page-writeback.c 59 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999
  1. /*
  2. * mm/page-writeback.c
  3. *
  4. * Copyright (C) 2002, Linus Torvalds.
  5. * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  6. *
  7. * Contains functions related to writing back dirty pages at the
  8. * address_space level.
  9. *
  10. * 10Apr2002 Andrew Morton
  11. * Initial version
  12. */
  13. #include <linux/kernel.h>
  14. #include <linux/export.h>
  15. #include <linux/spinlock.h>
  16. #include <linux/fs.h>
  17. #include <linux/mm.h>
  18. #include <linux/swap.h>
  19. #include <linux/slab.h>
  20. #include <linux/pagemap.h>
  21. #include <linux/writeback.h>
  22. #include <linux/init.h>
  23. #include <linux/backing-dev.h>
  24. #include <linux/task_io_accounting_ops.h>
  25. #include <linux/blkdev.h>
  26. #include <linux/mpage.h>
  27. #include <linux/rmap.h>
  28. #include <linux/percpu.h>
  29. #include <linux/notifier.h>
  30. #include <linux/smp.h>
  31. #include <linux/sysctl.h>
  32. #include <linux/cpu.h>
  33. #include <linux/syscalls.h>
  34. #include <linux/buffer_head.h>
  35. #include <linux/pagevec.h>
  36. #include <trace/events/writeback.h>
  37. /*
  38. * Sleep at most 200ms at a time in balance_dirty_pages().
  39. */
  40. #define MAX_PAUSE max(HZ/5, 1)
  41. /*
  42. * Estimate write bandwidth at 200ms intervals.
  43. */
  44. #define BANDWIDTH_INTERVAL max(HZ/5, 1)
  45. #define RATELIMIT_CALC_SHIFT 10
  46. /*
  47. * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
  48. * will look to see if it needs to force writeback or throttling.
  49. */
  50. static long ratelimit_pages = 32;
  51. /* The following parameters are exported via /proc/sys/vm */
  52. /*
  53. * Start background writeback (via writeback threads) at this percentage
  54. */
  55. int dirty_background_ratio = 10;
  56. /*
  57. * dirty_background_bytes starts at 0 (disabled) so that it is a function of
  58. * dirty_background_ratio * the amount of dirtyable memory
  59. */
  60. unsigned long dirty_background_bytes;
  61. /*
  62. * free highmem will not be subtracted from the total free memory
  63. * for calculating free ratios if vm_highmem_is_dirtyable is true
  64. */
  65. int vm_highmem_is_dirtyable;
  66. /*
  67. * The generator of dirty data starts writeback at this percentage
  68. */
  69. int vm_dirty_ratio = 20;
  70. /*
  71. * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
  72. * vm_dirty_ratio * the amount of dirtyable memory
  73. */
  74. unsigned long vm_dirty_bytes;
  75. /*
  76. * The interval between `kupdate'-style writebacks
  77. */
  78. unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
  79. /*
  80. * The longest time for which data is allowed to remain dirty
  81. */
  82. unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
  83. /*
  84. * Flag that makes the machine dump writes/reads and block dirtyings.
  85. */
  86. int block_dump;
  87. /*
  88. * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
  89. * a full sync is triggered after this time elapses without any disk activity.
  90. */
  91. int laptop_mode;
  92. EXPORT_SYMBOL(laptop_mode);
  93. /* End of sysctl-exported parameters */
  94. unsigned long global_dirty_limit;
  95. /*
  96. * Scale the writeback cache size proportional to the relative writeout speeds.
  97. *
  98. * We do this by keeping a floating proportion between BDIs, based on page
  99. * writeback completions [end_page_writeback()]. Those devices that write out
  100. * pages fastest will get the larger share, while the slower will get a smaller
  101. * share.
  102. *
  103. * We use page writeout completions because we are interested in getting rid of
  104. * dirty pages. Having them written out is the primary goal.
  105. *
  106. * We introduce a concept of time, a period over which we measure these events,
  107. * because demand can/will vary over time. The length of this period itself is
  108. * measured in page writeback completions.
  109. *
  110. */
  111. static struct prop_descriptor vm_completions;
  112. /*
  113. * couple the period to the dirty_ratio:
  114. *
  115. * period/2 ~ roundup_pow_of_two(dirty limit)
  116. */
  117. static int calc_period_shift(void)
  118. {
  119. unsigned long dirty_total;
  120. if (vm_dirty_bytes)
  121. dirty_total = vm_dirty_bytes / PAGE_SIZE;
  122. else
  123. dirty_total = (vm_dirty_ratio * determine_dirtyable_memory()) /
  124. 100;
  125. return 2 + ilog2(dirty_total - 1);
  126. }
  127. /*
  128. * update the period when the dirty threshold changes.
  129. */
  130. static void update_completion_period(void)
  131. {
  132. int shift = calc_period_shift();
  133. prop_change_shift(&vm_completions, shift);
  134. writeback_set_ratelimit();
  135. }
  136. int dirty_background_ratio_handler(struct ctl_table *table, int write,
  137. void __user *buffer, size_t *lenp,
  138. loff_t *ppos)
  139. {
  140. int ret;
  141. ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
  142. if (ret == 0 && write)
  143. dirty_background_bytes = 0;
  144. return ret;
  145. }
  146. int dirty_background_bytes_handler(struct ctl_table *table, int write,
  147. void __user *buffer, size_t *lenp,
  148. loff_t *ppos)
  149. {
  150. int ret;
  151. ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
  152. if (ret == 0 && write)
  153. dirty_background_ratio = 0;
  154. return ret;
  155. }
  156. int dirty_ratio_handler(struct ctl_table *table, int write,
  157. void __user *buffer, size_t *lenp,
  158. loff_t *ppos)
  159. {
  160. int old_ratio = vm_dirty_ratio;
  161. int ret;
  162. ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
  163. if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
  164. update_completion_period();
  165. vm_dirty_bytes = 0;
  166. }
  167. return ret;
  168. }
  169. int dirty_bytes_handler(struct ctl_table *table, int write,
  170. void __user *buffer, size_t *lenp,
  171. loff_t *ppos)
  172. {
  173. unsigned long old_bytes = vm_dirty_bytes;
  174. int ret;
  175. ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
  176. if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
  177. update_completion_period();
  178. vm_dirty_ratio = 0;
  179. }
  180. return ret;
  181. }
  182. /*
  183. * Increment the BDI's writeout completion count and the global writeout
  184. * completion count. Called from test_clear_page_writeback().
  185. */
  186. static inline void __bdi_writeout_inc(struct backing_dev_info *bdi)
  187. {
  188. __inc_bdi_stat(bdi, BDI_WRITTEN);
  189. __prop_inc_percpu_max(&vm_completions, &bdi->completions,
  190. bdi->max_prop_frac);
  191. }
  192. void bdi_writeout_inc(struct backing_dev_info *bdi)
  193. {
  194. unsigned long flags;
  195. local_irq_save(flags);
  196. __bdi_writeout_inc(bdi);
  197. local_irq_restore(flags);
  198. }
  199. EXPORT_SYMBOL_GPL(bdi_writeout_inc);
  200. /*
  201. * Obtain an accurate fraction of the BDI's portion.
  202. */
  203. static void bdi_writeout_fraction(struct backing_dev_info *bdi,
  204. long *numerator, long *denominator)
  205. {
  206. prop_fraction_percpu(&vm_completions, &bdi->completions,
  207. numerator, denominator);
  208. }
  209. /*
  210. * bdi_min_ratio keeps the sum of the minimum dirty shares of all
  211. * registered backing devices, which, for obvious reasons, can not
  212. * exceed 100%.
  213. */
  214. static unsigned int bdi_min_ratio;
  215. int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
  216. {
  217. int ret = 0;
  218. spin_lock_bh(&bdi_lock);
  219. if (min_ratio > bdi->max_ratio) {
  220. ret = -EINVAL;
  221. } else {
  222. min_ratio -= bdi->min_ratio;
  223. if (bdi_min_ratio + min_ratio < 100) {
  224. bdi_min_ratio += min_ratio;
  225. bdi->min_ratio += min_ratio;
  226. } else {
  227. ret = -EINVAL;
  228. }
  229. }
  230. spin_unlock_bh(&bdi_lock);
  231. return ret;
  232. }
  233. int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
  234. {
  235. int ret = 0;
  236. if (max_ratio > 100)
  237. return -EINVAL;
  238. spin_lock_bh(&bdi_lock);
  239. if (bdi->min_ratio > max_ratio) {
  240. ret = -EINVAL;
  241. } else {
  242. bdi->max_ratio = max_ratio;
  243. bdi->max_prop_frac = (PROP_FRAC_BASE * max_ratio) / 100;
  244. }
  245. spin_unlock_bh(&bdi_lock);
  246. return ret;
  247. }
  248. EXPORT_SYMBOL(bdi_set_max_ratio);
  249. /*
  250. * Work out the current dirty-memory clamping and background writeout
  251. * thresholds.
  252. *
  253. * The main aim here is to lower them aggressively if there is a lot of mapped
  254. * memory around. To avoid stressing page reclaim with lots of unreclaimable
  255. * pages. It is better to clamp down on writers than to start swapping, and
  256. * performing lots of scanning.
