * incremented by CONFIG_NR_CPUS.
  1401. */
  1402. #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
  1403. #else
  1404. /*
  1405. * No preemption supported therefore also no need to check for
  1406. * different cpus.
  1407. */
  1408. #define TID_STEP 1
  1409. #endif
  1410. static inline unsigned long next_tid(unsigned long tid)
  1411. {
  1412. return tid + TID_STEP;
  1413. }
  1414. static inline unsigned int tid_to_cpu(unsigned long tid)
  1415. {
  1416. return tid % TID_STEP;
  1417. }
  1418. static inline unsigned long tid_to_event(unsigned long tid)
  1419. {
  1420. return tid / TID_STEP;
  1421. }
  1422. static inline unsigned int init_tid(int cpu)
  1423. {
  1424. return cpu;
  1425. }
  1426. static inline void note_cmpxchg_failure(const char *n,
  1427. const struct kmem_cache *s, unsigned long tid)
  1428. {
  1429. #ifdef SLUB_DEBUG_CMPXCHG
  1430. unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
  1431. printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);
  1432. #ifdef CONFIG_PREEMPT
  1433. if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
  1434. printk("due to cpu change %d -> %d\n",
  1435. tid_to_cpu(tid), tid_to_cpu(actual_tid));
  1436. else
  1437. #endif
  1438. if (tid_to_event(tid) != tid_to_event(actual_tid))
  1439. printk("due to cpu running other code. Event %ld->%ld\n",
  1440. tid_to_event(tid), tid_to_event(actual_tid));
  1441. else
  1442. printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
  1443. actual_tid, tid, next_tid(tid));
  1444. #endif
  1445. stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
  1446. }
  1447. void init_kmem_cache_cpus(struct kmem_cache *s)
  1448. {
  1449. int cpu;
  1450. for_each_possible_cpu(cpu)
  1451. per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
  1452. }
  1453. /*
  1454. * Remove the cpu slab
  1455. */
  1456. static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
  1457. {
  1458. enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
  1459. struct page *page = c->page;
  1460. struct kmem_cache_node *n = get_node(s, page_to_nid(page));
  1461. int lock = 0;
  1462. enum slab_modes l = M_NONE, m = M_NONE;
  1463. void *freelist;
  1464. void *nextfree;
  1465. int tail = DEACTIVATE_TO_HEAD;
  1466. struct page new;
  1467. struct page old;
  1468. if (page->freelist) {
  1469. stat(s, DEACTIVATE_REMOTE_FREES);
  1470. tail = DEACTIVATE_TO_TAIL;
  1471. }
  1472. c->tid = next_tid(c->tid);
  1473. c->page = NULL;
  1474. freelist = c->freelist;
  1475. c->freelist = NULL;
  1476. /*
  1477. * Stage one: Free all available per cpu objects back
  1478. * to the page freelist while it is still frozen. Leave the
  1479. * last one.
  1480. *
  1481. * There is no need to take the list->lock because the page
  1482. * is still frozen.
  1483. */
  1484. while (freelist && (nextfree = get_freepointer(s, freelist))) {
  1485. void *prior;
  1486. unsigned long counters;
  1487. do {
  1488. prior = page->freelist;
  1489. counters = page->counters;
  1490. set_freepointer(s, freelist, prior);
  1491. new.counters = counters;
  1492. new.inuse--;
  1493. VM_BUG_ON(!new.frozen);
  1494. } while (!__cmpxchg_double_slab(s, page,
  1495. prior, counters,
  1496. freelist, new.counters,
  1497. "drain percpu freelist"));
  1498. freelist = nextfree;
  1499. }
  1500. /*
  1501. * Stage two: Ensure that the page is unfrozen while the
  1502. * list presence reflects the actual number of objects
  1503. * during unfreeze.
  1504. *
  1505. * We setup the list membership and then perform a cmpxchg
  1506. * with the count. If there is a mismatch then the page
  1507. * is not unfrozen but the page is on the wrong list.
  1508. *
  1509. * Then we restart the process which may have to remove
  1510. * the page from the list that we just put it on again
  1511. * because the number of objects in the slab may have
  1512. * changed.
  1513. */
  1514. redo:
  1515. old.freelist = page->freelist;
  1516. old.counters = page->counters;
  1517. VM_BUG_ON(!old.frozen);
  1518. /* Determine target state of the slab */
  1519. new.counters = old.counters;
  1520. if (freelist) {
  1521. new.inuse--;
  1522. set_freepointer(s, freelist, old.freelist);
  1523. new.freelist = freelist;
  1524. } else
  1525. new.freelist = old.freelist;
  1526. new.frozen = 0;
  1527. if (!new.inuse && n->nr_partial > s->min_partial)
  1528. m = M_FREE;
  1529. else if (new.freelist) {
  1530. m = M_PARTIAL;
  1531. if (!lock) {
  1532. lock = 1;
  1533. /*
  1534. * Taking the spinlock removes the possiblity
  1535. * that acquire_slab() will see a slab page that
  1536. * is frozen
  1537. */
  1538. spin_lock(&n->list_lock);
  1539. }
  1540. } else {
  1541. m = M_FULL;
  1542. if (kmem_cache_debug(s) && !lock) {
  1543. lock = 1;
  1544. /*
  1545. * This also ensures that the scanning of full
  1546. * slabs from diagnostic functions will not see
  1547. * any frozen slabs.
  1548. */
  1549. spin_lock(&n->list_lock);
  1550. }
  1551. }
  1552. if (l != m) {
  1553. if (l == M_PARTIAL)
  1554. remove_partial(n, page);
  1555. else if (l == M_FULL)
  1556. remove_full(s, page);
  1557. if (m == M_PARTIAL) {
  1558. add_partial(n, page, tail);
  1559. stat(s, tail);
  1560. } else if (m == M_FULL) {
  1561. stat(s, DEACTIVATE_FULL);
  1562. add_full(s, n, page);
  1563. }
  1564. }
  1565. l = m;
  1566. if (!__cmpxchg_double_slab(s, page,
  1567. old.freelist, old.counters,
  1568. new.freelist, new.counters,
  1569. "unfreezing slab"))
  1570. goto redo;
  1571. if (lock)
  1572. spin_unlock(&n->list_lock);
  1573. if (m == M_FREE) {
  1574. stat(s, DEACTIVATE_EMPTY);
  1575. discard_slab(s, page);
  1576. stat(s, FREE_SLAB);
  1577. }
  1578. }
  1579. /* Unfreeze all the cpu partial slabs */
  1580. static void unfreeze_partials(struct kmem_cache *s)
  1581. {
  1582. struct kmem_cache_node *n = NULL;
  1583. struct kmem_cache_cpu *c = this_cpu_ptr(s->cpu_slab);
  1584. struct page *page, *discard_page = NULL;
  1585. while ((page = c->partial)) {
  1586. enum slab_modes { M_PARTIAL, M_FREE };
  1587. enum slab_modes l, m;
  1588. struct page new;
  1589. struct page old;
  1590. c->partial = page->next;
  1591. l = M_FREE;
  1592. do {
  1593. old.freelist = page->freelist;
  1594. old.counters = page->counters;
  1595. VM_BUG_ON(!old.frozen);
  1596. new.counters = old.counters;
  1597. new.freelist = old.freelist;
  1598. new.frozen = 0;
  1599. if (!new.inuse && (!n || n->nr_partial > s->min_partial))
  1600. m = M_FREE;
  1601. else {
  1602. struct kmem_cache_node *n2 = get_node(s,
  1603. page_to_nid(page));
  1604. m = M_PARTIAL;
  1605. if (n != n2) {
  1606. if (n)
  1607. spin_unlock(&n->list_lock);
  1608. n = n2;
  1609. spin_lock(&n->list_lock);
  1610. }
  1611. }
  1612. if (l != m) {
  1613. if (l == M_PARTIAL)
  1614. remove_partial(n, page);
  1615. else
  1616. add_partial(n, page,
  1617. DEACTIVATE_TO_TAIL);
  1618. l = m;
  1619. }
  1620. } while (!cmpxchg_double_slab(s, page,
  1621. old.freelist, old.counters,
  1622. new.freelist, new.counters,
  1623. "unfreezing slab"));
  1624. if (m == M_FREE) {
  1625. page->next = discard_page;
  1626. discard_page = page;
  1627. }
  1628. }
  1629. if (n)
  1630. spin_unlock(&n->list_lock);
  1631. while (discard_page) {
  1632. page = discard_page;
  1633. discard_page = discard_page->next;
  1634. stat(s, DEACTIVATE_EMPTY);
  1635. discard_slab(s, page);
  1636. stat(s, FREE_SLAB);
  1637. }
  1638. }
  1639. /*
  1640. * Put a page that was just frozen (in __slab_free) into a partial page
  1641. * slot if available. This is done without interrupts disabled and without
  1642. * preemption disabled. The cmpxchg is racy and may put the partial page
  1643. * onto a random cpus partial slot.
  1644. *
  1645. * If we did not find a slot then simply move all the partials to the
  1646. * per node partial list.
  1647. */
  1648. int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
  1649. {
  1650. struct page *oldpage;
  1651. int pages;
  1652. int pobjects;
  1653. do {
  1654. pages = 0;
  1655. pobjects = 0;
  1656. oldpage = this_cpu_read(s->cpu_slab->partial);
  1657. if (oldpage) {
  1658. pobjects = oldpage->pobjects;
  1659. pages = oldpage->pages;
  1660. if (drain && pobjects > s->cpu_partial) {
  1661. unsigned long flags;
  1662. /*
  1663. * partial array is full. Move the existing
  1664. * set to the per node partial list.
  1665. */
  1666. local_irq_save(flags);
  1667. unfreeze_partials(s);
  1668. local_irq_restore(flags);
  1669. pobjects = 0;
  1670. pages = 0;
  1671. }
  1672. }
  1673. pages++;
  1674. pobjects += page->objects - page->inuse;
  1675. page->pages = pages;
  1676. page->pobjects = pobjects;
  1677. page->next = oldpage;
  1678. } while (irqsafe_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) != oldpage);
  1679. stat(s, CPU_PARTIAL_FREE);
  1680. return pobjects;
  1681. }
  1682. static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
  1683. {
  1684. stat(s, CPUSLAB_FLUSH);
  1685. deactivate_slab(s, c);
  1686. }
  1687. /*
  1688. * Flush cpu slab.
  1689. *
  1690. * Called from IPI handler with interrupts disabled.
  1691. */
  1692. static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
  1693. {
  1694. struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
  1695. if (likely(c)) {
  1696. if (c->page)
  1697. flush_slab(s, c);
  1698. unfreeze_partials(s);
  1699. }
  1700. }
  1701. static void flush_cpu_slab(void *d)
  1702. {
  1703. struct kmem_cache *s = d;
  1704. __flush_cpu_slab(s, smp_processor_id());
  1705. }
  1706. static void flush_all(struct kmem_cache *s)
  1707. {
  1708. on_each_cpu(flush_cpu_slab, s, 1);
  1709. }
  1710. /*
  1711. * Check if the objects in a per cpu structure fit numa
  1712. * locality expectations.
  1713. */
  1714. static inline int node_match(struct kmem_cache_cpu *c, int node)
  1715. {
  1716. #ifdef CONFIG_NUMA
  1717. if (node != NUMA_NO_NODE && c->node != node)
  1718. return 0;
  1719. #endif
  1720. return 1;
  1721. }
  1722. static int count_free(struct page *page)
  1723. {
  1724. return page->objects - page->inuse;
  1725. }
  1726. static unsigned long count_partial(struct kmem_cache_node *n,
  1727. int (*get_count)(struct page *))
  1728. {
  1729. unsigned long flags;
  1730. unsigned long x = 0;
  1731. struct page *page;
  1732. spin_lock_irqsave(&n->list_lock, flags);
  1733. list_for_each_entry(page, &n->partial, lru)
  1734. x += get_count(page);
  1735. spin_unlock_irqrestore(&n->list_lock, flags);
  1736. return x;
  1737. }
  1738. static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
  1739. {
  1740. #ifdef CONFIG_SLUB_DEBUG
  1741. return atomic_long_read(&n->total_objects);
  1742. #else
  1743. return 0;
  1744. #endif
  1745. }
  1746. static noinline void
  1747. slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
  1748. {
  1749. int node;
  1750. printk(KERN_WARNING
  1751. "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
  1752. nid, gfpflags);
  1753. printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
  1754. "default order: %d, min order: %d\n", s->name, s->objsize,
  1755. s->size, oo_order(s->oo), oo_order(s->min));
  1756. if (oo_order(s->min) > get_order(s->objsize))
  1757. printk(KERN_WARNING " %s debugging increased min order, use "
  1758. "slub_debug=O to disable.\n", s->name);
  1759. for_each_online_node(node) {
  1760. struct kmem_cache_node *n = get_node(s, node);
  1761. unsigned long nr_slabs;
  1762. unsigned long nr_objs;
  1763. unsigned long nr_free;
  1764. if (!n)
  1765. continue;
  1766. nr_free = count_partial(n, count_free);
  1767. nr_slabs = node_nr_slabs(n);
  1768. nr_objs = node_nr_objs(n);
  1769. printk(KERN_WARNING
  1770. " node %d: slabs: %ld, objs: %ld, free: %ld\n",
  1771. node, nr_slabs, nr_objs, nr_free);
  1772. }
  1773. }
  1774. static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
  1775. int node, struct kmem_cache_cpu **pc)
  1776. {
  1777. void *object;
  1778. struct kmem_cache_cpu *c;
  1779. struct page *page = new_slab(s, flags, node);
  1780. if (page) {
  1781. c = __this_cpu_ptr(s->cpu_slab);
  1782. if (c->page)
  1783. flush_slab(s, c);
  1784. /*
  1785. * No other reference to the page yet so we can
  1786. * muck around with it freely without cmpxchg
  1787. */
  1788. object = page->freelist;
  1789. page->freelist = NULL;
  1790. stat(s, ALLOC_SLAB);
  1791. c->node = page_to_nid(page);
  1792. c->page = page;
  1793. *pc = c;
  1794. } else
  1795. object = NULL;
  1796. return object;
  1797. }
  1798. /*
  1799. * Slow path. The lockless freelist is empty or we need to perform
  1800. * debugging duties.
  1801. *
  1802. * Processing is still very fast if new objects have been freed to the
  1803. * regular freelist. In that case we simply take over the regular freelist
  1804. * as the lockless freelist and zap the regular freelist.
  1805. *
  1806. * If that is not working then we fall back to the partial lists. We take the
  1807. * first element of the freelist as the object to allocate now and move the
  1808. * rest of the freelist to the lockless freelist.
  1809. *
  1810. * And if we were unable to get a new slab from the partial slab lists then
  1811. * we need to allocate a new slab. This is the slowest path since it involves
  1812. * a call to the page allocator and the setup of a new slab.