  257. *
  258. * We only allow 1/2 of the currently-unmapped memory to be dirtied.
  259. *
  260. * We don't permit the clamping level to fall below 5% - that is getting rather
  261. * excessive.
  262. *
  263. * We make sure that the background writeout level is below the adjusted
  264. * clamping level.
  265. */
  266. static unsigned long highmem_dirtyable_memory(unsigned long total)
  267. {
  268. #ifdef CONFIG_HIGHMEM
  269. int node;
  270. unsigned long x = 0;
  271. for_each_node_state(node, N_HIGH_MEMORY) {
  272. struct zone *z =
  273. &NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
  274. x += zone_page_state(z, NR_FREE_PAGES) +
  275. zone_reclaimable_pages(z);
  276. }
  277. /*
  278. * Make sure that the number of highmem pages is never larger
  279. * than the number of the total dirtyable memory. This can only
  280. * occur in very strange VM situations but we want to make sure
  281. * that this does not occur.
  282. */
  283. return min(x, total);
  284. #else
  285. return 0;
  286. #endif
  287. }
  288. /**
  289. * determine_dirtyable_memory - amount of memory that may be used
  290. *
  291. * Returns the numebr of pages that can currently be freed and used
  292. * by the kernel for direct mappings.
  293. */
  294. unsigned long determine_dirtyable_memory(void)
  295. {
  296. unsigned long x;
  297. x = global_page_state(NR_FREE_PAGES) + global_reclaimable_pages();
  298. if (!vm_highmem_is_dirtyable)
  299. x -= highmem_dirtyable_memory(x);
  300. return x + 1; /* Ensure that we never return 0 */
  301. }
  302. static unsigned long dirty_freerun_ceiling(unsigned long thresh,
  303. unsigned long bg_thresh)
  304. {
  305. return (thresh + bg_thresh) / 2;
  306. }
  307. static unsigned long hard_dirty_limit(unsigned long thresh)
  308. {
  309. return max(thresh, global_dirty_limit);
  310. }
  311. /*
  312. * global_dirty_limits - background-writeback and dirty-throttling thresholds
  313. *
  314. * Calculate the dirty thresholds based on sysctl parameters
  315. * - vm.dirty_background_ratio or vm.dirty_background_bytes
  316. * - vm.dirty_ratio or vm.dirty_bytes
  317. * The dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
  318. * real-time tasks.
  319. */
  320. void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
  321. {
  322. unsigned long background;
  323. unsigned long dirty;
  324. unsigned long uninitialized_var(available_memory);
  325. struct task_struct *tsk;
  326. if (!vm_dirty_bytes || !dirty_background_bytes)
  327. available_memory = determine_dirtyable_memory();
  328. if (vm_dirty_bytes)
  329. dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE);
  330. else
  331. dirty = (vm_dirty_ratio * available_memory) / 100;
  332. if (dirty_background_bytes)
  333. background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE);
  334. else
  335. background = (dirty_background_ratio * available_memory) / 100;
  336. if (background >= dirty)
  337. background = dirty / 2;
  338. tsk = current;
  339. if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
  340. background += background / 4;
  341. dirty += dirty / 4;
  342. }
  343. *pbackground = background;
  344. *pdirty = dirty;
  345. trace_global_dirty_state(background, dirty);
  346. }
  347. /**
  348. * bdi_dirty_limit - @bdi's share of dirty throttling threshold
  349. * @bdi: the backing_dev_info to query
  350. * @dirty: global dirty limit in pages
  351. *
  352. * Returns @bdi's dirty limit in pages. The term "dirty" in the context of
  353. * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
  354. * And the "limit" in the name is not seriously taken as hard limit in
  355. * balance_dirty_pages().
  356. *
  357. * It allocates high/low dirty limits to fast/slow devices, in order to prevent
  358. * - starving fast devices
  359. * - piling up dirty pages (that will take long time to sync) on slow devices
  360. *
  361. * The bdi's share of dirty limit will be adapting to its throughput and
  362. * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
  363. */
  364. unsigned long bdi_dirty_limit(struct backing_dev_info *bdi, unsigned long dirty)
  365. {
  366. u64 bdi_dirty;
  367. long numerator, denominator;
  368. /*
  369. * Calculate this BDI's share of the dirty ratio.
  370. */
  371. bdi_writeout_fraction(bdi, &numerator, &denominator);
  372. bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100;
  373. bdi_dirty *= numerator;
  374. do_div(bdi_dirty, denominator);
  375. bdi_dirty += (dirty * bdi->min_ratio) / 100;
  376. if (bdi_dirty > (dirty * bdi->max_ratio) / 100)
  377. bdi_dirty = dirty * bdi->max_ratio / 100;
  378. return bdi_dirty;
  379. }
  380. /*
  381. * Dirty position control.
  382. *
  383. * (o) global/bdi setpoints
  384. *
  385. * We want the dirty pages be balanced around the global/bdi setpoints.
  386. * When the number of dirty pages is higher/lower than the setpoint, the
  387. * dirty position control ratio (and hence task dirty ratelimit) will be
  388. * decreased/increased to bring the dirty pages back to the setpoint.
  389. *
  390. * pos_ratio = 1 << RATELIMIT_CALC_SHIFT
  391. *
  392. * if (dirty < setpoint) scale up pos_ratio
  393. * if (dirty > setpoint) scale down pos_ratio
  394. *
  395. * if (bdi_dirty < bdi_setpoint) scale up pos_ratio
  396. * if (bdi_dirty > bdi_setpoint) scale down pos_ratio
  397. *
  398. * task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
  399. *
  400. * (o) global control line
  401. *
  402. * ^ pos_ratio
  403. * |
  404. * | |<===== global dirty control scope ======>|
  405. * 2.0 .............*
  406. * | .*
  407. * | . *
  408. * | . *
  409. * | . *
  410. * | . *
  411. * | . *
  412. * 1.0 ................................*
  413. * | . . *
  414. * | . . *
  415. * | . . *
  416. * | . . *
  417. * | . . *
  418. * 0 +------------.------------------.----------------------*------------->
  419. * freerun^ setpoint^ limit^ dirty pages
  420. *
  421. * (o) bdi control line
  422. *
  423. * ^ pos_ratio
  424. * |
  425. * | *
  426. * | *
  427. * | *
  428. * | *
  429. * | * |<=========== span ============>|
  430. * 1.0 .......................*
  431. * | . *
  432. * | . *
  433. * | . *
  434. * | . *
  435. * | . *
  436. * | . *
  437. * | . *
  438. * | . *
  439. * | . *
  440. * | . *
  441. * | . *
  442. * 1/4 ...............................................* * * * * * * * * * * *
  443. * | . .
  444. * | . .
  445. * | . .
  446. * 0 +----------------------.-------------------------------.------------->
  447. * bdi_setpoint^ x_intercept^
  448. *
  449. * The bdi control line won't drop below pos_ratio=1/4, so that bdi_dirty can
  450. * be smoothly throttled down to normal if it starts high in situations like
  451. * - start writing to a slow SD card and a fast disk at the same time. The SD
  452. * card's bdi_dirty may rush to many times higher than bdi_setpoint.
  453. * - the bdi dirty thresh drops quickly due to change of JBOD workload
  454. */
  455. static unsigned long bdi_position_ratio(struct backing_dev_info *bdi,
  456. unsigned long thresh,
  457. unsigned long bg_thresh,
  458. unsigned long dirty,
  459. unsigned long bdi_thresh,
  460. unsigned long bdi_dirty)
  461. {
  462. unsigned long write_bw = bdi->avg_write_bandwidth;
  463. unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
  464. unsigned long limit = hard_dirty_limit(thresh);
  465. unsigned long x_intercept;
  466. unsigned long setpoint; /* dirty pages' target balance point */
  467. unsigned long bdi_setpoint;
  468. unsigned long span;
  469. long long pos_ratio; /* for scaling up/down the rate limit */
  470. long x;
  471. if (unlikely(dirty >= limit))
  472. return 0;
  473. /*
  474. * global setpoint
  475. *
  476. * setpoint - dirty 3
  477. * f(dirty) := 1.0 + (----------------)
  478. * limit - setpoint
  479. *
  480. * it's a 3rd order polynomial that subjects to
  481. *
  482. * (1) f(freerun) = 2.0 => rampup dirty_ratelimit reasonably fast
  483. * (2) f(setpoint) = 1.0 => the balance point
  484. * (3) f(limit) = 0 => the hard limit
  485. * (4) df/dx <= 0 => negative feedback control
  486. * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
  487. * => fast response on large errors; small oscillation near setpoint
  488. */
  489. setpoint = (freerun + limit) / 2;
  490. x = div_s64((setpoint - dirty) << RATELIMIT_CALC_SHIFT,
  491. limit - setpoint + 1);
  492. pos_ratio = x;
  493. pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
  494. pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
  495. pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
  496. /*
  497. * We have computed basic pos_ratio above based on global situation. If
  498. * the bdi is over/under its share of dirty pages, we want to scale
  499. * pos_ratio further down/up. That is done by the following mechanism.
  500. */
  501. /*
  502. * bdi setpoint
  503. *
  504. * f(bdi_dirty) := 1.0 + k * (bdi_dirty - bdi_setpoint)
  505. *
  506. * x_intercept - bdi_dirty
  507. * := --------------------------
  508. * x_intercept - bdi_setpoint
  509. *
  510. * The main bdi control line is a linear function that subjects to
  511. *
  512. * (1) f(bdi_setpoint) = 1.0
  513. * (2) k = - 1 / (8 * write_bw) (in single bdi case)
  514. * or equally: x_intercept = bdi_setpoint + 8 * write_bw
  515. *
  516. * For single bdi case, the dirty pages are observed to fluctuate
  517. * regularly within range
  518. * [bdi_setpoint - write_bw/2, bdi_setpoint + write_bw/2]
  519. * for various filesystems, where (2) can yield in a reasonable 12.5%
  520. * fluctuation range for pos_ratio.
  521. *
  522. * For JBOD case, bdi_thresh (not bdi_dirty!) could fluctuate up to its
  523. * own size, so move the slope over accordingly and choose a slope that
  524. * yields 100% pos_ratio fluctuation on suddenly doubled bdi_thresh.
  525. */
  526. if (unlikely(bdi_thresh > thresh))
  527. bdi_thresh = thresh;
  528. bdi_thresh = max(bdi_thresh, (limit - dirty) / 8);
  529. /*
  530. * scale global setpoint to bdi's:
  531. * bdi_setpoint = setpoint * bdi_thresh / thresh
  532. */
  533. x = div_u64((u64)bdi_thresh << 16, thresh + 1);
  534. bdi_setpoint = setpoint * (u64)x >> 16;
  535. /*
  536. * Use span=(8*write_bw) in single bdi case as indicated by
  537. * (thresh - bdi_thresh ~= 0) and transit to bdi_thresh in JBOD case.
  538. *
  539. * bdi_thresh thresh - bdi_thresh
  540. * span = ---------- * (8 * write_bw) + ------------------- * bdi_thresh
  541. * thresh thresh
  542. */
  543. span = (thresh - bdi_thresh + 8 * write_bw) * (u64)x >> 16;
  544. x_intercept = bdi_setpoint + span;
  545. if (bdi_dirty < x_intercept - span / 4) {
  546. pos_ratio = div_u64(pos_ratio * (x_intercept - bdi_dirty),
  547. x_intercept - bdi_setpoint + 1);
  548. } else
  549. pos_ratio /= 4;
  550. /*
  551. * bdi reserve area, safeguard against dirty pool underrun and disk idle
  552. * It may push the desired control point of global dirty pages higher
  553. * than setpoint.
  554. */
  555. x_intercept = bdi_thresh / 2;
  556. if (bdi_dirty < x_intercept) {
  557. if (bdi_dirty > x_intercept / 8)
  558. pos_ratio = div_u64(pos_ratio * x_intercept, bdi_dirty);
  559. else
  560. pos_ratio *= 8;
  561. }
  562. return pos_ratio;
  563. }
  564. static void bdi_update_write_bandwidth(struct backing_dev_info *bdi,
  565. unsigned long elapsed,
  566. unsigned long written)
  567. {
  568. const unsigned long period = roundup_pow_of_two(3 * HZ);
  569. unsigned long avg = bdi->avg_write_bandwidth;
  570. unsigned long old = bdi->write_bandwidth;
  571. u64 bw;
  572. /*
  573. * bw = written * HZ / elapsed
  574. *
  575. * bw * elapsed + write_bandwidth * (period - elapsed)
  576. * write_bandwidth = ---------------------------------------------------
  577. * period
  578. */
  579. bw = written - bdi->written_stamp;
  580. bw *= HZ;
  581. if (unlikely(elapsed > period)) {
  582. do_div(bw, elapsed);
  583. avg = bw;
  584. goto out;
  585. }
  586. bw += (u64)bdi->write_bandwidth * (period - elapsed);
  587. bw >>= ilog2(period);
  588. /*
  589. * one more level of smoothing, for filtering out sudden spikes
  590. */
  591. if (avg > old && old >= (unsigned long)bw)
  592. avg -= (avg - old) >> 3;
  593. if (avg < old && old <= (unsigned long)bw)
  594. avg += (old - avg) >> 3;
  595. out:
  596. bdi->write_bandwidth = bw;
  597. bdi->avg_write_bandwidth = avg;
  598. }
  599. /*
  600. * The global dirtyable memory and dirty threshold could be suddenly knocked
  601. * down by a large amount (eg. on the startup of KVM in a swapless system).
  602. * This may throw the system into deep dirty exceeded state and throttle
  603. * heavy/light dirtiers alike. To retain good responsiveness, maintain
  604. * global_dirty_limit for tracking slowly down to the knocked down dirty
  605. * threshold.
  606. */
  607. static void update_dirty_limit(unsigned long thresh, unsigned long dirty)
  608. {
  609. unsigned long limit = global_dirty_limit;
  610. /*
  611. * Follow up in one step.
  612. */
  613. if (limit < thresh) {
  614. limit = thresh;
  615. goto update;
  616. }
  617. /*
  618. * Follow down slowly. Use the higher one as the target, because thresh
  619. * may drop below dirty. This is exactly the reason to introduce
  620. * global_dirty_limit which is guaranteed to lie above the dirty pages.
  621. */
  622. thresh = max(thresh, dirty);
  623. if (limit > thresh) {
  624. limit -= (limit - thresh) >> 5;
  625. goto update;
  626. }
  627. return;
  628. update:
  629. global_dirty_limit = limit;
  630. }
  631. static void global_update_bandwidth(unsigned long thresh,
  632. unsigned long dirty,
  633. unsigned long now)
  634. {
  635. static DEFINE_SPINLOCK(dirty_lock);
  636. static unsigned long update_time;
  637. /*
  638. * check locklessly first to optimize away locking for the most time
  639. */
  640. if (time_before(now, update_time + BANDWIDTH_INTERVAL))
  641. return;
  642. spin_lock(&dirty_lock);
  643. if (time_after_eq(now, update_time + BANDWIDTH_INTERVAL)) {
  644. update_dirty_limit(thresh, dirty);
  645. update_time = now;
  646. }
  647. spin_unlock(&dirty_lock);
  648. }
  649. /*
  650. * Maintain bdi->dirty_ratelimit, the base dirty throttle rate.
  651. *
  652. * Normal bdi tasks will be curbed at or below it in long term.
  653. * Obviously it should be around (write_bw / N) when there are N dd tasks.
  654. */
  655. static void bdi_update_dirty_ratelimit(struct backing_dev_info *bdi,
  656. unsigned long thresh,
  657. unsigned long bg_thresh,
  658. unsigned long dirty,
  659. unsigned long bdi_thresh,
  660. unsigned long bdi_dirty,
  661. unsigned long dirtied,
  662. unsigned long elapsed)
  663. {
  664. unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
  665. unsigned long limit = hard_dirty_limit(thresh);
  666. unsigned long setpoint = (freerun + limit) / 2;
  667. unsigned long write_bw = bdi->avg_write_bandwidth;
  668. unsigned long dirty_ratelimit = bdi->dirty_ratelimit;
  669. unsigned long dirty_rate;
  670. unsigned long task_ratelimit;
  671. unsigned long balanced_dirty_ratelimit;
  672. unsigned long pos_ratio;
  673. unsigned long step;
  674. unsigned long x;
  675. /*
  676. * The dirty rate will match the writeout rate in long term, except
  677. * when dirty pages are truncated by userspace or re-dirtied by FS.
  678. */
  679. dirty_rate = (dirtied - bdi->dirtied_stamp) * HZ / elapsed;
  680. pos_ratio = bdi_position_ratio(bdi, thresh, bg_thresh, dirty,
  681. bdi_thresh, bdi_dirty);
  682. /*
  683. * task_ratelimit reflects each dd's dirty rate for the past 200ms.
  684. */
  685. task_ratelimit = (u64)dirty_ratelimit *
  686. pos_ratio >> RATELIMIT_CALC_SHIFT;
  687. task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
  688. /*
  689. * A linear estimation of the "balanced" throttle rate. The theory is,
  690. * if there are N dd tasks, each throttled at task_ratelimit, the bdi's
  691. * dirty_rate will be measured to be (N * task_ratelimit). So the below
  692. * formula will yield the balanced rate limit (write_bw / N).