  1813. */
  1814. static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
  1815. unsigned long addr, struct kmem_cache_cpu *c)
  1816. {
  1817. void **object;
  1818. unsigned long flags;
  1819. struct page new;
  1820. unsigned long counters;
  1821. local_irq_save(flags);
  1822. #ifdef CONFIG_PREEMPT
  1823. /*
  1824. * We may have been preempted and rescheduled on a different
  1825. * cpu before disabling interrupts. Need to reload cpu area
  1826. * pointer.
  1827. */
  1828. c = this_cpu_ptr(s->cpu_slab);
  1829. #endif
  1830. if (!c->page)
  1831. goto new_slab;
  1832. redo:
  1833. if (unlikely(!node_match(c, node))) {
  1834. stat(s, ALLOC_NODE_MISMATCH);
  1835. deactivate_slab(s, c);
  1836. goto new_slab;
  1837. }
  1838. stat(s, ALLOC_SLOWPATH);
  1839. do {
  1840. object = c->page->freelist;
  1841. counters = c->page->counters;
  1842. new.counters = counters;
  1843. VM_BUG_ON(!new.frozen);
  1844. /*
  1845. * If there is no object left then we use this loop to
  1846. * deactivate the slab which is simple since no objects
  1847. * are left in the slab and therefore we do not need to
  1848. * put the page back onto the partial list.
  1849. *
  1850. * If there are objects left then we retrieve them
  1851. * and use them to refill the per cpu queue.
  1852. */
  1853. new.inuse = c->page->objects;
  1854. new.frozen = object != NULL;
  1855. } while (!__cmpxchg_double_slab(s, c->page,
  1856. object, counters,
  1857. NULL, new.counters,
  1858. "__slab_alloc"));
  1859. if (!object) {
  1860. c->page = NULL;
  1861. stat(s, DEACTIVATE_BYPASS);
  1862. goto new_slab;
  1863. }
  1864. stat(s, ALLOC_REFILL);
  1865. load_freelist:
  1866. c->freelist = get_freepointer(s, object);
  1867. c->tid = next_tid(c->tid);
  1868. local_irq_restore(flags);
  1869. return object;
  1870. new_slab:
  1871. if (c->partial) {
  1872. c->page = c->partial;
  1873. c->partial = c->page->next;
  1874. c->node = page_to_nid(c->page);
  1875. stat(s, CPU_PARTIAL_ALLOC);
  1876. c->freelist = NULL;
  1877. goto redo;
  1878. }
  1879. /* Then do expensive stuff like retrieving pages from the partial lists */
  1880. object = get_partial(s, gfpflags, node, c);
  1881. if (unlikely(!object)) {
  1882. object = new_slab_objects(s, gfpflags, node, &c);
  1883. if (unlikely(!object)) {
  1884. if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
  1885. slab_out_of_memory(s, gfpflags, node);
  1886. local_irq_restore(flags);
  1887. return NULL;
  1888. }
  1889. }
  1890. if (likely(!kmem_cache_debug(s)))
  1891. goto load_freelist;
  1892. /* Only entered in the debug case */
  1893. if (!alloc_debug_processing(s, c->page, object, addr))
  1894. goto new_slab; /* Slab failed checks. Next slab needed */
  1895. c->freelist = get_freepointer(s, object);
  1896. deactivate_slab(s, c);
  1897. c->node = NUMA_NO_NODE;
  1898. local_irq_restore(flags);
  1899. return object;
  1900. }
  1901. /*
  1902. * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
  1903. * have the fastpath folded into their functions. So no function call
  1904. * overhead for requests that can be satisfied on the fastpath.
  1905. *
  1906. * The fastpath works by first checking if the lockless freelist can be used.
  1907. * If not then __slab_alloc is called for slow processing.
  1908. *
  1909. * Otherwise we can simply pick the next object from the lockless free list.
  1910. */
  1911. static __always_inline void *slab_alloc(struct kmem_cache *s,
  1912. gfp_t gfpflags, int node, unsigned long addr)
  1913. {
  1914. void **object;
  1915. struct kmem_cache_cpu *c;
  1916. unsigned long tid;
  1917. if (slab_pre_alloc_hook(s, gfpflags))
  1918. return NULL;
  1919. redo:
  1920. /*
  1921. * Must read kmem_cache cpu data via this cpu ptr. Preemption is
  1922. * enabled. We may switch back and forth between cpus while
  1923. * reading from one cpu area. That does not matter as long
  1924. * as we end up on the original cpu again when doing the cmpxchg.
  1925. */
  1926. c = __this_cpu_ptr(s->cpu_slab);
  1927. /*
  1928. * The transaction ids are globally unique per cpu and per operation on
  1929. * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
  1930. * occurs on the right processor and that there was no operation on the
  1931. * linked list in between.
  1932. */
  1933. tid = c->tid;
  1934. barrier();
  1935. object = c->freelist;
  1936. if (unlikely(!object || !node_match(c, node)))
  1937. object = __slab_alloc(s, gfpflags, node, addr, c);
  1938. else {
  1939. /*
  1940. * The cmpxchg will only match if there was no additional
  1941. * operation and if we are on the right processor.
  1942. *
  1943. * The cmpxchg does the following atomically (without lock semantics!)
  1944. * 1. Relocate first pointer to the current per cpu area.
  1945. * 2. Verify that tid and freelist have not been changed
  1946. * 3. If they were not changed replace tid and freelist
  1947. *
  1948. * Since this is without lock semantics the protection is only against
  1949. * code executing on this cpu *not* from access by other cpus.
  1950. */
  1951. if (unlikely(!irqsafe_cpu_cmpxchg_double(
  1952. s->cpu_slab->freelist, s->cpu_slab->tid,
  1953. object, tid,
  1954. get_freepointer_safe(s, object), next_tid(tid)))) {
  1955. note_cmpxchg_failure("slab_alloc", s, tid);
  1956. goto redo;
  1957. }
  1958. stat(s, ALLOC_FASTPATH);
  1959. }
  1960. if (unlikely(gfpflags & __GFP_ZERO) && object)
  1961. memset(object, 0, s->objsize);
  1962. slab_post_alloc_hook(s, gfpflags, object);
  1963. return object;
  1964. }
  1965. void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
  1966. {
  1967. void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
  1968. trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
  1969. return ret;
  1970. }
  1971. EXPORT_SYMBOL(kmem_cache_alloc);
  1972. #ifdef CONFIG_TRACING
  1973. void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
  1974. {
  1975. void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
  1976. trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
  1977. return ret;
  1978. }
  1979. EXPORT_SYMBOL(kmem_cache_alloc_trace);
  1980. void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
  1981. {
  1982. void *ret = kmalloc_order(size, flags, order);
  1983. trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
  1984. return ret;
  1985. }
  1986. EXPORT_SYMBOL(kmalloc_order_trace);
  1987. #endif
  1988. #ifdef CONFIG_NUMA
  1989. void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
  1990. {
  1991. void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
  1992. trace_kmem_cache_alloc_node(_RET_IP_, ret,
  1993. s->objsize, s->size, gfpflags, node);
  1994. return ret;
  1995. }
  1996. EXPORT_SYMBOL(kmem_cache_alloc_node);
  1997. #ifdef CONFIG_TRACING
  1998. void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
  1999. gfp_t gfpflags,
  2000. int node, size_t size)
  2001. {
  2002. void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
  2003. trace_kmalloc_node(_RET_IP_, ret,
  2004. size, s->size, gfpflags, node);
  2005. return ret;
  2006. }
  2007. EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
  2008. #endif
  2009. #endif
  2010. /*
  2011. * Slow patch handling. This may still be called frequently since objects
  2012. * have a longer lifetime than the cpu slabs in most processing loads.
  2013. *
  2014. * So we still attempt to reduce cache line usage. Just take the slab
  2015. * lock and free the item. If there is no additional partial page
  2016. * handling required then we can return immediately.
  2017. */
  2018. static void __slab_free(struct kmem_cache *s, struct page *page,
  2019. void *x, unsigned long addr)
  2020. {
  2021. void *prior;
  2022. void **object = (void *)x;
  2023. int was_frozen;
  2024. int inuse;
  2025. struct page new;
  2026. unsigned long counters;
  2027. struct kmem_cache_node *n = NULL;
  2028. unsigned long uninitialized_var(flags);
  2029. stat(s, FREE_SLOWPATH);
  2030. if (kmem_cache_debug(s) && !free_debug_processing(s, page, x, addr))
  2031. return;
  2032. do {
  2033. prior = page->freelist;
  2034. counters = page->counters;
  2035. set_freepointer(s, object, prior);
  2036. new.counters = counters;
  2037. was_frozen = new.frozen;
  2038. new.inuse--;
  2039. if ((!new.inuse || !prior) && !was_frozen && !n) {
  2040. if (!kmem_cache_debug(s) && !prior)
  2041. /*
  2042. * Slab was on no list before and will be partially empty
  2043. * We can defer the list move and instead freeze it.
  2044. */
  2045. new.frozen = 1;
  2046. else { /* Needs to be taken off a list */
  2047. n = get_node(s, page_to_nid(page));
  2048. /*
  2049. * Speculatively acquire the list_lock.
  2050. * If the cmpxchg does not succeed then we may
  2051. * drop the list_lock without any processing.
  2052. *
  2053. * Otherwise the list_lock will synchronize with
  2054. * other processors updating the list of slabs.
  2055. */
  2056. spin_lock_irqsave(&n->list_lock, flags);
  2057. }
  2058. }
  2059. inuse = new.inuse;
  2060. } while (!cmpxchg_double_slab(s, page,
  2061. prior, counters,
  2062. object, new.counters,
  2063. "__slab_free"));
  2064. if (likely(!n)) {
  2065. /*
  2066. * If we just froze the page then put it onto the
  2067. * per cpu partial list.
  2068. */
  2069. if (new.frozen && !was_frozen)
  2070. put_cpu_partial(s, page, 1);
  2071. /*
  2072. * The list lock was not taken therefore no list
  2073. * activity can be necessary.
  2074. */
  2075. if (was_frozen)
  2076. stat(s, FREE_FROZEN);
  2077. return;
  2078. }
  2079. /*
  2080. * was_frozen may have been set after we acquired the list_lock in
  2081. * an earlier loop. So we need to check it here again.
  2082. */
  2083. if (was_frozen)
  2084. stat(s, FREE_FROZEN);
  2085. else {
  2086. if (unlikely(!inuse && n->nr_partial > s->min_partial))
  2087. goto slab_empty;
  2088. /*
  2089. * Objects left in the slab. If it was not on the partial list before
  2090. * then add it.
  2091. */
  2092. if (unlikely(!prior)) {
  2093. remove_full(s, page);
  2094. add_partial(n, page, DEACTIVATE_TO_TAIL);
  2095. stat(s, FREE_ADD_PARTIAL);
  2096. }
  2097. }
  2098. spin_unlock_irqrestore(&n->list_lock, flags);
  2099. return;
  2100. slab_empty:
  2101. if (prior) {
  2102. /*
  2103. * Slab on the partial list.
  2104. */
  2105. remove_partial(n, page);
  2106. stat(s, FREE_REMOVE_PARTIAL);
  2107. } else
  2108. /* Slab must be on the full list */
  2109. remove_full(s, page);
  2110. spin_unlock_irqrestore(&n->list_lock, flags);
  2111. stat(s, FREE_SLAB);
  2112. discard_slab(s, page);
  2113. }
  2114. /*
  2115. * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
  2116. * can perform fastpath freeing without additional function calls.
  2117. *
  2118. * The fastpath is only possible if we are freeing to the current cpu slab
  2119. * of this processor. This typically the case if we have just allocated
  2120. * the item before.
  2121. *
  2122. * If fastpath is not possible then fall back to __slab_free where we deal
  2123. * with all sorts of special processing.
  2124. */
  2125. static __always_inline void slab_free(struct kmem_cache *s,
  2126. struct page *page, void *x, unsigned long addr)
  2127. {
  2128. void **object = (void *)x;
  2129. struct kmem_cache_cpu *c;
  2130. unsigned long tid;
  2131. slab_free_hook(s, x);
  2132. redo:
  2133. /*
  2134. * Determine the currently cpus per cpu slab.
  2135. * The cpu may change afterward. However that does not matter since
  2136. * data is retrieved via this pointer. If we are on the same cpu
  2137. * during the cmpxchg then the free will succedd.
  2138. */
  2139. c = __this_cpu_ptr(s->cpu_slab);
  2140. tid = c->tid;
  2141. barrier();
  2142. if (likely(page == c->page)) {
  2143. set_freepointer(s, object, c->freelist);
  2144. if (unlikely(!irqsafe_cpu_cmpxchg_double(
  2145. s->cpu_slab->freelist, s->cpu_slab->tid,
  2146. c->freelist, tid,
  2147. object, next_tid(tid)))) {
  2148. note_cmpxchg_failure("slab_free", s, tid);
  2149. goto redo;
  2150. }
  2151. stat(s, FREE_FASTPATH);
  2152. } else
  2153. __slab_free(s, page, x, addr);
  2154. }
  2155. void kmem_cache_free(struct kmem_cache *s, void *x)
  2156. {
  2157. struct page *page;
  2158. page = virt_to_head_page(x);
  2159. slab_free(s, page, x, _RET_IP_);
  2160. trace_kmem_cache_free(_RET_IP_, x);
  2161. }
  2162. EXPORT_SYMBOL(kmem_cache_free);
  2163. /*
  2164. * Object placement in a slab is made very easy because we always start at
  2165. * offset 0. If we tune the size of the object to the alignment then we can
  2166. * get the required alignment by putting one properly sized object after
  2167. * another.
  2168. *
  2169. * Notice that the allocation order determines the sizes of the per cpu
  2170. * caches. Each processor has always one slab available for allocations.
  2171. * Increasing the allocation order reduces the number of times that slabs
  2172. * must be moved on and off the partial lists and is therefore a factor in
  2173. * locking overhead.
  2174. */
  2175. /*
  2176. * Mininum / Maximum order of slab pages. This influences locking overhead
  2177. * and slab fragmentation. A higher order reduces the number of partial slabs
  2178. * and increases the number of allocations possible without having to
  2179. * take the list_lock.
  2180. */
  2181. static int slub_min_order;
  2182. static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
  2183. static int slub_min_objects;
  2184. /*
  2185. * Merge control. If this is set then no merging of slab caches will occur.
  2186. * (Could be removed. This was introduced to pacify the merge skeptics.)
  2187. */
  2188. static int slub_nomerge;
  2189. /*
  2190. * Calculate the order of allocation given an slab object size.
  2191. *
  2192. * The order of allocation has significant impact on performance and other
  2193. * system components. Generally order 0 allocations should be preferred since
  2194. * order 0 does not cause fragmentation in the page allocator. Larger objects
  2195. * be problematic to put into order 0 slabs because there may be too much
  2196. * unused space left. We go to a higher order if more than 1/16th of the slab
  2197. * would be wasted.
  2198. *
  2199. * In order to reach satisfactory performance we must ensure that a minimum
  2200. * number of objects is in one slab. Otherwise we may generate too much
  2201. * activity on the partial lists which requires taking the list_lock. This is
  2202. * less a concern for large slabs though which are rarely used.