  693. *
  694. * Note that the expanded form is not a pure rate feedback:
  695. * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) (1)
  696. * but also takes pos_ratio into account:
  697. * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio (2)
  698. *
  699. * (1) is not realistic because pos_ratio also takes part in balancing
  700. * the dirty rate. Consider the state
  701. * pos_ratio = 0.5 (3)
  702. * rate = 2 * (write_bw / N) (4)
  703. * If (1) is used, it will stuck in that state! Because each dd will
  704. * be throttled at
  705. * task_ratelimit = pos_ratio * rate = (write_bw / N) (5)
  706. * yielding
  707. * dirty_rate = N * task_ratelimit = write_bw (6)
  708. * put (6) into (1) we get
  709. * rate_(i+1) = rate_(i) (7)
  710. *
  711. * So we end up using (2) to always keep
  712. * rate_(i+1) ~= (write_bw / N) (8)
  713. * regardless of the value of pos_ratio. As long as (8) is satisfied,
  714. * pos_ratio is able to drive itself to 1.0, which is not only where
  715. * the dirty count meet the setpoint, but also where the slope of
  716. * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
  717. */
  718. balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
  719. dirty_rate | 1);
  720. /*
  721. * We could safely do this and return immediately:
  722. *
  723. * bdi->dirty_ratelimit = balanced_dirty_ratelimit;
  724. *
  725. * However to get a more stable dirty_ratelimit, the below elaborated
  726. * code makes use of task_ratelimit to filter out sigular points and
  727. * limit the step size.
  728. *
  729. * The below code essentially only uses the relative value of
  730. *
  731. * task_ratelimit - dirty_ratelimit
  732. * = (pos_ratio - 1) * dirty_ratelimit
  733. *
  734. * which reflects the direction and size of dirty position error.
  735. */
  736. /*
  737. * dirty_ratelimit will follow balanced_dirty_ratelimit iff
  738. * task_ratelimit is on the same side of dirty_ratelimit, too.
  739. * For example, when
  740. * - dirty_ratelimit > balanced_dirty_ratelimit
  741. * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
  742. * lowering dirty_ratelimit will help meet both the position and rate
  743. * control targets. Otherwise, don't update dirty_ratelimit if it will
  744. * only help meet the rate target. After all, what the users ultimately
  745. * feel and care are stable dirty rate and small position error.
  746. *
  747. * |task_ratelimit - dirty_ratelimit| is used to limit the step size
  748. * and filter out the sigular points of balanced_dirty_ratelimit. Which
  749. * keeps jumping around randomly and can even leap far away at times
  750. * due to the small 200ms estimation period of dirty_rate (we want to
  751. * keep that period small to reduce time lags).
  752. */
  753. step = 0;
  754. if (dirty < setpoint) {
  755. x = min(bdi->balanced_dirty_ratelimit,
  756. min(balanced_dirty_ratelimit, task_ratelimit));
  757. if (dirty_ratelimit < x)
  758. step = x - dirty_ratelimit;
  759. } else {
  760. x = max(bdi->balanced_dirty_ratelimit,
  761. max(balanced_dirty_ratelimit, task_ratelimit));
  762. if (dirty_ratelimit > x)
  763. step = dirty_ratelimit - x;
  764. }
  765. /*
  766. * Don't pursue 100% rate matching. It's impossible since the balanced
  767. * rate itself is constantly fluctuating. So decrease the track speed
  768. * when it gets close to the target. Helps eliminate pointless tremors.
  769. */
  770. step >>= dirty_ratelimit / (2 * step + 1);
  771. /*
  772. * Limit the tracking speed to avoid overshooting.
  773. */
  774. step = (step + 7) / 8;
  775. if (dirty_ratelimit < balanced_dirty_ratelimit)
  776. dirty_ratelimit += step;
  777. else
  778. dirty_ratelimit -= step;
  779. bdi->dirty_ratelimit = max(dirty_ratelimit, 1UL);
  780. bdi->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
  781. trace_bdi_dirty_ratelimit(bdi, dirty_rate, task_ratelimit);
  782. }
  783. void __bdi_update_bandwidth(struct backing_dev_info *bdi,
  784. unsigned long thresh,
  785. unsigned long bg_thresh,
  786. unsigned long dirty,
  787. unsigned long bdi_thresh,
  788. unsigned long bdi_dirty,
  789. unsigned long start_time)
  790. {
  791. unsigned long now = jiffies;
  792. unsigned long elapsed = now - bdi->bw_time_stamp;
  793. unsigned long dirtied;
  794. unsigned long written;
  795. /*
  796. * rate-limit, only update once every 200ms.
  797. */
  798. if (elapsed < BANDWIDTH_INTERVAL)
  799. return;
  800. dirtied = percpu_counter_read(&bdi->bdi_stat[BDI_DIRTIED]);
  801. written = percpu_counter_read(&bdi->bdi_stat[BDI_WRITTEN]);
  802. /*
  803. * Skip quiet periods when disk bandwidth is under-utilized.
  804. * (at least 1s idle time between two flusher runs)
  805. */
  806. if (elapsed > HZ && time_before(bdi->bw_time_stamp, start_time))
  807. goto snapshot;
  808. if (thresh) {
  809. global_update_bandwidth(thresh, dirty, now);
  810. bdi_update_dirty_ratelimit(bdi, thresh, bg_thresh, dirty,
  811. bdi_thresh, bdi_dirty,
  812. dirtied, elapsed);
  813. }
  814. bdi_update_write_bandwidth(bdi, elapsed, written);
  815. snapshot:
  816. bdi->dirtied_stamp = dirtied;
  817. bdi->written_stamp = written;
  818. bdi->bw_time_stamp = now;
  819. }
  820. static void bdi_update_bandwidth(struct backing_dev_info *bdi,
  821. unsigned long thresh,
  822. unsigned long bg_thresh,
  823. unsigned long dirty,
  824. unsigned long bdi_thresh,
  825. unsigned long bdi_dirty,
  826. unsigned long start_time)
  827. {
  828. if (time_is_after_eq_jiffies(bdi->bw_time_stamp + BANDWIDTH_INTERVAL))
  829. return;
  830. spin_lock(&bdi->wb.list_lock);
  831. __bdi_update_bandwidth(bdi, thresh, bg_thresh, dirty,
  832. bdi_thresh, bdi_dirty, start_time);
  833. spin_unlock(&bdi->wb.list_lock);
  834. }
  835. /*
  836. * After a task dirtied this many pages, balance_dirty_pages_ratelimited_nr()
  837. * will look to see if it needs to start dirty throttling.
  838. *
  839. * If dirty_poll_interval is too low, big NUMA machines will call the expensive
  840. * global_page_state() too often. So scale it near-sqrt to the safety margin
  841. * (the number of pages we may dirty without exceeding the dirty limits).
  842. */
  843. static unsigned long dirty_poll_interval(unsigned long dirty,
  844. unsigned long thresh)
  845. {
  846. if (thresh > dirty)
  847. return 1UL << (ilog2(thresh - dirty) >> 1);
  848. return 1;
  849. }
  850. static unsigned long bdi_max_pause(struct backing_dev_info *bdi,
  851. unsigned long bdi_dirty)
  852. {
  853. unsigned long bw = bdi->avg_write_bandwidth;
  854. unsigned long hi = ilog2(bw);
  855. unsigned long lo = ilog2(bdi->dirty_ratelimit);
  856. unsigned long t;
  857. /* target for 20ms max pause on 1-dd case */
  858. t = HZ / 50;
  859. /*
  860. * Scale up pause time for concurrent dirtiers in order to reduce CPU
  861. * overheads.
  862. *
  863. * (N * 20ms) on 2^N concurrent tasks.
  864. */
  865. if (hi > lo)
  866. t += (hi - lo) * (20 * HZ) / 1024;
  867. /*
  868. * Limit pause time for small memory systems. If sleeping for too long
  869. * time, a small pool of dirty/writeback pages may go empty and disk go
  870. * idle.
  871. *
  872. * 8 serves as the safety ratio.
  873. */
  874. if (bdi_dirty)
  875. t = min(t, bdi_dirty * HZ / (8 * bw + 1));
  876. /*
  877. * The pause time will be settled within range (max_pause/4, max_pause).
  878. * Apply a minimal value of 4 to get a non-zero max_pause/4.
  879. */
  880. return clamp_val(t, 4, MAX_PAUSE);
  881. }
  882. /*
  883. * balance_dirty_pages() must be called by processes which are generating dirty
  884. * data. It looks at the number of dirty pages in the machine and will force
  885. * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
  886. * If we're over `background_thresh' then the writeback threads are woken to
  887. * perform some writeout.
  888. */
  889. static void balance_dirty_pages(struct address_space *mapping,
  890. unsigned long pages_dirtied)
  891. {
  892. unsigned long nr_reclaimable; /* = file_dirty + unstable_nfs */
  893. unsigned long bdi_reclaimable;
  894. unsigned long nr_dirty; /* = file_dirty + writeback + unstable_nfs */
  895. unsigned long bdi_dirty;
  896. unsigned long freerun;
  897. unsigned long background_thresh;
  898. unsigned long dirty_thresh;
  899. unsigned long bdi_thresh;
  900. long pause = 0;
  901. long uninitialized_var(max_pause);
  902. bool dirty_exceeded = false;
  903. unsigned long task_ratelimit;
  904. unsigned long uninitialized_var(dirty_ratelimit);
  905. unsigned long pos_ratio;
  906. struct backing_dev_info *bdi = mapping->backing_dev_info;
  907. unsigned long start_time = jiffies;
  908. for (;;) {
  909. /*
  910. * Unstable writes are a feature of certain networked
  911. * filesystems (i.e. NFS) in which data may have been
  912. * written to the server's write cache, but has not yet
  913. * been flushed to permanent storage.
  914. */
  915. nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
  916. global_page_state(NR_UNSTABLE_NFS);
  917. nr_dirty = nr_reclaimable + global_page_state(NR_WRITEBACK);
  918. global_dirty_limits(&background_thresh, &dirty_thresh);
  919. /*
  920. * Throttle it only when the background writeback cannot
  921. * catch-up. This avoids (excessively) small writeouts
  922. * when the bdi limits are ramping up.
  923. */
  924. freerun = dirty_freerun_ceiling(dirty_thresh,
  925. background_thresh);
  926. if (nr_dirty <= freerun)
  927. break;
  928. if (unlikely(!writeback_in_progress(bdi)))
  929. bdi_start_background_writeback(bdi);
  930. /*
  931. * bdi_thresh is not treated as some limiting factor as
  932. * dirty_thresh, due to reasons
  933. * - in JBOD setup, bdi_thresh can fluctuate a lot
  934. * - in a system with HDD and USB key, the USB key may somehow
  935. * go into state (bdi_dirty >> bdi_thresh) either because
  936. * bdi_dirty starts high, or because bdi_thresh drops low.
  937. * In this case we don't want to hard throttle the USB key
  938. * dirtiers for 100 seconds until bdi_dirty drops under
  939. * bdi_thresh. Instead the auxiliary bdi control line in
  940. * bdi_position_ratio() will let the dirtier task progress
  941. * at some rate <= (write_bw / 2) for bringing down bdi_dirty.
  942. */
  943. bdi_thresh = bdi_dirty_limit(bdi, dirty_thresh);
  944. /*
  945. * In order to avoid the stacked BDI deadlock we need
  946. * to ensure we accurately count the 'dirty' pages when
  947. * the threshold is low.
  948. *
  949. * Otherwise it would be possible to get thresh+n pages
  950. * reported dirty, even though there are thresh-m pages
  951. * actually dirty; with m+n sitting in the percpu
  952. * deltas.
  953. */
  954. if (bdi_thresh < 2 * bdi_stat_error(bdi)) {
  955. bdi_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE);
  956. bdi_dirty = bdi_reclaimable +
  957. bdi_stat_sum(bdi, BDI_WRITEBACK);
  958. } else {
  959. bdi_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
  960. bdi_dirty = bdi_reclaimable +
  961. bdi_stat(bdi, BDI_WRITEBACK);
  962. }
  963. dirty_exceeded = (bdi_dirty > bdi_thresh) ||
  964. (nr_dirty > dirty_thresh);
  965. if (dirty_exceeded && !bdi->dirty_exceeded)
  966. bdi->dirty_exceeded = 1;
  967. bdi_update_bandwidth(bdi, dirty_thresh, background_thresh,
  968. nr_dirty, bdi_thresh, bdi_dirty,
  969. start_time);
  970. max_pause = bdi_max_pause(bdi, bdi_dirty);
  971. dirty_ratelimit = bdi->dirty_ratelimit;
  972. pos_ratio = bdi_position_ratio(bdi, dirty_thresh,
  973. background_thresh, nr_dirty,
  974. bdi_thresh, bdi_dirty);
  975. task_ratelimit = ((u64)dirty_ratelimit * pos_ratio) >>
  976. RATELIMIT_CALC_SHIFT;
  977. if (unlikely(task_ratelimit == 0)) {
  978. pause = max_pause;
  979. goto pause;
  980. }
  981. pause = HZ * pages_dirtied / task_ratelimit;
  982. if (unlikely(pause <= 0)) {
  983. trace_balance_dirty_pages(bdi,
  984. dirty_thresh,
  985. background_thresh,
  986. nr_dirty,
  987. bdi_thresh,
  988. bdi_dirty,
  989. dirty_ratelimit,
  990. task_ratelimit,
  991. pages_dirtied,
  992. pause,
  993. start_time);
  994. pause = 1; /* avoid resetting nr_dirtied_pause below */
  995. break;
  996. }
  997. pause = min(pause, max_pause);
  998. pause:
  999. trace_balance_dirty_pages(bdi,
  1000. dirty_thresh,
  1001. background_thresh,
  1002. nr_dirty,
  1003. bdi_thresh,
  1004. bdi_dirty,
  1005. dirty_ratelimit,
  1006. task_ratelimit,
  1007. pages_dirtied,
  1008. pause,
  1009. start_time);
  1010. __set_current_state(TASK_KILLABLE);
  1011. io_schedule_timeout(pause);
  1012. /*
  1013. * This is typically equal to (nr_dirty < dirty_thresh) and can
  1014. * also keep "1000+ dd on a slow USB stick" under control.
  1015. */
  1016. if (task_ratelimit)
  1017. break;
  1018. if (fatal_signal_pending(current))
  1019. break;
  1020. }
  1021. if (!dirty_exceeded && bdi->dirty_exceeded)
  1022. bdi->dirty_exceeded = 0;
  1023. current->nr_dirtied = 0;
  1024. if (pause == 0) { /* in freerun area */
  1025. current->nr_dirtied_pause =
  1026. dirty_poll_interval(nr_dirty, dirty_thresh);
  1027. } else if (pause <= max_pause / 4 &&
  1028. pages_dirtied >= current->nr_dirtied_pause) {
  1029. current->nr_dirtied_pause = clamp_val(
  1030. dirty_ratelimit * (max_pause / 2) / HZ,
  1031. pages_dirtied + pages_dirtied / 8,
  1032. pages_dirtied * 4);
  1033. } else if (pause >= max_pause) {
  1034. current->nr_dirtied_pause = 1 | clamp_val(
  1035. dirty_ratelimit * (max_pause / 2) / HZ,
  1036. pages_dirtied / 4,
  1037. pages_dirtied - pages_dirtied / 8);
  1038. }
  1039. if (writeback_in_progress(bdi))
  1040. return;
  1041. /*
  1042. * In laptop mode, we wait until hitting the higher threshold before
  1043. * starting background writeout, and then write out all the way down
  1044. * to the lower threshold. So slow writers cause minimal disk activity.
  1045. *
  1046. * In normal mode, we start background writeout at the lower
  1047. * background_thresh, to keep the amount of dirty memory low.
  1048. */
  1049. if (laptop_mode)
  1050. return;
  1051. if (nr_reclaimable > background_thresh)
  1052. bdi_start_background_writeback(bdi);
  1053. }
  1054. void set_page_dirty_balance(struct page *page, int page_mkwrite)
  1055. {
  1056. if (set_page_dirty(page) || page_mkwrite) {
  1057. struct address_space *mapping = page_mapping(page);
  1058. if (mapping)
  1059. balance_dirty_pages_ratelimited(mapping);
  1060. }
  1061. }
  1062. static DEFINE_PER_CPU(int, bdp_ratelimits);
  1063. /**
  1064. * balance_dirty_pages_ratelimited_nr - balance dirty memory state
  1065. * @mapping: address_space which was dirtied
  1066. * @nr_pages_dirtied: number of pages which the caller has just dirtied
  1067. *
  1068. * Processes which are dirtying memory should call in here once for each page
  1069. * which was newly dirtied. The function will periodically check the system's
  1070. * dirty state and will initiate writeback if needed.
  1071. *
  1072. * On really big machines, get_writeback_state is expensive, so try to avoid
  1073. * calling it too often (ratelimiting). But once we're over the dirty memory
  1074. * limit we decrease the ratelimiting by a lot, to prevent individual processes
  1075. * from overshooting the limit by (ratelimit_pages) each.
  1076. */
  1077. void balance_dirty_pages_ratelimited_nr(struct address_space *mapping,
  1078. unsigned long nr_pages_dirtied)
  1079. {
  1080. struct backing_dev_info *bdi = mapping->backing_dev_info;
  1081. int ratelimit;
  1082. int *p;
  1083. if (!bdi_cap_account_dirty(bdi))
  1084. return;
  1085. ratelimit = current->nr_dirtied_pause;
  1086. if (bdi->dirty_exceeded)
  1087. ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
  1088. current->nr_dirtied += nr_pages_dirtied;
  1089. preempt_disable();
  1090. /*
  1091. * This prevents one CPU to accumulate too many dirtied pages without
  1092. * calling into balance_dirty_pages(), which can happen when there are
  1093. * 1000+ tasks, all of them start dirtying pages at exactly the same
  1094. * time, hence all honoured too large initial task->nr_dirtied_pause.
  1095. */
  1096. p = &__get_cpu_var(bdp_ratelimits);
  1097. if (unlikely(current->nr_dirtied >= ratelimit))
  1098. *p = 0;
  1099. else {
  1100. *p += nr_pages_dirtied;
  1101. if (unlikely(*p >= ratelimit_pages)) {
  1102. *p = 0;
  1103. ratelimit = 0;
  1104. }
  1105. }
  1106. preempt_enable();
  1107. if (unlikely(current->nr_dirtied >= ratelimit))
  1108. balance_dirty_pages(mapping, current->nr_dirtied);
  1109. }
  1110. EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr);
  1111. void throttle_vm_writeout(gfp_t gfp_mask)
  1112. {
  1113. unsigned long background_thresh;
  1114. unsigned long dirty_thresh;
  1115. for ( ; ; ) {
  1116. global_dirty_limits(&background_thresh, &dirty_thresh);
  1117. /*
  1118. * Boost the allowable dirty threshold a bit for page
  1119. * allocators so they don't get DoS'ed by heavy writers
  1120. */
  1121. dirty_thresh += dirty_thresh / 10; /* wheeee... */
  1122. if (global_page_state(NR_UNSTABLE_NFS) +
  1123. global_page_state(NR_WRITEBACK) <= dirty_thresh)
  1124. break;
  1125. congestion_wait(BLK_RW_ASYNC, HZ/10);
  1126. /*
  1127. * The caller might hold locks which can prevent IO completion
  1128. * or progress in the filesystem. So we cannot just sit here
  1129. * waiting for IO to complete.