  2203. *
  2204. * slub_max_order specifies the order where we begin to stop considering the
  2205. * number of objects in a slab as critical. If we reach slub_max_order then
  2206. * we try to keep the page order as low as possible. So we accept more waste
  2207. * of space in favor of a small page order.
  2208. *
  2209. * Higher order allocations also allow the placement of more objects in a
  2210. * slab and thereby reduce object handling overhead. If the user has
  2211. * requested a higher mininum order then we start with that one instead of
  2212. * the smallest order which will fit the object.
  2213. */
  2214. static inline int slab_order(int size, int min_objects,
  2215. int max_order, int fract_leftover, int reserved)
  2216. {
  2217. int order;
  2218. int rem;
  2219. int min_order = slub_min_order;
  2220. if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
  2221. return get_order(size * MAX_OBJS_PER_PAGE) - 1;
  2222. for (order = max(min_order,
  2223. fls(min_objects * size - 1) - PAGE_SHIFT);
  2224. order <= max_order; order++) {
  2225. unsigned long slab_size = PAGE_SIZE << order;
  2226. if (slab_size < min_objects * size + reserved)
  2227. continue;
  2228. rem = (slab_size - reserved) % size;
  2229. if (rem <= slab_size / fract_leftover)
  2230. break;
  2231. }
  2232. return order;
  2233. }
  2234. static inline int calculate_order(int size, int reserved)
  2235. {
  2236. int order;
  2237. int min_objects;
  2238. int fraction;
  2239. int max_objects;
  2240. /*
  2241. * Attempt to find best configuration for a slab. This
  2242. * works by first attempting to generate a layout with
  2243. * the best configuration and backing off gradually.
  2244. *
  2245. * First we reduce the acceptable waste in a slab. Then
  2246. * we reduce the minimum objects required in a slab.
  2247. */
  2248. min_objects = slub_min_objects;
  2249. if (!min_objects)
  2250. min_objects = 4 * (fls(nr_cpu_ids) + 1);
  2251. max_objects = order_objects(slub_max_order, size, reserved);
  2252. min_objects = min(min_objects, max_objects);
  2253. while (min_objects > 1) {
  2254. fraction = 16;
  2255. while (fraction >= 4) {
  2256. order = slab_order(size, min_objects,
  2257. slub_max_order, fraction, reserved);
  2258. if (order <= slub_max_order)
  2259. return order;
  2260. fraction /= 2;
  2261. }
  2262. min_objects--;
  2263. }
  2264. /*
  2265. * We were unable to place multiple objects in a slab. Now
  2266. * lets see if we can place a single object there.
  2267. */
  2268. order = slab_order(size, 1, slub_max_order, 1, reserved);
  2269. if (order <= slub_max_order)
  2270. return order;
  2271. /*
  2272. * Doh this slab cannot be placed using slub_max_order.
  2273. */
  2274. order = slab_order(size, 1, MAX_ORDER, 1, reserved);
  2275. if (order < MAX_ORDER)
  2276. return order;
  2277. return -ENOSYS;
  2278. }
  2279. /*
  2280. * Figure out what the alignment of the objects will be.
  2281. */
  2282. static unsigned long calculate_alignment(unsigned long flags,
  2283. unsigned long align, unsigned long size)
  2284. {
  2285. /*
  2286. * If the user wants hardware cache aligned objects then follow that
  2287. * suggestion if the object is sufficiently large.
  2288. *
  2289. * The hardware cache alignment cannot override the specified
  2290. * alignment though. If that is greater then use it.
  2291. */
  2292. if (flags & SLAB_HWCACHE_ALIGN) {
  2293. unsigned long ralign = cache_line_size();
  2294. while (size <= ralign / 2)
  2295. ralign /= 2;
  2296. align = max(align, ralign);
  2297. }
  2298. if (align < ARCH_SLAB_MINALIGN)
  2299. align = ARCH_SLAB_MINALIGN;
  2300. return ALIGN(align, sizeof(void *));
  2301. }
  2302. static void
  2303. init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
  2304. {
  2305. n->nr_partial = 0;
  2306. spin_lock_init(&n->list_lock);
  2307. INIT_LIST_HEAD(&n->partial);
  2308. #ifdef CONFIG_SLUB_DEBUG
  2309. atomic_long_set(&n->nr_slabs, 0);
  2310. atomic_long_set(&n->total_objects, 0);
  2311. INIT_LIST_HEAD(&n->full);
  2312. #endif
  2313. }
  2314. static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
  2315. {
  2316. BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
  2317. SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu));
  2318. /*
  2319. * Must align to double word boundary for the double cmpxchg
  2320. * instructions to work; see __pcpu_double_call_return_bool().
  2321. */
  2322. s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
  2323. 2 * sizeof(void *));
  2324. if (!s->cpu_slab)
  2325. return 0;
  2326. init_kmem_cache_cpus(s);
  2327. return 1;
  2328. }
  2329. static struct kmem_cache *kmem_cache_node;
  2330. /*
  2331. * No kmalloc_node yet so do it by hand. We know that this is the first
  2332. * slab on the node for this slabcache. There are no concurrent accesses
  2333. * possible.
  2334. *
  2335. * Note that this function only works on the kmalloc_node_cache
  2336. * when allocating for the kmalloc_node_cache. This is used for bootstrapping
  2337. * memory on a fresh node that has no slab structures yet.
  2338. */
  2339. static void early_kmem_cache_node_alloc(int node)
  2340. {
  2341. struct page *page;
  2342. struct kmem_cache_node *n;
  2343. BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
  2344. page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
  2345. BUG_ON(!page);
  2346. if (page_to_nid(page) != node) {
  2347. printk(KERN_ERR "SLUB: Unable to allocate memory from "
  2348. "node %d\n", node);
  2349. printk(KERN_ERR "SLUB: Allocating a useless per node structure "
  2350. "in order to be able to continue\n");
  2351. }
  2352. n = page->freelist;
  2353. BUG_ON(!n);
  2354. page->freelist = get_freepointer(kmem_cache_node, n);
  2355. page->inuse = 1;
  2356. page->frozen = 0;
  2357. kmem_cache_node->node[node] = n;
  2358. #ifdef CONFIG_SLUB_DEBUG
  2359. init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
  2360. init_tracking(kmem_cache_node, n);
  2361. #endif
  2362. init_kmem_cache_node(n, kmem_cache_node);
  2363. inc_slabs_node(kmem_cache_node, node, page->objects);
  2364. add_partial(n, page, DEACTIVATE_TO_HEAD);
  2365. }
  2366. static void free_kmem_cache_nodes(struct kmem_cache *s)
  2367. {
  2368. int node;
  2369. for_each_node_state(node, N_NORMAL_MEMORY) {
  2370. struct kmem_cache_node *n = s->node[node];
  2371. if (n)
  2372. kmem_cache_free(kmem_cache_node, n);
  2373. s->node[node] = NULL;
  2374. }
  2375. }
  2376. static int init_kmem_cache_nodes(struct kmem_cache *s)
  2377. {
  2378. int node;
  2379. for_each_node_state(node, N_NORMAL_MEMORY) {
  2380. struct kmem_cache_node *n;
  2381. if (slab_state == DOWN) {
  2382. early_kmem_cache_node_alloc(node);
  2383. continue;
  2384. }
  2385. n = kmem_cache_alloc_node(kmem_cache_node,
  2386. GFP_KERNEL, node);
  2387. if (!n) {
  2388. free_kmem_cache_nodes(s);
  2389. return 0;
  2390. }
  2391. s->node[node] = n;
  2392. init_kmem_cache_node(n, s);
  2393. }
  2394. return 1;
  2395. }
  2396. static void set_min_partial(struct kmem_cache *s, unsigned long min)
  2397. {
  2398. if (min < MIN_PARTIAL)
  2399. min = MIN_PARTIAL;
  2400. else if (min > MAX_PARTIAL)
  2401. min = MAX_PARTIAL;
  2402. s->min_partial = min;
  2403. }
  2404. /*
  2405. * calculate_sizes() determines the order and the distribution of data within
  2406. * a slab object.
  2407. */
  2408. static int calculate_sizes(struct kmem_cache *s, int forced_order)
  2409. {
  2410. unsigned long flags = s->flags;
  2411. unsigned long size = s->objsize;
  2412. unsigned long align = s->align;
  2413. int order;
  2414. /*
  2415. * Round up object size to the next word boundary. We can only
  2416. * place the free pointer at word boundaries and this determines
  2417. * the possible location of the free pointer.
  2418. */
  2419. size = ALIGN(size, sizeof(void *));
  2420. #ifdef CONFIG_SLUB_DEBUG
  2421. /*
  2422. * Determine if we can poison the object itself. If the user of
  2423. * the slab may touch the object after free or before allocation
  2424. * then we should never poison the object itself.
  2425. */
  2426. if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
  2427. !s->ctor)
  2428. s->flags |= __OBJECT_POISON;
  2429. else
  2430. s->flags &= ~__OBJECT_POISON;
  2431. /*
  2432. * If we are Redzoning then check if there is some space between the
  2433. * end of the object and the free pointer. If not then add an
  2434. * additional word to have some bytes to store Redzone information.
  2435. */
  2436. if ((flags & SLAB_RED_ZONE) && size == s->objsize)
  2437. size += sizeof(void *);
  2438. #endif
  2439. /*
  2440. * With that we have determined the number of bytes in actual use
  2441. * by the object. This is the potential offset to the free pointer.
  2442. */
  2443. s->inuse = size;
  2444. if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
  2445. s->ctor)) {
  2446. /*
  2447. * Relocate free pointer after the object if it is not
  2448. * permitted to overwrite the first word of the object on
  2449. * kmem_cache_free.
  2450. *
  2451. * This is the case if we do RCU, have a constructor or
  2452. * destructor or are poisoning the objects.
  2453. */
  2454. s->offset = size;
  2455. size += sizeof(void *);
  2456. }
  2457. #ifdef CONFIG_SLUB_DEBUG
  2458. if (flags & SLAB_STORE_USER)
  2459. /*
  2460. * Need to store information about allocs and frees after
  2461. * the object.
  2462. */
  2463. size += 2 * sizeof(struct track);
  2464. if (flags & SLAB_RED_ZONE)
  2465. /*
  2466. * Add some empty padding so that we can catch
  2467. * overwrites from earlier objects rather than let
  2468. * tracking information or the free pointer be
  2469. * corrupted if a user writes before the start
  2470. * of the object.
  2471. */
  2472. size += sizeof(void *);
  2473. #endif
  2474. /*
  2475. * Determine the alignment based on various parameters that the
  2476. * user specified and the dynamic determination of cache line size
  2477. * on bootup.
  2478. */
  2479. align = calculate_alignment(flags, align, s->objsize);
  2480. s->align = align;
  2481. /*
  2482. * SLUB stores one object immediately after another beginning from
  2483. * offset 0. In order to align the objects we have to simply size
  2484. * each object to conform to the alignment.
  2485. */
  2486. size = ALIGN(size, align);
  2487. s->size = size;
  2488. if (forced_order >= 0)
  2489. order = forced_order;
  2490. else
  2491. order = calculate_order(size, s->reserved);
  2492. if (order < 0)
  2493. return 0;
  2494. s->allocflags = 0;
  2495. if (order)
  2496. s->allocflags |= __GFP_COMP;
  2497. if (s->flags & SLAB_CACHE_DMA)
  2498. s->allocflags |= SLUB_DMA;
  2499. if (s->flags & SLAB_RECLAIM_ACCOUNT)
  2500. s->allocflags |= __GFP_RECLAIMABLE;
  2501. /*
  2502. * Determine the number of objects per slab
  2503. */
  2504. s->oo = oo_make(order, size, s->reserved);
  2505. s->min = oo_make(get_order(size), size, s->reserved);
  2506. if (oo_objects(s->oo) > oo_objects(s->max))
  2507. s->max = s->oo;
  2508. return !!oo_objects(s->oo);
  2509. }
  2510. static int kmem_cache_open(struct kmem_cache *s,
  2511. const char *name, size_t size,
  2512. size_t align, unsigned long flags,
  2513. void (*ctor)(void *))
  2514. {
  2515. memset(s, 0, kmem_size);
  2516. s->name = name;
  2517. s->ctor = ctor;
  2518. s->objsize = size;
  2519. s->align = align;
  2520. s->flags = kmem_cache_flags(size, flags, name, ctor);
  2521. s->reserved = 0;
  2522. if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
  2523. s->reserved = sizeof(struct rcu_head);
  2524. if (!calculate_sizes(s, -1))
  2525. goto error;
  2526. if (disable_higher_order_debug) {
  2527. /*
  2528. * Disable debugging flags that store metadata if the min slab
  2529. * order increased.
  2530. */
  2531. if (get_order(s->size) > get_order(s->objsize)) {
  2532. s->flags &= ~DEBUG_METADATA_FLAGS;
  2533. s->offset = 0;
  2534. if (!calculate_sizes(s, -1))
  2535. goto error;
  2536. }
  2537. }
  2538. #ifdef CONFIG_CMPXCHG_DOUBLE
  2539. if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
  2540. /* Enable fast mode */
  2541. s->flags |= __CMPXCHG_DOUBLE;
  2542. #endif
  2543. /*
  2544. * The larger the object size is, the more pages we want on the partial
  2545. * list to avoid pounding the page allocator excessively.
  2546. */
  2547. set_min_partial(s, ilog2(s->size) / 2);
  2548. /*
  2549. * cpu_partial determined the maximum number of objects kept in the
  2550. * per cpu partial lists of a processor.
  2551. *
  2552. * Per cpu partial lists mainly contain slabs that just have one
  2553. * object freed. If they are used for allocation then they can be
  2554. * filled up again with minimal effort. The slab will never hit the
  2555. * per node partial lists and therefore no locking will be required.
  2556. *
  2557. * This setting also determines
  2558. *
  2559. * A) The number of objects from per cpu partial slabs dumped to the
  2560. * per node list when we reach the limit.
  2561. * B) The number of objects in cpu partial slabs to extract from the
  2562. * per node list when we run out of per cpu objects. We only fetch 50%
  2563. * to keep some capacity around for frees.
  2564. */
  2565. if (s->size >= PAGE_SIZE)
  2566. s->cpu_partial = 2;
  2567. else if (s->size >= 1024)
  2568. s->cpu_partial = 6;
  2569. else if (s->size >= 256)
  2570. s->cpu_partial = 13;
  2571. else
  2572. s->cpu_partial = 30;
  2573. s->refcount = 1;
  2574. #ifdef CONFIG_NUMA
  2575. s->remote_node_defrag_ratio = 1000;
  2576. #endif
  2577. if (!init_kmem_cache_nodes(s))
  2578. goto error;
  2579. if (alloc_kmem_cache_cpus(s))
  2580. return 1;
  2581. free_kmem_cache_nodes(s);
  2582. error:
  2583. if (flags & SLAB_PANIC)
  2584. panic("Cannot create slab %s size=%lu realsize=%u "
  2585. "order=%u offset=%u flags=%lx\n",
  2586. s->name, (unsigned long)size, s->size, oo_order(s->oo),
  2587. s->offset, flags);
  2588. return 0;
  2589. }
  2590. /*
  2591. * Determine the size of a slab object
  2592. */
  2593. unsigned int kmem_cache_size(struct kmem_cache *s)
  2594. {
  2595. return s->objsize;
  2596. }
  2597. EXPORT_SYMBOL(kmem_cache_size);
  2598. static void list_slab_objects(struct kmem_cache *s, struct page *page,
  2599. const char *text)
  2600. {
  2601. #ifdef CONFIG_SLUB_DEBUG
  2602. void *addr = page_address(page);
  2603. void *p;
  2604. unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
  2605. sizeof(long), GFP_ATOMIC);
  2606. if (!map)
  2607. return;
  2608. slab_err(s, page, "%s", text);
  2609. slab_lock(page);
  2610. get_map(s, page, map);
  2611. for_each_object(p, s, addr, page->objects) {
  2612. if (!test_bit(slab_index(p, s, addr), map)) {
  2613. printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
  2614. p, p - addr);
  2615. print_tracking(s, p);
  2616. }
  2617. }
  2618. slab_unlock(page);
  2619. kfree(map);
  2620. #endif
  2621. }
  2622. /*
  2623. * Attempt to free all partial slabs on a node.
  2624. * This is called from kmem_cache_close(). We must be the last thread
  2625. * using the cache and therefore we do not need to lock anymore.
  2626. */
  2627. static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
  2628. {
  2629. struct page *page, *h;
  2630. list_for_each_entry_safe(page, h, &n->partial, lru) {
  2631. if (!page->inuse) {
  2632. remove_partial(n, page);
  2633. discard_slab(s, page);
  2634. } else {
  2635. list_slab_objects(s, page,
  2636. "Objects remaining on kmem_cache_close()");
  2637. }
  2638. }
  2639. }
  2640. /*
  2641. * Release all resources used by a slab cache.
  2642. */
  2643. static inline int kmem_cache_close(struct kmem_cache *s)
  2644. {
  2645. int node;
  2646. flush_all(s);
  2647. free_percpu(s->cpu_slab);
  2648. /* Attempt to free all objects */
  2649. for_each_node_state(node, N_NORMAL_MEMORY) {
  2650. struct kmem_cache_node *n = get_node(s, node);
  2651. free_partial(s, n);
  2652. if (n->nr_partial || slabs_node(s, node))
  2653. return 1;
  2654. }
  2655. free_kmem_cache_nodes(s);
  2656. return 0;
  2657. }
  2658. /*
  2659. * Close a cache and release the kmem_cache structure
  2660. * (must be used for caches created using kmem_cache_create)
  2661. */
  2662. void kmem_cache_destroy(struct kmem_cache *s)
  2663. {
  2664. down_write(&slub_lock);
  2665. s->refcount--;
  2666. if (!s->refcount) {
  2667. list_del(&s->list);
  2668. up_write(&slub_lock);
  2669. if (kmem_cache_close(s)) {
  2670. printk(KERN_ERR "SLUB %s: %s called for cache that "
  2671. "still has objects.\n", s->name, __func__);
  2672. dump_stack();
  2673. }
  2674. if (s->flags & SLAB_DESTROY_BY_RCU)
  2675. rcu_barrier();
  2676. sysfs_slab_remove(s);
  2677. } else
  2678. up_write(&slub_lock);
  2679. }
  2680. EXPORT_SYMBOL(kmem_cache_destroy);
  2681. /********************************************************************
  2682. * Kmalloc subsystem
  2683. *******************************************************************/
  2684. struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
  2685. EXPORT_SYMBOL(kmalloc_caches);
  2686. static struct kmem_cache *kmem_cache;
  2687. #ifdef CONFIG_ZONE_DMA
  2688. static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT];
  2689. #endif
  2690. static int __init setup_slub_min_order(char *str)
  2691. {
  2692. get_option(&str, &slub_min_order);
  2693. return 1;
  2694. }
  2695. __setup("slub_min_order=", setup_slub_min_order);
  2696. static int __init setup_slub_max_order(char *str)
  2697. {
  2698. get_option(&str, &slub_max_order);
  2699. slub_max_order = min(slub_max_order, MAX_ORDER - 1);
  2700. return 1;
  2701. }
  2702. __setup("slub_max_order=", setup_slub_max_order);
  2703. static int __init setup_slub_min_objects(char *str)
  2704. {
  2705. get_option(&str, &slub_min_objects);
  2706. return 1;
  2707. }
  2708. __setup("slub_min_objects=", setup_slub_min_objects);
  2709. static int __init setup_slub_nomerge(char *str)
  2710. {
  2711. slub_nomerge = 1;
  2712. return 1;
  2713. }
  2714. __setup("slub_nomerge", setup_slub_nomerge);
  2715. static struct kmem_cache *__init create_kmalloc_cache(const char *name,
  2716. int size, unsigned int flags)
  2717. {
  2718. struct kmem_cache *s;
  2719. s = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
  2720. /*
  2721. * This function is called with IRQs disabled during early-boot on
  2722. * single CPU so there's no need to take slub_lock here.
  2723. */
  2724. if (!kmem_cache_open(s, name, size, ARCH_KMALLOC_MINALIGN,
  2725. flags, NULL))
  2726. goto panic;
  2727. list_add(&s->list, &slab_caches);
  2728. return s;
  2729. panic:
  2730. panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
  2731. return NULL;
  2732. }
  2733. /*
  2734. * Conversion table for small slabs sizes / 8 to the index in the
  2735. * kmalloc array. This is necessary for slabs < 192 since we have non power
  2736. * of two cache sizes there. The size of larger slabs can be determined using
  2737. * fls.
  2738. */
  2739. static s8 size_index[24] = {
  2740. 3, /* 8 */
  2741. 4, /* 16 */
  2742. 5, /* 24 */
  2743. 5, /* 32 */
  2744. 6, /* 40 */
  2745. 6, /* 48 */
  2746. 6, /* 56 */
  2747. 6, /* 64 */
  2748. 1, /* 72 */
  2749. 1, /* 80 */
  2750. 1, /* 88 */
  2751. 1, /* 96 */
  2752. 7, /* 104 */
  2753. 7, /* 112 */
  2754. 7, /* 120 */
  2755. 7, /* 128 */
  2756. 2, /* 136 */
  2757. 2, /* 144 */
  2758. 2, /* 152 */
  2759. 2, /* 160 */
  2760. 2, /* 168 */
  2761. 2, /* 176 */
  2762. 2, /* 184 */
  2763. 2 /* 192 */
  2764. };
  2765. static inline int size_index_elem(size_t bytes)
  2766. {
  2767. return (bytes - 1) / 8;
  2768. }
  2769. static struct kmem_cache *get_slab(size_t size, gfp_t flags)
  2770. {
  2771. int index;
  2772. if (size <= 192) {
  2773. if (!size)
  2774. return ZERO_SIZE_PTR;
  2775. index = size_index[size_index_elem(size)];
  2776. } else
  2777. index = fls(size - 1);
  2778. #ifdef CONFIG_ZONE_DMA
  2779. if (unlikely((flags & SLUB_DMA)))
  2780. return kmalloc_dma_caches[index];
  2781. #endif
  2782. return kmalloc_caches[index];
  2783. }
  2784. void *__kmalloc(size_t size, gfp_t flags)
  2785. {
  2786. struct kmem_cache *s;
  2787. void *ret;
  2788. if (unlikely(size > SLUB_MAX_SIZE))
  2789. return kmalloc_large(size, flags);
  2790. s = get_slab(size, flags);
  2791. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2792. return s;
  2793. ret = slab_alloc(s, flags, NUMA_NO_NODE, _RET_IP_);
  2794. trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
  2795. return ret;
  2796. }
  2797. EXPORT_SYMBOL(__kmalloc);
  2798. #ifdef CONFIG_NUMA
  2799. static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
  2800. {
  2801. struct page *page;
  2802. void *ptr = NULL;
  2803. flags |= __GFP_COMP | __GFP_NOTRACK;
  2804. page = alloc_pages_node(node, flags, get_order(size));
  2805. if (page)
  2806. ptr = page_address(page);
  2807. kmemleak_alloc(ptr, size, 1, flags);
  2808. return ptr;
  2809. }
  2810. void *__kmalloc_node(size_t size, gfp_t flags, int node)
  2811. {
  2812. struct kmem_cache *s;
  2813. void *ret;
  2814. if (unlikely(size > SLUB_MAX_SIZE)) {
  2815. ret = kmalloc_large_node(size, flags, node);
  2816. trace_kmalloc_node(_RET_IP_, ret,
  2817. size, PAGE_SIZE << get_order(size),
  2818. flags, node);
  2819. return ret;
  2820. }
  2821. s = get_slab(size, flags);
  2822. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2823. return s;
  2824. ret = slab_alloc(s, flags, node, _RET_IP_);
  2825. trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
  2826. return ret;
  2827. }
  2828. EXPORT_SYMBOL(__kmalloc_node);
  2829. #endif
  2830. size_t ksize(const void *object)
  2831. {
  2832. struct page *page;
  2833. if (unlikely(object == ZERO_SIZE_PTR))
  2834. return 0;
  2835. page = virt_to_head_page(object);
  2836. if (unlikely(!PageSlab(page))) {
  2837. WARN_ON(!PageCompound(page));
  2838. return PAGE_SIZE << compound_order(page);
  2839. }
  2840. return slab_ksize(page->slab);
  2841. }
  2842. EXPORT_SYMBOL(ksize);
  2843. #ifdef CONFIG_SLUB_DEBUG
  2844. bool verify_mem_not_deleted(const void *x)
  2845. {
  2846. struct page *page;
  2847. void *object = (void *)x;
  2848. unsigned long flags;
  2849. bool rv;
  2850. if (unlikely(ZERO_OR_NULL_PTR(x)))
  2851. return false;
  2852. local_irq_save(flags);
  2853. page = virt_to_head_page(x);
  2854. if (unlikely(!PageSlab(page))) {
  2855. /* maybe it was from stack? */
  2856. rv = true;
  2857. goto out_unlock;
  2858. }
  2859. slab_lock(page);
  2860. if (on_freelist(page->slab, page, object)) {
  2861. object_err(page->slab, page, object, "Object is on free-list");
  2862. rv = false;
  2863. } else {
  2864. rv = true;
  2865. }
  2866. slab_unlock(page);
  2867. out_unlock:
  2868. local_irq_restore(flags);
  2869. return rv;
  2870. }
  2871. EXPORT_SYMBOL(verify_mem_not_deleted);
  2872. #endif
  2873. void kfree(const void *x)
  2874. {
  2875. struct page *page;
  2876. void *object = (void *)x;
  2877. trace_kfree(_RET_IP_, x);
  2878. if (unlikely(ZERO_OR_NULL_PTR(x)))
  2879. return;
  2880. page = virt_to_head_page(x);
  2881. if (unlikely(!PageSlab(page))) {
  2882. BUG_ON(!PageCompound(page));
  2883. kmemleak_free(x);
  2884. put_page(page);
  2885. return;
  2886. }
  2887. slab_free(page->slab, page, object, _RET_IP_);
  2888. }
  2889. EXPORT_SYMBOL(kfree);
  2890. /*
  2891. * kmem_cache_shrink removes empty slabs from the partial lists and sorts
  2892. * the remaining slabs by the number of items in use. The slabs with the
  2893. * most items in use come first. New allocations will then fill those up
  2894. * and thus they can be removed from the partial lists.
  2895. *
  2896. * The slabs with the least items are placed last. This results in them
  2897. * being allocated from last increasing the chance that the last objects
  2898. * are freed in them.
  2899. */
  2900. int kmem_cache_shrink(struct kmem_cache *s)
  2901. {
  2902. int node;
  2903. int i;
  2904. struct kmem_cache_node *n;
  2905. struct page *page;
  2906. struct page *t;
  2907. int objects = oo_objects(s->max);
  2908. struct list_head *slabs_by_inuse =
  2909. kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
  2910. unsigned long flags;
  2911. if (!slabs_by_inuse)
  2912. return -ENOMEM;
  2913. flush_all(s);
  2914. for_each_node_state(node, N_NORMAL_MEMORY) {
  2915. n = get_node(s, node);
  2916. if (!n->nr_partial)
  2917. continue;
  2918. for (i = 0; i < objects; i++)
  2919. INIT_LIST_HEAD(slabs_by_inuse + i);
  2920. spin_lock_irqsave(&n->list_lock, flags);
  2921. /*
  2922. * Build lists indexed by the items in use in each slab.
  2923. *
  2924. * Note that concurrent frees may occur while we hold the
  2925. * list_lock. page->inuse here is the upper limit.
  2926. */
  2927. list_for_each_entry_safe(page, t, &n->partial, lru) {
  2928. list_move(&page->lru, slabs_by_inuse + page->inuse);
  2929. if (!page->inuse)
  2930. n->nr_partial--;
  2931. }
  2932. /*
  2933. * Rebuild the partial list with the slabs filled up most
  2934. * first and the least used slabs at the end.
  2935. */
  2936. for (i = objects - 1; i > 0; i--)
  2937. list_splice(slabs_by_inuse + i, n->partial.prev);
  2938. spin_unlock_irqrestore(&n->list_lock, flags);
  2939. /* Release empty slabs */
  2940. list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
  2941. discard_slab(s, page);
  2942. }
  2943. kfree(slabs_by_inuse);
  2944. return 0;
  2945. }
  2946. EXPORT_SYMBOL(kmem_cache_shrink);
  2947. #if defined(CONFIG_MEMORY_HOTPLUG)
  2948. static int slab_mem_going_offline_callback(void *arg)
  2949. {
  2950. struct kmem_cache *s;
  2951. down_read(&slub_lock);
  2952. list_for_each_entry(s, &slab_caches, list)
  2953. kmem_cache_shrink(s);
  2954. up_read(&slub_lock);
  2955. return 0;
  2956. }
  2957. static void slab_mem_offline_callback(void *arg)
  2958. {
  2959. struct kmem_cache_node *n;
  2960. struct kmem_cache *s;
  2961. struct memory_notify *marg = arg;
  2962. int offline_node;
  2963. offline_node = marg->status_change_nid;
  2964. /*
  2965. * If the node still has available memory. we need kmem_cache_node
  2966. * for it yet.
  2967. */
  2968. if (offline_node < 0)
  2969. return;
  2970. down_read(&slub_lock);
  2971. list_for_each_entry(s, &slab_caches, list) {
  2972. n = get_node(s, offline_node);
  2973. if (n) {
  2974. /*
  2975. * if n->nr_slabs > 0, slabs still exist on the node
  2976. * that is going down. We were unable to free them,
  2977. * and offline_pages() function shouldn't call this
  2978. * callback. So, we must fail.
  2979. */
  2980. BUG_ON(slabs_node(s, offline_node));
  2981. s->node[offline_node] = NULL;
  2982. kmem_cache_free(kmem_cache_node, n);
  2983. }
  2984. }
  2985. up_read(&slub_lock);
  2986. }
  2987. static int slab_mem_going_online_callback(void *arg)
  2988. {
  2989. struct kmem_cache_node *n;
  2990. struct kmem_cache *s;
  2991. struct memory_notify *marg = arg;
  2992. int nid = marg->status_change_nid;
  2993. int ret = 0;
  2994. /*
  2995. * If the node's memory is already available, then kmem_cache_node is
  2996. * already created. Nothing to do.