  1130. */
  1131. if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
  1132. break;
  1133. }
  1134. }
  1135. /*
  1136. * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
  1137. */
  1138. int dirty_writeback_centisecs_handler(ctl_table *table, int write,
  1139. void __user *buffer, size_t *length, loff_t *ppos)
  1140. {
  1141. proc_dointvec(table, write, buffer, length, ppos);
  1142. bdi_arm_supers_timer();
  1143. return 0;
  1144. }
  1145. #ifdef CONFIG_BLOCK
  1146. void laptop_mode_timer_fn(unsigned long data)
  1147. {
  1148. struct request_queue *q = (struct request_queue *)data;
  1149. int nr_pages = global_page_state(NR_FILE_DIRTY) +
  1150. global_page_state(NR_UNSTABLE_NFS);
  1151. /*
  1152. * We want to write everything out, not just down to the dirty
  1153. * threshold
  1154. */
  1155. if (bdi_has_dirty_io(&q->backing_dev_info))
  1156. bdi_start_writeback(&q->backing_dev_info, nr_pages,
  1157. WB_REASON_LAPTOP_TIMER);
  1158. }
  1159. /*
  1160. * We've spun up the disk and we're in laptop mode: schedule writeback
  1161. * of all dirty data a few seconds from now. If the flush is already scheduled
  1162. * then push it back - the user is still using the disk.
  1163. */
  1164. void laptop_io_completion(struct backing_dev_info *info)
  1165. {
  1166. mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
  1167. }
  1168. /*
  1169. * We're in laptop mode and we've just synced. The sync's writes will have
  1170. * caused another writeback to be scheduled by laptop_io_completion.
  1171. * Nothing needs to be written back anymore, so we unschedule the writeback.
  1172. */
  1173. void laptop_sync_completion(void)
  1174. {
  1175. struct backing_dev_info *bdi;
  1176. rcu_read_lock();
  1177. list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
  1178. del_timer(&bdi->laptop_mode_wb_timer);
  1179. rcu_read_unlock();
  1180. }
  1181. #endif
  1182. /*
  1183. * If ratelimit_pages is too high then we can get into dirty-data overload
  1184. * if a large number of processes all perform writes at the same time.
  1185. * If it is too low then SMP machines will call the (expensive)
  1186. * get_writeback_state too often.
  1187. *
  1188. * Here we set ratelimit_pages to a level which ensures that when all CPUs are
  1189. * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
  1190. * thresholds.
  1191. */
  1192. void writeback_set_ratelimit(void)
  1193. {
  1194. unsigned long background_thresh;
  1195. unsigned long dirty_thresh;
  1196. global_dirty_limits(&background_thresh, &dirty_thresh);
  1197. ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
  1198. if (ratelimit_pages < 16)
  1199. ratelimit_pages = 16;
  1200. }
  1201. static int __cpuinit
  1202. ratelimit_handler(struct notifier_block *self, unsigned long u, void *v)
  1203. {
  1204. writeback_set_ratelimit();
  1205. return NOTIFY_DONE;
  1206. }
  1207. static struct notifier_block __cpuinitdata ratelimit_nb = {
  1208. .notifier_call = ratelimit_handler,
  1209. .next = NULL,
  1210. };
  1211. /*
  1212. * Called early on to tune the page writeback dirty limits.
  1213. *
  1214. * We used to scale dirty pages according to how total memory
  1215. * related to pages that could be allocated for buffers (by
  1216. * comparing nr_free_buffer_pages() to vm_total_pages.
  1217. *
  1218. * However, that was when we used "dirty_ratio" to scale with
  1219. * all memory, and we don't do that any more. "dirty_ratio"
  1220. * is now applied to total non-HIGHPAGE memory (by subtracting
  1221. * totalhigh_pages from vm_total_pages), and as such we can't
  1222. * get into the old insane situation any more where we had
  1223. * large amounts of dirty pages compared to a small amount of
  1224. * non-HIGHMEM memory.
  1225. *
  1226. * But we might still want to scale the dirty_ratio by how
  1227. * much memory the box has..
  1228. */
  1229. void __init page_writeback_init(void)
  1230. {
  1231. int shift;
  1232. writeback_set_ratelimit();
  1233. register_cpu_notifier(&ratelimit_nb);
  1234. shift = calc_period_shift();
  1235. prop_descriptor_init(&vm_completions, shift);
  1236. }
  1237. /**
  1238. * tag_pages_for_writeback - tag pages to be written by write_cache_pages
  1239. * @mapping: address space structure to write
  1240. * @start: starting page index
  1241. * @end: ending page index (inclusive)
  1242. *
  1243. * This function scans the page range from @start to @end (inclusive) and tags
  1244. * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
  1245. * that write_cache_pages (or whoever calls this function) will then use
  1246. * TOWRITE tag to identify pages eligible for writeback. This mechanism is
  1247. * used to avoid livelocking of writeback by a process steadily creating new
  1248. * dirty pages in the file (thus it is important for this function to be quick
  1249. * so that it can tag pages faster than a dirtying process can create them).
  1250. */
  1251. /*
  1252. * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
  1253. */
  1254. void tag_pages_for_writeback(struct address_space *mapping,
  1255. pgoff_t start, pgoff_t end)
  1256. {
  1257. #define WRITEBACK_TAG_BATCH 4096
  1258. unsigned long tagged;
  1259. do {
  1260. spin_lock_irq(&mapping->tree_lock);
  1261. tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
  1262. &start, end, WRITEBACK_TAG_BATCH,
  1263. PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
  1264. spin_unlock_irq(&mapping->tree_lock);
  1265. WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
  1266. cond_resched();
  1267. /* We check 'start' to handle wrapping when end == ~0UL */
  1268. } while (tagged >= WRITEBACK_TAG_BATCH && start);
  1269. }
  1270. EXPORT_SYMBOL(tag_pages_for_writeback);
  1271. /**
  1272. * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
  1273. * @mapping: address space structure to write
  1274. * @wbc: subtract the number of written pages from *@wbc->nr_to_write
  1275. * @writepage: function called for each page
  1276. * @data: data passed to writepage function
  1277. *
  1278. * If a page is already under I/O, write_cache_pages() skips it, even
  1279. * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
  1280. * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
  1281. * and msync() need to guarantee that all the data which was dirty at the time
  1282. * the call was made get new I/O started against them. If wbc->sync_mode is
  1283. * WB_SYNC_ALL then we were called for data integrity and we must wait for
  1284. * existing IO to complete.
  1285. *
  1286. * To avoid livelocks (when other process dirties new pages), we first tag
  1287. * pages which should be written back with TOWRITE tag and only then start
  1288. * writing them. For data-integrity sync we have to be careful so that we do
  1289. * not miss some pages (e.g., because some other process has cleared TOWRITE
  1290. * tag we set). The rule we follow is that TOWRITE tag can be cleared only
  1291. * by the process clearing the DIRTY tag (and submitting the page for IO).
  1292. */
  1293. int write_cache_pages(struct address_space *mapping,
  1294. struct writeback_control *wbc, writepage_t writepage,
  1295. void *data)
  1296. {
  1297. int ret = 0;
  1298. int done = 0;
  1299. struct pagevec pvec;
  1300. int nr_pages;
  1301. pgoff_t uninitialized_var(writeback_index);
  1302. pgoff_t index;
  1303. pgoff_t end; /* Inclusive */
  1304. pgoff_t done_index;
  1305. int cycled;
  1306. int range_whole = 0;
  1307. int tag;
  1308. pagevec_init(&pvec, 0);
  1309. if (wbc->range_cyclic) {
  1310. writeback_index = mapping->writeback_index; /* prev offset */
  1311. index = writeback_index;
  1312. if (index == 0)
  1313. cycled = 1;
  1314. else
  1315. cycled = 0;
  1316. end = -1;
  1317. } else {
  1318. index = wbc->range_start >> PAGE_CACHE_SHIFT;
  1319. end = wbc->range_end >> PAGE_CACHE_SHIFT;
  1320. if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
  1321. range_whole = 1;
  1322. cycled = 1; /* ignore range_cyclic tests */
  1323. }
  1324. if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
  1325. tag = PAGECACHE_TAG_TOWRITE;
  1326. else
  1327. tag = PAGECACHE_TAG_DIRTY;
  1328. retry:
  1329. if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
  1330. tag_pages_for_writeback(mapping, index, end);
  1331. done_index = index;
  1332. while (!done && (index <= end)) {
  1333. int i;
  1334. nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
  1335. min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
  1336. if (nr_pages == 0)
  1337. break;
  1338. for (i = 0; i < nr_pages; i++) {
  1339. struct page *page = pvec.pages[i];
  1340. /*
  1341. * At this point, the page may be truncated or
  1342. * invalidated (changing page->mapping to NULL), or
  1343. * even swizzled back from swapper_space to tmpfs file
  1344. * mapping. However, page->index will not change
  1345. * because we have a reference on the page.