  2997. */
  2998. if (nid < 0)
  2999. return 0;
  3000. /*
  3001. * We are bringing a node online. No memory is available yet. We must
  3002. * allocate a kmem_cache_node structure in order to bring the node
  3003. * online.
  3004. */
  3005. down_read(&slub_lock);
  3006. list_for_each_entry(s, &slab_caches, list) {
  3007. /*
  3008. * XXX: kmem_cache_alloc_node will fallback to other nodes
  3009. * since memory is not yet available from the node that
  3010. * is brought up.
  3011. */
  3012. n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
  3013. if (!n) {
  3014. ret = -ENOMEM;
  3015. goto out;
  3016. }
  3017. init_kmem_cache_node(n, s);
  3018. s->node[nid] = n;
  3019. }
  3020. out:
  3021. up_read(&slub_lock);
  3022. return ret;
  3023. }
  3024. static int slab_memory_callback(struct notifier_block *self,
  3025. unsigned long action, void *arg)
  3026. {
  3027. int ret = 0;
  3028. switch (action) {
  3029. case MEM_GOING_ONLINE:
  3030. ret = slab_mem_going_online_callback(arg);
  3031. break;
  3032. case MEM_GOING_OFFLINE:
  3033. ret = slab_mem_going_offline_callback(arg);
  3034. break;
  3035. case MEM_OFFLINE:
  3036. case MEM_CANCEL_ONLINE:
  3037. slab_mem_offline_callback(arg);
  3038. break;
  3039. case MEM_ONLINE:
  3040. case MEM_CANCEL_OFFLINE:
  3041. break;
  3042. }
  3043. if (ret)
  3044. ret = notifier_from_errno(ret);
  3045. else
  3046. ret = NOTIFY_OK;
  3047. return ret;
  3048. }
  3049. #endif /* CONFIG_MEMORY_HOTPLUG */
  3050. /********************************************************************
  3051. * Basic setup of slabs
  3052. *******************************************************************/
  3053. /*
  3054. * Used for early kmem_cache structures that were allocated using
  3055. * the page allocator
  3056. */
  3057. static void __init kmem_cache_bootstrap_fixup(struct kmem_cache *s)
  3058. {
  3059. int node;
  3060. list_add(&s->list, &slab_caches);
  3061. s->refcount = -1;
  3062. for_each_node_state(node, N_NORMAL_MEMORY) {
  3063. struct kmem_cache_node *n = get_node(s, node);
  3064. struct page *p;
  3065. if (n) {
  3066. list_for_each_entry(p, &n->partial, lru)
  3067. p->slab = s;
  3068. #ifdef CONFIG_SLUB_DEBUG
  3069. list_for_each_entry(p, &n->full, lru)
  3070. p->slab = s;
  3071. #endif
  3072. }
  3073. }
  3074. }
  3075. void __init kmem_cache_init(void)
  3076. {
  3077. int i;
  3078. int caches = 0;
  3079. struct kmem_cache *temp_kmem_cache;
  3080. int order;
  3081. struct kmem_cache *temp_kmem_cache_node;
  3082. unsigned long kmalloc_size;
  3083. kmem_size = offsetof(struct kmem_cache, node) +
  3084. nr_node_ids * sizeof(struct kmem_cache_node *);
  3085. /* Allocate two kmem_caches from the page allocator */
  3086. kmalloc_size = ALIGN(kmem_size, cache_line_size());
  3087. order = get_order(2 * kmalloc_size);
  3088. kmem_cache = (void *)__get_free_pages(GFP_NOWAIT, order);
  3089. /*
  3090. * Must first have the slab cache available for the allocations of the
  3091. * struct kmem_cache_node's. There is special bootstrap code in
  3092. * kmem_cache_open for slab_state == DOWN.
  3093. */
  3094. kmem_cache_node = (void *)kmem_cache + kmalloc_size;
  3095. kmem_cache_open(kmem_cache_node, "kmem_cache_node",
  3096. sizeof(struct kmem_cache_node),
  3097. 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
  3098. hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
  3099. /* Able to allocate the per node structures */
  3100. slab_state = PARTIAL;
  3101. temp_kmem_cache = kmem_cache;
  3102. kmem_cache_open(kmem_cache, "kmem_cache", kmem_size,
  3103. 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
  3104. kmem_cache = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
  3105. memcpy(kmem_cache, temp_kmem_cache, kmem_size);
  3106. /*
  3107. * Allocate kmem_cache_node properly from the kmem_cache slab.
  3108. * kmem_cache_node is separately allocated so no need to
  3109. * update any list pointers.
  3110. */
  3111. temp_kmem_cache_node = kmem_cache_node;
  3112. kmem_cache_node = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
  3113. memcpy(kmem_cache_node, temp_kmem_cache_node, kmem_size);
  3114. kmem_cache_bootstrap_fixup(kmem_cache_node);
  3115. caches++;
  3116. kmem_cache_bootstrap_fixup(kmem_cache);
  3117. caches++;
  3118. /* Free temporary boot structure */
  3119. free_pages((unsigned long)temp_kmem_cache, order);
  3120. /* Now we can use the kmem_cache to allocate kmalloc slabs */
  3121. /*
  3122. * Patch up the size_index table if we have strange large alignment
  3123. * requirements for the kmalloc array. This is only the case for
  3124. * MIPS it seems. The standard arches will not generate any code here.
  3125. *
  3126. * Largest permitted alignment is 256 bytes due to the way we
  3127. * handle the index determination for the smaller caches.
  3128. *
  3129. * Make sure that nothing crazy happens if someone starts tinkering
  3130. * around with ARCH_KMALLOC_MINALIGN
  3131. */
  3132. BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
  3133. (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
  3134. for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
  3135. int elem = size_index_elem(i);
  3136. if (elem >= ARRAY_SIZE(size_index))
  3137. break;
  3138. size_index[elem] = KMALLOC_SHIFT_LOW;
  3139. }
  3140. if (KMALLOC_MIN_SIZE == 64) {
  3141. /*
  3142. * The 96 byte size cache is not used if the alignment
  3143. * is 64 byte.
  3144. */
  3145. for (i = 64 + 8; i <= 96; i += 8)
  3146. size_index[size_index_elem(i)] = 7;
  3147. } else if (KMALLOC_MIN_SIZE == 128) {
  3148. /*
  3149. * The 192 byte sized cache is not used if the alignment
  3150. * is 128 byte. Redirect kmalloc to use the 256 byte cache
  3151. * instead.
  3152. */
  3153. for (i = 128 + 8; i <= 192; i += 8)
  3154. size_index[size_index_elem(i)] = 8;
  3155. }
  3156. /* Caches that are not of the two-to-the-power-of size */
  3157. if (KMALLOC_MIN_SIZE <= 32) {
  3158. kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0);
  3159. caches++;
  3160. }
  3161. if (KMALLOC_MIN_SIZE <= 64) {
  3162. kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0);
  3163. caches++;
  3164. }
  3165. for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
  3166. kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0);
  3167. caches++;
  3168. }
  3169. slab_state = UP;
  3170. /* Provide the correct kmalloc names now that the caches are up */
  3171. if (KMALLOC_MIN_SIZE <= 32) {
  3172. kmalloc_caches[1]->name = kstrdup(kmalloc_caches[1]->name, GFP_NOWAIT);
  3173. BUG_ON(!kmalloc_caches[1]->name);
  3174. }
  3175. if (KMALLOC_MIN_SIZE <= 64) {
  3176. kmalloc_caches[2]->name = kstrdup(kmalloc_caches[2]->name, GFP_NOWAIT);
  3177. BUG_ON(!kmalloc_caches[2]->name);
  3178. }
  3179. for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
  3180. char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
  3181. BUG_ON(!s);
  3182. kmalloc_caches[i]->name = s;
  3183. }
  3184. #ifdef CONFIG_SMP
  3185. register_cpu_notifier(&slab_notifier);
  3186. #endif
  3187. #ifdef CONFIG_ZONE_DMA
  3188. for (i = 0; i < SLUB_PAGE_SHIFT; i++) {
  3189. struct kmem_cache *s = kmalloc_caches[i];
  3190. if (s && s->size) {
  3191. char *name = kasprintf(GFP_NOWAIT,
  3192. "dma-kmalloc-%d", s->objsize);
  3193. BUG_ON(!name);
  3194. kmalloc_dma_caches[i] = create_kmalloc_cache(name,
  3195. s->objsize, SLAB_CACHE_DMA);
  3196. }
  3197. }
  3198. #endif
  3199. printk(KERN_INFO
  3200. "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
  3201. " CPUs=%d, Nodes=%d\n",
  3202. caches, cache_line_size(),
  3203. slub_min_order, slub_max_order, slub_min_objects,
  3204. nr_cpu_ids, nr_node_ids);
  3205. }
  3206. void __init kmem_cache_init_late(void)
  3207. {
  3208. }
  3209. /*
  3210. * Find a mergeable slab cache
  3211. */
  3212. static int slab_unmergeable(struct kmem_cache *s)
  3213. {
  3214. if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
  3215. return 1;
  3216. if (s->ctor)
  3217. return 1;
  3218. /*
  3219. * We may have set a slab to be unmergeable during bootstrap.
  3220. */
  3221. if (s->refcount < 0)
  3222. return 1;
  3223. return 0;
  3224. }
  3225. static struct kmem_cache *find_mergeable(size_t size,
  3226. size_t align, unsigned long flags, const char *name,
  3227. void (*ctor)(void *))
  3228. {
  3229. struct kmem_cache *s;
  3230. if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
  3231. return NULL;
  3232. if (ctor)
  3233. return NULL;
  3234. size = ALIGN(size, sizeof(void *));
  3235. align = calculate_alignment(flags, align, size);
  3236. size = ALIGN(size, align);
  3237. flags = kmem_cache_flags(size, flags, name, NULL);
  3238. list_for_each_entry(s, &slab_caches, list) {
  3239. if (slab_unmergeable(s))
  3240. continue;
  3241. if (size > s->size)
  3242. continue;
  3243. if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
  3244. continue;
  3245. /*
  3246. * Check if alignment is compatible.
  3247. * Courtesy of Adrian Drzewiecki
  3248. */
  3249. if ((s->size & ~(align - 1)) != s->size)
  3250. continue;
  3251. if (s->size - size >= sizeof(void *))
  3252. continue;
  3253. return s;
  3254. }
  3255. return NULL;
  3256. }
  3257. struct kmem_cache *kmem_cache_create(const char *name, size_t size,
  3258. size_t align, unsigned long flags, void (*ctor)(void *))
  3259. {
  3260. struct kmem_cache *s;
  3261. char *n;
  3262. if (WARN_ON(!name))
  3263. return NULL;
  3264. down_write(&slub_lock);
  3265. s = find_mergeable(size, align, flags, name, ctor);
  3266. if (s) {
  3267. s->refcount++;
  3268. /*
  3269. * Adjust the object sizes so that we clear
  3270. * the complete object on kzalloc.
  3271. */
  3272. s->objsize = max(s->objsize, (int)size);
  3273. s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
  3274. if (sysfs_slab_alias(s, name)) {
  3275. s->refcount--;
  3276. goto err;
  3277. }
  3278. up_write(&slub_lock);
  3279. return s;
  3280. }
  3281. n = kstrdup(name, GFP_KERNEL);
  3282. if (!n)
  3283. goto err;
  3284. s = kmalloc(kmem_size, GFP_KERNEL);
  3285. if (s) {
  3286. if (kmem_cache_open(s, n,
  3287. size, align, flags, ctor)) {
  3288. list_add(&s->list, &slab_caches);
  3289. if (sysfs_slab_add(s)) {
  3290. list_del(&s->list);
  3291. kfree(n);
  3292. kfree(s);
  3293. goto err;
  3294. }
  3295. up_write(&slub_lock);
  3296. return s;
  3297. }
  3298. kfree(n);
  3299. kfree(s);
  3300. }
  3301. err:
  3302. up_write(&slub_lock);
  3303. if (flags & SLAB_PANIC)
  3304. panic("Cannot create slabcache %s\n", name);
  3305. else
  3306. s = NULL;
  3307. return s;
  3308. }
  3309. EXPORT_SYMBOL(kmem_cache_create);
  3310. #ifdef CONFIG_SMP
  3311. /*
  3312. * Use the cpu notifier to insure that the cpu slabs are flushed when
  3313. * necessary.
  3314. */
  3315. static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
  3316. unsigned long action, void *hcpu)
  3317. {
  3318. long cpu = (long)hcpu;
  3319. struct kmem_cache *s;
  3320. unsigned long flags;
  3321. switch (action) {
  3322. case CPU_UP_CANCELED:
  3323. case CPU_UP_CANCELED_FROZEN:
  3324. case CPU_DEAD:
  3325. case CPU_DEAD_FROZEN:
  3326. down_read(&slub_lock);
  3327. list_for_each_entry(s, &slab_caches, list) {
  3328. local_irq_save(flags);
  3329. __flush_cpu_slab(s, cpu);
  3330. local_irq_restore(flags);
  3331. }
  3332. up_read(&slub_lock);
  3333. break;
  3334. default:
  3335. break;
  3336. }
  3337. return NOTIFY_OK;
  3338. }
  3339. static struct notifier_block __cpuinitdata slab_notifier = {
  3340. .notifier_call = slab_cpuup_callback
  3341. };
  3342. #endif
  3343. void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
  3344. {
  3345. struct kmem_cache *s;
  3346. void *ret;
  3347. if (unlikely(size > SLUB_MAX_SIZE))
  3348. return kmalloc_large(size, gfpflags);
  3349. s = get_slab(size, gfpflags);
  3350. if (unlikely(ZERO_OR_NULL_PTR(s)))
  3351. return s;
  3352. ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, caller);
  3353. /* Honor the call site pointer we received. */
  3354. trace_kmalloc(caller, ret, size, s->size, gfpflags);
  3355. return ret;
  3356. }
  3357. #ifdef CONFIG_NUMA
  3358. void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
  3359. int node, unsigned long caller)
  3360. {
  3361. struct kmem_cache *s;
  3362. void *ret;
  3363. if (unlikely(size > SLUB_MAX_SIZE)) {
  3364. ret = kmalloc_large_node(size, gfpflags, node);
  3365. trace_kmalloc_node(caller, ret,
  3366. size, PAGE_SIZE << get_order(size),
  3367. gfpflags, node);
  3368. return ret;
  3369. }
  3370. s = get_slab(size, gfpflags);
  3371. if (unlikely(ZERO_OR_NULL_PTR(s)))
  3372. return s;
  3373. ret = slab_alloc(s, gfpflags, node, caller);
  3374. /* Honor the call site pointer we received. */
  3375. trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
  3376. return ret;
  3377. }
  3378. #endif
  3379. #ifdef CONFIG_SYSFS
  3380. static int count_inuse(struct page *page)
  3381. {
  3382. return page->inuse;
  3383. }
  3384. static int count_total(struct page *page)
  3385. {
  3386. return page->objects;
  3387. }
  3388. #endif
  3389. #ifdef CONFIG_SLUB_DEBUG
  3390. static int validate_slab(struct kmem_cache *s, struct page *page,
  3391. unsigned long *map)
  3392. {
  3393. void *p;
  3394. void *addr = page_address(page);
  3395. if (!check_slab(s, page) ||
  3396. !on_freelist(s, page, NULL))
  3397. return 0;
  3398. /* Now we know that a valid freelist exists */
  3399. bitmap_zero(map, page->objects);
  3400. get_map(s, page, map);
  3401. for_each_object(p, s, addr, page->objects) {
  3402. if (test_bit(slab_index(p, s, addr), map))
  3403. if (!check_object(s, page, p, SLUB_RED_INACTIVE))
  3404. return 0;
  3405. }
  3406. for_each_object(p, s, addr, page->objects)
  3407. if (!test_bit(slab_index(p, s, addr), map))
  3408. if (!check_object(s, page, p, SLUB_RED_ACTIVE))
  3409. return 0;
  3410. return 1;
  3411. }
  3412. static void validate_slab_slab(struct kmem_cache *s, struct page *page,
  3413. unsigned long *map)
  3414. {
  3415. slab_lock(page);
  3416. validate_slab(s, page, map);
  3417. slab_unlock(page);
  3418. }
  3419. static int validate_slab_node(struct kmem_cache *s,
  3420. struct kmem_cache_node *n, unsigned long *map)
  3421. {
  3422. unsigned long count = 0;
  3423. struct page *page;
  3424. unsigned long flags;
  3425. spin_lock_irqsave(&n->list_lock, flags);
  3426. list_for_each_entry(page, &n->partial, lru) {
  3427. validate_slab_slab(s, page, map);
  3428. count++;
  3429. }
  3430. if (count != n->nr_partial)
  3431. printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
  3432. "counter=%ld\n", s->name, count, n->nr_partial);
  3433. if (!(s->flags & SLAB_STORE_USER))
  3434. goto out;
  3435. list_for_each_entry(page, &n->full, lru) {
  3436. validate_slab_slab(s, page, map);
  3437. count++;
  3438. }
  3439. if (count != atomic_long_read(&n->nr_slabs))
  3440. printk(KERN_ERR "SLUB: %s %ld slabs counted but "
  3441. "counter=%ld\n", s->name, count,
  3442. atomic_long_read(&n->nr_slabs));
  3443. out:
  3444. spin_unlock_irqrestore(&n->list_lock, flags);
  3445. return count;
  3446. }
  3447. static long validate_slab_cache(struct kmem_cache *s)
  3448. {
  3449. int node;
  3450. unsigned long count = 0;
  3451. unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
  3452. sizeof(unsigned long), GFP_KERNEL);
  3453. if (!map)
  3454. return -ENOMEM;
  3455. flush_all(s);
  3456. for_each_node_state(node, N_NORMAL_MEMORY) {
  3457. struct kmem_cache_node *n = get_node(s, node);
  3458. count += validate_slab_node(s, n, map);
  3459. }
  3460. kfree(map);
  3461. return count;
  3462. }
  3463. /*
  3464. * Generate lists of code addresses where slabcache objects are allocated
  3465. * and freed.
  3466. */
  3467. struct location {
  3468. unsigned long count;
  3469. unsigned long addr;
  3470. long long sum_time;
  3471. long min_time;
  3472. long max_time;
  3473. long min_pid;
  3474. long max_pid;
  3475. DECLARE_BITMAP(cpus, NR_CPUS);
  3476. nodemask_t nodes;
  3477. };
  3478. struct loc_track {
  3479. unsigned long max;
  3480. unsigned long count;
  3481. struct location *loc;
  3482. };
  3483. static void free_loc_track(struct loc_track *t)
  3484. {
  3485. if (t->max)
  3486. free_pages((unsigned long)t->loc,
  3487. get_order(sizeof(struct location) * t->max));
  3488. }
  3489. static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
  3490. {
  3491. struct location *l;
  3492. int order;
  3493. order = get_order(sizeof(struct location) * max);
  3494. l = (void *)__get_free_pages(flags, order);
  3495. if (!l)
  3496. return 0;
  3497. if (t->count) {
  3498. memcpy(l, t->loc, sizeof(struct location) * t->count);
  3499. free_loc_track(t);
  3500. }
  3501. t->max = max;
  3502. t->loc = l;
  3503. return 1;
  3504. }
  3505. static int add_location(struct loc_track *t, struct kmem_cache *s,
  3506. const struct track *track)
  3507. {
  3508. long start, end, pos;
  3509. struct location *l;
  3510. unsigned long caddr;
  3511. unsigned long age = jiffies - track->when;
  3512. start = -1;
  3513. end = t->count;
  3514. for ( ; ; ) {
  3515. pos = start + (end - start + 1) / 2;
  3516. /*
  3517. * There is nothing at "end". If we end up there
  3518. * we need to add something to before end.
  3519. */
  3520. if (pos == end)
  3521. break;
  3522. caddr = t->loc[pos].addr;
  3523. if (track->addr == caddr) {
  3524. l = &t->loc[pos];
  3525. l->count++;
  3526. if (track->when) {
  3527. l->sum_time += age;
  3528. if (age < l->min_time)
  3529. l->min_time = age;
  3530. if (age > l->max_time)
  3531. l->max_time = age;
  3532. if (track->pid < l->min_pid)
  3533. l->min_pid = track->pid;
  3534. if (track->pid > l->max_pid)
  3535. l->max_pid = track->pid;
  3536. cpumask_set_cpu(track->cpu,
  3537. to_cpumask(l->cpus));
  3538. }
  3539. node_set(page_to_nid(virt_to_page(track)), l->nodes);
  3540. return 1;
  3541. }
  3542. if (track->addr < caddr)
  3543. end = pos;
  3544. else
  3545. start = pos;
  3546. }
  3547. /*
  3548. * Not found. Insert new tracking element.
  3549. */
  3550. if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
  3551. return 0;
  3552. l = t->loc + pos;
  3553. if (pos < t->count)
  3554. memmove(l + 1, l,
  3555. (t->count - pos) * sizeof(struct location));
  3556. t->count++;
  3557. l->count = 1;
  3558. l->addr = track->addr;
  3559. l->sum_time = age;
  3560. l->min_time = age;
  3561. l->max_time = age;
  3562. l->min_pid = track->pid;
  3563. l->max_pid = track->pid;
  3564. cpumask_clear(to_cpumask(l->cpus));
  3565. cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
  3566. nodes_clear(l->nodes);
  3567. node_set(page_to_nid(virt_to_page(track)), l->nodes);
  3568. return 1;
  3569. }
  3570. static void process_slab(struct loc_track *t, struct kmem_cache *s,
  3571. struct page *page, enum track_item alloc,
  3572. unsigned long *map)
  3573. {
  3574. void *addr = page_address(page);
  3575. void *p;
  3576. bitmap_zero(map, page->objects);
  3577. get_map(s, page, map);
  3578. for_each_object(p, s, addr, page->objects)
  3579. if (!test_bit(slab_index(p, s, addr), map))
  3580. add_location(t, s, get_track(s, p, alloc));
  3581. }
  3582. static int list_locations(struct kmem_cache *s, char *buf,
  3583. enum track_item alloc)
  3584. {
  3585. int len = 0;
  3586. unsigned long i;
  3587. struct loc_track t = { 0, 0, NULL };
  3588. int node;
  3589. unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
  3590. sizeof(unsigned long), GFP_KERNEL);
  3591. if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
  3592. GFP_TEMPORARY)) {
  3593. kfree(map);
  3594. return sprintf(buf, "Out of memory\n");
  3595. }
  3596. /* Push back cpu slabs */
  3597. flush_all(s);
  3598. for_each_node_state(node, N_NORMAL_MEMORY) {
  3599. struct kmem_cache_node *n = get_node(s, node);
  3600. unsigned long flags;
  3601. struct page *page;
  3602. if (!atomic_long_read(&n->nr_slabs))
  3603. continue;
  3604. spin_lock_irqsave(&n->list_lock, flags);
  3605. list_for_each_entry(page, &n->partial, lru)
  3606. process_slab(&t, s, page, alloc, map);
  3607. list_for_each_entry(page, &n->full, lru)
  3608. process_slab(&t, s, page, alloc, map);
  3609. spin_unlock_irqrestore(&n->list_lock, flags);
  3610. }
  3611. for (i = 0; i < t.count; i++) {
  3612. struct location *l = &t.loc[i];
  3613. if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
  3614. break;
  3615. len += sprintf(buf + len, "%7ld ", l->count);
  3616. if (l->addr)
  3617. len += sprintf(buf + len, "%pS", (void *)l->addr);
  3618. else
  3619. len += sprintf(buf + len, "<not-available>");
  3620. if (l->sum_time != l->min_time) {
  3621. len += sprintf(buf + len, " age=%ld/%ld/%ld",
  3622. l->min_time,
  3623. (long)div_u64(l->sum_time, l->count),
  3624. l->max_time);
  3625. } else
  3626. len += sprintf(buf + len, " age=%ld",
  3627. l->min_time);
  3628. if (l->min_pid != l->max_pid)
  3629. len += sprintf(buf + len, " pid=%ld-%ld",
  3630. l->min_pid, l->max_pid);
  3631. else
  3632. len += sprintf(buf + len, " pid=%ld",
  3633. l->min_pid);
  3634. if (num_online_cpus() > 1 &&
  3635. !cpumask_empty(to_cpumask(l->cpus)) &&
  3636. len < PAGE_SIZE - 60) {
  3637. len += sprintf(buf + len, " cpus=");
  3638. len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
  3639. to_cpumask(l->cpus));
  3640. }
  3641. if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
  3642. len < PAGE_SIZE - 60) {
  3643. len += sprintf(buf + len, " nodes=");
  3644. len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
  3645. l->nodes);
  3646. }
  3647. len += sprintf(buf + len, "\n");
  3648. }
  3649. free_loc_track(&t);
  3650. kfree(map);
  3651. if (!t.count)
  3652. len += sprintf(buf, "No data\n");
  3653. return len;
  3654. }
  3655. #endif
  3656. #ifdef SLUB_RESILIENCY_TEST
  3657. static void resiliency_test(void)
  3658. {
  3659. u8 *p;
  3660. BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || SLUB_PAGE_SHIFT < 10);
  3661. printk(KERN_ERR "SLUB resiliency testing\n");
  3662. printk(KERN_ERR "-----------------------\n");
  3663. printk(KERN_ERR "A. Corruption after allocation\n");
  3664. p = kzalloc(16, GFP_KERNEL);
  3665. p[16] = 0x12;
  3666. printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
  3667. " 0x12->0x%p\n\n", p + 16);
  3668. validate_slab_cache(kmalloc_caches[4]);
  3669. /* Hmmm... The next two are dangerous */
  3670. p = kzalloc(32, GFP_KERNEL);
  3671. p[32 + sizeof(void *)] = 0x34;
  3672. printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
  3673. " 0x34 -> -0x%p\n", p);
  3674. printk(KERN_ERR
  3675. "If allocated object is overwritten then not detectable\n\n");
  3676. validate_slab_cache(kmalloc_caches[5]);
  3677. p = kzalloc(64, GFP_KERNEL);
  3678. p += 64 + (get_cycles() & 0xff) * sizeof(void *);
  3679. *p = 0x56;
  3680. printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
  3681. p);
  3682. printk(KERN_ERR
  3683. "If allocated object is overwritten then not detectable\n\n");
  3684. validate_slab_cache(kmalloc_caches[6]);
  3685. printk(KERN_ERR "\nB. Corruption after free\n");
  3686. p = kzalloc(128, GFP_KERNEL);
  3687. kfree(p);
  3688. *p = 0x78;
  3689. printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
  3690. validate_slab_cache(kmalloc_caches[7]);
  3691. p = kzalloc(256, GFP_KERNEL);
  3692. kfree(p);
  3693. p[50] = 0x9a;
  3694. printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
  3695. p);
  3696. validate_slab_cache(kmalloc_caches[8]);
  3697. p = kzalloc(512, GFP_KERNEL);
  3698. kfree(p);
  3699. p[512] = 0xab;
  3700. printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
  3701. validate_slab_cache(kmalloc_caches[9]);
  3702. }
  3703. #else
  3704. #ifdef CONFIG_SYSFS
  3705. static void resiliency_test(void) {};
  3706. #endif
  3707. #endif
  3708. #ifdef CONFIG_SYSFS
  3709. enum slab_stat_type {
  3710. SL_ALL, /* All slabs */
  3711. SL_PARTIAL, /* Only partially allocated slabs */
  3712. SL_CPU, /* Only slabs used for cpu caches */
  3713. SL_OBJECTS, /* Determine allocated objects not slabs */
  3714. SL_TOTAL /* Determine object capacity not slabs */
  3715. };
  3716. #define SO_ALL (1 << SL_ALL)
  3717. #define SO_PARTIAL (1 << SL_PARTIAL)
  3718. #define SO_CPU (1 << SL_CPU)
  3719. #define SO_OBJECTS (1 << SL_OBJECTS)
  3720. #define SO_TOTAL (1 << SL_TOTAL)
  3721. static ssize_t show_slab_objects(struct kmem_cache *s,
  3722. char *buf, unsigned long flags)
  3723. {
  3724. unsigned long total = 0;
  3725. int node;
  3726. int x;
  3727. unsigned long *nodes;
  3728. unsigned long *per_cpu;
  3729. nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