  1346. */
  1347. if (page->index > end) {
  1348. /*
  1349. * can't be range_cyclic (1st pass) because
  1350. * end == -1 in that case.
  1351. */
  1352. done = 1;
  1353. break;
  1354. }
  1355. done_index = page->index;
  1356. lock_page(page);
  1357. /*
  1358. * Page truncated or invalidated. We can freely skip it
  1359. * then, even for data integrity operations: the page
  1360. * has disappeared concurrently, so there could be no
  1361. * real expectation of this data interity operation
  1362. * even if there is now a new, dirty page at the same
  1363. * pagecache address.
  1364. */
  1365. if (unlikely(page->mapping != mapping)) {
  1366. continue_unlock:
  1367. unlock_page(page);
  1368. continue;
  1369. }
  1370. if (!PageDirty(page)) {
  1371. /* someone wrote it for us */
  1372. goto continue_unlock;
  1373. }
  1374. if (PageWriteback(page)) {
  1375. if (wbc->sync_mode != WB_SYNC_NONE)
  1376. wait_on_page_writeback(page);
  1377. else
  1378. goto continue_unlock;
  1379. }
  1380. BUG_ON(PageWriteback(page));
  1381. if (!clear_page_dirty_for_io(page))
  1382. goto continue_unlock;
  1383. trace_wbc_writepage(wbc, mapping->backing_dev_info);
  1384. ret = (*writepage)(page, wbc, data);
  1385. if (unlikely(ret)) {
  1386. if (ret == AOP_WRITEPAGE_ACTIVATE) {
  1387. unlock_page(page);
  1388. ret = 0;
  1389. } else {
  1390. /*
  1391. * done_index is set past this page,
  1392. * so media errors will not choke
  1393. * background writeout for the entire
  1394. * file. This has consequences for
  1395. * range_cyclic semantics (ie. it may
  1396. * not be suitable for data integrity
  1397. * writeout).
  1398. */
  1399. done_index = page->index + 1;
  1400. done = 1;
  1401. break;
  1402. }
  1403. }
  1404. /*
  1405. * We stop writing back only if we are not doing
  1406. * integrity sync. In case of integrity sync we have to
  1407. * keep going until we have written all the pages
  1408. * we tagged for writeback prior to entering this loop.
  1409. */
  1410. if (--wbc->nr_to_write <= 0 &&
  1411. wbc->sync_mode == WB_SYNC_NONE) {
  1412. done = 1;
  1413. break;
  1414. }
  1415. }
  1416. pagevec_release(&pvec);
  1417. cond_resched();
  1418. }
  1419. if (!cycled && !done) {
  1420. /*
  1421. * range_cyclic:
  1422. * We hit the last page and there is more work to be done: wrap
  1423. * back to the start of the file
  1424. */
  1425. cycled = 1;
  1426. index = 0;
  1427. end = writeback_index - 1;
  1428. goto retry;
  1429. }
  1430. if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
  1431. mapping->writeback_index = done_index;
  1432. return ret;
  1433. }
  1434. EXPORT_SYMBOL(write_cache_pages);
  1435. /*
  1436. * Function used by generic_writepages to call the real writepage
  1437. * function and set the mapping flags on error
  1438. */
  1439. static int __writepage(struct page *page, struct writeback_control *wbc,
  1440. void *data)
  1441. {
  1442. struct address_space *mapping = data;
  1443. int ret = mapping->a_ops->writepage(page, wbc);
  1444. mapping_set_error(mapping, ret);
  1445. return ret;
  1446. }
  1447. /**
  1448. * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
  1449. * @mapping: address space structure to write
  1450. * @wbc: subtract the number of written pages from *@wbc->nr_to_write
  1451. *
  1452. * This is a library function, which implements the writepages()
  1453. * address_space_operation.
  1454. */
  1455. int generic_writepages(struct address_space *mapping,
  1456. struct writeback_control *wbc)
  1457. {
  1458. struct blk_plug plug;
  1459. int ret;
  1460. /* deal with chardevs and other special file */
  1461. if (!mapping->a_ops->writepage)
  1462. return 0;
  1463. blk_start_plug(&plug);
  1464. ret = write_cache_pages(mapping, wbc, __writepage, mapping);
  1465. blk_finish_plug(&plug);
  1466. return ret;
  1467. }
  1468. EXPORT_SYMBOL(generic_writepages);
  1469. int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
  1470. {
  1471. int ret;
  1472. if (wbc->nr_to_write <= 0)
  1473. return 0;
  1474. if (mapping->a_ops->writepages)
  1475. ret = mapping->a_ops->writepages(mapping, wbc);
  1476. else
  1477. ret = generic_writepages(mapping, wbc);
  1478. return ret;
  1479. }
  1480. /**
  1481. * write_one_page - write out a single page and optionally wait on I/O
  1482. * @page: the page to write
  1483. * @wait: if true, wait on writeout
  1484. *
  1485. * The page must be locked by the caller and will be unlocked upon return.
  1486. *
  1487. * write_one_page() returns a negative error code if I/O failed.
  1488. */
  1489. int write_one_page(struct page *page, int wait)
  1490. {
  1491. struct address_space *mapping = page->mapping;
  1492. int ret = 0;
  1493. struct writeback_control wbc = {
  1494. .sync_mode = WB_SYNC_ALL,
  1495. .nr_to_write = 1,
  1496. };
  1497. BUG_ON(!PageLocked(page));
  1498. if (wait)
  1499. wait_on_page_writeback(page);
  1500. if (clear_page_dirty_for_io(page)) {
  1501. page_cache_get(page);
  1502. ret = mapping->a_ops->writepage(page, &wbc);
  1503. if (ret == 0 && wait) {
  1504. wait_on_page_writeback(page);
  1505. if (PageError(page))
  1506. ret = -EIO;
  1507. }
  1508. page_cache_release(page);
  1509. } else {
  1510. unlock_page(page);
  1511. }
  1512. return ret;
  1513. }
  1514. EXPORT_SYMBOL(write_one_page);
  1515. /*
  1516. * For address_spaces which do not use buffers nor write back.
  1517. */
  1518. int __set_page_dirty_no_writeback(struct page *page)
  1519. {
  1520. if (!PageDirty(page))
  1521. return !TestSetPageDirty(page);
  1522. return 0;
  1523. }
  1524. /*
  1525. * Helper function for set_page_dirty family.
  1526. * NOTE: This relies on being atomic wrt interrupts.
  1527. */
  1528. void account_page_dirtied(struct page *page, struct address_space *mapping)
  1529. {
  1530. if (mapping_cap_account_dirty(mapping)) {
  1531. __inc_zone_page_state(page, NR_FILE_DIRTY);
  1532. __inc_zone_page_state(page, NR_DIRTIED);
  1533. __inc_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
  1534. __inc_bdi_stat(mapping->backing_dev_info, BDI_DIRTIED);
  1535. task_io_account_write(PAGE_CACHE_SIZE);
  1536. }
  1537. }
  1538. EXPORT_SYMBOL(account_page_dirtied);
  1539. /*
  1540. * Helper function for set_page_writeback family.
  1541. * NOTE: Unlike account_page_dirtied this does not rely on being atomic
  1542. * wrt interrupts.
  1543. */
  1544. void account_page_writeback(struct page *page)
  1545. {
  1546. inc_zone_page_state(page, NR_WRITEBACK);
  1547. }
  1548. EXPORT_SYMBOL(account_page_writeback);
  1549. /*
  1550. * For address_spaces which do not use buffers. Just tag the page as dirty in
  1551. * its radix tree.
  1552. *
  1553. * This is also used when a single buffer is being dirtied: we want to set the
  1554. * page dirty in that case, but not all the buffers. This is a "bottom-up"
  1555. * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
  1556. *
  1557. * Most callers have locked the page, which pins the address_space in memory.
  1558. * But zap_pte_range() does not lock the page, however in that case the
  1559. * mapping is pinned by the vma's ->vm_file reference.
  1560. *
  1561. * We take care to handle the case where the page was truncated from the
  1562. * mapping by re-checking page_mapping() inside tree_lock.