  3730. if (!nodes)
  3731. return -ENOMEM;
  3732. per_cpu = nodes + nr_node_ids;
  3733. if (flags & SO_CPU) {
  3734. int cpu;
  3735. for_each_possible_cpu(cpu) {
  3736. struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
  3737. int node = ACCESS_ONCE(c->node);
  3738. struct page *page;
  3739. if (node < 0)
  3740. continue;
  3741. page = ACCESS_ONCE(c->page);
  3742. if (page) {
  3743. if (flags & SO_TOTAL)
  3744. x = page->objects;
  3745. else if (flags & SO_OBJECTS)
  3746. x = page->inuse;
  3747. else
  3748. x = 1;
  3749. total += x;
  3750. nodes[node] += x;
  3751. }
  3752. page = c->partial;
  3753. if (page) {
  3754. x = page->pobjects;
  3755. total += x;
  3756. nodes[node] += x;
  3757. }
  3758. per_cpu[node]++;
  3759. }
  3760. }
  3761. lock_memory_hotplug();
  3762. #ifdef CONFIG_SLUB_DEBUG
  3763. if (flags & SO_ALL) {
  3764. for_each_node_state(node, N_NORMAL_MEMORY) {
  3765. struct kmem_cache_node *n = get_node(s, node);
  3766. if (flags & SO_TOTAL)
  3767. x = atomic_long_read(&n->total_objects);
  3768. else if (flags & SO_OBJECTS)
  3769. x = atomic_long_read(&n->total_objects) -
  3770. count_partial(n, count_free);
  3771. else
  3772. x = atomic_long_read(&n->nr_slabs);
  3773. total += x;
  3774. nodes[node] += x;
  3775. }
  3776. } else
  3777. #endif
  3778. if (flags & SO_PARTIAL) {
  3779. for_each_node_state(node, N_NORMAL_MEMORY) {
  3780. struct kmem_cache_node *n = get_node(s, node);
  3781. if (flags & SO_TOTAL)
  3782. x = count_partial(n, count_total);
  3783. else if (flags & SO_OBJECTS)
  3784. x = count_partial(n, count_inuse);
  3785. else
  3786. x = n->nr_partial;
  3787. total += x;
  3788. nodes[node] += x;
  3789. }
  3790. }
  3791. x = sprintf(buf, "%lu", total);
  3792. #ifdef CONFIG_NUMA
  3793. for_each_node_state(node, N_NORMAL_MEMORY)
  3794. if (nodes[node])
  3795. x += sprintf(buf + x, " N%d=%lu",
  3796. node, nodes[node]);
  3797. #endif
  3798. unlock_memory_hotplug();
  3799. kfree(nodes);
  3800. return x + sprintf(buf + x, "\n");
  3801. }
  3802. #ifdef CONFIG_SLUB_DEBUG
  3803. static int any_slab_objects(struct kmem_cache *s)
  3804. {
  3805. int node;
  3806. for_each_online_node(node) {
  3807. struct kmem_cache_node *n = get_node(s, node);
  3808. if (!n)
  3809. continue;
  3810. if (atomic_long_read(&n->total_objects))
  3811. return 1;
  3812. }
  3813. return 0;
  3814. }
  3815. #endif
  3816. #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
  3817. #define to_slab(n) container_of(n, struct kmem_cache, kobj)
  3818. struct slab_attribute {
  3819. struct attribute attr;
  3820. ssize_t (*show)(struct kmem_cache *s, char *buf);
  3821. ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
  3822. };
  3823. #define SLAB_ATTR_RO(_name) \
  3824. static struct slab_attribute _name##_attr = \
  3825. __ATTR(_name, 0400, _name##_show, NULL)
  3826. #define SLAB_ATTR(_name) \
  3827. static struct slab_attribute _name##_attr = \
  3828. __ATTR(_name, 0600, _name##_show, _name##_store)
  3829. static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
  3830. {
  3831. return sprintf(buf, "%d\n", s->size);
  3832. }
  3833. SLAB_ATTR_RO(slab_size);
  3834. static ssize_t align_show(struct kmem_cache *s, char *buf)
  3835. {
  3836. return sprintf(buf, "%d\n", s->align);
  3837. }
  3838. SLAB_ATTR_RO(align);
  3839. static ssize_t object_size_show(struct kmem_cache *s, char *buf)
  3840. {
  3841. return sprintf(buf, "%d\n", s->objsize);
  3842. }
  3843. SLAB_ATTR_RO(object_size);
  3844. static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
  3845. {
  3846. return sprintf(buf, "%d\n", oo_objects(s->oo));
  3847. }
  3848. SLAB_ATTR_RO(objs_per_slab);
  3849. static ssize_t order_store(struct kmem_cache *s,
  3850. const char *buf, size_t length)
  3851. {
  3852. unsigned long order;
  3853. int err;
  3854. err = strict_strtoul(buf, 10, &order);
  3855. if (err)
  3856. return err;
  3857. if (order > slub_max_order || order < slub_min_order)
  3858. return -EINVAL;
  3859. calculate_sizes(s, order);
  3860. return length;
  3861. }
  3862. static ssize_t order_show(struct kmem_cache *s, char *buf)
  3863. {
  3864. return sprintf(buf, "%d\n", oo_order(s->oo));
  3865. }
  3866. SLAB_ATTR(order);
  3867. static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
  3868. {
  3869. return sprintf(buf, "%lu\n", s->min_partial);
  3870. }
  3871. static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
  3872. size_t length)
  3873. {
  3874. unsigned long min;
  3875. int err;
  3876. err = strict_strtoul(buf, 10, &min);
  3877. if (err)
  3878. return err;
  3879. set_min_partial(s, min);
  3880. return length;
  3881. }
  3882. SLAB_ATTR(min_partial);
  3883. static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
  3884. {
  3885. return sprintf(buf, "%u\n", s->cpu_partial);
  3886. }
  3887. static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
  3888. size_t length)
  3889. {
  3890. unsigned long objects;
  3891. int err;
  3892. err = strict_strtoul(buf, 10, &objects);
  3893. if (err)
  3894. return err;
  3895. s->cpu_partial = objects;
  3896. flush_all(s);
  3897. return length;
  3898. }
  3899. SLAB_ATTR(cpu_partial);
  3900. static ssize_t ctor_show(struct kmem_cache *s, char *buf)
  3901. {
  3902. if (!s->ctor)
  3903. return 0;
  3904. return sprintf(buf, "%pS\n", s->ctor);
  3905. }
  3906. SLAB_ATTR_RO(ctor);
  3907. static ssize_t aliases_show(struct kmem_cache *s, char *buf)
  3908. {
  3909. return sprintf(buf, "%d\n", s->refcount - 1);
  3910. }
  3911. SLAB_ATTR_RO(aliases);
  3912. static ssize_t partial_show(struct kmem_cache *s, char *buf)
  3913. {
  3914. return show_slab_objects(s, buf, SO_PARTIAL);
  3915. }
  3916. SLAB_ATTR_RO(partial);
  3917. static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
  3918. {
  3919. return show_slab_objects(s, buf, SO_CPU);
  3920. }
  3921. SLAB_ATTR_RO(cpu_slabs);
  3922. static ssize_t objects_show(struct kmem_cache *s, char *buf)
  3923. {
  3924. return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
  3925. }
  3926. SLAB_ATTR_RO(objects);
  3927. static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
  3928. {
  3929. return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
  3930. }
  3931. SLAB_ATTR_RO(objects_partial);
  3932. static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
  3933. {
  3934. int objects = 0;
  3935. int pages = 0;
  3936. int cpu;
  3937. int len;
  3938. for_each_online_cpu(cpu) {
  3939. struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
  3940. if (page) {
  3941. pages += page->pages;
  3942. objects += page->pobjects;
  3943. }
  3944. }
  3945. len = sprintf(buf, "%d(%d)", objects, pages);
  3946. #ifdef CONFIG_SMP
  3947. for_each_online_cpu(cpu) {
  3948. struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
  3949. if (page && len < PAGE_SIZE - 20)
  3950. len += sprintf(buf + len, " C%d=%d(%d)", cpu,
  3951. page->pobjects, page->pages);
  3952. }
  3953. #endif
  3954. return len + sprintf(buf + len, "\n");
  3955. }
  3956. SLAB_ATTR_RO(slabs_cpu_partial);
  3957. static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
  3958. {
  3959. return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
  3960. }
  3961. static ssize_t reclaim_account_store(struct kmem_cache *s,
  3962. const char *buf, size_t length)
  3963. {
  3964. s->flags &= ~SLAB_RECLAIM_ACCOUNT;
  3965. if (buf[0] == '1')
  3966. s->flags |= SLAB_RECLAIM_ACCOUNT;
  3967. return length;
  3968. }
  3969. SLAB_ATTR(reclaim_account);
  3970. static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
  3971. {
  3972. return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
  3973. }
  3974. SLAB_ATTR_RO(hwcache_align);
  3975. #ifdef CONFIG_ZONE_DMA
  3976. static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
  3977. {
  3978. return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
  3979. }
  3980. SLAB_ATTR_RO(cache_dma);
  3981. #endif
  3982. static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
  3983. {
  3984. return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
  3985. }
  3986. SLAB_ATTR_RO(destroy_by_rcu);
  3987. static ssize_t reserved_show(struct kmem_cache *s, char *buf)
  3988. {
  3989. return sprintf(buf, "%d\n", s->reserved);
  3990. }
  3991. SLAB_ATTR_RO(reserved);
  3992. #ifdef CONFIG_SLUB_DEBUG
  3993. static ssize_t slabs_show(struct kmem_cache *s, char *buf)
  3994. {
  3995. return show_slab_objects(s, buf, SO_ALL);
  3996. }
  3997. SLAB_ATTR_RO(slabs);
  3998. static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
  3999. {
  4000. return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
  4001. }
  4002. SLAB_ATTR_RO(total_objects);
  4003. static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
  4004. {
  4005. return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
  4006. }
  4007. static ssize_t sanity_checks_store(struct kmem_cache *s,
  4008. const char *buf, size_t length)
  4009. {
  4010. s->flags &= ~SLAB_DEBUG_FREE;
  4011. if (buf[0] == '1') {
  4012. s->flags &= ~__CMPXCHG_DOUBLE;
  4013. s->flags |= SLAB_DEBUG_FREE;
  4014. }
  4015. return length;
  4016. }
  4017. SLAB_ATTR(sanity_checks);
  4018. static ssize_t trace_show(struct kmem_cache *s, char *buf)
  4019. {
  4020. return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
  4021. }
  4022. static ssize_t trace_store(struct kmem_cache *s, const char *buf,
  4023. size_t length)
  4024. {
  4025. s->flags &= ~SLAB_TRACE;
  4026. if (buf[0] == '1') {
  4027. s->flags &= ~__CMPXCHG_DOUBLE;
  4028. s->flags |= SLAB_TRACE;
  4029. }
  4030. return length;
  4031. }
  4032. SLAB_ATTR(trace);
  4033. static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
  4034. {
  4035. return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
  4036. }
  4037. static ssize_t red_zone_store(struct kmem_cache *s,
  4038. const char *buf, size_t length)
  4039. {
  4040. if (any_slab_objects(s))
  4041. return -EBUSY;
  4042. s->flags &= ~SLAB_RED_ZONE;
  4043. if (buf[0] == '1') {
  4044. s->flags &= ~__CMPXCHG_DOUBLE;
  4045. s->flags |= SLAB_RED_ZONE;
  4046. }
  4047. calculate_sizes(s, -1);
  4048. return length;
  4049. }
  4050. SLAB_ATTR(red_zone);
  4051. static ssize_t poison_show(struct kmem_cache *s, char *buf)
  4052. {
  4053. return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
  4054. }
  4055. static ssize_t poison_store(struct kmem_cache *s,
  4056. const char *buf, size_t length)
  4057. {
  4058. if (any_slab_objects(s))
  4059. return -EBUSY;
  4060. s->flags &= ~SLAB_POISON;
  4061. if (buf[0] == '1') {
  4062. s->flags &= ~__CMPXCHG_DOUBLE;
  4063. s->flags |= SLAB_POISON;
  4064. }
  4065. calculate_sizes(s, -1);
  4066. return length;
  4067. }
  4068. SLAB_ATTR(poison);
  4069. static ssize_t store_user_show(struct kmem_cache *s, char *buf)
  4070. {
  4071. return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
  4072. }
  4073. static ssize_t store_user_store(struct kmem_cache *s,
  4074. const char *buf, size_t length)
  4075. {
  4076. if (any_slab_objects(s))
  4077. return -EBUSY;
  4078. s->flags &= ~SLAB_STORE_USER;
  4079. if (buf[0] == '1') {
  4080. s->flags &= ~__CMPXCHG_DOUBLE;
  4081. s->flags |= SLAB_STORE_USER;
  4082. }
  4083. calculate_sizes(s, -1);
  4084. return length;
  4085. }
  4086. SLAB_ATTR(store_user);
  4087. static ssize_t validate_show(struct kmem_cache *s, char *buf)
  4088. {
  4089. return 0;
  4090. }
  4091. static ssize_t validate_store(struct kmem_cache *s,
  4092. const char *buf, size_t length)
  4093. {
  4094. int ret = -EINVAL;
  4095. if (buf[0] == '1') {
  4096. ret = validate_slab_cache(s);
  4097. if (ret >= 0)
  4098. ret = length;
  4099. }
  4100. return ret;
  4101. }
  4102. SLAB_ATTR(validate);
  4103. static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
  4104. {
  4105. if (!(s->flags & SLAB_STORE_USER))
  4106. return -ENOSYS;
  4107. return list_locations(s, buf, TRACK_ALLOC);
  4108. }
  4109. SLAB_ATTR_RO(alloc_calls);
  4110. static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
  4111. {
  4112. if (!(s->flags & SLAB_STORE_USER))
  4113. return -ENOSYS;
  4114. return list_locations(s, buf, TRACK_FREE);
  4115. }
  4116. SLAB_ATTR_RO(free_calls);
  4117. #endif /* CONFIG_SLUB_DEBUG */
  4118. #ifdef CONFIG_FAILSLAB
  4119. static ssize_t failslab_show(struct kmem_cache *s, char *buf)
  4120. {
  4121. return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
  4122. }
  4123. static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
  4124. size_t length)
  4125. {
  4126. s->flags &= ~SLAB_FAILSLAB;
  4127. if (buf[0] == '1')
  4128. s->flags |= SLAB_FAILSLAB;
  4129. return length;
  4130. }
  4131. SLAB_ATTR(failslab);
  4132. #endif
  4133. static ssize_t shrink_show(struct kmem_cache *s, char *buf)
  4134. {
  4135. return 0;
  4136. }
  4137. static ssize_t shrink_store(struct kmem_cache *s,
  4138. const char *buf, size_t length)
  4139. {
  4140. if (buf[0] == '1') {
  4141. int rc = kmem_cache_shrink(s);
  4142. if (rc)
  4143. return rc;
  4144. } else
  4145. return -EINVAL;
  4146. return length;
  4147. }
  4148. SLAB_ATTR(shrink);
  4149. #ifdef CONFIG_NUMA
  4150. static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
  4151. {
  4152. return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
  4153. }
  4154. static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
  4155. const char *buf, size_t length)
  4156. {
  4157. unsigned long ratio;
  4158. int err;
  4159. err = strict_strtoul(buf, 10, &ratio);
  4160. if (err)
  4161. return err;
  4162. if (ratio <= 100)
  4163. s->remote_node_defrag_ratio = ratio * 10;
  4164. return length;
  4165. }
  4166. SLAB_ATTR(remote_node_defrag_ratio);
  4167. #endif
  4168. #ifdef CONFIG_SLUB_STATS
  4169. static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
  4170. {
  4171. unsigned long sum = 0;
  4172. int cpu;
  4173. int len;
  4174. int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
  4175. if (!data)
  4176. return -ENOMEM;
  4177. for_each_online_cpu(cpu) {
  4178. unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
  4179. data[cpu] = x;
  4180. sum += x;
  4181. }
  4182. len = sprintf(buf, "%lu", sum);
  4183. #ifdef CONFIG_SMP
  4184. for_each_online_cpu(cpu) {
  4185. if (data[cpu] && len < PAGE_SIZE - 20)
  4186. len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
  4187. }
  4188. #endif
  4189. kfree(data);
  4190. return len + sprintf(buf + len, "\n");
  4191. }
  4192. static void clear_stat(struct kmem_cache *s, enum stat_item si)
  4193. {
  4194. int cpu;
  4195. for_each_online_cpu(cpu)
  4196. per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
  4197. }
  4198. #define STAT_ATTR(si, text) \
  4199. static ssize_t text##_show(struct kmem_cache *s, char *buf) \
  4200. { \
  4201. return show_stat(s, buf, si); \
  4202. } \
  4203. static ssize_t text##_store(struct kmem_cache *s, \
  4204. const char *buf, size_t length) \
  4205. { \
  4206. if (buf[0] != '0') \
  4207. return -EINVAL; \
  4208. clear_stat(s, si); \
  4209. return length; \
  4210. } \
  4211. SLAB_ATTR(text); \
  4212. STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
  4213. STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
  4214. STAT_ATTR(FREE_FASTPATH, free_fastpath);
  4215. STAT_ATTR(FREE_SLOWPATH, free_slowpath);
  4216. STAT_ATTR(FREE_FROZEN, free_frozen);
  4217. STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
  4218. STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
  4219. STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
  4220. STAT_ATTR(ALLOC_SLAB, alloc_slab);
  4221. STAT_ATTR(ALLOC_REFILL, alloc_refill);
  4222. STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
  4223. STAT_ATTR(FREE_SLAB, free_slab);
  4224. STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
  4225. STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
  4226. STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
  4227. STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
  4228. STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
  4229. STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
  4230. STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
  4231. STAT_ATTR(ORDER_FALLBACK, order_fallback);
  4232. STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
  4233. STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
  4234. STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
  4235. STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
  4236. #endif
  4237. static struct attribute *slab_attrs[] = {
  4238. &slab_size_attr.attr,
  4239. &object_size_attr.attr,
  4240. &objs_per_slab_attr.attr,
  4241. &order_attr.attr,
  4242. &min_partial_attr.attr,
  4243. &cpu_partial_attr.attr,
  4244. &objects_attr.attr,
  4245. &objects_partial_attr.attr,
  4246. &partial_attr.attr,
  4247. &cpu_slabs_attr.attr,
  4248. &ctor_attr.attr,
  4249. &aliases_attr.attr,
  4250. &align_attr.attr,
  4251. &hwcache_align_attr.attr,
  4252. &reclaim_account_attr.attr,
  4253. &destroy_by_rcu_attr.attr,
  4254. &shrink_attr.attr,
  4255. &reserved_attr.attr,
  4256. &slabs_cpu_partial_attr.attr,
  4257. #ifdef CONFIG_SLUB_DEBUG
  4258. &total_objects_attr.attr,
  4259. &slabs_attr.attr,
  4260. &sanity_checks_attr.attr,
  4261. &trace_attr.attr,
  4262. &red_zone_attr.attr,
  4263. &poison_attr.attr,
  4264. &store_user_attr.attr,
  4265. &validate_attr.attr,
  4266. &alloc_calls_attr.attr,
  4267. &free_calls_attr.attr,
  4268. #endif
  4269. #ifdef CONFIG_ZONE_DMA
  4270. &cache_dma_attr.attr,
  4271. #endif
  4272. #ifdef CONFIG_NUMA
  4273. &remote_node_defrag_ratio_attr.attr,
  4274. #endif
  4275. #ifdef CONFIG_SLUB_STATS
  4276. &alloc_fastpath_attr.attr,
  4277. &alloc_slowpath_attr.attr,
  4278. &free_fastpath_attr.attr,
  4279. &free_slowpath_attr.attr,
  4280. &free_frozen_attr.attr,
  4281. &free_add_partial_attr.attr,
  4282. &free_remove_partial_attr.attr,
  4283. &alloc_from_partial_attr.attr,
  4284. &alloc_slab_attr.attr,
  4285. &alloc_refill_attr.attr,
  4286. &alloc_node_mismatch_attr.attr,
  4287. &free_slab_attr.attr,
  4288. &cpuslab_flush_attr.attr,
  4289. &deactivate_full_attr.attr,
  4290. &deactivate_empty_attr.attr,
  4291. &deactivate_to_head_attr.attr,
  4292. &deactivate_to_tail_attr.attr,
  4293. &deactivate_remote_frees_attr.attr,
  4294. &deactivate_bypass_attr.attr,
  4295. &order_fallback_attr.attr,
  4296. &cmpxchg_double_fail_attr.attr,
  4297. &cmpxchg_double_cpu_fail_attr.attr,
  4298. &cpu_partial_alloc_attr.attr,
  4299. &cpu_partial_free_attr.attr,
  4300. #endif
  4301. #ifdef CONFIG_FAILSLAB
  4302. &failslab_attr.attr,
  4303. #endif
  4304. NULL
  4305. };
  4306. static struct attribute_group slab_attr_group = {
  4307. .attrs = slab_attrs,
  4308. };
  4309. static ssize_t slab_attr_show(struct kobject *kobj,
  4310. struct attribute *attr,
  4311. char *buf)
  4312. {
  4313. struct slab_attribute *attribute;
  4314. struct kmem_cache *s;
  4315. int err;
  4316. attribute = to_slab_attr(attr);
  4317. s = to_slab(kobj);
  4318. if (!attribute->show)
  4319. return -EIO;
  4320. err = attribute->show(s, buf);
  4321. return err;
  4322. }
  4323. static ssize_t slab_attr_store(struct kobject *kobj,
  4324. struct attribute *attr,
  4325. const char *buf, size_t len)
  4326. {
  4327. struct slab_attribute *attribute;
  4328. struct kmem_cache *s;
  4329. int err;
  4330. attribute = to_slab_attr(attr);
  4331. s = to_slab(kobj);
  4332. if (!attribute->store)
  4333. return -EIO;
  4334. err = attribute->store(s, buf, len);
  4335. return err;
  4336. }
  4337. static void kmem_cache_release(struct kobject *kobj)
  4338. {
  4339. struct kmem_cache *s = to_slab(kobj);
  4340. kfree(s->name);
  4341. kfree(s);
  4342. }
  4343. static const struct sysfs_ops slab_sysfs_ops = {
  4344. .show = slab_attr_show,
  4345. .store = slab_attr_store,
  4346. };
  4347. static struct kobj_type slab_ktype = {
  4348. .sysfs_ops = &slab_sysfs_ops,
  4349. .release = kmem_cache_release
  4350. };
  4351. static int uevent_filter(struct kset *kset, struct kobject *kobj)
  4352. {
  4353. struct kobj_type *ktype = get_ktype(kobj);
  4354. if (ktype == &slab_ktype)
  4355. return 1;
  4356. return 0;
  4357. }
  4358. static const struct kset_uevent_ops slab_uevent_ops = {
  4359. .filter = uevent_filter,
  4360. };
  4361. static struct kset *slab_kset;
  4362. #define ID_STR_LENGTH 64
  4363. /* Create a unique string id for a slab cache:
  4364. *
  4365. * Format :[flags-]size
  4366. */
  4367. static char *create_unique_id(struct kmem_cache *s)
  4368. {
  4369. char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
  4370. char *p = name;
  4371. BUG_ON(!name);
  4372. *p++ = ':';
  4373. /*
  4374. * First flags affecting slabcache operations. We will only
  4375. * get here for aliasable slabs so we do not need to support
  4376. * too many flags. The flags here must cover all flags that
  4377. * are matched during merging to guarantee that the id is
  4378. * unique.
  4379. */
  4380. if (s->flags & SLAB_CACHE_DMA)
  4381. *p++ = 'd';
  4382. if (s->flags & SLAB_RECLAIM_ACCOUNT)
  4383. *p++ = 'a';
  4384. if (s->flags & SLAB_DEBUG_FREE)
  4385. *p++ = 'F';
  4386. if (!(s->flags & SLAB_NOTRACK))
  4387. *p++ = 't';
  4388. if (p != name + 1)
  4389. *p++ = '-';
  4390. p += sprintf(p, "%07d", s->size);
  4391. BUG_ON(p > name + ID_STR_LENGTH - 1);
  4392. return name;
  4393. }
  4394. static int sysfs_slab_add(struct kmem_cache *s)
  4395. {
  4396. int err;
  4397. const char *name;
  4398. int unmergeable;
  4399. if (slab_state < SYSFS)
  4400. /* Defer until later */
  4401. return 0;
  4402. unmergeable = slab_unmergeable(s);
  4403. if (unmergeable) {
  4404. /*
  4405. * Slabcache can never be merged so we can use the name proper.
  4406. * This is typically the case for debug situations. In that
  4407. * case we can catch duplicate names easily.
  4408. */
  4409. sysfs_remove_link(&slab_kset->kobj, s->name);
  4410. name = s->name;
  4411. } else {
  4412. /*
  4413. * Create a unique name for the slab as a target
  4414. * for the symlinks.
  4415. */
  4416. name = create_unique_id(s);
  4417. }
  4418. s->kobj.kset = slab_kset;
  4419. err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
  4420. if (err) {
  4421. kobject_put(&s->kobj);
  4422. return err;
  4423. }
  4424. err = sysfs_create_group(&s->kobj, &slab_attr_group);
  4425. if (err) {
  4426. kobject_del(&s->kobj);
  4427. kobject_put(&s->kobj);
  4428. return err;
  4429. }
  4430. kobject_uevent(&s->kobj, KOBJ_ADD);
  4431. if (!unmergeable) {
  4432. /* Setup first alias */
  4433. sysfs_slab_alias(s, s->name);
  4434. kfree(name);
  4435. }
  4436. return 0;
  4437. }
  4438. static void sysfs_slab_remove(struct kmem_cache *s)
  4439. {
  4440. if (slab_state < SYSFS)
  4441. /*
  4442. * Sysfs has not been setup yet so no need to remove the
  4443. * cache from sysfs.
  4444. */
  4445. return;
  4446. kobject_uevent(&s->kobj, KOBJ_REMOVE);
  4447. kobject_del(&s->kobj);
  4448. kobject_put(&s->kobj);
  4449. }
  4450. /*
  4451. * Need to buffer aliases during bootup until sysfs becomes
  4452. * available lest we lose that information.
  4453. */
  4454. struct saved_alias {
  4455. struct kmem_cache *s;
  4456. const char *name;
  4457. struct saved_alias *next;
  4458. };
  4459. static struct saved_alias *alias_list;
  4460. static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
  4461. {
  4462. struct saved_alias *al;
  4463. if (slab_state == SYSFS) {
  4464. /*
  4465. * If we have a leftover link then remove it.
  4466. */
  4467. sysfs_remove_link(&slab_kset->kobj, name);
  4468. return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
  4469. }
  4470. al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
  4471. if (!al)
  4472. return -ENOMEM;
  4473. al->s = s;
  4474. al->name = name;
  4475. al->next = alias_list;
  4476. alias_list = al;
  4477. return 0;
  4478. }
  4479. static int __init slab_sysfs_init(void)
  4480. {
  4481. struct kmem_cache *s;
  4482. int err;
  4483. down_write(&slub_lock);
  4484. slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
  4485. if (!slab_kset) {
  4486. up_write(&slub_lock);
  4487. printk(KERN_ERR "Cannot register slab subsystem.\n");
  4488. return -ENOSYS;
  4489. }
  4490. slab_state = SYSFS;
  4491. list_for_each_entry(s, &slab_caches, list) {
  4492. err = sysfs_slab_add(s);
  4493. if (err)
  4494. printk(KERN_ERR "SLUB: Unable to add boot slab %s"
  4495. " to sysfs\n", s->name);
  4496. }
  4497. while (alias_list) {
  4498. struct saved_alias *al = alias_list;
  4499. alias_list = alias_list->next;
  4500. err = sysfs_slab_alias(al->s, al->name);
  4501. if (err)
  4502. printk(KERN_ERR "SLUB: Unable to add boot slab alias"
  4503. " %s to sysfs\n", s->name);
  4504. kfree(al);
  4505. }
  4506. up_write(&slub_lock);
  4507. resiliency_test();
  4508. return 0;
  4509. }
  4510. __initcall(slab_sysfs_init);
  4511. #endif /* CONFIG_SYSFS */
  4512. /*
  4513. * The /proc/slabinfo ABI
  4514. */
  4515. #ifdef CONFIG_SLABINFO
  4516. static void print_slabinfo_header(struct seq_file *m)
  4517. {
  4518. seq_puts(m, "slabinfo - version: 2.1\n");
  4519. seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
  4520. "<objperslab> <pagesperslab>");
  4521. seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
  4522. seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
  4523. seq_putc(m, '\n');
  4524. }
  4525. static void *s_start(struct seq_file *m, loff_t *pos)
  4526. {
  4527. loff_t n = *pos;
  4528. down_read(&slub_lock);
  4529. if (!n)
  4530. print_slabinfo_header(m);
  4531. return seq_list_start(&slab_caches, *pos);
  4532. }
  4533. static void *s_next(struct seq_file *m, void *p, loff_t *pos)
  4534. {
  4535. return seq_list_next(p, &slab_caches, pos);
  4536. }
  4537. static void s_stop(struct seq_file *m, void *p)
  4538. {
  4539. up_read(&slub_lock);
  4540. }
  4541. static int s_show(struct seq_file *m, void *p)
  4542. {
  4543. unsigned long nr_partials = 0;
  4544. unsigned long nr_slabs = 0;
  4545. unsigned long nr_inuse = 0;
  4546. unsigned long nr_objs = 0;
  4547. unsigned long nr_free = 0;
  4548. struct kmem_cache *s;
  4549. int node;
  4550. s = list_entry(p, struct kmem_cache, list);
  4551. for_each_online_node(node) {
  4552. struct kmem_cache_node *n = get_node(s, node);
  4553. if (!n)
  4554. continue;
  4555. nr_partials += n->nr_partial;
  4556. nr_slabs += atomic_long_read(&n->nr_slabs);
  4557. nr_objs += atomic_long_read(&n->total_objects);
  4558. nr_free += count_partial(n, count_free);
  4559. }
  4560. nr_inuse = nr_objs - nr_free;
  4561. seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
  4562. nr_objs, s->size, oo_objects(s->oo),
  4563. (1 << oo_order(s->oo)));
  4564. seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
  4565. seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
  4566. 0UL);
  4567. seq_putc(m, '\n');
  4568. return 0;
  4569. }
  4570. static const struct seq_operations slabinfo_op = {
  4571. .start = s_start,
  4572. .next = s_next,
  4573. .stop = s_stop,
  4574. .show = s_show,
  4575. };
  4576. static int slabinfo_open(struct inode *inode, struct file *file)
  4577. {
  4578. return seq_open(file, &slabinfo_op);
  4579. }
  4580. static const struct file_operations proc_slabinfo_operations = {
  4581. .open = slabinfo_open,
  4582. .read = seq_read,
  4583. .llseek = seq_lseek,
  4584. .release = seq_release,
  4585. };
  4586. static int __init slab_proc_init(void)
  4587. {
  4588. proc_create("slabinfo", S_IRUSR, NULL, &proc_slabinfo_operations);
  4589. return 0;
  4590. }
  4591. module_init(slab_proc_init);
  4592. #endif /* CONFIG_SLABINFO */