  1563. */
  1564. int __set_page_dirty_nobuffers(struct page *page)
  1565. {
  1566. if (!TestSetPageDirty(page)) {
  1567. struct address_space *mapping = page_mapping(page);
  1568. struct address_space *mapping2;
  1569. if (!mapping)
  1570. return 1;
  1571. spin_lock_irq(&mapping->tree_lock);
  1572. mapping2 = page_mapping(page);
  1573. if (mapping2) { /* Race with truncate? */
  1574. BUG_ON(mapping2 != mapping);
  1575. WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
  1576. account_page_dirtied(page, mapping);
  1577. radix_tree_tag_set(&mapping->page_tree,
  1578. page_index(page), PAGECACHE_TAG_DIRTY);
  1579. }
  1580. spin_unlock_irq(&mapping->tree_lock);
  1581. if (mapping->host) {
  1582. /* !PageAnon && !swapper_space */
  1583. __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
  1584. }
  1585. return 1;
  1586. }
  1587. return 0;
  1588. }
  1589. EXPORT_SYMBOL(__set_page_dirty_nobuffers);
  1590. /*
  1591. * When a writepage implementation decides that it doesn't want to write this
  1592. * page for some reason, it should redirty the locked page via
  1593. * redirty_page_for_writepage() and it should then unlock the page and return 0
  1594. */
  1595. int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
  1596. {
  1597. wbc->pages_skipped++;
  1598. return __set_page_dirty_nobuffers(page);
  1599. }
  1600. EXPORT_SYMBOL(redirty_page_for_writepage);
  1601. /*
  1602. * Dirty a page.
  1603. *
  1604. * For pages with a mapping this should be done under the page lock
  1605. * for the benefit of asynchronous memory errors who prefer a consistent
  1606. * dirty state. This rule can be broken in some special cases,
  1607. * but should be better not to.
  1608. *
  1609. * If the mapping doesn't provide a set_page_dirty a_op, then
  1610. * just fall through and assume that it wants buffer_heads.
  1611. */
  1612. int set_page_dirty(struct page *page)
  1613. {
  1614. struct address_space *mapping = page_mapping(page);
  1615. if (likely(mapping)) {
  1616. int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
  1617. /*
  1618. * readahead/lru_deactivate_page could remain
  1619. * PG_readahead/PG_reclaim due to race with end_page_writeback
  1620. * About readahead, if the page is written, the flags would be
  1621. * reset. So no problem.
  1622. * About lru_deactivate_page, if the page is redirty, the flag
  1623. * will be reset. So no problem. but if the page is used by readahead
  1624. * it will confuse readahead and make it restart the size rampup
  1625. * process. But it's a trivial problem.
  1626. */
  1627. ClearPageReclaim(page);
  1628. #ifdef CONFIG_BLOCK
  1629. if (!spd)
  1630. spd = __set_page_dirty_buffers;
  1631. #endif
  1632. return (*spd)(page);
  1633. }
  1634. if (!PageDirty(page)) {
  1635. if (!TestSetPageDirty(page))
  1636. return 1;
  1637. }
  1638. return 0;
  1639. }
  1640. EXPORT_SYMBOL(set_page_dirty);
  1641. /*
  1642. * set_page_dirty() is racy if the caller has no reference against
  1643. * page->mapping->host, and if the page is unlocked. This is because another
  1644. * CPU could truncate the page off the mapping and then free the mapping.
  1645. *
  1646. * Usually, the page _is_ locked, or the caller is a user-space process which
  1647. * holds a reference on the inode by having an open file.
  1648. *
  1649. * In other cases, the page should be locked before running set_page_dirty().
  1650. */
  1651. int set_page_dirty_lock(struct page *page)
  1652. {
  1653. int ret;
  1654. lock_page(page);
  1655. ret = set_page_dirty(page);
  1656. unlock_page(page);
  1657. return ret;
  1658. }
  1659. EXPORT_SYMBOL(set_page_dirty_lock);
  1660. /*
  1661. * Clear a page's dirty flag, while caring for dirty memory accounting.
  1662. * Returns true if the page was previously dirty.
  1663. *
  1664. * This is for preparing to put the page under writeout. We leave the page
  1665. * tagged as dirty in the radix tree so that a concurrent write-for-sync
  1666. * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage
  1667. * implementation will run either set_page_writeback() or set_page_dirty(),
  1668. * at which stage we bring the page's dirty flag and radix-tree dirty tag
  1669. * back into sync.
  1670. *
  1671. * This incoherency between the page's dirty flag and radix-tree tag is
  1672. * unfortunate, but it only exists while the page is locked.
  1673. */
  1674. int clear_page_dirty_for_io(struct page *page)
  1675. {
  1676. struct address_space *mapping = page_mapping(page);
  1677. BUG_ON(!PageLocked(page));
  1678. if (mapping && mapping_cap_account_dirty(mapping)) {
  1679. /*
  1680. * Yes, Virginia, this is indeed insane.
  1681. *
  1682. * We use this sequence to make sure that
  1683. * (a) we account for dirty stats properly
  1684. * (b) we tell the low-level filesystem to
  1685. * mark the whole page dirty if it was
  1686. * dirty in a pagetable. Only to then
  1687. * (c) clean the page again and return 1 to
  1688. * cause the writeback.
  1689. *
  1690. * This way we avoid all nasty races with the
  1691. * dirty bit in multiple places and clearing
  1692. * them concurrently from different threads.
  1693. *
  1694. * Note! Normally the "set_page_dirty(page)"
  1695. * has no effect on the actual dirty bit - since
  1696. * that will already usually be set. But we
  1697. * need the side effects, and it can help us
  1698. * avoid races.
  1699. *
  1700. * We basically use the page "master dirty bit"
  1701. * as a serialization point for all the different
  1702. * threads doing their things.
  1703. */
  1704. if (page_mkclean(page))
  1705. set_page_dirty(page);
  1706. /*
  1707. * We carefully synchronise fault handlers against
  1708. * installing a dirty pte and marking the page dirty
  1709. * at this point. We do this by having them hold the
  1710. * page lock at some point after installing their
  1711. * pte, but before marking the page dirty.
  1712. * Pages are always locked coming in here, so we get
  1713. * the desired exclusion. See mm/memory.c:do_wp_page()
  1714. * for more comments.
  1715. */
  1716. if (TestClearPageDirty(page)) {
  1717. dec_zone_page_state(page, NR_FILE_DIRTY);
  1718. dec_bdi_stat(mapping->backing_dev_info,
  1719. BDI_RECLAIMABLE);
  1720. return 1;
  1721. }
  1722. return 0;
  1723. }
  1724. return TestClearPageDirty(page);
  1725. }
  1726. EXPORT_SYMBOL(clear_page_dirty_for_io);
  1727. int test_clear_page_writeback(struct page *page)
  1728. {
  1729. struct address_space *mapping = page_mapping(page);
  1730. int ret;
  1731. if (mapping) {
  1732. struct backing_dev_info *bdi = mapping->backing_dev_info;
  1733. unsigned long flags;
  1734. spin_lock_irqsave(&mapping->tree_lock, flags);
  1735. ret = TestClearPageWriteback(page);
  1736. if (ret) {
  1737. radix_tree_tag_clear(&mapping->page_tree,
  1738. page_index(page),
  1739. PAGECACHE_TAG_WRITEBACK);
  1740. if (bdi_cap_account_writeback(bdi)) {
  1741. __dec_bdi_stat(bdi, BDI_WRITEBACK);
  1742. __bdi_writeout_inc(bdi);
  1743. }
  1744. }
  1745. spin_unlock_irqrestore(&mapping->tree_lock, flags);
  1746. } else {
  1747. ret = TestClearPageWriteback(page);
  1748. }
  1749. if (ret) {
  1750. dec_zone_page_state(page, NR_WRITEBACK);
  1751. inc_zone_page_state(page, NR_WRITTEN);
  1752. }
  1753. return ret;
  1754. }
  1755. int test_set_page_writeback(struct page *page)
  1756. {
  1757. struct address_space *mapping = page_mapping(page);
  1758. int ret;
  1759. if (mapping) {
  1760. struct backing_dev_info *bdi = mapping->backing_dev_info;
  1761. unsigned long flags;
  1762. spin_lock_irqsave(&mapping->tree_lock, flags);
  1763. ret = TestSetPageWriteback(page);
  1764. if (!ret) {
  1765. radix_tree_tag_set(&mapping->page_tree,
  1766. page_index(page),
  1767. PAGECACHE_TAG_WRITEBACK);
  1768. if (bdi_cap_account_writeback(bdi))
  1769. __inc_bdi_stat(bdi, BDI_WRITEBACK);
  1770. }
  1771. if (!PageDirty(page))
  1772. radix_tree_tag_clear(&mapping->page_tree,
  1773. page_index(page),
  1774. PAGECACHE_TAG_DIRTY);
  1775. radix_tree_tag_clear(&mapping->page_tree,
  1776. page_index(page),
  1777. PAGECACHE_TAG_TOWRITE);
  1778. spin_unlock_irqrestore(&mapping->tree_lock, flags);
  1779. } else {
  1780. ret = TestSetPageWriteback(page);
  1781. }
  1782. if (!ret)
  1783. account_page_writeback(page);
  1784. return ret;
  1785. }
  1786. EXPORT_SYMBOL(test_set_page_writeback);
  1787. /*
  1788. * Return true if any of the pages in the mapping are marked with the
  1789. * passed tag.
  1790. */
  1791. int mapping_tagged(struct address_space *mapping, int tag)
  1792. {
  1793. return radix_tree_tagged(&mapping->page_tree, tag);
  1794. }
  1795. EXPORT_SYMBOL(mapping_tagged);